
Florida International University
FIU Digital Commons

FIU Electronic Theses and Dissertations University Graduate School

10-31-2013

Regulation of Rab5 GTPase activity during
Pseudomonas aeruginosa-macrophage interaction
Sushmita Mustafi
Florida International University, smust001@fiu.edu

DOI: 10.25148/etd.FI13121213
Follow this and additional works at: https://digitalcommons.fiu.edu/etd

Part of the Immunology and Infectious Disease Commons, and the Pathogenic Microbiology
Commons

This work is brought to you for free and open access by the University Graduate School at FIU Digital Commons. It has been accepted for inclusion in
FIU Electronic Theses and Dissertations by an authorized administrator of FIU Digital Commons. For more information, please contact dcc@fiu.edu.

Recommended Citation
Mustafi, Sushmita, "Regulation of Rab5 GTPase activity during Pseudomonas aeruginosa-macrophage interaction" (2013). FIU
Electronic Theses and Dissertations. 1016.
https://digitalcommons.fiu.edu/etd/1016

https://digitalcommons.fiu.edu/?utm_source=digitalcommons.fiu.edu%2Fetd%2F1016&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.fiu.edu/etd?utm_source=digitalcommons.fiu.edu%2Fetd%2F1016&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.fiu.edu/ugs?utm_source=digitalcommons.fiu.edu%2Fetd%2F1016&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.fiu.edu/etd?utm_source=digitalcommons.fiu.edu%2Fetd%2F1016&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/33?utm_source=digitalcommons.fiu.edu%2Fetd%2F1016&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/52?utm_source=digitalcommons.fiu.edu%2Fetd%2F1016&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/52?utm_source=digitalcommons.fiu.edu%2Fetd%2F1016&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.fiu.edu/etd/1016?utm_source=digitalcommons.fiu.edu%2Fetd%2F1016&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:dcc@fiu.edu


FLORIDA INTERNATIONAL UNIVERSITY 

Miami, Florida 

 

 

 

REGULATION OF RAB5 GTPASE ACTIVITY DURING PSEUDOMONAS 
 

 AERUGINOSA-MACROPHAGE INTERACTION 
 

 

A dissertation submitted in partial fulfillment of 

the requirements for the degree of 

DOCTOR OF PHILOSOPHY 

in 

BIOLOGY 

by 

Sushmita Mustafi 

 

 

2013 

 

 

 
 
 
 



ii 
 

To:  Dean Kenneth G. Furton     
 College of Arts and Sciences      

 
This dissertation, written Sushmita Mustafi, and entitled Regulation of Rab5 GTPase 
activity during Pseudomonas aeruginosa-macrophage interaction, having been approved 
in respect to style and intellectual content, is referred to you for judgment. 

 
We have read this dissertation and recommend that it be approved. 

 
 

_______________________________________ 
                                                                                                                                Lidia Kos 
 

_______________________________________ 
David Kuhn 

 
_______________________________________ 

John Makemson 
 

_______________________________________ 
Rita Mukhopadhyay 

 
_______________________________________ 

Fernando Noriega 
 

_______________________________________ 
M. Alejandro Barbieri, Major Professor 

 
 

 
Date of Defense: October 30, 2013 
 
The dissertation of Sushmita Mustafi is approved. 

 
 

_______________________________________ 
Dean Kenneth D. Furton 

  College of Arts and Sciences  
 
 

_______________________________________ 
Dean Lakshmi N. Reddi 

University Graduate School 
 

Florida International University, 2013 



iii 
 

 
 
 
 
 
                                        © Copyright 2013 by Sushmita Mustafi 
 

All rights reserved. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

  

 
 
 

 
 
 



iv 
 

 
 
 
 
 
 

DEDICATION 

To my loving family 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



v 
 

 
 
 
 
 
 

 
ACKNOWLEDGMENT 

I wish to express my gratitude and heartfelt appreciation to my advisor, Dr. M. 

Alejandro Barbieri, for being a great mentor, teacher and motivator. He has always 

encouraged and inspired me through the wonders and frustrations of scientific research 

and supported me through out the endeavor. I thank him for all his scientific guidance, 

for his tolerance and understanding.  

     Sincere thanks to all my Ph.D. committee members Dr. Lidia Kos, Dr. David Kuhn, 

Dr. John Makemson, Dr. Rita Mukhopadhyay, and Dr. Fernando Noriega for their kind 

support, valuable suggestions and critical evaluations. 

     I would take this opportunity to thank Dr. Phil Stahl, Dr. Dara Frank and Dr. Joan 

Olson for contributing expertise and valuable resources.  

     I would also like to thank Maria-Luisa Veisaga (MLV), and all the past and present 

members of Dr. Barbieri’s lab for helping and sharing; for making this journey fun and 

memorable.       

Above all, I want to express my gratitude to my parents, my brother, my husband and 

all the loved ones for their endless support. 

 

	
  
 
 
 



vi 
 

ABSTRACT OF THE DISSERTATION 

REGULATION OF RAB5 GTPASE ACTIVITY DURING PSEUDOMONAS 

AERUGINOSA-MACROPHAGE INTERACTION 

by 

Sushmita Mustafi 

Florida International University, 2013 

Miami, Florida 

Professor M. Alejandro Barbieri, Major Professor 

Pseudomonas aeruginosa is a Gram-negative opportunistic pathogen. Several antibiotic 

resistant strains of P. aeruginosa are commonly found as secondary infection in immune-

compromised patients leaving significant mortality and healthcare cost. Pseudomonas 

aeruginosa successfully avoids the process of phagocytosis, the first line of host defense, 

by secreting several toxic effectors. Effectors produced from P. aeruginosa Type III 

secretion system are critical molecules required to disrupt mammalian cell signaling and 

holds particular interest to the scientists studying host-pathogen interaction. Exoenzyme 

S (ExoS) is a bi-functional Type III effector that ADP-ribosylates several intracellular 

Ras (Rat sarcoma) and Rab (Response to abscisic acid) small GTPases in targeted host 

cells. The Rab5 protein acts as a rate limiting protein during phagocytosis by switching 

from a GDP- bound inactive form to a GTP-bound active form. Activation and 

inactivation of Rab5 protein is regulated by several Rab5-GAPs (GTPase Activating 

Proteins) and Rab5-GEFs (Rab5-Guanine nucleotide Exchange Factors). Some 

pathogenic bacteria have shown affinity for Rab proteins during infection and make their 

way inside the cell. This dissertation demonstrated that Rab5 plays a critical role during 
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early steps of P. aeruginosa invasion in J774-Eclone macrophages. It was found that live, 

but not heat inactivated, P. aeruginosa inhibited phagocytosis that occurred in 

conjunction with down-regulation of Rab5 activity. Inactivation of Rab5 was dependent 

on ExoS ADP-ribosyltransferase activity, and more than one arginine sites in Rab5 are 

possible targets for ADP-ribosylation modification. However, the expression of Rin1, but 

not other Rab5GEFs (Rabex-5 and Rap6) reversed this down-regulation of Rab5 in vivo. 

Further studies revealed that the C-terminus of Rin1 carrying Rin1:Vps9 and Rin1:RA 

domains are required for optimal Rab5 activation in conjunction with active Ras. These 

observations demonstrate a novel mechanism of Rab5 targeting to phagosome via Rin1 

during the phagocytosis of P. aeruginosa. The second part of this dissertation 

investigated antimicrobial activities of Dehydroleucodine (DhL), a secondary metabolite 

from Artemisia douglasiana, against P. aeruginosa growth and virulence. Populations of 

several P. aeruginosa strains were completely susceptible to DhL at a concentration 

between 0.48~0.96 mg/ml and treatment at a threshold concentration (0.12 mg/ml) 

inhibited growth and many virulent activities without damaging the integrity of the cell 

suggesting anti-Pseudomonas activity of DhL. 
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Chapter 1 

Introduction 

This chapter aims to introduce the concept of cell signaling cascade during phagocytosis 

focusing on the signaling mechanisms of Rab5 GTPase, a brief discussion on modulation 

of Rab5 protein by Gram negative bacteria, and a short review of Pseudomonas 

aeruginosa. Overall the information creates an outline for the research hypothesis. Partial 

content of this chapter has been published (Mustafi, Barbieri et al. 2013). 
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1.1 Phagocytosis – the “Trojan horse” mechanism of immune defense system 

 Eukaryotic cells have evolved elegant mechanism of endocytosis, which internalizes 

fluids (pinocytosis) or particulate constituents (phagocytosis) from their environment. 

Phagocytosis is a process delineated as uptake of large particles, typically 0.5-5.0 µm in 

diameter (Kinchen and Ravichandran 2008). The process serves as a mode of nutrition in 

unicellular organisms, but complex organisms have taken advantage of the phagocytic 

machinery in their defense system. As a part of the immune system mobile phagocytic 

cells survey tissues for foreign particles and engage in pitched battles with potential 

pathogens (Tauber 2003). In mammals, phagocytosis is primarily performed by cells such 

as monocytes, macrophages, neutrophils and dendritic cells, which play important roles 

in both innate and adaptive immunity. Interestingly, in nematodes like Caenorhabditis 

elegans phagocytosis is studied extensively for its role in initiating programmed cell 

death (Reddien, Cameron et al. 2001).With the advantage of having a limited repertoire 

of genes, the slime mold Dictyostelium discoideum has served as a model organism for 

studies involving mechanisms of phagocytosis for several years (Bozzaro and Eichinger 

2011). Phagocytosis is initiated by the recognition and binding of a foreign particle to 

receptors on the cell surface (Shaw and Griffin 1981; Angus, Evans et al. 2010). In order 

to discriminate between non-self and self-agents, professional phagocytes express a 

restricted number of phagocytic receptors that either recognize conserved motifs on 

pathogens or on foreign proteins coated with host immunoglobins (opsonins) (Mehta 

1976). Upon contact with the phagocytic substance or microbe, many parallel signaling 

pathways are simultaneously activated as a response from phagocytes prior to 

internalization (Kwiatkowska and Sobota 1999). The array of signals triggers cellular 
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processes such as cytoskeletal rearrangement, altered membrane trafficking, activation of 

killing mechanisms, production of cytokines, chemokines and apoptosis (Aderem and 

Underhill 1999). Among a variety of phagocytic receptors, most of the understanding of 

the signaling pathways leading to phagocytosis comes from the studies of the Fc 

Receptors (FcR). 

1.2 Mechanism of Phagocytosis 

1.2.1 Opsonized and non-opsonized phagocytic particles: To see or not to see 

Several types of receptors participate in recognizing opsonin-coated or uncoated 

particles (Figure1). Opsonin-coated particles (opsonized) are either coated with host-

derived proteins like mannose binding proteins, surfactant protein A, immunoglobulins 

and complement fragments, which are recognized by complement receptors (CR) such as 

CR1, CR3 and CR4 or FcγRs that increase binding and recognition of an antigen by the 

immune cells (Aderem and Underhill 1999). Several cellular pattern rocognition 

receptors (PRRs) like mannose and scavenger receptors (Class A and Class B) and C-

type lectin-like receptor recognize non-opsonized surface components of pathogens also 

called pathogen-associated molecular patterns (PAMPs) such as bacterial 

lipopolysaccharides, mannans and integrins (Janeway 1989; Sastry and Ezekowitz 1993) 

or phosphatidyl serine by apoptotic cells to trigger phagocytosis (Ofek, Goldhar et al. 

1995; Kwiatkowska and Sobota 1999).  
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Figure 1: Receptors involved in opsonized or non-opsonized phagocytosis. 

Diagramatic representation of phagocytic cell showing receptors involved in the process 

of opsonized and non-opsonized particle ingestion, recognition molecules attached to 

opsonized and non-opsonized particles and the events of phagocytosis from phagosome 

formation to phago-lysosome fusion. 

1.2.2 Phagocytic receptors: Standing tall  

Receptors on the cell surfaces of professional phagocytes trigger and initiate a series 

of signaling events during the process of phagocytosis (Targowski and Klucinski 1985). 

Myeloid cells such as macrophages and dendritic cells function as professional 

phagocytes and express a range of PRRs for pathogen recognition, induction of adaptive 

immunity, or clearing apoptotic/necrotic and modified cellular metabolites (Gordon, 

Molyneux et al. 2001; Larsson, Fonteneau et al. 2001).  
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1.2.2.1 Scavenger receptors are involved in opsonin-independent receptor-mediated 

phagocytosis with a wide range of ligands ranging from lipoteichoic acid of Gram-

positive bacteria, lipopolysaccharides in Gram-negative bacteria, modified low density 

lipoproteins, double stranded RNA, double stranded DNA and apoptotic cells (Kodama, 

Doi et al. 1996). Scavenger receptors are categorized into several classes (class A types I 

and II, class B, class C, class E, also known as lectin-like oxidized low-density 

lipoprotein receptor-1 (LOX-1), and class F) determined by the presence or absence of 

signature structural domains such as collagenous domain, cysteine rich domain, C-type-

lectin domain or alpha helical coiled-coil domain (Peiser and Gordon 2001). Class A 

scavenger receptors are triggered by modified lipoprotein or microbial cell surface 

molecules. They induce gene transcription and cytokine release with signaling response 

via tyrosine phosphorylation and activation of the Mitogen Activated Protein Kinase 

(MAPK) pathway (Coller and Paulnock 2001). In contrast, macrophage receptors with 

collagenous structure (Cavalli, Corti et al. 2001), a class A scavenger receptor, expressed 

by only a sub population of macrophages recognize only bacterial polysaccharides 

(Pikkarainen, Brannstrom et al. 1999; Elshourbagy, Li et al. 2000), whereas class B1 

scavenger receptor is a cellular receptor for high-density lipoprotein (Silverstein, Li et al. 

2010). Invasion of Staphylococcus aureus in osteoblasts and Listeria monocytogenes in 

the spleen and liver involves various scavenger receptors (Thomas, Li et al. 2000) 

(Suzuki, Kurihara et al. 1997). 

1.2.2.2 Toll-like receptors (TLR) can only recognize conserved microbial domains 

(Akira 2001; Janeway and Medzhitov 2002; Akira 2003) or bacterial DNA (Takeda, 

Kaisho et al. 2003). To date, more than 10 members of the TLR family have been 
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reported in mammals recognizing a variety of PAMPs (Akira, Uematsu et al. 2006; 

Medzhitov 2007). Upon stimulation, they initiate an effective cascade leading to the 

release of antimicrobial peptides and cytokines (O'Neill 2002), including adapter 

molecule MyD88, Transforming growth factor beta (TGFβ) Activating Kinase 1 (TAK1), 

and TAK1-binding proteins 1 and 2 (Akira 2003). The receptor-adapter interaction, in 

turn, propagates signal for the activation of Nuclear Factor Kappa-light-chain-enhancer 

of activated B cells (NF-κB), MAPK, phosphatidylinositol 3-kinase (PI3K) and c-Jun 

Kinase (JNK) leading to proper display of cellular defense (Ojaniemi, Glumoff et al. 

2003).  

1.2.2.3 Complement receptor mediated phagocytosis is a passive process that occurs by 

a variation of the classic zipper model (Aderem and Underhill 1999). A series of 

complement receptors (such as CR1) are expressed on the surface of macrophages that 

recognize complement proteins (such as C3b or C3bi), which are present in the serum 

(Carroll 1998). Complement Receptor 1 (CR1) binds C3b, C4b and C3bi opsonized 

particles while CR3 and CR4 bind specifically to C3bi resulting in the phagocytosis of 

complement-coated proteins/cells (Trinidad, de la Puerta et al. 2006; Patel and Harrison 

2008). Unlike FcR-mediated phagocytosis, complement receptors do not elicit the release 

of inflammatory mediators (Allen and Aderem 1996).  

1.2.2.4 Mannose receptor is a transmembrane lectin scavenger receptor implicated in the 

clearance of mannose- and fucose-terminated glycoproteins (i.e., lysosomal hydrolases). 

It also recognizes numerous pathogens such as Candida albicans, Pneumocystis jirovecii, 

and the dengue virus. The receptor initiates phagocytosis by recruiting F actins, talin, 

Protein Kinase Cα (PKCα), microtubule associated protein (MARKS) and Myosin I at 
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the nascent phagosome formation site (Ezekowitz, Sastry et al. 1990; Stahl and 

Ezekowitz 1998). Mannose receptors are also known to play a critical role in the 

development of crescentic glomerulonephritis by augmenting Fc-mediated function 

(Chavele, Martinez-Pomares et al. 2010). 

1.2.2.5 FcγRs are a family of membrane proteins that comprise three subunits: FcγRI 

(CD64), FcγRII (CD32) and FcγRIII (CD16) (Ravetch 1997). Unlike FcεRs (FcεRI, 

FcεRII) and FcαR (FcαRI) that interact with immunoglobulin (Ig) E (Larsen, DiGennaro 

et al. 2000) and IgA opsonized particles, respectively (Aderem and Underhill 1999), 

FcγRs interact with the constant region of the IgG and aid in opsonization (Caron and 

Hall 1998). The FcγR receptor mediated phagocytosis has been studied extensively and is 

a three-step process, i.e., binding of ligand coated particles with FcγR, clustering of 

receptors, and triggering a signal cascade leading to actin rearrangement and particle 

engulfment (Jiang, Zhong et al. 2002). The activation of FcγR requires bivalent or 

multivalent IgG coated ligands (Jones, Nusbacher et al. 1985; Odin, Edberg et al. 1991) 

leading to lateral clustering of FcγRs. The cytosolic domain of these receptors contains 

the immunoglobulin gene family tyrosine activation motif (Kooguchi, Hashimoto et al. 

1998), characterized by the specific tandem sequence YxxI/L (Anderson, Shen et al. 

1990; Takai, Kasama et al. 1994). The Src family of tyrosine kinases (such as Hck, Lyn 

and Fgr) phosphorylates Immunoreceptor signaling motif (ITAM) and recruits spleen 

tyrosine kinases (Wilson, Pitt et al. 1987; Reth 1989; Ravetch 1994). Signal amplification 

is achieved by the Scr homology domain 2 (SH2) of Syk that binds phosphorylated 

ITAM leading to continued phosphorylation of neighboring ITAMs (Crowley, Costello et 

al. 1997; Kiefer, Brumell et al. 1998). Investigations also revealed that Syk signaling is 
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required for phosphorylation of the regulatory subunit of p85 and activation of p110β, the 

catalytic subunit of Phosphoinositide 3 Kinase (PI3K), which is associated with the 

accumulation of lipid phosphatidyl inositol-3,4,5-triphosphate (PIP3) from phosphatidyl 

inositol-4,5-bisphosphate (PI(4,5)P2) in the membrane close to the receptor cluster 

(Crowley, Costello et al. 1997; Leverrier, Okkenhaug et al. 2003). The cluster also 

attracts a series of adapter proteins like the transmembrane protein linker activated T cells 

(Kiefer, Brumell et al. 1998), Growth factor Receptor Bound Protein 2 (Grb2), CT10 

regulator of kinase II (CrkII), Cannabinoid Receptor 1 (Cbl) and Non-Catalytic region of 

Tyrosine Kinase adaptor protein (Sato, Frank et al. 2003) to the nascent phagocytic cup 

(Izadi, Erdreich-Epstein et al. 1998; Tridandapani, Lyden et al. 2000; Lee, Cosio et al. 

2007). Adaptor proteins play a crucial role in linking downstream signaling molecules of 

FcγR. Scientist Gu and others identified Grb2 associated binding protein2 (Gab2) as a 

major element of the FcγR-mediated phagocytic mechanism in macrophages and 

demonstrated its role in the local generation of PIP3 lipids at the phagocytic cup (Gu, 

Botelho et al. 2003). Furthermore, it has been shown that, upon activation of FcγR, Gab2 

gets phosphorylated and binds to p85 of PI3K, and Shp-2, a SH2 domain-containing 

tyrosine phosphatase (Gu, Botelho et al. 2003). Other players in the phagocytic signaling 

process include calcium (Ca+2), Rho GTPase, protein kinase C (PKC), phospholipase C 

(PLC) and phospholipase D (PLD) (Kiener, Rankin et al. 1993; Ghazizadeh and Fleit 

1994; Hackam, Rotstein et al. 1997; Aderem and Underhill 1999; Cox, Tseng et al. 1999; 

Kwiatkowska and Sobota 1999; Lennartz 1999) that control the fusion of vesicles with 

the plasma membrane, providing membranes for phagosome formation (Celli and Finlay 

2002). They are also involved in sealing the phagosome and triggering a series of rapid 
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and extensive changes in phagosome maturation, which are characterized by sequential 

interaction with sorting of early endosomes, late endosomes and lysosomes (Desjardins, 

Huber et al. 1994; Scott, Furuya et al.  2003). Lee and others showed that during the 

internalization of large but not small particles, the membrane of the phagocytic cup is 

almost completely remodeled (Lee, Cosio et al.  2007). It has been demonstrated that in 

order for phagocytosis to occur by neutrophils, unfolding of the surface membrane 

wrinkle is necessary (Hallett and Dewitt 2007). Actin polymerization at the phagocytic 

cup and pseudopod extension can be affected separately, indicating that membrane 

remodeling is an independent component of the phagocytic response (Lowry, Duchemin 

et al.  1998; Cox, Tseng et al.  1999). Furthermore, membrane remodeling during 

phagocytosis is an active and complex process that involves localized pinocytosis 

(Botelho, Tapper et al.  2002), segregation of membrane components into lipid rafts 

(Kwiatkowska, Frey et al.  2003), lateral diffusion of signaling molecules (Henry, Hoppe 

et al.  2004), and the insertion of endomembranes by focal exocytosis (Bajno, Peng et al. 

2000; Braun, Wendt et al.  2004).  

1.2.3 Phagosome formation and maturation: the full circle 

The phagosome maturation process is accomplished in a sequential manner with the 

formation and pinching off of the phagocytic vacuole followed by its interaction with 

early and late endosomes and finally fusion with the lysosome (Li, Jagannath et al. 2010). 

Though there is evidence of signaling molecules which accumulates at the site of 

phagosome formation and controls the process before the pathogenic secretion system 

brings disruption, the exact role of macrophage cell surface receptors and phagosome 

maturation is yet not well understood (Kinchen and Ravichandran 2008). The 
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contribution of FcR mediated uptake of opsonized prey to phagosome formation has been 

well documented (Pohlmann, Boeker et al. 1995; Vieira, Botelho et al.  2001) In contrast, 

the role of TLRs in influencing phagosome maturation is not very clear though TLR 4 

and 2 has been speculated to fast track phagosome maturation process (Yates and Russell 

2005; Blander and Medzhitov 2006). Also, there are very few studies describing 

phagosome maturation triggered by complement receptors, but evidence suggests the 

pathway is Ca+2 dependent (Malik, Denning et al. 2000; Malik, Thompson et al. 2003). 

Overall, many reviewers suggested that the pivotal role of cell surface receptors is to 

generate inflammatory or apoptotic signals whereas the phagosome formation and 

maturation can cross common paths (Vieira, Botelho et al.  2002; Underhill 2005; 

Kinchen, Doukoumetzidis et al.  2008). The organized signaling stages in FcR mediated 

phagocytosis follows the zipper model proposed by Griffin and Silverstein (Griffin and 

Silverstein 1974). The three stages of signaling proposed by the zipper model involve 

several different molecules and are regulated tightly by catalytic events. Modulation of 

the levels of phosphorylated proteins and recruitment of molecules necessary for the 

subsequent steps are localized at the point of receptor clustering. Hence the process is 

characterized by coordinated stages of lateral diffusion and checkpoint regulated progress 

(Kinchen and Ravichandran 2008). Formation of a phagosome requires a considerable 

amount of membrane area, which is provided by the plasma membrane initially. 

However, additional membrane from intracellular compartments is also supplied by 

means of the focal exocytosis mechanism (Cox, Lee et al. 2000; Lee, Cosio et al. 2007). 

Internalization of particles involves reorganization of actin cytoskeleton, recruitment of 

different classes of myosin, and membrane fusion to complete the phagocytic vacuole 
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(Swanson, Johnson et al. 1999; Diakonova, Bokoch et al. 2002; Henry, Hoppe et al. 

2004). Initial phosphorylation events generated by FcR activation relays the signal to 

membrane localized PI(4,5)P2 (Botelho, Hackam et al. 2000), which recruits Rho-family 

GTPases Rac1 and Cdc42 (Botelho, Teruel et al. 2000), and with the aid of Wiskott-

Aldrich syndrome protein (WASP) and WASP family verproline-homologous protein 

(WAVE) proteins elicit the activity of actin-nucleating complex Arp2/3 (Takenawa and 

Miki 2001). The spike of actin assembly and phagocytic cup formation is also associated 

with hydrolysis of PI (4,5) P2 to diacylglycerol (DAG) or PI3K mediated 

phosphorylation to PIP3. This is followed by activation of Rac, ADP ribosylation factor 

(ARF) 6 for membrane fusion events (Swanson and Hoppe 2004). Subsequent hydrolysis 

of PIP3 by Phosphatase and Tensin homolog protein (PTEN) or SH2 containing Inositol 

Phosphatase-1 (SHIP-1) generates PI(4,5)P2 or PI(3,4)P2 and ushers in the final stage of 

phagocytic vesicle sealing (Kavran, Klein et al. 1998). Phospholipase A (PLA) 2 

mediated release of arachidonic acid (AA) stimulates nicotinamide adenine dinucleotide 

phosphate-oxidase (NADPH-oxidase) activation leading to completion of phagocytic cup 

formation. Flash appearance of PKCε is also associated to the membrane folding and 

fusion event of phagocytic cup (Larsen, Ueyama et al. 2002). 

1.2.3.1 Regulators of phagosome creation: supporting crew 

The majority of downstream proteins activated by receptors participate in more than 

one process. Here the discussion covers the role of key proteins in the cascade of 

phagocytosis as revealed in the biochemistry of actin polymerization/depolymerization, 

myosin regulation, vesicle fusion and assembly of NADPH oxidase. Type Ia PI3K (there 

are three main types of PI3Ks) consists of two subunits, a catalytic subunit (p110) and a 
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regulatory subunit (p85) (De Camilli, Emr et al. 1996). The PI3K activation triggers the 

phosphorylation of several PIs, thereby generating Phosphatidyl Inositol (3,4) 

biphosphate (PI(3,4)P2) or Phosphatidyl Inositol (3,4,5) triphosphate (PI(3,4,5)P3) 

(Araki, Johnson et al. 1996; Cox, Tseng et al. 1999). Activation of PI3K is crucial for the 

extension of pseudopods in formation and closure of the phagocytic cup into the 

phagosomes (Cox, Tseng et al. 1999) and for tyrosine kinase activation and actin 

polymerization. Inhibition of PI3K blocks phagocytosis of IgG opsonized particles 

suggesting that P13K is engaged in FcγR-mediated phagocytosis (Araki, Johnson et al. 

1996). Recruitment of dynamin and vesicle associated membrane protein 3 (VAMP3) at 

the phagocytic cup depends on PI3K (Gold, Underhill et al. 1999). Several studies have 

demonstrated that PI3K participates in the control of the assembly of myosin X during 

phagocytosis, which includes the localization of myosin X within the phagocytic cup as 

well as the phagosome (Stendahl, Hartwig et al. 1980; Allen and Aderem 1995; Swanson, 

Johnson et al. 1999; Cox, Berg et al. 2002). Phosphorylation of PI to phosphatidyl 

inositol 3 phosphate (PI3P) by type III PI3K is necessary for phagosome maturation and 

NADPH oxidation (Gillooly, Simonsen et al. 2001; Kanai, Liu et al. 2001). An important 

point was assessed by Cox and others who showed that the effectiveness of the inhibition 

of phagocytosis by PI3K inhibitors is proportional to the particle size (Cox, Tseng et al. 

1999). Because a greater surface is required to internalize larger particles, it has been 

suggested that PI3K may also be required for focal exocytosis during phagocytosis. In 

fact, many studies have reported a significant increase in the total surface area of 

macrophages during phagocytosis (Hackam, Rotstein et al. 1998; Holevinsky and Nelson 

1998; Bajno, Peng et al. 2000). Transient accumulation of phospholipids like PI(4,5)P2 
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and PIP3 as well as PI(4)P 5-kinase at the phagocytic cup suggested a potential role for 

them in focal exocytosis (Botelho, Teruel et al. 2000; Marshall, Booth et al. 2001). It has 

been shown that there is an accumulation of PIP3 around the phagocytic cup during 

pseudopodal extension just before the closure of the phagosome (Marshall, Booth et al. 

2001). The accumulation of PI(3,4)P2 could be found in the inner leaflet of plasma 

membrane of resting phagocytes, but it increases drastically in concentration during 

phagocytic cup formation and subsequently disappears leading to actin assembly and 

disassembly (Botelho, Teruel et al. 2000). Together PI(3,4)P2 and PIP3 regulate binding 

of myosin I to the plasma membrane (Adams and Pollard 1989). It has also been 

demonstrated that myosin’s Pleckstrin homology (PH) domain binds to the PIP3 allowing 

its recruitment at the phagocytic site (Cox, Berg et al. 2002). The process of PI3K 

mediated phosphorylation of PI (4,5) P2 to PIP3 is associated with increase in activities 

of guanine nucleotide exchange factors (GEFs) like T-cell lymphoma invasion and 

metastasis 1(Tiam1), Vav1 (Rho guanine nucleotide exchange factor Vav, designated 

Vav1, after the sixth letter of the Hebrew alphabet) and ARF nucleotide binding site 

opener (ARNO) (Venkateswarlu and Cullen 2000; Baumeister, Martinu et al. 2003). 

Also, it has been shown that the products that derive from PI(4,5)P2 hydrolysis control 

transient elevation of cytosolic Ca+2 and Protein Kinase C (PKC) activation during 

phagocytosis (Zheleznyak and Brown 1992; Oancea and Meyer 1998). Protein Kinase C 

family isoforms are involved in different aspects of phagocytosis (Larsen, DiGennaro et 

al. 2000). Protein Kinase C α is involved in FcγR-mediated phagocytosis in macrophages 

(Swanson and Hoppe 2004). In FcγRI, PKC activity increases in Ca+2 independent 

manner (Lamberts, Johnsen et al. 2008). A PKC-dependent MAPK-activation pathway 
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has been detected in mouse macrophage, monocytes and neutrophils (Garcia-Garcia and 

Rosales 2002). Myristoyl alanine rich C kinase substrate (MARCKS) is a PKC target 

found in phagosomes (Allen and Aderem 1996). Calcium-dependent PLA2, calcium-

dependent cytosolic PLA2 and calcium-independent cytosolic PLA2 mediate release of 

arachidonic acid from phosphatidyl choline or phosphatidylethanolamine (Lennartz, 

Lefkowith et al. 1993). Arachidonic acid acts as a second messenger in the regulation of 

phagocytosis. Inositol tri phosphate (IP3) releases Ca+2 ions from intracellular storage 

and PLC γ accumulates at the site of phagocytic cup upon addition of IgG. Phospho 

lipase C uses PI(4,5)P2 to generate diacyl glycerol (DAG), which then promotes 

phagocytosis by recruiting PKCε (Larsen, Ueyama et al. 2002). Phospho lipase D (PLD) 

is another enzyme involved in FcγR mediated phagocytosis that uses phosphotidylcholine 

as a substrate and generates phosphatidic acid (PA) and choline (Garcia-Garcia and 

Rosales 2002). Elevated concentrations of Ca+2 around the phagosome have led to the 

notion that it might play an important role in the phagocytic process (Sawyer, Sullivan et 

al. 1985). However, IgG- mediated phagocytosis by human neutrophils is both Ca+2 

dependent and independent, whereas IgG-mediated phagocytosis by monocytes is Ca+2 

independent (Dale, Boxer et al. 2008). It has been suggested that the Ca+2 concentration 

increase is due to exit of Ca+2 from inside of the phagocyte to outside in cytosol 

(Lundqvist-Gustafsson, Gustafsson et al. 2000). Activated PLC and PLD help in 

accumulation of intracellular Ca+2 level (Nunes and Demaurex 2010). It is not clear if 

there is a second messenger that triggers Ca+2 surges in response to Fc receptor signaling. 

