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ABSTRACT OF THE THESIS 

THE EFFECT OF CONTEMPORARY HYDROLOGIC MODIFICATION ON 

VEGETATION COMMUNITY COMPOSITION DISTINCTNESS IN THE FLORIDA 

EVERGLADES 

by 

Ewan Isherwood 

Florida International University, 2013 

Miami, Florida 

Professor Evelyn Gaiser, Major Professor 

The historic Everglades Ridge and Slough landscape maintained regularly 

spaced and elevated sawgrass ridges interspersed among exposed deeper-water 

sloughs; however, widespread but irregular hydrologic modification has degraded much 

of this landscape patterning. My study assessed the effects of hydrologic modification on 

vegetation community distinctness within the Ridge and Slough landscape through 

sampling species composition at fine-scales along a hydrologic gradient to measure the 

magnitude of segregation of species among patch types. The results show that 

vegetation community and topographic variation degradation is widespread, with 

distinctness differences proceeding and possibly being driven by topographic variation 

loss. Vegetation responses to past hydrologic regime modifications are likely affected by 

temporal lags; however, vegetation distinctness regeneration may also be hindered by a 

vegetatively homogeneous alternative stable state. Hydrologic regime restoration is 

critical for Ridge and Slough patterned landscape reestablishment, but management 

targets are complicated by vegetation response lags and possibly alternative stable 

states. 
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Introduction 

 

Ecological communities within landscapes range from being composed of discrete 

sets of species to a continuously varying blend of any number of individual ecological 

patches (Levin and Paine 1974). Patchiness may arise through unevenness in abiotic 

environmental drivers exerting stress upon a landscape (Sousa 1984) or variation in 

edaphic properties (Wiens et al. 1985). However, patchiness may also arise biotically 

through competition among species for a finite resource (MacArthur and Levins 1964, 

Peltzer 2001), such as nutrients, water or light (Connell 1983), allelopathy limiting other 

species’ ability to compete (Vivanco et al. 2004, Bais et al. 2006), mutualistic facilitative 

interactions among sets of species within communities (Stachowicz 2001), dispersal 

dynamics (Levine and Murrell 2003), scale-dependent feedbacks between vegetation 

and underlying abiotic environments (Rietkerk et al. 2004, Rietkerk and van de Koppel 

2008), or a complex mixture of any of the above (Callaway and Walker 1997). Moreover, 

the contrast between community patches can be heightened by the presence of 

ecosystem engineers modifying physical habitats (Gilad et al. 2004, Crain and Bertness 

2005).  

However, ecological communities are not static: variation in spatial patterning both 

within and among patches through time arise from changes in the environmental drivers 

exerting stress on landscapes (Callaway and Walker 1997). Current (Allen and 

Breshears 1998, Feeley and Rehm 2012) but also past (Milchunas and Lauenroth 1995) 

abiotic and biotic drivers of ecological change affect patches by influencing species 

movements. Patch changes through time may be assessed through measuring shifting 

species composition (Walker et al. 1999) and species interactions within and among 

patches (Morellet et al. 2007, Tylianakis et al. 2007), patch functionality (Carpenter and 
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Brock 2006, Scheffer et al. 2009), or through measuring species response times to 

relatively slight environmental variations (Scheffer and Carpenter 2003). 

In addition, ecological boundaries between adjacent patches are often critical 

components of landscape patterning and changes (Strayer et al. 2003), as boundaries 

frequently exhibit abrupt shifts in environmental conditions and, consequently, often 

have different ecological characteristics compared those to within patches (Gosz 1992, 

Ries et al. 2004, Kark and van Rensburg 2006).  

Ecosystems affected by changing abiotic or biotic drivers may undergo abrupt 

ecological regime shifts among alternative stable states (Scheffer et al. 2001, Beisner et 

al. 2003). Alternative stable states within ecosystems may impede environmental 

managers’ restoration efforts, as transitions between states may be dependent on a 

regime shift’s direction; that is, the ecosystems exhibit hysteresis (Scheffer et al. 2001, 

Beisner et al. 2003). To prevent undesirable regime shifts from occurring, it is therefore 

critical that leading indicators of environmental change—characteristics that can signify 

when landscapes are about to undergo possible rapid changes—are determined 

(Groffman et al. 2006). Patch changes and leading indicators of ecological change 

analyses are often focused on variation through time; however, if environmental drivers 

exerting stress across a landscape are uniform in type, but not necessarily strength, it is 

often more pragmatic to conduct analyses in a spatial context as a proxy for temporal 

variation (Groffman et al. 2006). Identifying measurable and quantifiable ecological 

characteristics that indicate thresholds of ecosystem change are important for 

environmental managers whose goals include limiting or preventing ecosystem 

degradation (Niemi and McDonald 2004, Scheffer et al. 2009).  
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Wetlands 

 

The heterogeneous and sometimes harsh flooding-drying regimes of wetlands 

support a range of both emergent and submergent plant species (Keddy 2010, Mitsch 

and Gosselink 2011). The hydrologic regime is the dominant driver creating and 

maintaining heterogeneous patches in wetlands, as species, which frequently define 

patch characteristics, usually occupy restricted hydrologically derived niche spaces (van 

der Valk 1981, Spence 1982, Weiher and Keddy 1995, Noon 1996). Heterogeneous 

patches are most apparent in wetlands that contain abrupt topographic variation and 

distinct ecological boundaries (van der Valk 1981, Zedler 2000). However, both patches 

and their ecological boundaries are affected by changing environmental conditions, 

which frequently results in patches becoming less pronounced within a landscape (van 

der Valk 1981, Zedler 2000, Magee and Kentula 2005, Stallins 2006, Post et al. 2007, 

Corenblit et al. 2007). 

The stress exerted on wetland vegetation by the hydrologic regime, as exemplified 

by periodic dry-downs, governs species’ physiology and life-history strategies (Foster et 

al. 1983, Magee and Kentula 2005). Wetland vegetation therefore possess unique and 

diverse reproductive strategies, including rapid response times, turnover, and 

proliferation in favorable conditions (Keddy 2010, Mitsch and Gosselink 2011). Wetland 

vegetation also have various structural adaptations particularly in response to drying 

stress (Jackson and Colmer 2005). These include, but are not limited to, production of a 

seed bank to take advantage of sporadically favorable hydrologic conditions (van der 

Valk 1981, Casanova and Brock 2000), malleable morphology under different hydrologic 

regimes (Miller and Zedler 2003), or regeneration through asexual vegetative 

propagation (Combroux et al. 2002, Combroux and Bornette 2004).  
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Topographic patterning in wetlands can arise from interactions between living plants 

and partially decayed vegetation, known as peat (Foster et al. 1983, Eppinga et al. 2008, 

2010), forming the soil base for many wetland plant species. Complexity in topographic 

patterning can be derived from spatially variable differences in both peat accretion and 

decomposition that sustain and are sustained by microhabitat differences in resource 

limitation (Belyea and Clymo 2001, van Wesenbeeck et al. 2008, Watts et al. 2010, 

Eppinga et al. 2010). Spatial variation may particularly arise in wetlands with long 

hydroperiods and acidic pH, where non-living organic biomass readily accumulates and 

contributes to the soil building (Clymo 1984, Smith et al. 1993, Belyea and Clymo 2001). 

Furthermore, in wetlands with distinct vegetation patches, topographic relief (and 

therefore localized water depth) can vary considerably over small horizontal distances 

(Kirkman et al. 1998, Larsen et al. 2007), despite a level water surface (as it is 

constrained by gravity). As the hydrologic regime is modified, imbalances occur in the 

equilibrium between peat accretion and aerobic respiration, because changes in these 

processes with respect to water depth are non-linear (Cohen et al. 2011, Heffernan et al. 

2013). For example, lowering water depth increases both peat accretion, through 

primary production, and aerobic respiration, through increasing microbial activity and 

CO2 emissions to the atmosphere, but the rates of these processes are different at 

varying water depths. The resulting imbalances in the accretion-respiration equilibrium 

can transition landscapes with complex plant communities and topographic patterning to 

landscapes that are more vegetatively and topographically homogeneous (Eppinga et al. 

2007, Watts et al. 2010). Furthermore, transitions may occur rapidly through a transition 

between multiple alternative stable states in a positive accretion-respiration feedback 

loop (Chase 2003, Eppinga et al. 2007).  
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As with many ecosystems world-wide, wetlands are experiencing considerable 

changes. In particular, land use and climactic changes are altering the timing and 

severity of disturbances, often with catastrophic effects on wetland vegetation 

communities such as loss of total extent, changes in vegetation assemblages, invasive 

species and disruptions to ecological patterning and functionality (Mitsch and Gosselink 

2000, Zedler and Kercher 2004, Eppinga et al. 2007). In the present study, my overall 

objective is to further understanding of the effects of hydrologic regime modification on 

vegetation community patterning. The Florida Everglades’ distinct vegetative and 

topographic patterning and variable hydrologic regimes make it an excellent system to 

understand the interactions among vegetation, topography and hydrologic regimes that 

are common to many wetlands, and, more broadly, how such interactions depend on 

and influence the spatial patterning of ecological communities.  

