
Florida International University
FIU Digital Commons

FIU Electronic Theses and Dissertations University Graduate School

2-28-2014

Background Traffic Modeling for Large-Scale
Network Simulation
Ting Li
Florida International University, tli001@fiu.edu

DOI: 10.25148/etd.FI14040803
Follow this and additional works at: https://digitalcommons.fiu.edu/etd

Part of the Other Computer Sciences Commons

This work is brought to you for free and open access by the University Graduate School at FIU Digital Commons. It has been accepted for inclusion in
FIU Electronic Theses and Dissertations by an authorized administrator of FIU Digital Commons. For more information, please contact dcc@fiu.edu.

Recommended Citation
Li, Ting, "Background Traffic Modeling for Large-Scale Network Simulation" (2014). FIU Electronic Theses and Dissertations. 1242.
https://digitalcommons.fiu.edu/etd/1242

https://digitalcommons.fiu.edu/?utm_source=digitalcommons.fiu.edu%2Fetd%2F1242&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.fiu.edu/etd?utm_source=digitalcommons.fiu.edu%2Fetd%2F1242&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.fiu.edu/ugs?utm_source=digitalcommons.fiu.edu%2Fetd%2F1242&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.fiu.edu/etd?utm_source=digitalcommons.fiu.edu%2Fetd%2F1242&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/152?utm_source=digitalcommons.fiu.edu%2Fetd%2F1242&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.fiu.edu/etd/1242?utm_source=digitalcommons.fiu.edu%2Fetd%2F1242&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:dcc@fiu.edu

FLORIDA INTERNATIONAL UNIVERSITY

Miami, Florida

BACKGROUND TRAFFIC MODELING FOR LARGE-SCALE NETWORK

SIMULATION

A dissertation submitted in partial fulfillment of the

requirements for the degree of

DOCTOR OF PHILOSOPHY

in

COMPUTER SCIENCE

by

Ting Li

2014

To: Dean Amir Mirmiran
College of Engineering and Computing

This dissertation, written by Ting Li, and entitled Background Traffic Modeling
for Large-Scale Network Simulation, having been approved in respect to style and
intellectual content, is referred to you for judgment.

We have read this dissertation and recommend that it be approved.

Giri Narasimhan

Tao Li

Shaolei Ren

Gang Quan

Jason Liu, Major Professor

Date of Defense: February 28, 2014

The dissertation of Ting Li is approved.

Dean Amir Mirmiran
College of Engineering and Computing

Dean Lakshmi N. Reddi
University Graduate School

Florida International University, 2014

ii

c© Copyright 2014 by Ting Li

All rights reserved.

iii

ACKNOWLEDGMENTS

I would first like to express my sincere gratitude to my advisor, Dr. Jason Liu, for

his help and patience over the last six years. He continuously provided the vision, advice

and support necessary for me to proceed through the doctorial program and complete my

dissertation.

I want to thank members of my committee. Special thanks go to Dr. Giri Narasimhan,

Dr. Tao Li, Dr. Shaolei Ren, and Dr. Gang Quan, for their warm encouragement, con-

structive comments and insightful suggestions. I should also mention Dr. Jeffrey Fan,

who used to be in my committee. I am grateful for the assistance given by him.

I further wish to thank my constant collaborators, Nathanael Van Vorst and Miguel Er-

azo, for our illuminating discussions, for all the best and worst moments we experienced

together. Your friendship and generous assistance meant more to me than I could ever

express. I am also deeply grateful to work in a vibrant and cheerful group. I would like

to thank Yue Li, Ying He, Rong Rong, and Hao Jiang. A special thanks goes to my friend

Lixi Wang. Without our shared time, I would feel extremely lonely during this journey.

My deepest appreciation goes to my parents Zhixun Li and Mingming Li. Their

boundless love and encouragement offered me invaluable spiritual support. The last two

people I want to thank are my husband Tieyong Hu and my son Colin. It is my little

boy who reminds me daily to be a wonderful role model to him. His bright smile is an

inexhaustible source of laughter, joy and energy. As for my husband, I owe him every-

thing and I wish I could express how much I love and appreciate him. He is a devoted

husband and father; he is my best friend. Without his love, support and sunny optimism,

this dissertation would not have been possible.

iv

ABSTRACT OF THE DISSERTATION

BACKGROUND TRAFFIC MODELING FOR LARGE-SCALE NETWORK

SIMULATION

by

Ting Li

Florida International University, 2014

Miami, Florida

Professor Jason Liu, Major Professor

Network simulation is an indispensable tool for studying Internet-scale networks due

to the heterogeneous structure, immense size and changing properties. It is crucial for

network simulators to generate representative traffic, which is necessary for effectively

evaluating next-generation network protocols and applications. With network simulation,

we can make a distinction between foreground traffic, which is generated by the target

applications the researchers intend to study and therefore must be simulated with high

fidelity, and background traffic, which represents the network traffic that is generated by

other applications and does not require significant accuracy. The background traffic has a

significant impact on the foreground traffic, since it competes with the foreground traffic

for network resources and therefore can drastically affect the behavior of the applications

that produce the foreground traffic. This dissertation aims to provide a solution to mean-

ingfully generate background traffic in three aspects. First is realism. Realistic traffic

characterization plays an important role in determining the correct outcome of the simu-

lation studies. This work starts from enhancing an existing fluid background traffic model

by removing its two unrealistic assumptions. The improved model can correctly reflect

the network conditions in the reverse direction of the data traffic and can reproduce the

traffic burstiness observed from measurements. Second is scalability. The trade-off be-

tween accuracy and scalability is a constant theme in background traffic modeling. This

v

work presents a fast rate-based TCP (RTCP) traffic model, which originally used ana-

lytical models to represent TCP congestion control behavior. This model outperforms

other existing traffic models in that it can correctly capture the overall TCP behavior and

achieve a speedup of more than two orders of magnitude over the corresponding packet-

oriented simulation. Third is network-wide traffic generation. Regardless of how detailed

or scalable the models are, they mainly focus on how to generate traffic on one single

link, which cannot be extended easily to studies of more complicated network scenarios.

This work presents a cluster-based spatio-temporal background traffic generation model

that considers spatial and temporal traffic characteristics as well as their correlations. The

resulting model can be used effectively for the evaluation work in network studies.

vi

TABLE OF CONTENTS

CHAPTER PAGE

1. INTRODUCTION . 1
1.1 Motivation . 2
1.2 Problem Definition . 5
1.3 Contributions . 7
1.4 Evaluation Criteria . 9
1.5 Outline . 10

2. BACKGROUND . 12
2.1 Packet-Oriented Traffic Modeling . 12
2.1.1 Traffic Playback . 12
2.1.2 Self-similar or Multi-fractal Traffic Models 13
2.1.3 Application-specific Traffic Generation 17
2.1.4 Capturing Structural Characteristics . 19
2.2 Fluid Traffic Modeling . 21
2.2.1 Time-Stepping Fluid Models . 21
2.2.2 Discrete Event Fluid Models . 23
2.2.3 Fluid Models for Uncongested Links . 23
2.2.4 Hybrid Traffic Modeling . 24
2.3 Spatial Traffic Modeling . 25
2.4 Spatio-Temporal Traffic Modeling . 26

3. A FLUID BACKGROUND TRAFFIC MODEL FOR A SINGLE LINK 28
3.1 Introduction . 28
3.2 The Model . 29
3.2.1 Adding ACK Flows . 30
3.2.2 Adding Heavy-Tail Session Lengths . 33
3.3 Experiments . 34
3.3.1 Round-Trip Traffic . 35
3.3.2 Traffic Burstness . 37
3.3.3 Application Behavior . 40
3.4 Conclusion . 41

4. A FAST RATE-BASED TCP BACKGROUND TRAFFIC MODEL 42
4.1 Introduction . 42
4.2 Related Work . 43
4.3 An Overview of the Model . 46
4.4 Determining Send Rate . 51
4.4.1 Connection Establishment . 51
4.4.2 Slow Start . 52
4.4.3 Congestion Avoidance . 54

vii

4.5 Conducting Flows at Queues . 55
4.5.1 Single Flow . 56
4.5.2 Multiple Flows . 57
4.6 Experiments . 62
4.6.1 Dumbbell Topology . 62
4.6.2 Multiple Clients . 64
4.6.3 Multiple Bottleneck Model . 65
4.6.4 Large Scale Topology . 66
4.6.5 Discussion . 69
4.7 Conclusion . 72

5. CLUSTER-BASED SPATIO-TEMPORAL BACKGROUND TRAFFIC GENER-
ATION . 74

5.1 Introduction . 74
5.2 Background . 77
5.2.1 Use of Background Traffic in Network Experiments 77
5.2.2 Traffic Classification . 79
5.3 Overview of Cluster-Based Spatio-Temporal Traffic Generation 80
5.4 Step 1: Traffic Classification . 82
5.4.1 Traffic Traces . 82
5.4.2 Clustering End Hosts . 83
5.4.3 Cluster-Level Traffic Summary . 86
5.5 Step 2: Mapping Clusters to Routers . 89
5.5.1 Deriving Traffic Matrix for Arbitrary Network Topology 90
5.5.2 Solving Cluster-to-Router Mapping . 93
5.6 Step 3: Traffic Generation . 95
5.7 Experiments . 97
5.7.1 The Abilene Network . 98
5.7.2 The Campus Network . 101
5.8 Conclusion . 104

6. CONCLUSIONS . 110
6.1 Summary . 110
6.2 Future Directions . 111

BIBLIOGRAPHY . 116

VITA . 129

viii

LIST OF TABLES

TABLE PAGE

2.1 FTP Traffic Models . 18

4.1 Statistics for Dumbbell Network with One Flow 63

4.2 Statistics for Dumbbell Network with Two Flows 64

4.3 Statistics for Multiple Client Network with Four Flows (with 0 Delay Incre-
ment) . 67

4.4 Statistics for Parking Lot Network . 67

4.5 Statistics for Large Network . 69

5.1 SIGCOMM Papers in Different Categories 77

5.2 Use of Synthetic Background Traffic in Some SIGCOMM Papers 78

5.3 The Clustering Result . 85

5.4 Link Utilization and Traffic Distribution Summary 103

ix

LIST OF FIGURES

FIGURE PAGE

3.1 A simple dumbbell network . 35

3.2 Packet vs. fluid one-way and round-trip traffic models 36

3.3 Comparison of the number of TCP sessions over time. 38

3.4 Burstness of traffic intensity (packets/second) 39

3.5 Bottleneck queue lengths from packet vs. fluid models 40

3.6 Download fraction. 41

3.7 Delay jitter. 41

4.1 Interactions between RTCP sender and receiver 50

4.2 An example showing the queuing length changes at the start and end of rate
windows . 59

4.3 Dumbbell network with two flows . 63

4.4 Comparison of the instantaneous queue size at R1 65

4.5 Multiple client network . 66

4.6 Throughput of the multiple client network 68

4.7 Reduction in execution time and number of events for the multiple client
network . 69

4.8 Parking lot network . 70

4.9 Q-Q plot of RTCP throughput versus TCP throughput for large network . . . 71

5.1 Traffic intensity for the CAIDA, MAWI, and CAMPUS traces. 83

5.2 Clustering error of different k values for the CAIDA, MAWI, and CAMPUS
traces. 86

5.3 Q-Q plot of flow size vs. lognormal for the CAIDA, MAWI, and CAMPUS
traces. 89

5.4 The Abilene network. 98

5.5 Rand index of all links of the Abilene network. 100

5.6 Utilization of all links of the Abilene network. 100

x

5.7 Traffic distribution among all links of the Abilene network. 101

5.8 The Q-Q plots of the flow sizes between the generated traffic of all links of
the Abilene network versus the flow sizes of the trace. 105

5.9 A synthetic campus network. 106

5.10 Traffic intensity for one link of Campus network with different scaling factors.107

5.11 Energy plot of the CAMPUS trace and the generated traffic on the same link. 108

5.12 The link utilization of all links of Campus network with different scale factors.108

5.13 The traffic distribution over all links of Campus network with different scale
factors. 109

5.14 CDF of throughput of TCP downloads with different scale factors. 109

xi

CHAPTER 1

INTRODUCTION

Network simulation is an indispensable tool for studying Internet-scale networks due to

the heterogeneous structure, immense size and changing properties. It is crucial for net-

work simulators to generate representative traffic, which is necessary for effectively eval-

uating next-generation network protocols and applications. With network simulation, we

can make a distinction between foreground traffic, which is generated by the target appli-

cations the researchers intend to study and therefore must be simulated with high fidelity,

and background traffic, which represents the bulk of network traffic generated by other

applications and does not require significant accuracy. The background traffic has a sig-

nificant impact on the foreground traffic, since it competes with the foreground traffic

for network resources and therefore can drastically affect the behavior of the applica-

tions that produce the foreground traffic. This dissertation aims to provide a solution to

meaningfully generate background traffic in three aspects. The first aspect is realism. Re-

alistic traffic characterization plays an important role in determining the correct outcome

of the simulation studies. This work starts from enhancing an existing fluid background

traffic model by removing two unrealistic assumptions. The second aspect is scalability.

The trade-off between accuracy and scalability is a constant theme in background traffic

modeling. This work presents a fast rate-based TCP traffic model, which outperforms

other existing traffic models in that it can correctly capture the overall TCP behavior

and achieve a speedup of more than two orders of magnitude over corresponding packet-

oriented simulation. The third aspect is network-wide traffic generation. Regardless of

how detailed or scalable the existing models are, they mainly focus on how to generate

traffic on one single link, which cannot be extended easily to studies of more complicated

network scenarios. This work presents a cluster-based spatio-temporal background traffic

generation model that considers spatial and temporal traffic characteristics as well as their

1

correlations. The resulting model can be applied to the entire network for evaluating new

applications and protocols under complicated scenarios in network studies.

1.1 Motivation

As the size of Internet increases, efficiently studying the behavior of the Internet-scale net-

works becomes more and more challenging. Because of the complexity of the network

behavior there is no available analytical model that can accurately describe the behavior

of Internet-scale networks in every aspect. This makes large-scale network simulation

an indispensable tool for studying immense networks. Previous work has shown that in

certain cases, only large-scale simulation is able to gain credible evidence. Some appli-

cations only show full potential on large-scale environments. For example, scalability is

critical for peer-to-peer applications since they exhibit ”network effect”, which means the

behavior of one user is affected when another user joins and enlarges the network [RFI02].

Another example is Internet worm study, which requires a large-scale model to show the

propagation dynamics of the worm [LYPN02]. However, it is a great challenge to repre-

sent the behavior of network applications under a wide variety of large-scale traffic condi-

tions in a repeatable and controllable fashion. Modeling and simulating the Internet-scale

networks is a difficult task due to the heterogeneous structure, immense size and changing

properties of today’s network [FP01].

Topology, traffic, and scenario are three important factors for network simulation.

A fundamental component of network simulation is traffic modeling, which is essential

for evaluating next-generation network applications and protocols. Floyd and Kohler

have strongly advocated the use of better models for network research through careful

examination of unrealistic assumptions in modeling and simulation studies [FK03]. More

realistic models often imply more costly simulations in terms of time and space. This

2

work focuses on addressing the challenges facing the background traffic modeling for

large-scale network simulation.

There have been numerous attempts to model the background traffic for large-scale

network study. Unfortunately, there are important issues left to be addressed for mod-

eling and simulating background traffic for large-scale network simulation. First, it is

critical to preserve the important realistic characteristics of the real network traffic in

the background traffic models for network experimentation. Floyd and Kohler [FK03]

showed through a series of counter examples that realistic traffic characterization (in-

cluding, for example, proper traffic load distribution and bidirectional traffic) plays an

important role in determining the correct outcome of the simulation studies. The same

observation has been confirmed in the performance studies of high-speed TCP protocols.

Ha et al. [HLRX07] demonstrated conclusively that the stability, fairness, and conver-

gence speed of several TCP variants are clearly affected by the intensity and variability

of background traffic. In addition, Vishwanath and Vahdat conducted a more systematic

study on the impact of background traffic on distributed systems, including Web applica-

tions, multimedia video streaming applications, and bandwidth estimation tools [VV08].

They concluded that even small differences in the burstiness of background traffic can

lead to drastic changes in the overall application behavior. Therefore, how to preserve

the essential characteristics of the real traffic is one main challenge of modeling the back-

ground traffic.

There have been considerable efforts in generating repeatable and realistic traffic

to support performance evaluation of network applications and distributed systems for

both simulation and emulation. Notable examples of existing traffic generators include

Surge [BC98], Harpoon [SB04], Tmix [WAHC+06], and Swing [VV06]. These traf-

fic models are all packet-oriented and represent the background traffic in detail. Each

packet-level instance such as packet arrival or packet departure is processed as a simu-

3

lation event. The computational cost increases proportionally as the number of packets

increases, which results in an inintolerable computational burden for large-scale network

simulation. Scalability therefore becomes the second challenge to model the background

traffic.

To reduce the simulation complexity and model the background traffic efficiently, re-

searchers resort to abstracted fluid models (e.g., [AD96], [Nic01], [LPM+03]). In fluid

simulation, network traffic is modeled in terms of continuous fluid flows rather than in-

dividual packet instances. In addition to pure packet models and pure fluid models,

there are existing hybrid models (e.g., [GGT00], [RJF02], [KSWU03], [NY04], [GLT04],

[Liu06]) aimed at capturing the interactions between fluid background traffic and fore-

ground packet-oriented flows. These hybrid models can achieve substantial performance

gains—in some cases, more than three orders of magnitude—over traditional packet-

oriented simulation, while still maintaining good accuracy. One reason for the existence

of many different background traffic models is that people have realized that one single

model is not able to satisfy the requirement of various network studies. The type of back-

ground traffic model to be used depends on the objective of the specific network study.

Therefore, it is necessary to provide a set of background traffic models with different

levels of accuracy and efficiency.

Regardless of whether the emphasis of the traffic model is accuracy or performance,

earlier work has mainly focused on how to model realistic and scalable background traf-

fic on one single link. The results are a temporal series of packets or flows arrivals and

departures without any spatial correlations. It cannot be extended easily to the studies

of more complicated network scenarios. Therefore, a spatio-temporal background traffic

model which can be applied network-wide is needed. Many studies have been done on the

spatio-temporal analysis of the network traffic, such as [FTT02], [YM05] and [WAF99].

However, to the best of our knowledge, there has been little work on spatio-temporal

4

background traffic generation for Internet-scale network simulation. In principle, we can

repeat the background traffic generation on one link for all the links of the network un-

til we reproduce the network-wide traffic. Unfortunately this is not feasible for most

cases because measured data for all the links may not be available. Even if we assume

a complete set of link observations, given the immense size and the complexity of the

large-scale network, it would be extremely time consuming and difficult to manage such

a great amount of data and reproduce the traffic link by link based on the characteristics

derived from the measured data. Therefore, some simplification must be made to reduce

the complexity of background traffic generation for large-scale network model.

In this dissertation we make a thorough study of the existing background traffic mod-

els and related work, and we present our solutions of modeling background traffic for

large-scale network simulation in terms of improving its accuracy, scalability and incor-

porating both temporal and spatial traffic characteristics.

1.2 Problem Definition

Background traffic modeling is a key component of network simulation. In this section

we formalize three problems regarding background traffic modeling we intend to address

in this dissertation.

• Realistic Background Traffic Modeling: In most cases the evaluations of the ap-

plications and protocols are only valid when applying realistic background traffic

in the network experimentation. There have been numerous attempts to model the

background traffic with the goal of realism (e.g., packet-oriented models). The cost

of faithfully representing background traffic is substantial, especially for large-scale

simulation. Our goal is to generate a realistic and responsive background traffic that

preserves the important characteristics observed from the real network traffic with-

5

out describing it in packet-level details. Our solution is to improve an existing fluid

(hybrid) model by eliminating some of the unrealistic assumptions of the model

while retaining its computational efficiency.

• Scalable Background Traffic Modeling: Traditional packet-oriented simulation

typically requires several simulation events to represent a packet visiting each router

along its way from the traffic source to the destination (with at least two events to

represent the packet arrival and departure at each router). Such detailed packet-level

representation of traffic can incur substantial cost when simulating traffic for large-

scale networks with millions of hosts and routers [FPP+03]. Furthermore, since the

space complexity of a detailed packet-level simulation is proportional to the number

of packets stored in the network queues, for networks that consist of links with a

large delay bandwidth product, the memory cost can be exorbitant. Existing fluid

models address the scalability issue by describing the traffic in the unit of flows

instead of individual packets. However, some fluid models only model the long-

term average behavior of traffic flows to achieve better performance; other fluid

models preserve more detailed information for better accuracy, and consequently,

they are not efficient. Therefore, there is need for a new background traffic model

which considers both performance and accuracy.

• Spatio-Temporal Background Traffic Modeling: We can divide the existing traf-

fic models into spatial and temporal models. Spatial models distribute traffic based

on traffic matrices. They focus specifically on aggregate traffic intensity (rather

than individual flows and packets) and can only deal with variations at coarse time

scales (e.g., in minutes). As a result, they may not be able to accurately capture the

interaction with the foreground traffic, represented normally as individual packets

and flows. Temporal models are based on the traffic traces collected from individual

links; they generate traffic as individual flows or packets, and therefore can capture

6

the effect on the target applications more accurately. Almost all existing traffic

models, either the detailed packet-level models or the abstract fluid models, focus

on generating the traffic on a single link. They can capture the temporal behavior of

the traffic, such as traffic arrival, departure, etc. However, due to the lack of proper

spatio-temporal traffic models, there is no agreement or guidelines on how to place

the background traffic in complex network environments. Our goal is to provide

a spatio-temporal background traffic model, considering both temporal and spatial

structures and their correlations when propagating the generated traffic flows on the

entire network.

The overarching goal of our work is to create proper background traffic generation

models so that the synthetic traffic preserves the important characteristics of the real net-

work, is scalable, and can be applied to the entire network.

1.3 Contributions

In this section we list the major contributions of this work.

1. We propose a fluid background traffic model that can capture the workload char-

acteristics of the Internet traffic for a single link. This model is extended from our

previous hybrid model that integrates a fluid-based analytical model using ordinary

differential equations (ODEs) with the traditional packet-oriented discrete-event

simulation [Liu06]. In particular, we removed two unrealistic assumptions from the

previous approach to properly model Internet background traffic. Our experiments

show that the fluid background traffic model can provide a realistic representation

of the Internet traffic and can accurately capture the interactions with foreground

traffic produced by common applications.

7

2. We propose a fast rate-based TCP model to approximate the behavior of TCP traf-

fic in network simulation at a new level of granularity. In this model, we apply

analytical models to capture the approximate behavior of the TCP end systems to

further speed up network simulation. We conduct extensive experiments to validate

our model and show that it can lead to more than two orders of magnitude reduc-

tion both in the number of simulation events and the simulation time for congested

networks.

3. We propose a cluster-based spatio-temporal background traffic generation model

that can capture both spatial and temporal characteristics observed from real traffic

traces. We apply data clustering techniques to describe the behavior of end hosts

as a function of multi-dimensional attributes and group them into distinct classes.

We then map the classes to simulated routers so that we can generate traffic in ac-

cordance with the cluster-level statistics. The proposed traffic generator makes no

assumption on the target network topology. The generator is also capable of scaling

the traffic so that the traffic intensity can be varied accordingly in order to test appli-

cations under different network conditions. The scaled traffic is shown to maintain

the same spatial and temporal characteristics as in the observed traffic traces. This

model can be applied to the entire network for evaluating new applications and

protocols under complicated scenarios.

This dissertation work is drawn from the following papers:

• A Fluid Background Traffic Model, T. Li and J. Liu, IEEE International Conference

on Communications, Page 1-6, June 2009.

• A Rate-Based TCP Traffic Model to Accelerate Network Simulation, T. Li, N. Van

Vorst and J. Liu, Transactions of the Society for Modeling and Simulation Interna-

tional, Volume 89, Issue 4, Pages 466-480, April 2013.

8

• Cluster-Based Spatio-Temporal Background Traffic Generator for Network Simu-

lation, T. Li and J. Liu, submitted to ACM Transactions on Modeling and Computer

Simulation (TOMACS).

1.4 Evaluation Criteria

In order for us to study background traffic models, we summarize the following criteria in

our study to evaluate the models with respect to their accuracy, efficiency, and flexibility.

• To evaluate the accuracy, we compare the proposed background traffic models with

the real measurements or detailed packet-oriented models. To investigate the tem-

poral structures of the generated traffic, we look at the traffic intensity, the number

of sessions over time, and the traffic burstiness with different time scales. To inves-

tigate the spatial structures of the generated traffic, we compare the generated traffic

matrix with the real traffic matrix obtained from measurements. To investigate the

correlations between spatial and temporal characteristics of the generated traffic,

we study link utilization, traffic distribution, and flow sizes of the traffic observed

over all links in the network. To evaluate the effect on the foreground traffic, we

investigate the behavior of foreground traffic that is generated by target applications

with different background traffic.

• To evaluate the efficiency, we study the reduction in the simulation event count

and execution time by running the simulation with the proposed background traffic

models and the detailed packet-oriented models under various network scenarios.

• To evaluate the flexibility of the background traffic generation, we tune the traf-

fic model (e.g., vary the traffic intensity by tuning a scaling factor) and study the

behavior of the generated traffic.

9

1.5 Outline

The rest of this dissertation is organized as follows. In Chapter 2, we introduce the ex-

isting background traffic models and related work. We review temporal models including

packet-oriented, fluid, and hybrid models and discuss the trade-off between accuracy and

efficiency. We also review the previous work of spatial models and spatio-temporal mod-

els, then present the urgent need of a spatio-temporal network traffic model.

In Chapter 3 we present our work aimed to improve the realism of the existing back-

ground traffic model that aims to reproduce network traffic for a single link. In particular,

we improved the previous approach [Liu06] to properly model the background traffic by

adding two enhancements. The first improvement is to model ACK flows which allows

us to correctly reflect the network condition on the reverse direction of the data traffic.

The second improvement is to model the traffic sessions by using a PPBP (Poisson Pareto

Burst Process) to reflect the self-similarity of the traffic.

In Chapter 4, we describe a fast rate-based TCP traffic model, which is a novel mech-

anism to model TCP background traffic at a new aggregation level. Rather than modeling

the network traffic packet by packet as in the traditional approach, our solution groups the

packets with various lengths into rate windows. The model calculates the queuing delays

and the packet losses as these rate windows traverse the individual network queues along

the flow path. The TCP congestion control behavior is captured using analytical models

in response to the simulated network traffic conditions at different phases of a TCP con-

nection. These features of the model accelerate the simulation by more than two orders

of magnitude.