IP3 is the principal second messenger in most of the cellular systems to release Ca+2, but 

L-plastisin in FcγRIIA, PLC in FcγRI and FcγRII and sphingosine-1-phosphate in FcεRI 
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are also reported to be involved (Garcia-Garcia and Rosales 2002). The FcγR receptor 

stimulates PKC and PI3K pathways to activate serine threonine kinase such as MAPK. 

The role of MAPK is not clear but it might be involved in PLA2 activation. In addition, 

MAPK may also modulate actin dynamics in phagocytosis as it phosphorylates myosin 

protein, which binds to actin providing mechanical force in actin dynamics. Small 

GTPases like Rac and Cdc42 of the Rho play an important role in actin reorganization in 

phagocytosis. Activation of Rac1 and Cdc42 can bind to p85 subunit of PI3K inducing F-

actin polymerization through WASP and the Apoptosis related protein 2/3 (Apr2/3) 

complex (Vieira, Botelho et al. 2001). The Vav proteins are implicated to function as a 

GEF in phagocytosis (Caron and Hall 1998) including FcγR-mediated phagocytosis 

(Patel, Hall et al. 2002). Studies have shown that Rac is recruited to the phagosome in an 

inactive state and is activated by Vav. Both Rac and Cdc42 bind to WASP in a GTP 

dependent manner (Rudolph, Bayer et al. 1998). Mostly WASP proteins are related to 

actin polymerization events. The Rac and Rho proteins control Cofilin, a protein that 

discourages actin polymerization via P21 protein (Cdc42/Rac)-activated kinase 1(PAK1) 

and LIM (acronym of the three gene products Lin-11, Isl-1, and Mec-3) domain kinase 

1(LIMK1) (Sumi, Matsumoto et al. 1999). The FcγR-mediated phagocytosis also needs 

ARF6, an ARF family GTPase, in actin polymerization and membrane recycling (Balana, 

Niedergang et al. 2005). 

1.2.4 Rabs and others in phagosome sorting: controllers of busy traffic 

The activities of lipid kinases and GTPases have been strongly implicated in the 

control of phagosomal vesicle trafficking (Gorvel, Chavrier et al. 1991). The Rab 

proteins are small GTPases involved with tethering and docking of vesicles to their target 
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membrane and orchestrating the sequence of fusion events with endocytic compartments. 

Both Rab5 and Rab7 proteins has been detected in early and late phagosomes, 

respectively (Figure 2) (Vieira, Botelho et al. 2002). Early endosome antigen 1 (EEA1) is 

an effector that contains Rab5 binding domain. Simonsen and others demonstrated that 

EEA1 binds to the PI3K products PI3P via FYVE domain named after Fab 1 (yeast 

orthologue of PIKfyve), Vac1 (vesicle transport protein), and EEA1 (Simonsen, Lippe et 

al. 1998). Fratti and others showed that both PI3P and Rab5 affectors namely PI3K, 

Vacular protein sorting-34 (VPS34), and EEA1 are required for phagosomal maturation 

(Fratti, Backer et al. 2001). It has also been shown that inhibition of PI3P production 

prevents EEA1 recruitment into the phagosome and blocks its maturation (Fratti, Backer 

et al. 2001; Vieira, Botelho et al. 2001; Fratti, Chua et al. 2003). For Rab7 the only 

known effector is Rab7 interacting lysosomal protein (RILP), which mediates fusion of 

late phagosome with lysosomes. Rab7 interacting lysosomal protein plays a critical role 

in phagosome maturation by recruiting dynein–dynactin, a motor complex that displaces 

phagosomes along microtubules toward the juxtanuclear region (Harrison, Bucci et al. 

2003). Along with Rab proteins, the role of Soluble N-ethylmaleimide-sensitive factor 

(NSF) Attachment protein Receptor (SNARE) protein is also being studied (Braun and 

Niedergang 2006; Hatsuzawa, Tamura et al. 2006). The membrane fusion event is 

mediated by SNARE proteins (Chen and Scheller 2001). The accumulation of V-SNARE 

on vesicles and T-SNARE on target membrane forms specific complex with tight 

connection initiates the opening of membrane fusion pore (McBride, Rybin et al. 1999). 

Syntaxin13 located on recycling endosomes and syntaxin 7 on late endosomes have been 

related to phagosome maturation process in macrophage (Vieira, Botelho et al. 2002). 
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Phagosome fusion with lysosomes takes place when lysosome-associated membrane 

proteins 1 and 2 (LAMP-1 and LAMP-2) are delivered to phagosomes during the 

maturation process. Huynh and others showed that LAMP-1 and LAMP-2 double-

deficient phagosomes acquired Rab5 and accumulated PI3P, but failed to recruit Rab7 

and did not fuse with lysosomes (Huynh, Eskelinen et al. 2007). The LAMPs also might 

play a role in impairing the recruitment of RILP to the phagosome (Cantalupo, Alifano et 

al. ; Johansson, Rocha et.al. 2007).   

 

Figure 2: Phagocytic events in macrophage cell. 

(1) Initiation of phagoytic cup formation and membrane ruffling. (2) Particle internalized 

and carried by early phagosomes with Rab5 markers on phagosomal membrane. (3) Once 
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Rab7 is recruited, the phagocytic events proceed to late phase. (4) Rab7 is replaced by 

LAMP1 marker, signaling the fusion of late phagosome with lysosome completed by 

phagolysosome formation and internalized particle degradation. 

1.3 Rab5 in phagocytosis: Achill’s hill?  

Cloning experiments with rat brain cDNA libraries have identified a family of GTP 

binding Ras-like proteins referred to as Rab proteins (Maridonneau-Parini, Yang et al. 

1991). More than 60 members of Rab proteins have been classified in humans and about 

11 in yeast (Pereira-Leal and Seabra 2000; Seabra, Mules et al. 2002). The Rab proteins 

are small GTP binding proteins involved with tethering and docking of vesicles to their 

target membrane and orchestrating the sequence of fusion events with other endocytic 

compartments. After a long cataloging of different Rabs, it has been determined that 

Rab1 and 2 are associated with endoplasmic reticulum, Rab3 is associated with secretory 

vesicles, Rab4 and 5 are endosomal, Rab6 is in the trans Golgi network, and Rab7 is in 

the late endosomes (Maridonneau-Parini, Yang et al. 1991). Both Rab5 and Rab7 have 

been reported as key regulators in maturation of phagosome (Roberts, Barbieri et al. 

2000) and has been detected in early and late phagosomes, respectively (Vieira, Botelho 

et al. 2002). Functional studies indicate that Rab5 is a key regulator of early 

phagocytosis, where it is involved in clathrin-coated vesicle formation, and fusion 

between early phagosomes, phagosomal cargo recruitment and phagosomal motility 

(Duclos, 2000; Stenmark, 1994). The Rab5 protein cycles between the cytosol and the 

membrane of target vesicles. Once Rab5 is translated, it is associated with Rab escort 

proteins (REPs) (Duclos, Diez et al. 2000) and geranylated by Rab-geranylgeranyl 

transferase (Duclos, Diez et al. 2000). The Rab5 protein carries a GTPase fold composed 
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of a six-stranded β-sheet flanked by five α-helices which is common in all Rab structure. 

Downstream to GTPase fold on the COOH- terminus of Rab5, there is a hyper variable 

region followed by CAAX boxes. Covalent attachments of geranylgeranyl moieties to the 

cysteine residues of CAAX boxes allow the regulation of membrane insertion of Rab5 

(Andres, Seabra et al. 1993; Alexandrov, Horiuchi et al. 1994; Desnoyers, Anant et al. 

1996). The Rab5 protein is subsequently detached from REPs and quenched by another 

Rab regulating protein called GDP dissociation inhibitors (GDI). The GDI protein has the 

capacity to extract GDP-bound Rab5 from the membrane and delivered to the appropriate 

target membrane (Cavalli, Corti et al. 2001). They are inactivated upon hydrolysis of 

bound GTP, which converts them to their GDP-bound forms. Rab5 binds to effector 

proteins in their active, GTP-bound conformations. The hyper variable region shows 

great divergence among different phylogenetic Rab groups and this region is key 

determinant to specific membrane targets for Rabs. Rab5 reactivation is catalyzed by 

Rab5 specific GEFs that help to release Rab5 bound GDP, allowing rebinding of 

cytosolic GTP. The proteins that activates Rab5 possess a Vps9 (vacular protein sorting 

9) domain carrying Rab5 specific GEF activity (Carney, Davies et al. 2006). Some 

currently established Rab5 GEFs are Rin (Ras interference) 1, Rin2, Rin3, RinL (Ras 

interference like protein), Rabex5 (Rabaptin 5 associated exchange factor for Rab5), 

Rap6 (Rab activating protein 6) (Tall, Barbieri et al. 2001; Saito, Murai et al. 2002; 

Kajiho, Saito et al. 2003; Hunker, Galvis et al. 2006; Delprato and Lambright 2007). 

Switch I and Switch II regions of Rab5 are primarily involved with nucleotide dependent 

Rab5 function. Both regions come in contact with the γ phosphate of GTP during 

activation (Lee, Cox et al. 2000). The Rab5 protein binds to effector proteins in their 
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active, GTP-bound conformations. Structural heterogeneity in the switch domains among 

various Rabs indicates that each type interacts with specific effector proteins to regulate 

their respective pathways (Pfeffer 2001; Eathiraj, Pan et al. 2005). Three isoforms of 

Rab5 (a, b and c) have been documented (Bucci, Lutcke et al. 1995), among which Rab5a 

has been found to potentiate endocytosis (Roberts, Barbieri et al. 2000). One of the 

earliest signs of phagosomal maturation event is the recruitment of Rab5 to phagosomes 

(Vieira, Bucci et al. 2003; Roberts, Chua et al. 2006; Kitano, Nakaya et al. 2008). 

Although a detailed mechanism for how this is accomplished during phagosome 

maturation is still under speculation, recent studies have implied an unexpected role for 

dynamin and Rabankyrin in Rab5 recruitment to the nascent phagosomes (Kinchen and 

Ravichandran 2008). Various Rab5 effector proteins like EEA1 (homotypic fussion 

between Rab5 positive vesicles), Rabenosyn (fusion between Rab5 positive vesicle to 

Rab7 positive vesicle), Rabaptin 5 (fusion between Rab4 positive vesicle to a Rab5 

positive vesicle), share a common architecture of FYVE domain and work in conjunction 

with PI3P (Vitale, Rybin et al. 1998; McBride, Rybin et al. 1999; Nielsen, Christoforidis 

et al. 2000; Grosshans, Ortiz et al. 2006). Anomaly in Rab5 protein expression has been 

related to many difficult diseases (Stein, Dong et al. 2003). Benign tumors in thyroid 

autoimmune disease shows higher expression of Rab5 (Croizet-Berger, Daumerie et al. 

2002) and both up and down regulation of Rab5 has been related to cancer (Li, Meng et 

al. 1999; Fukui, Tamura et al. 2007). Up regulation of Rab5 positively regulates 

elimination of toxic accumulation in Huntington’s disease (Ravikumar, Imarisio et al. 

2008). 
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1.3.1 Rab5 modulation by pathogens: escaping early death 

Microorganisms invading host tissues are first and foremost exposed to phagocytes. 

Bacteria that attract phagocytes and are easily ingested and killed are generally 

unsuccessful to establish themselves as pathogen. Whereas, successful pathogenic 

bacteria interfere to some extent with the activities of phagocytes or in some way avoid 

their attention. Microbial strategies to avoid phagocytic killing are numerous and diverse, 

but are usually accomplished by blocking one or of more steps in the phagocytic process 

such as contact between phagocyte and microbial cell, engulfment, phagosome 

formation, phagosome-lysosome fusion or killing and digestion (Rosenberger and Finlay 

2003; Brumell and Scidmore 2007)  (Figure 3). The Rab GTPases are integral to 

membrane traffic in eukaryotic cells. Therefore many incidences of infection accounts for 

modulation of Rab GTPases in host cells by pathogenic bacteria. Mycobacterium 

tuberculosis has adopted the role of interfering with phago-lysosome maturation process 

in infected macrophages arresting phagosome fusion with endosomal and lysosomal 

organelles (Vergne, Fratti et al. 2004). The Rab5 positive phagosomes are favorable for 

mycobacterial survival as they provide iron acquisition during endosome sorting (Kelley 

and Schorey 2004). Mycobacterium containing phagosome can retain Rab5 for 7 days 

post infection (p.i.) and avoid Rab7 mediated late endocytosis (Via, Deretic et al. 1997). 

Coxiella burnetii, the etiological agent for Q fever, replicates inside of a macrophage 

within a large vacuole. It interferes with host cell autophagic pathway to delay lysosome 

fusion. Early recruitment of Rab5 (5 minutes p.i. rather than typical 20 minutes p.i.) was 

observed in a kinetic study, where early accumulation and retention of Rab 7 was also 

reported (Romano, Gutierrez et al. 2007). Enterobacterial pathogen Salmonella 
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typhimurium can not only escape to survive inside the host macrophage, but it can also 

induce apoptosis in the phagocytes (Harrison, Brumell et al. 2004). Type III secretion 

system in S. typhimurium promotes the accumulation of Rab5 and early Endosomal 

fusion (Baldeon, Ceresa et al. 2001). Thus certain pathogens have developed mechanisms 

to escape degradation, persisting within phagosomes by tricking Rab5 sorting and co-

opting the phagosome maturation machinery.     

Figure 3: Pathogenic bacteria mediated subversion of phagocytosis. 

Phagocytic modulation by several pathogenic bacteria such as Mycobacterium spp. and 

Salmonella spp. Mycobacterium spp. successfully arrests early phagosomes from 

maturing into late phagosomes/endosomes whereas, Salmonella spp. replicates inside 

arrested late phagosomes/endosomes.  
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1.4 Pseudomonas aeruginosa: the opportunist 

Pseudomonas aeruginosa is a Gram-negative bacterium belonging to the family 

Pseudomonadaceae and characterized as asporogenous, mono-flageletted bacillus of 

about 1-5 µm long and 0.5-1.0 µm wide. The early reports on P. aeruginosa dates back to 

1862 and its very first successful isolation was documented in 1882 (Lyczak, Cannon et 

al. 2000). Because of the dual sustenance in aerobic and anaerobic environment and 

ability to colonize various environmental niches, P. aeruginosa is ubiquitous in nature 

and widely found in soil, water, animals and plants (Green, Schroth et al. 1974; Falkow, 

Williams et al. 1976; Glazebrook, Campbell et al. 1978).  

1.4.1 Infection and Epidemiology 

Pseudomonas aeruginosa is a true opportunistic nosocomial pathogen that causes 

infection in immune-compromised humans taking advantage of phagocytic and 

immunological defects and is rarely found to cause infection in healthy individuals with 

strong immunity. The pathogen can thrive in any aqueous environment, soil, surface 

waters, sewage, plants, food, leafy vegetables and moist areas in hospital (Bonten, 

Bergmans et al. 1999). This notorious pathogen is a common cause of 1) secondary 

infections in AIDS patients, 2) bacteremia in neutropenic patients and severe burn 

victims in hospitals, 3) chronic lung infection in cystic fibrosis patients (Shields, Pruitt et 

al. 2000), 4) acute ulcerative keratitis among long-term contact lens users, 5) 

osteomyelitis, nerve compromise in diebetic patients, 6) medical device related infections 

and 7) urinary tract infection (Chitkara and Feierabend 1981; Bodey, Bolivar et al. 1983; 

Bendig, Kyle et al. 1987; Franzetti, Cernuschi et al. 1992; Kielhofner, Atmar et al. 1992). 

Pseudomonas aeruginosa also infects plants and causes damage to tomatoes, tobacco, 
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onion, basil and lettuce plants (Elrod and Braun 1942). Mortality associated with P. 

aeruginosa secondary infection is higher compared to other pathogens (Trouillet, 

Vuagnat et al. 2002). It is a leading Gram-negative opportunistic pathogen carrying a 40-

60% mortality rate at medical centers (Britigan, Hayek et al. 1993). The potent pathogen 

attacks up to two-thirds of the critically-ill hospitalized patients. Pseudomonas 

aeruginosa accounts for almost 21% cases of nosocomical pneumonia in patients 

(Schulert, Feltman et al. 2003). Mortality rates in Ventilator-associated pneumonia 

(VAP) caused by P. aeruginosa is about 34-48% (Mavrodi, Ksenzenko et al. 1998) and 

mortality rates in pneumonia patients with compromised immunity has been increased by 

40% (Afessa and Green 2000; Santucci, Gobara et al. 2003). According to a CDC report, 

14% of P. aeruginosa infection in the blood stream are multi-drug resistant (Tacconelli, 

Tumbarello et al. 2002). It complicates 90% of cystic fibrosis deaths (Britigan, Hayek et 

al. 1993). As a result of antibiotic resistance, controlling P. aeruginosa infections is 

difficult and suitable drugs for treatment of the infections are currently limited 

(Endimiani, Luzzaro et al. 2006). 

1.4.2 Role of Pseudomonas aeruginosa virulence factors in immune evasion 

Pseudomonas aeruginosa expresses multiple virulence factors that contribute to its 

pathogenicity, help colonization and facilitate bacterial invasion. The success of this 

pathogen is largely because of the production of a myriad of virulence factors such as 

LasA protease, LasB elastase, pyoverdin, pyocyanin, and alginate as well as by biofilm 

formation (Figure 4). Expression of many of the virulence factors in P. aeruginosa is 

controlled by a quorum-sensing (QS) system. 
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Figure 4: Virulence factors of Pseudomonas aeruginosa. 

Model showing of several virulent factors in Pseudomonas aeruginosa such as surface 

factors includes flagellum, pilus and secreted factors, including extracellular products

such as proteases such as hemolysin, exotoxin A, pyocyanin and catalases, Type III 

secretion proteins, transcription regulators such as las R Rhlr, and exopolysacchararides 

such as alginate. 

1.4.2.1 Surface elements   

Pseudomonas aeruginosa expresses a limited numbers of pili (Figure 4). Pili bind to 

eukaryotic cells, subsequently activating NF-ĸB and proinflammatory gene through a

receptor complex that includes TLR2, and associated kinases in a lipid raft (Soong, 

Reddy et al. 2004). Pseudomonas aeruginosa also produces polar monotrichous flagella 

which are utilized mainly for motility although they seem to be involved in the initial
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stages of pulmonary infection and activate interleukin (IL)-8 production by binding to 

TLR5 on the apical surface of epithelial cells (Adamo, Sokol et al. 2004). 

Lipopolysaccharide (LPS) is another important component of P. aeruginosa and other 

gram-negative bacteria. Environmental isolates of P. aeruginosa typically express 

smooth (typable) LPS as opposed to the strains that have adapted to Cystic Fibrosis (CF) 

lung, which are often nontypable and have a characteristic penta- or hexa-acylated lipid A 

structure which is associated with increased immunogenicity (Ernst, Yi et al. 1999). 

Alginate, polymer of D-mannuronic acid and L-glucuronic acid, is another extracellular 

polysaccharide expressed by CF isolates of P. aeruginosa, and is usually the consequence 

of a bacterial muc mutation and generally pathognomonic for CF isolates of P. 

aeruginosa (Boucher, Yu et al. 1997; Firoved and Deretic 2003). 

1.4.2.2 Type III secretion system (T3SS) 

Type III secretuin system in Gram-negative bacteria helps to secrete and inject toxic 

effector proteins into cytoplasm of eukaryotic host cells. The T3S apparatus is conserved 

between distantly related pathogenic species, but the secreted proteins are completely 

different in each species. Hence only one secretion mechanism can give rise to a 

multitude of diseases. Yersinia spp., Shigella spp., Chlamydia spp., E. coli and some 

plant bacteria prevalently use their T3SS to break down the phagocytosis mediated 

defense and make their way inside to proliferate (Hueck 1998). The T3SS complex 

consists of three components: the secretion apparatus, the translocation apparatus, and the 

secreted toxins (effector proteins) and cognate chaperones (Gauthier, Thomas et al. 

2003). This system is activated on contact with eukaryotic cell membranes. PopB, PopD 



27 
 

and PcrV proteins in P. aeruginosa facilitate the translocation of T3S effectors across 

host cell membrane barrier (Coburn, Sekirov et al. 2007). The secreted molecules 

interfere with the host signal transduction and initiate a biochemical cross talk between 

pathogen and host cells eventually resulting in cell death or alterations in host immune 

responses. Four major Type III Exoenzyme (Exo) proteins have been identified in P. 

aeruginosa (Figure 5). They are ExoS, ExoT, ExoU, and ExoY. Together they contribute 

to colonization, invasion and cytotoxity (Hauser 2009). The Type III secretion (T3S) 

effector ExoS is a bifunctional protein possessing an N-terminal Rho-GTPase-activating 

(Rho-GAP) domain and a C-terminal adenosine diphosphate (ADP)–ribosyltransferase 

(ADPr) domain, shown to induce tumor necrosis factor α (TNF- α) production via 

MyD88-dependent pathway through activation of both TLR2 and TLR4 (Epelman, Stack 

et al. 2004). The T3S effector ExoT is also a bi-functional cytotoxin with 76% homology 

to ExoS. The T3S effector ExoT only shows 0.2% of its activity in vitro compared to 

ExoS (Barbieri and Sun 2004; Shaver and Hauser 2004; Vance, Rietsch et al. 2005; Deng 

and Barbieri 2008). Both ExoS and ExoT modulates host cell and disrupt internalization 

(Shaver and Hauser 2004; Sun, Karmakar et al. 2012). The T3S effector ExoU has been 

characterized as a necrotizing toxin with phospholipase activity (Sato, Frank et al. 2003) 

and it thereby blocked phagocyte-mediated clearance of P. aeruginosa upon 

establishment of infection (Diaz, Shaver et al. 2008). Exoenzyme Y is an adenylate 

cyclase and it facilitates cytoskeleton remodeling and elevated Cyclic Adenosine Mono 

Phosphate (cAMP) levels in cultured mammalian cells (Yahr, Vallis et al. 1998). 

Exoenzyme Y did not appear to play any significant role in P. aeruginosa pathogenesis 

(Shaver and Hauser 2004). The T3SS is integral to clinical disease elicited by P. 
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aeruginosa (Hauser, Cobb et al. 2002). Several small GTPases such as Rho, Rac, Cdc42, 

Ras and adopter protein Crk (CT10-regulator of kinase) are found to be targeted by T3S 

effectors (Deng and Barbieri 2008) suggesting P. aeruginosa mediated disruption of host 

cell trafficking. The prevalence of the T3S phenotype was found to be significantly 

higher in acutely infected patients rather than in chronically infected patients with CF 

(Roy-Burman, Savel et al. 2001). Also in patients with Ventilator-Associated Pneumonia 

(VAP), type III–secreting isolates were associated with severe clinical outcomes (Hauser, 

Cobb et al. 2002), implying the importance of the secretion system in establishing P. 

aeruginosa virulence. 
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Figure 5: Schematic representations of Pseudomonas aeruginosa Type III secretion 
apparatus. 
 
Type III secretion apparatus injects Type III effectors into host cells. ExoS, ExoY, ExoT 

and ExoU are carried from the bacterial cell and delivered into host cell via a needle like 

apparatus. Once inside host cell, ExoU, a phospholipase, shows acute cytotoxic effects, 

ExoY acts as an adenylate cyclase, ExoS and ExoT target and modulate activities of 

several small GTPases. 

1.4.2.3 Quorum sensing 

The quorum-sensing systems control expression of genes important for adaptation to 

the environment by a complex regulatory circuit and cell-to-cell signaling via small 

diffusible molecules called autoinducers (Passador, Cook et al. 1993; Davies, Parsek et 
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al. 1998; Fuqua and Greenberg 2002). Pseudomonas aeruginosa produces two 

autoinducers: N-3-oxododecanoyl homoserine lactone (3-O-C12-HSL, also called PAI-1) 

and N-butyryl-L-homoserine lactone (C4- HSL, also called PAI-2) (Fuqua and Greenberg 

2002; Smith and Iglewski 2003). The activation of the quorum-sensing regulates the 

formation of biofilms which makes conditions more favorable for bacterial persistence at 

the site of infection and colonization. Bacteria in biofilms are stubborn and more difficult 

to eradicate than those in the planktonic form (Drenkard and Ausubel 2002; Lesprit, 

Faurisson et al. 2003). Quorum-sensing molecules have the potential to directly modulate 

the host immune system (Smith, Harris et al. 2002). Quorum-sensing molecules have also 

shown to increase the production of inflammatory cytokines from airway cells (Smith, 

Fedyk et al. 2001; Smith, Kelly et al. 2002) and macrophages (Telford, Wheeler et al. 

1998). 

1.4.2.4 Iron scavenging 

Pseudomonas aeruginosa produces two major siderophores (pyochelin and 

pyoverdin) that bind iron efficiently (Xiao and Kisaalita 1997) and are then taken up by 

the bacteria through specific cell-surface receptors to support metabolic processes and 

control expression of other virulence factors (Meyer, Neely et al. 1996; Vasil and 

Ochsner 1999; Takase, Nitanai et al. 2000; Lamont, Beare et al. 2002). 

1.4.2.5 Other virulence factors 

The production of elastase, alkaline proteases, hemolysins (phospholipase and 

lecithinase), cytotoxin (leukocidin) and diffusible pyocyanin pigments promotes tissue 

invasion. Pseudomonas aeruginosa elastases cleave collagen, IgG, IgA, complement, 

disrupt the integrity of the epithelial as well as degrade surfactant proteins A and D (SP-
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A and SP-D) (Mariencheck, Alcorn et al. 2003). Alkaline proteases inactivate important 

host defense proteins, such as antibodies, complement, IFN-α, and cytokines. 

Phospholipase and lecithinase are hemolysins that break down lipids and lecithin and 

promote invasion by causing cytotoxic effects on host cells (Wilson, Pitt et al. 1987). 

Most P. aeruginosa strains secrete pyocyanin (N-methyl-1-hydroxyphenazine), the 

pigment that gives blue-green color to the bacterial colonies (Denning, Wollenweber et 

al. 1998). The ADP-ribosylating enzyme Exotoxin A enters eukaryotic cells by receptor-

mediated endocytosis and catalyzes the ADP-ribosylation of eukaryotic elongation 

factor-2, consequently inhibiting protein synthesis leading to cellular death (Beattie and 

Merrill 1996; Yates and Merrill 2001). Exotoxin A is highly lethal in animal models of 

infection. 

1.5 Phagocytosis of Pseudomonas aeruginosa 

The protective mechanical barrier of skin and tissue easily controls infection in 

healthy individuals. Once the protective skin barrier is breached, it is convenient for the 

infectious pathogens to enter the blood stream. Healthy humoral response tackles 

intrusive pathogens at a low accumulation level of infection. The resident-mononuclear 

phagocytes provide the first line of defense in both the innate and adaptive immune 

responses to infection. In response to P. aeruginosa infection, macrophages have the 

capacity to ingest bacteria and produce inflammatory mediators that are important for 

host defense. P. aeruginosa is ingested by macrophages in a unique two-step glucose 

dependent process (Speert and Gordon 1992). Depletion of lung macrophages resulted in 

decreased bacterial clearance at 48 hours, suggesting that macrophages are important for 

the coordinated innate immune response to P. aeruginosa infection (Kooguchi, 
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Hashimoto et al. 1998). Macrophages become activated when microbial products bind to 

cell-surface receptors including a variety of Fc receptors, complement receptor 1 and 3, 

macrophage mannose receptor and TLRs (Speert, Wright et al. 1988; Aderem and 

Ulevitch 2000).	
  Phagocytic cells, such as macrophages, neutrophils, and dendritic cells, 

exhibit the expression of the highest levels of TLRs. The TLRs initiate a signal 

transduction cascade that results in the activation of several intracellular pathways, 

leading to activation of MAP kinases, NF-ĸB (Schultz, Knapp et al. 2003). Several 

receptors of TLR family interact with surface components of P. aeruginosa. TLR2 is 

engaged by pili but it may also interact with non-pilus adhesins (Lorenz, Chemotti et al. 

2004). P. aeruginosa flagella initiates signaling through TLR5 and TLR2 (Hauser, Cobb 

et al. 2002; Madrazo, Tranguch et al. 2003) and ExoS of P. aeruginosa may activate 

monocytes by binding to both TLR2 and TLR4 (Epelman, Stack et al. 2004). In addition, 

P. aeruginosa LPS moiety has been shown to signal through TLR4 (Roger, David et al. 

2001; Hajjar, Ernst et al. 2002; Backhed, Normark et al. 2003). The role of myeloid 

differentiation factor 88 (MyD88), which is one of the key adaptor proteins used by 

TLRs, is integral to the initiation of cytokine and inflammatory responses after P. 

aeruginosa infection. A recent study confirmed that MyD88-deficient mice have 

impaired clearance of P. aeruginosa (Power, Peng et al. 2004). The phagocytic response 

against P. aeruginosa also requires the small GTPases Rac1 and Cdc42 (Lee, Cox et al. 

2000). Down regulation of flagellar expression has been co-related with escape from 

phagocytosis and TLR5-driven inflammatory signaling and hence as a survival advantage 

on P. aeruginosa colonization (Mahenthiralingam and Speert 1995). The human 

complement system plays an important role in clearance of pulmonary P. aeruginosa 
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infection during early infection period when bacteria are in contact with the body fluids 

(Gross, Rehm et al. 1978). Deposition of the complement component C3b at the bacterial 

surface induces host responses (Younger, Shankar-Sinha et al. 2003). Pseudomonas. 

aeruginosa secretes catalytic enzymes such as alkaline protease and elastase, which 

degrade the complement activation (Hong and Ghebrehiwet 1992; Schmidtchen, Holst et 

al. 2003) and expresses LPS variants that interfere with C3b deposition at the surface 

(Engels, Endert et al. 1985; Schiller and Joiner 1986). An understanding of the specific 

pathways downstream of individual receptors will provide insights into mechanisms 

involved in the pathogenesis of bacterial infection and may even help develop new 

therapies for immuno-modulation. 

1.6 Antibiotic resistance in Pseudomonas aeruginosa: strategy to overcome the 

challenge 

The emergence of antibiotic resistance among virulent strains of P. aeruginosa is a 

huge impediment in current medical treatment for infected patients. There are limited 

numbers of reliable antimicrobial agents against P. aeruginosa which includes 

penicillins, cephalosporins, carbapenems and particularly ciprofloxacin, a second 

generation fluoroquinolones (Carmeli, Troillet et al. 1999). Often these drugs are 

administered in combination with aminoglycosides as a regimen for treatment of serious 

pseudomonal infections. Unfortunately, for each of these agents, emergence of resistance, 

causing treatment failure has been described during therapy (Quinn, Dudek et al. 1986; 

Milatovic and Braveny 1987; Pechere and Vladoianu 1992; Cometta, Baumgartner et al. 

1994; Fink, Snydman et al. 1994). Clinically significant antibiotic resistance has arisen 

against virtually every antibiotic developed (Clatworthy, Pierson et al. 2007). Recently, 
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many scientists are focusing on therapeutics with alternative approaches which target 

functional pathways of infection, such as virulence factors required to cause host damage 

and disease (Clatworthy, Pierson et al. 2007). Pseudomonas aeruginosa mutants, lacking 

type IV pili or flagellum, were shown to be seriously deficient in causing infections 

(Tang, Kays et al. 1995; Feldman, Bryan et al. 1998). Therefore, antimicrobials that can 

resist pathogenic invasion or establishment of pathogenecity could be highly beneficial 

and the infection could be cleared by the host immune response with little to no side 

effect on the host. An advantage of new antivirulence compounds is that it may impose 

weaker selective pressure for the development of resistance compared to the conventional 

antibiotics (Clatworthy, Pierson et al. 2007). 

