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ABSTRACT OF THE THESIS

Performance Analysis of Disk Mirroring Techniques

By

Taysir Abdalla

Florida International University, 1994

Miami, Florida

Professor Cyril Orji, Major Professor

Unequaled improvements in processor and I/O speeds make many applications

such as databases and operating systems to be increasingly I/O bound. Many

schemes such as disk caching and disk mirroring have been proposed to address

the problem. In this thesis we focus only on disk mirroring. In disk mirroring, a

logical disk image is maintained on two physical disks allowing a single disk

failure to be transparent to application programs. Although disk mirroring

improves data availability and reliability, it has two major drawbacks. First,

writes are expensive because both disks must be updated. Second, load

balancing during failure mode operation is poor because all requests are

serviced by the surviving disk. Distorted mirrors was proposed to address the

write problem and interleaved declustering to address the load balancing

problem. In this thesis we perform a comparative study of these two schemes

under various operating modes. In addition we also study traditional mirroring

to provide a common basis for comparison.
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CHAPTER 1

INTRODUCTION

1.1 The Pending I/O Crisis

Processor and memory speeds have been growing at a rapid pace. New

technology is making it possible to build faster processors. However, these

advances in technology have not equally affected all components of a computer

system thereby limiting the ability of computer systems to reach their maximum

potential. One of these components that has lagged behind is the I/O subsystem,

and in particular the disk subsystem. Currently, there exists a huge disparity

between I/O subsystem's performance and processor performance. While

advances in technology have resulted in the production of high speed

processors, the progress in the disk subsystem has been primarily in increased

capacity and lower cost. If this trend continues, the speed of the computer

system will be limited by the speed of the I/O subsystem. When subsystems of a

component experience unequal speed up, the slowest component becomes a

bottleneck to the system. According to Amdahl's law [1]

1
S_(1- f)+ f /k

Where

S = the effective speed up;

f = fraction of work in faster mode; and

k = speedup while in faster mode.

When all components of a system improve at the same rate (i.e., f = 1) then the

system speed will increase by k, while if only parts of a system improve (i.e., f <
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1), then the system speed up is increased by less than k.

For example, suppose that some applications spends 10% of their time

waiting for I/O. Then when the CPU speed is increased by a factor of 10 - then

Amdahl's law predicts that the system speed will only increase by a factor of 5,

wasting 50% of potential speedup. So it is essential that improvements be made

to the I/O subsystem to avoid the I/O becoming a bottleneck.

1.2 Proposed Solutions

Several schemes have been proposed to improve the I/O system performance

and reliability, including disk arrays [13] and mirroring [2,4]. An example of

disk arrays is RAID - Redundant Array of Inexpensive Disks [19]. RAID is a

taxonomy of data architectures. In [19], five levels of RAID were defined ranging

from disk mirroring as RAID level 1 and rotated parity as RAID level 5. For

completeness a non-redundant single disk system was later included as RAID

level 0. Figure 1 is an example of the rotated parity RAID. In a level 5 RAID, a

logical unit of data is stripped across N-1 disks in an N disk array. The parity of

these N-1 units is stored in the Nth disk. For example in figure 1, P1 in disk4 is

the parity information associated with data blocks 0, 1, 2, and 3 stored in disks 0,

1, 2 and 3 respectively. Assuming the unit of stripping is a block, then during

normal operation, reading a block requires access to only a single disk. Writing a

block, on the hand, requires 4 disk accesses: a read and a write access for the

block being written, plus a read and a write access for the parity block. When a

disk fails and data on the failed disk needs to be accessed, corresponding blocks

from all surviving disks must be read and exclusive-ORed to regenerate the lost

data. Since any request to the failed disk involves reading data from all survived

disks, the response time during a disk failure is much higher than when all disks

are operative [5,15].
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disk 0 disk 1 disk 2 disk 3 disk 4

0 1 2 3 P..

4 5 6 P2 7

8 910 11

12 P413 14 15

P5 16 17 18 19

Figure 1: Disk Arrays (RAID)

In mirroring [4], a logical disk image is maintained on more than one

physical disk. The physical disks that contain identical data are called the mirror

set. When one disk fails, the other disk can continue to be used. Unless both

disks where data is stored fail at the same time, the failure of one disk will be

transparent to users and no interruption of service will occur. Since a read

request can be serviced by any of the disks in the mirror set, a nearest free arm

scheduling algorithm can be used to schedule a read request. This reduces the

average seek distance of a read request in an n cylinder disk to about n/5

cylinders [3,4], in contrast to the average seek distance of about n/3 cylinders

using a single disk. Although disk mirroring improves data availability and

reliability, it has two major drawbacks:

1. Write requests are expensive. A write request updates both disks in

the mirror set, therefore both disks arms must seek to the same

location. Since the two disks arms are not synchronized, the seek cost

will be the maximum of the two random seeks.
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2. Poor load balance in the event of failure: When a disk fails, all

requests for data on the failed disk are redirected to the image disk,

potentially doubling the load on that disk. This could lead to a major

degradation in system performance.

Many schemes have been proposed to deal with the write and load

balancing problems in mirrored disks. By batching writes as proposed in [21],

disk mirroring with alternating deferred updates [20] achieves improved write

performance even with increasing write ratio. In [22,16] distorted and doubly

distorted mirrors were used to improve small write performance by up to a

factor of 2 over traditional mirroring. To address the load balancing problem

interleaved declustering [25] and chained declustering [11,6] were proposed. In

the next section we discuss three of these mirroring schemes, traditional

mirroring, distorted mirroring, and interleaved declustering. We consider these

three schemes to be representative of the various forms of mirroring.

1.3 Mirroring Techniques

In this section we will discuss traditional mirroring, interleaved declustering,

and distorted mirroring.