In Chapter 5 we present a cluster-based spatio-temporal traffic generator for network-

wide background traffic generation. We use clustering techniques to describe the spatio-

temporal structures of the traffic as multi-dimensional functions. Then we propose a

10

method to generate traffic based on the spatio-temporal characteristics to the entire net-

work by formulating and solving the problem as a set of optimization problems.

Finally, in Chapter 6 we present conclusions of our research and discuss future re-

search directions.

11

CHAPTER 2

BACKGROUND

There have been many attempts to model network background traffic. These models place

particular emphasis on different network characteristics. In the following we first review

the existing packet-oriented traffic models and fluid traffic models. All these models focus

on modeling temporal traffic behaviors in time wise. We then review the related work on

the spatial traffic models and the spatio-temporal traffic models.

2.1 Packet-Oriented Traffic Modeling

The transmitted packets in the network are the carrier of the informative network traffic.

In traditional packet-oriented network simulation, one or more simulation events are as-

sociated with each packet visiting a router (representing both the packet arrival and the

packet departure). The packet-oriented models can be used as detailed representations of

background traffic. In this section we introduce several methods to model network traffic

at packet level.

2.1.1 Traffic Playback

The straightforward and simplest way to regenerate the network traffic is to playback

the traffic according to the observed behavior of the packets traversing a real network,

reproducing the exact arrival process of the real traffic. Conducting traffic playback of

a link requires one or more traces of that particular link. Besides collecting their own

traces, researchers can also make use of public repositories of traces, such as the Internet

Traffic Archive [Arc], CAIDA [CAIa] and NLANR [NLA].

Although packet-level playback is able to precisely reproduce the traffic of the col-

lected traces, it is not flexible. The researchers have to limit their experiments to the

12

available traces and the characteristics of the traces. For example, a researcher who in-

tends to evaluate a queuing mechanism under a range of loads must find a collection of

traces covering this range of loads using a different trace in each different run of the ex-

periments in order to introduce the variability. In such a way even studying a simple

question can be cumbersome. Unfortunately, it is not feasible for most cases because the

required data may not be available for reasons such as privacy and security. Thus, the re-

alism of the resulting traffic and the conclusions of the evaluation could be questionable.

Additionally, traffic playback is irresponsible to the changes of the network scenarios.

Therefore, it is only useful for certain types of experiments where the traffic behavior is

not expected to affect the generated traffic. For example, malicious traffic can often be

generated by using packet-level playback [SYB04], because malicious traffic (e.g., a SYN

flood) is frequently not responsive to network conditions.

Due to the shortcomings of the traffic playback, more flexible traffic generation is

needed in network research community. Under this situation, researchers turn to the syn-

thetic traffic generators which generate network traffic by using statistical network char-

acteristics derived from the traces. The challenge then is to determine which properties of

traffic are most important to reproduce so that the synthetic traffic behaves in a realistic

way. In the following we discuss several measurement-derived traffic generations with

respect to different characteristics.

2.1.2 Self-similar or Multi-fractal Traffic Models

In traditional models of network traffic, it is assumed explicitly that traffic characteristics

such as packet arrival rate have Poisson distributions. However, Leland et al. [LTWW94]

observed that Internet traffic is bursty, and this burstiness can be studied using the frame-

work provided by statistically self-similar process rather than Poisson process. Therefore,

when researchers conduct network experiments, in most cases they should consider self-

13

similarity as an important property of the background traffic applied to the experiments

in order to obtain reliable experimental results. It is shown that the bursty traffic ob-

served from Internet can be generated by rejecting packets into the experiments based on

a self-similar stochastic process [Pax97b].

Mathematically, statistical self-similarity manifests itself as long-range dependence, a

sub-exponential decay of the autocorrelation of a time-series with scale. This is in sharp

contrast to Poisson modeling and its short-range dependence, which implies an exponen-

tial decay of the autocorrelation with scale. A stochastic process can be called self-similar

(with Hurst parameter H) if the rescaled process, with an appropriate rescaling factor, is

equal in distribution to the original process [Ber94].

Let X = {Xt |t = 0,1,2, . . .} be a wide-sense stationary stochastic process with au-

tocorrelation function r(k), k ≥ 0. Let {X (m)
k |k = 1,2,3, . . .} represent a family of ag-

gregate processes produced by summing the original time series, X , over adjacent, non-

overlapping blocks of size m. In particular, for integer m≥ 1, X (m)= {X (m)
k |k= 1,2,3, . . .},

where X (m)
k = 1

m ∑
km
i=km−(m−1)Xi. Generally stated, if the distribution of each of the aggre-

gate processes X (m), m > 1 is approximately the same as that of the original process,

X = X (1), then X is self-similar.

Self-similar processes can usually be described by heavy-tailed distributions, which

are also known as long-tailed distributions. A distribution is heavy- tailed if

Pr[X > x]∼ x−α , x→ ∞, 0 < α < 2. (2.1)

This means that regardless of the distribution for small values of the random variable, if

the asymptotic shape of the distribution is hyperbolic, it is heavy-tailed. The simplest

heavy-tailed distribution is Pareto distribution which is hyperbolic over its entire range.

We describe Pareto distribution and how we use it for generating self-similar traffic in

Section 3.2 in detail.

14

Self-similar processes can be classified into two models: One is an exactly self-similar

model and the other is an asymptotically self-similar model [Ber94]. For the real appli-

cations, an exactly self-similar model is too narrow to model the real traffic, thus in most

cases, an asymptotically self-similar model is used. A process is called asymptotically

second-order self-similar with parameter H ∈ (0.5,1), if its autocorrelation function is

with the form

r(k)∼ ck2H−2,k→ ∞ (2.2)

where c > 0 is a constant.

So far a lot of works have been done to reproduce self-similarity in simulated network-

ing traffic, and a number of relevant models have been proposed. A survey of models us-

ing self-similar stochastic processes is given in [HKS99]. The major models are based on

one of the following processes. The first processs is Fractional Brownian Motion (FBM),

that is a continuous-time zero mean Gaussian process BH(t). We can define BH(t) with

Hurst parameter H as follows:

1. E[BH(t)] = 0

2. BH(0) = 0

3. BH(t +δ)−BH(t) is normally distributed N(0,σ |δ |H)

4. BH(t) has independent increments

5. E[BH(t)BH(s)] = σ2/2(|t|2H + |s|2H−|t− s|2H)

FBM is exactly self-similar, which is improper to model the real traffic as we discussed

above. However, it can be used to model the sum or integral of self-similar traffic (as

observed in network buffers, file sizes of audio/video streams, etc). On the other hand,

Fractional Gaussian Noise (FGN) is exactly second-order self-similar traffic and is a good

candidate for modeling the traffic of Ethernet, ATM, VBR coded video, Web Telnet

15

and FTP instances. The increments of FBM are known as Fractional Gaussian Noise

(FGN) [MN68] and form a stationary process GH(t) with the following properties:

1. GH(t) = (BH(t +δ)−BH(t))/δ

2. GH(t) is normally distributed N(0,σ |δ |H−1)

3. E[GH(t + τ)GH(t)] = δ 2H(2H−1)|τ|2H−2 for τ � δ

Fractional ARIMA models (ARFIMA or FARIMA) are built on classical ARIMA

models and are asymptotically self-similar [LTWW94], [Ber94]. {Xn}∞
n=0 is called an

ARFIMA(p,d,q) process, if {∆dXn}∞
n=0 is an ARIMA(p,q) process for some non-integer

d > 0. Let B be the Backshift-operator B(Xn) = Xn−1 and ∆d can be represented by:

∆d = (1−B)d = ∑
∞
u=0 πuBu, with π0 = 0 and πu =

Γ(u−d)
Γ(u+1)Γ(−d) = Π∞

k=1
k−1−d

k ,u = 1,2, . . .

They are similar to FGN, yet they are more flexible because they have more parameters.

However, due to their computational complexity, it is more difficult to use ARIMA models

than FGN models.

In addition to the above stochastic processes, a large number of superimposed heavy-

tailed On/Off processes can yield self-similar traffic as well [CB95]. An On/Off process

is either in the On or Off state. If On-times and Off-times are drawn from a heavy-tailed

distribution like the Pareto distribution with parameters α1 and α2, then the observed

stochastic process is self-similar FGN with H = 3−min(α1,α2). Another set of models

that can capture both short-range and long-range dependencies are wavelets. Traffic is

generated first in the wavelet domain, and then transformed back into the time domain by

applying the inverse wavelet transformation [Fla92], [SLN94]. Hlavacs al et. [HKS99]

summarized a set of methods to test self-similarity and the Hurst parameter. The methods

include Variance-Time plot, R/S plot, Periodogram, Whittle estimator, correlogram plot

and Wavelet estimator.

16

Modeling the sequence of packets by using stochastic processes, a number of super-

imposed On/Off processes or wavelets focuses on reproducing the self-similarity of the

network traffic. However, the resulting traffic flows are not responsive to the change of

network conditions and may not correctly interact with the network applications and pro-

tocols under investigation.

2.1.3 Application-specific Traffic Generation

The network traffic varies its behavior according to the application protocols. Therefore,

there has been a lot of work that focuses on designing application-specific traffic genera-

tors.

Tcplib [DJ91] models the traffic of five different types of Internet applications (FTP,

SMTP, NNTP, TELNET and RLOGIN) based on a set of traces collected from UC Berke-

ley, University of Southern California, and Bell Communication Research. It has two lim-

itations. First, it lacks several important application-specific details. Because this work

preceded the growth of the web, Tcplib does not include a model of HTTP traffic, which

is critical for today’s network traffic simulation. This reflects a major shortcoming of

application-specific traffic models: because of the fast development of Internet applica-

tions and protocols, researchers need to update the models frequently according to the

changes of the applications.

The most frequently referenced models of TCP connection distributions were pro-

posed by Paxson and his colleagues [Pax94], [PF94]. They derived analytical models

to describe the the traffic associated with TELNET, NNTP, SMTP and FTP applications

based on 3 million TCP connections from a number of wide-area traffic traces and a va-

riety of sources. For example, the analytical models of FTP traffic is shown in table 2.1.

However, like Tcplib, the HTTP protocol is also absent from Paxon’s models.

17

Table 2.1: FTP Traffic Models

Variable Distribution
Paxon’s FTP Model Revised FTP Model

Session Arrivals Poisson Poisson

Connection Bytes Lognormal
Pareto (upper 15%)

Exponetial (lower 85%)
FTP-data Spacing Lognormal / Log-logistic Manual / Automated Group

Session Bytes Lognormal N/A
Number of Connections per Session N/A Pareto

Following the work introduced above, as web traffic plays a more and more important

role in today’s Internet, several web traffic generators have been proposed. Barford and

Crovella [BC98] proposed a web traffic generator called Surge, which can create realistic

web traffic workload that matches with empirical measurements, including the distribu-

tion of file sizes and the lengths of idle periods between consecutive sessions. Also, Cao

et al [CCG+04] perform source-level modeling of HTTP traffic.

Application-specific models are easy to use for generating traffic composed of mixed

applications given the proper percentage of each application. However, we need to know

that the measurement-derived application-specific models need to be revised regularly.

Internet is a changing object - the collected traces are only valid for a particular period of

time, previous Internet cannot represent current Internet, and current Internet cannot rep-

resent the future Internet. Even for protocols that had been studied, they are still necessary

to be revised, especially when it has been long time since the work was first proposed and

the applications have changed their behavior dramatically. By using traffic traces cap-

tured in February 2003 at University of Central Florida, the researchers became aware

that many statistical variables of modern Internet traffic differed from Paxon’s distribu-

tion models [Pax94], [PF94] and preferred more than before to have heavy-tailed features.

Even using heavy-tailed distributions, some variables, such as bytes transferred by FTP,

HTTP and SMTP protocols are less straightforward to be modeled. In [LM05], Luo and

18

Marin revised the Paxon’s analytical models and modeled several major Internet applica-

tions (FTP, HTTP, SMTP, POP3, SSH) by using mixture distributions. For example, the

FTP traffic was revised to be modeled by modified variables with different distributions

as shown in Table 2.1.

2.1.4 Capturing Structural Characteristics

Contrary to the application-specific traffic models, application-independent traffic genera-

tors generate network traffic at the IP flow level by using a set of distributional parameters

that are not specific for any particular application. Harpoon [SB04] models traffic at two

levels. The lower level is referred to as the connection level, which describes the size of

the file transferred and the inter-connection time. The higher level is referred to as the ses-

sion level, which considers the number of active sessions and the IP preference in terms

of the number of sessions each IP gets involved. Each of these parameters can be spec-

ified manually or extracted from packet traces or Netflow data collected at a live router.

Although Harpoon considers the IP preference as IP spatial distribution, the method does

not concern with the connectivity between the IP addresses. In addition, the temporal

characteristics are independent from the spatial distributions. As a result, this method can

not capture the correlation between the temporal and spatial structures.

Vishwanath and Vahdat proposed Swing [VV06], a network traffic generator, that can

extract salient features from the traffic traces based on a structural model. The characteris-

tics for a structural model can be categorized into three sets: application, communication

and network. Application characteristics are determined by the specific application pro-

tocol, including the session arrival process, the number of connections, the transportation

layer protocols, the distribution of packet sizes, etc. Communication characteristics are

determined by the user behavior, including the distribution of the client IPs and the think

times between individual requests, etc. The network characteristics are used to describe

19

the network scenarios, such as link delays, packet loss rates and link capacities. Swing

captures the important aspects from the behavior of not only applications but also users

and network. The measured data are parsed into four categories: session, RRE (Request-

Response-Exchange), connection, and pair. A session initiates when a connection the first

time appears with a source IP address. It consists of one or more RREs. An RRE is a

series of request and response exchanges, which consists one or more connections. A

connection is defined by a pair of source and destination. And a pair means one request

and response exchange. Swing divides the traffic generation into two steps. In the first

step, Swing parses the important characteristics from the traces into a set of files that de-

scribe the empirical distributions of several parameters. These parameters can be grouped

into four categories:

• Session: client IP, session inter-arrival time, number of RREs.

• RRE: RRE inter-arrival time, number of connections.

• Connection: server IP, connection inter-arrival time, number of pairs.

• Pair: request size, response size, think time (the time interval between requests).

In the second step, the parsed data is used as input for a network emulator Model-

Net [VYW+02] to generate traffic that is statistically similar to the original traces.

Packet-oriented models, either simply playing back the traffic traces or modeling the

traffic based on the behavior of the applications, capture the details of the network traf-

fic at packet level. A detailed representation of background traffic may incur substantial

computational cost. This problem becomes particularly acute in large-scale network sim-

ulations. Therefore, scalable solutions are needed to efficiently model background traffic.

20

2.2 Fluid Traffic Modeling

To characterize large-scale networks efficiently, appropriate scalable models are thus re-

quired to capture important characteristics of background traffic. To the best of our

knowledge, the concept of fluid model was first proposed in [AMS82] to model data

network traffic. In fluid simulation, network traffic is modeled in terms of continuous

fluid flows rather than individual packet instances [LFG+01]. For example, a series of

packets traversing the virtual network from the same source to the same destination or a

cluster of closely-spaced packets can be modeled as a fluid trunk with constant or piece-

wise linear fluid flow rate. Earlier work (e.g., [AD96], [Nic01], [LPM+03]) has shown

that fluid models can be applied to reduce the computational complexity in large-scale

network simulation. In this section we introduce the major fluid models used to simulate

background network traffic.

2.2.1 Time-Stepping Fluid Models

The fluid models proposed in [MGT00] and [LPM+03] use a set of ordinary differential

equations (ODEs) to describe continuous fluid flows and to capture the long-term, average

behavior of the persistent TCP flows. In those models the network traffic consists of

a number of fluid classes, each being a group of TCP flows originating from the same

source to the same destination and thus sharing the same characteristics. One can use

a set of time-dependent ordinary differential equations to describe the TCP congestion

window size, queue lengths, packet delays as well as losses, and then can solve the set

of equations numerically using a fixed step-size Runge-Kutta method. At each time step,

the states of the fluid model, e.g., the instantaneous queue lengths are updated by the

solutions from the equations.

21

The limitation of these models is that they assume the fluid flows of one single fluid

class have homogeneous behavior and ignore the short-term behavior of the flows. For

example, they do not model the slow-start behavior of the TCP flows, instead, they only

focus on the long-term and average behavior. For the sake of modeling the short-lived

TCP flows which dominate in today’s Internet, Marsan et al. [MGG+05] exploited partial

differential equations to model TCP mice and elephants in large IP networks. Partial dif-

ferential equations allow the models to represent the distributions instead of the averages

of the characteristics, hence achieving better accuracy in the results. The most attrac-

tive property of the fluid models described by a set of ODEs resides in the fact that their

complexity depends on the number of differential equations to be solved, which is totally

independent of the traffic load (the number of packets).

Baccelli and Hong proposed an alternative fluid model [BH02] to describe the aver-

age behavior of the AIMD window for the aggregate TCP flows traversing a network of

drop-tail routers. In such a network, the buffer behavior is pulsing, which means the con-

gestions are interleaved to the periods of time where no buffer is overloaded. Therefore,

only the window dynamics during the congestion epochs are necessary to be carefully

analyzed, and the source sending rate between the congestion epochs can be simply as-

sumed to increase at a constant rate. This allows the development of fluid equations and

an efficient methodology to solve them. They also extended their model to represent

the interactions of TCP flows by incorporating the short-lived traffic with different RTTs

and routes on arbitrary network topologies [BH03]. However, each short-lived traffic

flow must be described by two differential equations; one presenting the average win-

dow evolution and the other describing the workload evolution. As a consequence, the

insensitivity of the complexity with respect to the number of TCP flows is lost.

22

2.2.2 Discrete Event Fluid Models

In contrast to the continuous fluid models, Nicol [Nic01], [NY04] proposed discrete-event

fluid models that use piece-wise constant rate functions to represent TCP flows and use

simulation events to represent the changes of the flow rate. This approach can model more

closely individual sample paths of TCP traffic, including slow start, congestion avoidance,

timeout, data loss, and the fast-retransmit mechanism. The computational saving can be

substantial when the flows remain a constant rate for a significant period of time.

However, this method has an important limitation. Its performance is determined by

the network conditions. In particular, it can be slow if a substantial number of events are

generated. This is the case when the flows experience significant packet loss. In addition,

the fluid flows are represented individually, so the memory consumption may limit the

number of flows.

2.2.3 Fluid Models for Uncongested Links

For the links that are not congested, Barakat et al. [BTI+02] proposed a traffic model by

using a Poisson shot-noise process [DVJ98]. Particularly this model is used for backbone

links that are generally over-provisioned because the network is designed so that a back-

bone link utilization stays below 50% in the absence of link failure [FML+03]. The model

relies on the flow-level information observed on an IP backbone link and only intends to

capture the dynamics of the traffic at short timescales (i.e., in the order of hundreds of

milliseconds). They computed the auto-correlations of the flow inter-arrival times, the

flow sizes and the flow durations of the collected traces, and found that these sequences

exhibit little correlation due to the uncongestion of the link. Thus the total rate of the

traffic flows R(t) on the modeled link at time t, can be modeled as the result of the sum

23

of the rates of different flows traversing this link, which is described in Equation 2.3.

R(t) = ∑
n∈Z

Xn(t−Tn) (2.3)

where Tn is the arrival time of the nth flow, and Xn(t−Tn) is the rate of the nth flow at time

t; Xn(t−Tn) is zero when flow n is not active at time t. This model is a Poisson shot-noise

process, where shot is synonymous of flow rate function. This model is designed to be

general without any constraint on the particular flows, the applications, or the protocols,

and is simple enough to be used in network operation. However, this model is only

suitable for modeling the traffic on uncongested links. It also ignores the traffic behavior

at long timescales.

2.2.4 Hybrid Traffic Modeling

In addition, hybrid models (e.g., [GGT00], [RJF02], [KSWU03], [GLT04], [Liu06]) aim

at capturing the interactions between fluid background traffic (represented by fluids) and

foreground flows (represented as packets). The existing hybrid models can achieve sub-

stantial performance gains—in some cases, more than three orders of magnitude—over

traditional packet-oriented simulation, while still maintaining good accuracy. They mainly

focus on the integration mechanism, the interaction between the foreground traffic and the

background traffic, rather than reproducing the important characteristics of the Internet

traffic (such as the long-range dependencies confirmed by a large collection of measure-

ment studies).

Fluid models gain efficiency at the cost of accuracy. However, the missing of some

important features of the model may result in incorrect results. This dissertation improves

an existing hybrid model [Liu06] by removing two unrealistic assumptions to properly

reproduce the network behavior. Moreover, this work proposes a new rate-based TCP

(RTCP) traffic model, which offers a new level of granularity for simulating TCP traffic.

24

The model reduces the computation complexity significantly while correctly capturing the

overall TCP behavior. Even for congested networks, our model can reduce the amount of

simulation events and accelerate simulation by more than two orders of magnitude. For

uncongested network conditions, the RTCP model can improve execution time even more

drastically. We describe the improved hybrid model in Chapter 3 and the RTCP model in

Chapter 4 individually.

2.3 Spatial Traffic Modeling

Regardless of how detailed or scalable the packet-level models and the abstract fluid mod-

els are, they focus on reproduce time-related traffic characterstics and can be treated as

temporal models. On the other hand, spatial models distribute traffic based on traffic

matrices. Traffic matrix represents traffic volume between all origins and destinations in

a certain time interval. For network design and network management, such as capacity

planning and traffic engineering, traffic matrix is usually required as input for perfor-

mance evaluation. There has been extensive work on estimating the traffic matrix. The

gravity model [ZRDG03] assumes that the traffic between an origin-destination (OD) pair

is proportional to the total traffic from the source node to the destination node. The main

drawback is that the model assumes independence between the source and destination.

To solve this problem, generalized gravity models [ZRLD03, ZRLD05] extend the grav-

ity model by separating traffic into classes and applying the gravity model on each class of

traffic. The discrete choices model (DCM) is also a variation of the gravity model, which

is based on the choice models for decision behavior, where the ingress nodes as decision

makers decide on the traffic volume and the traffic destination based on user behavior and

network configuration [MTS+02]. The independent connections model (ICM) [ECT06]

focuses on connections between the traffic initiators and traffic responders; it considers

the forward traffic proportion, the activity level of the users at a node, and the preference

25

of a node as the peer of a connection. The model assumes independence between the con-

nections. Both DCM and ICM require a large number of parameters to achieve accuracy.

The low-rank model [BKS+10] provides a simpler and yet more general model, which

can be treated as a weighted sum of gravity models. All above spatial models focus only

on the spatial distribution of traffic; the result traffic intensity remains constant during a

given time interval, the size of which is usually determined by the measurement cost and

is normally in minutes or larger. At this time granularity, one cannot accurately study

the effect of background traffic on the individual packets generated by the foreground

applications.

2.4 Spatio-Temporal Traffic Modeling

Spatio-temporal models consider both temporal and spatial structures jointly. There are

methods for traffic matrix estimation that also focus on time dependent properties. Al-

though we treat them here as spatio-temproal models, they are not really concerned

with the spatio-temporal correlations of the traffic. Roughan et al. proposed a temporal

model [RGK+02] for the OD flows traversing backbone routers. The traffic intensity is

modeled with four components: a long-term trend that captures the overall traffic behav-

ior over a long period of time, a seasonal (cyclical) component that describes any periodic

behavior in the traffic, a random fluctuation component that models the small fluctuation

of the traffic, and an anomaly component that models the large variation of traffic from

anomalies. Fourier analysis [TR13] can be used to capture the periodic nature of the

OD flows by representing the cyclical signal with a small number of Fourier coefficients.

Wavelets [PTZD03, AV98] are also used to capture both short-range and long-range de-

pendencies. Principal components analysis (PCA) [LPC+04] can be used to describe the

OD flows by using a small number of “eigenflows”. All these methods are data-driven

26

methods and rely heavily on measurments. The derived temporal characteristics of the

traffic is independent of the spatial distribution.

There are two recent papers on the spatio-temporal correlation. Zhang et al. proposed

a method [ZRWQ09] that represents the traffic matrix by the low-rank approximation and

uses a rank model to approximate both spatial and temporal correlations of the traffic ma-

trix. The drawback of this model is that it is difficult to interpret the model parameters;

they are not directly related to network aspects or user behaviors. This also makes it dif-

ficult to tune the model for simulation purposes. Sommers et al. proposed an interesting

method for network-wide flow record generation [SBE+11]. The method is designed to

generate representative benign flows as well as anomalous flows, especially for anomaly

detection. It builds on the Harpoon traffic generator [SB04] to allocate sources and des-

tinations for traffic flows. Harpoon assigns weights to the IP addresses from a selection

pool; the weights can be determined by the empirical distribution observed from the real

network. The method proportionally selects the IP addresses according to the number of

connections they involve. In particular, the method does not concern with the spatial dis-

tribution of the IP addresses and the connectivity between the IP addresses. For example,

the method may not reflect the existence of hotspots in the real network. Comparatively,

our method takes user behavior, node distribution, network connectivity, and flow-level

statistics into consideration. As a result, our method can better capture the spatial and

temporal correlations of the traffic over the entire network.

Overall, there is a general lack of available spatio-temporal background traffic mod-

els. Consequently, the researchers tend to use simple synthetic traffic models in their

evaluation work without considering how it is supposed to be. This dissertation provides

a solution to address this issue by describing traffic at cluster-level and generating traffic

based on its spatial and temporal stuctures, which is presented in Chapter 5.

27

CHAPTER 3

A FLUID BACKGROUND TRAFFIC MODEL FOR A SINGLE LINK

In this chapter, we propose a fluid background traffic model that can faithfully repro-

duce the traffic on a single link and capture the workload characteristics of the Internet

traffic. This model is extended from our previous hybrid model that integrates a fluid-

based analytical model using ordinary differential equations (ODEs) with the traditional

packet-oriented discrete-event simulation [Liu06].

3.1 Introduction

There are many discussions about the impact of background traffic on the network, such

as the impact of background traffic on TCP protocols [HLRX07, FW02], the impact of

background traffic on Internet applications [PKV07]. Previous studies have shown that

the background traffic does affect the entire network environment by competing with the

foreground traffic. Recently Vishwanath and Vahdat [VV08] demonstrated that realistic

background traffic has a different influence on network than simple synthetic traffic mod-

els. Therefore, realistic models of background traffic are inevitably required to provide

the meaningful network traffic workloads for the network experiments.

We have reviewed existing background traffic models, including both packet-oriented

and fluid models, in Chapter 2. In this chapter we focus on improving the accuracy for

fluid background traffic models. In particular, we remove two unrealistic assumptions in

the previous approach [Liu06] to properly model Internet background traffic.