 

The Florida Everglades 

 

Background and history 

The Florida Everglades, located in southern Florida, USA, is a large subtropical 

wetland with diverse hydrologic, vegetative, and edaphic characteristics. Historically, a 

significant portion of this system was a slow, meandering river originating in the 

Kissimmee River floodplain, flowing into the large and shallow Lake Okeechobee, 

draining south and then southwest over extensive and highly oligotrophic peatlands into 

Florida Bay (Gaiser et al. 2004, McVoy et al. 2011). The subtropical Everglades peatland 

emerged 5-6,000 years ago with rising sea levels trapping freshwater flowing southward 

over a limestone bedrock platform 160 kilometres long and 50 kilometres wide into 

Florida Bay, at a near uniform descent totalling only about six vertical meters (Stephens 
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1956, Gleason and Stone 1994, McVoy et al. 2011). Vegetation quickly colonized the 

submerged landscape, and peat, without sufficient aerobic respiration to oxidize, 

accumulated on the bedrock up to over 3 m (Gleason and Stone 1994). However, 

human-induced alterations to the hydrologic regime, including reduction, stabilization, 

and impoundment of water through diversion and compartmentalization via canals, 

levees and roads, have degraded both pre-drainage vegetation community patterning 

and the underlying variation in topographic relief (Davis and Ogden 1994, Ogden 2005, 

Watts et al. 2010, McVoy et al. 2011). 

Widespread recognition by the public on the effect changes to the hydrologic regime 

was having on the Everglades landscapes was inspired by Marjory Stoneman Douglas’ 

influential book The Everglades: River of Grass (Douglas 1947), which borrowed its 

name from both the Everglades’ subtle but important riverine characteristics and the 

extensive stands of sawgrass (Cladium jamaicense) that grow only 1-2 m above the 

water surface across the entire landscape—a characteristic thought to have prevailed for 

approximately the last 1,000 years (Bernhardt and Willard 2009). Douglas’ illustration 

that the Everglades was not a simple swamp, but more a river, inspired of much greater 

public awareness that the Everglades had intrinsic value that warranted intensive 

hydrologic regime management and restoration efforts. An early result of this awareness 

was the formation of the Everglades National Park at the end of the same year. Despite 

River of Grass increasing public awareness of the need for Everglades restoration, the 

phrase has left an impression that the Everglades is a relatively homogeneous (but 

flowing) grassy marsh—and does not entirely convey the ecosystem's spatially diverse 

and complex vegetative and topographic characteristics (Richardson 2010).  

Eight major landscapes occupied the historic pre-drainage greater Everglades 

(roughly from north to south): Custard Apple Swamp, Sawgrass Plains, Ridge and 
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Slough, Peat Transverse Glades, Rockland Marl Marsh, Marl Transverse Glades, 

Perrine Marl Marsh, and the Ochopee Marl Marsh (McVoy et al. 2011). Of these, the 

Ridge and Slough landscape covered approximately 6,000 km2; over 50% of the total 

spatial extent of the Everglades (about 11,000 km2). Prior to hydrologic regime 

modification, the Ridge and Slough landscape was composed of abrupt shifts in 

topographic relief organized in a regular ‘corrugated’ pattern at distinct intervals parallel 

to water flow (Figure 1). Ridges, comprised almost—but not quite—entirely of dense 

stands of sawgrass, were located in areas of higher topographic relief, and therefore 

lower localized water depths, whereas sloughs containing white water lily (Nymphaea 

odorata), bladderworts (Utricularia spp.), and other macrophytes were at lower elevation 

and, therefore, deeper localized water depths (Loveless 1959, Ogden 2005, McVoy et al. 

2011). A third community, the wet prairie, was comprised of spikerush (Eleocharis 

cellulosa), maidencane (Panicum hemitomon), beakrush (Rhynchospora tracyi), and 

other emergent plants in areas of intermediate water depths, usually occupying the area 

near the boundaries between adjacent ridges and sloughs (Loveless 1959, Ogden 

2005). However, the permanent presence of the wet prairie community in the pre-

drainage landscape, particularly at densities currently found, is disputed (McVoy et al. 

2011). The Ridge and Slough landscape was also to a much lesser spatial extent 

interspersed with higher elevation tree islands that contained hardwood plant 

communities with areas that remained fully emergent throughout the year (Loveless 

1959, Sklar and Valk 2002, Ross and Sah 2011).  

 

Vegetation community changes 

Vegetation communities in the Everglades, as in most wetlands, are restricted to a 

relatively narrow range of elevations determined by the hydrologic regime (White 1994, 
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Ross et al. 2003, Armentano et al. 2006). The hydrologic regime is the most significant 

factor affecting the distribution, composition, shape and size of vegetation patches 

across the Everglades landscape (Gunderson 1994, Busch et al. 1998, Sklar et al. 1999, 

Ross et al. 2003, Armentano et al. 2006, Zweig and Kitchens 2008, Todd et al. 2010, 

Nungesser 2011, Foti et al. 2012, Sah et al. 2013). Furthermore, stress exerted by the 

hydrologic regime is thought to create and maintain ridge and slough communities, as 

well as distinct ecological boundaries (Larsen et al. 2007, Givnish et al. 2008, Watts et 

al. 2010, Cohen et al. 2011, Foti et al. 2013, Heffernan et al. 2013). Vegetation 

production, which is ultimate source of the organic matter in peat, and aerobic 

respiration, which consumes that organic material, are also influenced by hydrologic 

regime modification (SCT 2003, Zweig and Kitchens 2009, Larsen and Harvey 2010, 

D’Odorico et al. 2011, Cohen et al. 2011). Ridges accumulate biomass faster than 

sloughs (Childers et al. 2006), but, because water depths are lower and hydroperiods 

are shorter on ridges, aerobic respiration rates are also higher (Larsen and Harvey 2010, 

Cohen et al. 2011). Over long time scales, the production-respiration equilibrium is 

regulated at equal rates within both ridges and sloughs, limiting the difference in 

elevation between the two patch types. Therefore, the production-respiration equilibrium 

also create and maintain topographic variation, although the specific mechanisms of 

topographic creation, maintenance and degradation remain a matter of debate (Larsen 

et al. 2007, Cheng et al. 2011, Cohen et al. 2011, Kaplan et al. 2012, Heffernan et al. 

2013).  

Beginning in the early 20th century, widespread anthropogenic modification of 

hydrologic regimes has altered vegetation patch patterning and composition in the Ridge 

and Slough landscape (Davis et al. 1994, Fennema et al. 1994, Gunderson 1994, Light 

and Dineen 1994, SCT 2003, Ogden 2005, Nungesser 2011, McVoy et al. 2011). 
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Average water levels across the Ridge and Slough landscape are estimated to have 

been 30-45 cm lower in 1955 than during between the pre-drainage era; although, water 

levels have rebounded in some areas since then, partially through concentrated 

restoration efforts (McVoy et al. 2011). Currently, sloughs frequently “dry-down” by the 

end of the dry season, but in the pre-drainage Ridge and Slough landscape sloughs are 

believed to have dried very rarely (McVoy et al. 2011). Shorter hydroperiods have 

significantly restricted the range and abundance of particularly slough species such as 

the historically ubiquitous white water lily and the even more hydrologically constrained 

spatterdock (Nuphar advena); a species adapted to the deepest water depths (McVoy et 

al. 2011). Lower water depths over sustained periods have, alternatively, led to range 

expansion in species that are better adapted to lower water levels, such as sawgrass 

(Urban et al. 1993, Davis and Ogden 1994, Gunderson 2001). Ridges have invaded 

slough areas (SCT 2003, Ogden 2005), and much of the slough landscape, particularly 

in Everglades National Park, has been usurped by wet prairies and ridges (Davis et al. 

1994, Olmsted and Armentano 1997, Busch et al. 1998). Similarly, woody vegetation 

likely did not inhabit the ridge community prior to hydrologic regime modification (McVoy 

et al. 2011), but wax myrtle (Myrica cerifera) and coastal plain willow (Salix caroliniana) 

frequently inhabit the core of ridge communities in drained areas (Loveless 1959, McVoy 

et al. 2011). 

Although Everglades’ vegetation across the Ridge and Slough landscape is strongly 

regulated by the hydrologic regime, other environmental drivers of vegetation community 

changes may operate independently or in concert with hydrologic regime modification. 

For example, increased nutrient concentrations are an important driver of vegetation 

patterns in areas of the Ridge and Slough landscape, in part caused by the proliferation 

of southern cattail (Typha domingensis), which outcompetes sawgrass communities in 
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areas with high phosphorus concentrations and adequate water depths (Urban et al. 

1993, Craft et al. 1995, Newman et al. 1996, Daoust and Childers 2004). However, 

phosphorus is quickly taken up by organisms and the extent of the influence of 

phosphorus enrichment, while penetrating several kilometers into the protected areas of 

Everglades National Park, is localized compared to the total extent of the Ridge and 

Slough landscape (Childers et al. 2003). Fire events are common in the Everglades, but 

damage to non-woody vegetation is limited mostly to above the water surface, and its 

direct effects on vegetation communities in the Ridge and Slough landscape are likely 

negligible (Herndon et al. 1991, Beckage et al. 2003, Larsen et al. 2011). However, the 

influence of fires burning living organic matter on soil accumulation and the interactive 

effects of hydrologic regime modification and fire events warrant further research 

(Lockwood et al. 2003). Muck fires (peat fires) can burn peat to 10-20 cm deep when 

dry, and may exert considerable stress on vegetation patches over long timescales 

(Sklar and Valk 2002), such as causing succession of sawgrass dominated ridges into 

wet prairies and sloughs (Gunderson 1994). Although the direct impact of muck fires is 

likely relatively localized, the spatial propagation of vegetation succession following 

muck fire damage also merits future research. Finally, the effects of hurricanes and 

moisture redistribution during infrequent and stochastic events driving vegetation 

patterns in the Ridge and Slough landscape remains understudied. 