1.3.1 Traditional Mirroring

Disk mirroring [4], also called shadowing, is a technique for replicating 1 logical

disk across two physical disks. The two physical disks are exact mirrors of one

another. During normal operation, each disk in the mirror set can service a given

read request, potentially doubling throughput. However, since both disks

contain identical data, a write request must be serviced by both disks. Figure 2 is

an example of a mirror set of size 2. Each disk is an identical copy of another

disk; for example disks 0 and 4 form a pair, so also disks 1 and 5, 2 and 6, and 3

and 7.

4



When a disk in a mirrored system fails, the surviving disk in the set

assumes the workload of the failed disk until the failed disk is reconstructed in a

new disk. Disk reconstruction usually involves copying the survivor disk to a

new disk. Unless both disks in the mirror set fail at the same time, data will

always be available.

disk 0 disk 1 disk 2 disk 3
1 2 i

13 14

disk 4 disk 5 disk 6 disk 7

5

9 i0

13 14

Figure 2: Traditional Mirroring (Mirror set = 2)

Assuming that a second failure does not occur during the replacement

window, degraded mode performance depends heavily on the type of workload

experienced. In high read environments, the failure of a disk doubles the load on

its mirror. However, if most requests are write requests, degraded mode

performance may even be better than normal mode performance since the write

cost is now the cost of a single disk write.
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1.3.2 Distorted Mirroring

Distorted mirrors [22,23] is a mirroring technique that addresses the write

deficiency of traditional mirroring. Like traditional mirrors, it replicates 1 logical

disk across 2 disks in the mirror set. Unlike traditional mirrors, the organization

of data on the disks is not identical. Each disk in the set contains the same logical

blocks but in permuted order. Hence, the name distorted mirroring.

Each physical disk is divided into two unequal parts, a master partition

and a slightly larger slave partition. The two master partitions in a mirror set

form a logical disk; for example in Figure 3, MO u Mi = 1 logical disk. Each block

in a logical disk is mastered on one disk and slaved on the mirror. Blocks are

organized sequentially in the master partition and written arbitrarily in the slave

partition. In Figure 3 the blocks in MO are mastered and written sequentially on

disk 0, the same blocks are written arbitrarily in the slave partition SO of disk 1.

Disk 0 Disk 1

MO M1

Master

Slave

Figure 3: Distorted Mirroring

Distorted mirror uses a diskfill factor (DFF) to determine the amount of

free space in the slave partition. DFF is the proportion of the physical disk that
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holds valid data. For example , a DFF of 80% means that 40% of the physical

disk is used as master partition and 60% as slave partition. We sometimes use

the term backup factor to present the same information. DFF is defined as 100% -

backup factor.

During normal operation, single block requests can be serviced by the

master or the slave disk while sequential read requests are serviced by the

master disk. Write requests are serviced by both. Like traditional mirroring, a

surviving disk in a mirror set picks up the load when its partner disk fails.

However, unlike traditional mirroring, disk reconstruction is more complex and

time consuming since a disk-to-disk copy can not be performed.

The advantage of this scheme is that slave writes can be performed

without a disk seek and with reduced latency. So the cost of a write request is

bound by the seek and latency cost of the master disk. However this scheme has

two major drawbacks:

. Rebuilding a disk in case of a disk failure is a costly operation. Since

the disks in the mirror set are not identical, when a disk fails, a disk to

disk copy is not possible during recovery.

. The distortion map needed to support this scheme must be kept in

memory for this scheme to operate efficiently. Since large disks are

currently used, this map will require a large portion of main memory.

1.3.3 Interleaved Declustering

The Teradata database machine [25] uses interleaved declustering for fault

tolerance and load balancing in the event of a failure. In interleaved declustering

the mirror set is divided into clusters. Each cluster contains from 2 to 16 disks. A

relation is declustered among the disks within one or more clusters. Each cluster

7



contains two copies of each relation. One copy is designated the primary copy

and the other as backup copy. Figure 3 shows a relation R declustered across 8

disks (Ri represents the i-th primary fragment whereas ri represents the i-th

backup fragment). These 8 fragments are divided into 2 clusters, cluster 0, and

cluster 1. Each relation fragment Ri is partitioned into fragments which are

stored in the other disks in the same cluster. For example, rO.0, rO.1, rO.2

fragments of RO are stored in disks 1, 2, and 3 respectively.

During normal mode operations, read requests are serviced by the

primary fragments and write requests update both primary and the backup

fragments. When a node fails, an appropriate backup copy is promoted as a

primary copy and the workload of the failed disk is shared by the remaining

disks in the cluster. This reduces the chance of overload of a single disk; a

situation that is likely to occur in other mirrored schemes.

Cluster 0 Cluster 1
Node 0 1 2 3 4 5 6 7

Primary Copy RO R1 R2 R3 RO R1 R2 R3

rO.0 rO.1 rO.2 r4.0 r4.1 4.2

Backup Copy r1.2 r1.0 r1.1 r5.2 r5.0 r5.1

r2.1 r2.2 r2.0 r6.1 r6.2 r6.0

r3.0 r3.1 r3.2 r7.0 r7.1 r7.2

Figure 4: Interleaved Declustering (cluster size = 4)

1.4 Statement of the Problem

Parallelism and redundancy are two common techniques used in high
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performance systems to provide fault tolerant computing. However, because the

system is designed with these as primary factors, it is not clear how the system

performs when it loses this capability. For example, when a system is designed

to transfer data in parallel and it loses one of the transfer components, it is not

clear what the impact on the entire system will be. This issue has attracted a lot

of attention in the research community and we intend to pursue an aspect of it a

little further in this thesis.

