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ABSTRACT OF THE THESIS 

SYNTHESIS OF CARBON NANOTUBES USING HIGH VOLTAGE AND HIGH-

FREQUENCY INDUCTION FIELD 

by 

Kalty Vazquez 

Florida International University, 2013 

Miami, Florida 

Professor Arvind Agarwal, Co-Major Professor  

Professor Bilal El-Zahab, Co-Major Professor 

The fields of nanomaterial and nanostructures are some of the fastest growing 

fields in material science today. Carbon nanotubes are at the forefront of these fields and 

their unique mechanical and electrical properties are of great interest to those working in 

multiple engineering fields.  

The overall objective of this study was to design and develop a new process and 

the equipment necessary, to synthesize carbon nanotubes using high voltage and a high-

frequency induction field. This was the first time that a high voltage and an induction 

field have been used simultaneously in high yield production of carbon nanotubes. 

The source of carbon came from acetylene with cobalt used as the doping agent. 

The carbon was molded into carbon nanotubes by the high-voltage field. The carbon 

nanotubes were characterized using electron microscope techniques. Raman spectroscopy 

was also used to reveal the defects and graphitic structures of the carbon nanotubes.  



v	
  
	
  	
  

TABLE OF CONTENTS 

CHAPTER           PAGE 

1 Introduction ................................................................................................................. 1 
1.1 Motivation ............................................................................................................ 1 
1.2 Design and Research Problems ............................................................................ 1 
1.3 Objective of the Thesis ......................................................................................... 2 

	
  
2 Background .................................................................................................................. 3 

2.1 What are Carbon Nanotubes? ............................................................................... 3 
2.1.1 Orientation .................................................................................................... 4 
2.1.2 Wall Count .................................................................................................... 5 
2.1.3 Catalyst ......................................................................................................... 5 

2.2 Common Carbon Nanotube Production Method .................................................. 6 
2.2.1 Arc ................................................................................................................. 6 
2.2.2 Laser .............................................................................................................. 7 
2.2.3 CVD .............................................................................................................. 7 

	
  
3 Theory .......................................................................................................................... 8 

3.1 Applying the Water Bridge .................................................................................. 8 
3.2 Inspiration for Induction Field ............................................................................. 9 
3.3 Machine Layout .................................................................................................. 10 

3.3.1 Quartz Tube ................................................................................................ 10 
3.3.2 Reaction Chamber ....................................................................................... 10 
3.3.3 Injection Ports ............................................................................................. 11 
3.3.4 Cooling Area ............................................................................................... 11 
3.3.5 Theoretical Design ...................................................................................... 12 

	
  
4 Chemistry ................................................................................................................... 13 

4.1 Metal Catalyst Delivery System ......................................................................... 13 
4.2 Basic Chemical Flow ......................................................................................... 13 
4.3 Chemical Process ............................................................................................... 14 

4.3.1 Within the Induction Field .......................................................................... 14 
4.3.2 Within the HV Field .................................................................................... 17 

	
  
5 Physical Design ......................................................................................................... 19 

5.1.1 Evolution ..................................................................................................... 19 
5.1.2 Actual Design .............................................................................................. 23 

	
  
6 Equipment .................................................................................................................. 24 

6.1 Induction System ................................................................................................ 24 
6.2 High-Voltage System ......................................................................................... 25 
6.3 Peristaltic Pump .................................................................................................. 25 
6.4 Gas Flow Controller ........................................................................................... 26 



vi	
  
	
  

6.5 Computer Program ............................................................................................. 27 
	
  
7 Test Runs ................................................................................................................... 28 

7.1 Excess Catalyst ................................................................................................... 28 
7.2 Excess Acetylene ................................................................................................ 29 
7.3 Excess Oxygen ................................................................................................... 31 
7.4 Without The HV Field ........................................................................................ 32 
7.5 Without the Induction Field ............................................................................... 34 
7.6 Without the Metal Catalyst ................................................................................ 36 

	
  
8 Results and Discussion .............................................................................................. 37 

8.1 Stoichiometry ..................................................................................................... 38 
8.2 SEM Images ....................................................................................................... 39 

8.2.1 Energy - Dispersive X-ray Spectroscopy .................................................... 41 
8.4 TEM and Electron Diffraction pattern ............................................................... 43 

8.4.1 Analysis of the Tubes .................................................................................. 43 
8.4.2 Analysis of the Coral Structure ................................................................... 45 
8.4.3 Analysis of the Scales ................................................................................. 47 

8.5 Raman Graphs .................................................................................................... 48 
8.6 Production Rate .................................................................................................. 49 

	
  
9 Conclusion and Future Work ..................................................................................... 50 
	
  
Works Cited ...................................................................................................................... 51 
	
  
Appendix ........................................................................................................................... 53 

 
  



vii	
  
	
  

TABLE OF FIGURES 

FIGURE          PAGE 

Figure 1 Graphite layers and carbon nanotube structure [1] ............................................... 3 

Figure 2  Rolling vector of carbon nanotubes [14] ............................................................. 4 

Figure 3 Single Walled vs. Multi Walled [19] .................................................................... 5 

Figure 4 Arc production setup ............................................................................................ 6 

Figure 5 Laser deposition setup .......................................................................................... 7 

Figure 6 CVD Setup............................................................................................................ 7 

Figure 7 Water bridge photos (top) and infrared photos showing heat distribution through 
water (bottom) [10] ............................................................................................................. 9 

Figure 8 Theoretical Design .............................................................................................. 12 

C, yellow  ............................. 16 

Figure 10 Atoms in the high-voltage field; gray balls represent carbon, blue represents 
hydrogen, and red represents oxygen ................................................................................ 18 

Figure 11 Evolutions of Injection Head; Images A,B, C, and D represent the first design 
that was used; Image E shows an attempt to increase mass drastically; Images F and G 
represents a complex design that used motors and mixing blades .................................... 22 

Figure 12 Actual injection head and Ports ........................................................................ 23 

Figure 13 Induction System .............................................................................................. 24 

Figure 14 High-Voltage Power Supply ............................................................................. 25 

Figure 15 Peristaltic Pump ................................................................................................ 25 

Figure 16 Gas Flow Controllers ........................................................................................ 26 

Figure 17 Computer Program; On the left side are the basic controls for the induction 
system, gas flow, and a few other parameters that were never installed; On the right there 
are two graphs that show the theoretical and actual flow of the gases for the last 60 
seconds. ............................................................................................................................. 27 



viii	
  
	
  