 

Vegetation community and topographic variation loss 

The distinct ecological boundaries between vegetation communities that were a 

defining feature of the pre-drainage Ridge and Slough landscape are dependent on the 

maintenance of abrupt topographic relief, which is itself affected by hydrologic regime 

modification (Larsen et al. 2007, Watts et al. 2010). Hydrologic regime modification 
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therefore affects both topographic variation and vegetation community patterning 

(because vegetation communities are strongly dependent on the local long-term water 

depths and hydroperiods), sometime after an initial perturbation (Ross et al. 2003, 

Givnish et al. 2008, Zweig and Kitchens 2009, Watts et al. 2010). However, neither the 

relative nor absolute timescales of the interrelated vegetation patterning and topographic 

variation changes are well understood. Ross et al. (2003) found that vegetation 

communities in the hydrologically diverse Shark Slough, ENP correlated to localized 

water depth, but that after hydrologic regime modification vegetation communities lost 

association to their absolute water depths. The authors suggest that long-term loss of 

connectivity might be caused by vegetation response lags after changing hydrologic 

conditions, possibly in combination with increasing fire regimes affecting sawgrass 

succession at higher elevations. Givnish et al. (2008) determined that vegetation 

communities across a hydrologic gradient responded predictably to long-term water 

depths, but that the absolute water depths among basins supporting the same 

vegetation communities were significantly different, indicating that temporal lags in 

vegetation responses to hydrologic changes may be significant and over extended 

timeframes. Watts et al. (2010) hypothesized that topographic variation changes occur 

more rapidly than changes in vegetation communities after hydrologic regime 

modification. They argued that drainage and stabilization of the hydrologic regime led to 

rapid peat loss through aerobic bacterial respiration in higher elevation ridges compared 

to sloughs, leading to flattening of landscape-scale topography. Simultaneously, but over 

significantly longer timescales, drained and stabilized hydrologic regimes facilitate ridge 

expansion through drained sloughs, eventually homogenizing vegetation patches across 

landscapes. Shifts in vegetation communities and topography from heterogeneous to 

homogeneous landscapes were hypothesized to occur through a relatively rapid 
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transition between the two stable states (Watts et al. 2010, Cohen et al. 2011, Heffernan 

et al. 2013). 

 

Vegetation communities and leading indicators of ecological change 

Some plant species in the Everglades are more resistant to changing hydrologic 

regimes than others because of differences among species in biomass storage, 

maturation, regeneration intervals, and fecundity. Specific sets of species therefore may 

be particularly useful as leading indicators of environmental change. Possible leading 

indicators of change through analysis of differences among species in the Everglades 

include work by Zweig and Kitchens (2008, 2009) who found that vegetation groups 

within broader community types assigned in to one of several different categories based 

on species composition responded to changing hydrologic regimes at different rates as a 

consequence of different life-history strategies. Similarly, groups of species that have a 

very short turnover time, such as the microbial organisms comprising periphyton 

communities, have been suggested as appropriate early indicators of change because 

they react quickly to relatively small environmental fluctuations (Gottlieb et al. 2006, 

Gaiser 2009, Gaiser et al. 2013). At the landscape scale, Wu et al. (2006) established 

that ridge patterning changed in response to modified hydrologic regimes at variable 

rates through time, suggesting that changes in ridge patterning itself could be useful as a 

leading indicator in predicting community changes. Detection of rapid and potentially 

catastrophic environmental changes in the Everglades are mostly concentrated on 

specific species, localized patches of communities, distinct groups of species, or, 

alternatively, landscape-level processes. In this respect, analyses of changes in 

vegetation community composition within a wider landscape as a useful leading indicator 

of catastrophic ecosystem changes are currently underdeveloped.  
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The relative timescales of vegetation-topographic variation loss and how long these 

interrelated changes occur after an initial perturbation to the hydrologic regime is not well 

understood. Increased knowledge of the concomitant vegetation-topography changes 

would be an important step towards describing the processes that drive vegetation and 

topographic degradation and restoration, and could help Everglades’ environmental 

managers assess leading indicators of ecosystem changes. 

 

Objectives and approach 

The primary goal of this study is to further understanding of changes in vegetation 

community distinctness caused by hydrologic modification using species compositional 

differences within and among different landscape blocks across a hydrologic regime 

gradient. These issues are addressed in two questions: 

 

1. How is vegetation community distinctness affected by topographic variation 

and hydrologic regime changes in the contemporary Everglades Ridge and Slough 

landscape? 

2. What are the relative timescales of vegetation and topographic variation 

change in the contemporary Everglades Ridge and Slough landscape? 

 

I address these questions using spatially extensive and intensive descriptors of 

vegetation community composition and their relationships to topography and, ultimately, 

the hydrologic regime. I assess differences in vegetation community distinctness by 

measuring the segregation of species composition among patches. A spatial measure of 

variable hydrologic regimes is used as a proxy for changes through time. Concomitant 
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topographic variation differences are also measured in order to assess the relative 

timescales of vegetation and topographic changes after hydrologic regime modification.  

 

Methods 

 

Sampling design and implementation  

My study takes advantage of a previously established framework for representative 

sampling over a large portion of several historic Everglades landscapes. A Generalized 

Random-Tessellation Stratified sampling design (GRTS; Stevens and Olsen 2004) was 

used to arrange the Everglades landscapes into a grid of 2 x 5 km landscape blocks 

(hereafter referred to as primary sampling units [PSUs]), with the 5 km edge of each 

PSU aligned parallel to the historic water flow. A spatially-stratified random sample of 80 

PSUs was selected for sampling over a five year period (n = 16 per year), with each 

yearly draw also representing a spatially balanced sample of all of the modern 

Everglades basins (Everglades National Park (ENP), Loxahatchee National Wildlife 

Refuge (LNWR), Water Conservation Area 2 (WCA 2), Water Conservation Area 3A 

South (WCA 3A S), Water Conservation Area 3A North (WCA 3A N), and Water 

Conservation Area 3B (WCA 3B); Figure 2).  

Data for this study were taken from 27 PSUs (from sampling years 1 and 2) that 

were located inside the historic distribution of the Ridge and Slough landscape (McVoy 

et al. 2011). Four additional PSUs located outside of the historic Ridge and Slough 

landscape were sampled but not analyzed in the current study. One PSU was physically 

inaccessible for sampling (because of dense cattail overgrowth): PSU 5, located at the 

northern boundary of WCA 2. The 27 PSUs ultimately included in this study captured a 

wide range of contemporary hydrologic regimes within the historic boundaries of the 
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Everglades Ridge and Slough landscape, with vegetation communities and topographic 

variation covering all major basins, from well-conserved to severely degraded (Wu et al. 

2006, Givnish et al. 2008, Watts et al. 2010, Nungesser 2011). 

Each PSU contained 80 sampling nodes in a spatially-stratified design. The PSUs 

were divided in to a grid (each of the sixteen grid cells within a PSU being 1.25 km by 

500 m), with 5 nodes randomly distributed within each grid cell. Each node contained 

three sampling points; a central sampling point, and two sampling points parallel and 

perpendicular to the long axis of the PSU and the historic direction of the water flow (to 

the north and east respectively) at random distances between 3 and 35 meters—a total 

of 240 sampling points for each PSU. For PSUs within ENP, access, which was usually 

by helicopter and foot, restricted sampling to 135 sampling points. GPS coordinates 

were calculated on a computer beforehand and then located in the field using a Garmin 

GPS 72 navigator (precision: ± 3 m). Field sampling was conducted in 2010 and 

continued in 2011 largely during the Everglades’ wet season between the months of July 

and December to maximize the number of sampling points with water above the soil 

surface. At each sampling points, all plants within a 1 m2 quadrat were identified to 

species level, and plant and periphyton densities were estimated as the percentage 

cover of the sampling area at 1%, 5% or 10% intervals thereafter.  

Each sampling point was also designated in the field to categorical vegetation 

community types (for example; ridge, slough, wet prairie), or mixed communities (for 

sampling points that were ambiguous, such as the ridge/slough mix) based on a visual 

inspection of the species within the quadrat. The water depth was measured using a 

meter ruler with a 10 cm diameter foot and was defined as the distance from the peat 

surface at the center of the quadrat to the water surface.  
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Estimation of local hydrologic regime 

The US Geological Survey’s Everglades Depth Estimation Network (EDEN) records 

water stage data daily from 253 stations at a grid size of 400 m2. The height of the water 

surface at any geographic point can be calculated through interpolation of water stage 

data collected by several nearby stations (Pearlstine et al. 2007). The accuracy of both 

the EDEN network’s stage data and its interpolation was independently validated in Liu 

et al. (2009). Statistical measures relating to the water depth over several years provide 

a more accurate representation of the temporal hydrologic fluxes compared to the field 

measurements at time of sampling, which provide only a “snapshot” of daily and 

seasonally dynamic hydrologic conditions. However, more precise local water depth 

measurements do allow improved estimates of elevation, and thus long-term hydrologic 

conditions, as compared to the coarse resolution of the soil elevation map (400 m2 

pixels) used by EDEN to estimate water depths. By combining the temporal stage data 

from EDEN water surface height records and the measured water depth, we estimated 

the fluctuating water depth at each sampling point for the period of time EDEN water 

level recorders have been recording (direct measurements since October 1, 1999; 

hindcast data available back to January 1, 1991). From these, we calculated long-term 

mean water depth and inundation frequency (i.e., hydroperiod) for 20 years prior to the 

sampling date for each sampling point. The mean water depth for individual sampling 

points over the 20 year record was calculated by using the EDEN record to calculate the 

water surface height at each sampling point’s geographic location on the sampling day, 

and taking away the measured water depth to calculate the elevation of the peat surface 

for each sampling point. Then, the peat surface elevation was taken away from the 

mean water surface height over the 20 year EDEN record, giving the mean water depth 

over the 20 year record at each sampling point. The mean water depth within each PSU 
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over the 20 year EDEN record was calculated by taking the mean of all within-PSU’s 

sampling points’ mean water depths over the 20 year EDEN record. The mean water 

depth over the 20 year EDEN record across PSUs represented, in this analysis, the 

hydrologic gradient across the Ridge and Slough landscape. Within each basin (ENP, 

WCA 3A S, etc.), the mean and variation among PSUs in mean water depth over the 20 

year EDEN record was calculated using the mean for all PSUs within each basin (shown 

in Figure 2). 