When a disk fails in a system that uses replication, it is necessary to

provide immediate repair of the failed disk to avoid data loss. Usually, standby

disks are provided and the contents of the failed disk are rebuilt on the standby

disk from the redundant information on the surviving disks. The behavior of the

system during the rebuild process is dependent on the availability scheme being

used and the rebuild algorithm.

Many researchers [5,8,10,15] have studied the behavior of mirroring and

RAID-5 during failure mode. We briefly overview some of these studies in the

next section.

1.5 Related Work

In [14], three operating modes were defined for drives in a disk array. These

modes were used as a basis for evaluating the performance of drives in a RAID-5

array. We use similar modes for evaluating the three mirrored schemes. These

are normal, degraded, and rebuild operating modes. The system operates in normal

mode when all disks are available. When a disk has failed and no attempt is

being made to reconstruct it, it is said to be in degraded mode. During degraded

mode any request to the failed disk is serviced by the backup disk. In order to

rebuild the failed disk the system moves to the rebuild mode. If a second drive

fails while the system is in degraded mode or before the failed drive is fully
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reconstructed in the rebuild mode, the system will lose data.

Studies have been performed to evaluate techniques for reconstructing a

failed disk in some of these high availability techniques. Using analytical model,

Munz and Liu [15] developed a baseline copy algorithm for rebuilding a failed

disk in RAID-5 array. The baseline copy algorithm is similar to disk-to-disk copy

algorithm except that in this case, the survivor disks are read and their data used

to regenerate data in the failed disk. All read requests are directed to the

survivor disk. If a read request maps to the failed disk, the data is regenerated

from the survivor disks. There are two enhancements to the baseline copy

algorithm- redirection of reads, and piggybacking. Redirection of reads allows read

requests to be redirected to the replacement if the data has been reconstructed.

With piggybacking, if data is regenerated to satisfy a read request that maps to a

failed disk, the data is also written to the replacement disk so it does not have to

be regenerated again.

The studies of Muntz and Lui were theoretical. However, they were

sound and formed a basis for subsequent work in this area. For example,

Holland and Gibson [8] extended these algorithms and performed simulation

studies to verify them. Using Simulation, they were able to detect some

nonintuitive behavior of some of the algorithms. For example, their simulation

showed that redirection of reads and piggybacking may not always be beneficial

especially when the survivor disks are not saturated.

In [9], the affect of the rebuild unit on rebuild time and response time was

investigated. Three rebuild units - block, track, and cylinder were studied and

their impact on rebuild time and response time of incoming application requests

investigated. Using a block as the rebuild unit ensures a small delay for

incoming application requests and minimally raises their response times. The

10



drawback is an increase in the time to rebuild the failed disk. On the other hand

using a cylinder as a rebuilding unit decreases the time to rebuild a disk while

increasing response time. Hou, Menon and Pat concluded that a track rebuild

unit provides the best compromise between response time and rebuild time.

There have been other studies in rebuilding disk arrays. Menon and

Kasson studied various sparing alternatives in disk arrays. Their study which

concentrated on small disk subsystems (fewer than 32 disks) concluded that

distributed sparing offers major advantages over dedicated sparing in normal,

degraded, and rebuild modes operation [14]. In a similar, but different study,

Chandy and Reddy [5] using simulations, found that parity sparing with block

designs, which was not considered in [14], has better characteristics among the

alternatives they investigated.

Most of the studies in the literature have concentrated on failure

evaluations of RAID-5 arrays. However, in [10], Hou and Patt evaluated RAID-5

arrays and similar capacity mirrored arrays. No new algorithms were developed

in this study, rather, RAID-5 and traditional mirroring organizations were

evaluated on the basis of the algorithms developed in [15,8].

1.6 Thesis Objective

Most of the studies we looked at in the previous section focused on RAID-5 or

rotated parity RAID. Those studies that have looked at mirroring assumed a

traditional mirroring scheme. Since other mirroring schemes have different

organizations than traditional mirroring, results from traditional mirroring

studies may not necessarily hold for other mirroring schemes.

In this thesis we present a detailed study of the behavior of various

mirroring schemes under various operating modes. Specifically, using

simulation, we

11



" Evaluate the relative performance of three mirroring schemes under

normal, degraded, and rebuild mode. The three schemes are traditional

mirroring, distorted mirroring and interleaved declustering. Traditional

mirroring is considered the base mirroring scheme and provides a basis

for comparative evaluation against other schemes. Distorted mirroring is

chosen as an example of a scheme that addresses the write problem of

traditional mirroring. We use Interleaved declustering as an example of a

scheme that addresses the load balancing problem.

. Study the tradeoffs between availability and performance as they relate to

the three schemes.

. Investigate alternative algorithms to quickly reconstruct a failed disk and

hence return the system to fully operational mode.

12



CHAPTER 2

THE SIMULATOR

2.1 Simulation Model

We wrote a simulator to evaluate the expected performance of traditional

mirroring, interleaved declustering and distorted mirroring under various

operating modes. We assumed an array of 16 disks; thus for the traditional and

distorted mirrors, there are 8 mirror sets, with 2 disks in each set. The two disks

contain identical data as described in chapter 1. For the distorted mirror, 80%

diskfull factor was used. The implication of this is that in the distorted mirror,

the logical disk is slightly smaller than the logical disk in the traditional mirror.

However, we considered the effect of this to be minimal and is not considered

any further in the experiments. For the interleaved declustering, we partitioned

the 16 disks into 2 clusters (clusters 0 and 1), with a cluster size (C) of 8 disks.