1.6 Thesis overview 

The previous background leads to the rationale for this thesis that molecules, which 

orchestrate and regulate phagosomal membrane traffic, are most likely targeted by 

invading pathogens. Pseudomonas aeruginosa, an important opportunistic human 

pathogen, displays a complex pathogenic interaction with immune compromised host. 

The knowledge on P. aeruginosa-host interaction is still poorly understood and holds 

high interest among microbiologists. The advancement of knowledge about detailed 

mechanism adopted by this pathogen to avoid host defense will be critical for drug design 

in the future. The previous studies have not only determined the roles of T3SS in the 

pathogenesis during bacterial infections, but also elucidated their potential to target and 

modify host proteins. However, the mechanism of regulation of host phagocytosis 

remains elusive and far from clear.  
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The first part of this study attempts to address the crucial question, whether 

membrane proteins of early phagosomes are targetted by Type III secretion effectors and 

modified or impaired. 

The aims for the first part of the dissertation are: 

(I) Identify the early phagosomal membrane target(s) of P. aeruginosa Type III secretion 

system. 

(II) Elucidate the molecular mechanisms of the modification. 

In the second part of this study, a general investigation has been applied to imply anti-

microbial properties of a natural compound Dehydroleucodine (DhL) against P. 

aeruginosa pathogenecity. Constant evolution of P. aeruginosa genome developing 

antibiotic resistance has created a demand for antimicrobials with a novel mode of 

mechanism. 

The aim for the second part of the dissertation is: 

(I) To investigate the mode of antimicrobial property of DhL against P. aeruginosa 

virulence factors. 

This thesis is divided into 6 chapters.  

Chapter 1 is the introduction and literature review. Partial content of this chapter has 

been published. 

Chapter 2 elucidates the importance of Rab5, early phagosomal membrane protein, as a 

potential target of ExoS. The Rab5 activity was shown to be compromised at a very early 

stage of phagocytosis. Further analysis revealed that in vivo Rab5 protein is a target of 

ADP-ribosyl transferase activity of ExoS.This chapter has been published  



36 
 

Chapter 3 reveals the effect of ADP-ribosylation of Rab5 in vitro. Rab5-GTP and Rab5-

GDP both could be targeted and modified by ADP-ribosylation. This study also reveals 

an important aspect, that more than one arginine on Rab5 protein could be target of ADP-

ribosylation in vitro. 

Chapter 4 focuses on Rab5 GEF Rin1. Interestingly, Rin1 is a Rab5 GEF as well as Ras 

effector protein. When over-expressed in macrophage cells Rin1 could sequester the 

impaired phagocytic activity and partially establish Rab5 activity during P. aeruginosa 

infection. Ras mediated Rin1 activity as a Rab5 GEF showed beneficial effects on 

macrophage activity in early phagocytic stages. 

Chapter 5 is dedicated to investigating the antivirulence and antimicrobial activity in 

natural plant product DhL. A promising report was generated showing antivirulent 

activity of DhL against P. aeruginosa T3SS, biofilm formation and growth. 

Chapter 6 summarizes the relevance and significance of the above research with future 

possibilities resulting from this study. 
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2.1 Abstract 

Pseudomonas aeruginosa, a Gram-negative opportunistic human pathogen, is a 

frequent cause of severe hospital-acquired infections. Effectors produced by the type III 

secretion system disrupt mammalian cell membrane trafficking and signaling and are 

integral to the establishment of P. aeruginosa infection. One of these effectors, ExoS, 

ADP-ribosylates several host cell proteins, including Ras and Rab GTPases. This current 

study demonstrated that Rab5 plays a critical role during early stages of P. aeruginosa 

invasion of J774-Eclone macrophages. Live, but not heat inactivated, P. aeruginosa 

inhibited phagocytosis, and this occurred in conjunction with down-regulation of Rab5 

activity. Inactivation of Rab5 was dependent on ExoS ADP-ribosyltransferase activity, 

and in J744-Eclone cells, ExoS ADP-ribosyltransferase activity caused a more severe 

inhibition of phagocytosis than ExoS Rho GTPase activity.  Furthermore, the expression 

of Rin1, a Rab5-guanine exchange factor, but not Rabex5 and Rap6, partially reversed 

the inactivation of Rab5 during invasion of live P. aeruginosa. These studies provide 

evidence that live P. aeruginosa are able to influence their rate of phagocytosis in 

macrophages by directly regulating activation of Rab5. 

2.2 Introduction 

Pseudomonas aeruginosa is a Gram-negative opportunistic pathogen capable of 

causing acute and chronic infections in immune-compromised individuals. Pseudomonas 

aeruginosa infection is also a serious problem for patients hospitalized with AIDS, 

cancer, cystic fibrosis, and burns (Pruitt 1974; Mendelson, Gurtman et al. 1994; 

Domingo, Ferre et al. 1998; Maschmeyer and Braveny 2000). The type III secretion 

(T3S) system allows Gram-negative bacteria to produce and translocate effector proteins 
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into the cytoplasm of host cells. While the T3S system is conserved among distantly 

related pathogens, secreted effectors are pathogen specific (Hauser 2009). The secretion 

and translocation T3S effectors into the cytosol of animal or plant cells initiates a 

biochemical cross talk between pathogen and host (Hueck 1998). Four T3S effectors 

have been identified in P. aeruginosa: ExoS, ExoT, ExoU, and ExoY. Each effector 

functions differently to help create an environment inside the human host that favors 

bacterial survival and propagation in tissue.  

The T3S effectors contribute to the ability of P. aeruginosa to invade tissue by 

breaking down physical barriers, damaging host cells, and conferring resistance to 

phagocytosis and host immune defenses (Lyczak, Cannon et al. 2000; Soong, Parker et 

al. 2008). Specifically, ExoS and ExoT are bi-functional effectors that have 76% 

homology and both include Rho GTPase activating (GAP) and ADP-ribosyltransferase 

(ADPr) activities (Barbieri and Sun 2004). The GAP activity of ExoS and ExoT functions 

similarly to inhibit P. aeruginosa internalization by inactivating Rho GTPases, Rho, Rac 

and Cdc42 that regulate actin cytoskeleton structure (Frithz-Lindsten, Du et al. 1997; 

Goehring, Schmidt et al. 1999; Cowell, Chen et al. 2000; Krall, Schmidt et al. 2000; 

Rocha, Coburn et al. 2003; Deng and Barbieri 2008). ExoS ADPr activity targets multiple 

specific substrates, including Ras-family proteins, such as Ras, RalA, Rac1 and Rabs to 

interrupt cell signaling (McGuffie, Frank et al. 1998; Fraylick, Riese et al. 2002; 

Henriksson, Sundin et al. 2002). The substrate specificity of ExoT ADPr activity differs 

from ExoS and is limited to Crk (CT10 regulator of kinase)-I, and Crk-II adaptor proteins 

that integrate protein tyrosine kinase signal transduction pathways (Liu, Yahr et al. 1997; 

Sun and Barbieri 2003; Deng, Sun et al. 2005). ExoU has been characterized as a 
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necrotizing toxin with phospholipase activity (Sato, Frank et al. 2003) and has been 

found to block phagocyte-mediated clearance of infection (Diaz, Shaver et al. 2008). 

ExoY has adenylate cyclase activity and does not appear to play a major role in P. 

aeruginosa pathogenesis (Yahr, Vallis et al. 1998; Vance, Rietsch et al. 2005).  

The Rab proteins, including Rab5, Rab7, Rab8 and Rab11, are known to be ADP-

ribosylated by ExoS in vitro and in vivo (Fraylick, Rucks et al. 2002). The Rab proteins 

are a family of small GTP-binding proteins that regulate intracellular membrane 

trafficking of several pathogens, including Salmonella typhimurium (Mukherjee, 

Parashuraman et al. 2001; Madan, Krishnamurthy et al. 2008; Mallo, Espina et al. 2008), 

Mycobacterium spp. (Clemens, Lee et al. 2000), and Listeria monocytogenes (Alvarez-

Dominguez, Barbieri et al. 1996). The Rab5 protein also functions in the phagocytosis of 

IgG opsonized particles (Duclos, Diez et al. 2000). In vitro studies have demonstrated 

that ExoS ADP-ribosylation of Rab5 diminishes the interaction between Rab5 and early 

endosome antigen 1 (EEA1) and fluid-phase uptake in intact cells Rab5 and its guanine 

exchange factors (GEFs), which include Rabex-5, Rin1 and Rap6 (also known as 

GAPex5) (Haas, Fuchs et al. 2005; Hunker, Galvis et al. 2006; Goh, Uchida et al. 2007; 

Olchowik and Miaczynska 2009), play a critical role in intracellular membrane 

trafficking (Stenmark, Parton et al. 1994), including phagocytosis of apoptotic cells 

(Nakaya, Tanaka et al. 2006). Although Rab5 was found to be present on phagosomes 

following phagocytosis of several bacterial pathogens and latex beads, the functional role 

for Rab5 in phagocytosis of P. aeruginosa is not fully understood. 

This current study revealed that Rab5 activity was regulated during early stages of P. 

aeruginosa phagocytosis in J774-Eclone macrophages. Expression of wild-type Rab5 
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(Rab5:WT) or a Rab5:Q79L, a GTP-hydrolysis defective mutant, increased invasion of 

heat-inactivated P. aeruginosa, while expression of Rab5:S34N, a GTP-binding defective 

mutant, decreased phagocytosis. Rab5 was activated during invasion of heat-inactivated 

P. aeruginosa, but inactivated during invasion of live P. aeruginosa. Expression of 

constitutively active Rab5:Q79L, overcame suppressive effects of live P. aeruginosa on 

phagocytosis. Inactivation of Rab5 by live P. aeruginosa was dependent on ExoS ADPr 

activity, and in J774-Eclone cells ExoS ADPr activity caused a more severe inhibition of 

phagocytosis than ExoS GAP activity. Finally, it was found that the expression of Rin1, a 

Rab5-GEF, interfered with the ability of live P. aeruginosa to inactivate Rab5. The 

ability of live P. aeruginosa to regulate phagocytosis by altering Rab5 activation 

provides further insight into how P. aeruginosa is able to manipulate the host during 

infection. 

2.3 Materials and Methods 

2.3.1 Materials  

All chemicals and reagents were purchased from Sigma-Aldrich (Saint Louis, MO), 

unless otherwise indicated. Primary and secondary antibodies used in immunoblotting 

were purchased from Cell Signaling Technology Inc. (Danvers, MA). Culture supplies 

were purchased from Invitrogen life technologies (Carlsbad, CA). 

2.3.2 Cell culture  

The J774 E-clone cells (Diment, Leech et al. 1987) was kindly provided by Dr. Philip 

Stahl (Washington University Medical School, St Louis, MO) were maintained under a 

5% CO2 atmosphere in Dubelco’s minimum essential medium (DMEM), supplemented 

with 10% heat-inactivated fetal calf serum (FCS), 2mM L-glutamine, 100 Units/mL 
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penicillin, 100 µg/mL of streptomycin. J774-Eclone cells were used for all P. aeruginosa 

phagocytosis studies. Platinum-E retroviral packaging cell line (Plat-E cells) were 

purchased from Cell Biolabs, Inc. (San Diego, CA) and maintained in DMEM, 10% FCS, 

1 µg/mL puromycin, 10 µg/mL blasticidin, 100 Units/ mL penicillin, 100 mg/mL of 

streptomycin. 

2.3.3 Bacteria strains  

Pseudomonas aeruginosa strains PAO1 (derivative of original Australian isolate 

PAO), PA103, which expresses ExoT and ExoU and naturally devoid of ExoS and 

ExoY), and isogenic mutants of strain PA103 including: PA103∆ExoU (PA103∆U), 

which expresses ExoT, and PA103 exoU exoT::Tc (PA103∆T∆U) a T3S effector null 

mutant, were provided by Dara Frank (Medical College of Wisconsin, Milwaukee, WI). 

P. aeruginosa strains P103∆U∆T expressing:1) the pUCP vector (-), 2) wild-type ExoS 

(WT), 3) ExoS with active RhoGAP (RhoG+) but lacking ADPr activity due to 

E379A/E381A mutations, 4) ExoS with active ADPr activity (ADPr+) but lacking 

RhoGAP activity due to a R146A mutation, or 5) ExoS that lacks catalytic activity 

(RhoG-/ADPr-) due to E379A/E381A/R146A mutations, were previously described 

(Bridge, Martin et al. 2012). Bacteria were grown at 37°C in Lauria Broth with 

appropriate antibiotics. Prior to assay of phagocytosis, bacteria were grown to late-log 

phase and diluted to a concentration of 107 cfu/ml, and added to cells at indicated MOIs. 

2.3.4 Construction of recombinant pMX-puro retroviruses and cell lines  

The cDNAs of Rab4, Rab5, Rab7, Rin1, Rabex5 and Rap6 were subcloned into the 

pMX-puro vector as described (Barbieri, Fernandez-Pol et al. 2004). The cDNA of ExoS 

and ExoS deletion mutants containing RhoGAP (1 to 232 amino acids, ExoS:rRhoG) or 
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ExoS ADPr (232 to 453 amino acids, ExoS:ADPr) domains were subcloned into the 

pMX-puro vector at BamH1 and Not1 sites, respectively. The cDNAs were used in the 

FUGENE6-mediated transfection of 90% confluent Plate-E cell monolayers. Cells were 

maintained at 37°C, and the medium containing released virus was harvested 48 hour 

after transfection. Viral stocks were aliquoted and frozen at −80°C until use. Cell lines 

were generated by infecting J774-Eclone cells with retrovirus encoding GFP, Rab4, 

Rab5, Rab7, Rin1, Rabex5, Rap6 and ExoS domains, essentially as previously described 

(Barbieri, Fernandez-Pol et al. 2004). 

2.3.5 Phagocytosis assay  

Pseudomonas aeruginosa strains were cultured to late-log phase, washed with 

phosphate buffered saline (PBS, pH 7.3) and then with NaHCO3, pH 9, three times, 

respectively. After washing, Alexa fluor-594 (Invitrogen, Carlsbad, CA) was used to 

label live or heat-inactivated bacteria for 2 hours at room temperature while protected 

from light. J774-Eclone cells (105 cells/ml) were plated on coverslips in 6-well plates and 

incubated overnight. Cells were washed once with PBS and then twice with Hanks 

balanced salt solution-2% BSA. Bacteria were added at a ratio of 200:1 and incubated for 

30 minutes at 4°C. To initiate bacterial internalization, plates were placed in a 37°C water 

bath for 5 to 60 minutes. After this time, cells were placed on ice and washed three times 

with PBS, and then fixed for 20 minutes at room temperature using 3.7% 

paraformaldehyde. After fixation, cells were washed three times with PBS, incubated 

with 1% Triton X-100 at room temperature for 15 minutes, and incubated with 4',6-

diamidino-2-phenylindole (Roche Applied Science, Indianapolis, IN) to stain the nucleus. 

Coverslips were removed from the wells, washed and mounted with Mowiol fluorescence 
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mounting medium. The number of bacteria per cell was enumerated at 100X 

magnification using a phase-contrast inverted fluorescent microscope. Two hundred cells 

were counted per slide, and each experiment was repeated three times. The phagocytic 

index refers to the number of bacteria inside each cell. An antibiotic protection assay, 

described by Goldova et al. , (Angus, Evans et al. 2010) was used to analyze bacterial 

survival within macrophages. For this assay, following the indicated time of 

phagocytosis, cells were washed 3 times with PBS, and extracellular bacteria were killed 

by incubating cells with growth medium containing Amikacin (400 µg/ml). After 

washing, cells were incubated at 37°C for an additional 30 and 60 minutes to examine 

bacterial survival within macrophages. Finally, cells were washed with PBS, lysed with 

0.5% TritonX-100, and lysates were plated on LB-agar, incubated overnight and bacterial 

colonies were enumerated. 

2.3.6 Isolation of Purified Phagosomes  

Phagosome containing live or dead P. aeruginosa was isolated as described by 

Mukherjee et al. , (Mukherjee, Parashuraman et al. 2001). Briefly, J774E-clone cells were 

seeded at 1 x 108 cells/ml, and live or heat-inactivated P. aeruginosa were added to cells 

at a concentration of 2 x 109 bacteria/ml, followed by synchronization of cells and 

bacteria at 4°C for 1 hour in HBSS buffer (Mukherjee, Parashuraman et al. 2001). Cells 

were then treated with pre-warmed HBSS medium and incubated for 5 minutes at 37°C. 

Bacterial uptake was stopped by the addition of ice-cold HBSS medium. Unbound 

bacteria were removed by washing cells three times, centrifuging at low speed (300 x g 

for 5 minutes) between washes. Washed cells were resuspended at a concentration of 2 x 

108 cells/ml in homogenization buffer (250 mM sucrose, 0.5 mM EGTA, 20 mM 
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HEPES-KOH, pH 7.2) and homogenized in a ball bearing homogenizer at 4°C. 

Homogenates were centrifuged at a low speed (400 x g for 5 minutes) at 4°C to remove 

nuclei and unbroken cells. To obtain the phagosomal fraction, post-nuclear supernatants 

were diluted with homogenization buffer (1:3), followed by centrifugation at 12,000 x g 

for 15 s at 4°C (Mukherjee, Parashuraman et al. 2001). Phagosomal fractions were 

resuspended in 100 ml of homogenization buffer containing protease inhibitors, loaded 

on a 1 ml 12% sucrose cushion, centrifuged at 800 x g for 45 minutes at 4°C, and purified 

phagosomes were recovered from the bottom of the tube. Bacterial viability in the 

phagosomes was determined following selective lysis of the phagosomal membrane with 

solubilization buffer (50 mM Tris-HCl, 150 mM NaCl and 0.5% NP40) and plating 

lysates on LB-agar plates. Bacterial colonies formed after overnight incubation were 

quantified as previously described (Goldova, Ulrych et al. 2011). 

2.3.7 Cell lysis and immunoblotting  

For immunoblot analysis, J774-Eclone cells were washed twice with PBS and then 

lysed with RIPA cell lysis buffer (50 mM Tris-HCl, 150 mM NaCl, 0.1 % SDS, 0.5 % 

sodium deoxycholate, 1% NP40) in the presence of protease and phosphatase inhibitors. 

Lysates were collected with cell scrapers and cleared by centrifugation. Prior to SDS-

PAGE, cell lysates were resuspended in SDS sample buffer (60 mM Tris–HCl, 1% (w/v) 

SDS, 10% glycerol, 0.05% (w/v) bromophenol blue, pH 6.8, with 2% β-

mercaptoethanol). Samples were subjected to SDS-PAGE and transferred to 

nitrocellulose membranes for immunoblotting. Nitrocellulose membranes were incubated 

with blocking solution (TBS containing 0.1% Tween 20 and 5% BSA) and were probed 

with the indicated antibodies. 
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2.3.8 RNAi constructs and transfection  

The RNAi  directed against:  

mouse Rin1 [5'-UUAUACAUUUGCUUCACACCUAAGC-3'],  

mouse Rabex5 [5’-UUUAUAGAGACGCGUCAUGAUGUGC-3'],  

mouse Rap6 [5'-AAGAATCGATTACCTATAGCA-3'],  

mouse Rab5A [5'-AAGCACAGTCCTATGCAGATG-3'],  

mouse Rab5B [5'-AATCCGTGTGTTTAGATGACA-3'], or  

mouse Rab5C [5'-AAGCAGCCATTGTGGTCTATG-3'] were designed and synthesized 

by Ambion (Austin, TX). A scrambled RNAi was designed as a control [5'-

CACCUAAUCCGUGGUUCAA-3']. Prior to RNAi transfection, J774-Eclone cells were 

plated in growth medium without antibiotics at 30-50% confluency. RNAi (20 nM final 

concentration) transfection was performed using Lipofectamine-2000 (Invitrogen, 

Carlsbad, CA), as specified by Invitrogen. After transfection, cells were used either for 

immunoblotting, phagocytosis or pull-down assays. 

2.3.9 In vitro pull down assays  

Cells were lysed using a buffer containing 20 mM HEPES (pH 7.5), 100 mM NaCl, 1 

mM DTT, 5 mM MgCl2, 5% glycerol and 1% Triton-X-100, supplemented with 1 mM 

PMSF. Lysates were incubated with 100 ml glutathione beads containing 10 µg of GST-

EEA1, followed by rocking for 1 hour at 4°C.  After incubation, beads were washed three 

times with PBS. The pull-downs were subjected to SDS-PAGE and analyzed by 

immunoblotting using Rab5 antibodies.  
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2.3.10 Image quantification  

The NIH Image J64 was used to quantify Western blots after images were scanned at 

a grayscale amplification of 600 dpi. Digital images of the Western blot from cell lines 

were captured and loaded into Image J64, and Rab5 specific bands, along with α-tubulin 

bands, were assessed in each sample using the Analyze → Gels function, which allows 

for background correction. The ratio of Rab5 signal to α-tubulin was calculated for each 

sample and served as an index of Rab5 expression. The index of expression for other 

proteins examined in this study was derived in a similar manner. 

2.3.11 Statistical analysis  

All samples in this study were analyzed in duplicate and each experiment was 

repeated three times. Values represent the mean ± SEM of three independent 

experiments. To compare two groups, student’s t test was utilized. P < 0.05 was 

considered as statistically significant. 

2.4 Results 

2.4.1 Rab5 is required for phagocytosis of heat-inactivated Pseudomonas aeruginosa 

by macrophages. 

Previous studies have found that Rab GTPases, including Rab5, are manipulated by 

bacteria during phagocytosis (Brumell and Scidmore 2007). To investigate the 

involvement of Rab GTPases in P. aeruginosa phagocytosis, the pMX-puro retroviral 

expression system was used to express Rab proteins in J774-Eclone macrophages. 

Initially, to examine if the retroviral expression system altered phagocytosis of P. 

aeruginosa, control (non-transfected) or GFP transfected J774-Eclone cells were 

incubated at 37°C with heat-inactivated strain PAO1 P. aeruginosa at a ratio of 200:1, 
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and the phagocytic index was monitored (as described in Materials and Methods) over a 1 

hour period. Figure 1A shows that the rate of phagocytosis of heat-inactivated P. 

aeruginosa was not altered in GFP-expressing cells, as compared with non-transfected 

control cells. Similarly, the phagocytic index of heat-inactivated P. aeruginosa was not 

altered relative to increasing ratio of bacteria to cells in GFP-expressing cells, as 

compared with non-transfected control cells (Figure 6A, inset). Therefore, results from 

these studies concluded that phagocytosis of heat-inactivated P. aeruginosa by J774-

Eclone macrophages was time and bacterial concentration dependent and not altered by 

the pMX-puro retroviral expression system (P>0.05). 

Next, the effect of increased expression of Rab5 proteins on phagocytosis of heat-

inactivated P. aeruginosa by J774-Eclone macrophages was examined. Cells expressing 

GFP alone, GFP-wild-type Rab5 (Rab5:WT), GFP-Rab5:Q79L (QL), a constitutively 

active GTP-hydrolysis defective mutant, or GFP-Rab5:S34N, a constitutively inactive 

GTP-binding defective mutant were incubated with heat-inactivated P. aeruginosa, and 

the phagocytic index was monitored over a 60 minutes period. Expression of Rab5:WT 

and the Rab5:Q79L mutant increased the rate of phagocytosis of heat-inactivated P. 

aeruginosa, in relation to internalization of GFP-expressing control cells at 60 minutes 

(Figure 6B).  In comparison, expression of the Rab5:S34N mutant decreased (P<0.05) 

the rate phagocytosis of heat-inactivated P. aeruginosa, as compared to GFP-expressing 

cells (Fig. 1B). Enhanced expression of the indicated Rab5 construct was confirmed by 

immunoblot analysis in lysates of J774-Eclone cells, using tubulin as a reference protein 

(Figure 6B, inset).  
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To examine the role of other Rab GTPases in P. aeruginosa phagocytosis, cells 

expressing GFP alone, Rab7:WT, the Rab7:Q67L GTP-hydrolysis defective mutant, or 

the Rab7:S22N GTP-binding defective mutant, were incubated with heat-inactivated P. 

aeruginosa and monitored for phagocytosis over a 60 minutes period. The phagocytic 

index of J744-Eclone cells expressing Rab7:WT and Rab7:Q67L was greater than that of 

GFP-expressing cells after 30 min, while phagocytosis in cells expressing Rab7:S22N 

was halted beyond 15 minutes (Figure 6C) (P<0.05). Enhanced expression of the 

respective Rab7 construct in transfected J774-Eclone cells was confirmed by immunoblot 

analysis (Figure 6C, inset). Unlike Rab5 or Rab7, phagocytosis of heat-inactivated P. 

aeruginosa was not altered by transfection of Rab4 constructs. In analyses of Rab4, the 

relative phagocytic index of J774-Eclone cells after 30 minutes was: 1) GFP, 100 ± 7%; 

2) Rab4:WT, 103 ± 6%; 3) Rab4:Q67L, 98 ± 5%; and 4) Rab4:S22N, 95 ± 5%. 

Also, the effect of depletion of Rab5 proteins by RNA interference (RNAi) on the uptake 

of heat-inactivated P. aeruginosa was investigated. Based on immunoblot analysis, 

greater than 95% of Rab5 protein was depleted by RNAi duplexes that targeted all three 

Rab5 isoforms (Figure 6D, inset). Depletion of all, but not individual Rab5 isoforms (data 

not shown), resulted in 80 ± 6% reduction of internalization of heat-inactivated P. 

aeruginosa, when compared with non-RNAi treated or scramble RNAi treated control 

cells (Figure 6D). 

Collectively, these results show that Rab5 regulates early events in the phagocytosis 

of heat-inactivated P. aeruginosa, and that effects of Rab5 differ kinetically from those of 

Rab7 on P. aeruginosa internalization. In addition, the finding that constitutively active 

Rab5:Q79L increased the rate of phagocytosis while Rab5:S34N decreased the rate of 
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phagocytosis provides evidence that Rab5 activation plays a role in the uptake of heat-

inactivated P. aeruginosa in J774-Eclone macrophages. 

2.4.2 Live Pseudomonas aeruginosa blocks Rab5 activation in macrophages. 

Evidence that Rab5 plays a role in phagocytosis of heat-inactivated P. aeruginosa led 

to investigate the role of Rab5 during phagocytosis of live P. aeruginosa. Unexpectedly, 

internalization of live (L) strain PAO1 into J774-Eclone macrophages was found to be 75 

± 4% lower than internalization of heat-inactivated or dead (D) P. aeruginosa after 5, 15 

or 30 minutes of infection. 

Further investigation revealed if enhanced expression of Rab5 proteins could 

overcome suppressive effects of live P. aeruginosa on phagocytosis. For these studies 

J774-Eclone cells expressing a GFP control or Rab5:WT, Rab5:Q79L, or Rab5:S34N 

were incubated with live or heat-inactivated P. aeruginosa and phagocytosis was 

analyzed after 15 minutes. A decrease in the internalization of live P. aeruginosa was 

observed in cells expressing GFP alone, Rab5:WT, or Rab5:S34N, when compared to 

internalization of heat-inactivated P. aeruginosa (Figure 7B). However, in the cells 

expressing Rab5:Q79L, internalization of live P. aeruginosa closely approximated that of 

the heat-inactivated P. aeruginosa. Phagocytosis of live P. aeruginosa was also inhibited 

by silencing all Rab5 isoforms (Figure 7C), but not by silencing individual Rab5 isoforms 

(data not shown). Collectively, these results demonstrate that Rab5 exerts different 

effects on the internalization of live or heat-inactivated P. aeruginosa, and that these 

differences are nullified by the expression of constitutively activated Rab5. The finding 

that interference of expression of all, but not individual Rab5 isoforms, inhibits 
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phagocytosis of live P. aeruginosa also highlights the cooperative and redundant 

regulation of P. aeruginosa phagocytosis by the three Rab5 isoforms. 

Since the cycling of Rab5 between active and inactive states is integral to P. 

aeruginosa internalization, the question remains whether Rab5 activation is regulated by 

live P. aeruginosa as a defense mechanism against phagocytosis. To explore the ability 

of live P. aeruginosa to regulate Rab5 function, the phagosomes carrying live or heat-

inactivated P. aeruginosa during early phagocytosis were first characterized. For these 

studies, cells were incubated with live or heat-inactivated strain PAO1 for 5 minutes at 

37°C, and phagosomes containing P. aeruginosa were isolated and analyzed. Figure 8A 

shows that phagososomes containing live or heat-inactivated P. aeruginosa both recruited 

Rab5 protein on the phagosomal membrane, but that Rab5 accumulation was 

significantly reduced in phagososomes containing live P. aeruginosa. Notably, Rab7 was 

not detected on phagosomes isolated after 5 minutes of internalization (Figure 8A). A 

representative image showing relative levels of Rab5 and Rab7, in phagosomes, in 

relation to tubulin and actin reference proteins, is shown in Figure 8A, inset.  

 The reduced accumulation of Rab5 on phagosomes containing live P. aeruginosa 

correlated with inhibition of Rab5 activation was also determined. In these studies, J774-

Eclone macrophages were incubated with live or heat-inactivated P. aeruginosa for 5 

minutes at 37°C, and active Rab5 in total cell lysates was assayed using a GST-EEA1 

glutathione bead pull-down assay, detecting active GTP-Rab5 bound to EEA1 by 

immunoblot analysis using an anti-Rab5 antibody. As shown in Figure 8B, incubation 

with live but not with heat-inactivated P. aeruginosa, significantly inhibited Rab5 

binding to GST-EEA1. A representative immunoblot (Figure 8B, inset) shows lack of 
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binding of lysates from live, but not heat-inactivated P. aeruginosa treated cells to GST-

EEA1, in relation to total Rab5 and GST proteins in lysates. 

To examine the influence of live P. aeruginosis on activation of Rab5 during 

phagocytosis, J774-Eclone cells expressing Rab5:WT or the Rab5:Q79L constitutively 

mutant were incubated with live or heat-inactivated P. aeruginosa for 5 minutes at 37°C, 

and total lysates were analyzed for active GTP-Rab5 using the GST-EEA1 pull-down 

assay. As shown in Figure 8C, incubation of cells with live P. aeruginosa, but not with 

heat-inactivated P. aeruginosa, inhibited Rab5 activation, and this inhibition was 

nullified by expression of constitutively active Rab5:Q79L. These results are shown in 

the representative immunoblot (Figure 8C, inset). Together, these studies demonstrate 

that live P. aeruginosa regulate both recruitment and activation of Rab5 to early 

phagosomes. 

2.4.3 Exotoxin S plays a critical role in Rab5 activation during phagocytosis of 

Pseudomonas aeruginosa. 

Results show that phagocytosis of live P. aeruginosa by macrophage down-regulates 

Rab5 activation. Previous studies found that ExoS can ADP-ribosylate Rab5 (Fraylick, 

Rucks et al. 2002; Henriksson, Sundin et al. 2002)  and in vitro studies confirmed that 

ADP-ribosylation of Rab5 by ExoS interfered with its interaction with EEA1 (Barbieri, 

Sha et al. 2001). These findings imply the ability of ExoS to interfere with endosomal 

tethering during P. aeruginosa phagocytosis. To determine the relationship between 

ExoS expression and Rab5 activation during phagocytosis, P. aeruginosa strains lacking 

ExoS were compared with strain PAO1, which expresses ExoS, ExoT and ExoY, for their 

ability to interfere with Rab5 activation during phagocytosis. Pseudomonas aeruginosa 
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strains that were examined include: 1) PA103, lacks ExoS but expresses ExoT and ExoU; 

2) PA103∆U, lacks ExoS, ExoY and ExoU, and 3) PA103∆T∆U, lacks all known T3S 

effectors. 

When internalization of live or heat inactivated P. aeruginosa was examined 

following incubation of J774-Eclone cells with these strains for 15 minutes, significant 

differences were observed in the internalization of live strains, whereas the phagocytic 

response was uniform for all the heat-inactivated strains (Figure 9A). Live PAO1, which 

produces ExoS, caused the greatest inhibition of phagocytic uptake (75 ± 4%) relative to 

heat inactivated strain PAO1. In comparison, live strain PA103, expressing ExoT and 

ExoU, inhibited phagocytosis by 40 ± 6%, which closely approximated the 34 ± 6% 

inhibition of phagocytosis caused by live strain PA103∆U that expresses only ExoT.  