 

Analysis of Vegetation Composition and Distinctness 

Differences in the distinctness of vegetation community composition were assessed 

across the Ridge and Slough landscape to better understand the effects of hydrologic 

regime modification on vegetation patterning. Vegetation community composition 

distinctness was quantified using Kruskal's non-metric multidimensional scaling (NMDS; 

Kruskal 1964) ordination to partition sampling points within PSUs on the basis of species 

composition dissimilarity. I used local-scale (within-sampling points) associations to 

assess how vegetation community composition varied as a function of local hydrologic 

regimes. To describe distinctness of vegetation communities within each PSU, sampling 

points within each PSU were partitioned into two clusters, the distance between cluster 

centers providing the measure of vegetation community distinctness. I used the cluster 

distance proxy to assess the differences in distinctness among PSUs and its relation to 

topographic and ultimately hydrologic characteristics.  

The distinctness of vegetation community composition (Question 1) was measured 

using clustering of sampling points within ordination space, with each sampling point 

containing a vector of species and their respective abundances. Distinctness was 

analyzed using NMDS ordination. In this analysis, a single “global” NMDS ordination was 
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created that encompassed all PSUs in order both to obtain a global measurement of the 

clustering of sampling points—regardless of the environmental conditions—among all 

PSUs and to standardize all measures of dissimilarity within and among-PSUs.  

All observations from sampling points within each PSU were separated from the 

global NMDS to characterize compositional patterns within PSUs. Observations from 

each PSU were coerced into two discrete clusters using k-means clustering. Two 

clusters were chosen in this analysis: (1) to simplify within-PSU distinctness measures; 

and (2) to best represent the presumed distinct communities associated with the 

overwhelmingly dominant ridge and slough communities in the historic pre-drainage 

landscape which, in this analysis, should occupy distinct regions of the NMDS ordination 

space (because distinct communities are theorized to be composed of distinct sets of 

species). Cluster calculations were run 25 times with random starts and the most 

appropriate clustering solution was used for this analysis. The likely most appropriate k-

means cluster positions are obtained from the minimization of the sum of squares 

distance for each sampling point to the Voronoi-derived cluster centers using a nearest 

neighbor algorithm. To calculate a test statistic of vegetation community distinctness, the 

sum of squares distance between the two cluster centers was calculated for each PSU, 

and divided by the number of sampling points to derive the mean sum of squares (which 

is independent of the number of within-PSU points sampled used in this analysis). 

Larger cluster distance values result from a greater distance between the two k-means 

derived cluster centers, and, at least hypothesized in this study, greater vegetation 

community composition distinctness (a two dimensional schematic diagram based on 

data from shown in Figure 3a). Conversely, smaller cluster distances (nearer cluster 

centers) indicated less distinct vegetation community composition, and therefore a more 

vegetatively homogeneous landscape (Figure 3b). The PSUs were hypothesized to 
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display variation in vegetation community composition distinctness, decreasing with 

increasing disparity between the estimated pre-drainage hydrologic regime and the 

spatially variable contemporary hydrologic regimes. 

The PSU cluster distances were related directly to the hydrologic regime using a 

vector of the 20 year mean water depth fitted to the NMDS ordination space, aligned in 

the direction where it explained the most amount of the variation in the individual 

sampling points’ mean water depths (Kantvilas and Minchin 1989). While the method for 

arranging the vegetation site scores in the NMDS ordination plot is non-metric, the 

ordination space itself is metric (Euclidian), as well as the overlain hydrologic vector. In 

this analysis, the ordination space was rotated so that the 20 year hydrologic regime 

predictor variable became the new primary axis (hereafter referred to as the hydrologic 

axis). Since this rotation shifted sampling points within a PSU equally (the rotation was 

about the NMDS origin), cluster distances were unaffected. Rotating the NMDS 

ordination to the 20 year hydrologic axis not only enabled analyses on the basis of an 

ecologically meaningful variable (as opposed to a randomly generated rotation or a 

rotation to the largest principal component), it also enabled assessment of vegetation 

community patterns across a linear and regularly spaced axis (representing the 20 year 

hydrologic regime). 

The relationship between cluster distance (as the measure of community 

distinctness) and the long-term hydrologic regime was analyzed to assess the effect 

hydrologic regime modification had on vegetation community distinctness across the 

Everglades Ridge and Slough landscape. Both drainage and impoundment influence 

landscape patterning and community composition (Ross et al. 2003, Wu et al. 2006, 

Givnish et al. 2008, Nungesser 2011, Sah et al. 2013), so it is therefore hypothesized 

that relationships between hydrologic conditions and vegetation community distinctness 
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would be non-linear, with highest distinctness values at intermediate water levels. The 

Gaussian function (which was chosen over least-squares linear regression because of 

the hypothesized shape of the relationship between vegetation community distinctness 

and the hydrologic regime) was fitted to the vegetation distinctness measure based on 

the mean and standard deviation of the PSUs’ hydrologic regimes over the 20 year 

hydrologic record. 

To assess whether vegetation distinctness corresponded to the physical 

segregation of vegetation communities, the mean and variation of the three most 

frequently observed vegetation communities were compared across the hydrologic axis 

within the NMDS ordination space and related to the 20 year mean water depth. 

Because Everglades vegetation communities generally assemble on narrow 

hydrologically derived habitats (Loveless 1959, McVoy et al. 2011), communities were 

hypothesized to occupy distinct positions across the hydrologic axis. Furthermore, 

communities that are dominated by few species, such as ridges (which are dominated by 

sawgrass), are hypothesized to occupy a less variable hydrologic regime than others 

such as the myriad of species that constitute the slough community. 

The premise in this analysis is that cluster distances correspond to distinct 

communities, but other patterns could also produce large cluster distances. For 

example, PSUs could be composed of a single high-variance cluster rather than two 

discrete clusters. To assess the correspondence of cluster distance and distinctness, 

PSU-scale vegetation community distinctness was examined over the hydrologic 

gradient using site scores based on the NMDS ordination rotated to the 20 year 

hydrologic axis. The PSUs with larger cluster distances were assessed for the presence 

of distinct clustering (i.e., a bimodal distribution along the primary hydrologic axis) which 

were hypothesized to represent dominance by distinct ridge and slough communities. In 
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PSUs with shorter cluster distances, I expected that bimodality would degrade. In other 

words, two clusters should be apparent in more vegetatively distinct PSUs if species 

composition within these PSUs is strongly partitioned to hydrologically derived habitats.  

To test whether the k-means cluster analysis partitioned communities, a global k-

means analysis using two clusters was compared to the field designated vegetation 

communities along the hydrologic gradient. A global k-means analysis was chosen 

preferentially over summing the individual k-means analyses used for the cluster 

distance analyses as there was no expectation that vegetatively indistinct PSUs would 

partition into discrete communities. An odds ratio test was used to quantitatively assess 

how likely a given cluster was to appear in a particular community, as it revealed how 

strongly the k-means clustering technique segregated the field designated vegetation 

communities. 

A second approach to confirm that k-means derived clusters corresponded to ridges 

and sloughs in relatively distinct PSUs assessed the differences in abundance of a 

dominant species between the two clusters within each PSU. Sawgrass (Cladium 

jamaicense) was chosen because it is overwhelmingly dominant in ridges and relatively 

rare in sloughs, the two most spatially extensive vegetation community types, and it is 

currently ubiquitous in the Ridge and Slough landscape. Within each PSU, the mean 

sawgrass percentage cover for each k-means derived cluster in the NMDS ordination 

space was calculated. The PSUs were ranked according to their hydrologic regimes 

(mean water depth over 20 years), to facilitate understanding of how sawgrass 

partitioned within and among PSUs across the hydrologic gradient. Distinct vegetation 

communities within PSUs were hypothesized to segregate strongly between clusters, 

with one cluster containing a high abundance of sawgrass (corresponding to ridges) and 

the other a low abundance of sawgrass (sloughs). Furthermore, k-means clustering was 
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hypothesized to not partition well in vegetatively degraded PSUs, because they are 

either frequently dominated by a single community type or there is more mixing of 

species among communities. Very dry or very wet PSUs over the 20 year hydrologic 

record should be reflected by absolute sawgrass abundances, where drier PSUs have 

more total sawgrass and wet PSUs, less, corresponding to sawgrass’ competitiveness in 

drier landscapes. 