Data distribution in the 8 disks is as described in chapter 1. One-half of each

physical disk contains primary data blocks, and the other half contains backup

data blocks. The primary data blocks of each disk are logically divided into 7 (or

C - 1), and the parts are uniquely placed in the backup partitions of the other 7

disks in the same cluster. The logical block distribution in cluster 0 is shown in

Table 1. For example, DO represents 50% of the data blocks in disk 0 and

represents the primary partition of this disk. DO is further divided into dO.i

fragments (0 i 6), and these fragments are placed in the remaining disks in

the cluster. Note also that the remaining space in disk0 contains fragments of the

primary partitions of the other disks as backup copies.

The parameters of the disk drives modeled in the experiments are shown

in Table 2. The parameters are identical to those of IBM 0661 Model 370 disk
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____ Disk 0 Disk 1 Disk 2 Disk 3 Disk 4 Disk 5 Disk 6 Disk 7

Primary DO D1 D2 D3 D4 D5 D6 D7

- d0.0 d0.1 d0.2 d0.3 d0.4 d0.5 d0.6

d1.6 - d1.0 d1.1 d1.2 d1.3 d1.4 d1.5

d2.5 d2.6 - d2.0 d2.1 d2.2 d2.3 d2.4

Backup d3.4 d3.5 d3.6 - d3.0 d3.1 d3.2 d3.3

d4.3 d4.4 d4.5 d4.6 - d4.0 d4.1 d4.2

d5.2 d5.3 d5.4 d5.5 d5.6 - d5.0 d5.1

d6.1 d6.2 d6.3 d6.4 d6.5 d6.6 - d6.0

d7.0 d7.1 d7.2 d7.3 d7.4 d7.5 d7.6 -

Table 1: Interleaved Declustering: A Cluster of 8 Disks Each disk holds primary

and backup blocks. The backup blocks hold copies of the fragments of primary blocks in

the other disk.
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Disk Parameters No of cylinders 949

Track per cylinder 14

Blocks per track 6

Block size 4096

Average seek 12.50 ms

Rotational speed 4318 RPM

Seek cost function 2.0 + 0.01(distance) + 0.46 distance

Latency cost function uniform

Workload Parameters Request Size 4 KB

Read Ratio 0%, 50%, 75%, 100%

Request Distribution Uniform over all disk blocks

I/O Rate 100 to 350 per second

Table 2: Disk and Workload Parameters

drive. Also shown in Table 2 is a summary of the workload parameters used in

the experiments. The system may experience two types of workloads depending

on its operating mode. Under normal and degraded operating modes, all

requests are assumed to be initiated by application programs. The workload is

modeled as a synthetically generated stream of disk requests characterized by its

type (whether a read or a write). Requests are generated uniformly across the

disk space and each request accesses 4KB (one block) of data. Other studies have
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used 75% read, 25% write as a representative mix for most on-line transaction

processing (OLTP) applications. We also studied this mix, but in addition, we

studied an all write workload (0% read), an all read workload (100% read) and a

workload with an equal mix of read and write requests (50% read). We varied

the I/O rate to the 16 disks from 100 I/Os to 350 I/Os per second.

When the system is in rebuild mode, in addition to the normal application

requests, the system initiates rebuild requests. A rebuild request triggers a disk

read on the surviving disk(s) and a corresponding disk write on the replacement

disk. In all the schemes, requests generated by the application are given higher

priority over rebuild requests. A rebuild request is serviced if and only if there is

no outstanding application request; however, once started, a rebuild request

cannot be preempted by an application request.

2.2 Rebuild Algorithms

In this section we describe the algorithms used during the rebuild phase in each

mirroring scheme.

2.2.1 Traditional Mirror

The rebuild algorithm for traditional mirror is similar to the baseline copy

algorithm in [15]. However, the algorithm does not perform a sequential scan of

the disk; instead, whenever there is no outstanding application request, a rebuild

request is initiated for the '"nearest" unrebuilt unit in the survivor disk. This

policy minimizes arm motion in the survivor disk but could cause a substantial

disk seek in the replacement disk. The reason is that the disk arms in the two

disks are randomly positioned since all incoming application read requests are

serviced by only the survivor disk. A variation of this algorithm would initiate

the rebuild on the "nearest" unrebuilt unit in the replacement disk, thereby

potentially increasing arm motion in the survivor disk. We preferred not to
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explore this alternative since the survivor disk is already highly loaded by

normal application and rebuild requests.

In our experiments, three rebuild units were considered - block, track

and cylinder rebuild units. Each unit defines the amount of data atomically read

from the survivor disk and atomically written to the replacement disk. For

example, if a track rebuild unit is in effect, a read request is initiated for the

"nearest" unrebuilt track on the survivor disk. In an enhancement to this

algorithm, an application read request could be redirected to the replacement

disk if the requested data has been reconstructed. If redirection is in effect, the

choice of disk to service the request is made as in the normal mode of operation.

The preferred choice is to schedule the request on an idle disk. If both disks are

busy, a minimum service time model is used. Ties are randomly broken. If an

application requests a write, the block is written to both disks and is considered

reconstructed regardless of whether it was previously reconstructed or not.

2.2.2 Distorted Mirror

In distorted mirror a logical block has a fixed address on the master disk and a

floating address on the slave disk. Blocks mastered on one disk are slaved on the

mirror; consequently, a disk-to-disk copy algorithm cannot be used to

reconstruct a failed disk. As in the other schemes, three rebuild units - block,

track and cylinder were considered. With block rebuild unit, the algorithm

simulated is exactly identical to the traditional mirror algorithm.

But the situation is different with track and cylinder rebuild units. With

these rebuild units, we divided the reconstruction process into two phases. In the

first phase, we reconstruct the slave partition of the replacement disk, and

reconstruct the master partition in the second phase. This order of reconstruction

has significant impact on system performance. The slave partition can be
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speedily reconstructed in less than 20% of the total reconstruction time. The

reason for this will be obvious shortly; but given that 50% of the replacement

disk blocks are reconstructed in such a short time, they can be made available for

servicing incoming application requests.