The first assumption we remove from the the original hybrid model is that most data

traffic is one-way and reverse-path traffic is rarely congested. Under this assumption, the

previous model ignores the potentially significant effect of delays and losses that occur to

TCP acknowledgments (ACKs). We show through experiments that this assumption is un-

28

realistic and can sometimes lead to completely wrong results. Consequently, we augment

the model with fluid ACK flows on the reverse path corresponding to the data flows on

the forward path. In doing so, the packet delays and losses in both directions are recorded

properly, which are then used to calculate the correct TCP congestion window behavior.

Some of these fluid models consider ACK flows. For example, Guo et al. [GGT00] pro-

posed a time-stepped model in which all packets arriving within a time-step are lumped

together as a “chunk”. At the flow destination, packets in a chunk are individually ac-

knowledged. Nicol and Yan [NY04] applied simple rate equations to describe the behav-

ior of ACK flows. Compared with our solution, both models require more detailed (and

more complex) logic to handle ACKs and would therefore instigate more cost.

The second assumption to remove is that traffic sessions are long-lived and thus can

be represented by a fixed number of flows between a source-destination pair. Obviously

this contradicts observations from traffic measurement studies: session length is known to

obey long-tail distributions. In the new model, we adopt the Poisson Pareto Burst Process

(PPBP) model [ZNA03] to describe the number of active flows at any given time—with

Poisson arrivals and Pareto-distributed durations. Our experiments show that the fluid

background traffic model can provide a realistic representation of the Internet traffic and

can accurately capture the interactions with foreground traffic produced by common ap-

plications.

3.2 The Model

To represent background traffic, we extend our hybrid model [Liu06] that combines

discrete-event packet flows and continuous fluid flows described by a set of ordinary dif-

ferential equations. The fluid component of this hybrid model is based on the TCP model

previously proposed by Misra et al. [MGT03].

29

The fluid network traffic consists of a number of fluid classes, each being a group

of TCP flows originated from the same source to the same destination and thus shar-

ing the same characteristics. One can use a set of time-dependent ordinary differential

equations to describe the TCP congestion window size, queue lengths, and packet delays

and losses. To properly integrate the fluid model with the foreground packet flows, we

consider in these equations the effect of packet flows on the fluid flows at each network

queue. We then solve the set of equations numerically using a fixed step-size Runge-Kutta

method. At each time step, the solutions from the fluid model, e.g., the instantaneous

queue lengths, are used to determine the foreground packet delays and possible packet

losses. We refer the readers to the original paper for a detailed description of our hybrid

approach [Liu06].

3.2.1 Adding ACK Flows

We assume that the forward path of the TCP flows in the fluid class i (from the source to

the destination) consists of n queues: f1, f2, · · · , fn, and the reverse path (from the desti-

nation to the source) consists of m queues: r1,r2, · · · ,rm. The following equation charac-

terizes the additive increase and multiplicative decrease behavior of the TCP congestion

window in the fluid model:

dWi(t)
dt

=
1

Ri(t)
−Wi(t)

2
·λi(t), (3.1)

where Wi(t) is the size of congestion window, Ri(t) is the round-trip time, and λi(t) is the

packet loss rate of fluid class i. Naturally, Wi(t) should be limited between zero and the

maximum congestion window size.

Given the TCP congestion window size, we can calculate the send rate at the source,

denoted by A f1
i , which is the arrival rate of fluid class i at the first queue f1:

A f1
i (t) =

niWi(t)
Ri(t)

, (3.2)

30

where ni is the (constant) number of homogeneous fluid flows in the fluid class i. Note

that we can easily model constant-rate UDP flows by simply assigning a constant value

to A f1
i .

To determine the round-trip time Ri(t) and the end-to-end packet loss rate λi(t), we

accumulate the packet delays and packet losses along the path of each fluid class. We

denote δ i
l (t) and γ i

l (t) to be the cumulative delay and the cumulative packet loss of the

fluid class i at the last queue rm at time t. Assuming packet losses are uniformly distributed

among the TCP flows in the fluid class, we have:

Ri(t) = δ
i
rm
(t) (3.3)

λi(t) = γ
i
rm
(t)/ni. (3.4)

Our fluid background traffic model consider both data and ACK flows. We accumulate

the packet delays and losses both on the forward path and on the reverse path. At the first

queue l = f1, we have:

δ
i
l (t f) = ql(t)/Cl (3.5)

γ
i
l (t f) = Al

i(t)pl(t), (3.6)

where ql(t) is the instantaneous queue length, Cl is the link bandwidth, t f = t +ql(t)/Cl ,

and pl(t) is the packet loss probability at queue l. That is, the accumulative delay at the

first queue considers only the queuing delay; the accumulative loss at the first queue is

the packet arrival rate (from Equations 3.2) multiplied by the loss probability (which can

be calculated from the queue length).

For subsequent queues l ∈ { f2, · · · , fn,r1, · · · ,rm}, we add the delay and loss at the

queue to the corresponding values at the predecessor queue. For accumulative delay we

31

also need to add the link propagation delay. We have:

δ
i
l (t f) = δ

i
b(t−ab)+ab +ql(t)/Cl (3.7)

γ
i
l (t f) = γ

i
b(t−ab)+Al

i(t)pl(t), (3.8)

where b is the predecessor queue of l, and ab is the link propagation delay between queue

b and queue l.

The changes to the instantaneous queue length can be determined by the difference

between the arrival rate (minus loss) and the departure rate:

dql(t)
dt

= ξl(t)(1− pl(t))−Cl (3.9)

where ξl(t) is the aggregate arrival rate of both packet and fluid flows. The packet arrival

rate can be calculated, for example, as the number of packets arrived at queue l during

each Runge-Kutta time-step divided by the step size. The fluid arrival rate is the sum of

the arrival rate of all fluid classes traversing queue l. We should limit the queue length

between zero and the maximum buffer size.

Equation (3.2) is used to calculate the arrival rate at the first queue f1. For subsequent

queues except r1, i.e., l ∈ { f2, · · · , fn,r2, · · · ,rm}, we calculate the arrival rate from the

departure rate Db
i at the predecessor queue b:

Al
i(t +ab) = Db

i (t). (3.10)

For queue r1 (the first queue on the reverse path), we have:

Ar1
i (t) = αiD

fn
i (t)/βi, (3.11)

where αi is the average ACK packet size, and βi is the average data packet size in fluid

class i. This equation represents the conversion from the data flows on the forward path

to the corresponding ACK flows on the reverse path, assuming that there is a one-to-

one mapping between data and ACK packets. Note that this one-to-one assumption may

32

not hold when TCP enables delayed ACKs, in which case the ratio can be readjusted to

compensate for this effect. We did not observe any significant effect of this assumption in

our experiments.

The departure rate at queue l is a function of the arrival rate, the bandwidth, and the

packet loss rate:

Dl
i(t f) =

 Al
i(t)(1− pl(t)) if ξl(t)(1− pl(t))≤Cl

Al
i(t)Cl/ξl(t) otherwise.

(3.12)

The packet loss rate is determined by the queue length. For drop-tail queues, it be-

comes non-zero when the total arrival rate is larger than the link bandwidth and when the

queue is full. The loss rate is the amount of overflow divided by the sample period. For

RED queues, the loss rate is determined by the average queue length.

3.2.2 Adding Heavy-Tail Session Lengths

The Poisson Pareto Burst process (PPBP) has been shown to able to accurately predict the

aggregate Internet traffic [ZNA03]. Here, we use the PPBP model to describe the lengths

of TCP flows in the fluid background traffic model.

PPBP is a process based on multiple overlapping bursts, with a Poisson arrival process

and burst lengths following a heavy-tail distribution. In our case, we schedule TCP ses-

sion arrivals using the exponential distribution with a mean arrival rate µ . The durations

of the TCP sessions d are independent and identically distributed Pareto random variables

with parameters δ > 0 and 1 < γ < 2:

Pr(d > x) =

 (x/δ)−γ if x≥ δ

1 otherwise.
(3.13)

The mean of the Pareto distribution is δγ

γ−1 and the variance is infinite.

33

Using the Pareto distributed flow duration, we can regenerate the long range depen-

dence (LRD) characteristic of realistic background traffic in our model, which is evaluated

by a parameter called the Hurst parameter:

H =
3− γ

2
. (3.14)

When 0.5 < H < 1, it implies that the traffic exhibits LRD and is self-similar.

We replace the constant number of homogeneous fluid flows within each fluid class i

with the PPBP process, Ni(t). Specifically, we redefine the equations for calculating the

arrival rate of fluid class i at the first queue f1 (Equation 3.2), and the end-to-end packet

loss rate (Equation 3.4) as follows:

A f1
i (t) =

Ni(t)Wi(t)
Ri(t)

(3.15)

λi(t) = γ
i
rm
(t)/Ni(t) (3.16)

In the implementation, we let the user choose the Hurst parameter H , which we use

to determine the parameter γ = 3− 2H . We also ask the user to choose the average

number of TCP sessions n̄ and the session arrival rate µ for each fluid class i, which we

use to determine the mean session length d̄ = n̄/µ . Thus, we can determine the parameter

δ :

δ =
d̄(γ−1)

γ
=

2n̄(1−H)

µ(3−2H)
(3.17)

We can therefore track the number of active TCP sessions, Ni(t), t, by scheduling

session arrivals using an exponentially distributed inter-arrival time with mean of 1/µ ,

and then scheduling departures using session lengths derived from the Pareto distribution

with parameters γ and δ .

3.3 Experiments

In this section we describe the simulation experiments to demonstrate that our fluid back-

ground traffic is able to capture realistic Internet traffic behaviors.

34

Figure 3.1: A simple dumbbell network

3.3.1 Round-Trip Traffic

We use a dumbbell topology (shown in Figure 3.1) to demonstrate the necessity of includ-

ing ACK flows in the background traffic model. The dumbbell network model consists

of 2 routers and 16 hosts with 4 servers and 4 clients on each side of the dumbbell. The

single bottleneck link in the middle has a bandwidth of 10 Mb/s and a link delay of 5 ms.

We set the bandwidths of all other links to be 1 Gb/s. The delays of the branch links con-

necting the end hosts with the router are set so that we have different round trip delays of

10, 20, 50, and 100 ms between a pair of server and client on either side of the dumbbell.

The network queues in the routers connecting the bottleneck link each have a 500 KB

buffer and are configured with RED parameters qmin = 25 KB, qmax = 250 KB, and pmax =

0.2. The weight used in the EWMA computation for calculating the average queue length

is 0.001. We use TCP Reno with the maximum congestion window size of 32.

To emphasize the effect of modeling bidirectional flows, we use a constant number of

flows in this experiment. We relax this restriction in the next section to model the long-

range dependencies of the traffic. At the start of the simulation, each of the servers on

the left side generates 5 TCP flows to the corresponding client on the right side. Between

35

 0

 50

 100

 150

 200

 250

 300

 0 50 100 150 200 250 300

In
st

an
ta

ne
ou

s
Q

ue
ue

 L
en

gt
h

(K
B

)
Time (seconds)

Packet Simulation

 0

 50

 100

 150

 200

 250

 300

 0 50 100 150 200 250 300

In
st

an
ta

ne
ou

s
Q

ue
ue

 L
en

gt
h

(K
B

)

Time (seconds)

Fluid Oneway Model

 0

 50

 100

 150

 200

 250

 300

 0 50 100 150 200 250 300

In
st

an
ta

ne
ou

s
Q

ue
ue

 L
en

gt
h

(K
B

)

Time (seconds)

Fluid Roundtrip Model

Figure 3.2: Packet vs. fluid one-way and round-trip traffic models

time 100 and 200 seconds, we inject 5 TCP flows in the reverse direction, from each of

the four servers on the right side to the corresponding client on the left side. We measure

the queue length at the left router connecting to the bottleneck link.

Figure 3.2 shows the results from both packet and fluid simulations. From the packet

simulation result (the top plot), we observe a significant variation in the queue length

during the period between 100 and 200 seconds when the reverse traffic is introduced.

This result is consistent with the conditions observed in the real world, as reported in

[SCK+07]. The ACK packets are dropped due to the link congestion caused by the reverse

traffic; as a result, it triggers the TCP congestion control mechanism to reduce the sending

rate in the forward path. That is, even though the packet loss in the ACK flows should

only indicate congestion happens in the reverse path, this indication is interpreted by the

source of the forward path (rather than the true source of the congestion at the reverse

36

path) and causes its TCP to reduce its congestion window. The result is the instability of

the queue length during this period.

The bottom plots of Figure 3.2 show the results from fluid simulations. The previous

fluid model (i.e., the one-way traffic model) ignores the queuing delays and packet losses

in the ACK flows. We can see that the queue length (bottom left of Figure 3.2) remains

stable even when the reverse path experiences a heavy congestion, which deviates from

reality. In comparison, the round-trip model generates results similar to those from the

packet simulation. Although it would be difficult for the fluid model to render exactly

the same results as the packet-by-packet simulation, the results from the fluid round-trip

model (bottom right of Figure 3.2) clearly indicate the instability of the queue length

when the reverse path is congested.

3.3.2 Traffic Burstness

We use the same dumbbell topology as in the previous experiment. We generate one

class of 5 TCP flows from each of the four servers on the left of the dumbbell to the

corresponding client on the right. In the reverse direction, we generate one TCP flow

from each server on the right to the client on the left. That is, the traffic demand from left

to right is five times of that from right to left. We select 0.8 as the Hurst parameter and 45

ms as the session inter-arrival time.

Figure 3.3 shows the number of TCP sessions that are active over time from both

packet-oriented simulations (left plots) and the fluid background traffic model (right plots).

From top down we progressively decreasing the sampling time scale, while maintaining

the number of samples to be 300. The starting time scale is 1 second; each subsequent plot

is obtained from the previous one by concentrating on a randomly chosen subinterval, the

length of which is one tenth of the previous one. That is, the time resolution increases by

37

Packet Simulation

 0

 10

 20

 30

 40

 50

 0 50 100 150 200 250 300

 0

 10

 20

 30

 40

 50

 0 5 10 15 20 25 30

 0

 10

 20

 30

 40

 50

 0 0.5 1 1.5 2 2.5 3

Time (seconds)

Fluid Simulation

 0

 10

 20

 30

 40

 50

 0 50 100 150 200 250 300

 0

 10

 20

 30

 40

 50

 0 5 10 15 20 25 30

 0

 10

 20

 30

 40

 50

 0 0.5 1 1.5 2 2.5 3

Time (seconds)

Figure 3.3: Comparison of the number of TCP sessions over time.

a factor of 10. The figure shows both packet simulation and the fluid background traffic

model generate similar number of TCP sessions.

We monitor the traffic intensity in the simulations at the same three different time

scales as before. For the fluid background traffic model, we calculate the number of

packets per second using numerical values at each Runge-Kutta time step, including the

congestion window size, round-trip time, and the number of active TCP sessions (Equa-

tion 3.15). Figure 3.4 shows the results. As before, the packet simulation results are

shown on the left and the fluid simulation results are on the right. The time scale de-

creases progressively from top to bottom. To a large extent, the results from the packet

38

Packet Simulation

 0

 500

 1000

 1500

 2000

 2500

 3000

 0 50 100 150 200 250 300

 0

 500

 1000

 1500

 2000

 2500

 3000

 0 5 10 15 20 25 30

 0

 500

 1000

 1500

 2000

 2500

 3000

 0 0.5 1 1.5 2 2.5 3

Time (seconds)

Fluid Simulation

 0

 500

 1000

 1500

 2000

 2500

 3000

 0 50 100 150 200 250 300

 0

 500

 1000

 1500

 2000

 2500

 3000

 0 5 10 15 20 25 30

 0

 500

 1000

 1500

 2000

 2500

 3000

 0 0.5 1 1.5 2 2.5 3

Time (seconds)

Figure 3.4: Burstness of traffic intensity (packets/second)

simulation and from the fluid simulation are similar, except for the 10 ms timescale (bot-

tom plots). The fluid model does not capture packet details at sub-RTT level; the RTT for

the dumbbell model is at least 10 ms.

As before, we monitor the queue length at the left router connecting to the bottleneck

links (Figure 3.5). The results from both packet and fluid simulations are similar, although

the fluid model creates more variations in the queue lengths. We believe this is partially

due to the synchronization effect: the TCP flows within each fluid class are treated the

same with the same congestion window behavior; this would amplify the changes in

the aggregate flow rates, because the congestion windows would increase or decrease

39

 0

 50

 100

 150

 200

 250

 300

 350

 0 50 100 150 200 250 300

Pa
ck

et
s

Time (seconds)

Packet Simulation

 0

 50

 100

 150

 200

 250

 300

 350

 0 50 100 150 200 250 300

Pa
ck

et
s

Time (seconds)

Fluid Simulation

Figure 3.5: Bottleneck queue lengths from packet vs. fluid models

simultaneously among all flows within each fluid class. The synchronization effect is an

artifact inherent to the fluid model. We are currently investigating ways to remove this

problem.

3.3.3 Application Behavior

We validate our background fluid model baseline by studying the application behavior in

the presence of the fluid background traffic and comparing the results against those from

the packet simulation. We select two kinds of applications, file download and multimedia

streaming, for this validation.

We use the same background traffic as described in the previous experiment. We add

another server host on the left of the dumbbell and another client host on the right. For file

download, we set the server to transfer a 30 MB file to the client and measure data received

at the client side. For data streaming, we use a constant bit-rate UDP application and

measure the delay jitter between consecutive packet arrivals. The time interval between

the streaming data sent from the server is 8 ms, which corresponds to a 1 Mb/s send rate.

Figure 3.6 shows the cumulative fraction of the file download time. The average

download time of fluid model is about 10% more than that of the packet model, which

is probably due to the more pronounced variation in the queue length in fluid model.

40

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 100 200 300 400 500 600 700 800 900

C
um

ul
at

iv
e

F
ra

ct
io

n

Time (seconds)

packet simulation
fluid simulation

Figure 3.6: Download fraction.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 1 2 3 4 5 6

C
um

ul
at

iv
e

Fr
ac

tio
n

Jitter (milliseconds)

packet simulation
fluid simulation

Figure 3.7: Delay jitter.

Figure 3.7 shows the cumulative fraction of the delay jitter of the arrived streaming data

at the client side, which also reflects the higher variation in the fluid model.

3.4 Conclusion

Fluid models, more particularly, hybrid models that combine both fluid and packet repre-

sentations, provide a cost-effective alternative to pure discrete-event packet simulation for

rendering Internet traffic conditions needed for testing distributed applications, network

protocols, and services. The performance gain comes from a certain level of abstraction.

However, unrealistic abstractions may lead to incorrect evaluation results. The work in

this chapter enhanced an existing hybrid model by removing two unrealistic assumptions

existing in the fluid part. The improved background traffic model can correctly capture

a good level of the important realism from the Internet observation of a single link as

with the pure packet-oriented approach, while still maintaining a significant performance

advantage.

41

CHAPTER 4

A FAST RATE-BASED TCP BACKGROUND TRAFFIC MODEL

Due to the complexity of network traffic, it is unlikely to have one all-purpose background

traffic model. The best practice is to apply the proper background traffic model based on

the goal of the specific network study. Therefore, there exist different background traffic

aiming to model different aspects of the network traffic. This chapter presents a fast rate-

based TCP (RTCP) traffic model designed to reduce the time and space complexity for

simulating network traffic and maintain good accuracy.

4.1 Introduction

Since TCP handles the brunt of today’s network traffic, a good aggregate traffic model

must be able to accurately capture the TCP behavior. One type of solution (e.g., [MGT00]

and [MGT03]) simulates TCP by only capturing the long-term average behavior of TCP

in order to improve computational efficiency. This approach inevitably results in a loss

of accuracy as it overlooks the fine-grained time varying features of TCP. The other type

of solution (e.g., [Nic01] and [NY04]) maintains the detailed state transitions of TCP, in

particular, the evolution of the TCP congestion window at the senders. However, in doing

so it can greatly inflate the computational demand.

In this work, we present a fast rate-based model to approximate the TCP behaviors,

which offers a new level of granularity for simulating TCP traffic. Our solution uses the

packet aggregation idea, similar to those employed in [AD96], [GGT00], and [NY04]. In

particular, rather than modeling the network traffic packet by packet as in the traditional

approach, we group the packets as chunks of variable length, called rate windows, which

consist of a number of packets from the same TCP session and with a similar arrival rate.

We describe each rate window by the packet arrival rate and duration, both of which can be

42

adjusted according to the network condition as the chunk of packets visit the routers along

the path from the source to the destination altogether. The model calculates the queuing

delays and the packet losses as these rate windows traverse the individual network queues

along the flow path.

A distinct feature of the proposed model is that the TCP congestion control behavior

is represented using analytical models in response to the simulated network traffic condi-

tions at different phases of a TCP connection. That is, rather than modeling the complex

state transitions of TCP, we apply mathematical models to derive the packet send rate as

a function of the round-trip time and the packet loss rate. The round-trip time and the

packet loss rate are measured along the flow path as the rate windows are sent to visit

the network queues and interact with other flows represented either as rate windows or

individual packets. The latter, in particular, allows the model to seamlessly mix with a

packet-oriented simulation. The proposed RTCP model is able to achieve a performance

advantage over other TCP models, by integrating analytical solutions and aggregating

traffic using rate windows. This comes at the cost of potential degradation of accuracy.

Experiments show that the RTCP model is able to correctly capture the overall TCP be-

havior. Even for congested networks, our model can reduce the amount of simulation

events and accelerate simulation by more than two orders of magnitude. For uncongested

network conditions, the RTCP model can improve execution time even more drastically.

4.2 Related Work

Ahn and Danzig [AD96] proposed the idea of “packet trains”. Each packet train consists

of a number of closely spaced packets. The time complexity of this approach depends

on the size of the packet train. The modeling granularity can be adjusted to go between

a packet-level simulation, where the train size is limited to contain only a single packet,

and a conversation-level simulation, where the entire flow is modeled as a single packet

43

train. It has been shown that the packet train model can achieve a significant reduction in

the number of simulation events over the corresponding packet-oriented simulation—by

as much as an order of magnitude if using a coarse granularity.

Guo et al. [GGT00] proposed a time-stepping hybrid simulation (TSHS) framework.

The packets that arrive within a time step are put together as a single “chunk”. Instead

of handling individual packets, the routers process the whole chunk as it arrives. At the

flow destination, packets within a chunk are individually acknowledged. Similar to the

packet train approach, the time complexity of this approach can be adjusted, in this case,

by choosing the length of the time step. Compared with the traditional packet-oriented

simulation, the hybrid model has been shown to achieve moderate speedup when using

sufficiently large time steps. It has been shown that TSHS can achieve over 3 times

speedup with a time step of 2 ms [GGT00].

Although both the packet train and TSHS employ aggregation, many packet-level

details remain in the models. For example, the packet train model still emits individual

packets at the source and converts them to packet trains on the fly. TSHS carries the infor-

mation of individual packets in the chunk so that the packets can be separately acknowl-

edged at the destination. In contrast, fluid models (e.g., [KSCK96], [MGT00], [LFG+01],

[Nic01], [MGT03], and [NY04]) eliminate the packet-level information altogether and

only describe the flow-level traffic intensity.

The fluid models face difficulty in modeling the packet-level details of the fluid flows.

The time-driven fluid models (e.g., [MGT00]) can only capture the average behavior of

long-term TCP flows (during the TCP congestion avoidance mode). The models there-

fore cannot accurately represent the transient behavior of the TCP flows. The event-driven

fluid models (e.g., [NY04]) address this problem by including complex logic to handle

detailed TCP transactions in response to packet losses during the TCP slow start and con-

gestion avoidance phases. This method, however, increases the computational demand.

44

Instead of flow-level aggregation, the aggregation of traffic in the gateway at access

network level is proposed in [CDXL08]. This model treats the access network as one

single node. The traffic generator generates the amount of traffic for the entire access

network and pushes the traffic to transmission controller. The transmission controller es-

timates the network condition according to the feedback of the ACKs and sends the pack-

ets to the destination through the network. This method achieves better performance than

the traditional packet-oriented simulation through the aggregation of individual senders

within one access network. However, the traffic transactions through the network are still

represented packet by packet. Therefore, the improvement of its performance is limited.

Most aggregate models discussed above can be extended to hybrid models that aim

at capturing the interactions between fluid background traffic and foreground packet-

oriented flows (e.g., [RJF02], [KSWU03], [GLT04], and [Liu06]). Therefore, their focus

is on the integration mechanism, not the statistical behavior of Internet traffic.

To efficiently model the TCP behavior, analytical models have been widely used.

These analytical models (e.g., [MSMO97], [CSA00], [PFTK00], [MSZ02], [SKV04],

and [AAB05]) provide an approximation of the TCP congestion control behavior. Some

models (e.g., [MSMO97], [PFTK00], and [AAB05]) only capture the steady-state behav-

ior of TCP for long-lived flows; others only consider the connection establishment and

slow-start phase of TCP for short-lived flows (e.g., [MSZ02]); while others model TCP

transfers for any given sizes of flows (e.g., [CSA00], and [SKV04]). To the best of our

knowledge, these analytical models have not been used extensively in network simulation.

Our rate-based TCP traffic model incorporates the analytical TCP models to reduce the

computational complexity at the end nodes. In particular, to deal with the arbitrary sizes

of TCP flows, we use the models proposed in [CSA00] to predict the traffic intensity for

both short and long-lived TCP flows as a function of the round-trip time and the packet

loss rate. For simplicity, we use the model proposed by [PFTK00] to approximate the

45

TCP send rate in steady state. This approximation has also been applied in Cardwell et

al.’s model as a solution for capturing the TCP behavior in congestion avoidance stage.

The models we adopt in our model are well validated by using simulations, controlled In-

ternet measurements, and comparisons with live traces [KT04]. Our solution also adopts

the general packet aggregation idea from the packet train model [AD96], TSHS [GGT00]

and the event-driven fluid model [NY04].

4.3 An Overview of the Model

The essential aspect of TCP is its congestion control mechanism. Since TCP congestion

control is performed at end nodes, we use an RTCP sender and an RTCP receiver to

regulate the data transfer in simulation. It is important to note that our model is based

on three assumptions. First, we assume that the time it takes to send all packets in a

congestion window is smaller than the round-trip time. This assumption is normally

true for today’s network with high bandwidth and long latency. Second, we assume that

packet losses within a round (defined by the round-trip time) are independent of the losses

in other rounds, while packet losses in the same round can be correlated. This assumption

holds for FIFO drop-tail queues [BVG96, Pax97a, YMKT99], but may not be true for

RED queues [FJ93] or for paths where packet loss is largely due to link errors rather than

congestion [CSA00]. Finally, the ACK losses are insignificant and therefore ignored after

the initial handshake. This assumption is acceptable because the ACK packets are much

smaller than the normal data packets, which makes them less likely to be dropped due to

congestion. As expected, network paths are often more congested in the direction from

data sender to receiver than in the reverse direction [TMW97].