Live strain PA103∆T∆U, lacking all four T3S effectors, caused a 15 ± 3% inhibition of 

phagocytosis. These results provide evidence that ExoS and ExoT, produced by strain 

PAO1, have a more pronounced role than ExoT alone, and produced by strain PA103, in 

inhibiting phagocytosis in J774-Eclone macrophages. 

When the fate of bacteria internalized within J774-Eclone macrophages was 

examined, strain PA103 was found to be more sensitive to macrophage-mediated killing 

than strain PAO1. A 53±6% and 17±3% survival rate was detected for internalized strain 

PA103, after 30 and 60 minutes, respectively, which compared with a 75±5% and 58±5% 

survival rate for internalized strain PAO1, after 30 minutes and 60 minutes, relative to the 

total internalized bacteria after 15 minutes of phagocytosis (control 100±5%)  

Another approach revealed how the uptake and survival of PA103 and PAO1 strains 

within macrophages are related to the ability of these strains to alter Rab5 activity. For 



75 
 

these studies, cells were incubated with live or dead P. aeruginosa strains, and cell 

lysates were examined for active GTP-bound Rab5 in the GST-EEA1 pull-down assay, 

described earlier. As shown in Figure 4B, incubation of cells with strain PAO1, but not 

with strain PA103, inhibited Rab5 activation, and as expected, internalization of heat-

inactivated P. aeruginosa did not alter Rab5 activation. Interestingly, strains PA103 and 

PA103∆U that express ExoT did not inhibit Rab5 activation (Figure 9B), even though 

these strains inhibited P. aeruginosa internalization (Figure 9A). A representative 

immunoblot (Figure 9B, inset) shows lack of binding of J774-Eclone lysates obtained 

following exposure to live PAO1 to GST-EEA1, while all other lysates bound GST-

EEA1. These results indicate that inhibition of J774-Eclone phagocytosis by ExoS 

producing strain PAO1 occurs in conjunction with inhibition of Rab5 activation, while 

inhibition of phagocytosis by ExoT producing PA103 stains occurs independently of 

alterations in Rab5 activation. 

Several approaches were then used to further investigate the role of ExoS and Rab5 

activation in the invasion of live P. aeruginosa in J774-Eclone cells. First, to assess the 

role of ExoS in P. aeruginosa internalization, PA103 ΔUΔT strains lacking ExoS(-), 

expressing ExoS (WT) or expressing ExoS with mutations that inactivate its GAP 

(ADPr+), its ADPr (RhoG+), or its GAP and ADPr activities (ADPr-/RhoG-) were 

subjected to phagocytosis by J774-Eclone macrophage. For these studies, cells were 

incubated with each of these live P. aeruginosa strains for 5 minutes, prior to washing 

and determination of the phagocytic index. As shown in Figure 10A, greater than 80% 

inhibition was observed in the uptake of live PA103 ΔUΔT expressing either ExoS (WT) 

or the ExoS (ADPr+) mutant as compared to PA103 ΔUΔT either lacking ExoS (-) or 



76 
 

expressing an ExoS (ADPr-/RhoG-) mutant. A significant but less pronounced inhibition 

of phagocytosis (~40%) was caused by live PA103 ΔUΔT expressing an ExoS (RhoG+) 

mutant. These results provide evidence that ExoS (ADPr) activity plays a more 

pronounced role in the anti-phagocytic activity of live PA103 ΔUΔT expressing ExoS 

than ExoS (RhoG) activity. 

The anti-phagocytic effects of these strains were also investigated in relation to the 

formation of GTP-bound Rab5 during the invasion of live P. aeruginosa. A significant 

decrease (> 90% inhibition) in the formation of the GTP-bound form of Rab5 was caused 

by live PA103 ΔUΔT expressing ExoS (WT) or an ExoS (ADPr+) mutant, as compared 

to PA103 ΔUΔT expressing an ExoS (ADPr-/RhoG-) mutant (Fig. 5B). Notably, PA103 

ΔUΔT expressing an ExoS (RhoG+ mutant) did not inhibit formation of the GTP-bound 

form of Rab5 (Figure 10B), indicating that the ADPr domain of ExoS is essential to 

inactivation of Rab5 during phagocytosis of live P. aeruginosa. 

The role of ExoS and ExoS domains in Rab5 activation upon co-expression of both 

Rab5 and ExoS constructs in J774-Eclone macrophages were further examined. As 

shown in Figure 10C, when GTP-bound Rab5 cells was assayed in J774-Eclone cells 

expressing Rab5:WT or the Rab5:Q79L mutant and transiently co-transfected with ExoS, 

cells expressing both Rab5:WT and ExoS failed to produce GTP-bound Rab5, but 

activated GTP-bound Rab5 was detected in cells co-expressing constitutively active 

Rab5:Q79L and ExoS. When the effects of the individual ExoS domains on activation of 

Rab5 were examined, Rab5 activation was inhibited in cells expressing Rab5:WT and the  

ExoS-ADPr (rADPr) domain, while co-expression Rab5:WT with ExoS-RhoGAP 

(rRhoG) did not interfere with Rab5 activation (Figure 10D). Collectively, these results 
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are consistent ExoS ADP-ribosylation of Rab5 during infection with live P. aeruginosa 

leading to inactivation of Rab5 and interference of phagocytosis of P. aeruginosa. 

2.4.4 Selective role of Rab5-GEFs during internalization of Pseudomonas 

aeruginosa. 

The switching of Rab5 between its GTP-active and GDP-inactive form is regulated 

by Rab5-GEFs including, Rin1, Rabex5 and Rap6. Since P. aeruginosa expressing ExoS 

ADPr activity was found to inhibit Rab5 activation in J774-Eclone macrophage, hence it 

was hypothesized that the expression of Rab5-GEFs may overcome the inhibitory effect 

of live P. aeruginosa on Rab5 activation and P. aeruginosa invasion. 

To test this hypothesis, cells expressing GFP, Rin1, Rabex5, or Rap6 were incubated 

in the presence of live or heat-inactivated strain PAO1, and P. aeruginosa internalization 

was assayed after 15 minutes. As shown in Figure 11A, internalization of live and heat-

inactivated P. aeruginosa was increased in Rin1 over-expressing cells, as compared to 

GFP-control cells. Over-expression of Rap6 also increased the internalization of live and 

heat-inactivated, but to a lesser extent than that of Rin1. In contrast, over-expression of 

Rabex5 did not significantly alter internalization of live or dead P. aeruginosa. 

Phagocytosis of live or dead P. aeruginosa did not alter the expression of Rab5-GEFs 

constructs (Figure 11B).  

To further examine the role of Rab5-GEFs in P. aeruginosa internalization, the 

expression of Rab5-GEFs was suppressed by using RNAis specific for Rin1, Rabex5 or 

Rap6. Interference of Rin1 expression caused a >60% inhibition of internalization of live 

or heat-inactivated P. aeruginosa, as compared to GFP-control cells (Figure 11C and D). 

In comparison, interference of Rabex5 and Rap6 expression caused only a small decrease 
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in internalization of live or heat- inactivated P. aeruginosa, as compared to GFP-control 

cells. Interference of expression of all three Rab5-GEFs, using a triple knockdown, 

caused >80% inhibition of internalization of live or heat-inactivated P. aeruginosa. 

Treating cells with each RNAi depleted more than 95% of the targeted protein (Figure 

11E-G). These results implicate the ability of Rin1 to enhance invasion of live or heat-

inactivated P. aeruginosa in J774-Eclone macrophages.  

2.4.5 Rin1 expression partially reverses the negative effect of Pseudomonas 

aeruginosa on Rab5 activation in macrophages. 

Establishment of the a role of Rin1 in the internalization of live or dead P. aeruginosa 

led to the hypothesis that activation of Rab5 by Rin1 may, at least in part, be responsible 

for enhancing the internalization of live P. aeruginosa. To determine whether Rin1 

activity increases internalization of live P. aeruginosa, J774-Eclone cells expressing 

GFP, Rin1, Rabex5, or Rap6 were incubated in the presence of live or heat-inactivated 

strain PAO1 P. aeruginosa for 5 minutes, and then examined the formation of the GTP-

bound form of Rab5 using a GST-EEA1 pull-down assay. Figure 12, shows that Rin1 

expression increased the amount of active GTP-bound Rab5 formed during the 

internalization of live or heat-inactivated P. aeruginosa. This is consistent with the 

observation that the expression of Rin1 increased the internalization of live or heat-

inactivated P. aeruginosa (Figure 10A). 

Interestingly, when Rabex5 or Rap6 expressing J774-Eclone cells were incubated 

with live P. aeruginosa, a small amount of GTP-bound Rab5 in the GST-EEA1 pull-

down assay was observed for only Rap6 expressing E-clone cells, but the increase in the 

Rab5 GTP-bound form was lower than that observed in Rin1-expressing cells (Figure 
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12). Taken together, these results indicate that Rin1 plays a selective and critical role in 

the activation of Rab5 during live P. aeruginosa invasion, which is consistent with the 

observation that live P. aeruginosa inactivates Rab5, and this inhibitory effect can be 

partially reversed by the expression of Rin1. 

2.5 Discussion 

Type III secretion system of P. aeruginosa is known to modulate host cell 

endocytosis (Barbieri, Sha et al. 2001; Deng and Barbieri 2008). This study demonstrated 

that Rab5 plays a critical role during early steps in the phagocytosis of P. aeruginosa in 

J774-Eclone macrophages. It was found that invasion of live, but not heat-inactivated P. 

aeruginosa, down-regulates Rab5 activation, and that inactivation of Rab5 during 

invasion requires expression of ExoS. In support of ExoS being a key effector in Rab5 

activation, it was confirmed that ExoS ADPr activity, but not ExoS RhoGAP, inhibits 

Rab5 activation. In addition, it was also found that the over-expression of Rin1 partially 

reverses inactivation of Rab5 by ExoS ADPr activity during invasion of live P. 

aeruginosa. These observations led to develop a model that portrays ExoS ADPr activity 

and its interference of Rab5 activation as integral to the diminished internalization of live, 

as compared to heat-inactivated P. aeruginosa, in J774-Eclone macrophages. 

While live P. aeruginosa were found to inactive Rab5 during P. aeruginosa 

phagocytosis, Rab5 also influenced phagocytosis of heat-inactivated P. aeruginosa. Both 

Rab5:WT and constitutively active Rab5:Q79L up-regulated the phagocytic index of 

heat-inactivate P. aeruginosa by 2 to 4 fold, whereas expression of constitutively inactive 

Rab5:S34N reduced the phagocytic index by half, as compared to control cells. Unlike 

Rab5, Rab4 and Rab7 did not alter P. aeruginosa internalization during early stages, up 
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to 15 min, of phagocytosis, but the Rab7:S22N mutant was able to diminish P. 

aeruginosa internalization after 30 minutes. These observations indicate that Rab5 plays 

a key role during early, while Rab7 plays a role in later stages of phagocytosis of heat 

killed P. aeruginosa,  

The Rab5 protein is a substrate of ExoS ADPr activity and has been found to interfere 

with Rab5 function in vitro (Barbieri, Sha et al. 2001). Pseudomonas aeruginosa strains 

lacking one or more of the four T3S effectors were used to examine the role of ExoS in 

phagocytosis in J774-Eclone macrophages. When the phagocytic index of strains PA103, 

PA103ΔU, PA103ΔT∆U or PAO1 strains was determined, it was found that live strain 

PA103, lacking both ExoS and ExoY (Fleiszig, Wiener-Kronish et al. 1997), was 

engulfed ~3 fold higher than live strain PAO1, which expresses ExoS, ExoT and ExoY. 

Studies performed in parallel found PAO1 survival within macrophages to be enhanced 

(58±5% survival) in comparison to strain PA103 (17±3% survival), indicating increased 

susceptibility of strain PA103 to macrophage-mediated killing. Notably, the uptake of 

live PA103 was about 40 ± 6% less than that of heat-inactivated PA103, which is 

attributed to ExoT RhoGAP activity of strain PA103 (Garrity-Ryan, Shafikhani et al. 

2004). In this regard, uptake of strain PA103∆U lacking ExoS, ExoU and ExoY, but 

expressing ExoT, was 34 ± 6 %, similar to that of strain PA103. Observations also 

revealed that the phagocytic index of strain PA103ΔT∆U, which lacks known T3S 

effectors, was significantly lower than that of heat-inactivated PA103 (Fig. 4A). 

Consistent with factors other than T3S effectors playing a role in phagocytosis of live P. 

aeruginosa, exotoxin A, phospholipase C, alkaline protease, elastase and cell surface 

lipopolysaccharides have all been shown to alter macrophage responses and hence impair 
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bacterium internalization (Pavlovskis, Pollack et al. 1977; Ruhen, Holt et al. 1980; 

Wretlind and Pavlovskis 1983).  

While investigating the effect of P. aeruginosa on the activity of Rab5 proteins, it 

was demonstrated that live P. aeruginosa, but not the heat-inactivated P. aeruginosa, is 

responsible for diminishing levels of active GTP-bound Rab5. The inhibitory effect of 

live P. aeruginosa on Rab5 activation was overcome by expression of the constitutively 

active Rab5:Q79L. Interestingly, it was observed that live PAO1, but not live PA103, 

PA103ΔU or PA103ΔTΔU inhibited Rab5 activation (Figure 9B). Since, strain PA103 

lacks ExoS and ExoY, and because ExoY seems unlikely to affect Rab5 activation 

(Hauser, Fleiszig et al. 1998), it could be speculated that ExoS plays a role in the 

modulation of Rab5 activation during the internalization of live P. aeruginosa in J774-

Eclone macrophages. Consistent with this idea, it was previously shown that ExoS ADPr 

activity blocked both HRP uptake and EGFR trafficking to lysosomes in CHO and Hela 

cells, respectively (Barbieri, Sha et al. 2001; Deng and Barbieri 2008) In directly testing 

the role of ExoS in modulating Rab5 activation in J774-Eclone macrophages, it was 

found that strain PA103ΔTΔU expressing ExoS (WT) or ExoS (ADPr) activity, but not 

ExoS (Rho-GAP) activity, diminished levels of GTP-bound Rab5, in conjunction with 

inhibition of P. aeruginosa internalization (Figure 10A and B). Similarly, transient 

expression of ExoS (WT) and ExoS (rADPr), but not ExoS (rRhoG), within J774-Eclone 

cells was found to diminish levels of active GTP-bound Rab5 (Figure 10D). Observations 

from this study showed that ExoS anti-internalization activity was mostly dependent on 

its ADPr activity which differs from previous studies in HeLa cells where the ExoS anti-

internalization function was attributed to RhoGAP activity (Krall, Sun et al. 2002; Deng 
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and Barbieri 2008). One explanation for this discrepancy could be due to the use of a 

different cell line, and cell line properties are known to influence the substrate specificity 

of ExoS (Rucks, Fraylick et al. 2003). The ability of ExoS ADPr, but not its RhoGAP 

activity, to inactivate Rab5 (Figure 10A) provides evidence for cell-type dependent 

mechanisms of phagocytosis, which can be differentiated by ExoS. 

Previous studies found that Rab5 might undergo ADP-ribosylation on multiple 

arginine residues by ExoS (Barbieri, Sha et al. 2001).This observation, together with the 

fact that Rab5 is inactivated by ExoS:ADPr activity, and that ADP-ribosylation interferes 

with Rab5 interaction with EEA1, indicate that key functional residues within the GTP 

binding motif of Rab5 may be targeted by ExoS. Interestingly, Arg81 is located in switch 

II of Rab5 proteins, immediately downstream of the second GTP/GDP binding motif 

(Valencia, Chardin et al. 1991), and mutation of Arg81 partially affects Rab5 function (Li 

and Stahl 1993). Confirmation of Arg81 as well as other Arg residues in Rab5 as targets 

of ExoS ADPr activity is integral to understanding how ExoS affects Rab5 function.  

Since the nucleotide status of Rab5 is integral for P. aeruginosa invasion, the role of 

Rab5-GEFs, Rabex5, Rap6 and Rin1 was investigated in regards to Rab5 activation 

during P. aeruginosa internalization. Over-expression of Rin1 enhanced the 

internalization of heat-inactivated P. aeruginosa as well as Rap6 to some extend (Figure 

11A). Consistent with the importance of Rab5 activation to phagocytosis of heat-

inactivated P. aeruginosa, Rab5 was activated when each of the Rab5-GEFs was over-

expressed, albeit to different degrees (Figure 12). However, when the nucleotide status of 

Rab5 was analyzed in the presence of live P. aeruginosa, only Rin1 significantly 

overcame the inactivation of Rab5 in macrophages (Figure 12). This finding is in 
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agreement with the significant increase in the internalization of live P. aeruginosa in cells 

over-expressing Rin1 proteins. It is worth noting that Rap6 and Rabex5 also increased 

levels of active GTP-Rab5, but it was significantly less than expression of Rin1 (Figure 

12). The involvement of Rin1 in Rab5 activation was corroborated by depletion of Rin1, 

which significantly inhibited the uptake of live P. aeruginosa (Figure 11C). These results 

demonstrated for the first time that Rin1 is an essential regulator of Rab5 activation 

during phagocytosis of live P. aeruginosa.  

In conclusion, this chapter demonstrated that live P. aeruginosa, but not heat-

inactivated P. aeruginosa, down-regulates Rab5 function in conjunction with inhibition 

of phagocytosis in J774-Eclone macrophages. Reduced phagocytosis of live P. 

aeruginosa by macrophages was overcome by expressing a constitutively active 

Rab5:Q79L mutant. ExoS ADPr activity mediated P. aeruginosa inactivation of Rab5, 

and unlike previous studies, ExoS ADPr, rather than ExoS GAP activity, was a dominant 

inhibitor of P. aeruginosa internalization, highlighting cell line differences in 

mechanisms of P. aeruginosa internalization. This studies support the hypothesis that 

increased Rab5 activity can accelerate phagocytosis of live P. aeruginosa and increase its 

degradation in macrophages. The exact mechanism of action of ExoS toward Rab5 

function in macrophages is currently under investigation. 
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2.6 FIGURE LEGENDS 

 
Figure 6: Effect of Rab proteins on invasion of heat-inactivated P. aeruginosa in 
macrophages. 
(A) J774-Eclone cells alone or Eclone cells expressing GFP were incubated in the 
presence of heat-inactivated strain PAO1 P. aeruginosa at a ratio of 200:1 (bacteria/cell). 
At indicated times during a 60 minutes incubation period, cells were washed, fixed and 
the phagocytic index of P. aeruginosa (PA) was determined as described in Material and 
Methods. Inset: Eclone or GFP-Eclone cells were incubated with the indicated ratio of 
heat-inactivated P. aeruginosa for 60 min, and the phagocytic index was determined and 
is expressed as percent of maximum, relative to the phagocytic index at the highest ratio 
of bacteria/cell (200/1). (B) J774-Eclone cells expressing GFP or Rab5:wild-type (WT), 
Rab5:Q79L (QL) or Rab5:S34N (SN) were incubated with heat-inactivated P. 
aeruginosa at a ratio of 200:1, and the phagocytic index was determined at the indicated 
times and is expressed as percent internalization relative to the GFP control at 60 min. 
Inset: Cells expressing the indicated constructs were lysed and subjected to 
immunoblotting (IB) with anti-Rab5, anti-GFP or anti-tubulin antibodies. (C) J774-
Eclone cells expressing GFP or Rab7:WT, Rab7:Q67L (QL) or Rab7:S22N (SN) were 
incubated with heat-inactivated P. aeruginosa at a ratio of 200:1, and the phagocytic 
index was determined at the indicated times and is expressed as the percent of the GFP 
control at 60 min. Inset: Cells expressing the indicated constructs were lysed and 
subjected to immunoblotting with anti-Rab7, anti-GFP or anti-tubulin antibodies. Results 
are representative of three independent experiments. (D) Non-transfected J774-Eclone 
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cells (control), or Eclone cells transfected with scramble RNAi or RNAi’s against Rab5 
isoforms (Rab5 a,b,c) were incubated with heat-inactivated P. aeruginosa at a ratio of 
200:1 for 60 minutes, and the phagocytic index was determined and expressed as percent 
of control cells. Inset: Cells transfected with the indicated RNAi’s were lysed and 
subjected to immunoblotting with anti-tubulin or anti-Rab5 antibodies. Results represent 
the mean ± SEM of three independent experiments. (*) represents statistically significant 
difference from control (P<0.05). 
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Figure 7: Effect of Rab5 on live P. aeruginosa invasion in macrophages. 
(A) J774-Eclone cells expressing GFP were incubated with live (L) or heat-inactivated, 
dead (D) strain PAO1 P. aeruginosa at a ratio of 200:1 for 5, 15 or 30 min. The 
phagocytic index was determined and is expressed as percent phagocytosis of heat-
inactivated bacteria internalized in GFP control cells at 5 min. (B) J774-Eclone cells 
expressing GFP or Rab5:WT, Rab5:Q79L(QL) or Rab5:S34N (SN) were incubated with 
live or heat-inactivated P. aeruginosa at a ratio of 200:1 for 15 minutes at 37°C. After 
incubation, the phagocytic index was determined and is expressed as percent 
phagocytosis of heat-inactivated bacteria by GFP control cells at 15 min. (C) J774-Eclone 
cells alone (control) or cells transfected with scramble RNAi or RNAi’s against Rab5 
isoforms were incubated with heat-inactivated P. aeruginosa at a ratio of 200:1 for 30 
minutes at 37°C. After incubation, the phagocytic index was determined and is expressed 
as the percent phagocytosis of control cells. Data represent the mean ± SEM of three 
independent experiments. (*) indicates statistically significant difference from control 
group (P < 0.05). 
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Figure 8: Live P. aeruginosa inhibit Rab5 activation in macrophages. 
 (A) J774-Eclone macrophages were incubated with live (L) or heat-inactivated (D) P. 
aeruginosa at a ratio of 200:1 for 5 minutes at 37°C. Cells were washed, resuspended in 
homogenization buffer, and phagosomes containing P. aeruginosa were isolated, as 
described in Material and Methods. Phagosomal proteins were analyzed by immunoblot 
analysis and quantified by densitometry. Inset: Shows representative immunoblot of 
isolated phagosomal proteins probed with anti-Rab5, anti-Rab7, anti-tubulin or anti-actin 
antibodies. (B) Cells were incubated with live or heat-inactivated P. aeruginosa as in A, 
then washed with ice-cold PBS, lysed and incubated with glutathione beads in the 
presence of GST alone or GST-EEA1 at 4°C for 60 min. After incubation, the beads were 
washed and GTP-bound activated Rab5 was analyzed by immunoblotting with anti-Rab5. 
Inset: Shows a representative immunoblot of samples probed with anti-Rab5 or anti-GST 
antibodies. (C) Cells expressing Rab5:WT or Rab5:Q79L (QL) were incubated with live 
or heat-inactivated P. aeruginosa as above, and activated Rab5 was assayed by 
incubating lysates with glutathione beads in the presence of GST-EEA1, followed by 
immunoblotting, as described in B. Inset: Shows a representative immunoblot of samples 
probed with anti-Rab5 or anti-GST antibodies. Data represent the mean ± SEM of three 
independent experiments. (*) represents statistically significant difference from control 
group (P<0.05). 
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Figure 9: Selective effect P. aeruginosa exotoxins on Rab5 activation in 
macrophages. 
(A) J774-Eclone cells were incubated for 15 minutes with live (L) or heat-inactivated (D) 
P. aeruginosa strains: PAO1:WT, PA103:WT or PA103 lacking both ExoT and ExoU 
(ΔTU), or PA103 lacking ExoU (ΔU), and the phagocytic index was determined. (B) 
J774-Eclone cells were incubated with live or heat-inactivated P. aeruginosa strains as in 
A, and then lysed and examined for active GTP-bound Rab5 using the GST-EEA1 pull-
down assay. Inset: Shows a representative immunoblot of active GTP-Rab5, and total 
Rab5 or GST-EEA1 in the indicated PAO1 or PA103 cell lysate. Data represent the mean 
± SEM of three independent experiments. (*) represents statistically significant difference 
from control group (P<0.05). 
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Figure 10: Effect of ExoS GAP or ADPr activity on P. aeruginosa invasion. 
(A) Live PA103ΔTΔU expressing a vector control (-), ExoS (WT), an ExoS(R146A) 
(ADPr+) mutant, an ExoS (E379A/E387A) (RhoG+) mutant, or an ExoS 
(R146A/E379A/E387A) (ADPr-/RhoG-) mutant were incubated with J774-Eclone 
macrophages at a ratio of 200:1 at 37°C for 5 minutes. After incubation, cells were 
washed and the phagocytic index was determined. (B) Live PA103 strains described in 
Fig.A were incubated with J774-Eclone macrophages for 30 min, and Rab5 activation 
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was assayed as previously described. Inset: Shows a representative immunoblot of active 
GTP-Rab5, and total Rab5 or GST-EEA1 in the lysates following incubation of cells with 
the indicated PA103 strains. (C) Cells expressing Rab5:WT or Rab5:Q79L were 
transfected with 6His-ExoS (WT) (ExoS), and lysates were assayed for active Rab5 as 
previously described. Inset: Shows a representative immunoblot of samples probed with 
anti-Rab5 or anti-His-tag antibodies. (D) Cells expressing Rab5:WT were transiently 
transfected with 6His-ExoS (WT), 6His-ExoS (rRhoG) or 6His-ExoS (rADPr). After 
transfection, the activated GTP-Rab5 was determined as previously described. Inset: 
Shows a representative immunoblot of samples probed with anti-Rab5 or anti-His-tag 
antibodies. Data represent the mean ± SEM of three independent experiments. (*) 
represents statistically significant difference from control group (P< 0.05). 
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Figure 11: Effect of Rab5-GEFs in the internalization of P. aeruginosa. 
(A) Live (L) or heat-inactivated (D) P. aeruginosa were incubated in the presence of cells 
expressing GFP or the indicated Rab5-GEF at the ratio of 200:1. The phagocytic index 
was determined after incubation for 15 minutes at 37°C. (B) J774-Eclone cells were 
transfected with the indicated Rab5-GEF construct, and cell lysates were immunoblotted 
with anti-GFP, anti-Rin1, anti-Rap6, anti-Rabex-5 or anti-tubulin antibodies. (C) Live (L) 
or heat-inactivated (D) P. aeruginosa were incubated with non-transfected J774-Eclone 
cells (G) or cells transfected with RNAi’s against Rin1 (Ri), Rabex-5 (Rx), Rap6 (Rp), all 
three Rab5-GEFs (Ri/Rp/Rx), or scramble RNAi (S).  After transfection, cells were 
incubated for 24 hour and then assayed for phagocytosis. (E-G) Cells were transfected 
with the indicated siRNAs and lysed 24 hour after post-transfection. Cell lysates were 
immunoblotted with anti-Rap6, anti-Rabex5, anti-Rin1 or anti-tubulin antibodies. Data 
represent the mean ± SEM of three independent experiments. (*) represents statistically 
significant difference from the control group (P< 0.05). 
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Figure 12: Effect of Rab5-GFEs on Rab5 activity during phagocytosis of P. 
aeruginosa. 
Live (L) or heat-inactivated (D) P. aeruginosa were incubated with cells expressing GFP 
alone or the indicated Rab5-GEF at a ratio of 200:1. P. aeruginosa phagocytosis was 
assayed after incubation at 37°C for 5 min. Cells were then washed and assayed for 
active GTP-Rab5 as previously described. A representative immunoblot of samples 
probed with anti-Rab5 or anti-GST is shown.  Data represent the mean ± SEM of three 
independent experiments. (*) represents statistically significant difference from the 
control group (P<0.05). 
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Chapter 3 

Identification and characterization of ADP-ribosylation sites on Rab5 by 

Pseudomonas aeruginosa type III secretion protein ExoS. 
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3.1 Abstract  

Pseudomonas aeruginosa Type III secretion effector, Exoenzyme S (ExoS), is a bi-

functional enzyme with ADP-ribosyl transferase activity and RhoGAP activity. Rab5 was 

identified as a substrate for ExoS ADP-ribosyl transferase activity both in vivo and in 

vitro. ExoS preferentially ADP-ribosylates arginine sites in the target proteins. To look 

for the specific arginine target sites on Rab5, a site directed mutagenesis technique was 

implied to modify all 11 Rab5 arginine sites to alanine one at a time. Modified Rab5 

mutated proteins did not show any change in electrophoretic mobility or GTP-binding 

capacity. Although, each mutated form showed positive response toward ADP-

ribosylation, indicating more than one ADP-ribosylation sites on Rab5. Finally, in vitro 

analysis also confirmed impaired GTP-binding ability in Rab5 when ADP-ribosylated, 

suggesting plausible conformational changes in Rab5 due to the modification.  

3.2 Introduction   

The ADP-ribosylation (Adinosine diphosphate-ribosylation) reaction is an event of 

post-translational protein modification leading to protein inactivation under physiological 

and pathological conditions. During this process, NAD (Nicotinamide adenine 

dinucleotide), a common respiratory co-enzyme acts as a donor of ADP-ribose moiety, 

the modifying group, to acceptor protein macromolecule (Hayaishi and Ueda 1977). 

There are four types of ADP-ribosylation modifications among which mono-ADP-

ribosylation and poly-ADP-ribosylation (Figure 13) are mostly studied. Mono-ADP-

ribosylation reaction is reversible and is catalyzed by an ADP-ribosyl-transferase 

(ADPRT) enzyme, which binds NAD and attaches the ADP-ribose moiety to a substrate 

protein with N-glycosidic bond, releasing nicotinamide and a proton in the process (Ueda 
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and Hayaishi 1985). Mono ADP-ribosyl transferase is found in bacterial toxins, Escheria 

coli protein, bacterio-phages and mammals (Koch-Nolte and Haag 1997; Corda and Di 

Girolamo 2003). On the other hand, poly-ADP-ribosylation is catalyzed by the enzyme 

Poly-ADP-ribose-synthetase/ Poly-ADP-ribose-polymerase (PARP) and is a common 

occurrence in the nuclei of eukaryotes (Payne and Bal 1976; Burkle and Virag 2013). In 

this case a chain of poly-ADP-ribose moiety linked together by ribose-ribose bond is 

attached to acceptor protein macromolecule (Hayaishi and Ueda 1977). Other two types 

of ADP-ribosylation reaction are ADP-ribose cyclization (Graeff, Liu et al. 2009) and 

formation of O-acetyl-ADP-ribose (Borra, O'Neill et al. 2002). 

 
 
                      Mono-ADP-ribosyl-transferase 

     ADPR-N + X                      ADPR-X + N + H+ ………….. (1) 
 
                               Poly-ADP-ribose-polymerase 
    nADPR-N + X                     (ADPR)n-X + nN + n H+……(2) 
 
 
 
Figure 13: ADP-ribosylation reaction. 

Mono-ADP-ribosylation is demonstrated in equation (1) and poly-ADP-ribosylation in 

equation (2). NAD can be looked at as an ADP-ribose moiety covalently attached to 

nicotinamide by βN-glycosidic linkage (ADPR-N). X represents acceptor protein, ADPR-

X is modified protein, N represents nicotinamide and H+ represents proton and n as 

number. 