The relationship between vegetation community distinctness and a quantified 

measure of topographic variation was evaluated to further understanding of the relative 

timescales of changes across the Ridge and Slough landscape. Topographic variation 

within each PSU was calculated using the standard deviation of elevations (or measured 

water depths). To assess the relative rates of vegetation community distinctness and 

topographic variation changes (Question 2), the relationship between cluster distance 

and within-PSU topographic variation was assessed by simple least-squares linear 

regression. The relationship between vegetation community distinctness and 

topographic variation was also used to assess the relative time scales over which 

vegetation and topography degrade. If vegetation was found to degrade first, then PSUs 

with indistinct communities but large topographic variation would be observed; 

conversely, if topography was found to degrade before vegetation, then the expected 

observation would be PSUs with distinct vegetation communities but little topographic 

variation. To evaluate these predictions, vegetation community distinctness and 

topographic variation by PSU were categorized based on the position of a local minimum 

across a gradient of each measure’s value. The local minimum was reasoned to 

represent a relatively rapid transition in both vegetation community distinctness and 

topographic variation. Relative timescales of change were evaluated using a quadrant 

system, with each quadrant relating to the four possible states of conserved or degraded 
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community distinctness and topographic variation based on the local minimum 

(schematic diagram shown in Figure 4). The quadrant system is therefore also a 

measure of PSU-scale ecological condition. Vegetation community changes were likely 

influenced by topographic variation changes if significantly more PSUs were located in 

the conserved vegetation-degraded topography quadrant, and vice versa. 

Three measures to evaluate the relationship between elevation and vegetation 

community composition within each PSU were created. Each measure tested the 

hypothesis that the association between vegetation communities and topographic 

variation decreased with long-term hydrologic regime modification at both the wettest 

and the driest extremes of the hydrologic gradient. The first measure used was the 

difference in water depth between k-means derived clusters, which was calculated by 

taking the difference in the mean of water depths (as a proxy for elevation) over the 20 

year record for all sampling points within each cluster constituting a PSU. The k-means 

difference in mean water depth therefore provides a statistic that is directly derived from 

the vegetation community composition distinctness (cluster distance) and topographic 

variation (with water depth as the proxy) analyses. The second measure was the 

correlation between each sampling point’s sawgrass abundance and the mean water 

depth over 20 years within each PSU, analyzed using least-squares regression. 

Sawgrass’ correlation to water depth was included because sawgrass abundance is a 

relatively simple metric to quantify for Everglades’ environmental managers and least-

squares regression is a relatively concise and commonly used statistical technique. The 

third measure utilized the Mantel test (Fortin et al. 2002) to provide a metric of the 

correlation between vegetation community composition and 20 year mean water depth. 

The Mantel test was used in this analysis because the technique compares actual 
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vegetation community composition and related topographic elevation as a commonly 

used ecological multivariate analytical method. 

These five indices: k-means difference in water depth, sawgrass correlation to water 

depth, Mantel test, vegetation community distinctness and topographic variation, were 

mapped on to the Everglades Ridge and Slough landscape to assess the spatial 

patterns of landscape condition. A sixth map, derived from the categorical community 

distinctness-topography quadrants, shows the PSUs that are vegetatively and 

topographically conserved, degraded or in a transitional state based on the vegetation-

topography quadrant system of landscape condition. 

 

Software 

All analyses and visualizations were performed using R (version 2.15.2; R 

Development Core Team 2011), except the vegetation-topography quadrant graphic 

(Figure 4), which was created using Inkscape (version 0.48; www.inkscape.org). The 

global NMDS ordination was created using the metaMDS function in the vegan package 

(version 2.0-5; Oksanen et al. 2005). The default convergence criterion in monoMDS 

(the engine metaMDS uses to produce random starting points) was too slack to find a 

convergent solution and was therefore tightened (but is now the default criterion as of 

vegan 2.0-6). The dissimilarity matrix for the NMDS ordination was calculated using the 

vegdist function in vegan with the Jaccard index, which, as a metric index, was 

preferentially chosen for detecting the underlying metric hydrologic gradient over the 

semimetric Bray-Curtis. Fitting and rotating the NMDS to the 20 year hydrologic axis was 

completed using the enfit function in vegan. The Mantel test also used the Jaccard index 

for calculating the distance matrix for vegetation communities and the Euclidean index 

was used for the distance matrix for the mean water depth over 20 years vector. The k-
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means derived clusters were calculated using the R base package stats (R Development 

Core Team 2011), and all maps were created using the base R plotting functions (R 

Development Core Team 2011). All other figures were created using ggplot2 (version 

0.9.1; Wickham 2008) and combined, where relevant, using lattice (version 0.20-24; 

Sarkar 2010) or Inkscape (www.inkscape.org).  

 

Results 

 

Vegetation composition and distinctness 

Overall, 4,859 points were sampled and used in these analyses, including 2,570 

ridge, 1,036 slough, and 593 wet prairie communities based on field designations. Seven 

different vegetation communities across the entire Everglades Ridge and Slough 

landscape were described, although, of these, only four communities had greater than 

50 sampling points (ridge, slough, wet prairie and cattail). Eight different assemblages in 

the 1 m2 quadrats were characterized as not belonging to a single community type and 

labelled as one of the “mixed” communities (for example, a ridge/slough mix). Twenty-

seven additional sampling points were measured but were dry, and were removed prior 

to analysis because they would provide inaccurate long-term mean water depths. One 

sample was removed because of a water depth recording error. Four sampling points 

were removed because no plants were recorded, and would have prohibited the NMDS 

ordination calculation. Two sampling points were removed from the analysis and the 

NMDS ordination rerun because of the presence of cocoplum (Chrysobalanus icaco) at 

extreme water depths having an unduly large effect on the ordination calculation. A 

scree plot of the NMDS ordination suggested weakly that five dimensions would best 

represent the data, resulting in a stress value of 0.0835 (8.35%).  
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Species were largely limited to their field designated communities: sawgrass 

(Cladium jamaicense) was most abundant in ridges and then in the mixed ridge/slough 

and ridge/wet prairie communities; spikerush (Eleocharis spp.) were most abundant in 

wet prairies and slough-wet prairie mix; bladderworts (Utricularia spp.) and white water 

lily (Nymphaea odorata) were most abundant in sloughs and mixed slough communities; 

and cattail (Typha domingensis) was almost entirely contained within the cattail 

community (Figure 5). Periphyton was more cosmopolitan than any other component of 

the Everglades plant communities; it was abundant in all major community types in 

except the driest (tree island and mixed tree island) and likely the most eutrophic (cattail; 

see McCormick et al. 2008, Gaiser et al. 2011). Vegetation communities categorized by 

their field designation sorted along the 20 year mean water depth (Figure 6). For 

example, ridges were consistently at lower water depths than wet prairies which were, in 

turn, constantly drier than sloughs. The contemporary hydrologic regime varied among 

all Everglades basins: Water Conservation Area 3A North (WCA 3A N) had the highest 

20 year mean water depth, but also the largest variance within all three of the most 

frequently sampled vegetation communities suggesting that it is the most hydrologically 

diverse basin (Figure 6). Loxahatchee National Wildlife Reserve (LNWR) had the lowest 

water depth over this period across all major vegetation communities. No wet prairie 

communities were observed in Water Conservation Area 2 (WCA 2), and only one in 

LNWR, whereas wet prairie communities were unusually abundant compared to sloughs 

in Everglades National Park (ENP). Water Conservation Area 3A South (WCA 3A S) had 

a proportionately higher percentage of sloughs compared to all other basins. Within each 

Everglades basin, the 20 year mean water depth decreased from sloughs to wet prairies 

(which were entirely absent in WCA 2), to ridges. However, communities did not equate 

hydrologically between basins; for example, the 157 sloughs in LNWR were at a lower 
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20 year mean water depth (24.3 cm) than the mean water depth in the 2,240 ridges in 

every other basin (mean = 30.75 cm; Figure 6). 

The three most frequently observed vegetation communities segregated distinctly 

across the hydrologic axis (Figure 7). The ridge community was most frequently 

observed close to its median water depth, indicating that this community is relatively 

compositionally homogeneous, whereas sloughs and wet prairie communities displayed 

more variability across the hydrologic axis. In conserved PSUs with distinct community 

composition (large cluster distances), NMDS scores along the hydrologic vector were 

split clearly into two clusters (Figure 8). However, in more vegetatively degraded PSUs, 

the within-PSU NMDS site scores along the hydrologic axis were less bimodal and 

clusters were less distinct.  

Within almost all PSUs, sawgrass abundances were weighted heavily towards a 

single cluster (Figure 9). However, the segregation of sawgrass between clusters was 

greatest in the most distinct PSUs (the green [or lighter] bars in Figure 9) with all PSUs 

containing at least < 20% in one cluster and > 60% in the other. Sawgrass segregation 

between clusters was still observed in the less distinct PSUs (the red [or darker] bars in 

Figure 9), but distributions and average sawgrass abundances were considerably less 

predictable than in more distinct PSUs. 

The global k-means clustering analysis of vegetation communities correlated 

strongly to the mean water depth over 20 years (as a proxy for topographic elevation; 

Figure 10). A total of 81.3% field designated ridge communities were in Cluster 1 and 

97.5% of sloughs were located in cluster 2, along with 87.9% of wet prairie communities. 