It is also important to note that our study here is limited to TCP Reno, which imple-

ments fast retransmit and fast recovery. In addition, we assume that the receiver imple-

ments delayed ACK—an ACK is sent for the successful delivery of two consecutive data

46

segments. These limitations are simply because of the analytical models which we use

for estimating the send rate for the TCP flows. Our model can be extended in principle

by substituting the analytical models with those for other TCP variants, such as BIC and

CUBIC.

We model three distinct phases of TCP. Connection establishment consists of the

three-way handshake used by TCP to establish the connection between the sender and

the receiver. Slow start is the exponential growth phase, during which TCP aggressively

increases its congestion window by the same number of acknowledged segments. Conges-

tion avoidance is the primary phase for congestion control, where TCP implements the

additive increase and multiplicative decrease scheme. The congestion avoidance phase

may also include periods of slow start, where TCP recovers from detected packet losses.

However, we do not model slow start after retransmission timeouts because of the ana-

lytical models we adopt here. Additionally, retransmission timeouts do not happen very

often under low loss rate conditions. We do not model TCP termination phase because it

does not play an important role in determining the throughput or latency of a data trans-

fer [CSA00].

We define four types of messages between the RTCP sender and the RTCP receiver:

• The START messages are used as probes, which accumulate the round-trip time

and packet loss rate during the TCP connection establishment and slow start.

• The DATA messages carry the data over the TCP connection from the RTCP sender

to the RTCP receiver. Each DATA message contains a “rate window”, which repre-

sents a chunk of packets considered to have the same arrival rate. A DATA message

keeps track of the packet arrival rate, the duration, as well as the delivery ratio for

the rate window, which can be adjusted as the message travels over the network

from the sender to the receiver.

47

• The UPDATE messages are sent from the RTCP receiver or an intermediate router

to inform the RTCP sender of the network condition so that the sender can adjust

the TCP congestion window and send rate accordingly.

• An END message is sent from the RTCP receiver to the RTCP sender once the

receiver has successfully received all the data. The END message will cause the

sender to immediately stop the transmission.

To guarantee that the RTCP sender is aware of the network conditions, we do not

allow START, UPDATE, nor END messages to be dropped in simulation. Both START

and DATA messages are treated as regular packets, which means they experience proper

queueing delays in the network. UPDATE and END messages, however, are special pack-

ets which are delivered to the RTCP sender directly and are never queued.

To reduce the computational cost of the simulation, we model TCP data transfer in

the unit of “rate windows”, where a number of consecutive packets from the same TCP

session are lumped together and described using a constant arrival rate. The changes in

rate of each rate window are determined by the network conditions (i.e., RTT and loss

rate) that the previous rate window of the same flow has experienced. The RTT and loss

rate are both rate-window specific. When loss happens, we do not keep track of which

packet (or packets) are lost within a given rate window, instead we update the delivery

ratio to indicate the loss. Each DATA message carries one rate window sent from the

RTCP sender to the RTCP receiver. A rate window has the following attributes:

• Send time: the time at which the rate window is sent out from the RTCP sender.

The send time will be copied to the UPDATE message on the way back to the RTCP

sender, which uses the UPDATE message to calculate the round-trip time.

48

• Arrival rate: the rate at which packets belonging to the rate window are sent. At

the beginning, the arrival rate is the same as the send rate of the TCP sender. In the

subsequent queues, the arrival rate is the departure rate at the preceding queue.

• Duration: the length of the rate window in time. The product of the arrival rate and

the duration is the total number of packets represented by the rate window, which

remains unchanged as the rate window travels from the sender to the receiver.

• Delivery ratio: the proportion of data successfully delivered by the rate window

so far. It is the number of bytes remaining in a rate window over the total num-

ber of bytes originally sent from the RTCP sender. At the beginning, the delivery

ratio is one; and the delivery ratio may decrease as a result of packet losses at the

intermediate routers.

Figure 4.1 shows the high-level interactions between the sender and the receiver. A

TCP session starts when the RTCP sender sends a START message over the network to

the RTCP receiver, which immediately sends it back (steps 1 and 2). This allows the

sender to probe the network and calculate the expected duration of the handshake phase

before a TCP connection can be successfully established. After that, the RTCP sender

starts sending DATA messages, each representing one rate window with the packet arrival

rate calculated from measured round-trip time and the packet loss probability. For each

DATA message received, the RTCP receiver returns an UPDATE message carrying the

necessary information for the RTCP sender to get the round-trip time and the packet loss

probability (steps 3 and 4).

Each intermediate network queue on the flow path from the sender to the receiver

can modify the arrival rate, the duration, and delivery ratio of the DATA message, as

the rate window interacts with other rate windows. If somehow the delivery ratio of a

DATA message drops to zero, the entire rate window is considered lost, in which case an

49

R
TC

P
Se

nd
er

1. START

3. DATA

4. UPDATE

Network
Queue

DATA

drop

2. START

6. END

DATA

DATA DATA

5.UPDATE

DATA

START

START

UPDATE

R
TC

P
R

ec
ei

ve
r

DATA

UPDATE

DATA

UPDATE
DATA

END

Figure 4.1: Interactions between RTCP sender and receiver

UPDATE message is immediately sent back to the RTCP sender so that the sender can

be notified of the loss and adjust its send rate quickly (step 5). The RTCP receiver is

responsible for determining whether a data transfer has completed (the data transfer size

has been given to the receiver during the connection establishment), and if so, the RTCP

receiver sends an END message to the sender to stop further transmissions (step 6).

The cost of the RTCP model depends on the size of the rate window. If the rate

window is too small, we cannot achieve a significant performance improvement over

the traditional packet-oriented simulation. If the rate window is too large, RTCP may

not be able to properly respond to network congestions and cause significant errors in

its estimation of the throughput. We choose to use the round-trip time as the duration

of the rate window, which means that the size of a rate window is equal to the current

congestion window size. This is a reasonable choice because TCP cannot react to network

50

congestions unless the packet is delivered and acknowledged (or timeout happens). As an

optimization, if we have prior knowledge that the network is under congested, that is, if

the network has sufficient resources so that traffic experiences little loss, we can increase

the size of the rate window for improved efficiency.

4.4 Determining Send Rate

We extend existing analytical models to represent the TCP congestion control behavior. In

particular, during the connection establishment and slow start phases, we apply the model

proposed by [CSA00] to estimate the duration of the phases and the send rate. We use the

model proposed by [PFTK00], which is also a part of Cardwell et al.’s model [CSA00],

to estimate the send rate during the congestion avoidance phase. Both models describe

the TCP congestion window behavior as a function of the round-trip time and the packet

loss rate. Both TCP timeout and triple duplicate ACKs are taken into account in these

two models. In the following, we elaborate on the analytical models during the three TCP

phases.

4.4.1 Connection Establishment

Connection establishment is the first phase of TCP, which consists of the three-way hand-

shake before a successful TCP connection can be established. The three-way handshake

consists of zero or more failed attempts by the sender to transmit the TCP SYN message,

followed by one successful delivery of the TCP SYN message, and then zero or more

failed attempts to transmit the TCP SYN/ACK message by the receiver, followed by one

successful delivery of the SYN/ACK message. The expected number of failed attempts

depends on pf(t) and pr(t), which are defined to be the packet loss probability on the for-

warding path (from the sender to the receiver) and on the reverse path (from the receiver

51

to the sender) at time t, respectively. Typically, TCP will give up connection attempts

after 4 to 6 failures. If pf(t) and pr(t) are low, most TCP handshakes will be successful

before giving up. Using the analytical model proposed in [CSA00], we can estimate the

duration of a successful connection establishment, Tce(t), as follows:

Tce(t) = π(t)+ ts

(
1−pr(t)

1−2pr(t)
+

1−pf(t)

1−2pf(t)
−2
)

(4.1)

where π(t) is the measured round-trip time, and ts is the length of the TCP timeout for

the SYN message.

We set ts to be 3 seconds, which is a typical value [Bra89]. The round-trip time, π(t),

and the packet loss probabilities, pf(t) and pr(t), are collected during the exchange of

the START messages between the RTCP sender and receiver. Once the expected duration

of the connection establishment is determined, the RTCP sender waits for the duration

before it enters the slow start phase, which we describe next.

4.4.2 Slow Start

In the slow start mode, TCP quickly increases its congestion window until it detects a

packet loss. From now on, we assume that packet loss only happens in the forwarding

path from the sender to the receiver. Suppose the flow size is ξ . If there is no packet loss,

i.e., pf(t) = 0, we expect to send all ξ segments during the slow start phase. However, if

pf(t)> 0, according to [CSA00], the expected number of segments to be sent during the

slow start phase, Lss(t), can be estimated as follows:

Lss(t) =
ξ−1

∑
k=0

(1−pf(t))
kpf(t)k+(1−pf(t))

ξ
ξ

= (1− (1−pf(t))
ξ)(1−pf(t))/pf(t)+1 (4.2)

Here, we assume that the size of a segment (i.e., a TCP packet) is the maximum segment

size (MSS).

52

If the TCP congestion window is not constrained by the maximum window size Wmax,

the result TCP congestion window after sending Lss segments can be approximated by:

Wss(t) = Lss(t)(γ−1)/γ +W1/γ (4.3)

where W1 is the initial value of the sender’s congestion window, and γ denotes the rate of

exponential growth of the congestion window during the slow start. Typically, 1≤W1 ≤

3. We set γ to be 1.5 to capture the expected TCP behavior at slow start: the TCP sender

increases its congestion window size by one MSS for each ACK packet received; and

the TCP receiver that implements delayed ACK sends one ACK roughly for every two

data packets. That is, during each round-trip time, the congestion window size increases

by as much as half of the congestion window size during the previous round. Therefore,

γ = 1.5.

To determine whether the TCP congestion window is constrained by the maximum

send window size, we compare Wss(t) and Wmax. If Wss(t) > Wmax, TCP experiences

two phases during the slow start: at first, the congestion window size increases from W1

to Wmax at the rate γ per round-trip time; after that, the congestion window remains at

Wmax. If Wss(t)≤Wmax, TCP would send all Lss(t) segments in the first phase.

The model proposed in [CSA00] predicts the duration of the slow start phase, Tss(t),

as follows:

Tss(t) =


π(t)(logγ (

Wmax
W1

+1)+

1
Wmax

(Lss(t)− γWmax−W1
γ−1)) if Wss(t)>Wmax

π(t) logγ (
Lss(t)∗(γ−1)

W1
+1) otherwise

(4.4)

We model the slow start phase by having the RTCP sender and receiver first exchange

the START messages, from which we can use Equation (4.2) to determine Lss(t), the

expected number of segments to be sent during the slow start phase. Then we use Equa-

tion (4.3) to determine Wss(t), the unconstrained congestion window size, and then use

53

Equation (4.4) to determine Tss(t), the expected duration of the slow start phase. If it

is determined that the TCP session is still in the slow start phase, i.e., if the number

of segments sent by TCP is less than Lss(t), for each round-trip time π(t), the RTCP

sender sends a DATA message carrying a rate window with the packet arrival rate Rss(t) =

(Lss(t)/Tss(t)). Whenever the RTCP sender receives an UPDATE message, it recalibrates

Lss(t), Tss(t) and Rss(t). When the number of sent segments has gone beyond the ex-

pected value, TCP switches to congestion avoidance.

Our model may not be able to capture the exact time of the transition from slow start

to congestion avoidance. This is because the model handles packet transfers in the unit of

rate windows. The model does not keep track of the exact packet positions within the rate

windows, and therefore it is impossible to record the exact time the congestion avoidance

model would start. The error is considered insignificant since it depends on the size of

the rate window, which is the round-trip time.

4.4.3 Congestion Avoidance

TCP enters steady state during the congestion avoidance phase. We use the model pro-

posed in [PFTK00] to estimate the send rate as a function of the round-trip time, the

packet loss (whether it is due to duplicate ACKs or timeouts), and the current congestion

window size. According to the model, the send rate can be determined as follows:

Rca(t) = min{Wm(t)

π(t)
,R(t)} (4.5)

R(t) is a rate determined by the round-trip time π(t), and the packet loss probability on

the forwarding path pf(t) as follows:

R(t) =
1

π(t)
√

2bpf(t)
3 + tOmin{1,3

√
3bpf(t)

8)pf(t)(1+32p2f (t))}
(4.6)

where tO is the length of the timeout and b is the average number of packets that are

acknowledged by each received ACK. We set tO = 0.2 s and b= 2.

54

Wm(t) is the current congestion window size. The model originally proposed in [PFTK00]

does not provide a way to calculate the current congestion window. We extend the model

by incorporating TCP’s additive increase and multiplicative decrease behavior. We calcu-

late Wm in rounds. At first we set W0
m to be the maximum congestion window size Wmax.

At round i, we update the congestion window Wi
m as follows:

Wi
m =

 min{Wmax,W
i−1
m +1} if pf(t) = 0

max{1,Wi−1
m /2} otherwise

(4.7)

The TCP send rate is controlled by a closed loop system. A change in the measured

round-trip time and packet loss rate will cause the RTCP sender to adjust its send rate.

The RTCP receiver is responsible for sending the information back to the sender. During

the connection establishment phase, the receiver immediately returns a START message

after it receives a START message from the sender. During the data transfer (at the slow

start and congestion avoidance phases), the receiver sends an UPDATE message for each

received DATA message to the sender to report the current round-trip time and the packet

loss rate. When the receiver determines that it has received all the data, the receiver sends

an END message to inform the sender to terminate further transmission.

4.5 Conducting Flows at Queues

Being able to capture the interaction among the traffic flows at the network routers both

accurately and efficiently is essential to the success of the RTCP model. In this section

we show how the network queues react to rate windows. Our model is restricted to FCFS

queues with drop-tail behavior. We first consider a single flow at the queue and then

extend the model to handle the interaction among multiple flows.

55

4.5.1 Single Flow

We start by considering a drop-tail queue being fed by one and only one flow. Suppose

a rate window arrives at an empty queue with an arrival rate λ in, a duration δ in, and a

delivery ratio τ in. In this case, λ inδ in is the total amount of data originally sent by the

RTCP sender for the rate window (it is an invariant); λ inδ inτ in is the total amount of data

actually arriving at the the queue during the rate window; and λ inτ in is the effective arrival

rate. Let µ be the link capacity, which is the service rate of the queue.

If the effective arrival rate λ inτ in is less than the service rate µ , there will be no

accumulation at the queue, and the attributes of the rate window will not change: λ out =

λ in, δ out = δ in, and τout = τ in.

Otherwise, if λ inτ in ≥ µ , the rate window will be served at the maximum capacity µ

and the queue will start to accumulate a back log at a rate equal to the difference between

the effective arrival rate, λ inτ in, and the service rate, µ . Suppose the buffer size is B.

The final queue length when the rate window completes its arrival at the queue can be

calculated as:

q̂0 =
[
(λ in

τ
in−µ)δ in

]B
0

(4.8)

where [x]B0 = min{max{x,0},B}. The duration of the output rate window needs to be

extended to include the time to flush out the back log (at the rate of µ):

δ
out = δ

in+ q̂0/µ (4.9)

Since the product of the arrival rate and the duration should indicate the total amount of

data for the rate window sent from the RTCP sender, the arrival rate of the output rate

window can be easily adjusted:

λ
out =

λ inδ in

δ out
(4.10)

The delivery ratio needs to be calculated to account for the losses due to possible

buffer overflow. In case that (λ inτ in−µ)δ in ≤B, the rate window will not experience any

56

loss and therefore τout = τ in. Otherwise, there will be data loss due to buffer overflow:

θ̂ = ((λ in
τ
in−µ)δ in−B) (4.11)

The delivery ratio can be updated as follows:

τ
out =

λ inτ inδ in− θ̂

λ inδ in
(4.12)

=
λ inτ inδ in− [(λ inτ in−µ)δ in−B]

λ inδ in

=
B+µδ in

λ inδ in
(4.13)

4.5.2 Multiple Flows

Now we consider the more interesting case when the queue consists of multiple flows. We

define Wi(λi,δi,τi,si,ei) to be a rate window currently visiting the network queue, where

λi is the packet arrival rate, δi is the duration, τi is the delivery ratio, si is the start time, and

ei is the end time (ei = si+δi). In the algorithm, we maintain a priority queue Q to store

all current rate windows visiting the network queue; we use the end time ei as the priority

key. Initially, the priority queue is empty. We use A to store the aggregate effective arrival

rate of all rate windows, i.e., A = ∑i∈Qλiτi. A is initialized to be zero. We denote t0 to

be the arrival time of the previous rate window, and q0 to be the queue size at that time.

Both t0 and q0 are initialized to zero. We assume the capacity of the network queue is B,

and the delay of the link between the network queue and the subsequent queue is D.

Alg. 1 (on page 58) shows the algorithm that processes the simulation event represent-

ing the arrival of a new rate window Wf at time sf (which is the current simulation time).

An example is given in Fig. 4.2, where rate window f arrives at the queue at time sf . In

this example, the previous rate window arrived at the queue is rate window 3. Assume

that the algorithm correctly sets t0 = s3, q0 = q(s3), and A= ∑
3
k=1 λkτk, after the previous

57

Algorithm 1 Process arrival of rate window Wf(λf ,δf ,τf ,sf ,ef)

1: while (Q is not empty) do
2: Wi(λi,δi,τi,si,ei)← Q.peekMin()
3: if (ei > sf) then break
4: q0← [q0+(A−µ)(ei− t0)]

B
0 ; t0← ei

5: A← A−λiτi

6: Q.deleteMin()
7: q0← [q0+(A−µ)(sf − t0)]

B
0 ; t0← sf

8: A← A+λfτf

9: q̂0← q0; t̂0← t0; Â← A
10: S← φ ; θ̂ ← 0
11: while (Q is not empty) do
12: Wi(λi,δi,τi,si,ei)← Q.peekMin()
13: if (ei > ef) then break
14: q̂0← [q̂0+(Â−µ)(ei− t̂0)]

∞
0 ; t̂0← ei

15: if (q̂0 > B) then
16: θ̂ ← θ̂ +(q̂0−B)λfτf/Â
17: q̂0← B
18: Â← Â−λiτi

19: Q.deleteMin()
20: S.insert(Wi(λi,δi,τi,si,ei))
21: q̂0← [q̂0+(Â−µ)(ef − t̂0)]

∞
0

22: if (q̂0 > B) then
23: θ̂ ← θ̂ +(q̂0−B)λfτf/Â
24: q̂0← B
25: for all w ∈ S do Q.insert(w)
26: Q.insert(Wf(λf ,δf ,τf ,sf ,ef))
27: δj← δf + q̂0/µ; λj← λfδf/δj; τj← (λfτfδf − θ̂)/(λfδf)
28: sj← sf +q0/µ +D; ej← sj+δj

29: schedule arrival of Wj(λj,δj,τj,sj,ej) at next queue

invocation of the algorithm. The priority queue currently should contain the three rate

windows (sorted by their end times).

The algorithm starts by calculating the current queue length (lines 1-9). If there are

rate windows in the priority queue Q that finish before the current time sf , the algorithm

adjusts the queue length q0 (line 4) and the aggregate effective arrival rate A (line 5), to

simulate the effect of these rate windows in the increasing order of the end time. The rate

windows are also removed from the priority queue Q (line 6), since they will be no longer

needed. After that, the algorithm updates the current queue length (line 8) and adds the

58

s1 s2 s3 sf (now)e2 e3 ef e1 t

t

q(t)

rate window 1

rate window 2

rate window 3

rate window f

rate window
to next queue

B

D D

q(s3)
q(e2)

q(sf) q(e3) q(ef)

Figure 4.2: An example showing the queuing length changes at the start and end of rate
windows

effective arrival rate of the new rate window to the aggregate rate (line 9). In the example,

rate window 2 is only one that completes after s3 and before sf . Therefore, we update q0

from q(s3) to q(e2) and then from q(e2) to q(sf); the example assumes that the aggregate

effective arrival rate at the two segments is larger than the service rate; that’s why the

queue length increases.

Next, the algorithm needs to compute the projected queue length at the end time of

the newly arrived rate window. The queue length q̂0 is used to calculate the duration

of the output rate window (see Equation 4.9). The algorithm also needs to compute the

projected data loss due to buffer overflow. The data loss θ̂ is used to update the delivery

ratio of the output rate window (see Equation 4.12).

To compute the projected values, the algorithm needs to scan into the simulated fu-

ture. In order to protect the queue length, the current time, and the aggregate effective

arrival rate from being overwritten, the algorithm first creates a set of shadow variables

59

and copies the values from the original variables (line 10). The algorithm also uses a

set S to temporarily store the rate windows removed from the priority queue; these rate

windows need to be restored once the scan is finished (lines 22 and 29). The algorithm

uses θ̂ , which is initialized at line 11, to accumulate the amount of data loss due to buffer

overflow.

If there are rate windows in the priority queue Q that finish before the end time of the

newly arrived rate window, ef , the algorithm deals with them one by one in increasing end

time order. The algorithm first adjusts the shadow queue length q̂0 assuming the queue

has infinite capacity (line 15). If the shadow queue length turns out to be larger than the

buffer size (lines 16-19), the surplus is deemed to be lost due to overflow. The quantity is

then proportioned according to the effective arrival rate and added to accumulative data

loss (line 17). The shadow queue length is then reset to the maximum buffer size (line

18). The algorithm also updates the shadow aggregate effective arrival rate Â as the rate

window ends (line 20). After that, the algorithm updates the shadow queue length at the

end of the current rate window (line 24). The same logic is applied to calculate the data

loss (lines 25-28).

In the example, rate window 3 ends before the newly arrived rate window ends. There-

fore, the shadow queue length q̂0 is updated from q(sf) to q(e3) and then to q(ef). Buffer

overflow happens both at e3 and ef ; the surplus is added proportionally to the accumula-

tive data loss θ̂ .

The algorithm finally inserts the newly arrived rate window into the priority queue

(line 30). In the mean time, it creates the output rate window with the updated attributes

(line 31); the output rate window will be sent downstream to the next hop. The start time

of the output rate window is calculated to be the start time of the input rate window sf , plus

the time needed to flush all data enqueued at time sf (right before the input rate window

arrives), and the propagation delay between this queue and the one downstream (line 32).

60

The algorithm schedules an event to represent the arrival of the output rate window at the

next queue (line 33).

We note that the algorithm calculates the projected queue length and data losses based

only on the interaction between the newly arrived rate window and the existing rate win-

dows in the queue. In particular, it assumes that future arrivals will not alter the predic-

tion. This is obviously an approximation. If a rate window later arrives at a congested

queue (resulting an aggregate arrival rate larger than the service rate), every flow in the

queue needs to adjust its output rate for a fair share of the bandwidth. That is, one rate

change may result in the update of all the rate windows at this queue as well as all sub-

sequent queues. This phenomenon is called the “ripple effect” and has been well docu-

mented [Nic01, LFG+01].

The ripple effect can significantly increase the computational demand. To avoid that,

in our model, we do not allow the rate windows to be changed once they have been

propagated to the downstream queues. We only make changes to the newly arrived rate

windows and project the queuing effect based on the rate windows currently in the queue.

Our solution is reasonable because our model is a close-loop system: the queuing state is

updated continuously as the RTCP sender adjusts its send rate at each round and sends a

DATA message carrying a rate window and subsequently receives the UPDATE message

carrying the network measurements. Even if the current rate window in a queue does not

immediately adjust its rate to respond to the succeeding arrivals that overlap with it, the

rate window in the next round will.

We need to be aware that such approximation may result in a rare condition where the

rate window sent in the next round (from the same sender to the same receiver) catches

up with the rate window in the previous round at a queue. This condition is caused by

the over-estimation of the round-trip time in the previous round. Since the changes to the

existing rate window is not propagated, it is possible that the sender sends the rate window

61

for the next round with a start time earlier than the end time of the previous rate window.

The successive rate windows of the same flow may overlap. To compensate this error, we

simply terminate the previous rate window in the queue as it carries stale information.

4.6 Experiments

We implemented the RTCP model in PRIME [PRI11], which is a parallel simulator de-

signed for simulating large-scale network models. PRIME provides detailed models of 14

TCP congestion control algorithms, including RENO, BIC, and CUBIC, which have been

validated carefully through extensive studies [ELL09]. PRIME also supports real-time

simulation, where simulated network protocols can interact with real network devices.

The following experiments were conducted on a Linux workstation with a 2.3 GHz Intel

Core2 Duo processor and 2 GB of RAM. All measurements shown are averages of 20

trials.

4.6.1 Dumbbell Topology

Our first set of experiments aim to provide a baseline comparison between RTCP and

the detailed TCP models. We use a simple dumbbell network (shown in Fig. 4.3), which

consists of 2 routers and 4 hosts with 2 servers and 2 clients. The connection between

the 2 routers forms a bottleneck link, configured with 10 Mb/s bandwidth and 64 ms

delay. We set the bandwidths of all other links to be 1 Gbps, and set their delays to be

1 µs. All network interfaces use drop-tail queues with a buffer size of 70 KB (around

50 packets). Using this dumbbell model, we study RTCP’s accuracy and performance in

terms of speedup and reduction in event count.

First, we consider the scenario with a single flow. At the start of the simulation, we

direct one TCP flow from S1 to C1. We observe the queue length and loss at R1; we

also measure the overall throughput of the TCP flow. The results, shown in Table 4.1,

62

R1 R2

S2

S1

C2

C1

10Mbps
64ms

Flow1

Flow2

1Gbps
1ms

1Gbps
1ms

Figure 4.3: Dumbbell network with two flows

Table 4.1: Statistics for Dumbbell Network with One Flow

TCP RTCP
Throughput (Mb/s) 8.938 9.111

Average Loss Probability 0.08% 0.03%
Average Queue Length (packet) 15.6 8.2

Simulation Events 361,065 5,556
Exec Time Avg ± Std (sec) 1.404±0.015 0.0152±0.0001

Event Ratio 1 0.015
Execution Ratio 1 0.011

indicate that RTCP can accurately capture the overall throughput of a detailed TCP flow.

However, RTCP’s average loss probability and queue length differ from the detailed TCP

model, although RTCP can capture the overall queue behavior, as is seen in Fig. 4.4a.

We next study the scenario with 2 flows. At the start of the simulation, we direct one

TCP flow from S1 to C1 and a competing flow from S2 to C2. The results are shown in

Table 4.2. RTCP is able to capture the overall throughput and fairly divides the bandwidth

between the two flows. RTCP is also able to capture the overall queue behavior, which is

shown in Fig. 4.4b.