Endogenous ADP-ribosylation is detected in both prokaryotes and eukaryotes 

(Lowery and Ludden 1988; Williamson, Smith et al. 1990). Poly-ADP-ribosylation 

reactions play important role in cellular signaling, transcription, DNA repair, and cell-
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cycle as well as in apoptosis and necrosis (Kreimeyer, Adamietz et al. 1985; Althaus 

1992; Scovassi and Poirier 1999; Hassa, Haenni et al. 2006; Luo and Kraus 2012; Pears, 

Couto et al. 2012). In vertebrates, mono-ADPRT enzyme had been shown to target 

extracellular proteins mostly involved in immune response (Haag and Koch-Nolte 1998; 

Paone, Wada et al. 2002) and myogenesis (Zolkiewska and Moss 1993). On the other 

hand intracellular mono-ADP-ribosylation are catalyzed by several enzymes, like 

arginine specific mono-ADPRT enzymes which modifies β subunit of G-proteins (Lupi, 

Corda et al. 2000; Lupi, Dani et al. 2002) or cellular mono-ADPRTs which generates 

modification of actin  (Lodhi, Clift et al. 2001) and  modification of elongation factor 2 

(EF-2) (Fendrick and Iglewski 1989). Endogenous mono-ADP-ribosylation has been 

detected in prokaryotes as well (Ludden 1994). The ADP-ribosylation modification by 

bacterial toxins has been documented as a mechanism of pathogenesis in cholera, 

diphtheria, pertussis, and clostridium as well as in many other diseases (Collier 1975; 

Moss and Vaughan 1977; Hsia, Moss et al. 1984; Aktories, Mohr et al. 1992).  A major 

target for bacterial ADPRT are guanyl nucleotide binding proteins involved is various 

cellular metabolic and regulatory pathways (Moss and Vaughan 1988), actin and EF-2 

(Collier 1975; Aktories and Wegner 1989; Tezcan-Merdol, Nyman et al. 2001). 

The Type III secretion effector ExoS is a bi-functional cytotoxin secreted and 

translocated by P. aeruginosa TypeIII secretion (T3S) apparatus. It was first identified by 

Iglewski et al (Iglewski, Sadoff et al. 1978) as an ADPRT. The amino terminus of the 

protein encodes Sec domain (residues 1-15) which is used to secrete the cytotoxin from 

the bacterium, Chap domain (residues 15-51) or chaperon binding domain which helps to 

maintain the extended conformation of the toxin during translocation, Membrane 
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localization domain or MLD domain (residues 51-77) which targets the cytotoxin within 

the host cell followed by Rho GTPase-activating Protein (RhoGAP) domain (residues 96-

219) and ADPRT domain (residues 234-453) (Figure14) (Barbieri 2000; Deng and 

Barbieri 2008). Rho, Rac and Cdc42 have been established as substrates for the RhoGAP 

domain of ExoS both in vivo and in vitro (Goehring, Schmidt et al. 1999; Henriksson, 

Sundin et al. 2002; Krall, Sun et al. 2002).  Several small cellular monomeric GTPases, 

preferably in Ras and Rab families including Ras, Rap, Ral, Rab3,4,5,6, and 7 were 

suggested as in vitro targets of ExoS ADPRT domain (Coburn, Dillon et al. 1989; Coburn 

and Gill 1991). Mammalian cytosolic 14-3-3 protein is required to activate ExoS ADPRT 

(Fu, Coburn et al. 1993). Sequence alignment of the catalytic domains of some major 

ADPRTs along with ExoS shows the presence of a conserved R-S-EXE motif with a 

specific affinity towards arginine residue in their target proteins (Laing, Unger et al. 

2011). Studies have shown that during in vitro ADP-ribosylation of Ras by ExoS, the 

primary target is arginine 41 (Ganesan, Frank et al. 1998), in vivo the reflection of such 

modification was detected in subsequent disruption of Ras-Raf-1 signaling pathway 

(McGuffie, Frank et al. 1998; Ganesan, Vincent et al. 1999) although upon establishment 

of active Ras, the effect was reversed (Jansson, Yasmin et al. 2006). ExoS mediated 

ADP-ribosylation of cellular target Ral A, has been found to interfere with its respective 

signal transduction pathways as well (Fraylick, Riese et al. 2002). Rab5 belongs to Ras 

super family of GTPases and share conserved structure and biochemistry (Vetter and 

Wittinghofer 2001). Functional studies indicate that Rab5 is a key regulator of early 

phagocytosis, where it is involved in clathrin-coated vesicle formation, early phagosome 

fusion, phagosomal cargo recruitment and phagosomal motility (Stenmark, Parton et al. 
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1994; Duclos, Diez et al. 2000; Olchowik and Miaczynska 2009). ExoS has been shown 

to exert antiphagocytic activity on macrophages (Frithz-Lindsten, Du et al. 1997). 

Previously Barbieri and others (Barbieri, Sha et al. 2001) showed that in vivo ExoS 

impairs intact cell function by ADP-ribosylation activity. In addition, Zhang and others 

has recently showed Rab5 and ExoS co-localization in target cells in vivo (Zhang, Deng 

et al. 2007). 

In this present study, the biochemical aspect of ADP-ribosylation modification of 

Rab5 by ExoS has been investigated. At first arginines embedded in Rab5 protein were 

analyzed for their evolutionary significance according to their conserved nature in several 

species. All arginines in Rab5 were then mutated to alanine one at a time and then each 

one mutated form of Rab5 was expressed with pET28a protein expression system. 

Electrophoretic mobility of Rab5 mutants remained unchanged as it was confirmed by a 

SDS-PAGE analysis. The GTP-binding capacity of each mutated Rab5 protein was also 

found to be intact. When mutated Rab5 proteins were subjected to ADP-ribosylation with 

ExoS, each mutant were ADP-ribosylated, thus, indicating more than one arginine could 

be targeted during ADP-ribosyation of Rab5 protein. Finally, when ADP-ribosylated 

Rab5 Wild type protein (Rab5:WT) was treated with GTP, it failed to show any positive 

GTP-binding, which could be due to any conformational change as a possible 

consequence of Rab5:WT ADP-ribosylation.  
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Figure 14: Schematic representations of different domains of P. aeruginosa ExoS. 

ExoS is a bi-functional Type III secreted cytotoxin. The N terminus (Sec) is used to 

secrete the cytotoxins from the bacterium. A chaperone binding region (Gordon, 

Molyneux et al. 2001) maintains the cytotoxins in an extended conformation within the 

bacterium poised for translocation through the Type III secretion apparatus. The 

membrane localization domain (MLD) targets the cytotoxins with mammalian cells for 

efficient modification of host proteins. ExoS possesses RhoGAP activity, inactivating 

Rho, Rac, and Cdc42. The ADP-ribosyltransferase domain, ExoS possess the ability to 

ADP-ribosylate numerous host proteins.  

3.3 Material and Methods 

3.3.1 Materials  

All chemicals and reagents were purchased from Sigma-Aldrich (Saint Louis, MO), 

unless otherwise indicated. Site directed mutagenesis kit as purchased from Stratagene 

cloning systems (La jolla, CA). Primary and secondary antibodies used in 

immunoblotting were purchased from Cell Signaling Technology Inc. (Danvers, MA). 
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3.3.2 Site directed mutagenesis  

Human Rab5a gene, previously cloned into protein expression vector pET28a 

between HindIII and BamH1, was used as a template.  Mutagenesis was performed 

essentially following the instructions of Stratagene cloning systems. DNA primers were 

constructed to be 10 base pairs complementary to the DNA template flanking the 

mutation of interest and encoded an arginine-to-alanine substitution (GC to CG). The 

presence of the mutation was confirmed by sequence analysis. The mutants were 

designated RnA, where arginine at residue n (4, 39, 81, 91, 110, 120, 141, 195, 197 and 

209) of Rab5 was changed to alanine. 

3.3.3 Expression and purification of recombinant proteins  

Histidine tagged protein including Rab5 wild type and all Rab5 mutants proteins, 

ExoS (ExoS-pET16b, kindly provided by Michele Vidal) and Glutathione S-transeferase 

(Botelho, Harrison et al. 2009)-fused 14-3-3 protein (pGEXT-14-3-3), kindly provided by 

Dr. Phil Stahl from Washington University, St. Louis, MO) and Rab5 functional mutants 

Rab5:Q79L and Rab5:S34N (Mustafi, Rivero et al. 2013) were expressed in BL-21 DE3 

E. coli competent cells and was purified following His-tag protein or GST-protein 

purification guidelines (Barbieri, Li et al. 1994; Knight and Barbieri 1997). A brief 

description of the purification protocol follows. Overnight cultures of E. coli BL21-DE3 

carrying the appropriate pET vector or pGEX vector were diluted 1/20 into LB broth 

containing vector specific antibiotics and shaken at 250 rpm at 37ºC. After 2 hours, IPTG 

(isopropyl-b-D-thiogalactopyranoside) was added to a final concentration of 0.6 mM and 

cultures were shaken for an additional 2 hours. Cultures were centrifuged at 6,000 x g for 

10 minutes, and the cell pellet of His-tag protein was suspended in binding buffer (20 
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mM Tris-HCl [pH 7.9] containing 500 mM NaCl and 5 mM imidazole) and the cell pellet 

of GST fusion protein in binding buffer (50 mM Tris pH 7.5, 150 mM NaCl ,0.05% NP-

40). Protease inhibitors (such as 12µg of DNase I per ml, 12 mg of RNase A per ml, 24 

mg of leupeptin per ml added in ethanol, 12 mg of aprotinin per ml added in autoclaved 

water, and 2 mM phenylmethylsulfonyl fluoride added in ethanol) (final concentrations) 

were added, and cells were broken with a French press. Cell extracts were centrifuged at 

30,000 x g for 8 min, and the soluble material was passed through a 0.45-mm-pore-size 

cellulose nitrate filter and then subjected to Ni+2-affinity chromatography (2-ml column) 

(Novagen, Madison,WI) or GSH chromatography (2ml column) (GE health care, 

Cleveland, OH).  His-tagged protein column was washed with 20 ml of binding buffer 

and then with 20 ml of binding buffer containing 50 mM imidazole. His-tagged proteins 

were eluted with binding buffer containing 0.5M imidazole (2-ml fractions were 

collected). GSH column was washed with 20 ml of 50mM Tris pH 8.0 and then eluted 

with elution buffer (50mM Tris pH 8.0, 10mM reduced glutathione) and 2 ml fractions 

were collected. All proteins were stored at -80ºC with 20% glycerol until use. 

3.3.4 GTP binding assay  

One µg of purified Rab5 protein and all Rab5 mutant proteins were spotted directly 

onto a nitrocellulose membrane using a vacuum manifold. After 1 hour of incubation in 

PBS containing 0.1% tween 20 to block non-specific binding, the membrane was washed 

four times for 20 minutes each with PBS, 0.1% tween 20 and 5mM MgCl2. GTP binding 

was conducted at room temperature using α-32P-GTP (10 µCi) and quantified by 

autoradiography. 
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3.3.5 ADP-ribosylation  

The Rab5 ADP-ribosylation was determined by using biotinylated NAD (Zhang 

1997). The reaction was carried out essentially as previously described with few 

modifications (Barbieri, Tall et al. 2001; Fraylick, Rucks et al. 2002). Briefly a 50µl 

reaction mixture of His tagged Rab5 (one individual mutant), His-Rab5 Q79L or His 

Rab5 S34N protein (1µg) along with His-ExoS (0.8µM), GST–14-3-3 (0.8µM), 0.2M Na 

acetate (pH 6.0), 1mM Magnesium chloride and 10 mM Biotinylated NAD (8-([N-

biotinyl(6-aminohexyl)]amino)NAD) (Sigma) was incubated at 25ºC for 1 hours. For 

SDS-PAGE analysis, reaction was stopped by adding 4x leammli sample buffer and 

boiling for 5 minutes at 95ºC. For dotblot analysis, reaction was halted by a quick chill 

over ice. 

3.3.6 Protein analysis  

For immunoblotting, protein samples were boiled in Leammli buffer (60 mM Tris–

HCl, 1% (w/v) SDS, 10% glycerol, 0.05% (w/v) bromophenol blue, pH 6.8, with 2% β-

mercaptoethanol). Samples were subjected to 10% or 12% SDS-PAGE and transferred to 

nitrocellulose membranes for immunoblotting. Nitrocellulose membranes were incubated 

with blocking solution (TBS containing 0.1% Tween 20 and 5% BSA) and were probed 

with the indicated antibodies. For Dot Blot, protein samples were spotted onto 

nitrocellulose membrane embedded inside dot blot ensemble (Abcam, San Francisco, 

CA) and incubated with blocking solution (TBS containing 0.1% Tween 20 and 5% 

BSA) and were probed with HRP-avidin.  
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3.3.7 Bioinformatics  

The Rab5 mRNA sequences of from several species such as Leishmania donovani 

(AAR03593.1), Toxoplasma gondii (AAG10794.1), Arabidopsis thaliana (AEE84207.1), 

Anopheles gambiae (ABL74413.1), Homo sapiens (AAB08927.1) and Mus musculus 

(NP_080163.1) were obtained from NCBI GenBank and analyzed for homology using 

multiple sequence alignment tool “Clustal Omega”. Regions of similarity indicated 

evolutionary conserved motif with structural or functional importance. 

3.3.8 Image quantification  

The NIH Image J64 was used to quantify Western blots after images were scanned at 

a grayscale amplification of 600 dpi. Digital images of the Western blot from cell lines 

were captured and loaded into ImageJ64, and Rab5 specific bands, along with α tubulin 

bands, were assessed in each sample using the Analyze → Gels function, which allows 

for background correction. The ratio of Rab5 signal to α tubulin was calculated for each 

sample and served as an index of Rab5 expression. The index of expression for other 

proteins examined in this study was derived in a similar manner. 

3.3.9 Statistical analysis  

All samples in this study were analyzed in duplicate and each experiment was 

repeated three times. Values represent the mean ± SEM of three independent 

experiments. To compare two groups, student’s t test was used. P < 0.05 was considered 

as statistically significant. 
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3.4 Results 

3.4.1 Three arginine sites in Rab5 are conserved implying their importance in Rab5 

structure. 

Arginines are preferred target sites on a substrate protein for ExoS ADP-ribosylation 

activity. Rab5 protein structure holds eleven arginines. Through a species wise multiple 

sequence alignment (Figure 15), three arginine sites at position 39, 81 and 91 were found 

to be conserved in Rab5. Arginine-81 and arginine-91 resides in a conserved region of 

Rab5 structure also known as Switch II region. Arginine-4 and arginine-8 are part of the 

N terminal region in Rab5 responsible for geranylgeranylation of its C terminal Cystein 

(Sanford, Pan et al. 1995). Arginine-195 and arginine-197 lies within an RXRGVDLXE 

motif in Rab5 which is important in membrane targeting (Bucci, Lutcke et al. 1995). 

3.4.2 Preparation and purification of several single arginine mutated Rab5. 

As multiple sequence analysis suggested the significance of some individual position 

of arginine molecules embedded in Rab5, it was tempting to perform an over all analysis 

of each individual site as possible ADP-ribosylation target. Human-Rab5a DNA cloned 

into pET28a protein expression vector was subjected to site directed mutagenesis. 11 

individual arginine to alanine mutations (each mutant was designated RnA (Arginine at 

residue n of Rab5 mutated to an alanine) (Figure 16) were introduced into the Rab5 open 

reading frame following a previously established study (Ganesan, Frank et al. 1998). 

Each mutated form of Rab5 plasmids were introduced into E.coli (BL21-DE3) competent 

cells for protein expression. No change in viability of the transformed E.coli cells 

confirmed absence of lethal effect as results of the Rab5 mustations (data not shown). 
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3.4.3 Modification of recombinant Rab5 protein didn’t disrupt electrophoretic 

mobility. 

The His-tagged Rab5:WT, His-tagged Rab5:Q79L, His-tagged Rab5:S34N and all 

Rab5 mutants plasmids transformed in BL21-DE3-E.coli cells were grown in Lauria 

broth (LB) at 37ºC and induced with 1mM IPTG for 3 hours. Pellets were collected and 

lysed with lysozyme, DNAse, protease inhibitors in His-specific buffer and run through 

affinity chromatography columns to obtain purified proteins which were afterwards 

subjected to SDS-PAGE gel elctrophoresis. No significant change in electrophoretic 

mobility was observed among the mutated Rab5 protein because of amino acid 

substitution (Figure 17). 

3.4.4 GTP-binding ability among mutated Rab5 protein. 

Since arginine is positively charged amino acid and alanine is negatively charged, 

substitution of the earlier with the later could disrupt several activity of the protein. 

Although, specific functional role of arginines in Rab5 has not yet been predicted, it was 

important to observe the GTP-binding ability among mutated Rab5 proteins. Rab5 (1µg) 

protein along all Rab5 mutant proteins were spotted directly onto a nitrocellulose 

membrane by dot blot technique and blocked with PBS, 0.1% tween 20 for 20 min. the 

membrane was then washed with PBS, 0.1% tween 20 and 5mM Magnesium chloride, 3 

times, 20 minutes each. GTP-binding was conducted at room temperature using α-32P 

radio labeled-GTP and quantified by autoradiography (Figure 18). Structural composition 

of Rab5:S34N protein does not support GTP binding where as Rab5:Q79L structure is 

favorable for GTP binding. Hence, as a control, Rab5:S34N and Rab5:Q79L purified 
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proteins were subjected to GTP binding as well. Autoradiography results showed no 

significant disruption of GTP binding among mutated Rab5 proteins. 

3.4.5 ADP-ribosylation status of arginine mutated Rab5. 

In order to investigate the specific arginine in Rab5 protein that could be targeted 

during ADP-ribosylation, each Rab5 mutant protein along with Rab5:WT protein was 

subjected to ADP-ribosylation with purified ExoS protein. The goal of this study was to 

observe less or no ADP-ribosylation in at least one of the mutant protein because of the 

effect of substitution. The Rab5 ADP-ribosylation status was determined by using a novel 

technique where biotinylated NAD was used as an ADP-ribose donor and later detected 

by biotin-HRP-avidin reaction. Purified ExoS in presence of 14-3-3 was incubated with 

Rab5 and mutant proteins strictly following the established protocol (Ganesan, Frank et 

al. 1998). Despite mutation in one particular arginine in each Rab5 mutant, all proteins 

were positive for ADP-ribosylation (Figure 19). This provided the information that ADP-

ribosylation target on Rab5 is possibly more than one arginine site rather than one. 

3.4.6 Discrepancies in Rab5-GTP binding post ADP-ribosylation modification 

Finally, the effect of Rab5 ADP-ribosylation modification on GTP-binding was 

examined. Rab5:WT (ADP-ribosylated or not) was immobilized on a nitrocellulose 

membrane using Dot blot technique. The membrane was washed as previously described 

(Materials and Methods) and blocked with 5mM magnesium chloride essentially as 

mentioned before. A α-32P radio labeled-GTP was added on top the membrane and the 

GTP incorporation was visualized by autoradiograph. Modified or un-modified 

Rab5:S34N and Rab5:Q79L were used as negative and positive controls respectively. 

Results showed least or no GTP incorporation in ADP-ribosylated Rab5:WT, where as 
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Rab5:Q79L in both form remained capable for GTP-binding (Figure 20). As expected, 

Rab5:S34N did not show any GTP-binding irrespective of its ADP-ribosylation form or 

normal form. 

3.5 Discussion 

With the recognition of the role of ExoS ADPRT activity on modulation of function 

(Barbieri 2000; Deng and Barbieri 2008; Mustafi, Rivero et al. 2013) and altered 

electrophoretic mobility of Rab5 protein (Fraylick, Rucks et al. 2002), it directed the 

attention to pursue a biochemical analysis of the nature of Rab5 ADP-ribosylation. Ras 

has been shown to be ADP-ribosylated by bacterially translocated ExoS at more than one 

sites including arginine-41 (Ganesan, Frank et al. 1998), and RalA, another Ras family 

protein, is efficiently ADP-ribosylated at arginine-52 (Fraylick, Riese et al. 2002) in 

eukaryotic cells. Rab5 protein belongs to a large family of Ras related GTPase protein 

and is a ubiquitous regulator of intracellular vesicle transport. Human Rab5a, a 215 

amino acid long protein contains 11 arginine sites as a potential target for ExoS ADPRT 

activity. Three of these arginine sites are conserved among Rab5 in several species 

(Figure 15). Another interesting fact is that arginine-81 and arginine-91 lies within the 

conserved “switch II” domain of Rab5 (Figure 16). In the present study, an individual 

mutation analysis was implied for each of the arginines. With the help of site directed 

mutagenesis technique, each arginines in Rab5 were individually mutated to alanine and 

the modified Rab5 was expressed in His-tagged expression vector (pET28a) (Figure 17). 

Further, a GTP-binding analysis confirmed that each of the mutated Rab5 did not lose 

their structural conformation for recognition and binding to GTP molecules. Both in vitro 

and in vivo ADP-ribosylation that has been studied by Fraylick and others (Fraylick, 
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Rucks et al. 2002) showed the altered mobility of ADP-ribosylated-Rab5 when subjected 

to electrophoresis, which was re established in this study (Figure 18A). Here, a new 

approach was also adopted in order to label and confirm ADP-ribosylation events in 

Rab5. Biotinylated NAD was used as an ADP-ribose donor to Rab5 arginine/arginines in 

presence of ExoS ADPRT activity, which was then detected on nitrocellulose membrane 

using HRP-Avidin probe. Along with Rab5:WT, Rab5:S34N and Rab5:Q79L, all Rab5 

mutants were positive for ADP-ribosylation modification (Figure 18B). The result 

strongly indicates that more than one preferred arginine sites could be ADP-ribosylated. 

Finally, it was interesting to observe the effect of ADP-ribosylation modification of Rab5 

on in vitro GTP-binding ability. Rab5:Q79L (a GTP dissociation defective mutant) 

showed positive GTP binding whether ADP-ribosylated or not (Figure 19). Similarly as 

expected, Rab5:S34N (GDP dissociation defective mutant) did not show GTP-binding in 

both ADP-ribosylated and normal state (Figure 19). Also, when Rab5:WT, whether 

previously ADP-ribosylated or not, subjected to in vitro GTP-binding, the ADP-

ribosylated form failed to show positive signal for the reaction. Taken together, these data 

suggested a possible effect of ADP-ribosylation modification on Rab5 leading to 

disruption in GTP binding ability. 

On the basis of study by Nikolova et al. (1998), the most exposed sites for proteolysis 

in Rab5 are arginine-197, arginine-4 and arginine-81. Arginine-197 lies within an 

RXRGVDLXE motif in Rab5 which is important in membrane targeting (Bucci, Lutcke 

et al. 1995). Arginine-4 the second point of proteolysis on Rab5 lies with the first 20 

residue of Rab5, loss of which ceases the ability of the protein’s endocytic activity in 

vitro (Li and Stahl 1993). The third point of proteolysis is arginine-81, which lies within 
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the sequence that entails specific protein-protein interaction. In addition, mutating Rab5 

with R81A showed decrease in endosome fusion and as a second mutation in Rab5 

N133I, R81A showed complete prevention of prenylation (Li, Barbieri et al. 1994). Also 

as suggested by other studies, the preferred site of ADP-ribosylation in Ras is arginine-41 

and in RalA is arginine-52 which is adjacent to “Switch I” region and advent in effector 

interaction (Ganesan, Frank et al. 1998; Fraylick, Rucks et al. 2002). Arginine-39 in Rab5 

is the equivalent site in Rab5 same as Ras arginine-41 and Ral arginine-52, hence could 

be a possible target. Over all, several essential arginine sites in Rab5 could bring in the 

impaired activity either through disrupted Guanine exchange factor interaction or 

inhibiting effector protein binding. More than one ADP-ribose moiety can change the 

structural confirmation and modify substrate accessibility. A detailed atomic spectral 

analysis of ADP-ribosylated protein awaits further information on the specificity of target 

arginine in Rab5 and the nature of odification. 
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3.6 Figure Legands 

Figure 15: Rab5 multiple sequence alignment. 
Multiple sequence alignment of Rab5 mRNA from Leishmania donovani (LD), 
Toxoplasma gondii (TG), Arabidopsis thaliana (AT), Anopheles gambiae (AG), Homo 
sapiens (HS) and Mus musculus (MM). Arginine at position 39, 81 and 91 (HS) were 
found to be conserved in Rab5 among these species. 
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Figure 16: Arginine mutation sites on Rab5.
All indicated arginines in Rab5 were substituted with alanine as described in Materials 
and Methods. 11 forms of arginine-mutated Rab5 plasmid named (RnA) R4A, R8A, 
R39A, R81A, R91A, R110A, R120A, R141A, R195A, R197A and R209A carried by 
pET28a expression vector were then used for several experiments for this study.  
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Figure 17: Purification of mutated Rab5 proteins. 
All indicated arginines in Rab5 were substituted with alanine as described earlier. Each 
modified Rab5 were then expressed in E.coli expression system with pET28a expression 
vector. Following a His-tag protein purification protocol, 11 forms (RnA) of Arg-mutated 
Rab5 along with Rab5:Q79L (pET28a) and Rab5:S34N (pET28a) were purified and 
approximately 0.5µg of purified Rab5 protein boiled in protein sample buffer was 
subjected to 12% SDS-PAGE and stained with Coomassie bleu. SDS-GEL analysis 
indicated all proteins purified consist of 99% of 26 kDa Rab5 protein. The results are 
representative of analysis performed in 3 independent experiments. 
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Figure 18: GTP binding analysis of Rab5 mutants. 
All Rab5 proteins purified for this study including wildtype (WT), Rab5:Q79L (Q79), 
Rab5:S34N (S34N) along with 11 single arginine mutant forms (RnA) were analyzed for 
their ability to bind with GTP as described in material methods section. Radiolabeled (α-
32 P)-GTP (10 µCi) were added to a nitrocellulose membrane previously spotted with 
several Rab5 proteins and GTP binding signal was captured by autoradiography 
technique as demonstrated on the top panel. All purified proteins as mentioned above 
shows normal GTP binding except for Rab5:S34N, which is a constitutively negative 
mutant. Bottom panel represents loading control of all proteins as probed in immunoblot. 
The results are representative of analysis performed in 3 independent experiments. 
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Figure 19: ADP-ribosylation analysis. 
(A) Rab5: WT protein was ADP-ribosylated by ExoS as described in Material and 
Methods and analyzed on a 12% SDS-PAGE. Change in Elecrtrophoretic shift was 
observed in ADP-ribosylated Rab5 (M) when compared to Unmodified (U) Rab5. (B) 
ADP-ribosylation was detected using HRP-avidin applied to nitrocellulose membrane 
previously spotted with ADP-ribosylated Rab5 mutants along with Rab5:WT (WT). 
Along with WT, all mutants were positive for ADP-ribosylation implying that more than 
one arginine is targeted masking the unmodified single mutant in each form. The results 
are representative of analysis performed in 3 independent experiments. 
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Figure 20: GTP binding status of ADP-ribosylated Rab5. 
Rab5:WT, Rab5:S34N and Rab5:Q79L were subjected to ADP-ribosylation and 
confirmed with immunoblot using Rab5 antibody (bottom panel). Afterwards, ADP-
ribosylated proteins were spotted on a nitrocellulose membrane using dot blot and 
incubated with 10 µCi of radiolabeled 32P-GTP. GTP-binding ability was analyzed in 
both modified and unmodified Rab5 (7 top panel). Constitutively active Rab5:Q79L was 
used as a positive control showing successful GTP binding in both form, and Rab5:S34N, 
a negative control showed no GTP binding activity. Rab5:WT, when modified by ADP-
ribosylation, shows loss of GTP binding capacity compared to unmodified Rab5:WT 
form. The results are representative of analysis performed in 3 independent experiments. 
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Chapter 4 

The dynamics of Rin1 and Ras in the activation of Rab5 during phagocytosis of  

Pseudomonas aeruginosa 
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4.1 Abstract   

The Rab5 GTPase, a key regulator of early phagocytosis, was found to be modulated 

by P. aeruginosa T3S effector ExoS in J774-Eclone macrophages, resulting in impaired 

phagocytic activity. It was also observed that expression of Rab5-GEF Rin1, but not 

other GEFs (Rabex5 or Rap6) reversed this down regulation of Rab5 activity. In this 

current study, the molecular mechanism by which Rin1 rescues Rab5 activity has been 

investigated. On a time scale analysis of phagocytic indices at various time points of 

early phagocytic events, Rab5 activity was attenuated at a very early time point (2.5 min) 

of the process. Interestingly, upon over-expressing Rin1 in J774-macrophage cells, the 

Rab5 activity sustained for a prolonged time (20 min) reversing the negative effect from 

P. aeruginosa. Further investigations revealed Rin1 Vps9 domain together with Rin1 RA 

domain are required for optimal Rab5 activation. Since Rin1 RA domain is essential for 

Rin1 interaction with Ras as an effector protein, the dynamics of Rin1 and Ras 

interaction during live P. aeruginosa phagocytosis was investigated and Ras-Rin1 

complex formation was confirmed during the period of early phagocytic processes. These 

observations highlight a novel mechanism of Rab5 activation and targeting to phagosome 

membrane during phagosytosis of live P. aeruginosa. 

4.2 Introduction  

Manipulation of Rab5 function is often adopted by intracellular bacteria during 

phagocytosis subversion (Brumell and Scidmore 2007; Alix, Mukherjee et al. 2011). 

Previously it has been shown that live P. aeruginosa strains selectively modulate Rab5 

activity during early phagocytic events (Mustafi, Rivero et al. 2013). A key step in 

regulating phagocytosis is the activation of Rab5 GTPases by guanine nucleotide 
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exchange factors (GEFs) of the Vps9 family (Carney, Davies et al. 2006)  Ras effector 

Rin1 acts as a Rab5 GEF in endocytosis (Burd, Mustol et al. 1996; Horiuchi, Lippe et al. 

1997; Tall, Barbieri et al. 2001) and promotes early endosome fusion (Galvis, Balmaceda 

et al. 2009). It was shown that Rin1 possesses putative Vps9 catalytic domains as well as 

functional Ras association (RA) domain (also known as Ras binding domain) (Colicelli, 

Nicolette et al. 1991; Ponting and Benjamin 1996; Han, Wong et al. 1997). The Rin1 

protein contains a SH2 (Src homology 2) domain and a Proline rich domain on the 

amino-terminal region (henceforth termed Rin1 N) (Figure 21) whereas the Ras binding 

domain and Vps9 domain of Rin1 is localized in the carboxyl- terminal region 

(henceforth termed Rin1 C) (Figure 21) (Ponting and Benjamin 1996; Han, Wong et al. 

1997). Han and others have shown that both in vitro and in vivo Rin1 binds directly to 

GTP bound Ras and that Rin1 binding requires Ras effector domain (Han and Colicelli 

1995; Han, Wong et al. 1997). Later it was also shown that Rin1 directly competes with 

Ras effector Raf-1 for active Ras (Wang, Waldron et al. 2002).  

The four small GTPases, H-Ras, N-Ras, and K-Ras of the Ras family function as 

molecular switches cycling between active GTP and inactive GDP bound forms. The Ras 

protein plays a pivotal role in the signal transduction of extra cellular ligands that activate 

a variety of cellular processes, including proliferation, differentiation, and metabolism 

(Shields, Pruitt et al. 2000). Several growth factors, hormones, chemokines and 

extracellular ligand-receptor complexes stimulate activation of Ras family (Ehrhardt, 

David et al. 2004). Activated GTP loaded Ras binds to several effector proteins like 

PI3K, Raf, Rin1 and activates other small GTPases such as Ral, Rap, Rab proteins 

(Ehrhardt, Ehrhardt et al. 2002). Rab5 activation during endocytosis has been linked to 
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Ras signal transduction pathway (Li, D'Souza-Schorey et al. 1997; Barbieri, Kohn et al. 

1998). Roberts and others showed that Ras activation resulted in Rab5 dependent 

stimulation of endocytosis and an increase in endosomal size (Roberts, Barbieri et al. 

2000). Finally, Tall and others showed that Ras mediated activation of Rin1 stimulates 

Rab5 dependent endocytosis (Tall, Barbieri et al. 2001). 

The Ras protein is a potent activator of actin polymerization during phagocytosis 

(Sasaki, Janetopoulos et al. 2007; Kortholt and van Haastert 2008; Clarke, Engel et al. 