Figure 18 Entire Setup; A – Computer Program; B – Induction System Head; C – 
Induction System Power Source; D – Peristaltic Pump; E – High Voltage System; F – 
Injection Head; G – Cooling Area .................................................................................... 27 

Figure 19 SEM of material produced without high voltage ............................................. 32 

Figure 20 SEM of material produced without the induction field .................................... 34 

Figure 21 SEM of carbon nanotubes produced ................................................................. 39 

Figure 22 EDS of carbon nanotube sample produced ...................................................... 41 

Figure 23 SEM and TEM images of similar structures, highlighting the hollow structure 
of the tubes. ....................................................................................................................... 43 

Figure 24 TEM Electron diffraction pattern for tube structures found in Figure 24 ........ 44 

Figure 25 SEM and TEM of carbon coral ........................................................................ 45 

Figure 26 TEM electron diffraction pattern of coral structure found in Figure 24 ........... 45 

Figure 27 Dr. Jianyang Wu simulation of carbon nanotube going through stress [11] .... 46 

Figure 28 SEM and TEM of carbon scales ....................................................................... 47 

Figure 29 Electron diffraction pattern of carbon scale structure ...................................... 47 

Figure 30 Raman Comparision of Multi-Walled Carbon Nanotubes [4] ......................... 48 

 

  



ix	
  
	
  

TABLE OF TABLES 

TABLE          PAGE 

Table 1 Stoichiometry ....................................................................................................... 18 

Table 2 Excess Catalyst Test ............................................................................................ 28 

Table 3 Excess Acetylene Test ......................................................................................... 29 

Table 4 Excess Oxygen Test ............................................................................................. 31 

Table 5 No High Voltage Test .......................................................................................... 32 

Table 6 No Induction Field Test ....................................................................................... 34 

Table 7 No Metal Catalyst Test ........................................................................................ 36 

Table 8 Optimized Test Results ........................................................................................ 37 

Table 9 Stoichiometry ....................................................................................................... 39 

Table 10 Chemical composition of EDS sample shown in Figure 22 .............................. 41 

Table 11 Results for Electron Diffraction Pattern ............................................................ 44 

Table 12 Results for Electron Diffraction Pattern ............................................................ 46 

 

 



1	
  
	
  	
  

1 Introduction 

1.1 Motivation 

 In the scientific community, a carbon nanotube is known as a material that has 

unlimited abilities. Introducing this material to the mass market (at a reasonable price) 

will cause a complete renovation of how engineers think about circuit design, material 

limitation, battery capacity, medical equipment, and numerous other products. Thousands 

of papers have been published on the ability of carbon nanotubes, depending on metal 

doping, to achieve countless tasks (such as electrical conductivity, tensile strength, 

electrical storage, etc.) many times better than what is currently being used. 

 The inspiration for this research was to bring carbon nanotubes to the mass 

market. The idea began as a theoretical conversation with my father about accelerating 

metal particles onto a metallic surface and concluded with the design seen below. 

 

1.2 Design and Research Problems 

The main issue encountered during this project was the multitude of variables. A 

total of 10 individual non-related variables were encountered: induction power output, 

voltage rating, grounding node distance, vacuum level, oxygen flow rate, acetylene flow 

rate, argon internal flow rate, argon external flow rate, catalyst solution flow rate, and 

catalyst solution composition. Having to fine tune these variables and find the right 

values was a long and careful process.  
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The second issue that was encountered was related to the equipment. The 

induction system creates very strong magnetic fields making it impossible to have 

thermal couples or flow rate meters at or near the reaction chamber. All instruments that 

were less than 10 to 12 inches away from the reaction chamber would produce a high 

percentage of static in their readings and in many cases give random values. As an 

example, during initial testing, a thermal couple was placed inside the reaction chamber 

to measure the maximum temperature the induction system could reach. While the 

induction system was turned on, the thermal couple’s reading would fluctuate from -17⁰ 

C to 500⁰ C. Once the system was turned off the temperature would stabilize at 1100⁰C. 

 The last issue was the power supply. The high-voltage system that was used could 

only limit the maximum voltage. With a system that could limit voltage as well as 

amperage, fewer issues would have been encountered during the research phase.  

 

1.3 Objective of the Thesis 

 The objective of this thesis is to create a new carbon nanotube manufacturing 

method. The process will include an induction field and a high-voltage field. The material 

produced is verified by a scanning electron microscope (SEM) and the material’s purity 

and structure is analyzed by a Raman spectrometer. 
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2 Background 

2.1 What are Carbon Nanotubes? 

Carbon is considered the building block in our world. Pure carbon structures have 

unique properties; diamonds, for example, have a unique 3D structure that gives them 

high strength and high reflective properties.  

Graphite is another unique structure, being one of the few known 2D structures; it 

is a very popular field of study for nanotechnology and nano-circuitry. When graphite is 

rolled into a tube shape, carbon nanotubes are created. This pure carbon material, like all 

other pure carbon materials, has very unique properties. Carbon nanotubes have three 

physical characteristics (orientation, wall count, and catalyst) that help determine its 

properties. 

Figure 1 Graphite layers and carbon nanotube structure [1] 
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2.1.1 Orientation 

The orientation in which the graphite is rolled determines the structural properties 

of the material. Figure 2 shows a sheet of graphite; theta, θ, denotes the angle of the roll 

with respect to the horizontal. The roll angle can also be denoted as a coordinate (n, m) 

by counting the number of carbon hexagons along the rolling vector. This vector becomes

the exterior wall of the tube. Figure 2 also shows three examples of the most common 

orientations.  

Figure 2  Rolling vector of carbon nanotubes [14] 
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2.1.2 Wall Count 

During the production of carbon nanotubes, the number of walls is not limited to a 

single wall. The structure explained in the previous section is called a single-walled 

carbon nanotube (SWCNT), shown to the left in Figure 3. To the right in Figure 3 is the 

model of a multi-walled carbon nanotube (MWCNT). This structure is made when 

multiple layers of graphite are rolled onto a single tube. Each structure has its advantages 

and disadvantages when it comes to mechanical strength, electrical conductivity, and 

temperature 

resistance.  

2.1.3 Catalyst 

The creation of 100% pure carbon nanotubes is an extremely difficult feat; the use 

of metal catalyst, also known as doping agents, aids in the process [5]. The doping agent 

is a very small percentage of the total mass, normally less than 3%, yet it has the most 

influence in controlling the physical properties. Depending on the doping agent, the 

carbon nanotubes could have a higher tensile strength than steel or become better 

conductors than gold.   