Furthermore, the mean water depths for the three most frequently observed vegetation 

communities, the ridge, slough, and wet prairie, correlated with the mean water depths 

along the hydrologic axis (Figure 7). Mixed vegetation communities designated in the 
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field were almost always located between their constituent communities, for example, 

mixed slough/wet prairie communities had a mean water depth, hydroperiod, and cluster 

ratios between that of the slough and the wet prairie communities. However, this was 

notably not the case for the relatively frequently observed ridge/slough mixed community 

which had on average marginally lower mean water depths than ridges. The odds ratio 

for the three community types based on the global k-means cluster analysis indicated 

that field designated ridges were 169 times more likely to be in cluster 1 than sloughs, 

and that wet prairies were more closely aligned to sloughs than ridges (odds ratio of 5.37 

and 31.5, respectively; Figure 11).  

 

Hydrologic and topographic effects on distinctness 

Distinct communities, represented by cluster distance, were only observed across 

the 20 year hydrologic gradient between about 20-50 cm mean water depth (Figure 12). 

The PSUs near the hydrologic extremes, in both the wetter and the drier directions, 

contained only relatively indistinct communities. The PSUs in ENP, WCA 3A S and 

Water Conservation Area 3B (WCA 3B) clustered relatively closely on both the 

vegetation community distinctness and the 20 year mean water depth axes, whereas 

WCA 3A N’s PSUs had both variable vegetation distinctness (i.e., between cluster 

distance) and high variability in 20 year mean water depth (containing both the two driest 

and three wettest PSUs along the hydrologic gradient). Three PSUs, all in northern WCA 

3A N, contained more than 5% relative total cattail abundance as a percentage of the 

total vegetation cover (PSU 11 at 6.29%; PSU 27 at 16.00%; and PSU 19 at 20.57%), 

which correlated to increased community composition distinctness (cluster distance = 

0.288, 0.904, and 0.689, respectively).  
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Vegetation community composition distinctness correlated with differences in 

topographic variation (r2 = 0.49, Pr (>F) < 0.001; Figure 13). Clustering of Everglades’ 

basins in relation to topographic variability was also apparent; WCA 3A S displayed both 

distinct community composition and variable topography, whereas ENP, WCA 3B, and 

WCA 2 vegetation communities were generally less distinct and topographically 

homogeneous. LNWR and WCA 3A N basins were more variable.  

Categorizing vegetation distinctness and topographic variation into conserved and 

degraded PSUs using the local minimum along each processes’ gradient to assess the 

relative timescales of each process’s changes resulted in seven PSUs in the conserved-

conserved quadrant, four of which were located in WCA 3A South (Figure 13). Thirteen 

PSUs were located in the degraded-degraded quadrant; these included five from WCA 

3A North, all three WCA 3B PSUs and three of the PSUs in ENP. Seven PSUs were 

located in the conserved vegetation community distinctness-degraded topographic 

variation quadrant; these included the other three PSUs from ENP, the remaining two 

from WCA 3A S and one each from LNWR and WCA 3A N (Figure 13). No PSUs were 

situated in the degraded vegetation community distinctness-conserved topographic 

variation quadrant. Among PSU vegetation community distinctness binned by frequency 

of occurrence was bimodally shaped (Figure 14a); topographic variation was less 

bimodal than for vegetation community distinctness (Figure 14b), possibly because of a 

lack of topographically conserved PSUs in this analysis.  

The three measures of vegetation-topographic correlation across the hydrologic 

gradient: k-means derived cluster mean water depth; sawgrass-water depth (WD) 

correlation (r2); and vegetation-WD Mantel r score, respectively (Figures 15-17), all had 

high values in central portions of the hydrologic gradient, similar to those found in the 

pre-drainage Ridge and Slough landscape, and low values in both wetter and drier 
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hydrologic extremes. Vegetation-topography correlations were again highest between 

about 20-50 cm mean water depth, and no large values were found at either the wettest 

or driest extremes of the hydrologic gradient. 

 Community distinctness for each PSU plotted on to a map of the Everglades 

showed that only a small portion of the Ridge and Slough landscape—notably central 

WCA 3A S—was in a relatively conserved condition, reminiscent of the pre-drainage 

landscape (Figure 18). The ENP, WCA 3A N, WCA 2 and LNWR were inconsistent, but 

WCA 3B’s vegetation communities were consistently assessed as degraded. 

Topographic variation and the three measures of vegetation-topographic correlation 

mapped similarly to the vegetation community composition distinctness (Figures 19-22). 

Categorization of the conservation status for the combined vegetation community 

composition distinctness and topographic variability (from Figure 13 which was 

partitioned by the bimodality in both processes displayed in Figure 14a-14b) arranged on 

a map of the Everglades showed that only central WCA 3A S was consistently in a 

relatively conserved vegetation and topographic state (Figure 23). Only three of the 

remaining 23 PSUs, one each in WCA 3A N, WCA 2 and LNWR, were similarly 

conserved. All of WCA 3B and large areas of ENP and WCA 3A N had both degraded 

vegetation community distinctness and topographic variation. Seven PSUs across the 

Everglades Ridge and Slough landscape, including two PSUs in northern WCA 3A S 

and three in ENP, were categorized as containing distinct vegetation communities but 

having degraded topographic variation. No PSUs were categorized as vegetatively 

indistinct and topographically variable. 
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Discussion 

 

The results of this study show that degradation of vegetation community 

composition distinctness in the Everglades Ridge and Slough landscape is widespread, 

contrasting with the distinct vegetation communities that defined this landscape before 

significant human-induced modifications of the hydrologic regime began in the early 20th 

century. Outside of the intermediate range of contemporary long-term hydrologic 

regimes observed in this study—in both the drier and wetter directions—distinct 

vegetation communities were absent. Differences in vegetation community composition 

distinctness and topographic variation in this study were correlated across the hydrologic 

gradient. Despite being highly coupled, vegetation community composition changes 

likely lag behind those in topographic variability, based on the prevalence of PSUs which 

possessed distinct community composition and homogeneous topographic relief and the 

absence of PSUs with the opposite configuration. The occurrence of degraded 

vegetation communities approximately within the range of long-term mean water depths 

that also support distinct communities may reflect decadal-scale lags in vegetation 

responses to changes in hydrologic regime restoration; however, it cannot be discounted 

that degraded landscapes reside within a vegetatively and topographically 

homogeneous alternative stable state, constrained by a large or possibly even 

impassable threshold in hydrologic conditions, which prevent vegetation pattern 

restoration (see Larsen et al. 2007, Cohen et al. 2011, Heffernan et al. 2013). 

 

Vegetation community distinctness in the Ridge and Slough landscape 

The quantitative measures of landscape-scale community composition distinctness 

strongly suggest that much of the vegetation community patterning that was a feature of 
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the pre-drainage Ridge and Slough landscape has been lost. All basins in the 

Everglades Ridge and Slough landscape displayed extensive vegetation community 

degradation, with the notable exception of central Water Conservation Area 3A South 

(WCA 3A S), which contained relatively conserved (i.e. distinct) vegetation communities 

(Figure 18). Direct comparisons of community distinctness between the pre-drainage 

and the contemporary landscapes assessed in this study are precluded by the limited 

quantitative data on historical vegetation community patterning. However, what is certain 

is that the pre-drainage landscape was dominated by stands of sawgrass in ridge 

communities that strikingly contrasted with the surrounding more open sloughs. 

Vegetation community composition distinctness in the historic pre-drainage Everglades 

landscape would likely have been high, particularly if, as asserted by (McVoy et al. 

2011), wet prairie communities were less frequent and less densely populated by 

several wet prairie species such as spikerush (Eleocharis cellulosa) and maidencane 

(Panicum hemitomon) that were commonly found in this study (Figures 5 and 10). Even 

the most conserved basin in this study, central WCA 3A S, contained a high abundance 

of the wet prairie community (Figure 6). Therefore, although portions of central WCA 3A 

S have likely the most similar vegetation community patterning to the pre-drainage Ridge 

and Slough landscape based on findings in this research, central WCA 3A S abundant, 

dense and persistent wet prairie communities mean that even it likely displays some 

amount of degraded vegetative patterning compared to what the area historically 

exhibited. 

Several patterns assessed in this study support the assertion that shorter cluster 

distances reflect vegetation community degradation based on loss of compositional 

distinctness in the Ridge and Slough landscape. For example, in the global k-means 

cluster analysis, sets of species partitioned strongly within field designated communities 
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(Figure 5). Ridges were found to be dominated by sawgrass, whereas wet prairies and 

sloughs shared more similar species and were more cosmopolitan. Differences in 

distinctness between ridges and sloughs as an indicator of vegetation community 

change is supported by distinctness measures based on the k-means derived clustering 

of sawgrass abundances (Figure 9). In more conserved PSUs, sawgrass abundances 

were consistently well separated by cluster (with all of the more conserved PSUs 

containing at least < 20% in one cluster and > 60% in the other). Ridges and sloughs 

broadly occupy the two end members of the NMDS ordination gradient, with the wet 

prairie community occupying a more central portion (Figure 7). Similarly, ridge 

communities were considerably more likely to be in a particular cluster over the slough 

community and, again, the wet prairie community was more divided among clusters 

(Figure 11). In addition, differences among PSUs related to the loss of bimodal 

clustering as distinctness decreased (Figure 8). Given that this bimodality is based on 

dominance by the ridge community at one end of the gradient and the slough community 

at the other (see Figure 7), degradation of bimodality (and therefore distinctness) is 

based on the loss of either ridge or slough communities and the proliferation of centrally 

positioned wet prairie or mixed communities. The loss of vegetation distinctness among 

PSUs is therefore likely to be mostly influenced by pattern degradation among ridge and 

slough communities, the proliferation of communities that occupy a more central portion 

of the hydrologic gradient, or possibly the mixing of species beyond historic locations.  