RTCP achieves a significant speed up in both scenarios. The number of events are

reduced by a factor of 67 for a single flow and a factor of 43 for two flows. Likewise, the

overall execution time is reduced by a factor of 91 and a factor of 53 for the single flow

63

Table 4.2: Statistics for Dumbbell Network with Two Flows

TCP RTCP
Flow 1’s Throughput (Mb/s) 4.607 4.660
Flow 2’s Throughput (Mb/s) 4.501 4.533

Aggregate Throughput (Mb/s) 9.107 9.193
Ave Loss Probability 0.16% 0.11%

Average Queue Length (packet) 18.7 9.5
Simulation Events 368,970 8,531

Exec Time Avg ± Std (sec) 1.453±0.019 0.028±0.0002
Event Ratio 1 0.023

Execution Ratio 1 0.019

and two flow cases. The two flow scenario sees a smaller speed up because RTCP must

send more rate windows in response to the competition between the two flows.

4.6.2 Multiple Clients

Our next experiment examines the behavior of RTCP in the case where multiple clients

download from a single server. The network model is depicted in Fig. 4.5. Each client

(Cx) is connected with a link with delay set to be 1+ x ∗N. N is the delay increment,

which we vary in the experiment between 0 ms and 5 ms. For example, if we set N = 2,

the adjacent links connecting clients and the router R will differ by a delay of 5 ms. The

buffer size for all interfaces is configured to be 50 packets. The bottleneck link between

the server S and router R has a bandwidth of 45 Mb/s and a delay of 64 ms. At the start

of the simulation, each client initiates a download of a large file from the server.

Due to space limitation, we only show the results of the scenario when the delay incre-

ment is 0s in Table 4.3. To compare the model performance under all different scenarios

as we change the delay increment, we show the results in Fig. 4.6 and Fig. 4.7. Fig. 4.6

shows the throughput achieved by each client using both the TCP and RTCP models after

100 seconds. Overall, RTCP and TCP match well. RTCP seems to achieve more balanced

64

 0

 10

 20

 30

 40

 50

 0 10 20 30 40 50 60 70 80 90 100

Q
u
e
u
e
 S

iz
e
 (

p
a
c
k
e
ts

)

Time (seconds)

TCP

 0

 10

 20

 30

 40

 50

 0 10 20 30 40 50 60 70 80 90 100

Q
u
e
u
e
 S

iz
e
 (

p
a
c
k
e
ts

)

Time (seconds)

RTCP

(a) One flow

 0

 10

 20

 30

 40

 50

 0 10 20 30 40 50 60 70 80 90 100

Q
u
e
u
e
 S

iz
e
 (

p
a
c
k
e
ts

)

Time (seconds)

TCP

 0

 10

 20

 30

 40

 50

 0 10 20 30 40 50 60 70 80 90 100

Q
u
e
u
e
 S

iz
e
 (

p
a
c
k
e
ts

)

Time (seconds)

RTCP

(b) Two flows

Figure 4.4: Comparison of the instantaneous queue size at R1

throughput than TCP (meaning it is more fair). As in the previous experiment, we also

observed the average queue size at S for RTCP is consistently lower than that for TCP.

Fig. 4.7 shows the reduction in the number of events and in the execution time for the

different values of N. On average, RTCP reduces the number of events by a factor of 18

and reduces the execution time by a factor of 70.

4.6.3 Multiple Bottleneck Model

In this experiment, we evaluate the performance of RTCP using the so-called “parking

lot” model, which contains multiple bottleneck links. The topology, shown in Fig. 4.8,

consists of 4 routers, 4 servers, and 4 clients. The bandwidths of all links are set to be

100 Mb/s. The delays of the links connecting routers and hosts are set to be 1 ms, and

65

R
S

C1

C0

45Mbps
64ms

1ms
(1+N)ms

C3

(1+2N)ms

(1+3N)ms

C2

Figure 4.5: Multiple client network

the delays of the links between the routers are set to be 5 ms. Downloads are initiated by

the clients with a 5 second offset. That is, Flow 0 starts at time 0, Flow 1 at 5s, Flow 2

at 10 s, and Flow 3 at 15 s. We initialize the flows at different times so that we can avoid

the synchronization among the flows. The results are shown in Table 4.4. RTCP closely

matches TCP’s behavior in terms of the average and aggregate throughput. In this case,

RTCP is able to reduce the number of events by a factor of 143 and the execution time by

a factor of 125.

4.6.4 Large Scale Topology

For our last experiment, we evaluate RTCP in a large network scenario. To achieve the

necessary scale and realism for our experiments, here we use BRITE for the backbone

network and uses a campus network model for the network topology at the institutional

level. We use BRITE [MLMB01] to generate the large network topology, which uses the

statistics extracted from real network measurements. BRITE can produce random net-

66

Table 4.3: Statistics for Multiple Client Network with Four Flows (with 0 Delay Incre-
ment)

TCP RTCP
Flow 1’s Throughput (Mb/s) 11.638 9.966
Flow 2’s Throughput (Mb/s) 9.305 9.898
Flow 3’s Throughput (Mb/s) 8.574 9.752
Flow 4’s Throughput (Mb/s) 7.663 9.745

Aggregate Throughput (Mb/s) 37.18 39.361
Simulation Events 271,421 14,293

Exec Time Avg ± Std (sec) 1.354±0.012 0.017±0.0001
Event Ratio 1 0.053

Execution Ratio 1 0.012

Table 4.4: Statistics for Parking Lot Network

TCP RTCP
Per-Flow Throughput (Mb/s) 56.059 57.710

Aggregate Throughput (Mb/s) 224.237 230.839
Simulation Events 8,629,198 69,076

Exec Time Avg ± Std (sec) 33.991±0.215 0.251±0.002
Event Ratio 1 0.008

Execution Ratio 1 0.007

work models using a top-down method: it first generates a random network topology for

the autonomous systems (ASes), then for each AS generates a router-level topology, and

finally merges the AS-level and router-level topologies by connecting the routers belong-

ing to different ASes. For the experiment, we use BRITE to generate a network topology

consisting of 10 Autonomous Systems (ASes), each with 10 routers. We then randomly

choose 2 routers in each AS and attach a single campus network to each selected router.

The campus network is a synthetic network defined by [Nic02]. Each campus network

has 13 LANs, 508 hosts with 504 clients, 4 servers, and 18 routers. The resulting topology

consists of 10 ASes and 20 campus networks with a total of 460 routers and 10,160 hosts.

To generate traffic, we randomly select the clients and have them download a 100 MB file

from a randomly selected server. We schedule the clients to initiate downloads with an ex-

67

Flow 1
Flow 0

 0.00

 5.00

 10.00

 15.00

 20.00

 25.00

 30.00

 35.00

 40.00

 45.00

0 1 2 3 4 5

T
h

ro
u

g
h

p
u

t
(M

b
/s

)

Delay Increment (milliseconds)

Flow 3
Flow 2

TC
P
RT

CP TC
P
RT

CP TC
P
RT

CP TC
P
RT

CP TC
P
RT

CP TC
P
RT

CP

Figure 4.6: Throughput of the multiple client network

ponentially distributed inter-arrival time with a mean of 1 second. We run the simulation

for 300 seconds and measure both the aggregate and average per-flow throughputs.

The results are shown in Table 4.5. The speedup achieved by RTCP is significant in

this case. RTCP reduces the number of events by a factor of 60 and the execution time by

a factor of 200. The aggregate throughput using RTCP, however, is 15% lower than that of

TCP. Fig. 4.9 is the Q-Q plot for comparing the empirical distributions of the throughput

for individual flows between RTCP and TCP. The curved pattern suggests that the central

quantiles are more closely spaced in TCP throughput than in RTCP throughput. We see

that overall the flows match quite well, although RTCP seems to have underestimated the

throughput at the low end of the range and overestimated the throughput at the high end

of the range.

68

 0.04

 0.05

 0.06

0 1 2 3 4 5

R
a
ti
o
 (

R
T

C
P

/T
C

P
)

Delay Increment (milliseconds)

Execution
Event

 0.00

 0.01

 0.02

 0.03

Figure 4.7: Reduction in execution time and number of events for the multiple client
network

Table 4.5: Statistics for Large Network

TCP RTCP
Aggregate Throughput (Mb/s) 857.320 735.708

Simulation Events 433,019,043 7,038,100
Exec Time Avg ± Std (sec) 3,700.955±336.036 19.314±1.371

Event Ratio 1 0.016
Execution Ratio 1 0.005

4.6.5 Discussion

RTCP is able to capture the behavior of TCP reasonably well. However, RTCP tends to

underestimate throughput and the average queue size. We suspect that this is because

the analytical models used by RTCP react to data losses faster than they should. Further,

we observed that the analytical models seem to be less sensitive to amount of data loss.

For small models, these errors cause negligible differences (less than 5.4%) in the overall

throughput, which is confirmed by our experiments. For large models, however, the effect

on the throughput is noticeable (14% difference). In the last experiment, RTCP signifi-

69

R0 R1 R2 R3

Flow 3

Flow 2 Flow 1

Flow 0

S3

S0

S2 S1

C3

C0

C1C2

Figure 4.8: Parking lot network

cantly under estimates the throughput of a handful of flows that happen to contribute a

large portion of the aggregate throughput. Besides of the inaccuracy introduced by the

abstraction of the traffic at “rate window” level, the deviation can also be explained by

the analytical TCP models we adopt.

The model proposed in [CSA00] has been evaluated through simulations, controlled

Internet measurements and comparing with live traces under many different scenarios

with different RTT, transfer size, MSS, and maximum congestion window size. The con-

nection establishment model has been shown to have good accuracy as long as its assump-

tion holds (i.e. the loss rate is below 0.5). The data transfer model that consists of the

slow start model and the steady-state model presents variable performances of different

lengths of data transmission under different loss conditions. Since the model proposed by

[PFTK00] is used as an approximate model to deal with the data transfer in congestion

avoidance model, the errors introduced here are mainly because of the two limitations of

this approximation. First, in the approximate model, once the first loss is detected, the

window size will be immediately adjusted to its steady state value. However, in real TCP

implementation, when the sender detects a loss in the initial slow start phase, its instanta-

neous window size is often much larger than the steady-state average congestion window

size [CSA00]. Therefore it takes a period of time for the sender to adjust its congestion

70

●

●

●●
●
●

●●●●
●●

●●
●●●●●●●

●●●
●●●●●●●●●●

●
●●
●●●●●●

●●●●
●●
●●
●●●●●
●●●
●●●●●
●●●●

●●●
●●
●●●●
●●●●●●●

●●●●●●●●
●●●●●
●●●●●
●●●●●
●●●●●●
●●●●
●●●●●●●

●●●●●
●●●●●
●●●●●
●●●●
●●
●
●●●●
●●
●●
●●
●●● ●

TCP Flow Throughput (Mb/sec)

R
T

C
P

 F
lo

w
 T

hr
ou

gh
pu

t (
M

b/
se

c)

2.0 2.5 3.0 3.5 4.0 4.5 5.0

2.
0

2.
5

3.
0

3.
5

4.
0

4.
5

5.
0

Figure 4.9: Q-Q plot of RTCP throughput versus TCP throughput for large network

window size from its value at that moment to its steady state value. The lower the loss

rate is, the longer the duration of this transition time will be. According to the results

shown by [CSA00], for high loss rates (i.e., 5% and higher), the sender exits slow start

and immediately drops its window size to a small value that is close to the steady-state

window value. So the error of the model in this case should be small. For low loss rates

(i.e., 0.1% and below), it takes longer, which is usually three or more loss indications, to

transit from slow start mode to steady-state phase. So the model in this case often over-

estimates the transmission latency. Consequently, the throughput will be underestimated.

Second, Padhye et al.’s model does not model slow start after retransmission timeouts.

For loss rates above 1%, the send rate of the steady-state phase is similar to that of the

slow start phase after retransmission timeouts. So the error of the model should be small.

71

On the other hand, for lower loss rates, although retransmission timeouts rarely happen,

once they occur, the errors will be inevitable.

Regardless of these errors, both models we apply have been proved their accuracy for

most cases. In addition, the implementation of our RTCP model allows the analytical

sending models to be easily replaced with other solutions for different targets. For ex-

ample, we assume TCP RENO because Padhye et al.’s model is restricted to model TCP

RENO. However, by replacing with other TCP analytical models, our RTCP model can

definitely provide solutions for modeling other TCP protocols.

Overall, for all cases, the estimated instantaneous queue size is similar between RTCP

and TCP. More importantly, the inaccuracies are well compensated by the reduction in the

number of events and in the execution time when the packet-level details are not critical

for the goal of the study. For large experiments, we can observe a speedup of over two

orders of magnitude.

4.7 Conclusion

This chapter presents a traffic model which reduces the time and space complexity for

simulating TCP traffic behavior with good accuracy. The proposed RTCP model intro-

duces a new level of granularity for representing the network traffic. Rather than modeling

at the granularity of individual packets, we approximate the traffic flows as individual rate

windows, each consisting of a number of packets with the same arrival rate. To model the

detailed TCP behavior, we use existing analytical models to calculate the send rate at the

traffic source as a function of the measured round-trip time and packet loss probability.

We calculate the queuing delay and the loss probability as the rate window traverse indi-

vidual network queues along the flow path. Experimental results are encouraging. They

show that RTCP can speed up simulation of large network traffic by a factor of 200, while

72

still maintaining a reasonable level of accuracy. For all the experiments we conducted,

RTCP model has been shown to achieve more than 50x speed-up over TCP model.

73

CHAPTER 5

CLUSTER-BASED SPATIO-TEMPORAL BACKGROUND TRAFFIC

GENERATION

In this chapter, we propose a cluster-based spatio-temporal background traffic model that

aims to produce network-wide traffic on arbitrary network topology while maintaining

the spatial and temporal characteristics of the observed Internet traffic.

5.1 Introduction

The ability to generate representative traffic is crucial for network simulators, emulators,

and other empirical testbeds, to effectively evaluate next-generation network protocols

and applications. It is a nontrivial task to model Internet traffic, given the scale and

diversity of today’s applications and the sophistication of user behaviors.

Due to the diversity and complexity of today’s network traffic, there is little agreement

in the community on the proper use of background traffic in network experiments and

performance evaluation studies. We can divide the existing traffic models into spatial

and temporal models. Spatial models distribute traffic based on traffic matrices. They

focus specifically on aggregate traffic intensity (rather than individual flows or packets)

and can only deal with variations at coarse time scales (e.g., in minutes). As a result,

they may not be able to accurately capture the interaction with the foreground traffic,

represented normally as individual packets or flows. Temporal models are based on the

traffic traces collected from individual links; they generate traffic as individual flows or

packets, and therefore can capture the effect on the target applications more accurately.

Temporal models, however, can only work with individual links or paths; they are not

able to capture the spatial distribution of traffic on the entire network. To the best of

our knowledge, there is no existing background traffic model that can produce network-

74

wide traffic on arbitrary network topology and simultaneously maintain the spatial and

temporal characteristics of the observed Internet traffic.

In this chapter, we aim to provide a spatio-temporal background traffic generator that

can be easily applied for network studies. To this end, we posit the following criteria that

the traffic generator should meet :

• Spatio-temporal correlation: The traffic generator should jointly consider both spa-

tial and temporal structures; that is, the generator not only needs to reproduce the

bursty traffic behavior as observed on individual links and/or paths, but also it needs

to reasonably place traffic on the target network topology so that it can capture the

spatial distribution of traffic covering the entire network.

• Realism: The traffic generator should be based on real traffic traces and traffic

matrices, whenever available, in order to accurately represent the global Internet

traffic behavior that changes over time.

• Flexibility: The traffic generator should be flexible: the generator needs to pro-

duce traffic with various traffic conditions, for different scenarios, and on arbitrary

network topologies, in order to test the target applications. At the same time, it

is important that the generated traffic maintains a good level of realism. That is,

the traffic generator needs to provide the necessary “control knobs”—the ability

to tune certain parameters—while keeping important spatial and temporal traffic

characteristics invariant.

To derive the spatio-temporal background traffic model, we start by analyzing the

traffic behavior observed from real network (i.e., from traffic traces). We adopt cluster-

ing techniques to classify the traffic in order to efficiently and effectively discover the

underlying traffic patterns. More specifically, we describe the traffic as a function of

multi-dimensional attributes and then apply a clustering algorithm to group the end hosts

75

as seen from the traffic trace. Different from the previous traffic clustering approaches,

we carefully choose the features that define the clusters to facilitate traffic generation. The

result traffic classes are then mapped onto a given network topology. This is achieved by

first stochastically determining the origin-destination (OD) traffic matrix for the given net-

work, and then by overlaying the traffic sources and destinations belonging to the traffic

classes onto the network according to the traffic matrix. Once mapped, the traffic sources

and destinations are able to populate the network with traffic according to a stochastic

arrival process.

The novelty of our approach can be summarized as follows. Our method uses the clus-

tering technique for background traffic modeling and simulation. By classifying traffic

using the multi-dimensional attributes, we are able to effectively discover and succinctly

summarize the network traffic patterns using cluster-level characteristics. By judiciously

distributing the cluster-level traffic sources and destinations, we are able to spread the traf-

fic across the entire network while maintaining the underlying spatial structure. By con-

ducting the traffic flows in accordance with cluster-level statistics, we are able to maintain

the temporal structure of the traffic flowing through the network links. Our method can

thus capture both temporal and spatial structures from real Internet traffic observations.

In addition, we also provide a method to scale the traffic intensity level on the network

links while maintaining the same spatial and temporal characteristics, and thus enable

testing applications under various and yet realistic traffic conditions.

Our cluster-based spatio-temporal background traffic generation method has been val-

idated through extensive simulation experiments. The results show that the generated

traffic is statistically similar to the original traffic traces used for the traffic generation.

The proposed method is not limited to network simulation; it can be applied for network

emulation as well as in empirical studies. In this article, we focus only on the simulation

aspects of the traffic generator.

76

Table 5.1: SIGCOMM Papers in Different Categories

Year R S E R+S S+E S+R+E other total/yr
2013 12 8 1 6 1 0 9 37
2012 5 5 1 7 0 0 13 31
2011 8 4 0 5 0 0 12 29
2010 8 2 1 9 1 0 9 30
2009 12 2 1 5 0 0 8 28
2008 14 5 0 7 1 0 9 36
2007 13 5 1 7 0 1 8 35
total 72 31 5 46 3 1 68 226

5.2 Background

In this section we first describe the current state of using background traffic in network

studies by conductiong a survey for papers in SIGCOMM 2007-2013. We then provide

a brief summary of related work in traffic classification. A detailed review of existing

traffic models, including temporal, spatial, and spatio-temporal models, can be found in

Chapter 2.

5.2.1 Use of Background Traffic in Network Experiments

To better understand the current use of background traffic in network studies, we con-

ducted a survey of the SIGCOMM papers appeared in the last seven years (2007-2013).

We categorize the papers that involve experiments with infrastructural networks accord-

ing to their evaluation methods, including real testbeds (R) , simulation (S), emulation

(E), or a combination of them. Table 5.1 shows the results. The “other” category consists

of work that does not involve experiments with infrastructure networks, such as wireless

communications and pure theoretical analyses.

We observe that the use of real testbeds and simulation accounts for a large propor-

tion of the evaluative work. They are often used together with complementary roles. In

a common scenario, the researchers use simulation to evaluate key functions under vari-

77

Table 5.2: Use of Synthetic Background Traffic in Some SIGCOMM Papers

Paper Network Topologies Traffic Types
probabilistic early response TCP simple topologies with single long-lived TCP
[BRZL07] and multiple bottlenecks
service differentiation simple topologies with single long-lived TCP
[PG08] and multiple bottlenecks sampled flows
scalable Ethernet architecture campus network trace playback
[KCR08]
network measurement simple topology with single CBR
[PMH09] bottleneck (dumbbell) traffic generator
network-wide redundancy Rocketfuel topologies gravity model
elimination [ASA09]
Denial of service simple topologies with single long-lived TCP
[LYX10] and multiple bottlenecks sampled flows
flow-level measurement simple topology with single sampled flows
[LDK10] bottleneck (dumbbell) traffic generator
route reconfiguration RocketFuel topologies gravity model
[WWM+10] US-ISP, GT-ITM, Abilene trace playback
protocol manipulation attacks simple topology with single long-lived TCP
[KMM+11] bottleneck (dumbell)
flexible transport protocol simple topologies with single sampled flows
[HGAS13] and multiple bottlenecks

ous network conditions for more flexibility, and then use real testbeds, such as PlanetLab

or other controlled platforms, including lab machines, university networks, and enter-

prise networks, to test real-world operations. Yet another common scenario is that the

researchers use a real testbed to conduct small-scale studies, and then resort to simulation

for large-scale experiments.

Next, we focus on simulation studies that require network traffic for evaluation. Ta-

ble 5.2 lists the papers that use synthetic network traffic in experimental studies. We

observe that various background traffic models have been used, including long-lived TCP

flows, constant-bit-rate (CBR) traffic, packet trace playback, sampled flows, and traffic

generators. Apparently long-lived TCP and CBR are limited in terms of representing the

temporal behavior of the Internet traffic, such as traffic burstiness caused by long-term de-

pendencies. In order to better capture the temporal structure of the traffic demand, people

78

resort to either using direct playback of the packet traces, or applying empirical sampling

of the packet traces to obtain the random flow inter-arrival times and flow lengths. Only

a few studies involve existing traffic generators. All these studies are limited to simple

network topologies, such as dumbbell.

For studies that require more realistic network topologies (such as using the Rocket-

Fuel ISP PoP-level topologies [SMWA04]), people obtain traffic matrices generated from

using simple assumptions or using the gravity model (e.g., [WWM+10, ASA09]). Anand

et al. applied gravity model to estimate traffic matrix at PoP-level [ASA09], however,

they assume that the traffic is uniformly distributed over the access routers within each

PoP.

Wang et al. actually used the CAIDA trace to reproduce the packet-level traffic

flows [WWM+10]. However, the derived temporal behavior of such traffic is indepen-

dent of the spatial distribution; i.e., it does not preserve the spatio-temporal correlation.

From this survey, we can conclude that there is significant lacking in the use of good

network-scale background traffic models in experimental studies.

5.2.2 Traffic Classification

Our method uses clustering techniques to characterize traffic. There has been prior work

on traffic classification using machine learning techniques. We roughly group the traffic

classification methods into three types. The first type of methods (e.g., [RSSD04] and

[MHL+04]) classify traffic based solely on flow-level statistics, such as traffic volume

and packet size, without considering the end-user behavior. The second type of methods

(e.g., [KPF05] and [XlZB05]) classify traffic based only on end-user behavior but remain

indifferent to network dynamics (such as network congestion and delays). The third type

of methods (e.g., [WMK06]) consider both end-user behaviors and network dynamics

79

for classification. Our traffic model incorporates traffic classification belonging to this

category.

Most existing traffic classification methods are used for analyzing traffic and detecting

traffic anomalies, not for traffic generation. Valgenti and Kim proposed a traffic content

generative mode [VK12] that uses clustering techniques to determine the role of end

hosts (as content providers or content consumers), and in doing so can generate traffic

representative of content distribution over the network. Content generation is important

for applications such as intrusion detection; however, their method does not consider

traffic intensity, which is an important aspect for background traffic.

5.3 Overview of Cluster-Based Spatio-Temporal Traffic Generation

This section presents an overview of our cluster-based spatio-temporal traffic generation

method. The method makes the following assumptions:

• Our method is based on network measurements; in particular, it applies statistical

analysis to a packet trace collected at a specific network link. Here, we assume that

the user behavior observed from the packet trace is representative and can reveal the

network-wide traffic pattern. Our results could be improved if using network traces

from several vantage points (e.g., for different link types) to provide a broader view

of the overall network traffic. We will explore the use of multiple traces for traffic

generation in our future work.

• We also assume that traffic engineering can perfectly balance the traffic load among

all links of a given network topology. This would allow us to extend the measure-

ments from a specific link to the entire network. The assumption is generally true;

however, it does not consider cases where traffic may be skewed temporarily on

some links. One could implement methods to intentionally and probabilistically

create traffic load imbalance. Again, we will explore this issue in our future work.

80

Our method can be divided into three steps:

1. We first analyze the traffic trace, by characterizing the traffic as a function of multi-

dimensional attributes and then grouping the end hosts with similar features into

clusters. In this way, we can identify the unique characteristics of different groups

of end hosts, such as traffic hotspots (either sources or sinks with large data volume)

and heavily connected servers. The high-level traffic behavior is then summarized

by the flow-level statistics between the clusters. The result will be used subse-

quently for traffic generation.

2. Given a network topology that consists of routers, we then assign the clusters (from

the previous step) to the routers. Because we are interested in the interaction be-

tween the foreground and background traffic at the network links connecting the

routers, the background traffic generator only needs to produce traffic on those

links between routers, as opposed to modeling the individual end hosts. Each router

presumably can connect to many end hosts, and each end host would belong to a

cluster. That is, a router may contain multiple clusters. The goal of this step is to

proportionally distribute the clusters over routers of an arbitrary network topology.

3. With the network topology, the cluster-level traffic summary, and the mapping from

clusters to routers, we can now generate traffic by randomly creating flows between

selected sources and destinations according to the clustering results.

In the following three sections, we present the details of the three steps of our proposed

method, respectively.

81

5.4 Step 1: Traffic Classification

To generate realistic traffic, we first analyze existing traffic traces collected from Internet

measurement points, cluster the end hosts using multi-dimensional attributes, and then

summarize the high-level traffic behavior between the clusters.

5.4.1 Traffic Traces

To describe our method, we select three traffic traces obtained from the public Internet

data repositories as examples. The traces are collected at distinct Internet vantage points.

They include a CAIDA trace, collected from a US backbone link [CAIb]; a MAWI trace,

collected from a trans-Pacific link [MAW]; and a campus network trace, collected at the

uplink from the University of Napoli [DPR+08, DPV09]. More specifically, the CAIDA

trace was captured in July 2011 at the equinix-chicago Internet data collection monitor

in Chicago from a 10GigE backbone link of a Tier-1 ISP connecting between Chicago

and Seattle. The MAWI trace was collected in May 2013 at sample point F from a 150

Mbps trans-Pacific link. The CAMPUS trace we use was the web traffic generated by

clients inside the University of Napoli “Federico II” network in June 2004. The trace was

collected at the campus’ 200 Mbps uplink (connecting the campus network to the rest of

the Internet).

For the traffic analysis shown below, we used only the first 10 minutes of each trace.