Figure 3 Single Walled vs. Multi Walled [19] 
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2.2 Common Carbon Nanotube Production Method 

2.2.1 Arc 

The arc method is the most common and simplest method to produce carbon 

nanotubes. This method uses two pure carbon rods placed end to end, separated by a 

small gap in an inert gas environment [6]. A low DC voltage with high current is placed 

at each end; the result is discharge vaporization, causing carbon to disperse from one 

graphite rod and deposit on the other as carbon nanotubes and other derivatives. The final 

product is extremely unorganized. The carbon nanotubes are of different lengths and wall 

counts and another type of carbon structure called fullerenes are also produced. 

Organizing and sorting the tubes and fullerenes is a long process. 

Figure 4 Arc production setup 
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2.2.2 Laser 

This method uses a high-purity graphite rod as a source of carbon and a metal

substrate as the catalyst. Both are placed in an inert low-vacuum argon environment. A 

laser or a series of lasers are used to vaporize the graphite. This emits the carbon atoms 

into the chamber. The vaporized materials then start to settle at the bottom into carbon 

nanotubes in a “rope” or mat formation. This is a much more controlled production 

method; the time duration for one cycle is at least four hours. 

2.2.3 CVD 

The CVD method has a similar disposition as the laser method, yet the carbon and 

metal sources are from a chemical source [2]. The most common source of carbon is 

ethylene and the metal catalyst comes from a nickel- or cobalt-based product. This 

method runs much colder than the , depending 

on the catalysts. The base materials are heated until they pass through a pyrolytic process. 

The free particles are injected into a cooling chamber where they settle on the metal 

substrates. 

Figure 5 Laser deposition setup 

Figure 6 CVD Setup 
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3 Theory 

3.1 Applying the Water Bridge 

The main theory in this thesis is how the movement of electrons can cause carbon 

atoms to settle in a predetermined formation. The water bridge was originally discovered 

in 1894 by Sir William George Armstrong. It was not until recent years (2005 to 2008) 

that the phenomenon was dissected, exposing the electrical properties, mechanical 

properties, heat transfer phenomenon, and mass transference.  

It is common knowledge that water can carry a flow of electrons. What was not 

expected is that the movement of the electrons is strong enough to counteract gravity 

across a 10 mm gap. The water bridge experiment was reproduced by Jakob 

Woisetschlager, Karl Gatterer, and Elmar C. Fuchs in 2009 using 25 kV at .5 mA. During 

their experiment, they moved 40 milligrams of water a second from the Anode beaker to 

the Cathode beaker [7, 8, 10]. 
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Figure 7 Water bridge photos (top) and infrared photos showing heat distribution through 
water (bottom) [10] 

These findings add validity to the first part of the theory: it is possible to create a 

bridge using carbon atoms as the conductor. The next point is that the carbon atoms will 

move and create the structures of my choosing (this will be explained in detail later). 

3.2 Inspiration for Induction Field 

Induction field generators are more commonly seen on the production lines of 

metallic products as a source of heat. It has become more common practice in small labs 

to use small induction systems with a metal-lined ceramic crucible as a heat source. 

While in the initial design stages of the reaction chamber, cartridge-style heating 

elements were going to be used because of their simplicity and ease of control would 

simplify the heating of the reaction chamber. After reading a paper from the National 

Key Laboratory of Nano/Micro Fabrication [16], however, the concept of the induction 

system was chosen instead. The team from this lab used an active carbon fiber (ACF) 

crucible with an inductive heating cylinder. They used the heat produced by the induction 
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system to convert SiO power to SiC nanowire. They credit the high temperature and 

magnetic fields for the production of the SiC tubes.  

 

3.3 Machine Layout 

The design aspect of this research was incredibly intricate with the introduction of 

a high-voltage field and an induction field causing large concern for user safety and cost. 

In addition, induction fields cause most off-the-shelf sensors to malfunction unless they 

are correctly isolated from the high-intensity magnetic fields and the high voltage. 

 

3.3.1 Quartz Tube 

The quartz tube contains the reaction environment and allows the induction field 

to pass through it with minimal to little resistance or reactance, creating an insulating 

barrier for heat and electricity. Its transparency allows us to observe the reaction and the 

creation of the carbon nanotube at the exit of the reaction chamber. Quartz’s high 

temperate resistance makes it perfect for this application; since it is able to withstand over 

, it will not melt when the reaction chamber is heated. 

 

3.3.2 Reaction Chamber 

The reaction chamber is a half-inch inner-diameter ceramic tube with a thick steel 

jacket. The steel jacket is exposed to an induction field that, along with the ceramic tube, 

reaches a The chemicals are injected within this area. 
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3.3.3 Injection Ports 

The injection ports are six white connectors that inject the gasses and liquids into 

the reaction chamber. The ports are connected to long stainless steel tubes that guide the 

chemicals. Stainless steel is used for two reasons: 1), it retains a high tensile strength 

while being heated, allowing the reaction chamber to be heavier; and 2), stainless steel is 

not affected by the induction field, permitting the top plate to remain at a lower 

temperature. This is vital for continuous operation of the machine. If the head starts to 

heat up, it is possible that the chemicals start to evaporate or start the pyrolytic process 

before intended.  

Four of the injection ports introduce the chemicals at the top inside the reaction 

chamber; these are used to inject the carbonated gasses, catalyst, and noble gas.  

One of the injection ports is capped at the end and has a small cut, forcing the 

injected gas around the outside of the reaction chamber. This helps create an inert 

environment and pushes the carbon nanotube towards the bottom.  

The final injection port, located in the middle of the reaction chamber, is the 

oxygen injection port. This stainless steel tube is much longer and injects the oxygen 

right before the exit of the reaction chamber. It is also used as our anode, which is 

explained later. 