Unlike slough communities, cattail communities are able to form dense and 

relatively uniform stands with substantial biomass, and therefore fill a different ecological 

role in the Everglades than slough communities. The cattail (Typha domingensis) 

species was found in significant quantities (> 5% total relative abundance) in three 

PSUs, which may have increased cluster distance in those landscapes. Cattail may 
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increase cluster distance, and therefore vegetation community distinctness, as it rapidly 

proliferates in areas that have been impacted by phosphorus enrichment, possibly either 

by encroachment into sloughs and usurping slough species in deeper waters or through 

outcompeting ridges in ridge-dominated areas. Cattail creates slough-like environments 

through aeration of soils from flow-through convection in the roots and rhizomes, 

resulting in deeper water conditions (Belanger et al. 1989, Urban et al. 1993). Because 

of the nature of this study’s statistical analysis, the presence of significant quantities of 

cattail within PSUs likely results in similar clustering outputs to PSUs with high 

abundances of sloughs. Prolific cattail within PSUs is likely caused by eutrophication 

(McCormick et al. 2008, Gaiser et al. 2011), and should therefore be considered 

degraded, despite the likely increase in cluster distance. Therefore, in heavily eutrophic 

areas of the Ridge and Slough landscape, caution is advised is using community 

composition based cluster distance measures as the sole measure of landscape 

degradation.  

 

Vegetation community distinctness and hydrologic regime modification 

 The results of this study suggest that distinct vegetation communities require 

hydrologic conditions similar to those believed to have existed in the pre-drainage Ridge 

and Slough landscape (Figure 12; McVoy et al. 2011). Distinct vegetation communities 

occurred almost entirely within the range of 20-50 cm long-term mean water depth 

(Figure 12). Assuming a steady yearly cycle between the two hydrologic extremes 

averaged across ridges and sloughs in the pre-drainage landscape—estimated at 6 cm 

for ridges and 67 cm for sloughs in McVoy et al. (2011)—the mean of 36.5 cm is roughly 

similar to the 20 year hydrologic regime of the most conserved vegetation communities 
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in this analysis. In the extremes of the hydrologic regime gradient—near both the driest 

and the wettest conditions—vegetation community distinctness was consistently low. 

This study relates the consequences of a temporally variable hydrologic regime on 

vegetation community composition distinctness using a space-for-time substitution. 

Vegetation community distinctness was found to react relatively predictably and 

negatively as the hydrologic regime departs further from the estimated pre-drainage 

regimes towards the extreme end-members of the hydrologic gradient (Figure 12). In this 

study, the spatial analysis is supported by previous works that relate the hydrologic 

regime to vegetation community changes through time. For example, Armentano et al. 

(2006) established that composition and patterning of vegetation communities 

responded rapidly and substantially to changing hydrologic conditions over a 24 year 

period in Taylor Slough, ENP, but that vegetation communities did not always follow 

hydrologic regime changes. Busch et al. (1998) found that vegetation communities 

assessed over a decade associated predictably on hydrologically derived habitats and 

responded to hydrologic changes over a 40 year period. These time-based studies 

support the results of this spatially-focused study, showing that the distance between 

clusters is a faithful representation of vegetation community composition distinctness 

and that distinctness is negatively impacted with increasing hydrologic regime 

modification. 

 
Vegetation community distinctness and topographic variation 

In the Everglades Ridge and Slough landscape, as in all wetlands, topography acts 

as an intermediary between hydrologic processes exerting stress and the resultant 

vegetation community patterning (Figure 7, 9-10; van der Valk 1981, Mitsch and 

Gosselink 2000). Changes in topographic variation therefore affect vegetation patterning 
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as species are forced to exist within hydrologically derived niche spaces that they did not 

previously, or species shift to a novel area that may or may not already be occupied by 

another species. The complex relationship that plants have with the hydrologic regime 

found in this study builds on the empirical research by Watts et al. (2010) and Givnish et 

al. (2008) and theory by Larsen et al. (2007), Cohen et al. (2011), Heffernan et al. 

(2013), and others, who have established that hydrologically drained as well as 

impounded landscapes resulted in reduced topographic variability in the Ridge and 

Slough landscape. As topographic variation is lost, vegetation community distinctness 

also decreases (Figure 13) indicating not only that vegetation-topography changes are 

closely coupled, but that their respective changes are both influenced by hydrologic 

regime modification (Watts et al. 2010, Cohen et al. 2011, Heffernan et al. 2013); Figure 

12 and 13).  

 

Vegetation and topographic response lags 

Variation in water depths among Everglades’ basins and associated differences in 

vegetation communities suggest the possibility of temporal lags in past and future 

vegetation responses to hydrologic modification (Figure 12). The high abundance of 

lower water depth wet prairie communities in place of sloughs in ENP compared to in 

WCA 3A (Figure 12), as well as the dominance of the ridge community over all other 

community types in WCA 3B, despite both WCA 3B and ENP having similar long-term 

mean water depths to the more vegetatively conserved WCA 3A S (Figure 6), are both 

phenomenon indicative of temporal response lags. Furthermore, habitat settlement by 

species to field derived communities was found to be consistent among basins even 

though the absolute long-term water depths were variable (Figure 6 and 10), indicating 

that responses by vegetation communities lag behind changes in hydrologic regimes. 
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These results are congruous with the findings in Busch et al. (1998), Ross et al. (2003), 

Armentano et al. (2006) and others, who described closely coupled vegetation 

communities to hydrologically derived niche spaces. As hydrologic regime changes 

occur, at least a subset of communities or areas lost association to the local water 

depths. Differences in mean water depths among basins found in this study support the 

conclusions in Givnish et al. (2008): they found that vegetation communities across all 

Everglades basins arrange according to hydrologically derived habitats, but that the 

absolute water depths that vegetation communities occur in are basin dependent. For 

example, in this study, LNWR contained a similar proportion of ridge-wet prairie-slough 

communities to WCA 3A S, but the mean water depths over all communities were 

consistently about 20 cm lower over the 20 year hydrologic record (Figure 6).  

Vegetation community responses to hydrologic regime changes necessarily occur 

sometime after an initial perturbation; however, the duration of response lags and how 

vegetation interacts with topography are landscape-dependent. Seven PSUs were found 

to have conserved vegetation community distinctness with degraded topographic 

variation (based on the quadrat system; Figure 14a and 14b), whereas no PSUs 

possessed the opposite configuration (Figure 13 and the Everglades map in Figure 23). 

This relationship between vegetation and topography across basins within the Ridge and 

Slough landscape indicate that, after hydrologic modification, changes in topographic 

variation may lead those changes in vegetation community distinctness. As water depth 

changes persist over relatively long timescales, the normally equalized rates of 

vegetation accretion and peat respiration become unbalanced. This unbalancing alters 

topographic variation at the landscape scale as peat accretion-respiration rates are non-

linear because water depths vary locally. In this study, vegetation communities are 

asserted to respond sometime after topographic variation changes, because vegetation 
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responses occur only after amenable habitats arise with changes in water depth. For 

species that vegetatively propagate, such as sawgrass (Cladium jamaicense), the loss of 

topographic variation between adjacent patches facilitates this advancement because 

there is an effective blurring of habitats between adjacent patches. Species that access 

the seed bank, such as many wet prairie species, do not necessarily interact directly with 

an ecological boundary; however, hydrologic conditions must be favorable for them to 

propagate, survive, or outcompete other species in a new patch type. Ultimately, this 

study suggests that when species move beyond their historic positions, vegetation 

community distinctness reduces because different species move beyond their historic 

positions at different rates.  

Among basins, conserved vegetation communities existed predominantly within a 

range of 20-50 cm mean water depth over the 20 year period assessed in this study 

(Figure 12). However, seven vegetatively degraded PSUs in the Everglades National 

Park (ENP) and Water Conservation Area 3B (WCA 3B) contained long-term hydrologic 

conditions similar to those in vegetatively conserved PSUs (Figure 12). Hydrologic 

management decisions in the 1940s through to the 1980s resulted in considerable 

drying in ENP (Light and Dineen 1994, Ross et al. 2003, Gunderson and Light 2006, 

Armentano et al. 2006), but possibly also WCA 3B as it borders ENP to the north. 

Reduced water levels in these basins in the 1930s through 1970s resulted in the 

establishment of two relatively intensive efforts to restore water levels towards pre-

drainage hydrologic regimes with Florida Governor Bob Graham’s “Save our 

Everglades” program, introduced in 1983-4, and the dissolution by the U.S. Congress of 

a Federal program that required considerable water storage in the Water Conservation 

Areas that hydrologically starved the downstream ENP (Light and Dineen 1994, 

Gunderson and Light 2006). These two programs were reinforced in 2000 with the 



39 

 

unveiling of the Comprehensive Everglades Restoration Plan (CERP; McLean et al. 

2002, Sklar et al. 2005). Other studies also confirm that the hydrologic regime pre-1991 

in at least ENP were lower, such as Busch et al. (1998), Armentano et al. (2006), and 

Sah et al. (2013), with an increase in water levels only occurring relatively recently, 

within the range of the EDEN water surface height records (about 20 years). Therefore, 

vegetation communities in ENP and WCA 3B that are currently vegetatively degraded 

may not yet have noticeably responded to hydrologic regime restoration efforts that were 

restored to a reasonable degree over 20 years ago. Neither the PSUs in ENP nor WCA 

3B were found to have any significant abundance of cattail, indicating that cattail 

prevalence likely does not conflate community distinctness measures as has probably 

occurred elsewhere in the Ridge and Slough landscape.  