2010). Ras activation was also noticed at the phagocytic cup during Fc receptor mediated 

phagocytosis of opsonized particle in mouse macrophage cell line (Botelho, Harrison et 

al. 2009). LPS (Lipopolysaccharide) stimulates activation of Ras in primary macrophages 

(David, Cochrane et al. 2005). Pseudomonas aeruginosa stimulates up-regulation of 

mucin transcription in epithelial cells via activation of the Src-Ras-MEK1-ERK1-

pp90rsk-NF-kB pathway (Li, Feng et al. 1998). Alveolar macrophage, when first 

encounters P. aeruginosa during the process of lung infection, senses the bacterium and 

triggers an innate cellular response through a MyD88-dependent pathway. This MyD88 

pathway involves downstream Ras signaling (Raoust, Balloy et al. 2009; Coste, Le Corf 

et al. 2010). Yet, there has been very few studies showing direct implication of Ras on P. 

aeruginosa phagocytosis, but there is ample evidence showing Ras as a target of P. 

aeruginosa virulence. In vivo, both oncogenic and normal Ras were ADP-ribosylated by 

P. aeruginosa type III effector ExoS (Vincent, Fraylick et al. 1999), whereas, 

constitutively active Ras protein protects cells from ExoS induced apoptosis (Jansson, 

Yasmin et al. 2006).  
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It has been already established in a previous aim that over-expression of Rin1 FL 

protein in macrophage cell line was able to rescue phagocytic activity as well as active 

forms of Rab5 followed by live P. aeruginosa infection. In this chapter the molecular 

mechanism by which Rin1 rescues Rab5 activity during live P. aeruginosa phagocytosis 

has been explored. Over-expression of Rin1 FL protein in J774-Eclone cells prolonged 

the life span of GTP-bound Rab5 through the event of early phagocytosis, which was 

otherwise modulated by virulent factors of P. aeruginosa. Further investigations on Rin1 

FL domains revealed the importance of Carboxyl-terminal domain (Rin1 C) which 

carries Rab5 activation domain and Ras association domain. The Rin1 C domain was 

responsible in increasing early phagocytic activity and killing of live P. aeruginosa. The 

Rin1 C domain was also shown to interact in vitro with GTP bound Ras as well as P. 

aeruginosa virulent factor ExoS mediated ADP-ribosylated GTP-Ras, although it showed 

reduced affinity for the modified GTP bound Ras. On the other hand, interaction between 

Rin1 C and Rab5 was significantly reduced when Rab5 was ADP-ribosylated by ExoS. 

Also, through Ras pull down, Rin1 was successfully precipitated from J774-Eclone cells 

carrying out phagocytosis of live P. aeruginosa. Together, these observations illustrate 

the importance of Ras-Rin1 pathway in re-establishing Rab5 activity during phagocytosis 

of P. aeruginosa. 
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Figure 21 Schematic representation of different Rin1 protein constructs. 
 
From top, Rin1 FL flaunting intact protein sequence with 783 amino acids showing SH2, 

Proline rich, Vps9 and RA domain. Rin1 N, the amino terminal region of the Rin1 

protein, 429 amino acids long, containing SH2 and Proline rich domain. Rin1 C, the 

carboxyl terminal region of Rin1, starting at 293 amino acid and ending at 783 amino 

acid, contains Vps9 and RA domains. Rin1 Vps9 containing on Vps9 domain of Rin1 

protein, encoding amino acid from position 293-658 and Rin1 RA, encoding amino acids 

452-783 and containing RA domain of Rin1 protein. 

4.3 Materials and Methods 

4.3.1 Materials  

All chemicals and reagents were purchased from Sigma-Aldrich (Saint Louis, MO), 

unless otherwise indicated. Primary and secondary antibodies used in immunoblotting 

were purchased from Cell Signaling Technology Inc. (Danvers, MA). Culture supplies 

were purchased from Invitrogen life technologies (Carlsbad, CA). 

4.3.2 Cell culture 

The J774 E-clone cells were kindly provided by Dr. Philip Stahl (Washington 

University Medical School, St Louis, MO) and were maintained as described previously 
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(Mustafi, Rivero et al. 2013). Briefly, they were maintained under a 5% CO2 atmosphere 

in Dubelco’s minimum essential medium (DMEM), supplemented with 10% heat-

inactivated fetal calf serum (FCS), 2mM L-glutamine, 100 Units/mL penicillin, 100 

µg/mL of streptomycin. J774-Eclone cells were used for all P. aeruginosa phagocytosis 

studies. Platinum-E retroviral packaging cell line (Plat-E cells) were purchased from Cell 

Biolabs, Inc. (San Diego, CA) and maintained in DMEM, 10% FCS, 1 µg/mL 

puromycin, 10 µg/mL blasticidin, 100 Units/ mL penicillin, 100 mg/mL of streptomycin. 

4.3.3 Bacteria strains 

 Pseudomonas aeruginosa strains PAO1 (derivative of original Australian isolate 

PAO) were provided by Dara Frank (Medical College of Wisconsin, Milwaukee, WI). 

PAO1 strain expressing GFP protein (a kind gift from Dr. Matthew Parsek, Washington 

University, St. Louis, MO) were used in microscopic studies. Bacteria were grown at 

37°C in Lauria Broth with appropriate antibiotics. Prior to the phagocytosis assay, 

bacteria were grown to late-log phase and diluted to a concentration of 107cfu/mL, and 

added to cells at indicated MOIs. 

4.3.4 Construction of recombinant pMX-puro retroviruses and cell lines 

The cDNAs of Rin1 FL, Rin1 N (amino acids 1 to 293), Rin1 C (amino acids 293 to 

783), Rin1 Vps9 (amino acids 293 to 658) and Rin1 RA (amino acids 452 to 783) were 

subcloned into the pMX-puro vector as previously described by Barbieri and others 

(Barbieri, Kong et al. 2003). The cDNAs were used in the FUGENE6-mediated 

transfection of 90% confluent Plate-E cell monolayers. Cells were maintained at 37°C, 

and the medium containing released virus was harvested 48 hour after transfection. Viral 

stocks were aliquoted and frozen at −80°C until use. Cell lines were generated by 
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infecting J774E-clone cells with retrovirus encoding PMX-puro vector only, Rin1 FL, 

Rin1 N, Rin1 C, essentially as previously described (Barbieri, Kong et al. 2003). 

4.3.5 Phagocytosis assay  

Pseudomonas aeruginosa strains were cultured to late-log phase, washed with 

phosphate buffered saline (PBS, pH 7.3) and then with NaHCO3, pH 9, three times, 

respectively. After washing, Alexa fluor-594 (Invitrogen, Carlsbad, CA) was used to 

label live or heat-inactivated bacteria for 2 hrs at room temperature while protected from 

light. J774-Eclone cells (105 cells / mL) were plated on coverslips in 6-well plates and 

incubated overnight. Cells were washed once with PBS and then twice with Hanks 

balanced salt solution-2% BSA. Bacteria were added at a ratio of 200:1 and incubated for 

30 minutes at 4°C. To initiate bacterial internalization, plates were placed in a 37°C water 

bath for 1 minutes, 2.5 minutes, 5 minutes, 10 minutes, 15 minutes, 20 minutes, 30 

minutes, 45 minutes and 60 minutes respectively. After this time, cells were placed on ice 

and washed three times with PBS, and then fixed for 20 minutes at room temperature 

using 3.7% paraformaldehyde. After fixation, cells were washed three times with PBS, 

incubated with 1% Triton X-100 at room temperature for 15 minutes, and incubated with 

4',6-diamidino-2-phenylindole (Roche Applied Science, Indianapolis, IN) to stain the 

nucleus. Coverslips were removed from the wells, washed and mounted with Mowiol 

fluorescence mounting medium. The number of bacteria per cell was enumerated at 100X 

magnification using a phase-contrast inverted fluorescent microscope. Two hundred cells 

were counted per slide, and each experiment was repeated three times. The phagocytic 

index refers to the number of bacteria inside each cell.  
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4.3.6 Bacterial survival assay 

 An antibiotic protection assay, described by Goldova et al. , (Angus, Evans et al. 

2010) was used to analyze bacterial survival within macrophages. For this assay, 

following the indicated 30 min time of phagocytosis, cells were washed 3 times with 

PBS, and extracellular bacteria were killed by incubating cells with growth medium 

containing Amikacin (400 µg/mL). After washing, cells were incubated at 37°C for an 

additional 30 minutesto examine bacterial survival within macrophages. Finally, cells 

were washed with PBS, lysed with 0.5% TritonX-100, and lysates were plated on LB-

agar, incubated overnight and bacterial colonies were enumerated. 

4.3.7 Recombinant protein purification 

The Rab5:S34N (Mustafi, Rivero et al. 2013) construct was cloned into protein 

expression vector pET28a between Hind III and BamH1. The H- Ras V12 construct in 

pET28a vector (Tall, Barbieri et al. 2001), Glutathione S-transferase (Botelho, Harrison 

et al. 2009)-fused 14-3-3 protein (pGEX4t-14-3-3) and GST-Rin1 C (Barbieri, Kong et 

al. 2003) were received as a kind gift from Dr. Phil Stahl (Washington University, St. 

Louis, MO). The ExoS-pET16b construct was generously provided by Dr. Michele Vidal 

(Université Montpellier, France). The H-Rab5:S34N, H-Ras V12 and ExoS carrying 

Histidine tag (His tag) were expressed in E.coli and purified following previously 

established protocol (Knight, Finck-Barbancon et al. 1995). The GST-Rin1 C and GST-

14-3-3 proteins were purified as previously described by Barbieri and others (Barbieri, Li 

et al. 1994). 
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4.3.8 In vitro ADP-ribosylation assay 

ADP-ribosylation assay for His-Rab5:S34N was carried out essentially as previously 

described with few modifications (Fraylick, 2002)(Barbieri, Tall et al. 2001). Briefly a 

50µl reaction mixture of His Rab5:S34N protein (1µg), His-ExoS (0.8µM), GST–14-3-3 

(0.8µM), 0.2M Na acetate (pH 6.0), 1mM Magnesium chloride and 10 mM Biotinylated 

NAD (8-([N-biotinyl(6-aminohexyl)]amino)NAD) was incubated at 25ºC for 1 hour. For 

SDS-PAGE analysis, reaction was stopped by adding 4x Leammli sample buffer and 

boiled for 5 minutes at 95ºC. ADP-ribosylation reaction for  His-H-Ras V12 were run at 

25ºC for 1hour in a 50 µl reaction mixture of 0.2M Tris-acetate, pH 6.0, 1mM MgCl2, 

10mM Biotinylated NAD, 0.2mM 14-3-3, 0.5 mM His-H-Ras:G12V and 0.2 mM ExoS 

as previously described by Vincent and others (Vincent, Fraylick et al. 1999). For SDS-

PAGE analysis, reaction was stopped by adding 4x Leammli sample buffer and boiled for 

5 minutes at 95ºC. Electrophoretic mobility shift of ADP-ribosylated Rab5 and Ras was 

detected by immunoblotting (IB) using rabbit anti-Rab5 antibody or rabbit anti Ras 

antibody (Cell signaling, Denver, MA). 

4.3.9 In vitro pull down assays  

One hundred µl glutathione beads containing 3mM of GST-Rin1 C were washed in 

10 mM Tris-HCl (pH 7.6), 20 mM NaCl and stored at 4 °C. Three mM of ADP-

ribosylated Rab5:S34N or H-Ras:G12V (as described earlier) were added to immobilized 

GST-Rin1 C for 30 minutesat 4 °C in a total volume of 75 ml. Samples were centrifuged 

and pelleted material was washed with 100 ml of 10 mM Tris-HCl (pH 7.6), 20 mM 

NaCl and was subjected to SDS-PAGE. Proteins were transferred to nitrocellulose and 

analyzed by immunoblotting (IB) using appropriate antibodies.  
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4.3.10 Ras-Rin1 Co-Immuno Precipitations in Vivo 

 Confluent cultures of J774 Eclone cells, control or over-expressing Rin1 FL, in 

35mm dishes were exposed to bacteria and followed by phagocytosis as described above. 

Ras and Rin1 FL co-immunoprecipitation was performed essentially as described 

previously (Vincent, Fraylick et al. 1999). Cells were lysed in 1ml of ice-cold Co-IP 

buffer (30mM HEPES, pH7.5, 1%Triton X-100, 10mM sodium chloride, 10% glycerol, 

1mM EGTA, 25mM sodium fluoride, 1mM sodium orthovanadate, 10mM β-

glycerophosphate, 10mM benzamidine, 0.1mM phenylmethylsulphonyl fluoride, 10 

µg/mL aprotinin, 10 µg/mL leupeptin and 10 µg/mL trypsin inhibitor). The Ras proteins 

were precipitated for 2 h at 4ºC with 1.5 mg of rabbit monoclonal anti Pan-Ras antibody 

(Calbiochem, CA) and 10 ml of a 50% slurry of Protein A conjugated to sepharose beads. 

Immuno-complexes were washed four times in Co-IP wash buffer (50mM HEPES, pH 

7.5, 100mM sodium chloride, 0.1% Triton X-100, 10% glycerol and 20mM sodium 

chloride) and subjected to immunoblotting. Ras was immunoblotted with rabbit 

polyclonal antibody (Cell signaling, Denver, MA). 

4.3.11 Rab5 activation assay 

The activation of Rab5 protein was detected by configuration specific monoclonal 

antibody based Rab5 activation kit (New East Biosciences, Malvern, PA). Briefly, J774-

Eclone cells were seeded at 1 x108 cells/ml and phagocytosis was activated as described 

earlier. Cells were then lysed with lysis buffer (New East Biosciences, Malvern, PA) 

according to vendor’s instruction and lysates were incubated with anti-Rab5 GTP  

monoclonal antibody and protein A/G agarose bead slurry according to the instructions 

and incubated at 4ºC for 1 h. As a control, equal amount of lysate protein was incubated 
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only with protein A/G agarose beads. Finally, beads were washed with lysis buffer and 

resuspended in sample buffer for immunoblotting using rabbit polyclonal anti Rab5 

antibody (cell signaling, Denver MA). Positive control for this experiment was GTPγS 

treated cell lysates and negative control was GDP added cell lysates prepared as per 

vendor’s instruction. 

4.3.12 Ras activation assay 

 The Ras activation kit (Cell signaling, San diego, CA) was used to assay for active 

Ras. Briefly, J774-Eclone cells were seeded at 1 x108 cells/ml and phagocytosis was 

activated as described before. Cells were then lysed with lysis buffer (Cell signaling, 

Denver MA) according to vendor’s instruction. One ml of lysate was incubated with Raf1 

RBD agarose bead (Cell signaling, Denver MA) slurry for 1 h at 4ºC and then beads were 

pelleted and washed before subjecting to immunoblot using Rabbit polyclonal anti Ras 

antibody (Cell signaling, Denver MA). Positive control for this experiment was GTPγS 

treated cell lysates and negative control was GDP added cell lysates prepared as per 

vendor’s instruction. 

4.3.13 Cell lysis and immunoblotting 

For immunoblot analysis, J774-Eclone cells were washed twice with PBS and then 

lysed with RIPA cell lysis buffer (50 mM Tris-HCl, 150 mM NaCl, 0.1 % SDS, 0.5 % 

sodium deoxycholate, 1% NP40) in the presence of protease and phosphatase inhibitors. 

Lysates were collected with cell scrapers and cleared by centrifugation. Prior to SDS-

PAGE, cell lysates were resuspended in SDS sample buffer (60 mM Tris–HCl, 1% (w/v) 

SDS, 10% glycerol, 0.05% (w/v) bromophenol blue, pH 6.8, with 2% β-

mercaptoethanol). Samples were subjected to SDS-PAGE and transferred to 
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nitrocellulose membranes for immunoblotting. Nitrocellulose membranes were incubated 

with blocking solution (TBS containing 0.1% Tween 20 and 5% BSA) and were probed 

with the indicated antibodies 

4.3.14 Image quantification 

The NIH Image J64 was used to quantify Western blots after images were scanned at 

a grayscale amplification of 600 dpi. Digital images of the Western blot from cell lines 

were captured and loaded into ImageJ64, and Rab5 specific bands, along with α-tubulin 

bands, were assessed in each sample using the Analyze → Gels function, which allows 

for background correction. The ratio of Rab5 signal to α-tubulin was calculated for each 

sample and served as an index of Rab5 expression. The index of expression for other 

proteins examined in this study was derived in a similar manner. 

4.3.15 Statistical analysis 

All samples in this study were analyzed in duplicate and each experiment was 

repeated three times. Values represent the mean ± SEM of three independent 

experiments. To compare two groups, student’s t test was used and P < 0.05 was 

considered as statistically significant. 

4.4 Results 

4.4.1 Rab5 activation is interrupted shortly after initiation of live Pseudomonas 

aeruginosa phagocytosis. 

Previous studies suggest that the time points of early phagocytic events vary between 

5 to 20 minutespost activation (Allen, Yang et al. 2002; Arora, Chan et al. 2005). 

Evidence of Rab5 activation during phagocytosis is consistent with the data and has been 

shown to peak between 5 to 20 minutesin several phagocytosis experiments (Horiuchi, 
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Lippe et al. 1997; Roberts, Barbieri et al. 2000). It has been shown that live P. 

aeruginosa blocks Rab5 activity at 15 minutespost infection (Mustafi, Rivero et al. 

2013). In this present study, the activity of Rab5 was examined for the entire time span of 

early phagocytosis. For this experiment, J774-Eclone cells expressing pMX vector 

(control cells) were incubated with live or heat inactivated P. aeruginosa and after 

initiation, phagocytosis was continued up to 1 minute, 2.5 minutes, 5 minutes, 10 

minutes, 15 minutes, 20 minutes, 30 minutes and 60 minutes, respectively. Cell lysate 

from each phagocytic time points were analyzed for their total content of Rab5 using 

immunoblot technique (Figure 22 A and B). Rab5-GTP bound state was also analyzed 

using Rab5-GTP pull down assay with anti Rab5-GTP monoclonal antibody and agarose 

beads encoded with protein A/G. During phagocytosis of heat inactivated P. aeruginosa, 

GTP bound active Rab5 was detected between 1 minute and 20 minutes of phagocytosis 

(Figure 22A). Macrophage cells undergoing phagocytosis of live P. aeruginosa, showed 

curtailed life span of GTP bound Rab5. As shown in Figure 22B, GTP bound Rab5 was 

detected at 1 minute and 2.5 minute of phagocytosis, but slowly faded from 5 minutes 

onwards. At 5 minute time point, Rab5-GTP diminishes almost about 98±5% in 

macrophages carrying live P. aeruginosa from that of macrophages carrying heat 

inactivated P. aeruginosa. These results are consistent with the observations in the 

previous aim, confirming the inhibition of Rab5 activity during phagocytosis of live P. 

aeruginosa and also demonstrating the effective time span of Rab5 activity during the 

phagocytosis of both heat inactivated and live P. aeruginosa. 
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4.4.2 Rin1: FL over-expression in macrophage cells help to retain Rab5-active form 

at the early phagocytic time points during Pseudomonas aeruginosa invasion. 

     The Rab5-GEF, Rin1 that partially reversed negative effect of live P. aeruginosa on 

Rab5 activity (Mustafi, Rivero et al. 2013) was introduced to this system to investigate 

the mechanism of such effect. At first, Rab5 activity was measured for the entire phase of 

early phagocytosis in J774-Eclone cells in presence of over-expressed Rin1: FL protein. 

To determine whether Rin1 activity influenced the sustenance of Rab5-GTP bound form, 

J774-Eclone cells expressing Rin1 FL were incubated with both live and heat inactivated 

P. aeruginosa from 1 to 60 minutes as previously stated and analyzed for Rab5-GTP 

using immunoblot technique with monoclonal anti-Rab5-GTP antibody. As described in 

Figure 23 B, Rab5-GTP was detected from 1 to 20 minutes during live P. aeruginosa 

phagocytosis. Similar to previous observations, Rab5 activity did not alter in macrophage 

cells carrying heat inactivated P. aeruginosa in control experiment (Figure 23A). 

Although Rab5-GTP appeared to have sustained longer in Rin1 FL over-expressing 

macrophages carrying live bacteria, there was at least 40±5% decline of the activity by 15 

minute time point. Together these results suggest that in presence of Rin1 FL, Rab5-GTP 

bound form remains intact and sustains negative effects of live P. aeruginosa effectors 

corroborating with previous results (Mustafi, Rivero et al. 2013). 

4.4.3 Selective role of Rin1 domains in Rab5 activation during internalization of live 

Pseudomonas aeruginosa. 

 The substantial role of Rin1 in reinstating Rab5 activity is eminent from previous 

results. In order to investigate the mechanism by which Rin1 influence Rab5 to overcome 

the interference in its activity during live P. aeruginosa phagocytosis, Rin1 domains were 
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introduced separately into the macrophage cells. The amino terminal region of Rin1, Rin1 

N contains SH2 domain followed by a Proline rich region. The carboxyl terminal region 

of Rin1, Rin1 C contains Vps9 domain and RA domain (Figure 21). Macrophage cells 

over expressing Rin1 FL, Rin1 N or Rin1 C were incubated with live P. aeruginosa and 

its internalization was assayed at different time points over a period of 30 minutes. 

Expression of Rin1 FL and Rin1 C proteins overall increased the internalization of live P. 

aeruginosa in comparison to control cells and cells expressing Rin1 N (Figure 24A). 

Further, Rin1:Vps9 and Rin1:RA domains were separately over-expressed in the same 

macrophage cell system and phagocytic index for live P. aeruginosa was analyzed. Data 

indicated no significant impact of each of neither these domains on phagocytic index 

assuring neither Vps9 nor RA domain solely interplay in Rab5 activation (Figure 24B). 

Followed by internalization, cells were then analyzed for in vivo bacterial survival. Cells 

were incubated in P. aeruginosa free media for an additional 30 minutes post 

phagocytosis. Finally cells were washed with ice cold PBS and treated with amikacin 

(400 µg/ mL) for 2 hours at 4ºC to kill any bacteria attached to the cells. Afterwards, cells 

were lysed with 0.5% triton X and plated on LB-agar for internalized bacterial viability. 

Previous experiment provided the total number of bacteria internalized which supported 

as a control. Results indicated that unlike internalization, bacterial survival rate sharply 

decreased in cells over-expressing Rin1 FL and Rin1 C in comparison to control cells and 

cells over-expressing Rin1 N (Figure 24C). 

4.4.4 Ras is active in early phase of Pseudomonas aeruginosa phagocytosis. 

Ras association domain in Rin1 C region has been found to interact with Ras in its 

active state (Wang, Waldron et al. 2002). Observing the role of Rin1 C in P. aeruginosa 
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phagocytosis, it was tempting to examine the activity of Ras during the process as well. 

GTP- bound endogenous Ras form were assayed in J774-macrophage cells carrying 

phagocytosis of live or heat inactivated P. aeruginosa. Following the phagocytosis, cells 

were washed with PBS and lysed with lysis buffer and active Ras was probed with Raf1-

RBD pull down assay as described in Material Methods. As shown in Figure 25, GTP 

bound Ras was detected between 1-15 minutes and peaked during 2.5 – 10 minutes 

period of early phagocytosis. There were no significant differences in endogenous Ras 

activation during the process of phagocytosis in both live (Figure 25B) or heat inactivated 

(Figure 25A) P. aeruginosa. The result was also confirmed by measuring phosphorylated 

ERK from the cell lysates with the help of immunoblot technique. 

4.4.5 Rin1 FL interacts with Ras in Pseudomonas aeruginosa phagocytosis. 

Previous results indicate that Ras activity remains unaltered during early phagocytic 

events of P. aeruginosa. To determine whether Rin1 binds to Ras in response to 

phagocytic signals during live P. aeruginosa invasion a pull down protocol was 

employed. Followed by phagocytosis of live P. aeruginosa for 1 minute, 2.5 minutes, 5 

minutes, 10 minutes, 15 minutes and 20 minutes, Rin1 FL over-expressing macrophage 

cells were lysed and incubated with mouse monoclonal Pan-Ras antibody and agarose 

beads encoded with protein A. Cellular Ras bound to Pan-Ras antibody was then 

precipitated with protein A and probed with rabbit polyclonal anti-Ras antibody through 

immunoblotting. The Rin1 FL protein was also probed with Rin1 antibody in the same 

samples. As shown in Figure 26, Rin1 FL was precipitated with pulled down Ras at 

several time points such as 2.5 minutes, 5 minutes, 10 minutes, 15 minutes, 20 minutes, 
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etc. The maximum precipitation takes place between 5-10 minutes suggesting Rin1 FL 

interacts with Ras protein during the early phases of phagocytosis of live P. aeruginosa. 

4.4.6 Carboxyl terminal domain of Rin1 protein selectively interacts with modified 

and unmodified Ras and Rab5 protein in vitro. 

The affinity and specificity of Rin1 for modified Ras and Rab5 were examined using 

in vitro binding assays. Rin1 protein, specifically Rin1 C has maximum affinity for GTP 

bound Ras (a constitutively active Ras mutant: Ras:G12V) and GDP bound Rab5 

(Rab5:S34N). Here, the affinity of Rin1 C toward modified and unmodified Rab5:S34N 

and Ras:G12V was examined. Rab5:S34N and Ras:G12V were ADP-ribosylated in vitro 

by ExoS as described in material methods (Figure 27 A and C). Afterwards both normal 

and ADP-ribosylated Rab5:S34N and Ras:G12V were incubated with Rin1 C 

immobilized in GST agarose beads. The GST beads were then precipitated and subjected 

to immunoblot to probe for Rin1 C bound Rab5:S34N and Rin1 C- bound Ras:G12V. As 

expected, both Rab5:S34N and Ras:G12V show 100% affinity for Rin1 C (Figure 27 B 

and D). The ADP-ribosylated Rab5:S34N shows little or no affinity towards Rin1 C, 

whereas ADP-ribosylated Ras shows 40±6% affinity towards Rin1 C. This is an 

indication that in vitro Rin1 C is sensitive toward any modification of Rab5:S34N but not 

so for Ras:G12V. 

4.5 Discussion  

The Rin1 protein, a Rab5 GEF, was found to regulate membrane trafficking and 

endosome fusion in co-ordination with Rab5 (Gorvel, Chavrier et al. 1991; Bucci, Parton 

et al. 1992; Tall, Barbieri et al. 2001; Barbieri, Kong et al. 2003; Barbieri, Fernandez-Pol 

et al. 2004). Rin1 is also a Ras effector protein that regulates endocytosis and signaling of 
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receptor tyrosine kinases (Barbieri, Fernandez-Pol et al. 2004). This current study 

demonstrates the role of Rin1 as a Rab5-GEF in phagocytosis of live P. aeruginosa. 

During phagocytosis of live P. aeruginosa, Rab5 activity in J774-Eclone macrophage 

cells was diminished at a very early point after initiation (2.5 minutes). Once Rin1 FL 

protein was over-expressed in macrophage cells, the activity sustained for a longer time 

which is relevant with early phagocytic time points. In order to investigate the possible 

role of Rin1 Vps9 domain for boosting Rab5 activity, Rin1 N and Rin1 C were separately 

over-expressed in macrophage cells. Rin1 C seemed to be as effective as Rin1 FL protein 

to revive phagocytic activity in macrophage cells during live P. aeruginosa invasion. 

Since Rin1 C encodes RA domain, the possible role of Ras in live P. aeruginosa invasion 

was also investigated. Interestingly, it was noticed that live P. aeruginosa did not alter 

Ras activity in early phagocytic time points. When Rin1 over expressed macrophage cells 

were analyzed for Ras-Rin1 interaction, Rin1 appeared to be bound with Ras during early 

phagocytic time points of live P. aeruginosa invasion. In vitro studies revealed disrupted 

interaction between Rin1 C and ADP-ribosylated Rab5. But ADP-ribosylation 

modification in Ras does not completely disrupt its interaction with Rin1 C. From in vitro 

observations, it could be suggested that the intrinsic Rab5 activation cycle by over-

expressed Rin1 could be interrupted upon large accumulation of live P. aeruginosa at the 

site of activation. Together, these data suggest a possible role of Rin1- Ras coordinated 

activation of Rab5 in rescuing phagocytic activity during live P. aeruginosa invasion. 

Endogenous Rab5 activity is modulated by P. aeruginosa T3S effector ExoS at 15 

minutes into phagocytosis resulting in diminished phagocytic index (Mustafi, Rivero et 

al. 2013). In this study the activity log of endogenous Rab5 was documented at multiple 
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time points. Internalization of heat inactivated P. aeruginosa did not alter Rab5 activity. 

As shown in Figure 22 A, Rab5-GTP was detected between 1 and 20 minutes from 

phagocytosis start point. Immunoblot analysis of Rab5-GTP indicates activity peaked 

around 15-20 minutes where as, a bleak life span of Rab5-GTP was recorded in 

macrophage cells with live P. aeruginosa. In this case, GTP bound Rab5 was detected 

from 1-2.5 minutes, and was significantly diminished by 98±5% around 5 minutes of 

phagocytosis when compared to Rab5-GTP from the heat inactivated P. aeruginosa 

phagocytosis.  

Some earlier studies have shown that Rin1 depletion resulted in defective endosome 

fusion which was then reversed by newly introduced Rin1 in orchestration with Rab5 and 

Rab5 effector EEA1 (Galvis, Giambini et al. 2009). Also, Rin1 over-expression in J774-

macrophage was able to rescue Rab5 activity and enhance phagocytic index (Mustafi, 

Rivero et al.  20013). In this study, upon over expressing Rin1 FL with the aid of pMX-

puro retroviral system in J774-Eclone cells, Rab5 activity log was altered during live P. 

aeruginosa invasion. Rab5-GTP was significantly elevated and the duration of the 

activity prolonged up to 20 minutes (Figure 23B). Under a similar situation Rab5 activity 

appeared between 1-30 minutes in macrophages engulfing heat inactivated P. aeruginosa 

(Figure 23A). This observation could be the result of an intrinsic Rab5 guanine exchange 

cycle generated by Rin1 over-expression in macrophage cells. In both cases of live and 

heat inactivated P. aeruginosa phagocytosis, the presence of Rab5-GTP beyond the usual 

duration of early phagocytosis, could be attributed to Rin1 mediated feedback cycle of 

Rab5 activity. However, as shown in Figure 23A, Rab5-GTP appeared strong at 30 

minute of heat inactivated P. aeruginosa phagocytosis, about 80±4% more than that in 
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macrophages with live P. aeruginosa. Although the Rab5 modification by live P. 

aeruginosa T3S effectors seems to be masked by Rin1 GEF activity, there could be a 

possible interference in the equilibrium between modified and unmodified Rab5. 

  To further analyze the possible molecular mechanism several Rin1 domains were 

separately expressed in J774-Eclone cells. The SH2 domain and a Proline rich domain 

containing Rin1 N and Vps9 and RA domain containing Rin1 C were observed for their 

role in phagocytosis. Both Rin1 FL and Rin1 C up regulated phagocytic activity by two 

fold compared to J774-Eclone control cells carrying only the pMX vector. When survival 

of phagocytized bacteria was estimated following phagocytosis, Rin1 FL over-expressing 

macrophage cells showed 30±6% survival rate and Rin1 C over expressing cells showed 

40±5% less survival for internalized live bacteria (Figure 24B). However, control cells 

and Rin1 N over expressing cells showed limited phagocytic activity for live P. 

aeruginosa and did not alter the survival of the internalized bacteria. With these results, 

the importance of Rin1 C could be attributed to boost Rab5 activity. Further, when 

separate domains such as Rin1 Vps9 and Rin1 RA over-expressing macrophage were 

subjected to phagocytosis, they did not affect the phagocytic index and were very similar 

to control cells. Taken together, results from Figure 24 strongly indicate that Rin1 Vps9 

domain in conjunction with Rin1 RA domain potentiates Rab5 activity during 

phagocytosis of live P. aeruginosa. Another important fact was observed that even 

removal of the SH2 and proline-rich domains of Rin1causes no observable defect in the 

ability of Rin1 to stimulate phagocytic activity. 