 

3.3.4 Cooling Area 

The cooling area is the long stretch of quartz tube that allows the material to 

settle, fall, and cool. This area is essential to allow the reaction to finish.  
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3.3.5 Theoretical Design 

Figure 8 Theoretical Design 
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4 Chemistry 

4.1 Metal Catalyst Delivery System 

Carbon nanotubes’ unique abilities and properties can be drastically modified 

depending on the catalysts they are doped with. The method of injecting a metal catalyst, 

therefore, is a critical component to the process. During these experiments, a new method 

of delivering doping agents was devised. In this method, metallic salts are diluted in a 

solution of water and methanol, named the methanol catalyst solution, and then injected 

as a liquid into the reaction chamber. This is done by first mixing the metallic salts, 

cobalt nitrate Co(NO3)2, with water to create a highly concentrated solution, which is 

then diluted in methanol. A diluted methanol solution is used instead of a diluted water 

solution because methanol, C2H3OH, decomposes extremely easily. In addition, the 

carbon within the methanol contributes to the production of carbon nanotubes.  

The challenge at this stage of the project was the minimum injection speed on our 

current peristaltic pump of 0.3 ml/min, which is still very high. One way of controlling 

the amount of cobalt that is injected is by diluting a higher or lower percent of cobalt 

nitrate/water solution into the methanol. Our final metal catalyst injection solution is 

Co(NO3)2 + H2O) + CH3OH. 

 

4.2 Basic Chemical Flow 

As previously explained, there are six injection ports. The first four injection ports 

are used for the carbonated gasses, metal catalysts, and a noble gas. Our carbonated gas is 

acetylene, which was chosen due to its high percentage of carbon: it contains 85% carbon 
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and 15% hydrogen by mass. In addition, the required temperature to initiate a pyrolytic 

process is relatively low when compared to other carbonated gasses. A small amount of 

argon is also injected inside the reaction chamber to help avoid congestion by the 

production of carbon nanotubes and to increase the conductivity of the gasses within the 

reaction chamber. Figure 9-A shows the flow of the gasses and liquids from the injection 

ports into the reaction chamber: Red represents acetylene, green the methanol catalyst 

solution, blue argon, and yellow oxygen. 

The center injection port deposits the oxygen near the end of the reaction 

chamber, which is used to react with the hydrogen and create water. 

 The final injection port adds argon around the outside of the reaction chamber. 

Argon is used to create a stable environment, help cool off the carbon nanotubes during 

the cooling section, and assist in pushing the carbon nanotubes towards the bottom of the 

reaction chamber. 

 

4.3 Chemical Process 

4.3.1 Within the Induction Field 

The acetylene, C2H2, and methanol catalyst solution, Co(NO3)2 + H2O) + CH3OH, 

are injected into the top of the reaction chamber. As they flow down through the reaction 

chamber, they pass through the induction field where the steel jacket and ceramic tube 

through a pyrolytic process that weakens the bonds between the atoms and separates each 

compound into individual atoms. At this moment, the freed carbon, nitrogen, oxygen, and 
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cobalt atoms start to flow down towards the end of the heated chamber where the central 

injection tube ends. This tube is the anode of the high voltage source and introduces 

oxygen.  

Figure 9-B shows the temperature distribution within the reaction chamber. The 

red area in Figure 9-B represents  , and the blue area 

C. 
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Figure 9 Temperature Distribution within the reaction chamber; red area 

 

B	
  A	
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4.3.2 Within the HV Field 

As the induction field ends, the individual carbon, nitrogen, oxygen, and cobalt 

atoms move into the high-voltage field and the atoms start to cool down, reversing the 

pyrolytic process. Within the high-voltage field there is a constant movement of electrons 

from our anode, the oxygen injection tube, to our cathode, a grounding rod. As the 

electrons flow, a small percentage of them are consumed by bonding the oxygen and 

hydrogen into water, H2O. The nitrogen and argon flow through the field unchanged. The 

carbon atoms start to bond to other carbon atoms and cobalt atoms.  

The final carbon structure must be a conductive structure, as to not impede the 

movement of the electrons that are using it as a bridge. The carbon structure with the 

highest conductivity is a carbon nanotube. Once the initial carbon nanotube structure is 

made, more carbon atoms will settle at either end. As the carbon nanotube leaves the 

high-voltage field and enters the cooling area, it loses all charge and falls, with the 

assistance of the argon, towards the collection area. 

In the event that the carbon settles into any other form, a diamond, for example, 

the form will have a large resistive (Ω) value. As Ohms Law states, a large resistive value 

with a high voltage will cause increased current to pass through that structure. This 

increased current will result in an increased temperature that will eventually lead to the 

decomposition of the structure, effectively restarting the pyrolytic process for those 

affected atoms. 

Figure 10 shows the process: red represents oxygen, blue represents hydrogen, 

gray represents carbon, and the purple circle represents the inert nitrogen and argon. 

Cobalt is in such a low percent that it is not shown. 



18	
  

Input Output

Methanol Catalyst Solution (Co(NO3)2 + H2O) + CH3OH 

→ 

→ 

Co + C 

Acetylene C2H2 H2O 

Oxygen O2 N2 

Argon Ar Ar 

Table 1 Stoichiometry 

Figure 10 Atoms in the high-voltage field; gray balls represent 
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5 Physical Design 

5.1.1 Evolution 

The injection machine’s design has evolved drastically; however, the key points 

in the design have stayed the same. The reaction chamber has always been heated with an 

induction system. The use of high voltage in the injection heat means that conventional 

heating elements cannot be used because of the risk of the high voltage passing through 

the thermal couple and into the controllers or main power grid, thus limiting our heating 

to a radial heat. By avoiding contact, any risk to the user would be eliminated. Other 

radial heat systems cannot reach the high temperatures required, leaving an induction 

system as one of the few choices left. 

 The injection head has always had the same role, which was to inject the 

chemicals safely into the reaction chamber and mix them while being able to transmit the 

high voltage to the heated section of the chamber. The design of the injection head, 

however, has gone through several iterations. 

The original design, shown in Figure A through Figure D, used three aluminum 

plates for the head. The top plate was designed to hold the ceramic tubes using Teflon 

rings and steel bolts; the middle plate was designed to hold the steel “reaction core” in 

place and guide the chemicals into the reaction chamber; the bottom plate was used to 

hold the quartz tube. This design failed for two reasons. First, the reaction core was a 3/8-

inch steel round bar. While it was , it 

was not able to maintain this temperature. The core’s temperature would begin to 

decrease rapidly as the acetylene and alcohol went through the pyrolytic process. The 
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reaction core did not have enough of a mass to use the induction field efficiently, thus 

this design cooled down too quickly. The second flaw was the ground wire design. The 

ground wire was wrapped in a ceramic tube that was held by the top plate. This would 

occasionally cause a short circuit through the ceramic which would in turn cause the 

high-voltage power supply to turn off.  