First Phase: Reconstructing Slave Partition of Replacement Disk

Slave partition reconstruction involves reading data from the master partition of

the survivor disk, and writing the data anywhere in the slave partition of the

replacement disk. Since the replacement disk is initially empty, writing blocks

anywhere in the slave partition incurs minimum cost because free blocks are

easily located. Moreover, enough contiguous free blocks can be located (most of

the time) to allow many sequential transfers. In addition, since data is

sequentially written in the master partition, reading the survivor disk and

writing the replacement disk can proceed at sequential access rate in this phase.

This is why we reconstruct the slave partition before the master partition.

Second Phase: Reconstructing Master Partition of Replacement Disk

Master partition reconstruction involves reading data from slave partition of the

survivor disk, and writing the data to the master partition of the replacement

disk. Fetching slave blocks that map to contiguous addresses in the master

partition requires random disk accesses on the slave disk. Assume cylinder

rebuild unit is in effect; the first step in the rebuild process is to select the

cylinder to reconstruct. The obvious choice is to choose a cylinder that minimizes

the write cost on the replacement disk'. The blocks are randomly fetched from

the survivor disk and sequentially written to the replacement disk. The master

partition reconstruction is thus dominated by the random disk accesses to read

'Due to the random placement of blocks in the slave partition of the survivor

disk, the cost of fetching the blocks is independent of the cylinder chosen
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the blocks from the survivor disk.

Some points are in order here. In each experiment, we used a buffer that

holds the number of blocks in the rebuild unit. For example, a buffer that holds

just a block is used when the rebuild unit is block. An alternative that could

improve master partition reconstruction time is to use write buffering techniques

[21]. In this technique, a large buffer is used to hold blocks and the disk transfer

is delayed until enough blocks have accumulated in the buffer. Blocks that map

to "nearby" locations on disk can be written together. We did not explore this

alternative in the current study. Another alternative which we also did not

explore is the use of two replacement disks [20]. In this technique, data is copied

to two replacement disks and at the end of reconstruction, the survivor disk and

failed disk are returned to the system as spares. The advantage of this technique

is that during reconstruction, all incoming write requests are directed to the two

replacement disks and the survivor disk is placed in read-only mode relieving it

of all write operations.

2.2.3 Interleaved Declustering

The rebuild algorithm for interleaved declustering is similar to that of traditional

mirroring. Because reconstructing data on the failed disk involves all the other

disks in the same cluster, choosing the disk to fetch data from, at any point

during the reconstruction process can impact performance. In our experiments,

we considered two disk selection options. In the first option, the survivor disk in

the cluster that minimizes the fetch time for a unit of unrebuilt data is selected.

This scheme leads to a minimal increase in disk utilization for the survivor disks,

and also to a minimal increase in response time for incoming application

requests. In the second option, we aim to minimize the (seek) cost of writing

data to the replacement disk. We select a survivor disk that helps us achieve this
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objective. This second option ensures that the replacement disk performs

optimally. The result is that rebuild time is shorter than in the first option.

Results reported in this thesis were obtained using the first option. Block, track

and cylinder rebuild units are also investigated.
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CHAPTER 3

SIMULATION RESULTS

3.1 Performance Metrics

In this chapter we present results of our experiments. The results are presented

in three sections. In Section 3.2 we present results of the systems when operating

in normal mode. In Section 3.3 we present degraded mode performance and

present rebuild mode performance in Section 3.4. We present results for various

read/write ratios. However, our discussion will focus on results obtained for

75% read workload, which is typical of transaction processing environments. In

Section 3.5 we briefly discuss some results representative of other read/write

ratios.

The performance metrics used in our studies depend on the operating

mode being investigated. Under normal and degraded operating modes, the

response time of application read requests was of interest. Under rebuild mode,

in addition to the response time of application read requests, we also collected

data on the time taken to rebuild a failed disk (rebuild time). We note that all

response time data are given as 90th percentile response time for application

read requests.

3.2 Normal Mode

Figures 5 and 6 show the relative performance of the three schemes with respect

to response time of read requests. At low I/O rates, the three schemes have

comparable performance. However, as I/O rate increases, the performance of

traditional mirroring degrades more dramatically than the performance of the

other schemes. This is because of the write requests in the request stream. Since

writes are expensive in traditional mirror, every write request potentially adds
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Figure 5: 90th Percentile Read Response Time vs I/O Rate (50% read: Normal mode)
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Figure 6: 90th Percentile Read Response Time vs I/O Rate (75% read: Normal mode)
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to the queuing time of pending requests. In Figure 6 at 250 I/Os per second, the

90th percentile read response time is 32.12 ms for interleaved declustering. The

corresponding figures for traditional and distorted mirrors are 41.65 ms and

33.61 ms respectively.

Figure 7 shows the disk's utilization of the three schemes at 75% read

workload. Distorted mirror has the lowest utilization. This is due to the ability of

Distorted mirror to perform write requests with minimum seek and latency cost.

At 100% read (0% write) workload, the disk's utilization of the three schemes are

identical (graph not shown). In Figure 7 at 250 I/Os per second, the disk's

utilization is 39.12% for interleaved declustering. The corresponding figures for

traditional and distorted mirrors are 40.33% and 31.20% respectively.