Previously in a study by Roberts and others it has been suggested that the mechanism 

of Ras induced Rab5 activation and accumulation of Rab5 at the site of vesicle formation 
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and vesicle fusion is essentially similar in both endocytosis and phagocytosis (Roberts, 

Barbieri et al. 2000). A functional correlation has been established between Vps9 domain 

and RA domain found in Rin1 in a novel Ras mediated endocytosis pathway, where 

essentially GTP- bound active Ras interacts with Rin1 through RA domain which 

potentiates enzymatic activity in Rin1 Vps9 domain (Tall, Barbieri et al. 2001). Rin1 has 

higher affinity for activated Ras when compared to other potent Ras effector Raf1 (Wang, 

Waldron et al. 2002). This is consistent with the results from this study indicating a dual 

role of Ras and Rin1 in rescuing Rab5 activity during phagocytosis of live P. aeruginosa. 

P. aeruginosa mediated induction of Ras-MAPK pathway has been essentially found in 

epithelial cells (Li, Feng et al. 1998). Between the early phagocytic time points, Ras 

activity was observed to peak within a short span of 2.5 minutes and 10 minutes during 

both live or heat inactivated P. aeruginosa engulfment. Correlating the Ras activity, p-

ERK was also observed at those time points (Figure 25). Considering the fact that live P. 

aeruginosa T3S effectors modify both Ras and Rab5 (Ganesan, Vincent et al. 1999; 

Barbieri, Tall et al. 2001), in vivo interaction between Rin1 and Ras protein was analyzed 

in macrophages internalizing live P. aeruginosa. Immuno-precipitation of endogenous 

Ras illustrated that Rin1-Ras interaction occurs between 2.5 and 20 minutes of 

phagocytosis and by 30 minutes, the interaction dissipated by 95±7% (Figure, 26).  Given 

the strong correlation of Ras and Rab5 activity tethered together by Rin1, it was 

important to analyze the same between ADP-ribosylated Ras and ADP-ribosylated Rab5. 

ADP-ribosylation of Ras disrupts Ras-Raf1 signaling in in vivo (Zhang, 2007; Ganesan, 

1999). In vitro, ADP-ribosylated Ras:G12V showed 55±6% reduced affinity toward Rin1 

C but ADP-ribosylated Rab5 interaction with Rin1 C was completely disrupted (Figure 
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27). Ras protein in host cell is a major target for P. aeruginosa T3S ExoS but it failed to 

down regulate constitutively active Ras (Jansson, Yasmin et al. 2006). Also, it has been 

found that ExoS mediated Ras modification disrupts Ras-GEF interaction rather than 

Ras-effector interaction (Ganesan, Vincent et al. 1999). Similarly, ExoS failed to modify 

constitutively active form of Rab5 (Barbieri, Tall et al. 2001; Mustafi, Rivero et al. 

2013). From in vitro studies in this work, it could be conjectured that Rab5 modification 

disrupts Rin1 interaction but partially disrupts Ras-Rin1 interaction. 

Overall in this study, a novel pathway has been illustrated which was successful to 

alter impaired P. aeruginosa phagocytosis. A possible intrinsic Rab5 activity cycle was 

established by Rin1 protein over-expression in conjunction with endogenous Ras. Within 

the short period of early phagocytic vesicle formation, Rin1 interacts with activated Ras 

and potentiates Rab5 activity by Vps9 catalytic domain. Further analysis of in vivo 

interaction between ADP-ribosylated Ras and Rab5 with Rin1 could lead to a therapeutic 

alternative to rescue infamously impaired phagocytic activity in host and help combat 

chronic P. aeruginosa infection. 
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4.6 Figures legands 

 

Figure 22: Shortened life span of Rab5-GTP bound form in the event of early 
endocytosis during live P. aeruginosa invasion. 
J774-Eclone macrophage cells expressing pMX vector were incubated with heat-
inactivated, dead (D) P. aeruginosa (Panel A) or live (L) P. aeruginosa (panel B) at a 
ratio of 200:1 for 1 minute, 2.5 minutes, 5 minutes, 10 minutes, 15 minutes, 20 minutes, 
30 minutes, and 60 minutes at 37°C. Cells were then washed with ice-cold PBS, lysed 
and incubated with anti Rab5-GTP monoclonal antibody followed by protein A/G 
agarose beads as described in Materials and Method. After incubation, the beads were 
washed and GTP-bound activated Rab5 was analyzed by immunoblotting with anti-Rab5. 
Top panels (A and B): Shows a representative immunoblot of samples probed with anti-
Rab5 antibodies for total Rab5 and active Rab5 or anti-tubulin antibodies as control for 
total protein in cell lysate. Bottom panel (C and D) represents quantification of the course 
of activation of Rab5 during the described phagocytosis experiment.  Data represent the 
mean ± SEM of three independent experiments. 
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Figure 23: Effect of Rin1 FL, a Rab5-GEF on Rab5 activity during phagocytosis of 
P. aeruginosa. 
(Panel A) Live (L) or (Panel B) heat-inactivated, dead (D) P. aeruginosa were incubated 
with cells expressing Rin1 FL, a Rab5-GEF at a MOI of 200:1 bacteria to cell. P. 
aeruginosa phagocytosis was assayed after incubation at 37°C for 1 minute, 2.5 minutes, 
5 minutes, 10 minutes, 15 minutes, 20 minutes, 30 minutes, and 60 minutes respectively. 
Cells were then washed and analyzed for active GTP-Rab5 as previously described in 
Material and Methods. A representative immunoblot of samples probed with anti-Rab5, 
anti-Rin1 or anti-tubulin antibody is shown in the top panel. Bottom panels (C and D)
represent quantification of the course of activation of Rab5 during the described 
phagocytosis experiment. Data represent the mean ± SEM of three independent 
experiments. 
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Figure 24: Determination of live (L) P. aeruginosa invasion and survival inside 
macrophage in presence of Rin1 FL and its domains. 
(A) J774-Eclone cells expressing pMX (control) or Rin1 FL, Rin1 N or Rin1 C were 
incubated with live P. aeruginosa at a MOI of 200:1 for 0 minute, 5 minutes, 15 min, 20
minutes, and 30 minutes at 37°C. After incubation, the phagocytic index (Internalized 
PA) was determined and is expressed as percent phagocytosis of live bacteria by control 
cells at 30 minutes. (B) Further, Rin1 Vps9 and Rin1 RA over-expressing J774-Eclone 
cells were subjected phagocytosis for 0 minute, 5minutes, 15minutes, 20 minutes, and 30
minutes respectively using live P. aeruginosa at a MOI of 200:1. Phagocytic index was 
determined essentially as described in Material Methods section. Phagocytic index
(Internalized PA) is expressed as percent phagocytosis of live bacteria by control cells at 
30 min. (C) J774-Eclone cells expressing pMX (control) or Rin1 FL, Rin1 N or Rin1 C 
were incubated with live P. aeruginosa at a ratio of 200:1 for 30 minutes at 37°C. which 
was followed by antibiotic protection assay as described in the Material and Methods and 
internalized bacteria were chased for additional 30 minutes and the survival of 
internalized bacteria were measured enumerating the colonies on agar plate. (*) represents 
statistically significant difference from the control group (P<0.05). 
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Figure 25: Activation of Ras during phagocytosis of P. aeruginosa. 
J774-Eclone cells expressing pMX were incubated with live (L) (Panel A) or heat-
inactivated (D) (Panel B) P. aeruginosa as described previously, and Ras activation was 
assessed using the RBD-GST pull-down assay as described in Material Methods. As a 
control, beads were only coated with GST and incubated with cell lysate. Top panels (A 
and B) show a representative immunoblot of samples probed with anti Pan-Ras antibody 
for GTP bound active Ras or total Ras in the cell lysate and as a control phosphorylated 
ERK (pERK) and total ERK was also probed in the cell lysate. Bottom panels (C and D) 
represent quantification of the course of activation of Ras during the described 
phagocytosis experiment. Data represent the mean ± SEM of three independent 
experiments. 
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Figure 26: Rin1 binds to Ras during phagocytosis of P. aeruginosa. 
J774-Eclone cells expressing Rin1: FL were incubated with live (L) P. aeruginosa as 
described in the Materials and Methods and Ras was pulled down using monoclonal anti 
pan-Ras antibody also as described in the Materials and Methods. Finally, Ras bound 
Rin1: FL was probed using polyclonal anti Rin1 antibody. Top panel (A) represents the 
immunoblot of samples probed for pulled down Rin1: FL and total Rin1 FL in the cell 
lysates as well as pulled down Ras and total Ras in the cell lysates during the 
phagocytosis experiment. Bottom panel (B) represents quantification of pulled down Ras 
bound Rin1 during the described phagocytosis experiment. Data represent the mean ±
SEM of three independent experiments. 
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Figure 27: ADP-ribosylated Ras and Rab5 interaction with Rin1 R3 in vitro. 
(A) ADP-ribosylation by ExoS alters the electrophoretic mobility of Rab5:S34N. 
Rab5:S34N was ADP-ribosylated by ExoS in the presence (+) or absence (-) of the 
indicated reagents. The band with the fast electrophoretic mobility corresponds to 
unmodified (u) Rab5:S34N, whereas the band with slow electrophoretic mobility 
corresponds to ADP-ribosylated (m) Rab5:S34N. A 50µl reaction mixture of His-
Rab5:S34N proteins (1mM), His-ExoS (0.8mM), GST–14-3-3 (0.8mM), 0.2M Na acetate 
(pH 6.0), 1mM Magnesium chloride and 10 mM Biotinylated NAD was incubated at 
20ºC for 2 hours. Electrophoretic mobility shift was analyzed by immunoblotting (IB). 
(B) 3mM of ADP-ribosylated Rab5:S34N was added to immobilized GST-Rin1 C for 30
minutes at 4 °C in a total volume of 75 µl. Samples were centrifuged and pellets were 
analyzed in immunoblot (IB) probed with anti-Rab5-antibody, anti-Rin1-antibody and 
anti-GST-antibody. (C) Altered electrophoretic mobility of ADPR-ribosylated Ras:G12V 
(Rasv12) by ExoS in the presence (+) or absence (-) of the indicated reagents. The band 
with the fast electrophoretic mobility corresponds to unmodified (u) Ras:G12V and the 
band with slow electrophoretic mobility corresponds to ADP-ribosylated (m) Ras:G12V. 
ADP-ribosylation reaction for His- Ras:G12V were run in a 50 µl reaction mixture of 
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0.2M Tris-acetate, pH 6.0, 1mM MgCl2, 10mM Biotinylated NAD, 0.2mM 14-3-3, 0.5 
mM His-H- Ras:G12V and 0.2 mM ExoS at 20ºC for 2 h. (D) 3mM of ADP-ribosylated 
His- Ras:G12V was added to immobilized GST-Rin1 C for 30 minutes at 4 °C in a total 
volume of 75 µl. Samples were centrifuged and pellets were analyzed in immunoblot (IB) 
probed with anti-Rab5-antibody, anti-Rin1-antibody and anti-GST-antibody. 
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Chapter 5 

Antimicrobial activity of Dehydroleucodine against Pseudomonas aeruginosa 
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5.1 Abstract  
 

The increasing resistance of Pseudomonas aeruginosa to conventional treatments 

demands the search for novel therapeutic strategies. Dehydroleucodine (DhL), a 

secondary metabolite from Artemisia douglasiana, has been documented as antimicrobial 

agent against Helicobacter pylori and Leishmania Mexicana and trypanosome cruzi. In 

this study, the antimicrobial activity of DhL against P. aeruginosa was examined. In vitro 

analysis antimicrobial activity of DhL was determined against P. aeruginosa strains 

PAO1, PA103 and PA14 in reference to growth and various virulence factors. Results 

showed that DhL was active against each strain where, PAO1 and PA103 showed higher 

susceptibility (MIC 0.48 mg/ml) as compared to PA14 (MIC 0.96 mg/ml). Also, when 

PAO1 strain of was grown in the presence of DhL (MIC50, 0.12mg/ml), a delay in the 

generation time was noticed along with significant inhibition in LasA protease activity 

and LasB elastase activity as well as Pyocyanin secretion. ExoS, a Type III secretion 

effector was found to be absent from DhL treated PAO1 strain indicating inhibitory effect 

of DhL against Type III secretion effectors. Interruption in biofilm attachment phase was 

also observed in a stationary culture of PAO1 treated with DhL. DhL treatment positively 

controlled P. aeruginosa mediated apoptosis in J774-Eclone macrophage cell line. 

Analysis under Electron microscope revealed that the cellular integrity of P. aeruginosa 

post DhL treatment was preserved. Although, the exact molecular mechanism is still 

under speculation, the antimicrobial activity demonstrated by DhL may be a useful 

alternative strategy in prevention and eradication of P. aeruginosa infection.   
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5.2 Introduction 

Pseudomonas aeruginosa is a Gram-negative opportunistic pathogen with a high 

prominence of intrinsic antibiotic resistance (Hancock and Speert 2000; Mesaros, 

Nordmann et al. 2007). Pseduomonas aeruginosa resistant strains are commonly found as 

a secondary infection in immune-compromised patients with cystic fibrosis, COPD, 

AIDS, Cancer and even among diabetics (Rubin Grandis, Branstetter et al. 2004; 

Krcmery, Koprnova et al. 2006; Gomes, Machado et al. 2011; Engler, Muhlemann et al. 

2012; Hogardt and Heesemann 2013) leaving serious blood stream infection with 

significant mortality and healthcare cost (Weinstein, Towns et al. 1997; Wisplinghoff, 

Seifert et al. 2003). The success in establishing P. aeruginosa pathogenecity is largely 

due to formation of intractable biofilms and secretion of myriads of virulent factors 

including LasA protease, LasB elastase, pyocyanin, pyoverdin, Type III secretion (T3S) 

effectors and alginate (Kessler, Safrin et al. 1997; Lyczak, Cannon et al. 2002; McIver, 

Kessler et al. 2004; Lee, Smith et al. 2005; Hauser 2009). Unfortunately, selection of the 

most appropriate antibiotic is complicated due to the ability of P. aeruginosa to develop 

resistance to multiple classes of antibiotics. Pseudomonas aeruginosa can develop 

resistance to antibacterial because of the low permeability of its outer membrane 

(Livermore 1984), the constitutive expression of various efflux pumps (Livermore 2001) 

and the naturally occurring chromosomal AmpC b-lactamase, giving it sensitivity 

towards penicillin G; aminopenicillins, first and second generation cephalosporins 

(Nordmann and Guibert 1998). Pseduomonas aeruginosa easily acquires additional 

resistance mechanisms, which leads to serious therapeutic problems (Micek, Lloyd et al. 

2005). Currently anti-Pseudomonas treatments include higher-than-usual doses of b-
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lactam, fluoroquinolones and amino glycosides which possess a high degree of toxicity 

and very low eradication rate (Pedersen 1992; Hauser and Sriram 2005).	
  The dearth of 

successful antibiotics to completely control P. aeruginosa infection makes it crucial to 

find alternatives to currently available drugs.	
   Since pathogenicity in P. aeruginosa is 

regulated by several secretory-system mediated cell-to-cell communications, inhibition of 

this systems can cause attenuation of virulence and protect against infection (Hentzer, 

Wu et al. 2003; Smith and Iglewski 2003; Adonizio, Kong et al. 2008). Artemisia, the 

largest diverse genera of Asteraceae family possesses medicinally valuable essential oils 

and secondary metabolites (Bhakuni 2001; Choi, Park et al. 2013; Kim, Jung et al. 2013). 

Many studies indicate antimicrobial activity in Artemisia spp (Kalemba, Kusewicz et al. 

2002; Ramezani, Fazli-Bazzaz et al. 2004; Benli, Kaya et al. 2007; Mahboubi and 

Kazempour 2009; Ahameethunisa and Hopper 2010). Artemisia douglasiana (A. 

douglasiana) documented as ‘matico’ in Argentina is popular as a preventive folk 

medicine (Giordano, Guerreiro et al. 1990; Ariza Espinar 1992). Dehydroleucodine 

(DhL), a sesquiterpene lactone of the guaianolide group, which also contains a α-

methylene-γ-lactone ring in its molecule (figure 28), is the principle active secondary 

metabolite in A. douglasiana (Alicia B. Penissi 2006). DhL was first isolated from 

Lidbeckia pectinata (Bohlmann and Zdero 1972). The aerial parts of A. douglasiana 

Besser are also rich in DhL (Giordano, Guerreiro et al. 1990). The DhL has 

cytoprotective activity (Guardia, Guzman et al. 1994; Wendel, Maria et al. 1999; Wendel, 

Maria et al. 2008) as well as antimicrobial activity (such as against Leishmania mexicana 

and Helicobacter pylori (Barrera, Jimenez-Ortiz et al. 2008; Vega, Wendel et al. 2009). 

DhL inhibited cell proliferation (Polo, 2007) and growth of Trypanosome cruzi in culture 
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(Brengio, Belmonte et al. 2000). Some studies showed anti-Pseudomonas activity in 

essential oil from A. douglasiana (Setzer, Vogler et al. 2004).  

This report established the antimicrobial effects of DhL against P. aeruginosa in 

terms of attenuating growth and arresting virulent factors. 

 

                                               

Figure 28: Chemical structure of Dehydroleucodine isolated from Artemisa 
douglasiana. 
 
5.3 Material and Methods 

5.3.1 Materials  

Dehydroleucodine (DhL) was extracted from A. douglasiana as previously 

(Giordano, Guerreiro et al. 1990; Priestap, Abboud et al. 2011). All chemicals and 

reagents were purchased from Sigma-Aldrich (St. Louis, MO), unless otherwise 

indicated. Primary and secondary antibodies used in immunoblotting were purchased 

from Cell Signaling Technology Inc. (Danvers, MA). Culture supplies were purchased 

from Invitrogen Life Technologies (Carlsbad, CA). 

5.3.2 Bacterial Strain  

Prototypic P. aeruginosa strains used in this study are PAO1 (Holloway and Morgan 

1986), clinical isolates PA103 and PA14, (kindly provided by Dr. Dara Frank, Wisconsin 
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school of medicine) and P. aeruginosa strain PA103ΔUΔT, expressing pUCP plasmid-

encoded ExoS tagged with a hem-agglutinin epitope (ExoS-HA) (kindly provided by Dr. 

Joan, C. Olson, West Virginia University. In addition, Staphylococcus aureus (ATCC 

12600) was used in the LasA assay. Cells were maintained in Lauria Broth (LB) (Life 

Technologies, Carlsbad, CA) or Agrobacterium (AB) minimum medium (Bio-world, 

Visalia, CA.) to which glucose and casein amino acids [20%, wt/vol] were added. 

5.3.3 Determination of Minimum Inhibitory Concentration  

The antimicrobial activity of DhL was determined by a previously described micro 

dilution broth assay (Woolfrey, Fox et al. 1982). The minimum inhibitory concentration 

(Micek, Lloyd et al. 2005) of DhL for PA01, PA103 and PA14 strains of P. aeruginosa 

were determined. Serial doubling dilutions of DhL was made, ranging from 2.24mg/ml - 

0.224µg/ml. A drop (0.02 ml) of standard inoculums (0.5 McFarland) of all three P. 

aeruginosa strains were introduced to desired volume of growth medium and  incubated 

at 37ºC for 24 hours. MIC was interpreted as the least concentration with no observable 

turbidity. MIC90 and MIC50 were determined as the concentration of DhL that inhibited 

growth by 90% and 50% respectively. Controls were set up, such as, sterility control: LB 

broth only, viability control: LB broth and test bacteria, positive control: LB broth with 

Gentamycine and the test bacteria. They were incubated at 37ºC overnight. 

5.3.4 DhL treatment (threshold concentration) 

For each assay 0.12mg/ml (MIC50) of DhL was added to P. aeruginosa culture at 

early log phase unless otherwise stated. 
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5.3.5 Growth curves 

The effect of DhL on bacterial cell proliferation was determined by monitoring the 

growth curve of P. aeruginosa strain PAO1. Briefly, an overnight culture (in LB 

medium) of PAO1 was diluted to OD 0.05 in LB medium (control) or LB and DhL (0.12 

mg/ml) and incubated at 37ºC while shaking. The OD600 was monitored at 30 minute 

intervals until an OD600 of approximately 1.7 was obtained (approximately 8 hours). The 

OD600 of cultures with added DhL were normalized to the control OD600 at each time 

point to account for plant pigmentation. All OD600 measurements were verified at a 1/10 

dilution for greater accuracy. 

5.3.5 LasA staphylolytic activity 

 Staphylolytic activity was determined spectro-photometricaly by measuring the 

decrease in absorbance at 595 nm of  PAO1 culture supernatants mediated lysis of heat 

inactivated Staphylococcus aureus (S. aureus) cells (0.3 mg/ml; 0.02 M Tris-HCl, pH 8.5) 

(Kessler, Safrin et al. 1993). A 100 µl aliquot of P. aeruginosa culture supernatant with 

or without DhL (after normalizing their concentration) was added to 900 µl of a boiled S. 

aureus suspension. The OD595 was determined after 0, 5, 10, 20, 30, 45, and 60 minutes 

respectively. Activity was expressed as the change in the OD595/hour/µg protein. One unit 

of activity was defined as the amount of enzyme that causes an A595 decrease of 1 

absorbance unit/min.  

5.3.6 LasB elastolytic assay 

Elastolytic activity in PAO1 culture fluids was determined by elastin Congo red 

(ECR) assay (Bjorn, Sokol et al. 1979). A 100 µl aliquot of the AB medium culture 

supernatants from mid-log-phase with or without DhL treatment (concentration was 
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normalized), was added to 900 µl of ECR buffer (100 mM Tris,1 mM CaCl2, pH 7.5) 

containing 20 mg ECR. Tubes were incubated 18 hours at 37°C with rotation and then 

were placed on ice after 0.1 ml of 0.12M EDTA was added. Insoluble ECR was removed 

by centrifugation, and the OD495 was measured. Absorption due to pigments produced by 

P. aeruginosa was corrected for by subtracting the OD495 of each sample that had been 

incubated in the absence of ECR. Cell-free AB medium alone and AB medium with DhL 

were used as negative controls. 

5.3.7 Polyvinyl chloride biofilm formation attachment assay 

The effect of DhL on the attachment phase of biofilm formation was measured by 

using the polyvinyl chloride biofilm formation assay (O'Toole and Kolter 1998). Briefly, 

overnight cultures of PAO1 were resuspended in fresh AB medium in the presence and 

the absence DhL. After 24 hours of incubation at 30°C, the biofilms in the polyvinyl 

chloride micro titer plates were visualized by staining with a crystal violet solution. The 

plates were rinsed to remove planktonic cells, and the surface-attached cells were then 

quantified by solubilizing the dye in ethanol and measuring the absorbance at OD546. 

5.3.8 Pyocyanin assay 

Photometric pyocyanin assay was performed following previously described protocol 

by Grossowicz and others (Grossowicz, Hayat et al. 1957). 1.5 ml static LB broth culture 

at mid log phase (with or without DhL) was maintained at 37ºC for 24 hours and then 

centrifuged at 14000 rpm for 5 minutes. One ml of supernatants was mixed with 1.5 ml of 

chloroform and left to separate. The blue organic layer was mixed with 1ml of 0.2 M 

hydrochloric acid, whereby the blue mixture turning to a red form of pyocyanin moves 
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into the aqueous layer. This was re-centrifuged prior to measuring the absorbance at 520 

nm and pyocyanin formation was compared. 

5.3.9 Type III secretion assay  

Low calcium fractionation protocol (Lee, Smith et al. 2005) was adopted for the 

detection of (T3S) effectors. Briefly, P. aeruginosa PAO1, PA103ΔUΔT expressing HA-

ExoS and were grown overnight in LB and appropriate selection antibiotic. Bacteria were 

subcultured 1:1,000 in LB supplemented with 5 mM EGTA with or without DhL and 

grown for 6 hours at 37°C with aeration. Bacterial densities were determined at OD600 

nm. Bacteria were sedimented by centrifugation at 3,220 g for 15 minutes at 4°C. Culture 

supernatant was collected, and proteins were precipitated with 5% trichloroacetic acid 

and washed with ice cold acetone. Proteins were resuspended according to culture density 

and separated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-

PAGE). Proteins derived from PAO1 (with or without DhL) supernatant precipitates were 

run on a SDS-PAGE stained with Coomassie blue. Also proteins derived from 

PA103ΔUΔT expressing HA-ExoS were transferred onto polyvinylidene difluoride 

(PVDF) membranes for detection of HA-ExoS by antibodies against HA. 

5.3.10 P. aeruginosa mediated apoptosis of Eclone cells: Hoechst staining of 

condensed chromatin 

The effect of DhL treatment on P. aeruginosa mediated apoptosis of J774-Eclone 

mouse macrophage cell was monitored according to Jia et al, 2006 (Jia, Wang et al. 

2006).  J774-Eclone cell monolayer were plated from suspension culture 1 day prior to 

infection in DMEM supplemented with 5% FBS (DMEM-5%FBS). Cell monolayer (~5 × 

105 cells per well; >80% confluence) were washed with phosphate-buffered saline (PBS), 
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mixed with PAO1 bacteria (grown in LB- DhL or only LB) at a multiplicity of infection 

(MOI) of 20 and incubated for 2 hours at 37°C in a 5% CO2 incubator. The cells were 

washed with PBS to remove the non adhering bacteria. Fresh medium, DMEM-5% FBS 

supplemented with 400 µg of Gentamycine or Amikacin per ml, was added, and the cells 

were incubated for an additional 2 hours. As positive controls for the apoptosis, J774-

Eclone cells were incubated with 0.1 M of Stourosporine (Fischer scientific, Waltham, 

MA) for 1 hour. Cells were washed once with PBS and stained with Hoechst 33258 

(Molecular Probes, Inc., Eugene, OR) at 1 mg/ml for 10 minutes in the dark. Chromatin 

condensation was examined under the fluorescence microscope by using a DAPI (4, 6-

diamidino-2-phenylindole) filter after stained cells were mounted onto slides using 

mounting medium. 

5.3.11 Electron Microscopy 

Bacterial cells (strain PAO1) were grown in presence or absence of 0.48mg/ml of 

DhL and then resuspended in the fixative described by Mollenhauer and others 

(Mollenhauer, Morre et al. 1977). Fixed cells were dehydrated by grade of alcohol - 

acetone and embedded in Epon 812 (Pelco Company). Thin sections were obtained in an 

Ultra microtome (Ultra cut, Leica), stained with led citrate and uranile and observed at 50 

Kv in a Zeiss 900 electron microscope (Germany). 

5.3.12 Statistics 

All experiments were performed independently in triplicate and each experiment was 

repeated three times. Values represent the mean ± SEM of three independent 

experiments. Data were analyzed by one-way analysis of variance, with a P value of 0.05 

being significant, by using the SPSS (Chicago, IL) statistical software package. 
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5.3.13 Western Blot Image J  

Image J64 was used to quantify Western blots after images were scanned at a 

grayscale amplification of 600 dpi. 

5.4 Results 

5.4.1 Activity of DhL against Pseudomonas aeruginosa. 

For studying the antibacterial effects of DhL, varying concentrations of DhL ranging 

from 2.24mg/ml - 0.224µg/ml in growth media (LB) derived from a double dilution 

method on a 96 well plate was tested against P. aeruginosa strains PAO1, PA14 and 

PA103. 50% of PAO1 and PA103 population was inhibited at 0.12mg/ml whereas 0.48 

mg/ml of DhL successfully inhibited 50% of PA14 population. It has also been observed 

that the minimum inhibitory concentration (Micek, Lloyd et al. 2005), which is defined as 

the lowest concentration of the DhL solution that inhibits growth of the microbial strain, 

was 0.48 mg/ml for PAO1 and PA103 as compared to 0.96 mg/ml for the more virulent 

strain PA14 (Table 1). Overall, DhL was effective against all strains of P. aeruginosa 

tested here, although strains PAO1 and PA103 seemed to be more susceptible to DhL 

than PA14 and in each case the effective concentration of DhL was much higher than 

potent antibiotic Gentamycine (Table 1).  

5.4.2 Electron Microscopy analysis of Pseudomonas aeruginosa cellular structure  

Pseduomonas aeruginosa strain PAO1 from an overnight culture was diluted to an 

OD of 0.05 and grown for an additional 3 hours with or without 0.48 mg/ml of DhL. 

Cells were then prepared for EM studies as described in Material Methods. Results 

indicated that the ultra-structure of bacterial cell was clearly preserved and no structural 

differences could be established between treated and untreated groups (Figure 29).   
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5.4.3 Influence of threshold concentration of DhL on growth rate 

Further, results observed from growth studies with P. aeruginosa strain PAO1 

indicated that with the decrease in DhL concentration in culture media, the growth phases 

were recovered in PAO1 culture (data not shown). Although treatment at MIC90 failed to 

portray normal growth curve (data not shown), at MIC50 prominent log and stationary 

phases were recovered (Figure 30). Noticeable differences in generation time were 

observed between 1-3 hours of growth (Mid-log phase) at MIC50 dose of DhL between 

treated and untreated PAO1 (Figure 30). The overall analysis suggested a positive 

antimicrobial effect of DhL on P. aeruginosa.  

5.4.4 Activity of DhL against Pseudomonas aeruginosa virulence factors: Elastase A 

(LasA) and Elastase B (LasB) 

To investigate the effect of DhL on LasA carrying elastase activity and LasB carrying 

protease activity from the repertoire of P. aeruginosa virulence factors, a lower dose of 

DhL (MIC50, 0.12 mg/ml) was selected as a threshold of antimicrobial activity. The effect 

of DhL on the activity of LasA and LasB proteases was determined in P. aeruginosa 

strain PAO1 (Figure 31A and 31B) as described in Material and Methods. The LasA 

staphylolytic protease is a 20-kDa zinc metallo-endopeptidase (Kessler, Safrin et al. 

1993). A significant decrease (60±6%) in LasA activity was noticed after 60 minutes of 

incubation of S. aureus substrate along with the DhL treated PAO1 culture supernatant. 

PAO1 cultural supernatant in absence of DhL showed an exponentially increasing 

staphylolytic effect indicating protease activity when compared to S. aureus 

concentration in LB as a control (Figure 31A). As a control, similar concentration of DhL 

in LB was introduced to S. aureus to look for any lytic activity of DhL in the supernatant 
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in absence of PAO1 (Data not shown). The LasB is also a zinc metallo-protease which is 

capable of destroying or inactivating a wide range of biological tissues and 

immunological agents (Bever and Iglewski 1988). There was a significant decrease of 

75±5% in LasB activity when PAO1 was grown in the presence of DhL at MIC50 (Figure 

31B). As a control, DhL and LB itself showed no elastase activity. In both experiments, 

PAO1 cultures grown in presence or absence of DhL were normalized so that the total 

number of bacteria remained the same. Thus, results indicated DhL mediated control on 

protease activity in live bacteria but not loss of activity due to loss of bacterial viability. 

In conclusion, DhL effectively inhibited both LasA and LasB activity in PAO1 

population.  	
   	
   

5.4.5 DhL has an inhibitory effect on biofilm formation 

Pseduomonas aeruginosa has the ability to form biofilms, a partially quorum sensing 

controlled phenomenon (Davies 2003) in which cells are organized into layers and 

enmeshed in a matrix of mucoid polysaccharides (Costerton, Lewandowski et al. 1995). 

To determine if DhL could be used prophylactically to prevent biofilm formation, PAO1 

strain (DhL treated or not) generated biofilms were spectro-photometrically assessed after 

the crystal violet staining (Figure 32).	
   There was a significant decrease of 55±5% in 

biofilm formation compared to the control when strain PAO1 was grown in the presence 

of DhL (MIC50). Although, this experiment is unable to explain the exact mechanism of 

control, it is more likely that DhL has an effect directly on the bacterial cells rather than 

extracellular substances and mucoid layers of biofilm.  
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5.4.6 DhL alter pyocyanin production 

Psedomonas aeruginosa generates highly diffusible pigmented toxic secondary 

metabolites, known as phenazines which are critical for P. aeruginosa mediated killing of 

Caenorhabditis elegans and of mice in septicemia models (Mahajan-Miklos, Rahme et al. 