Also, since we conduct flow-level analysis, we limit traffic to TCP only. This should be

fine as we have observed that TCP is the dominant traffic in all traces: it is over 81%

for the CAIDA trace, over 83% for the MAWI trace, and 100% for the campus trace

(since the trace consists of only web traffic). Figure 5.1 shows the traffic intensity of

the three traces, each in a separate row. At each row, from left to right, we decrease the

sampling interval while maintaining the number of samples at 600. The starting sampling

82

The CAIDA Trace

 0

 500

 1000

 1500

 2000

 2500

 0 100 200 300 400 500 600

B
a

n
d

w
id

th
 (

M
b

p
s
)

Time (s)

CAIDA (in 1s bin)
 0

 500

 1000

 1500

 2000

 2500

 0 10 20 30 40 50 60 70

B
a

n
d

w
id

th
 (

M
b

p
s
)

Time (s)

CAIDA (in 125ms bin)
 0

 500

 1000

 1500

 2000

 2500

 0 1 2 3 4 5 6 7 8 9

B
a

n
d

w
id

th
 (

M
b

p
s
)

Time (s)

CAIDA (in 15.625ms bin)

The MAWI Trace

 0

 50

 100

 150

 200

 250

 300

 350

 0 100 200 300 400 500 600

B
a

n
d

w
id

th
 (

M
b

p
s
)

Time (s)

MAWI (in 1s bin)
 0

 50

 100

 150

 200

 250

 300

 350

 0 10 20 30 40 50 60 70

B
a

n
d

w
id

th
 (

M
b

p
s
)

Time (s)

MAWI (in 125ms bin)
 0

 50

 100

 150

 200

 250

 300

 350

 0 1 2 3 4 5 6 7 8 9

B
a

n
d

w
id

th
 (

M
b

p
s
)

Time (s)

MAWI (in 15.625ms bin)

The CAMPUS Trace

 0

 10

 20

 30

 40

 50

 60

 70

 80

 0 100 200 300 400 500 600

B
a

n
d

w
id

th
 (

M
b

p
s
)

Time (s)

CAMPUS (in 1s bin)
 0

 10

 20

 30

 40

 50

 60

 70

 80

 0 10 20 30 40 50 60 70

B
a

n
d

w
id

th
 (

M
b

p
s
)

Time (s)

CAMPUS (in 125ms bin)
 0

 10

 20

 30

 40

 50

 60

 70

 80

 0 1 2 3 4 5 6 7 8 9

B
a

n
d

w
id

th
 (

M
b

p
s
)

Time (s)

CAMPUS (in 15.625ms bin)

Figure 5.1: Traffic intensity for the CAIDA, MAWI, and CAMPUS traces.

interval is 1 second; each subsequent plot is obtained by randomly choosing a subinterval,

the length of which is one eighth of the previous one. The figure shows intuitively the

scale-free traffic behavior by simply zooming in, i.e., by progressively increasing the

time resolution.

5.4.2 Clustering End Hosts

For traffic clustering, we focus on four features (or attributes) for each end host, repre-

sented by a distinct IP address that appears in the traces: 1) the number of flows (or TCP

connections) involving the end host, 2) the number of distinct peers connected with the

end host, 3) the total number of bytes sent from the end host, and 4) the total number of

83

bytes received by the end host. We obtain these attributes by analyzing the packet length,

source and destination IP addresses, and the TCP flags from the packet headers. These

attributes can reveal the hidden correlation of the spatial distribution underpinning the

user access patterns, as well as the temporal behavior of individual traffic flows.

We conduct k-means clustering [Mac67], in particular, using a data mining software,

called WEKA [HFH+09]. K-means is a simple unsupervised learning algorithm. It aims

to partition the observations into k clusters: an observation is a member of a cluster with

the closest distance to the centroid of the cluster. In our case, a trace often consists of

many flows involving a large number of IP addresses. We classify these IP addresses into

a small number of clusters where the components within each cluster behave similarly.

We note that the values of some of the attributes may differ in magnitudes. For example,

the number of flows involving a particular IP address ranges from one to several hundreds;

the total size of data sent or received by an IP can vary from zero to several megabytes or

more. For these attributes, we take logarithm of the values for clustering.

A main concern of the k-means algorithm is that the number of clusters, k, must be

provided a priori. Several methods exist for determining the proper number of clus-

ters needed for a given dataset. Increasing k would result in smaller errors, but would

also increase the computation. Choosing k should balance between accuracy and perfor-

mance. We use a popular method to choose k: we run the k-means clustering algorithm

with different values of k, and select the one such that the clustering error is around the

“elbow”—the error decreases insignificantly when the number of clusters increases from

that point. Figure 5.2 shows the clustering errors for all three traces with different values

of k.

Table 5.3 presents the detailed clustering results of the three traces, from which we

can make the following observations:

1. The clusters vary greatly in size (in terms of the number of distinct IP addresses);

84

Table 5.3: The Clustering Result

The CAIDA Trace
Cluster 0 1 2 3 4 5 6 7 8
IPs 33840 232003 114516 39832 36923 77461 71595 89322 108739

(4%) (29%) (14%) (5%) (5%) (10%) (9%) (11%) (14%)
Flows 23 1 2 10 7 2 11 7 1
Peers 5 1 1 4 2 1 3 3 1
Sent 38082 368 3322 0 0 0 3220 1801 0
Rcvd 0 0 0 2262 157456 4692 9464 0 278

The MAWI Trace
Cluster 0 1 2 3 4 5 6 7 8
IPs 2108 678 475 3438 1914 1710 2480 517 1202

(15%) (5%) (3%) (24%) (13%) (12%) (17%) (4%) (8%)
Flows 3 2 60 1 81 11 3 2 1
Peers 1 1 16 1 1 2 1 1 1
Sent 991 62643 100811 611 26995 4469 0 978 337
Rcvd 0 1825 90654 625 41386 4677 1746 150859 4825

The CAMPUS Trace
Cluster 0 1 2 3 4 5 6 7
IPs 674 430 412 540 490 244 714 547

(17%) (11%) (10%) (13%) (12%) (6%) (18%) (14%)
Flows 1 32 12 59 4 235 4 2
Peers 1 1 4 8 2 25 1 1
Sent 462 230199 24147 75826 2995 331274 152940 21766
Rcvd 438 28825 27076 312731 3286 1052733 7963 763

85

k

 5,000

 10,000

 15,000

 20,000

 25,000

 30,000

2 3 4 5 6 7 8 9

1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

2
0

E
rr

o
r

(C
A

ID
A

)

 0

k

 100

 200

 300

 400

 500

 600

 700

 800

2 3 4 5 6 7 8 9

1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

2
0

E
rr

o
r

(M
A

W
I)

 0

k

 20

 40

 60

 80

 100

 120

 140

 160

 180

 200

2 3 4 5 6 7 8 9

1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

2
0

E
rr

o
r

(C
A

M
P

U
S

)

 0

Figure 5.2: Clustering error of different k values for the CAIDA, MAWI, and CAMPUS
traces.

2. Some clusters operate as data generators, and some as data sinks; in both cases

significant asymmetry exists between the number of bytes sent and received by an

IP address;

3. Traffic intensity, i.e., the average number of data sent and received per IP address,

varies significantly between the clusters, suggesting the existence of hot spots in

the network;

4. Since different traces observe different traffic at different vantage points, the clus-

tering results are different.

5.4.3 Cluster-Level Traffic Summary

Once we have determined the clusters, we can collect the statistics of the traffic flows

between the clusters. In the following we summarize the results, which we later use for

traffic generation:

• Let k be the number clusters. Let Ci be the set of distinct IP addresses (we treat

them as individual users) in cluster i, for all i ∈ {0,1, . . . ,k− 1}. We calculate the

population density for cluster i as:

φi =
|Ci|

∑0≤j<k |Cj|
(5.1)

• We use Fij to denote the total number of flows observed in the trace between an IP

address in Ci and an IP address in Cj, where 0≤ i, j< k. Note that for simplicity, we

86

do not distinguish the direction of the flows. We count each flow in both directions:

a flow between i and j is counted as 1/2 flows in Fij and 1/2 flows in Fji. Therefore,

we have Fij = Fji. As a special case, Fii is the number of flows between two IPs of

the same cluster i. We use F to denote the total number of flows observed in the

trace, which can also be expressed using:

F=
k−1

∑
i=0

k−1

∑
j=0

Fij (5.2)

We then calculate the flow density for cluster i as the proportion of flows that involve

an IP address in cluster i among all flows:

ψi =
∑0≤j<kFij

F
(5.3)

We also calculate the peering probability from cluster i to cluster j, as the number of

flows between cluster i and cluster j, divided by the total number of flows involving

cluster i:

ωij =
Fij

∑0≤x<kFix
(5.4)

• Let T be the duration of the trace. We calculate the aggregate flow arrival rate from

cluster i to cluster j, in number of flows per second, as follows:

λij =
Fij
T

(5.5)

Note that since we do not distinguish direction of the flows, λij = λji. As a special

case, λii is the aggregate flow rate between IPs of the same cluster i.

• We describe the flow size (in number of bytes) from cluster i to cluster j using a log-

normal distribution with parameters µij and σij (we show evidence momentarily).

Here we use the flow size distribution to capture the asymmetric behavior of traffic

between clusters. For each identified flow in the trace, we separate the flow into

two flows, one for each direction. If the packet’s source address belongs to cluster

87

i and its destination address belongs to cluster j, we add the packet size to the flow

size from i to j. And vice versa. Note that the size of the directed flows is in general

asymmetric. Once we know the mean, m, and the variance, v, of the size of the

directed flows, it is easy to calculate the parameters of the lognormal distribution:

µ = ln
(

m2
√
v+m2

)
(5.6)

σ =

√
ln
(

1+
v

m2

)
(5.7)

• We calculate the aggregate traffic rate from cluster i to cluster j, in number of bytes

per second, as the product of the aggregate flow arrival rate and the mean flow size:

δij = λij · eµij+
σ2
ij
2 (5.8)

The total in-flow rate and out-flow rate at cluster i, also in number of bytes per

second, can be summed up easily:

δ•i =
k−1

∑
j=0

δji (5.9)

δi• =
k−1

∑
j=0

δij (5.10)

Note that both in-flow rate and out-flow rate include traffic going between end hosts

in the same cluster.

Lognormal distribution is appropriate for describing the flow size. Figure 5.3 shows

the Q-Q plots of the flow size between two selected clusters from the CAIDA, MAWI,

and CAMPUS traces independently against a lognormal distribution with parameters es-

timated from the trace data. They match well. We observe similar results with all other

clusters for the three traces, although they use different lognormal parameters.

88

5000 10000 15000 20000 25000 30000

0
10

00
0

20
00

0
30

00
0

Lognormal(8.94,0.63)

C
A

ID
A

0 1000 2000 3000 4000 5000

0
10

00
20

00
30

00
40

00
50

00

Lognormal(6.31,0.97)

M
A

W
I

0e+00 2e+05 4e+05 6e+05

0e
+

00
2e

+
05

4e
+

05
6e

+
05

Lognormal(9.80,1.24)

C
A

M
P

U
S

Figure 5.3: Q-Q plot of flow size vs. lognormal for the CAIDA, MAWI, and CAMPUS
traces.

5.5 Step 2: Mapping Clusters to Routers

The generated traffic will be conducted between end hosts. Given a simulated network

topology that consists of connected routers, it is possible that we attach the end hosts to

the routers and then have the end hosts to produce the traffic accordingly. However, this

would be unnecessary since we are only interested in generating the background traffic on

the links between routers of the given topology. That is, one can simply have the routers to

assume the role of traffic sources and destinations and produce the traffic amongst them.

Since each router may conduct traffic that belong to the attached end hosts of different

clusters, we may need to map the clusters to multiple routers of the given topology to

preserve the spatial distribution of the traffic.

Doing so would require information on the spatial distribution of traffic among the

routers. For real networks, this information is mostly proprietary and thus would be

difficult to obtain. For synthetic network topologies used in simulation, it is impossible.

One would have to make certain assumptions. For example, one could assume that traffic

flows are uniformly distributed over the network. This is unrealistic, however, since it

does not consider the network effect, such as link bandwidths, delays, congestions, and

routing. In this section, we present an algorithm that can reasonably map the clusters to

89

the routers based on “common sense”. We assume that the traffic load on any link should

not exceed its link capacity; also, the traffic should be distributed over the network evenly

so that it would not load any particularly link disproportionally.

Our solution is divided into two steps. In the first step, we derive the traffic matrix of

a given network. Here, we apply an existing traffic matrix estimation technique, which

can stochastically determine the traffic matrix for arbitrary network topologies. In the

second step, we assign the end hosts belonging different clusters to the routers in the

given topology so that the resulting traffic is compatible with the traffic matrix obtained

from the first step.

5.5.1 Deriving Traffic Matrix for Arbitrary Network Topology

We first derive the traffic matrix for any arbitrary topology. Suppose the network consists

of n routers and m links. The goal is to calculate the traffic rate rij from router i to router

j, for all 0≤ i, j< n and i 6= j. We adopt the method proposed by [NST05] to estimate the

traffic matrix. Their method first samples the flow rates from a statistical distribution ob-

served from measurement. The sampled rates are then assigned to the source-destination

pairs of the network by solving an optimization problem. In the following, we describe

only the formulation of the problem specific to our approach. We refer the readers to the

original paper for further details [NST05].

Sampling Random Flow Rates We assume that the flow rates observe the lognormal

distribution. It has been shown that lognormal distribution provides the best fit for both

Sprint and Abilene networks [NST05]. For a given network topology and traffic routing

(again, we assume static routing), we first determine the lognormal parameters µ and σ .

Suppose µc and σc are the mean and standard deviation of the link capacity of the

given network. From static routing information, we can find the path length, πij, in number

90

of links from router i to router j. We can then calculate the average number of source-

destination flows that traverse each link in the network:

γ = ∑
0≤i,j<n

i6=j

πij

m

We assume that on average we should maintain the same link utilization as observed

in the packet trace. Let ρ be the link utilization of the observed packet trace, which can be

calculated as the total amount of data transferred over the link divided by the duration of

the trace and the link capacity. We expect the mean of the lognormal distribution for the

flow rate to be µcργ−1. That is, we scale the mean link capacity by a factor of ργ−1. If

we scale the stardard deviation by the same factor, we expect it to be σcργ−1. Therefore,

we can calculate the parameters for the lognormal distribution, following Equations (5.6)

and (5.7):

µ = ln(µ2
c ρ/γ)− 1

2
ln(µ2

c +σ
2
c)

σ =
√

ln(1+σ2
c /µ2

c)

Given µ and σ , we take a sample of size n(n−1) from the lognormal distribution; we

denote the sampled flow rates as A0,A1, . . . ,An(n−1)−1.

Integer Linear Programming (ILP) Next, we simply follow the the method proposed

by [NST05], which formulates the problem as an optimization problem that can be solved

using Integer Linear Programming (ILP). The result is that sampled rates are assigned to

the n(n− 1) source-destination pairs so that it minimizes the maximum link utilization.

This is a reasonable goal since network traffic engineering is widely used by ISPs to bal-

ance traffic load and minimize congestion. The maximal link utilization should be the

maximum of all link utilizations. The link utilization is defined as the traffic rate con-

tributed by all OD flows traversing this link divided by the link capacity. The problem is

91

formulated as the follows:

Minimize: zmax

Subject to:

zmax ≥ zuv = ∑
0≤i,j<n,i6= j

xijuv
Cuv

, ∀Luv ∈ E (5.11)

xijuv =

 ξij if Luv ∈ Pij

0 otherwise
(5.12)

ξij =
n×(n−1)

∑
p=1

IijpAp (5.13)

∑
0≤i,j<n,i 6= j

Iijp = 1 (5.14)

n×(n−1)

∑
p=1

Iijp = 1 (5.15)

∑
u:Luv∈E

xijuv− ∑
v:Luv∈E

xijuv =


ξij if u is source

−ξij if u is destination

0 otherwise

(5.16)

Equation 5.11 defines the maximum link utilization zmax, where Cuv is the capacity

of the link Luv, and xijuv is the traffic rate contributed by the OD-pair from router i to j on

the link Luv, which is defined in Equation 5.12. Equation 5.13 defines the rate of each

OD-pair ξij by using the mapping indicator Iijp , where 0 ≤ p < n(n− 1), 0 ≤ i, j < n and

i 6= j.. The indicator is set to be 1 if flow rate Ap is assigned to the source-destination pair

from router i to router j, and 0 otherwise. Equation 5.14 and 5.15 guarantee that each

traffic rate Ap is mapped to exactly one OD-pair ξij and vice versa. Equation 5.15 is the

flow conservation equations. The output of the solution is a set of mapping indicators Iijp .

92

Consequently, we can obtain the traffic matrix, where

rij =

 ∑
n(n−1)−1
p=0 IijpAp if i 6= j

0 otherwise

5.5.2 Solving Cluster-to-Router Mapping

We have obtained the cluster-level traffic summary from traffic classification (in step 1).

Following the previous section, we have also obtained a traffic matrix, which contains the

traffic demand, rij, from any router i to any other router j in the given network topology. In

this section, we present an algorithm to assign the clusters to routers. More specifically,

we solve for psi, which is the proportion the end hosts belonging to cluster s are mapped

to router i, where 0≤ s< k and 0≤ i< n.

For a given network topology, we define the user density of router i as di, where

0 ≤ di ≤ 1 and ∑0≤i<n di = 1. A router’s user density is a user-defined value; it shall

be proportional to the number of end users attached to the router. In cases where end

users’ geographical distribution must be considered in the performance evaluation, this

mechanism provides a way to distribute the traffic load accordingly. By default, one can

simply assume a uniform distribution: di = 1/n.

We note that there can be discrepancy between the amount of traffic over the network

as specified by the traffic matrix and the amount of traffic shown in the cluster-level traffic

summary from the packet trace. This is normal. For example, the bandwidth could be

significantly different between the links in the target network and the one from which we

obtain the packet trace. To compensate for the difference, we define a traffic proportion

factor, θ , as follows:

θ =
∑
n−1
i=0 ∑

n−1
j=0 rij

∑
k−1
s=0 ∑

k−1
t=0 δst

(5.17)

The numerator is the total traffic flow rate reported by the traffic matrix; the denominator

is the total traffic reported by the cluster-level traffic summary.

93

We formulate the problem as a quadratic programming problem. The goal is to find

psi, the proportion of mapping the end hosts of cluster s to router i, so that we can max-

imize the spread of the traffic, i.e., make the clusters distributed as evenly as possible,

among all routers, subject to the constraints dictated by the given traffic matrix. It is very

unlikely to have a universally best objective function due to the complexity of the network

traffic and the limitation of the traces publicly available. Our goal is based on the assump-

tion that the packet trace observed from individual links is representative and can reveal

the network-wide traffic behavior. The optimization problem can be formally specified as

follows:

Minimize:

k−1

∑
s=0

n−1

∑
i=0

(psi−
1
n
)2

Subject to:

n−1

∑
i=0

psi = 1, ∀s ∈ {0,1, . . . ,k−1} (5.18)

psi ≥ 0, ∀s ∈ {0,1, . . . ,k−1}, i ∈ {0,1, . . . ,n−1} (5.19)

k−1

∑
s=0

psi ·φs = di, ∀i ∈ {0,1, . . . ,n−1} (5.20)

θ

k−1

∑
s=0

psiδs•−
n−1

∑
j=0

rij = θ

k−1

∑
s=0

psiδ•s−
n−1

∑
j=0

rji, ∀i ∈ {0,1, . . . ,n−1} (5.21)

θ

k−1

∑
s=0

psiδs• ≥
n−1

∑
j=0

rij, ∀i ∈ {0,1, . . . ,n−1} (5.22)

94

Equation (5.18) states that the proportion of mapping the end hosts of cluster s to all

routers should sum up to 1. Since they are all proportions, Equation (5.19) states that they

should not be negative. Equation (5.20) defines the user density at router i, which is the

sum of the proportion of end hosts of each cluster mapped to router i, multiplied by the

cluster’s population density.

Equation (5.21) matches the flow rates observed by the cluster-level traffic summary

with those specified by the traffic matrix at each router. The first term on the left-hand side

of the equation is the sum of the out-flows of all clusters assigned to router i, multiplied

by the traffic proportion factor θ . The second term on the left-hand side of the equation is

the total traffic sent from router i, as seen by the traffic matrix. The difference accounts for

the traffic between the end hosts attached to router i, and therefore cannot be observed by

the traffic matrix. Similarly, the right-hand side of the equation computes the difference

between the sum of in-flows of all clusters assigned to the router and the total traffic

received by the router as seen by traffic matrix, which is also the traffic between the end

hosts attached to the same router. Equation (5.22) makes sure that the difference shall not

be negative.

The optimization problem is a convex quadratic programming problem with a positive

definite objective matrix and therefore can be solved in polynomial time.

5.6 Step 3: Traffic Generation

From the first two steps, we have obtained the cluster-level traffic summary and a mapping

from the clusters to routers for any given network topology. Now we are ready to generate

the background traffic. Our method can be summarized in the following steps:

95

1. We model the flow arrivals as a Poisson processes (using exponentially distributed

inter-arrival time), with an arrival rate:

λ =
αF

T
(5.23)

where F is the total number of flows observed in the packet trace (Equation 5.2)

and T is the duration of the trace. α is a scaling factor; it is a user-defined “control

knob” for varying the traffic intensity of the generated background traffic in order

to test applications under different network conditions. When α = 1, we expect

the traffic generator to generate network-wide traffic with similar traffic intensity as

seen by the trace. If α = 2 or α = 0.5, for example, we expect the intensity of the

generated traffic to be doubled or halved accordingly.

2. For each flow arrival, we select the source cluster s with the probability equal to the

cluster’s flow density, ψs (Equation 5.3).

3. Select the source router i with probability psi, which is the proportion of mapping

the end hosts of cluster s to router i.

4. Select the destination cluster t from cluster s using the peering probability, ωst

(Equation 5.4).

5. Select the destination router j with probability ptj, which is the proportion of map-

ping the end hosts of cluster t to router j.

6. We create a TCP flow from router i to router j and transfer data of a certain amount;

we sample the flow size in the number of bytes from the lognormal distribution with

parameters µst and σst.

7. The algorithm continues from step (2) for each new flow arrival.

In general, a background traffic generator does not need to take into consideration

the source and destination IP addresses of the generated traffic flows. In some studies,

96

however, one may need to preserve such information, for example, for simple packet

inspection1. To generate traffic between specific end hosts, one needs to first associate the

IP addresses to the routers of the given topology. Suppose that N is the total number of

distinct IP addresses we want to consider for background traffic generation. Each router i

will have Ndi IP addresses, where di is the user density of router i (see previous section).

We can assign these IP address to clusters based on the cluster distribution at this router.

In particular, one can assign the IP addresses associated with router i to cluster c using

the following proportion:

κci =
pci ·φc

∑
k−1
s=0 psi ·φs

where psi is the proportion the end hosts belonging to cluster s are mapped to router

i (resulted from the previous step), and φs is the population density for cluster s (see

Section 5.4.3). After we associate the IP addresses to the routers, we can now generate

the flows with specific source and destination IP addresses. More specifically, in step (3),

we can select the source address from all hosts attached to router i that belong to cluster

s uniformly at random. Similar, in step (5), we can select the destination address from all

hosts attached to router j that belong to cluster t again uniformly at random.

5.7 Experiments

In this section we validate our spatio-temporal background traffic model, particularly fo-

cusing on the aspects of spatio-temporal correlation, realism, and flexibility. We conduct

the experiments under two scenarios. First, we use a real backbone network, the Abi-

lene network, to evaluate the basic properties of the generated traffic, including the traffic

constitution and its spatial distribution. Second, we use a synthetic campus network to

investigate the temporal characteristics of the generated traffic on different links of the

1As we mentioned earlier, content-based traffic generation is not the aim of this study. How-
ever, with this additional consideration, one can easily generate traffic flows between IP addresses
that are properly distributed over the entire network.

97

Seattle

Sunnyvale

Los Angeles

Denver

Houston

Kansas City

Atlanta

Indianapolis Washington, DC

New YorkChicago

10 Gbps
2.5 Gbps

Figure 5.4: The Abilene network.

network, including the variations of the traffic intensity and the traffic burstiness. In addi-

tion, we study the spatial distribution of the generated traffic and its effect on the behavior

of foreground traffic with different scaling factors.

5.7.1 The Abilene Network

The Abilene network, as shown in Fig. 5.4, contains twelve routers and fifteen links. The

link connecting Indianapolis and Atlanta has a bandwidth of 2.5 Gbps and all the other

links have a bandwidth of 10 Gbps. An important reason we decide to use this network is

that the network has real traffic matrices available, which can help us determine whether

our traffic model can properly preserve the spatial distribution. In the experiment, we

use the same traffic matrix as the one described by Zhang et al. [ZGGR05]. For packet

trace, we use the CAIDA trace collected from a US backbone link, as described in Sec-

tion 5.4. In this experiment, since we only focus on the constitution and distribution of the

background traffic, and since there is no foreground traffic to interact with the generated

background traffic, we simplify the traffic generator by replacing the computationally ex-

pensive packet-oriented simulation with a fluid model with constant rate flows (in step 6

98

of the traffic generation algorithm in Section 5.6) for expediency. We record the generated

traffic on all network links of the network for analysis.

First, we examine whether the generated traffic would constitute the same type of

flows as in the original packet trace. This can be achieved by analyzing the generated

traffic trace, applying same clustering algorithm with the same set of attributes, and com-

paring clustering results between the original packet trace and the generated traffic trace.

In particular, we use a commonly used metric, called “rand index”, to determine clustering

similarity. For each generated traffic trace (one for each link), let N be the total number

of observations (i.e., distinct IP addresses) appeared in the trace (there are N(N− 1)/2

observation pairs). If the pair of IP addresses are from the same cluster, we say they

are co-members. Let N11 be the number of observation pairs that are co-members and

still remain to be co-members when the generated traffic trace is clustered again. On the

contrary, let N00 be the number of observation pairs which are not co-members and still

belong to different clusters when the generated traffic trace is clustered again. We define

the rand index, SR, as follows:

SR =
2(N11 +N00)

N(N−1)

Fig. 5.5 shows the rand index for every link of the network. We see that the value

never goes below 0.75, which means the majority of the IP addresses maintain similar

membership association as in the original classification. The constitution of the traffic

matches well with the cluster assignment over the entire network when the traffic is spread

among all links of given network topology.

Next, we validate our traffic model by comparing the spatial distribution of the gen-

erated traffic against the real traffic matrix. In particular, we compare the link utilization

and overall traffic distribution (i.e., the percentage of traffic on the links) of our spatio-

temporal method (Optimal) against those from the original traffic matrix (Real). To make

99

Link ID

 0.100

 0.200

 0.300

 0.400

 0.500

 0.600

 0.700

 0.800

 0.900

 1.000

1 2 3 4 5 6 7 8 9

1
0

1
1

1
2

1
3

1
4

1
5

R
a
n
d
 I
n
d
e
x

 0.000

Figure 5.5: Rand index of all links of the Abilene network.