100 traditional
90 *---- distorted

80 --- interleaved

70

Disk 60
Util. 50

(%) 40 -

30 -

20

10 --

0

0 100 200 300 400

I/O rate (blocks per second)

Figure 7: Disk Utilization vs I/O Rate (75% read: Normal mode)
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3.3 Degraded Mode

Figures 8 and 9 show the response time of all application read requests when the

system is in degraded mode (50% and 75% read workload). The performance of

distorted mirror appears similar to that of interleaved declustering. In general,

we observed that with some writes in the request stream, traditional mirror is

unable to sustain high I/O rates; hence the sharp decline in performance for

traditional mirror in Figures 8 and 9 as the I/O rate was increased. However, as

the read workload increases, the performance of distorted and tradtional mirrors

becomes similar. For example, at 250 I/Os per second with 100% read, the

response time for application requests in interleaved declustering is 30.92 ms.

The corresponding figures for traditional and distorted mirrors are 41.06 ms and

37.13 ms respectively.

200
traditional

180-
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160-0th.160 - interleaved
90th 140
pctl. 120
read 100
res.

time 80
(ms) 60

20

0

0 100 200 300 400

I/O rate (blocks per second)

Figure 8: 90th Percentile Read Response Time vs I/O Rate (50% read: The system is in

degraded mode and response time is measured over all the application read requests. This
includes requests that map to the mirror set with a failed disk)
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In Figures 10 and 11 we isolate and show the response time for requests

that map to the set with a failed disk. The superior performance of interleaved

declustering in degraded mode becomes more obvious. In Figure 11 at 250 I/Os

per second, with the system in degraded mode, the response time in interleaved

declustering increases by about 7.3% over normal mode response time. Increases

were also observed in the other schemes. For distorted and traditional mirrors

these were 148.5% and 113.2% respectively. These numbers demonstrate the

ability of interleaved declustering to spread the workload of a failed disk over

many disks.
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160-
.160 - interleaved90th 140
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read 100
res.

time 80
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40

20

0

0 100 200 300 400
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Figure 9: 90th Percentile Read Response Time vs I/O Rate (750% read: The system is in

degraded mode and response time is measured over all the application read requests. This
includes requests that map to the mirror set with a failed disk)
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Figure 10: 90th Percentile Read Response Time vs I/O Rate (50% read: The system is
in degraded mode and response time is measured over only those application read
requests that map to the mirror set with a failed disk)
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Figure 11: 90th Percentile Read Response Time vs I/O Rate (75% read: The system is in
degraded mode and response time is measured over only those application read requests
that map to the mirror set with a failed disk)
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Figure 12: 90th Percentile Read Response Time vs I/O Rate (50% read: The system is in

rebuild mode and response time is measured over all the application read requests. This

includes requests that map to the mirror set with a failed disk. The rebuild unit is block)

3.4 Rebuild Mode

We use two metrics for evaluating performance in rebuild mode - read

response time and rebuild time. First we consider block rebuild unit, then track

and cylinder rebuild units. We focus on results for 75% read (25% write)

workload.

Figures 12 and 13 show the response time of read requests while the

system is in rebuild mode. The curves in Figure 13 show that over the range of

I/Os simulated, traditional and distorted mirror have comparable performance.

The graph shows rapid saturation of traditional and distorted mirror beyond

about 300 I/Os per second. At 250 I/Os per second, there is a 12.0% increase

over normal mode response time in interleaved declustering. Corresponding
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Figure 13: 90th Percentile Read Response Time vs I/O Rate (75% read: The system is in
rebuild mode and response time is measured over all the application read requests. This
includes requests that map to the mirror set with a failed disk. The rebuild unit is block)
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Figure 14: 90th Percentile Read Response Time vs I/O Rate (50% read: The system is in

rebuild mode and response time is measured over only those application read requests that
map to the mirror set with a failed disk. The rebuild unit is block)
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Figure 15: 90th Percentile Read Response Time vs I/O Rate (75% read: The system is in

rebuild mode and response time is measured over only those application read requests that
map to the mirror set with a failed disk. The rebuild unit is block)

increases for distorted and traditional mirrors are 30.9% and 17.88%

respectively. However, if we consider only requests that map to the failed set,

the response time increases for interleaved declustering, distorted mirror and

traditional mirror are 19.3%, 167.8% and 119.2% respectively (Figures 14 and 15).

This again demonstrates the ability of interleaved declustering to balance its

load in failure mode.

Block rebuild time is graphed in Figure 16. Over the range of I/Os

simulated, interleaved declustering has the best rebuild time. For the three

schemes, an increase in I/O rate means reduced bandwidth for the rebuild

process thereby increasing rebuild time.

29



100-
traditional

90-
-+- distorted

80-
80- interleaved

70

Rebuild 60
Time 50
(Minutes) 40 -

30 -4

0

0 100 200 300 400

I/O rate (blocks per second)

Figure 16: Rebuild Time in minutes vs I/O Rate (75% read: Total time to rebuild failed

disk on a replacement disk using block rebuild unit)
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Figure 17: 90th Percentile Read Response Time vs I/O Rate (50% read: The system is in

rebuild mode and response time is measured over all the application read requests. This
includes requests that map to the mirror set with a failed disk. The rebuild unit is track)
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Figure 18: 90th Percentile Read Response Time vs I/O Rate (75% read: The system is in

rebuild mode and response time is measured over all the application read requests. This

includes requests that map to the mirror set with a failed disk. The rebuild unit is track)
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Figure 19: 90th Percentile Read Response Time vs I/O Rate (50% read: The system is in

rebuild mode and response time is measured over only those application read requests that

map to the mirror set with a failed disk. The rebuild unit is track)
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Figure 20: 90th Percentile Read Response Time vs I/O Rate (75% read: The system is in

rebuild mode and response time is measured over only those application read requests that

map to the mirror set with a failed disk. The rebuild unit is track)

The graphs for track rebuild unit are shown in Figures 17, 18, 19, 20 and

21 while the graphs for the cylinder rebuild unit are shown in Figures 22, 23, 24,