The next version of the design, as seen in Figure 11-E, was a large steel tube with 

a catch. The catch is the section toward the bottom of the reaction chamber that flares 

upwards. This area would be used to collect the catalyst solution and assure it went 

through the pyrolysis process completely. The objective was to use a larger mass, giving 

us a higher temperature and a large thermal inertia. The objective of the catch was to 

create turbulence within the reaction chamber and cause heat to transfer more uniformly. 

Unfortunately, having such a large mass meant that the exit of the reaction chamber had 

to be very large, making it difficult to guide the electrons through the cloud of gasses 

evenly. While some carbon nanotubes were created, the percentages were very low. 

The third version of the injection head, as seen in Figure 11- F and Figure 11-G, 

was an attempt at adding a motor meant to assist in mixing the chemicals. The motor was 

connected to a propeller that would help mix the atoms and force them downwards after 

the pyrolytic process had occurred. The complexity of this design and the large opening 

caused it to be unsuccessful. When testing this injection head, the high voltage caused the 

mixing motor to stop working or resulted in the burn out of the motor’s controller. The 

ground in this design is the small conic piece under the mixing blade and its objective 

was to create a smaller area where there could be a constant movement of electrons. The 
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spacing was too small and carbon nanotubes would get stuck between the two plates, 

shorting out the high-voltage power supply.  

While the design has changed, the process has remained the same: inject the 

chemicals in a controlled manner, heat them until pyrolysis is reached and oxygen bonds 

with hydrogen while carbon bonds with catalysts inside of an electric field. 
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Figure 11 
that was used; Image E shows an attempt to increase mass drastically; Images F and G 
represents a complex design that used motors and mixing blades 
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5.1.2 Actual Design 

Figure 12 Actual injection head and Ports 
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6 Equipment 

6.1 Induction System 

The induction system is the heat source for the reaction chamber. Induction 

systems produce a high-amperage high-frequency output, ranging from 50 kHz to 350 

kHz depending on the metal within the field. The high-frequency output that is produced 

is transmitted to a hollow copper coil. The coil is wrapped around the Reaction Chamber

outside of the quartz tube, represented in Figure 13. Any metal object that is within the 

high- s the copper coil that 

is producing the field. Cool water is pumped through the copper coil to control its 

temperature. 

Figure 13 Induction System 
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6.2 High-Voltage System 

The high-voltage system is what provides us with the high potential difference 

that will shape the carbon nanotubes. The power supply used can produce a voltage of 30

kV at 20 mA.  

6.3 Peristaltic Pump 

The peristaltic pump was supplied by Omega Engineering and is designed to have 

a low flow at a constant speed and very high pressure. This pump can inject fluids at a 

rate of 0.3 mL/min to 5 mL/min at 100 psi. The high pressure rating is essential for this 

application. In many occasions solids can form near the injection point of the reaction 

chamber causing the input tubes to become clogged. The high pressure forces any solids 

out of this area. 

Figure 14 High-Voltage Power Supply 

Figure 15 Peristaltic Pump 
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6.4 Gas Flow Controller 

The gas flow controllers are used to control the pressure and rate of injection of 

the gasses in and around the reaction chamber. The controller uses a 0 to 5 VDC input 

signal representing 0 L/min to 20 L/min, respectively. In addition, the controllers also 

output a 0 to 5 VDC signal that is the true flow rate. This is a huge advantage over 

regular flow rate systems that only have an input. As is it possible to compare to the 

theoretical inputted value with the true flowing value, it is simple to see if there are any 

errors in the injection process. In addition, warning systems in the computer program 

indicate if there is a decrease in input pressure, possible congestion inside the injection 

tube, possible damage to the injection tube, or an empty supply tank. 

Figure 16 Gas Flow Controllers 
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6.5 Computer Program 

The computer program was designed and programmed using Labview and data 

acquisition boards. The program monitors the induction system, control flow rate, and 

warns of instability or an incorrect flow rate. Currently, the high-voltage system, 

peristaltic pump, and temperature are all manually controlled independently. In the near 

future it will be possible to wire all of the equipment and control them from a single 

computer.  

Figure 17 Computer Program; On the left side are the basic controls for the induction 
 and a few other parameters that were never installed; On the right there 

are two graphs that show the theoretical and actual flow of the gases for the last 60 
seconds. 

Figure 18 Entire Setup; A – Computer Program; B – Induction System Head; C – 
Induction System Power Source; D – Peristaltic Pump; E – High Voltage System; F – 
Injection Head; G – Cooling Area 
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7 Test Runs 

Throughout the trials, six situations were encountered and classified as: excess catalyst, 

excess acetylene, excess oxygen, lack of voltage, lack of induction, and lack of catalyst.  

7.1 Excess Catalyst 

Throughout this test, the flow rates, catalyst solution, induction power setting, and 

voltage setting were as below. 

 

Material Acetylene Oxygen Catalyst Argon Inside Argon outside 

Flow rate 9.0 L/min 0.5 L/min 0.35 L/min 0.2 L/min 0.2 L/min 

Catalyst Solution Inductor Output Power Voltage Notes 

Cobalt(II) Nitrate 150 g 50.0 A Constant, No 

fluctuations 

Voltage started at 15 kV with 

large fluctuations. Water 40 g 

Methanol 400 g 

Table 2 Excess Catalyst Test 

  

During this trial, the catalyst solution had an increased percentage of cobalt (II) 

nitrates. As the trial commenced, small traces of carbon nanotubes were produced. All 

flow rates were unchanged with no large fluctuations. The high-voltage supply, which 

started at 15 kV, was now reading 8 kV; this fluctuation was expected. Approximately 

one minute after starting the trial, the production of carbon nanotubes diminished, the 

flow rate of the acetylene and internal argon reduced, and the voltage, which was at 8 kV, 

had returned to 15 kV. The trial was terminated at this time. 
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 Upon inspection of the reaction chamber, a wall of what appeared to be 

compacted metallic dust was found, which an analysis showed to be cobalt. The injection 

and pyrolytic process were successful; however, the higher percentages of cobalt (II) 

nitrate in the catalyst solution caused excess cobalt to start depositing near the injection 

ports. As the injection process continued, the high temperatures fused the cobalt to the 

walls of the injection chamber and the pressure from the acetylene and argon injections 

compacted the newly added material. 

7.2 Excess Acetylene 

Throughout this test, the flow rates, catalyst solution, induction power setting, and 

voltage setting were as below. 