2000). Pyocyanin secretion in PAO1 when grown in presence of DhL at MIC50 showed a 

substantial decrease in production (75 ±5%) compared to the control (Figure 33). 

5.4.7 DhL inhibits Type III secretion effectors 

Pseduomonas aeruginosa strain PAO1 carrying T3S effectors ExoS, ExoT and ExoY, 

and effector less strain PA103∆U∆T: HA-ExoS were grown in an over night culture and 

then examined for the T3S effector secretion in presence or absence of DhL, essentially 

following the protocol by Lee and others, with a few modifications (Lee, Smith et al. 

2005). Secreted proteins from T3SS in calcium-depleted culture supernatants treated with 

or without DhL were precipitated and separated by SDS-PAGE. ExoS is a major secreted 

protein of P. aeruginosa strain PAO1, corresponding to its predicted size 49 kDa in 

coomassie blue stained SDS-PAGE gel (Figure 34). In calcium depleted media, presence 

of DhL seemed to control T3S effector secretion (Figure 34, top panel). To further 

confirm the presence of ExoS in the secretion profile, PA103ΔUΔT: HA-ExoS, carrying 

hemaglutanin (HA) tagged ExoS (see Material Methods) was used in a similar 

experiment and detected with specific anti-HA antibody (Figure 34, bottom panel). 

5.4.8 DhL treated Pseudomonas aeruginosa and apoptosis 

Studies have suggested that T3S effectors from P. aeruginosa are responsible for 

inducing rapid apoptosis is macrophage cells and epithelial cells (Hauser and Engel 1999; 

Kaufman, Jia et al. 2000). Prior results in this study indicated down regulation of 
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virulence factors in PAO1 when gown in DhL treated growth media. To follow up with 

the observation on T3S effectors, further investigations were conducted to observe the 

effect of DhL (MIC50) treatment on P. aeruginosa strain PAO1 induced apoptosis. PAO1 

cultures (with or without DhL treatment) were added to J774 Eclone cell monolayer at a 

MOI of 20:1. After 2 hours of incubation at 37◦C, cells were stained with Hoechst stain 

and apoptotic nuclei were observed under fluorescent microscope. The total percentage of 

apoptotic cell counted suggests that DhL treated PAO1 fail to induce apoptosis 

significantly compared to untreated PAO1 induced apoptosis (control). Almost 87±5% 

inhibition of apoptosis observed in PAO1 population previously treated with DhL when 

compared to the control population (Figure 35).    

5.5 Discussion 

Pseudomonas aeruginosa, an opportunistic pathogen often causing fatal infections in 

susceptible patients, has evolved a number of strategies by which bacterial factors affect 

host immunity and invade host cell (Buret and Cripps 1993). The LasA elastase and LasB 

protease play a major role in P. aeruginosa pathogenesis. The LasA have low elastolytic 

and staphylolytic activity (Kessler, Safrin et al. 1993) and also helps to increase LasB and 

other bacterial protease activity (Toder, Gambello et al. 1991). Proteolytic activity of 

LasA helps in bacterial invasion through epithelial tight junctions degrading the 

inhibitors of invasion in the host (Hoge 2010). The LasB elastase on the other hand is 

very crucial in Cystic Fibrosis lung infection (Voynow, Fischer et al. 2008) and known to 

degrade elastin and collagen in host (Heck, Morihara et al. 1986; Hamdaoui, Wund-

Bisseret et al. 1987; Kessler and Safrin 1988; Saulnier, Curtil et al. 1989). The  LasB is 

also known to interact with host immune proteins (Schultz and Miller 1974; Bainbridge 
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and Fick 1989; Heck, Alarcon et al. 1990). Pseudomonas aeruginosa is a biofilm-

forming bacterium. Biofilm formation by P. aeruginosa is intimately linked to cell-to-cell 

communication known as quorum sensing, in which small diffusible signaling molecules 

known as autoinducers regulate gene expression and increase protection against host 

immune responses (Costerton, Lewandowski et al. 1995; Dasgupta 1996; Davies 2003). 

Pseudomonas aeruginosa exhibit quorum sensing behavior using two distinct acyl-

homoserine lactone (Engler, Muhlemann et al. 2012) based pathways: the rhlI/rhlR 

pathway using butyryl acyl homoserine lactone (C4-HSL), and the lasI/lasR pathway 

using 3-oxo-dodecanoyl homoserine lactone (3-oxo C12-HSL) (Pesci, Milbank et al. 

1999). Biofilm-grown bacterial cells show increased resistance to anbiotics (Costerton, 

Lewandowski et al. 1995). Pseudomonas aeruginosa is the only organism known to 

produce the specific phenazine pyocyanin, a toxic secondary metabolite (Reyes, Bale et 

al. 1981) that have been previously shown to accelerate neutrophil apoptosis in vitro 

(Usher, Lawson et al. 2002). In animal infection models mimicking P. aeruginosa 

mediated acute human infections, such as burn wound, acute pneumonia, and corneal 

infection; it was shown that type III secretion (T3S) is an important virulence mechanism 

(Kudoh, Wiener-Kronish et al. 1994; Sawa, Ohara et al. 1998; Holder, Neely et al. 2001; 

Moss, Ehrmantraut et al. 2001). In 1998, Hauser and others illustrated that T3SS in P. 

aeruginosa induces apoptosis in epithelial cells and macrophage cells. 

The aim of the present study was to assess the antimicrobial effect of DhL against P. 

aeruginosa growth and virulence factors. The PAO1 strain of P. aeruginosa is the 

standard laboratory strain as well as genetic reference strain, with a completely 

sequenced 6.3-Mb genome and 5,570 annotated open reading frame (ORFs) (Stover, 
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Pham et al. 2000). The PA14 strain, a “multi host” pathogen is capable of infecting 

animals (in a burned mouse model), plants, insects, and nematodes (Rahme, Stevens et al. 

1995; Mahajan-Miklos, Rahme et al. 2000). Both strains were able to initiate and 

maintain chronic infection in rat lung model (Kukavica-Ibrulj, Bragonzi et al. 2008). 

Exotoxin-A producing strain, PA103, is a cytotoxic strain of P. aeruginosa which is 

known to cause severe alveolar epithelial injury during infection (Kudoh, Wiener-

Kronish et al. 1994; Fleiszig, Zaidi et al. 1996). Virulent strains (PA14, PA103) and 

laboratory reference strain (PAO1) of P. aeruginosa were completely inhibited in vitro 

by DhL and the MICs vary from 0.48 to 0.96 mg/ml. When PAO1 strain was grown in 

presence of a low dose of DhL (MIC50 = 0.12mg/ml), the growth curve was recovered 

which indicated decreased bacterial killing, but the generation time was significantly 

reduced by 50±5%. This suggested a possible role of DhL on bacterial cell cycle and 

slowing down of doubling time. The DhL treatment also inhibited several P. aeruginosa 

virulence factors at the threshold dose of 0.12mg/ml. The PAO1 cultural supernatant 

treated with or without DhL showed 60±6% decrease in LasA activity and 75±5% 

reduction in LasB activity. DhL treated PAO1 culture failed to demonstrate successful 

initial attachment phase during the course of biofilm formation and prolonged 

observation revealed disruption in biofilm formation compared to untreated PAO1 culture 

(data not shown). Effect of DhL was also poignant for P. aeruginosa pigment secretion 

and T3SS. Almost 85±7% of reduction in Pyocyanin formation and complete inhibition 

of T3S effector resulted from DhL treatment. Over all the results indicated a prominent 

regulation of P. aeruginosa growth and virulence due to DhL treatment in vitro. Finally, 

when DhL treated P. aeruginosa was co cultured with mouse macrophage J774-Eclone 
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cells, the typical P. aeruginosa induced cellular apoptosis was found to be successfully 

controlled, thus indicating inhibition of virulence factors specifically of T3SS, which 

otherwise leads to cell toxicity and apoptosis. Although the exact mechanism of DhL 

mediated suppression of P. aeruginosa virulence  is still under investigation, some new 

data (Dinh and Barbieri, un published) highlights the possibility of DhL acting as 

antibacterial topo-isomerase (Kathiravan, Khilare et al. 2013). Due to high mutation rate 

in bacterial genome, P. aeruginosa is extremely difficult to eradicate from mucoid 

colonies (Mathee, von Schirnding et al. 2002). Therefore, as an alternative strategy, 

scientists are aiming at antivirulence therapy to prevent P. aeruginosa invasion 

(Clatworthy, Pierson et al. 2007; Adonizio, Kong et al. 2008; Song, Kong et al. 2010). 

Given the popularity of DhL as an antimicrobial agent, further in vivo analysis in animal 

models carrying P. aeruginosa infection may advance its potential as a successful anti-

Pseudomonas agent. 
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5.6 Figures and legends 
 
     
P. aeruginosa 
strain 

 Antimicrobial 
agent 

 MIC 
(mg/ml) MIC90 (mg/ml) 

MIC50 
(mg/ml) 

          
PAO1 DhL 0.48 0.24 0.12 
  Gentamycine 0.075 0.064 *         0.032 * 
          
PA14 DhL 0.96 0.48 0.24 

  Gentamycine  0.1 
                        
>0.064 *     >0.032 * 

          
PA103 DhL 0.48 0.24 0.12 
  Gentamycine 0.075 0.064*         0.032 * 

 
Table 1: Table showing Minimum inhibitory concentration of DhL against P. aeruginosa 
strains showing complete killing (MIC), 50% of killing (MIC50) and 90% of killing 
(MIC90). * (Visalli, Jacobs et al. 1998). 
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Figure 29: Electron microscopy analysis of DhL treated P. aeruginosa. 
(A) DhL treated P. aeruginosa under 20000 x magnification showing intact cell 
membrane. (B) DhL treated P. aeruginosa cells without DhL treatment under 20000 x 
magnifications. (C) DhL treated P. aeruginosa under 3000 x magnification also showed 
no sign of cellular degradation. (D) P. aeruginosa cells under 3000 x magnification. 
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Figure 30: Influence of DhL on growth of P. aeruginosa. 
The prototypic PAO1 was grown in the absence (▪) and presence (♦) of DhL (MIC50 
0.12mg/ml) from early log phase to stationary phase (~ 1.7) at 37ºC with constant 
shaking. Generation time (between 1 to 3 hours) of PAO1 in presence of DhL (calculated 
from three independent experiments) is 50 ± 0.5 minutes while for PAO1 grown in 
absence of DhL is 23 ±0.5min. At least 50 ±5% of slowing down of generation time in 
the mid log phase was observed when treated with DhL (MIC50). Data represent the mean 
of three independent experiments ± SEM.  
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Figure 31: Effect of DhL on P. aeruginosa strain PAO1 protease activities. 
The staphylolytic LasA (A) and elastolytic LasB (B) activities were monitored in the 
absence or presence of DhL (0.12 mg/ml). (A) Staphylolytic assay for the rate of LasA 
proteolytic activity within the supernatant fraction of the growth culture was estimated by 
measuring the lysis of heat inactivated intact S. aureus at OD595(see Material and 
Methods). LB+ DhL was used as a negative control. Proteolytic activity of PAO1 
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supernatant was significantly (asterisk indicated P<0.05) inhibited when grown with 
DhL. Data represent the mean of three independent experiments ±SEM. (B) Levels of 
LasB elastolytic activity (A495) within the PAO1 cultural supernatant with or without 
DhL treatment was measured by Elastin Congo red assay (Material and Method). 
Bacteria were grown in LB broth at 37ºC for 16 hours. The cultures were adjusted to an 
OD540 of 3.5–4.0 before harvesting to eliminate growth-related variations in elastolytic 
activity. DhL added LB was used as a negative control. Significant (asterisk indicated 
P<0.05) decrease in LasB activity was observed in PAO1 when treated with DhL. Data 
represent the mean of three independent experiments ±SEM. 
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Figure 32: Effect of DhL on P. aeruginosa biofilm formation. 
Overnight cultures of PAO1 were resuspended in fresh AB medium in the presence and 
the absence DhL in PVC tubes. After 24 hours of incubation at 30°C, the biofilms on the 
wall of the tubes were visualized by staining with a crystal violet solution. Biofilm 
formation was quantified by measuring A546 of crystal violet-stained wells rinsed with 
ethanol. Each column is the mean of three individual experiments with two replicates per 
treatment. Inset: significant amount of crystal violet stained biofilm appeared on the 
testube wall carrying PAO1, but the same was absent from the testube carrying DhL 
treated PAO1. Significant (asterisk indicated P<0.05) decrease in biofilm formation was 
observed in PAO1 when treated with DhL. Data represent the mean of three independent 
experiments ±SEM. 
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Figure 33: Pyocyanin production in DhL treated P. aeruginosa  
Cells were grown in 1.5ml of static LB broth with or without DhL (MIC50, 0.12 mg/ml) 
and culture was maintained at 37ºC for 24 hours. Finally the supernatant fractions were 
separated by centrifugation at 14000 rpm for 5 minutes and Pyocyanin production was 
determined by the chloroform: acid extraction procedure (Material and Method). 
Pyocyanin formation was measured at OD 520 nm and was compared between PAO1 
culture grown in LB with or without DhL. Each column is the mean of three individual 
experiments with two replicates per treatment. Significant (asterisk indicated P<0.05) 
decrease in Pyocyanin formation in PAO1 when treated with DhL was observed. Data 
represent the mean of three independent experiments ±SEM. 
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Figure 34: Effect of DhL on TypeIII secretion. 
(Top Panel) Type III secretion profile of P. aeruginosa strains PAO1 in presence of DhL 
as observed with SDS-PAGE stained in coomassie blue stain. Lane 1 represents untreated 
PAO1 secretion profile and lane 2 represents treated PAO1 secretion profile. Under 
coomassie blue stain, protein bands were observed at ~ 53 Kda, ~49 Kda, and ~ 37 Kda 
indicating ExoT, ExoS and ExoY respectively in PAO1 Type III secretion assay, which 
were not shown in DhL treated PAO1 Type III secretion assay. (B) PA103ΔUΔT: HA-
ExoS strain carrying hemaglutanin (HA) tagged ExoS was also subjected to DhL 
treatment and T3S profile was analyzed as described in Material and Methods. ExoS was 
detected in the secretion profile of untreated strain and was absent from the treated strain. 
HA specific antibody was used in immunoblot (IB) to confirm the presence of ~ 49 Kda 
ExoS secretion in : HA-ExoS strain as elucidated at the bottom panel.
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Figure 35: Effect of DhL on P. aeruginosa induced apoptosis. 
J774-Eclone cells were plated in monolayer (~5 × 105 cells per well), once adhered they 
were infected with PAO1 bacteria previously grown in LB- DhL( MIC50, 0.12 mg/ml)or 
only LB, at a multiplicity of infection of 20, and incubated for 2 hours at 37°C in a 5% 
CO2 incubator. In a parallel experiment equal count of J774-Eclone cells were subjected 
to Stourosporine (Material and Methods) for positive control. Cells were then washed 
with PBS, stained with Hoechst dye, and subjected to fluorescence microscopy (Material 
and Methods). Five fields were randomly sampled from each experimental population, 
and all of the cells stained with Hoechst dye in each field were counted up to 500 in total. 
The total number of apoptotic cells with condensed or fragmented nuclei was determined 
in the five sampled regions and was expressed as follows: percentage of apoptosis per 
sample = number of apoptotic cells/total number of cells x 100. Each column is the mean 
of three individual experiments with two replicates per treatment. Significant (asterisk 
indicated P<0.05) decrease in apoptotic cells were noticed when infected with PAO1 
grown in presence of DhL. Data represent the mean of three independent experiments ± 
SEM. 
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6.1 Discussion 

  Pseudomonas aeruginosa, a pathogen with many potential virulence factors, 

colonizes and infects essentially any mammalian tissue. The organism possesses a 

multitude of factors which promote host cell adherence, host tissue damage, elicit 

inflammation and disrupt defense mechanisms. Pseduomonas aeruginosa infections 

could be severe and life threatening. Once infected, it is difficult to eliminate the 

pathogen because of the limited susceptibility to antimicrobial agents and the frequent 

occurrence of antibiotic resistance during therapy (Carmeli, Troillet et al. 1999; Lister, 

Wolter et al. 2009). In spite of the ubiquitous niche of this microorganism, and the 

frequency with which it is encountered by human population, most human hosts are 

effective to counteract the infectious process via their innate immune system (Lyczak, 

Cannon et al. 2000). However, the genetically compromised immune systems such as in 

the CF patients, dramatically increases host susceptibility to P. aeruginosa infection 

(Lyczak, Cannon et al. 2000). Almost all clinical cases of P. aeruginosa infection are 

associated with compromised host defenses such as AIDS, burn wood patients and 

patients undergoing chemotherapy (Chitkara and Feierabend 1981; Bendig, Kyle et al. 

1987; Franzetti, Cernuschi et al. 1992). Radiations and chemotherapies break down the 

tissue of natural infection barriers such as the skin and covering of the gastrointestinal 

tract making it vulnerable towards bacterial and fungal infection. Because of its clinical 

importance, the pathogen has been subjected to extensive studies for a more detailed 

molecular and cellular understanding of the bacterial and host interaction. An overall 

comprehension of the pathogenic process of P. aeruginosa will be of increasing 

importance to the development of preventative strategies. 
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    More than 15 species of Gram negative human pathogens including Salmonella 

spp, Shigella flexneri, Yersinia spp, Escherecia coli, Chlamydia spp and Pseudomonas 

aeruginosa shares Type III secretion (T3S) apparatus (Hueck 1998; Pallen, Beatson et al. 

2005; Keyser, Elofsson et al. 2008). Pseduomonas aeruginosa T3S effectors ExoS and 

ExoT target many host proteins along with Ras and Rho family of GTPases involved in 

host cell trafficking (Deng and Barbieri 2008). The T3S effector ExoS has also been 

implicated as an antiphagocytic factor along with enhancing cytotoxicity and lung injury 

in infected animals (Nicas, Frank et al. 1985; Apodaca, Bomsel et al. 1995; Frithz-

Lindsten, Du et al. 1997). Macrophages are critical in protecting the lung and mucosal 

surfaces against infection and may ingest and kill potential pathogens in the absence of 

exogenous opsonins. Although phagocytic cell dysfunction has been suggested, it has not 

yet been demonstrated in the case of P. aeruginosa infection (Cowell, Chen et al. 2000; 

Celli and Finlay 2002). Therefore, with the emergence of interest on various pathogenic 

mechanisms adopted by P. aeruginosa, this dissertation ventured the molecular 

mechanism by which T3S system manipulates host phagocytic defense, to better 

understand the dynamics of phagosome-pathogen interaction. 

Phagocytosis is a type of endocytosis where active Rab5 (GTP-bound Rab5) 

recruitment is associated with nascent phagosome. Activity of Rab5 has been correlated 

with enhanced antimicrobial properties in phagosomes (Duclos, Diez et al. 2000). This 

report demonstrated for the first time that Rab5 activity is critical in the process of 

internalization of P. aeruginosa by macrophage cells. A sharp inhibition of endogenous 

Rab5 activity characterized by weaker phagocytic response was observed in J774-Eclone 

macrophage cell line within 15 minutes (early phagocytic event) of live P. aeruginosa 
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internalization. The consequences of Rab5 activity was successfully reversed during the 

phagocytic process by over expressing constitutively active Rab5 Q79L mutant protein in 

J774-Eclone macrophage cells. In the presence of Rab5 Q79L, a GTP hydrolysis 

defective mutant, macrophage cells showed ~ 4 fold increase in phagocytic index and 

uninterrupted Rab5 activity. Examining the plausible role of several T3S effectors in the 

inhibition of Rab5 activity and subsequent avoidance to phagocytic killing, different 

strains of P. aeruginosa were used in this study. Analyzing the phagocytic indices in P. 

aeruginosa strains lacking one or more of the four T3S effector, it was found that little or 

no phagocytic inhibition was exhibited by PA103∆U∆T, a T3S effector less strain. 

Interestingly, macrophages engulfing PA103 strain (lacking ExoS and ExoY) showed 3 

fold higher phagocytic index compared to cells engulfing PAO1 (carrying ExoS, ExoT, 

ExoY). Further analysis discarded the effect of ExoT and ExoY in Rab5 modulation 

leaving ExoS as an essential modulator of Rab5 activity and phagocytosis in J774-Eclone 

cells. Lack of ExoS increased susceptibility towards macrophage mediated killing in P. 

aeruginosa strain PA103 although cumulative effects of other T3S effectors and several 

virulent factors showed some antiphagocytic effect in J774-Eclone cells and never 

matched up with the prompt and high phagocytic indices of heat inactivated P. 

aeruginosa. 

In a different investigation undertaking the inhibiting role of ExoS on Rab5 activity, 

P. aeruginosa strains carrying either of the two functional domains of ExoS were 

subjected to phagocytosis followed by a detailed analysis of Rab5 activity. PA103∆U∆T 

strain carrying full length ExoS protein (with both ADP-ribosylating domain (ADPr) and 

Rho-GTPase activating (Rho-GAP) domain) as well as PA103∆U∆T strain carrying only 
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ExoS ADPr domain, accounted for diminished level GTP-bound active Rab5 form in 

J774-Eclone cells during the process of phagocytosis. On the other hand, Rho-GAP 

activity of ExoS showed anti-internalization effect but didn’t influence Rab5 function. 

The data was supported by in vivo observation on Rab5 activity when ExoS full length, 

ExoS ADPr or ExoS Rho-GAP was expressed in macrophage cells. Formation of 

endogenous Rab5-GTP was significantly inhibited while expressing full length ExoS 

protein or ExoS ADPr domain, but not ExoS Rho-GAP domain in J774-Eclone cells.  

Since, the Rab5 nucleotide status was found to be integral in P. aeruginosa phagocytosis, 

a second approach was designed to invoke Rab5 activity in J774-Eclone macrophages. 

Rabex5, Rin1 and Rap6, known to act as Rab5 GTP exchange factors, were over 

expressed in J774-Eclone macrophages individually. Internalization of heat inactivated P. 

aeruginosa raised significantly in cells over expressing each one of Rab5-GEFs, showing 

maximum effect from Rin1 over expression. Each of the Rab5-GEFs also enhanced Rab5 

nucleotide status although to different degrees. But, in presence of live P. aeruginosa, 

only the effect of Rin1 over expression enhanced both phagocytic activity and Rab5 

nucleotide status from the negative influence, suggesting specific preferences of Rab5 

towards its GEFs in phagocytosis of live P. aeruginosa. 

Over all, the primary analysis directed importance towards Rab5 nucleotide status and 

selective GEF mediated Rab5 activation pathway in P. aeruginosa phagocytosis. Another 

interesting aspect which attracted the focus of this study was ExoS influenced 

modification of Rab5 protein. Rab5 has been studied as a substrate for ExoS in vitro 

ADP-ribosylation activity (Barbieri, Sha et al. 2001; Fraylick, Rucks et al. 2002). But the 

ADP-ribosylation target sites on Rab5 needed to be explored. ExoS exhibits specificity 
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towards arginine sites on the substrate protein (Laing, Unger et al. 2011). In order to 

determine the key arginine sites in Rab5, all 11 arginines in positions 4, 8, 39, 81, 91, 

110, 120,141, 195, 197 and 209 were modified to alanine and purified with His-tagged 

expression vector for in vitro analysis. Although individual alteration of arginine to 

alanine at the key sites didn’t alter Rab5 GTP binding capacity, they responded equally 

towards ADP-ribosylation by ExoS. Thus, suggesting more than one arginine residues are 

targeted as ADP-ribosylation sites on Rab5. Another interesting observation was obtained 

from this part of the study about ADP-ribosylated Rab5 protein. In vitro GTP binding 

assay suggested that post ADP-ribosylation, Rab5 losses its structural conformation 

otherwise favorable for GTP binding. Rab5 Q79L purified protein was able to retain GTP 

binding capacity post ADP-ribosylation unlike Rab5 WT form further indicating that it’s 

innate GTP binding conformation was not interrupted by the modification.  

Further assuring the importance of Rab5 nucleotide status, an in vivo analysis was 

performed to assess the role of Rin1 in rescuing Rab5 activity during invasion of live P. 

aeruginosa. A detailed examination on endogenous Rab5 activity status through out an 

hour of phagocytosis of heat inactivated P. aeruginosa showed a transient flash of active 

Rab5 between 1-20 minutes after initiation. While at the time of live P. aeruginosa 

invasion, the activity of endogenous Rab5 appeared bleakly up to 5 minutes time point. 

Hence, it was confirmed that at a very early phase of phagocytosis, Rab5 activity is 

diminished due to the negative effects of P. aeruginosa virulence. Upon over expression 

of Rab5 GEF, Rin1, an intrinsic active Rab5 cycle was generated sustaining the Rab5 

activity up to 20 minutes in both live and heat inactivated P. aeruginosa invasion. 

Although, this observation is redundant for phagocytosis of heat inactivated form of P. 
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aeruginosa, it was of utmost interest in the case of disabled phagocytic response in the 

case of the live form.  To investigate the molecular mechanism by which Rin1 generates 

an active cycle of Rab5, a domain wise analysis of Rin1 was executed in live P. 

aeruginosa invasion. Rin1 C terminal region containing Rab5 activating Vps9 domain 

and Ras binding RA domain attributed towards a significant up regulation of phagocytic 

index for live P. aeruginosa in contrast to Rin1 N terminal region containing SH2 and 

Proline rich domains. Further, analyzing the individual contribution of Vps9 or RA 

domains showed no effect on phagocytic index suggesting a coordinated activity of both 

domains towards phagocytosis of live P. aeruginosa. The observation was re assured by 

analyzing the fate of the live bacteria once internalized by J774-Eclone macrophages in 

presence of either N or C terminal region of Rin1, when data showed low survival rate in 

internalized bacteria in presence of Rin1 C terminal region rather than Rin1 N terminal 

region. The Rin1 RA domain interplays a role between Rin1 and Ras by attributing to an 

interaction of Rin1 with active GTP-bound Ras as a Ras effector (Wang, Waldron et al. 

2002), the observation which also corroborates with other studies suggesting the 

requirement for active-Ras/Rin1 interaction essential for Rab5 activity (Roberts, Barbieri 

et al. 2000). At this point, a simple analysis of Ras activity was performed in macrophage 

cell line in presence of either live or heat inactivated P. aeruginosa. Results showed in 

both cases, Ras activity retained transiently for a period of 1-15 minutes essentially rising 

to a peak around 2.5-10 minutes. When Ras and Rin1 interaction was examined in live P. 

aeruginosa phagocytosis, a positive signal was received between 2.5-20 minutes 

suggesting a possible role of Rin1 as Ras effector in P. aeruginosa engulfing 

macrophages. Taken together, these data suggests an active role of Ras effector Rin1 also 
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aiding Rab5 as a GEF and enhancing Rab5 function during live P. aeruginosa 

phagocytosis. Over all, this molecular mechanism was able to rescue phagocytic activity 

in macrophages in presence of live P. aeruginosa. Finally, an in vitro study revealed a 

diminished interaction between Rab5/Ras and Rin1 when Rab5/Ras were ADP-

ribosylated, directing attention to speculate any alteration of recognition patterns or 

binding patterns for ADP-ribosylated Rab5 or Ras with their respective effector proteins 

and GEFs. In Summery, Rin1 over expression in macrophages generated a transient 

intrinsic cycle of active Rab5 during phagocytosis of live P. aeruginosa, facilitated in 

part by the ability of Rin1 to interact with Ras as an effector protein and regulate Rab5 

nucleotide exchange activity (Pohlmann, Boeker et al. 1995). 

With the growing demand for alternative therapeutic approach, many scientists are 

exploring alternative folk remedies to combat resilient pathogenic infections. Anti-

microbial peptides (Eckert, Brady et al. 2006; Kapoor, Wadman et al. 2011) and herbal 

extracts (Adonizio, Kong et al. 2008; Song, Kong et al. 2010) are popular among many 

other approaches against P. aeruginosa infection. Here, in this part of the thesis, the 

antimicrobial and anti virulent activity of Dehydroleucodine (DhL) was tested against 

different strains of P. aeruginosa. DhL is a sesquiterpene lactone found in Artemisia 

douglasiana plant as secondary metabolites. Anti microbial activity of DhL has been 

established in Leishmania mexicana and Helicobactor pylori infections. DhL was found 

to be effective as an antimicrobial agent showing more susceptible toward PA103 and 

PA01 strains (MIC 0.48 mg/ml), comparatively less virulent strain rather than PA14, 

(MIC, 0.96 mg/ml) a more virulent strain. Also a prominent anti-virulent activity of DhL 

was established through various laboratory experiments against P. aeruginosa virulent 
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factors such as LasA staphylolytic activity and LasB elastolytic activity, Pyocyanin 

secretion, interrupted attachment phase during biofilm formation and a significant 

reduction of T3S effector ExoS formation when P. aeruginosa strain PA01 was grown in 

presence of a threshold level of DhL (MIC50, 0.12mg/ml). A sharp reduction in P. 

aeruginosa induced apoptosis was also observed when DhL treated PA01 were co-

cultured with J774-eclone macrophages. Although, a strong antimicrobial activity of DhL 

against P. aeruginosa was documented, electron microscopic studies showed no 

significant change or damage of bacterial cell due to the treatment. Hence, a detailed 

analysis of mechanism by which DhL affects P. aeruginosa bacterial cells awaits 

understanding of the proper mode of action. 

6.2 Future directions 

Although this dissertation provides a new insight on the modulation of Rab5 by P. 

aeruginosa during phagocytosis and a novel Rin1/Ras mediated pathway to facilitate the 

re-establishment of impaired Rab5 activity, this body of work remains from answering 

some interesting questions worthy for future investigation.  

First, given that Rab5 is a target for ExoS ADP-ribosylation activity, it will be interesting 

to follow up the study to observe the interaction between ExoS and Rab5. Most 

importantly, to document if the phenomena is controlled by internalized bacteria or by 

extracellular bacteria targeting Rab5 on the surface of cell membrane with their Type III 

injecting apparatus. 

Second, stretching the study from early phagocytosis to phago-lysosome formation, 

further investigation on degradation of internalized P. aeruginosa will be beneficial for 

therapeutic strategies.  
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Third, a very crucial aspect of Rab5 modification remains unanswered in this study. 

The target arginines during Rab5 ADP-ribosylation will clearly demonstrate the 

mechanism of Rab5 inactivation/ Rab5-GEF interaction with Rab5/ Rab5-effector 

interaction with Rab5 post modification. This analysis not only holds importance for drug 

targeting, but also a crucial point of observation in respect to evolution of host-pathogen 

interactions. 

Fourth, in the study of Ras/Rin1 facilitated Rab5 activation, in vivo analysis of ADP-

ribosylated Ras and Rab5 interaction with Rin1 will be of high significance to understand 

the molecular mechanism of this novel pathway. 

Finally, from the second part of this thesis, the molecular mechanism of antimicrobial 

activity showed by DhL on P. aeruginosa infection remains under speculation. Also, for 

the advancement of knowledge, the in vitro studies should be replicated in an animal 

model to establish DhL as a therapeutic agent in P. aeruginosa infection.  
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6.3 Figure legands 

 

Figure 36: Model for Ras and Rin1 facilitated Rab5 activation during P. aeruginosa
phagocytosis. 

Role of activated Ras during phagocytosis as speculated by (Botelho, Harrison et al. 

2009) indicates activation MEK1/ERK1 pathway aided by Ras effector Raf1 protein. 

During phagocytosis of live P. aeruginosa, Ras activation has also been indicated (Li, 

Feng et al.  1998). When Rin1 is over expressed, an alternative pathway has been 

speculated in macrphages (indicated by purple arrows), involving activated Ras and 

effector Rin1 interaction which in turn catalyzes Rab5 nucleotide exchange (GDPà

GTP) creating an intrinsic Rab5 activation cycle.  
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