25 and 26. The two sets of graphs have identical patterns. Considering the

response time curves (Figures 18 and 23), we note that at low I/O rates (below

300 I/Os per second), distorted mirror has the worst performance. This is due to

the random disk accesses to rebuild a track or cylinder in the master partition of

the replacement disk (see Chapter 2, Section 2.2.2). Our results show that, if

response time of application requests is a major consideration, track and cylinder

rebuild units are inappropriate in distorted mirror. Interleaved declustering has

the best performance of the three schemes. Traditional mirroring has worst
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Figure 21: Rebuild Time in minutes vs I/O Rate (75% read: Total time to rebuild failed

disk on a replacement disk using track rebuild unit)
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Figure 22: 90th Percentile Read Response Time vs I/O Rate (50% read: The system is in

rebuild mode and response time is measured over all the application read requests. This
includes requests that map to the mirror set with a failed disk. The rebuild unit is cylinder)
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Figure 23: 90th Percentile Read Response Time vs I/O Rate (75% read: The system is in

rebuild mode and response time is measured over all the application read requests. This
includes requests that map to the mirror set with a failed disk. The rebuild unit is cylinder)
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Figure 24: 90th Percentile Read Response Time vs I/O Rate (50% read: The system is in

rebuild mode and response time is measured over only those application read requests that
map to the mirror set with a failed disk. The rebuild unit is cylinder)
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Figure 25: 90th Percentile Read Response Time vs I/O Rate (75% read: The system is in

rebuild mode and response time is measured over only those application read requests that
map to the mirror set with a failed disk. The rebuild unit is cylinder)
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Figure 26: Rebuild Time in minutes vs I/O Rate (75% read: Total time to rebuild failed

disk on a replacement disk using cylinder rebuild unit)
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performance with high I/O rates.

The rebuild time graphs (Figures 21 and 26) are identical. For almost the

entire range of I/O rates simulated, distorted mirror has the worst rebuild time

for the same reasons explained above. Interleaved declustering rebuilds fastest.

Traditional mirror has reasonable rebuild time at low I/O rates and starts to

degrade as I/O rates increase.

In Tables 3 and 4 we summarize the response and rebuild time data for

the three schemes. Table 3 shows the results with no redirection of read

enhancement to any of the algorithms, while Table 4 shows corresponding

results when read redirection is enabled. In general, we conclude from the two

tables that interleaved declustering has the best performance of the three

schemes. For example, from Table 3, using cylinder rebuild unit, there is only a

19.9% increase in response time for requests that map to the set with a failed disk

when compared to the 90th percentile response time for all application read

requests. This compares with 161.7% in traditional mirror and 73.4% in distorted

mirror.

But it is interesting to compare the two tables. Two points can be made.

The first is that distorted mirror benefits most from redirection of read. Since the

slave partition can be rebuilt in a relatively short time, there is benefit in making

the blocks available for servicing incoming application requests. The second

point is similar to the findings of Holland and Gibson [8]; all algorithms do not

benefit from redirection of reads. Interleaved declustering was able to balance its

workload such that the disks were never saturated, hence there was no need to

redirect read requests.

When the tradeoffs between response and rebuild times are considered,

we arrive at conclusions similar to those in [10]. Using block rebuild unit
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Traditional Distorted Interleaved

Mirrorinz Mirrorin Declustering

block track c block track c block track cyl

90% response time (ms) 42.01 44.60 83.00 39.00 95.00 279.35 33.38 33.02 34.59

max. response time (ms) 68.4 75.50 217.23 70.80 149.23 484.61 34.81 34.63 41.50

rebuild time (minutes) 17.7 7.4 7.1 20.50 15.40 13.50 15.5 4.97 3.83

Table 3: Response and Rebuild Time Data at 200 I/Os Per Second (75% read. The
system is operating in rebuild mode. 90% response time is over all application read
requests. Max. response is 90% response time over requests that map to the set with the

failed disk. Rebuild time is wall clock time in minutes to rebuild a failed disk. There was

no redirection of reads during the rebuild mode; i.e. the replacement disk did not service

any incoming application request. The capacity of each disk is approximately 320
mbytes.)

Traditional Distorted Interleaved

Mirroring Mirrorin Declusterin

block track cL block track cL block track cL.

90% response time (ms) 39.10 41.50 74.98 35.26 41.28 66.65 32.80 32.76 34.14

max. response time (ms) 53.77 60.91 210.88 51.07 112.81 393.78 36.50 36.72 47.60

rebuild time (minutes) 16.38 6.81 5.57 19.17 15.49 11.82 16.28 5.2 3.97

Table 4: Response and Rebuild Time Data at 200 I/Os Per Second (75% read. The

system is operating in rebuild mode. 90% response time is over all application read

requests. Max. response is 90% response time over requests that map to the set with the

failed disk. Rebuild time is wall clock time in minutes to rebuild a failed disk. Read

requests are redirected to the replacement disk whenever it is possible and efficient to do

so. The capacity of each disk is approximately 320 mbytes.)
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Figure 27: Rebuild Time in minutes vs Read Ratio (I/O rate: 200 per second. Total time

to rebuild failed disk on a replacement disk using block rebuild unit)

minimally increases the response time of application read requests. This increase

is significant when cylinder rebuild is used. However, cylinder rebuild offers the

best performance if rebuild time is the primary consideration. Our experiments

show that track rebuild is a good compromise that balances response time and

rebuild time demands.

3.5 Other Read/Write Ratios

In this section, we briefly show results that reflect behavior of the schemes at

other read/write ratios. We discuss rebuild time data using block, track, and

cylinder rebuild unit. We show only data at 200 and 300 I/Os per second.