 

Material Acetylene Oxygen Catalyst Argon Inside Argon outside 

Flow rate 18.0 L/min 0.5 L/min 0.35 L/min 0.2 L/min 0.2 L/min 

Catalyst Solution Inductor Output Power Voltage Notes 

Cobalt(II) Nitrate 40 g 50.0 A Constant, No 

fluctuations 

Voltage started at 15 kV with 

large fluctuations through the 

process and ending at 0 kV. 

Water 40 g 

Methanol 400 g 

Table 3 Excess Acetylene Test 

 

 During this trial, the acetylene flow rate was much higher than normal. The trial 

commenced by producing small quantities of carbon nanotubes. Approximately 15 
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seconds after commencement, the flow of all gasses had stabilized, and a large black 

smoke cloud started to come from the reaction chamber. Within the cloud of black gas 

there was still a small amount of solid material. The power supply was drastically 

fluctuating. In addition, it was possible to hear crackling noises, indicating an electrical 

arc. Approximately two minutes after the beginning of the trial, the entire quartz tube 

filled with the black gas, impeding all sight, and the power supply was reading 0 kV with 

random crackling noises every few seconds. The test was stopped at this time; all injected 

materials were closed while the vacuum was left on. Within 30 seconds the inside had 

dissipated leaving the quartz tube clear.  

 In the collection chamber there were solids, liquids, and gasses. The solid material 

that was collected at the bottom had a very low percentage of carbon nanotubes. The fluid 

was extremely thick and had a distinct smell of kerosene or diesel. Finally, the gas had a 

yellow tint and a high density. The gasses settled at the bottom of the tank; however, all 

attempts to isolate the gas for analysis failed. The gasses, unlike the liquid, were 

extremely flammable, which suggests that it had a similar hydrogen-carbon make up as 

the original acetylene.  

 Upon further analysis, this trial was unbalanced in two sections. First, in the 

chemistry, the lack of oxygen allowed the carbon to rejoin with the hydrogen to create 

carbonated gas and liquid. The second was an electrical unbalance, or lack of amperage, 

meaning that some, but not all, carbon atoms would be manipulated into carbon 

nanotubes (this is explained in the “Equipment” section). 
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7.3 Excess Oxygen 

Through this test, the flow rates, catalyst solution, induction power setting, and 

voltage setting were as below. 

Table 4 Excess Oxygen Test 

 

 During this trial, the oxygen flow rate was much higher than normal. As the trial 

initiated, a flame started to emerge from the reaction chamber. As the flow rates 

stabilized to their preset levels, the flame got larger; therefore, the trial was shut down 

almost immediately. This was an expected result. Oxyacetylene torches also use 

acetylene and oxygen with the end result being a high-temperature flame.  

  

Material Acetylene Oxygen Catalyst  Argon Inside Argon outside 

Flow rate 9.0 L/min 3 L/min 0.35 L/min 0.2 L/min 0.2 L/min 

Catalyst Solution Inductor Output Power Voltage Notes 

Cobalt(II) Nitrate 40 g 50.0 A Constant, No 

fluctuations 

Voltage started at 15 kV with 

no change. Water 40 g 

Methanol 400 g 
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7.4 Without The HV Field 

Through this test, the flow rates, catalyst solution, induction power setting and 

voltage setting were as below. 

Material Acetylene Oxygen Catalyst Argon Inside Argon outside 

Flow rate 9.0 L/min 0.5 L/min 0.35 L/min 0.2 L/min 0.2 L/min 

Catalyst Solution Inductor Output Power Voltage Notes 

Cobalt(II) Nitrate 40 g 50.0 A Constant, No 

fluctuations 

High-Voltage power supply 

was shut off during this 

experiment. 

Water 40 g 

Methanol 400 g 

Table 5 No High Voltage Test 

During this trial, the high-voltage power supply was turned off. As the trial 

started, a large quantity of black smoke with solid particles formed from the exit of the 

reaction chamber. The trial was run for four minutes without any interruptions or changes 

Figure 19 SEM of material produced without high voltage 



33	
  
	
  

in flow. The result, shown in Figure 19, shows a modified carbon structure that was 

labeled “carbon coral.” One hypothesis about the formation of these structures is that 

with the absence of the high-voltage field, the carbon atoms are able to settle in the 

structure of their choosing; in this case, the structure was an elongated amorphous 

structure. The hypothesis as to why the structures are elongated is that the induction field 

creates minute currents within the reaction chamber, creating the same effect as the high 

voltage. 

In various other tests without the high-voltage field, all flow rates were increased 

by 50% and resulted in similar structures. While the stoichiometry was correct, the 

current hypothesis is that the power supply could not produce sufficient amperage to 

manipulate such a large quantity of carbon atoms. 
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7.5 Without the Induction Field 

Throughout this test, the flow rates, catalyst solution, induction power setting, and 

voltage setting were as below. 

Material Acetylene Oxygen Catalyst Argon Inside Argon outside 

Flow rate 9.0 L/min 0.5 L/min 0.35 L/min 0.2 L/min 0.2 L/min 

Catalyst Solution Inductor Output Power Voltage Notes 

Cobalt(II) Nitrate 40 g Induction field was 

left at 50 Amps until 

the reaction chamber 

had reached 1100⁰⁰

then it was turned off

Voltage started at 15 kV as the 

trial continued the voltage 

lowered and settled at 8 kV. 

Water 40 g 

Methanol 400 g 

Table 6 No Induction Field Test 

Figure 20 SEM of material produced without the induction field 
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 During this trial, the induction field was set to 50 amps until the reaction chamber 

reached operating temperatures, at which time it was turned off. As the induction system 

is the heat source for the pyrolytic process, this trial was limited to two minutes. Within 

those two minutes a small amount of solid black powder was produced. The material that 

was produced, shown in Figure 20, looked similar to animal scales. The formation of 

these scales seems to be linked to the absence of the magnetic field. While there is no 

evidence stating that there is a direct link between the magnetic field and the growth 

pattern, it is possible that an indirect link does exist since the field affects another 

component that affects the growth. One hypothesis that arose is that the high frequency of 

the induction field would violently move the metal catalyst’s atoms in the high-voltage 

field, causing the scales to curve into tubes. Another hypothesis is that even though the 

reaction chamber has a very high thermal inertia, it cools down too quickly to finish the 

pyrolytic process. 
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7.6 Without the Metal Catalyst 

Throughout this test, the flow rates, catalyst solution, induction power setting, and 

voltage setting were as below. 