Random

 0.000

 0.050

 0.100

 0.150

 0.200

 0.250

1 2 3 4 5 6 7 8 9

1
0

1
1

1
2

1
3

1
4

1
5

L
in

k
 U

ti
liz

a
ti
o
n

Link ID

Real
Optimal

Figure 5.6: Utilization of all links of the Abilene network.

it more interesting, we also compare it with the results from using a method that places the

flows over the network uniformly at random (Random). Fig. 5.6 shows the link utilization

on all fifteen links, and Fig. 5.7 shows the percentage of traffic on each of the fifteen links.

The results demonstrate that our spatio-temporal method (Optimal) is able to accurately

represent the spatial distribution of the traffic as shown by the real traffic matrix.

In addition, we compare the flow sizes distribution between the generated traffic and

the measurement. Fig. 5.8 shows the Q-Q plots of the flow sizes between the generated

100

Random

 0.000

 0.050

 0.100

 0.150

 0.200

 0.250

 0.300

 0.350

1 2 3 4 5 6 7 8 9

1
0

1
1

1
2

1
3

1
4

1
5

T
ra

ff
ic

 P
e

rc
e

n
ta

g
e

Link ID

Real
Optimal

Figure 5.7: Traffic distribution among all links of the Abilene network.

traffic we measured from all links of the Abilene network and the empirical distribution

extracted from the trace. We can see that although the flow size distributions of all links

are similar to the original distribution.

5.7.2 The Campus Network

In the following experiment we use the packet-level detailed TCP as transport so that we

can investigate the temporal characteristics of the generated traffic on different links of

the network. We use a synthetic campus network topology, as shown in Fig. 5.9, which

consists of 18 routers, among which 10 routers are access routers (marked with circles),

which are connected with end hosts that generate the traffic. To make it more interesting,

we designate different bandwidths to links; varying the link capacity allows us to observe

the non-uniform traffic distribution over the entire network. For packet trace, we use the

CAMPUS trace collected at a university campus unlink, as described in Section 5.4.

We examine the variation of intensity of the generated traffic over time on all links of

the campus network. In the experiment, we vary the scaling factor α to be 0.5, 1, 1.5,

2, 2.5, and 3, for different background traffic intensity levels. Fig. 5.10 shows the traffic

101

intensity on a 50-Mbps link (we observe similar results for the other links as well). Each

row shows the results of a different scaling factor. Similar to plots in Fig. 5.1, at each

row, from left to right, we decrease the sampling interval while maintaining the number

of samples at 600. The starting sampling interval is 1 second, and each subsequent plot

is obtained by randomly choosing a subinterval, the length of which is one eighth of the

one on the left. We see apparently that the traffic burstiness persists over different time

scales, i.e., it remains scale free, regardless of the scaling factor.

To gain a more precise review of traffic burstiness, we use the wavelet-scaling plot,

also known as the energy plot, which captures the correlations in the amount of traffic

arrived at consecutive time intervals of a given size [FGHW99]. Fig. 5.11 shows the

energy plot of the generated traffic on the same 50-Mbps link at different time scales and

with different scaling factors. For comparison, we also plot the energy of the original

CAMPUS trace. The x-axis shows a range of time scales, each being 2− j, from j = 0

(one second) down to j = 11 (around 0.5 ms). The y-axis shows the corresponding energy

value in a logarithmic scale. A higher energy level represents more traffic burstiness. We

see that the scaling factor has almost no impact on the traffic burstiness at different time

scales. Furthermore, the generated traffic exhibits very similar burstiness when compared

to the original packet trace, except when j is around 9 (about 2 ms), which is actually at

a time scale not so much larger than the packet transmission time. A slight deviation in

the traffic burstiness at this small time scale would have little impact on the foreground

traffic; therefore, our traffic generator uses a fixed packet size when generating the TCP

flows.

While the scaling factor has little effect on the traffic burstiness, it has significant

impact on the traffic intensity, as one can see in Fig. 5.10. In Fig. 5.12, we show the link

102

Table 5.4: Link Utilization and Traffic Distribution Summary

α link utilization traffic distribution
mean stdev mean stdev

0.5 0.0565 0.0498 0.2043 0.1164
1 0.1129 0.1019 0.2062 0.1190
1.5 0.1760 0.1589 0.2106 0.1228
2 0.2350 0.2127 0.2099 0.1217
2.5 0.2895 0.2608 0.2093 0.1201
3 0.3501 0.3178 0.2099 0.1207

utilization with different scaling factors, for all links that have background traffic2. We see

that the traffic intensity increases almost proportionally on all links. Fig. 5.13 shows the

traffic distribution (the percentage of traffic on the links). As expected, different scaling

factors have little effect on the traffic distribution. Table 5.4 shows the mean and standard

deviation of the link utilization and traffic distribution.

In the last experiment, we study the effect of the generated background traffic on

the behavior of foreground traffic. In a previous study, Vishwanath and Vahdat [VV08]

show that background traffic can have significant impact on applications, such as Web

downloads, multimedia video streaming, and bandwidth estimation tools. Here, we sim-

ply perform an experiment to show that our generated background traffic can significantly

influence the foreground applications. More specifically, we select two routers in the cam-

pus network (one 50-Mbps network and another in the 20-Mbps network) and have them

transfer a 100 MB file using TCP. We repeat the experiment 25 times for each scaling

factor. Fig. 5.14 shows the cumulative distribution function of the measured through-

put. As expected, we see that the file transfer throughput decreases as expected when the

background traffic intensity increases with larger scaling factor.

2The campus network contains 23 links, two of which do not have background traffic, because
they are not traversed by flows generated between the access routers and routed based on shortest-
path.

103

5.8 Conclusion

In this article, we propose a method for generating the background traffic workload that

can capture the same spatial and temporal characteristics as observed from the Internet

traffic measurement. Our method first classifies traffic according to multi-dimensional

features, and then maps the traffic classes onto a given network topology for traffic gener-

ation. We validate our method both on a real backbone network and on a synthetic campus

network. The results show that the model is able to generate representative background

traffic with important spatial and temporal characteristics.

104

0.0e+00 5.0e+07 1.0e+08 1.5e+08 2.0e+08

0
50

00
00

10
00

00
0

20
00

00
0

Trace

Li
nk

 1

0.0e+00 5.0e+07 1.0e+08 1.5e+08 2.0e+080.
0e

+
00

5.
0e

+
07

1.
0e

+
08

1.
5e

+
08

Trace

Li
nk

 2

0.0e+00 5.0e+07 1.0e+08 1.5e+080.
0e

+
00

5.
0e

+
07

1.
0e

+
08

1.
5e

+
08

Trace

Li
nk

 3

0.0e+00 5.0e+07 1.0e+08 1.5e+08 2.0e+080.
0e

+
00

1.
0e

+
08

2.
0e

+
08

Trace

Li
nk

 4

0.0e+00 5.0e+07 1.0e+08 1.5e+08 2.0e+080.
0e

+
00

5.
0e

+
07

1.
0e

+
08

1.
5e

+
08

Trace

Li
nk

 5

0.0e+00 5.0e+07 1.0e+08 1.5e+080.
0e

+
00

5.
0e

+
07

1.
0e

+
08

1.
5e

+
08

Trace

Li
nk

 6

0.0e+00 5.0e+07 1.0e+08 1.5e+080.
0e

+
00

5.
0e

+
07

1.
0e

+
08

1.
5e

+
08

Trace

Li
nk

 7

0.0e+00 5.0e+07 1.0e+08 1.5e+080.
0e

+
00

4.
0e

+
07

8.
0e

+
07

1.
2e

+
08

Trace

Li
nk

 8

0.0e+00 5.0e+07 1.0e+08 1.5e+08

5.
0e

+
07

1.
0e

+
08

1.
5e

+
08

Trace

Li
nk

 9

0.0e+00 5.0e+07 1.0e+08 1.5e+080.
0e

+
00

5.
0e

+
07

1.
0e

+
08

1.
5e

+
08

Trace

Li
nk

 1
0

0.0e+00 4.0e+07 8.0e+07 1.2e+080e
+

00
2e

+
07

4e
+

07
6e

+
07

8e
+

07

Trace

Li
nk

 1
1

0.0e+00 5.0e+07 1.0e+08 1.5e+080.
0e

+
00

5.
0e

+
07

1.
0e

+
08

1.
5e

+
08

Trace

Li
nk

 1
2

0.0e+00 5.0e+07 1.0e+08 1.5e+080.
0e

+
00

5.
0e

+
07

1.
0e

+
08

1.
5e

+
08

Trace

Li
nk

 1
3

0.0e+00 5.0e+07 1.0e+08 1.5e+08 2.0e+08

5.
0e

+
07

1.
0e

+
08

1.
5e

+
08

Trace

Li
nk

 1
4

0.0e+00 5.0e+07 1.0e+08 1.5e+08 2.0e+08

5.
0e

+
07

1.
0e

+
08

1.
5e

+
08

Trace

Li
nk

 1
5

Figure 5.8: The Q-Q plots of the flow sizes between the generated traffic of all links of
the Abilene network versus the flow sizes of the trace.

105

50 Mbps
Network

100 Mbps
Network

50 Mbps

10 Mbps
Network

20 Mbps
Network

Figure 5.9: A synthetic campus network.

106

α = 0.5

 0

 10

 20

 30

 40

 50

 60

 0 100 200 300 400 500 600

B
a
n
d
w

id
th

 (
M

b
p
s
)

Time (s)

(in 1s bin)

 0

 10

 20

 30

 40

 50

 60

 0 10 20 30 40 50 60 70

B
a
n
d
w

id
th

 (
M

b
p
s
)

Time (s)

(in 125ms bin)

 0

 10

 20

 30

 40

 50

 60

 0 1 2 3 4 5 6 7 8 9

B
a
n
d
w

id
th

 (
M

b
p
s
)

Time (s)

(in 15.625ms bin)

α = 1

 0

 10

 20

 30

 40

 50

 0 100 200 300 400 500 600

B
a
n
d
w

id
th

 (
M

b
p
s
)

Time (s)

(in 1s bin)

 0

 10

 20

 30

 40

 50

 0 10 20 30 40 50 60 70
B

a
n
d
w

id
th

 (
M

b
p
s
)

Time (s)

(in 125ms bin)

 0

 10

 20

 30

 40

 50

 0 1 2 3 4 5 6 7 8 9

B
a
n
d
w

id
th

 (
M

b
p
s
)

Time (s)

(in 15.625ms bin)

α = 1.5

 0

 10

 20

 30

 40

 50

 60

 0 100 200 300 400 500 600

B
a
n
d
w

id
th

 (
M

b
p
s
)

Time (s)

(in 1s bin)

 0

 10

 20

 30

 40

 50

 60

 0 10 20 30 40 50 60 70

B
a
n
d
w

id
th

 (
M

b
p
s
)

Time (s)

(in 125ms bin)

 0

 10

 20

 30

 40

 50

 60

 0 1 2 3 4 5 6 7 8 9

B
a
n
d
w

id
th

 (
M

b
p
s
)

Time (s)

(in 15.625ms bin)

α = 2

 0

 10

 20

 30

 40

 50

 60

 0 100 200 300 400 500 600

B
a
n
d
w

id
th

 (
M

b
p
s
)

Time (s)

(in 1s bin)

 0

 10

 20

 30

 40

 50

 60

 0 10 20 30 40 50 60 70

B
a
n
d
w

id
th

 (
M

b
p
s
)

Time (s)

(in 125ms bin)

 0

 10

 20

 30

 40

 50

 60

 0 1 2 3 4 5 6 7 8 9

B
a
n
d
w

id
th

 (
M

b
p
s
)

Time (s)

(in 15.625ms bin)

α = 2.5

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 0 100 200 300 400 500 600

B
a
n
d
w

id
th

 (
M

b
p
s
)

Time (s)

(in 1s bin)

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 0 10 20 30 40 50 60 70

B
a
n
d
w

id
th

 (
M

b
p
s
)

Time (s)

(in 125ms bin)

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 0 1 2 3 4 5 6 7 8 9

B
a
n
d
w

id
th

 (
M

b
p
s
)

Time (s)

(in 15.625ms bin)

α = 3

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 0 100 200 300 400 500 600

B
a
n
d
w

id
th

 (
M

b
p
s
)

Time (s)

L5 (in 1s bin)
 0

 10

 20

 30

 40

 50

 60

 0 10 20 30 40 50 60 70

B
a
n
d
w

id
th

 (
M

b
p
s
)

Time (s)

L5 (in 125ms bin)
 0

 10

 20

 30

 40

 50

 60

 70

 80

 0 1 2 3 4 5 6 7 8 9

B
a
n
d
w

id
th

 (
M

b
p
s
)

Time (s)

L5 (in 15.625ms bin)

Figure 5.10: Traffic intensity for one link of Campus network with different scaling fac-
tors.

107

8 9

1
0

1
1

lo
g

(E
n

e
rg

y
)

j

trace
alpha=0.5
alpha=1
alpha=1.5
alpha=2
alpha=2.5
alpha=3

 0.000

 5.000

 10.000

 15.000

 20.000

 25.000

 30.000

 35.000

 40.000

0 1 2 3 4 5 6 7

Figure 5.11: Energy plot of the CAMPUS trace and the generated traffic on the same link.

 0.000

 0.200

 0.400

 0.600

 0.800

 1.000

 1.200

1 2 3 4 5 6 7 8 9
1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

2
0

2
1

L
in

k
 U

ti
liz

a
ti
o
n

Link ID

alpha=0.5
alpha=1
alpha=1.5
alpha=2
alpha=2.5
alpha=3

Figure 5.12: The link utilization of all links of Campus network with different scale
factors.

108

 0.000

 0.100

 0.200

 0.300

 0.400

 0.500

 0.600

1 2 3 4 5 6 7 8 9
1

0
1

1
1

2
1

3
1

4
1

5
1

6
1

7
1

8
1

9
2

0
2

1

T
ra

ff
ic

 P
e

rc
e

n
ta

g
e

Link ID

alpha=0.5
alpha=1
alpha=1.5
alpha=2
alpha=2.5
alpha=3

Figure 5.13: The traffic distribution over all links of Campus network with different scale
factors.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 15.5 16 16.5 17 17.5 18 18.5 19

C
u
m

u
la

ti
v
e
 F

ra
c
ti
o
n

Throughput (Mbps)

alpha=0.5
alpha=1.0
alpha=1.5
alpha=2.0
alpha=2.5
alpha=3.0

Figure 5.14: CDF of throughput of TCP downloads with different scale factors.

109

CHAPTER 6

CONCLUSIONS

This chapter presents a brief summary of this dissertation and a few possible directions

for future work.

6.1 Summary

This dissertation focuses on generating representative background traffic for network ex-

perimentations. Specifically, this work addressed the following problems:

• The starting point of this work is an existing hybrid background traffic model. Ar-

tificial assumptions of the traffic model may lead to incorrect evaluation results.

This work enhanced the existing model by removing its two unrealistic assump-

tions. One improvement is modeling ACK traffic so that the network condition on

the reverse direction of the data traffic can be correctly reflected. The other im-

provement is integrating a PPBP (Poisson Pareto Burst Process) model to describe

the traffic sessions so that the traffic burstiness can be reproduced. The improved

model reflects the essential traffic characteristics without sacrificing efficiency.

• Scalability is another important issue background traffic modeling needs to address.

Realizing that the existing background traffic models are either not scalable or loose

too much accuracy in order to gain better performance, this work presented a fast

rate-based TCP (RTCP) traffic model, the distinct feature of which is that the TCP

congestion control behavior is represented using analytical models. This model

outperforms other existing abstract traffic models in that it can correctly capture the

overall TCP behavior and achieve a speedup of more than two orders of magnitude

over corresponding detailed packet-oriented simulation.

110

• This work proposed a spatio-temporal traffic model that can be used for generat-

ing background traffic on the entire network for accurately evaluating applications

and protocols in network studies. The proposed model incorporates clustering tech-

niques to group traffic with similar characteristics into a few classes, and maps the

traffic classes to access routers by solving a set of optimization problems. Thus

the routers can generate traffic according to the spatial and temporal features each

cluster represents. We believe that this work will fill the gap of the representative

spatio-temporal background traffic models in the network research community.

6.2 Future Directions

This work can be extended in a few directions. We emphasize the extension of the spatio-

temporal background traffic model because it addresses both spatial and temporal issues

faced by background traffic modeling.

Immediate future work of the hybrid background traffic model proposed in Chapter 3

includes evaluating the model using real traffic traces. This model can also be extended

to handle simultaneous TCP sessions with different round-trip times within the same fluid

class.

As for the RTCP model, although we only evaluate RTCP as a pure rate-based traffic

model in this work, the model can actually be extended to deal with mixed traffic gener-

ated by packet-oriented simulations. Nicol and Yan proposed a method for mixing packets

and fluid flows [NY04], which can also be used with RTCP. We outline this method in the

following. We keep track of the recent packet arrival rate. Once a packet arrives, we can

estimate the current queue length by using the information of the aggregate arrival rate of

packets and rate windows. Suppose a new packet of size S arrives at the queue at time t.

The queue length can be updated as follows:

q(t) = [qlast+(t− tlast)∗ (λrate+λpkt−µ)]B0

111

where λrate is the aggregate arrival rate of all rate windows, λpkt is the recent packet arrival

rate, tlast is arrival time of the previous packet, qlast is the queue length at tlast. Whether

we enqueue the packet depends on the current queue length, the mixture of different types

of flows, and the queue capacity.

There are several things that we would like to explore with the spatio-temporal traffic

generation model in the future work. Immediate future work includes the following:

• First, our traffic generation method is based on network measurements, assuming

that the user behavior observed from one packet trace is representative and can

reveal the network-wide traffic pattern. It is not enough that one simply relies on

a single packet trace; instead, we need to make use of network measurements at

different vantage points (e.g., from multiple links of different types at different

locations in a network) to provide a broader view of the overall network traffic. One

may need to judiciously select the traces for a representative global network traffic

scenario. We have to identify and deal with the correlations among the different

traces. It is important to represent the idiosyncratic nature of different links at

different locations for more realistic network-wide background traffic generation.

• Second, we would like to extend the method and introduce more control knobs so

that the users can easily tune the parameters to generate different traffic scenarios,

while maintaining the important spatial and temporal traffic characteristics. There

are several possible places one can insert such control knobs. For example, we have

introduced a scaling factor for varying the generated background traffic intensity.

However, the traffic load is perfectly balanced among all the links in the network.

To tip the balance, one can introduce a traffic skew factor in the specification of the

optimization problem for mapping the clusters to routers. One can also introduce a

similar mechanism when estimating the traffic matrix.

112

• Third, we need to investigate the performance of the spatio-temporal model with

different transport models. We used a detailed TCP and an abstract fluid model in

the validation. This provided evidence that our spatio-temporal model is capable

of combining with different underlying protocols. Our model aims to capture the

user behavior at the application level. It is valuable to explore the tradeoff between

accuracy and performance by using various traffic models that describe the flows

at lower level, such as the detailed TCP model, the RTCP model, and other fluid

models. Overall, one needs to accurately and efficiently capture the mutual interac-

tion between the foreground applications and background traffic at the proper time

scale.

• Last, but not least, we would like to extend our spatio-temporal method for content-

based traffic generation. There are two possibilities. One is to simply extend the

traffic generation mechanism (the last step) to produce traffic flows with specific

content. In this case, the workload can still preserve the spatio-temporal structure;

however, the content may not. The other method is to consider adding features

of content when performing traffic classification. In this case, both workload and

content can be spatio-temporally correlated. Content generation heavily depends

on the specific application or the goal of the study, and consequently tends toward

an ad-hoc process. For example, web studies generate traffic with web content

characteristics, such as content freshness times and content reusability across time

and linked documents [SCK03]; while security studies focus on generating traffic

with different rules to model the benign and malicious traffic [VK11]. The resulted

spatio-temporal content generative model will be useful for evaluating many ap-

plications, especially the ones emerged into the Internet recently. We list a few of

them in the following:

113

– Caching, such as in-network caching, redundancy-aware routing algorithm.

These strategies assume that the routers are equipped with data caches. The

distribution of the content is necessary to make a decision where to cache

which content.

– Content distribution network (CDN): The goal of CDN is a balance between

cost and QoS. Its performance heavily depends on the geographical distri-

bution of the contents on the edge servers and the distribution of the user

requests. The spatio-temporal traffic generation may help the data manage-

ment in CDN to decide where to deploy edge servers, the capacity of the edge

servers, when to upgrade the server, whether to retire the server, how long

different content is to be considered fresh, and so on. In a meanwhile, our

traffic generator is also useful for the protocol evaluation that does not require

content generation, such as HTTP or TCP. In such cases, the spatio-temporal

workload generation can be applied separately.

– Redundancy reduction: Traffic redundancy stems from common end-users ac-

tivities, such as repeatedly accessing, downloading, distributing and modify-

ing the same or similar information items (documents, data, web and video).

Our content generative model is able to evaluate the proposed redundancy

reduction algorithms.

– Intrusion detection systems (IDS): Content generation is commonly used for

IDS, because it requires deep packet inspection, which compares the headers

and payload of network packets against a set of known malicious signatures

to determine whether the traffic is benign (the system will ignore) or mali-

cious (the system will alert). Our generator is able to evaluate the IDS under

different scenarios by varying the content of the packets (by manipulating the

114

rule set to generate the content), the distribution of the content, the injection

frequency of the malicious traffic, etc.

– Online social network (OSN): As OSNs spring up (e.g., LinkedIn, blog, and

Wikipedia), it is important to have a thorough understanding of the user be-

havior. There is existing work (e.g. [GTC+09]) focusing on the pattern of

the user participation and posting behavior, the popularity and quality of the

content, and etc. Our traffic generator may reproduce the user behavior and

generate various contents for the researchers and industry to better understand

the user activities, adjust strategies on how to attract new users and keep ex-

isting users, predict the trends of the topics and perform efficient resource.

– Web content generation and delivery: Todays Web sites have developed steadily

from document Web (static contents like HTML and images) to application

Web and service Web that serve dynamic and complex Web contents and busi-

ness functions [RaWS09]. Dynamic pages require servers to generate the re-

sponse content as per the users request before delivering the content back to

the user, which introduce extra latency. The traditional content delivery ac-

celeration technologies (e.g., caching and CDN) improved the static Web site

performance, however, dynamic Web content brings new challenges. Our traf-

fic generation can facilitate in this area to evaluate the new techniques, such

as new caching strategies and delivery approaches to reduce the response time

on the server side and the delivery time experienced by the clients.

115

BIBLIOGRAPHY

[AAB05] Eitan Altman, Konstantin Avrachenkov, and Chadi Barakat. A stochastic
model of TCP/IP with stationary random losses. IEEE/ACM Transactions
on Networking (TON), 13(2):356–369, April 2005.

[AD96] Jong Suk Ahn and P.B. Danzig. Packet network simulation: speedup and
accuracy versus timing granularity. IEEE/ACM Transactions on Network-
ing (TON), 4(5):743–757, October 1996.

[AMS82] D. Anick, D. Mitra, and M. M. Sondhi. Stochastic theory of a data han-
dling system with multiple sources. The Bell System Technical Journal,
61(8):1871–1894, October 1982.

[Arc] Internet traffic archive. http://ita.ee.lbl.gov. Last accessed: 2014.

[ASA09] Ashok Anand, Vyas Sekar, and Aditya Akella. Smartre: An architecture for
coordinated network-wide redundancy elimination. In Proceedings of the
ACM SIGCOMM 2009 Conference on Data Communication, pages 87–98,
2009.

[AV98] P. Abry and D. Veitch. Wavelet analysis of long-range dependent network
traffic. IEEE Transactions on Information Theory, 44:2–15, 1998.

[BC98] Paul Barford and Mark Crovella. Generating representative web workloads
for network and server performance. In Proceedings of the 1998 ACM SIG-
METRICS joint International Conference on Measurement and Modeling
of Computer Systems, volume 26, pages 151–160, 1998.

[Ber94] Jan Beran. Statistics for Long-Memory Processes. Chapman & Hall, 1994.

[BH02] Francois Baccelli and Dohy Hong. AIMD, fairness and fractal scaling of
TCP traffic. In Proceedings of the 21st Annual Joint Conference of the
IEEE Computer and Communications (INFOCOM ’02), volume 1, pages
229–238, 2002.

[BH03] Francois Baccelli and Dohy Hong. Flow level simulation of large IP net-
works. In Proceedings of the 22nd Annual Joint Conference of the IEEE
Computer and Communications (INFOCOM ’03), volume 3, pages 1911–
1921, 2003.

116

[BKS+10] Vineet Bharti, Pankaj Kankar, Lokesh Setia, Gonca Gursun, Anukool
Lakhina, and Mark Crovella. Inferring invisible traffic. In Proceedings
of the 6th International COnference (Co-NEXT ’10), pages 1–12, 2010.

[Bra89] R. Braden. Requirements for internet hosts – communication layers. RFC
1122, 1989.

[BRZL07] Sumitha Bhandarkar, A. L. Narasimha Reddy, Yueping Zhang, and Dimitri
Loguinov. Emulating AQM from end hosts. In Proceedings of Proceed-
ings of the 2007 conference on Applications, technologies, architectures,
and protocols for computer communications (SIGCOMM ’07), volume 37,
pages 349–360, October 2007.

[BTI+02] Chadi Barakat, Patrick Thiran, Gianluca Iannaccone, Christophe Diot, and
Philippe Owezarski. A flow-based model for internet backbone traffic. In
Proceedings of the 2nd ACM SIGCOMM Workshop on Internet Measur-
ment (IMW ’02), pages 35–47, 2002.

[BVG96] J. Bolot and A. Vega-Garcia. Control mechanisms for packet audio in the
Internet. Proceedings of the 15th Annual Joint Conference of the IEEE
Computer Societies (INFOCOM ’96), 1:232–239, 1996.

[CAIa] CAIDA. http://www.caida.org. Last accessed: 2014.

[CAIb] CAIDA Internet Traces. http://www.caida.org/data/passive/. Last accessed:
2014.

[CB95] M.E. Crovella and A. Bestavros. Explaining world wide web traffic self-
similarity. Technical Report TR-95-015, Computer Science Department,
Boston University, 1995.

[CCG+04] Jin Cao, W. S. Cleveland, Yuan Gao, K. Jeffay, F. D. Smith, and M. Wei-
gle. Stochastic models for generating synthetic HTTP source traffic. Pro-
ceedings of the 23rd Annual Joint Conference of the IEEE Computer and
Communications Societies (INFOCOM ’04), 3:1546–1557, 2004.

[CDXL08] Yufeng Chen, Yabo Dong, Zhengtao Xiang, and Dongming Lu. A hybrid
simulating framework of TCP traffic at aggregated level. In 3rd Interna-
tional Conference on Communications and Networking in China (China-
Com ’08), pages 327–332, 2008.