Figures 27, 28 and 29 show the rebuild time at 200 I/Os per second, while
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Figure 28: Rebuild Time in minutes vs Read Ratio (I/O rate: 200 per second. Total time

to rebuild failed disk on a replacement disk using track rebuild unit)
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Figure 29: Rebuild Time in minutes vs Read Ratio (I/O rate: 200 per second. Total time

to rebuild failed disk on a replacement disk using cylinder rebuild unit)

39



60 traditional

50 --- distorted
--------interleaved

40
Rebuild
Time 30
(M inutes) ----- -------------

20

10

0

0 25 50 75 100

Read Percent

Figure 30: Rebuild Time in minutes vs Read Ratio (I/O rate: 300 per second. Total time

to rebuild failed disk on a replacement disk using block rebuild unit)

Figures 30, 31 and 32 show the rebuild time at 300 I/Os per second. The two sets

of graphs illustrate two different patterns for the three schemes; traditional and

distorted mirrors have identical behavior while interleaved declustering has a

different (opposite) behavior.

The behavior of traditional and distorted mirrors is intuitive. An increase

in read ratio will place high demands on the bandwidth of the survivor disk

since the disk services all read requests. This degrades rebuild performance.

Since interleaved declustering distributes the workload of the failed disk over

many disks, we expected its performance to be relatively better than the

performance of traditional and distorted mirrors. It was, however,
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Figure 31: Rebuild Time in minutes vs Read Ratio (I/O rate: 300 per second. Total time

to rebuild failed disk on a replacement disk using track rebuild unit)
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Figure 32: Rebuild Time in minutes vs Read Ratio (I/O rate: 300 per second. Total time

to rebuild failed disk on a replacement disk using cylinder rebuild unit)
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not immediately clear why the performance of interleaved declustering was

worse than corresponding performance for traditional and distorted mirrors at

high write (low read) ratios. For example, with 0% read (100% write) and using

a block rebuild unit at 200 I/Os per second, the rebuild time in interleaved

declustering is 29.21 minutes; in traditional mirror it is 13.50 minutes and in

distorted mirror it is 18.71 minutes.

The reason for this behavior can be explained as follows. 16 disks were

used in the experiment. For traditional and distorted mirrors, this is equivalent

to 8 mirror sets. Thus there is a 1:8 chance that a write request will map to the set

with a replacement drive. While the request is being serviced, the drive is

unavailable for rebuild operations. However, the 16 disks are divided into 2

clusters in interleaved declustering. Thus there is a 1:2 chance that a write

request will map to the cluster with the replacement drive, increasing the

probability that the replacement drive will be unavailable for rebuild operation.

Thus, the higher the write ratio, the higher the chance that in interleaved

declustering, the replacement disk would be unavailable for rebuild operations.

We note that at high read ratios, interleaved declustering outperforms

traditional and distorted mirrors.
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CHAPTER 4

CONCLUSION

In this final chapter, we summarize the major contributions of this thesis and

point directions for future research.

4.1 Contributions

In this thesis we have studied three mirroring schemes; traditional mirroring,

interleaved declustering and distorted mirroring. Each one of these techniques is

able to sustain a single disk failure and provides resiliency to disk failure.

However, while each one of these techniques improves the probability of data

remaining available in the event of failure, each has significant limitations. While

traditional mirroring offers the highest level of availability, it is unable to

balance the load in the event of a disk failure. Interleaved declustering provides

tradeoffs between availability and performance in the event of a disk failure. As

the cluster size is increased, the probability of two failures rendering data

unavailable is increased while the imbalance among the disks in the event of a

failure decreases. Distorted mirrors suffers from similar drawbacks as traditional

mirroring. In addition, it uses more disk space to store data than the other two

schemes. However, it is able to perform writes with reduced seek and latency.

We have examined the performance of the three mirroring schemes under

three operating conditions - normal, degraded and rebuild modes. Using a

synthetic workload that closely models transaction processing environments, we

studied various algorithms for rebuilding a failed disk in these mirroring

schemes using three rebuild units identified in [10]. Our findings support

findings in related studies.

* Because writes are inefficient in traditional mirrors, disks used in this
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configuration saturate rapidly with increasing I/O rate.

" Interleaved declustering has the best performance for most of the workload

studied. However, if the workload is dominated by writes, the performance

of interleaved declustering in rebuild mode is worse than the performance of

traditional and distorted mirrors.

" Redirection of reads is not beneficial in rebuild algorithm if the disks are not

saturated.

" For the 320 mbytes disks simulated in the experiments, the rebuild time was

less than 30 minutes with all the rebuild units and configurations studied (at

I/O rates of less than 300). As reported in other studies, cylinder rebuild unit

provides best performance if rebuild time is of primary concern. The tradeoff

is higher response time for application requests. Track rebuild unit provides

a good balance between response time and rebuild time demands.

We did not factor in cost considerations in this study. For example, the

logical disk in distorted mirror is slightly less than the logical disk in the other

schemes studied. In addition, distorted mirror keeps an in-memory data

structure that maintains the mapping between master and slave blocks.

Interleaved declustering also needs a similar mapping for the backup blocks in a

cluster.

4.2 Future Directions

There are many other possible algorithms, and variations to the algorithms

studied here, that need to be investigated. We plan to pursue these as future

extensions to this study. For example, if cost is a secondary issue and systems

can maintain two spare disks on-line, it would be interesting to see how

performance would differ when both disks in a mirror set are replaced when one

of them fails. But this may not be straightforward (or actually feasible) with
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interleaved declustering; should all the disks in a cluster be replaced when one

of them fails? In the experiments, the size of buffer space was fixed to the size of

the rebuild unit. We would like to see how sensitive performance is to variation

in buffer size. As suggested else where in this thesis, we suspect that distorted

mirror could benefit from a large buffer space during rebuild operations.
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