Material Acetylene Oxygen Catalyst Argon Inside Argon outside 

Flow rate 9.0 L/min 0.5 L/min 0.00 L/min 0.2 L/min 0.2 L/min 

Catalyst Solution Inductor Output Power Voltage Notes 

Cobalt(II) Nitrate 40 g 50.0 A Constant, No 

fluctuations 

Voltage started at 15 kV with 

no change. Water 40 g 

Methanol 400 g 

Table 7 No Metal Catalyst Test 

During this trial, the catalyst solution injection system was turned off. As the trial 

started, a thick smoke began leaving the reaction chamber. After approximately two 

minutes with no solids being produced the test was stopped. Once the trial stopped, an 

extremely dense yellow gas and extremely dark oil-like substance were found sitting at 

the bottom of the reaction chamber. The yellow gas was extremely volatile while the oil 

seemed to be inert. One hypothesis that arose is that the pyrolytic processes happened 

successfully. The freed carbon, hydrogen, and cobalt atoms rejoined to create different 

carbonated gasses and liquids. The products were similar to high viscosity asphalt and 

vaporized diesel fuel. 
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8 Results and Discussion 

 The creation of carbon nanotubes was a success. Several design flaws in the 

machine did not allow for continuous operation, limiting the length of each trial to 

approximately five minutes. The design flaws were in the design of the reaction chamber 

to evacuate all material (carbon nanotube or not), the method of collecting all of the 

material that was leaving the reaction chamber, and the rating of the power supply. Fixing 

these design flaws is vital before continuing testing. 

 

Material Acetylene Oxygen Catalyst Argon Inside Argon outside 

Flow rate 9.0 L/min 0.5 L/min 0.35 L/min 0.2 L/min 0.2 L/min 

Catalyst Solution Inductor Output Power Voltage Notes 

Cobalt(II) Nitrate 40 g 50.0 A Constant, No 

fluctuations 

Voltage started at 15 kV as 

the trial continued the 

voltage lowered and settled 

at 8 kV. 

Water 40 g 

Methanol 400 g 

Table 8 Optimized Test Results 

 

 The values found in Table 8 are the most successful results. Within 15 seconds of 

the trial starting, small quantities of carbon nanotubes were being produced. The voltage, 

originally reading 15 kV, had started to drop and then stabilized at 8 kV. The process was 

continued for five minutes with an average production of 0.5 grams a minute. During this 

time, on the inside wall of the quartz tube condensation began to occur. This was a clear 
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indication that the oxygen was reacting with the hydrogen from the acetylene and catalyst 

solution to create water. 

Approximately five minutes after starting the trial, one of the following issues 

would occur: the vacuum vents would start to become obstructed due to a design flaw in 

the collection method, the reaction would start to move upwards inside the reaction 

chamber causing a stoppage at the injection point, or the material would collect at the exit 

of the reaction chamber causing a drastic drop in voltage. The material that was collected 

at the end was then analyzed using SEM, EDS, TEM, and a Raman spectrometer. 

 

8.1 Stoichiometry 

The three reactive agents that were injected were the methanol catalyst solution, 

acetylene, and oxygen. Carbon, cobalt, nitrogen, hydrogen, and oxygen were extracted 

from these three compounds. Throughout the process, condensation formed on the inside 

of the quartz tube and the carbon nanotubes deposited at the bottom of the reaction 

chamber had a very high humidity level. This is positive evidence that water was being 

produced. The carbon nanotubes were dried in an oven at 110⁰ C before further analysis. 

The composition of the gasses that were extracted during the process was not tested. The 

stoichiometric results are as shown below. 
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Figure 21 SEM of carbon nanotubes produced 
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8.2 SEM Images 

The first test that is done to verify the existence of carbon nanotubes is placing a 

sample in a scanning electron microscope (SEM). Throughout the experiments, the SEM 

located at FIU’s Advanced Materials Engineering Research Institute (AMERI) was used.  

Input Output 

Methanol Catalyst Solution (Co(NO3)2 + H2O) + CH3OH 

→ 

→ 

Co + C 

Acetylene C2H2 H2O 

Oxygen O2 N2 

Argon Ar Ar 

Table 9 Stoichiometry 
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Upon closer analysis of the SEM images, all of the carbon nanotubes were found 

to have a curve or spiral feature which is unique to this process. The existing theory 

behind these features is that the induction field affected the growth. An induction field, in 

principle, is a high alternating frequency magnetic wave. A magnetic field that changes 

polarity 150,000 times a second would create dramatic forces on the cobalt atoms during 

the creation. The extremes of this affect can be seen in Figure 21-A where there are tubes 

that have been twisted beyond their limit and have begun to rip or tear. In Figure 21-A 

there is a tube in the middle which is open, showing that the larger tubes are hollow. 

Through all the pictures it is clear that the tubes are of various diameter, wall count, and 

length. The theory behind this phenomenon is the lack of control from the power supply. 

The power supply used during this process has a limiting voltage, not current. This causes 

the power supply to create an arc between the anode and cathode. Within this arc there is 

a large quantity of carbon atoms, some of which are already in tube form. Due to the 

large quantity of electrons, a larger conducting area has to be made. The end result is a 

large bundle of carbon nanotubes that are held together. 
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8.2.1 Energy - Dispersive X-ray Spectroscopy  

In addition to the images that were acquired above, the SEM used is equipped 

with an Energy – Dispersive X-ray Spectrometer (EDS). This process analyzes the 

characteristic x-rays that are emitted from the sample, giving a chemical characterization 

of the sample. 

Element Line Element Weight% Weight% Error Atom%

C 99.06 ±0.89 99.80 

Fe 0.94 ±0.15 0.20 

Total 100.00 ------ 100.00 

Table 10 Chemical composition of EDS sample shown in Figure 22 

Figure 22 EDS of carbon nanotube sample produced 
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 The results show that carbon makes up 99.8% of the structure while the last 0.2% 

is made up of a metal. While the EDS readings show that the metal is iron (Fe), the 

percentages are so low that it is not possible to decipher the exact metallic element. 

Through this test we were using cobalt as our doping agent, which has characteristic x-

rays in a similar location to iron.  
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8.4 TEM and Electron Diffraction pattern 

After the confirmation of carbon nanotubes by the SEM, we used TEM to analyze 

the internal structure and electron beam diffraction. TEM uses an electron beam to pass 

through a thin specimen, approximately 100 nm to 200 nm thick. The electrons react with 

the sample, are collected, and then form an image of the structure.  