117

[CSA00] Neal Cardwell, Stefan Savage, and Thomas Anderson. Modeling TCP la-
tency. In Proceedings of the 19th Annual Joint Conference of the IEEE
Computer and Communications Societies (INFOCOM ’00), volume 3,
pages 1724–1751, 2000.

[DJ91] P. B. Danzig and S. Jamin. Tcplib: A library of TCP/IP traffic charac-
teristics. Technical Report TR CS-SYS-91-01, USC Networking and Dis-
tributed Systemds Laboratory, 1991.

[DPR+08] A. Dainotti, A. Pescapè, P. Salvo Rossi, F. Palmieri, and G. Ventre. Internet
traffic modeling by means of hidden markov models. Computer Networks:
The International Journal of Computer and Telecommunications Network-
ing, 52:2645–2662, 2008.

[DPV09] A. Dainotti, A. Pescapè, and G. Ventre. A cascade architecture for DoS
attacks detection based on the wavelet transform. Journal of Computer
Security, 17:945–968, 2009.

[DVJ98] D. Daley and D. Vere-Jones. An introduction to the thory of point processes.
Springer-Verlag, 1998.

[ECT06] Vijay Erramilli, Mark Crovella, and Nina Taft. An independent-connection
model for traffic matrices. In Proceedings of the ACM SIGCOMM Internet
Measurement Conference (IMC), pages 251–256, 2006.

[ELL09] Miguel Erazo, Yue Li, and Jason Liu. SVEET! A scalable virtualized eval-
uation environment for TCP. In Proceedings of the 5th International Con-
ference on Testbeds and Research Infrastructures for the Development of
Networks and Communities. (TridentCom ’09), pages 1–10, 2009.

[FGHW99] Anja Feldmann, Anna Gilbert, Polly Huang, and Walter Willinger. Dynam-
ics of IP traffic: A study of the role of variability and the impact of control.
In Proceedings of the conference on Applications, technologies, architec-
tures, and protocols for computer communication (SIGCOMM ’99), vol-
ume 29, pages 301–313, 1999.

[FJ93] Sally Floyd and Van Jacobson. Random early detection gateways for con-
gestion avoidance. IEEE/ACM Transactions on Networking (TON), 1:397–
413, 1993.

[FK03] Sally Floyd and Eddie Kohler. Internet research needs better models. ACM
SIGCOMM Computer Communication Review, 33(1):29–34, 2003.

118

[Fla92] P. Flandrin. Wavelet analysis and synthesis of fractional brownian motion.
IEEE Transactions on Information Theory, 38(2):910–917, 1992.

[FML+03] C. Fraleigh, S. Moon, B. Lyles, C. Cotton, M. Khan, D. Moll, R. Rockell,
T. Seely, and S. C. Diot. Packet-level traffic measurements from the sprint
ip backbone. IEEE Network, 17(6):6–16, 2003.

[FP01] Sally Floyd and Vern Paxson. Difficulties in simulating the Internet.
IEEE/ACM Transactions on Networking (TON), 9(4):392–403, 2001.

[FPP+03] R. M. Fujimoto, K. Perumalla, A. Park, H. Wu, M. H. Ammar, and G. F.
Riley. Large-scale network simulation: How big? How fast? In Proceed-
ings of the 11th IEEE/ACM International Symposium on Modeling, Analy-
sis and Simulation of Computer Telecommunications Systems (MASCOTS
’03), pages 116–123, 2003.

[FTT02] Kensuke Fukuda, Hideki Takayasu, and Misako Takayasu. Spatial and tem-
poral behavior of congestion in Internet traffic. Fractals, 7:147–163, 2002.

[FW02] Qiang Fu and L. White. The impact of background traffic on TCP perfor-
mance over indirect and direct routing. In The 8th International Conference
on Communication Systems (ICCS ’02), volume 1, pages 594–598, 2002.

[GGT00] Y. Guo, W. Gong, and D. Towsley. Time-stepped hybrid simulation (TSHS)
for large scale networks. In Proceedings of the 19th Annual Joint Confer-
ence of the IEEE Computer and Communications Societies (INFOCOM
’00), volume 2, pages 441–450, 2000.

[GLT04] Y. Gu, Y. Liu, and D. Towsley. On integrating fluid models with packet
simulation. In Proceedings of the 23rd Annual Joint Conference of the
IEEE Computer and Communications Societies (INFOCOM ’04), vol-
ume 4, pages 2856–2866, 2004.

[GTC+09] Lei Guo, Enhua Tan, Songqing Chen, Xiaodong Zhang, and Yihong (Eric)
Zhao. Analyzing patterns of user content generation in online social net-
works. In Proceedings of the 15th ACM SIGKDD international confer-
ence on Knowledge discovery and data mining (KDD ’09), pages 369–378,
2009.

[HFH+09] Mark Hall, Eibe Frank, Geoffrey Holmes, Bernhard Pfahringer, Peter
Reutemann, and Ian H. Witten. The WEKA data mining software: An
update. ACM SIGKDD Explorations Newsletter, 11:10–18, June 2009.

119

[HGAS13] Dongsu Han, Robert Grandl, Aditya Akella, and Srinivasan Seshan. FCP:
A flexible transport framework for accommodating diversity. In Proceed-
ings of the ACM SIGCOMM 2013 conference on SIGCOMM, pages 135–
146, 2013.

[HKS99] H. Hlavacs, G. Kotsis, and C. Steinkellner. Traffic source modeling. Tech-
nical Report TR-99101, Institute of Applied computer Science and Infor-
mation Systems, University of Vienna, 1999.

[HLRX07] Sangtae Ha, Long Le, Injong Rhee, and Lisong Xu. Impact of background
traffic on performance of high-speed TCP variant protocols. Computer
Networks, 51(7):1748–1762, 2007.

[KCR08] Changhoon Kim, Mattew Caesar, and Jennifer Rexford. Floodless in SEAT-
TLE: A scalable ethernet architecture for large enterprises. In Proceedings
of the ACM SIGCOMM 2008 conference on Data communication, pages
3–14, 2008.

[KMM+11] Nupur Kothari, Ratul Mahajan, Todd Millstein, Ramesh Govindan, and
Madanlal Musuvathi. Finding protocol manipulation attacks. In Proceed-
ings of the ACM SIGCOMM 2011 conference, pages 26–37, 2011.

[KPF05] Thomas Karagiannis, Konstantina Papagiannaki, and Michalis Faloutsos.
BLINC: Multilevel traffic classification in the dark. In Proceedings of the
2005 conference on Applications, technologies, architectures, and proto-
cols for computer communications (SIGCOMM ’05), pages 229–240, 2005.

[KSCK96] G. Kesidis, A. Singh, D. Cheung, and W.W. Kwok. Feasibility of fluid-
driven simulation for ATM network. In Proceedings of the IEEE Global
Telecommunications Conference (GLOBECOM ’96), volume 3, pages
2013–2017, 1996.

[KSWU03] Cameron Kiddle, Rob Simmonds, Carey Williamson, and Brian Unger.
Hybrid packet/fluid flow network simulation. In Proceedings of the 17th
Workshop on Parallel and Distributed Simulation (PADS’03), pages 143–
152, 2003.

[KT04] Inas Khalifa and Ljiljana Trajkovic. An overview and comparison of ana-
lytical TCP models. In Proceedings of the 2004 International Symposium
on Circuits and Systems (ISCAS ’04)., volume 5, pages 469–472, 2004.

120

[LDK10] Myungjin Lee, Nick Duffield, and Ramana Rao Kompella. Not all mi-
croseconds are equal: fine-grained per-flow measurements with reference
latency interpolation. In Proceedings of the ACM SIGCOMM 2010 confer-
ence, pages 27–38, 2010.

[LFG+01] B Liu, D. R. Figueiredo, Y. Guo, J. kurose, and D. Towsley. A study of net-
works simulation efficiency: fluid simulation vs. packet-level simulation.
In Proceedings of the 20th Annual Joint Conference of the IEEE Computer
and Communications Societies (INFOCOM ’01), pages 1244–1253, 2001.

[Liu06] Jason Liu. Packet-level integration of fluid TCP models in real-time net-
work simulation. In Proceedings of the 38th Winter Simulation Conference
(WSC ’06), pages 2162–2169, 2006.

[LM05] Song Luo and Gerald A. Marin. Realistic internet traffic simulation through
mixture modeling and a case study. In Proceedings of the 37th Winter
Simulation Conference (WSC ’05), pages 2408–2416, 2005.

[LPC+04] Anukool Lakhina, Konstantina Papagiannaki, Mark Crovella, Christophe
Diot, and Kolaczyk. Structural analysis of network traffic flows. In Pro-
ceedings of the 2004 SIGMETRICS joint International Conference on Mea-
surement and Modeling of Computer Systems, pages 61–72, 2004.

[LPM+03] Yong Liu, Francesco Lo Presti, Vishal Misra, Don Towsley, and Yu Gu.
Fluid models and solutions for large-scale IP networks. In Proceedings
of the 2003 ACM SIGMETRICS international conference on Measurement
and modeling of computer systems, pages 91–101. ACM, 2003.

[LTWW94] Will E. Leland, Murad S. Taqqu, Walter Willinger, and Daniel V. Wilson.
On the self-similar nature of Ethernet traffic (extended version). IEEE/ACM
Transactions on Networking, 2(1):1–15, 1994.

[LYPN02] M. Liljenstam, Y. Yuan, B. J. Premore, and D. Nicol. A mixed abstraction
level simulation model of large-scale Internet worm infestations. In Pro-
ceedings of the 10th IEEE International Symposium on Modeling, Analysis,
and Simulation of Computer and Telecommunications Systems (MASCOTS
’02), pages 109–116, 2002.

[LYX10] Xin Liu, Xiaowei Yang, and Yong Xia. NetFence: preventing Internet
denial of service from inside out. In Proceedings of the ACM SIGCOMM
2010 conference, pages 255–266, 2010.

121

[Mac67] J. B. MacQueen. Some methods for classification and analysis of multi-
variate observations. In Proceedings of the 5th Berkeley Symposium on
Mathematical Statistics and Probability, volume 1, pages 281–297, 1967.

[MAW] MAWI Traffic Archive. http://tracer.csl.sony.co.jp/mawi/. Last accessed:
2014.

[MGG+05] Marco Ajmone Marsan, Michele Garetto, Paolo Giaccone, Emilio
Leonardi, Enrico Schiattarella, and Alessandro Tarello. Using partial dif-
ferential equations to model TCP mice and elephants in large IP networks.
IEEE/ACM Transactions on Networking (TON), 13(6):1289–1301, 2005.

[MGT00] Vishal Misra, Wei-Bo Gong, and Don Towsley. Fluid-based analysis of
a network of AQM routers supporting TCP flows with an application to
RED. In Proceedings of the conference on Applications, Technologies,
Architectures, and Protocols for Computer Communication (SIGCOMM
’00), pages 151–160, 2000.

[MGT03] Vishal Misra, Wei-Bo Gong, and Don Towsley. Fluid models and solutions
for large-scale IP networks. In Proceedings of the 2003 ACM SIGMETRICS
international conference on Measurement and Modeling of Computer Sys-
tems (SIGMETRICS ’03), pages 91–101, 2003.

[MHL+04] Anthony Mcgregor, Mark Hall, Perry Lorier, James Brunskill Anthony Mc-
gregor, Mark Hall, Perry Lorier, and James Brunskill. Flow clustering us-
ing machine learning techniques. In Proceedings of the 5th International
Workshop on Passive and Active Network Measurement (PAM ’04), pages
205–214, 2004.

[MLMB01] Alberto Medina, Anukool Lakhina, Ibrahim Matta, and John Byers.
BRITE: An approach to universal topology generation. In Proceedings
of the 9th International Symposium in Modeling, Analysis and Simulation
of Computer and Telecommunication Systems (MASCOTS ’01), page 346,
2001.

[MN68] Benoit B. Mandelbrot and John W. Van Ness. Fractional brownian motions,
fractional noises and applications. SIAM Review, 10(4):422–437, 1968.

[MSMO97] Matthew Mathis, Jeffrey Semke, Jamshid Mahdavi, and Teunis Ott. The
macroscopic behavior of the TCP congestion avoidance algorithm. ACM
Computer Communication Review, 27(3):67–82, 1997.

122

[MSZ02] Marco Mellia, Ion Stoica, and Hui Zhang. TCP model for short lived flows.
IEEE Communications Letters, 6:85–87, 2002.

[MTS+02] A. Medina, N. Taft, K. Salamatian, S. Bhattacharyya, and C. Diot. Traffic
matrix estimation: Existing techniques and new directions. In Proceedings
of the 2002 conference on Applications, technologies, architectures, and
protocols for computer communications (SIGCOMM ’02), pages 161–174,
2002.

[Nic01] David M. Nicol. Fluid simulation: Discrete event fluid modeling of TCP.
In Proceedings of the 33rd Winter Simulation Conference (WSC ’01), pages
1291–1299, 2001.

[Nic02] David Nicol. DARPA NMS baseline network topology.
http://www.ssfnet.org/Exchange/gallery/baseline/index.html, 2002.
Last accessed: 2014.

[NLA] Nlanr. http://www.nlanr.net. Last accessed: 2014.

[NST05] Antonio Nucci, Ashwin Sridharan, and Nina Taft. The problem of syn-
thetically generating IP traffic matrices: initial recommendations. ACM
SIGCOMM Computer Communication Review, 35:19–32, 7 2005.

[NY04] David M. Nicol and Guanhua Yan. Discrete event fluid modeling of back-
ground TCP traffic. ACM Transactions on Modeling and Computer Simu-
lation (TOMACS), 14(3):211–250, 2004.

[Pax94] Vern Paxon. Empirically derived analytic models of wide-area TCP con-
nections. IEEE/ACM Transactions on Networking (TON), 5(4):316–336,
1994.

[Pax97a] Vern Paxson. End-to-end Internet packet dynamics. ACM SIGCOMM Com-
puter Communication Review, 27(4):139–152, 1997.

[Pax97b] Vern Paxson. Fast, approximate synthesis of fractional gaussian noise for
generating self-similar network traffic. ACM SIGCOMM Computer Com-
munication Review, 27:5–18, 1997.

[PF94] Vern Paxon and Sally Floyd. Wide area traffic: The failure of Poisson
modeling. IEEE/ACM Transactions on Networking (TON), 3(3):226–244,
1994.

123

[PFTK00] Jitendra Padhye, Victor Firoiu, Donald F. Towsley, and James F. Kurose.
Modeling TCP Reno performance: A simple model and its empirical vali-
dation. IEEE/ACM Transactions on Networking (TON), 8:133–145, 2000.

[PG08] Maxim Podlesny and Sergey Gorinsky. RD network services: differenti-
ation through performance incentives. In Proceedings of the ACM SIG-
COMM 2008 conference on Data Communication (SIGCOMM ’08), pages
255–266, 2008.

[PKV07] Peter Pocta, Peter Kortis, and Martin Vaculik. Impact of background traffic
on speech quality in VoWLAN. Advances in Multimedia, 2007(1), 2007.

[PMH09] Pavlos Papageorge, Justin Mccann, and Michael Hicks. Passive aggres-
sive measurement with MGRP. In Proceedings of the ACM SIGCOMM
2009 Conference on Data communication (SIGCOMM ’09), pages 255–
266, 2009.

[PRI11] PRIME Research Group. Prime. http://www.primessf.net/, 2011.

[PTZD03] Konstantina Papagiannaki, Nina Taft, Zhi-Li Zhang, and Christophe Diot.
Long-term forecasting of internet backbone traffic: Observations and initial
models. In Proceedings of the 22nd Annual Joint Conference of the IEEE
Computer and Communications (INFOCOM ’03), pages 1178–1188, 2003.

[RaWS09] Jayashree Ravi and Zhifeng Yu adn Weisong Shi. A survey on dynamic
web content generation and delivery techniques. Journal of Network and
Computer Applications, 32(5):943–960, 2009.

[RFI02] Matei Ripeanu, Ian Foster, and Adriana Iamnitchi. Mapping the Gnutella
network: properties of large-scale peer-to-peer systems and implications
for system design. IEEE Internet Computing Special Issue on Peer-to-Peer
Networking, 6(1):50–57, 2002.

[RGK+02] Matthew Roughan, Albert Greenberg, Charles Kalmanek, Michael Rum-
sewicz, Jennifer Yates, and Yin Zhang. Experience in measuring backbone
traffic variability: models, metrics, measurements and meaning. In Pro-
ceedings of the 2nd ACM SIGCOMM Workshop on Internet Measurment
(IMW ’02), pages 91–92, 2002.

[RJF02] George F. Riley, Talal M. Jaafar, and Richard Fujimoto. Integrated fluid
and packet network simulations. In Proceedings of the IEEE/ACM Inter-
national Symposium on Modeling, Analysis and Simulation of Computer

124

Telecommunication Systems (MASCOTS ’02), pages 511–518. IEEE Com-
puter Society, 2002.

[RSSD04] Matthew Roughan, Subhabrata Sen, Oliver Spatscheck, and Nick Duffield.
Class-of-service mapping for QoS: A statistical signature-based approach
to IP traffic classification. In Proceedings of the 4th ACM SIGCOMM con-
ference on Internet measurement (IMC’04), pages 135–148, 2004.

[SB04] Joel Sommers and Paul Barford. Self-configuring network traffic genera-
tion. In Proceedings of the 4th ACM SIGCOMM conference on Internet
Measurement (IMC ’04), pages 68–81, 2004.

[SBE+11] Joel Sommers, Rhys Alistair Bowden, Brian Eriksson, Paul Barford,
Matthew Roughan, and Nick G. Duffield. Efficient network-wide flow
record generation. In Proceedings of the 30th Annual Joint Conference
of the IEEE Computer and Communications Societies (INFOCOM ’11),
pages 2363–2371, 2011.

[SCK03] W. Shi, E. Collins, and V. Karamcheti. Modeling object characteristics
of dynamic Web content. Journal of Parallel and Distributed Computing-
Scalable Web Services and Architecture, 63:963–980, 10 2003.

[SCK+07] Jinsheng Sun, Sammy Chan, King-Tim Ko, Guanrong Chen, and Moshe
Zukerman. Instability effects of two-way traffic in a TCP/AQM system.
Computer Communications, 30(10):2172–2179, 2007.

[SKV04] B. Sikdar, S. Kalyanaraman, and K. S. Vastola. Analytic models for
the latency and steady-state throughput of TCP Tahoe, Reno and SACK.
IEEE/ACM Transactions on Networking (TON), 11(6):959–971, 2004.

[SLN94] M. Stoksik, R. Lane, and D. Nguyen. Accurate synthesis of fractional
brownian motion using wavelets. Electronics Letters, 30(2):383–384,
1994.

[SMWA04] N. Spring, R. Mahajan, D. Wetherall, and T. Anderson. Measuring
ISP topologies with Rocketfuel. IEEE/ACM Transactions on Networking
(TON), 12(1):2–16, 2004.

[SYB04] Joel Sommers, Vinod Yegneswaran, and Paul Barford. A framework for
malicious workload generation. In Proceedings of the 4th ACM SIGCOMM
conference on Internet measurement (IMC ’04), pages 82–87, 2004.

125

[TMW97] Kevin Thompson, Gregory J. Miller, and Rick Wilder. Wide-area Internet
traffic patterns and characteristics. IEEE Network, 11:10–23, 1997.

[TR13] Paul Tune and Matthew Roughan. Internet traffic matrices: A primer. Re-
cent Advances in Networking, 1, 2013.

[VK11] V. Valgenti and M. S. Kim. Simulating content in traffic for benchmarking
intrusion detection systems. In Proceedings of the 4th International ICST
Conference on Simulation Tools and Techniques (SIMUTools ’11), pages
44–50, 2011.

[VK12] Victor C. Valgenti and Min Sik Kim. An application-level content gener-
ative model for network applications. In Proceedings of the 5th Interna-
tional ICST Conference on Simulation Tools and Techniques (SIMUTools
’12), pages 47–56, 2012.

[VV06] Kashi Venkatesh Vishwanath and Amin Vahdat. Realistic and responsive
network traffic generation. In Proceedings of the 2006 conference on Ap-
plications, technologies, architectures, and protocols for computer commu-
nications (SIGCOMM ’06), pages 111–122, 2006.

[VV08] Kashi Venkatesh Vishwanathvishwanath and Amin Vahdat. Evaluating dis-
tributed systems: Does background traffic matter? In Proceedings of 2008
Annual Technical Conference (ATC ’08), pages 227–240. USENIX Asso-
ciation, 2008.

[VYW+02] Amin Vahdat, Ken Yocum, Kevin Walsh, Priya Mahadevan, Dejan Kostic,
Jeff Chase, and David Becker. Scalability and accuracy in a large scale net-
work emulator. In Proceedings of the 5th Symposium on Operating Systems
Design and Implementation (OSDI’02), volume 36, pages 271–284, 2002.

[WAF99] Mengzhi Wang, Anastassia Ailamaki, and Christos Faloutsos. Capturing
the spatio-temporal behavior of real traffic data. Performance Evaluation,
49:23–31, 1999.

[WAHC+06] Michele C. Weigle, Prashanth Adurthi, Félix Hernández-Campos, Kevin
Jeffay, and F. Donelson Smith. Tmix: A tool for generating realistic TCP
application workloads in NS-2. ACM SIGCOMM Computer Communica-
tion Review, 36(3):67–76, 2006.

126

[WMK06] Songjie Wei, Jelena Mirkovic, and Ezra Kissel. Profiling and clustering
Internet hosts. In Proceedings of the 2006 International Conference on
Data Mining (DMIN ’06), pages 269–275, 2006.

[WWM+10] Ye Wang, Hao Wang, Ajay Mahimkar, Richard Alimi, Yin Zhang, Lili Qiu,
and Yang Richard Yang. R3: resilient routing reconfiguration. In Proceed-
ings of the ACM SIGCOMM 2010 conference, pages 291–302, 2010.

[XlZB05] Kuai Xu, Zhi li Zhang, and Supratik Bhattacharyya. Profiling Internet back-
bone traffic: Behavior models and applications. In Proceedings of the 2005
conference on Applications, technologies, architectures, and protocols for
computer communications (SIGCOMM ’05), pages 169–180, 2005.

[YM05] Jian Yuan and Kevin Mills. A cross-correlation based method for spatial-
temporal traffic analysis. Performance Evaluation, 61:163–180, 2005.

[YMKT99] M Yajnik, Sue Moon, J Kurose, and D Towsley. Measurement and mod-
elling of the temporal dependence in packet loss. In Proceedings of 18th
Annual Joint Conference of the IEEE Computer and Communications So-
cieties (INFOCOM ’99), volume 1, pages 345–352, 1999.

[ZGGR05] Yin Zhang, Zihui Ge, Albert Greenberg, and Matthew Roughan. Network
anomography. In Proceedings of the 5th ACM SIGCOMM conference on
Internet Measurement (IMC ’05), pages 317–330, 2005.

[ZNA03] Moshe Zukerman, Timothy D. Neame, and Ronald G. Addie. Internet traf-
fic modeling and future technology implications. In Proceedings of the
22nd Annual Joint Conference of the IEEE Computer and Communications
(INFOCOM ’03), volume 1, pages 587–596, 2003.

[ZRDG03] Yin Zhang, Matthew Roughan, Nick Duffield, and Albert Greenberg. Fast
accurate computation of large-scale IP traffic matrices from link loads.
In Proceedings of the 2003 ACM SIGMETRICS international conference
on Measurement and modeling of computer systems (SIGMETRICS ’03),
pages 206–217, 2003.

[ZRLD03] Y. Zhang, M. Roughan, C. Lund, and D. Donoho. An information-theoretic
approach to traffic matrix estimation. In Proceedings of the 2003 confer-
ence on Applications, technologies, architectures, and protocols for com-
puter communications (SIGCOMM ’03), pages 301–312, 2003.

127

[ZRLD05] Y. Zhang, M. Roughan, C. Lund, and D. Donoho. Estimating point-to-point
and point-to-multipoint traffic matrix: An information-theoretic approach.
IEEE/ACM Transactions on Networking (TON), 13:947–960, 2005.

[ZRWQ09] Y. Zhang, M. Roughan, W. Willinger, and L. Qui. Spatio-temporal com-
pressive sensing and internet traffic matrices. In Proceedings of the ACM
SIGCOMM 2009 conference on Data communication, pages 267–278,
2009.

128

VITA

TING LI

March 11, 1982 Born, Tianjin, China

2000–2004 B.S., Communication Engineering
Nankai University
Tianjin, China

2004–2007 M.S., Communication and Information System
Nankai University
Tianjin, China

2008–2014 Doctoral Candidate
Florida International University
Miami, Florida

PUBLICATIONS

T. Li, and J. Liu. Cluster-Based Spatio-Temporal Background Traffic Generation for
Network Simulation. Submitted to ACM Transactions on Modeling and Computer Simu-
lation (TOMACS).

J. Liu, Y. Liu, Z. Du, T. Li and J. Wang. GPU-Assisted Hybrid Network Traffic Model.
ACM SIGSIM Conference on Principles of Advanced Discrete Simulation (PADS’14).

T. Li, N. Van Vorst and J. Liu. A Fast Rate-Based TCP Traffic Model. SIMULATION:
Transactions of the Society for Modeling and Simulation International, Volume 89, Issue
4, Pages 466-480, April 2013.

M. Erazo, T. Li, J. Liu and S. Eidenbenz. Toward Comprehensive and Accurate Simula-
tion Performance Prediction of Parallel File Systems. The 42nd Annual IEEE/IFIP Inter-
national Conference on Dependable Systems and Networks (DSN), Pages 1-12, Boston,
Massachusetts, June 25-28, 2012.

T. Li, N. Van Vorst, R. Rong, and J. Liu. Simulation Studies of OpenFlow-Based In-
Network Caching Strategies. Proceedings of the 15th Communications and Networking
Simulation Symposium (CNS), Pages 50-55, Orlando, FL, March 26-29, 2012. The best
paper award.

N. Van Vorst, T. Li, and J. Liu, How Low Can You Go? Spherical Routing for Scalable
Network Simulations. The 19th Annual Meeting of the IEEE International Symposium
on Modeling, Analysis and Simulation of Computer and Telecommunication Systems
(MASCOTS), Pages 259-268, Singapore, July 25-27, 2011.

129

T. Li and J. Liu. A Fluid Background Traffic Model. IEEE International Conference on
Communications (ICC), Pages 1-6, Dresden, Germany, June 14-18, 2009.

130

	Florida International University
	FIU Digital Commons
	2-28-2014

	Background Traffic Modeling for Large-Scale Network Simulation
	Ting Li
	Recommended Citation

	Background Traffic Modeling for Large-Scale Network Simulation