8.4.1 Analysis of the Tubes 

Out of the three structures that were produced we are most interested in the tubes. 

In Figure 23, we compare similar tube structures using SEM and TEM. The TEM shows 

a difference in coloring near the edge of each structure that signifies that the internal 

structure is hollow. 

Figure 23 
structure of the tubes. 
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Another aspect that a TEM offers is the possibility of creating an electron 

backscatter diffraction pattern. Electron backscattering diffraction is a way to examine 

the crystallographic orientation of a material. The pattern shown in Figure 24 is that of 

the tube in Figure 23. After taking the picture we measure the distance from the center of 

the beam to each of the rings. The radius is then used in the equation below. Where L is 

our lens diameter, in this case 840 mm, and λ is the wavelength of the power that is being 

used, in this case 200 kV is 0.025 angstroms. When comparing the results from the 

JCPDS card and the results from the TEM, the average error is about 2%. This indicates 

that these tubes are in fact carbon nanotubes. 

𝐷𝐷 =  𝐿𝐿𝐿𝐿 𝑟𝑟 

Calculated 6.9471 3.4348 2.1037 1.7177 

Measured 6.93904 3.4973 1.9888 1.7059 

Error% 0.1160 1.8196 5.4597 0.6823 

Table 11 Results for Electron Diffraction Pattern 

Figure 24 TEM Electron diffraction pattern for 
tube structures found in Figure 24 
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Figure 26 TEM electron diffraction pattern 
of coral structure found in Figure 24 

Figure 25 SEM and TEM of carbon coral 

8.4.2 Analysis of the Coral Structure 

The other structure that is found sporadically throughout the samples is the 

structure bellow, which was named “carbon coral.” This structure was found 

predominantly when there was a lack of voltage (this can be seen in chapter 7.4). The 

electron beam diffraction in Figure 26 is of the TEM image in Figure 25. The average 

error is approximately 2.5%. This signifies that the carbon coral is a carbon nanotube 

derived structure. A theory was formatted about these structures; the carbon nanotubes 

are wound up so tightly (as seen in Figure 24 lower left) that they break and rejoin into 

these structures.  
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Dr. Jianyang Wu showed a similar occurrence in a simulation in one of his papers 

[11]. The simulated nanotube underwent high torsion strength causing it to rip at a join. 

The carbon atoms that were exposed in the rip would join to their adjacent atoms causing 

a series of arm chairs that were interlinked. If this process were to happen enough the 

carbon coral would be produced. 

Calculated 6.9471 3.4348 2.1037 1.7177 

Measured 6.8444 3.5779 2.0312 1.7312 

Error% 1.4776 4.1668 3.4433 0.7906 

Table 12 Results for Electron Diffraction Pattern 

Figure 27 Dr. Jianyang Wu simulation of carbon nanotube going through stress [11] 
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8.4.3 Analysis of the Scales 

The final structure that is seen through the samples is the scale structure. This 

structure was most commonly found when the induction field was not present (this can be 

seen in Chapter 7.5). The electron diffraction beam in Figure 29 is of the TEM image in 

Figure 28. The electron diffraction shows a semi-crystalline carbon structure. These 

particles are found very rarely and in very low volume throughout the samples. The final 

objective is to reduce or completely eliminate these structures from anything that is 

produced. 

Figure 28 SEM and TEM of carbon scales 

Figure 29 Electron diffraction pattern of carbon scale structure 
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8.5 Raman Graphs 

After confirming the existence of carbon nanotubes using the SEM and TEM, the 

samples were sent to Dr. Andriy Durygin at FIU’s Center for the Study of Matter at 

Extreme Conditions (CeSMEC).The results are shown below and are compared to results

found by other researchers in this field.  

The image to the left is a Raman spectroscopy courtesy of Cheaptubes.com. The 

most common features of a multi-walled carbon nanotube Raman spectroscopy are two 

dominating spikes around the 1350 and 1550 1/cm range. When comparing the finding of 

cheaptubes.com labs with the findings of this study, one can observe that there are spikes 

at the same ranges. 

In addition to comparing the result with existing results, we can also measure the 

purity by measuring the relationship between the G-band peak and the D-band peak. 

These peaks can be found at 1350 cm-1 and 1580 cm-1 respectively. The multi-walled 

nanotubes had a purity of 99% while the single-walled showed a purity of 97.5%. 

Figure 30 Raman Comparision of Multi-Walled Carbon Nanotubes [4] 
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8.6 Production Rate 

The use of carbon nanotubes in the mass market is currently limited due to the 

price and volume of production. Current CVD methods are capable of reaching 1 to 15 

grams per hour. There are large companies that sell carbon nanotubes to universities and 

research centers, such as Nation Research Council Canada, which state that their 

production speed is two grams per minute. Throughout the trials we averaged 

approximately 0.5 grams per minute of production. While this rate is still below that of 

large institutes, I believe that with enough and time and the right components it will be 

possible to reach and even surpass the current production speed. 
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9 Conclusion and Future Work 

 The production of carbon nanotubes was successful. Electrons can be used to 

force carbon atoms to settle in a predetermined formation. While proof of concept was a 

success, the design of the machine still needs to be perfected.  

The design errors prohibited the extended operation and precise control of the 

multiple variables. The introduction of the computer program helped in controlling a 

limited number of variables; in the future the program will control the entire system and 

all variables. Having a program with this capacity would allow a more accurate control of 

all aspects of the machine, increase safety, and increase the production rate.  

Advancements in the hardware are also necessary. The high-voltage system used 

was an older model; it could only limit the maximum voltage and had no over-current 

protection. Acquiring a high-voltage source which can vary maximum voltage and 

maximum amperage individually would increase the quality of the carbon nanotubes. A 

system that also includes over-current protection could protect the power supply and its 

users from potential damage. The current collection system could only work in intervals 

of 5 minutes. The objective of a future design would be for the production to run in a 

continuous form and include a method to sample the material being produced. Finally the 

reaction chamber must go through a refinement process to find the most efficient design 

for continuous production.  

By improving the machine with a newer, more powerful, or more advanced 

version of the power supply, computer program, induction system, collection system, and 

reaction chamber, it will be possible to produce carbon nanotubes in a continuous form.	
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Appendix  

 JSCPS data sheet for carbon nanotubes 
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