Vegetation community distinctness responses to restoration of hydrologic regimes 

probably respond significantly at the landscape scale at timescales beyond 20 years, if 

they occur at all. Despite improvements in hydrologic regimes to approximately pre-

drainage levels over the last 20 years, vegetation communities in most notably ENP and 

WCA 3B still have not recovered to a vegetatively distinct or patterned landscape. 

Although vegetation recovery lags are possibly 20 years or more behind sampling dates 

in this analysis, the long history of lower water depths in these landscapes from the 

beginning of the 20th century indicate that it is possible that vegetation community 

response lags are considerably longer than this. Previous studies addressing lags have 

found similar, but not as extreme, timescales of vegetation responses. For example, 

Zweig and Kitchens (2008) determined that vegetation communities in southern WCA 3A 

are influenced considerably by both the current and the historic hydrologic regimes. In 

addition, they found that vegetation responses to hydrologic regime modification varied 

among species; sawgrass and white water lily response times were about four years 
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after an initial hydrologic regime modification event, while species such as Utricularia 

spp. responded considerably quicker. Ross et al. (2003) established that vegetation 

communities did not always correspond to the measured hydrologic regime among 

sampling points, and concluded that this could be caused by lags in vegetation 

responses sometime after hydrologic regime modification, or possibly fire damage 

altering vegetation responses. Nungesser (2011) found that extreme “dry-downs” in the 

peat soil base could cause relatively rapid changes in vegetation community structure, 

but that in general vegetation  

While lags in vegetation responses to hydrologic regime modification necessarily 

exist at least at some time-scale, whether vegetation community distinctness and 

topographic variability in ENP and WCA 3B are able to eventually exhibit vegetation 

community patterning similar to those found in the pre-drainage Ridge and Slough 

landscape at all is unknown. Vegetation communities and topographic variation have 

been hypothesized to occur as at least two alternative landscape states: the historic 

patterned Ridge and Slough landscape, and a vegetatively and topographically 

homogenous state (Larsen et al. 2007, Heffernan et al. 2013). Alternative stable states 

in vegetation community distinctness and topographic variation are supported to some 

extent by the relative dearth of PSUs in the transition zone between conserved and 

degraded PSUs (the troughs in Figure 14a and 14b), indicating that transitions from 

conserved to degraded vegetation patterns are likely rapid. If this is true, simply restoring 

historic hydrologic regimes that once maintain patterned landscapes to similar levels 

once found in the pre-drainage Ridge and Slough landscape will not necessarily result in 

vegetation pattern restoration, as discrete ecological thresholds beyond hydrologic 

conditions that maintain conserved vegetation communities would need to be breached 

(Larsen et al. 2007, Cohen et al. 2011, Heffernan et al. 2013).  
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Conclusions 

 

Theoretical applications 

 Future studies regarding vegetation community changes within patterned 

landscapes and other self-organized ecosystems may benefit from considering 

quantified fine-scale vegetation community composition differences as a measure of 

environmental degradation. The methodology in this study is a novel technique that is 

useful in reducing inherent dimensionality within empirical ecological community data to 

a meaningful test statistic that faithfully represents the observed ecological processes in 

at least predominantly binary systems (i.e., the domination by ridges and sloughs make 

the Ridge and Slough landscape at least in conserved areas predominantly binary). In 

this study, measurements of compositional differences facilitated analysis of subtle 

variation among local vegetation communities, as well as determination of differences 

among landscape blocks across an environmental gradient. Furthermore, complete 

measurements of species composition gave this study direct ecological relevance, and 

localized measures were easily relatable to the underlying fine-scale elevational 

gradients. 

Partitioning of patterned landscapes based on the dominance of two distinct 

community types (the ridge and slough in this study) based on the distance between two 

defined clusters within an ordination space provides a novel method to assess 

vegetation pattern degradation. The use of NMDS ordination and k-means derived 

cluster distances is an effective methodology for future research relating the degradation 

of complex and patchy landscapes. Test statistics deriving metrics for both vegetation 

and topography allow direct comparisons between the relative rates of changes in 

response to environmental drivers.  
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Management implications 

 Restoration of vegetation communities within landscapes has long been a goal of 

managers of the Everglades ecosystems (McLean et al. 2002, Sklar et al. 2005). This 

study helps identify the hydrologic regimes that permit and preclude the persistence of 

the Ridge and Slough landscape. Widespread areas of the Ridge and Slough landscape 

were found to be in a vegetatively degraded state. Vegetation community degradation is 

likely caused by alterations in the hydrologic regimes towards the extremes of the 

hydrologic gradient—both in the drier and wetter directions—more extreme than the 

regimes believed to have existed in the pre-drainage Ridge and Slough landscape. 

Differences in vegetation communities probably reflect changes in topographic variation, 

and, therefore, management of the underlying topographic relief deserves more 

attention. However, restoration of hydrologic regimes is unlikely to produce immediate 

results, as vegetation communities may lag behind hydrologic regime restoration, 

possibly for decades. In addition, understanding the role alternative stable state 

dynamics has in vegetation community changes in the Ridge and Slough landscape is 

critical, as thresholds in hydrologic restoration may prohibit restoration of compositionally 

and spatially distinct communities that dominated the pre-drainage Everglades. 
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Figures and Tables 

 

 
 
Figure 1. Ridge and Slough landscape of the Everglades. Both ridges and sloughs run 
roughly parallel to water flow roughly in the north/south direction. (Image courtesy of 
Robert Sobczak, National Park Service). 
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Figure 2. Site map with 27 landscape blocks (PSUs) from two years of sampling. Red 
PSUs (PSU 0 to PSU 15) are from year one (2010); blue (PSU 17 to PSU 81) are from 
year two (2011). The PSUs are 2 km by 5 km and oriented parallel to flow and contain 
up to 240 sampling points in a spatially-stratified design. Check-marked PSUs in ENP 
were sampled but outside the historic Ridge and Slough landscape and not analyzed. 
Dense stands of cattail prohibited sampling of PSU 5 in WCA 2. 
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Figure 3. Two PSUs ordinated by NMDS and clustered by k-means. Sampling points are 
positioned on the NMDS based on dissimilarities in each sampling points’ species 
composition. Clustering separates sampling points within PSUs using a nearest neighbor 
approach. In (a), PSU 23 clusters are relatively far apart, indicating a significant 
segregation of sampling points, or a relatively conserved PSU. In (b), PSU 9 clusters are 
closer, indicating a loss of vegetation community distinctness, or a relatively degraded 
PSU. 
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Figure 4. Schematic of lag scenarios following a reduction in the hydrologic regime: (1) 
topographic variation is reduced after modification of the hydrologic regime, followed by 
a lagged response in vegetation community distinctness changes; (2) vegetation 
community distinctness declines after modification of the hydrologic regime, followed by 
a lagged response in topographic variation; (3) vegetation community distinctness amd 
topographic variation loss is simultaneously reduced, with both processes lagging 
behind modification of the hydrologic regime. 
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Figure 5. Major species’ abundances within the most common field designated 
communities. Sawgrass is Cladium jamaicense; Spikerushes are Eleocharis celulosa, 
Elecocharis Eleongata, Eleocharis interstincta, and an unidentified Eleocharis species; 
Bladderworts are Utricularia cornuta, Utricularia foliosa, Utricularia gibba, Utricularia 
purpurea, and an unidentified Utricularia species; Waterlily is Nymphaea odorata. 
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Figure 6. Hydrologic regimes for major communities among basins. ENP is Everglades 
National Park; LNWR is Loxahatchee National Wildlife Refuge; WCA 2; Water 
Conservation Area 2; WCA 3A S is Water Conservation Area 3A South; WCA 3A N is 
Water Conservation Area 3A North; WCA 3B is Water Conservation Area 3B. Error bars 
is the standard deviation associated with water depth within basins. Counts are the total 
counts of communitiy types within each basin. No wet prairies were found in WCA 2. 
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Figure 7. NMDS ordination scores for the three most abundant vegetation communities. 
The NMDS is rotated to the hydrologic (mean water depth over 20 years) axis. The 
ridge, wet prairie and slough communities comprise 86.4% of all sampling points. The 
ruler at the top is the average water depth over 20 years across the hydrologic vector on 
the NMDS ordination space. 
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Figure 8. NMDS ordination site scores within PSUs rotated to the hydrologic axis. The 
NMDS is rotated to the hydrologic (mean water depth over 20 years) axis. From left to 
right and top to bottom, PSUs are sorted by distinctness (k-means derived cluster 
distance). Red and blue bars correspond to within-PSU k-means derived clusters.  
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Figure 9. Sawgrass relative abundance for each cluster within each PSU. Sawgrass 
(Cladium jamaicense) closed circles are calculated from the mean abundances within 
each PSU’s k-means cluster analysis. The open circles are the mean relative 
abundances within each PSU. Green (lighter) are relatively distinct PSUs (as designated 
by the kernel density troughs in Figure 14a). Red (darker) are relatively vegetatively 
degraded PSUs. Error bars are standard errors. The PSUs are ranked by mean 20 year 
water depth. 
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Figure 10. Community statistics: count, cluster segregation, and hydrologic regimes. 
Count is the total number of each community across all 27 PSUs within the Ridge and 
Slough landscape. The proportion of communities in cluster 1 is derived from the global 
k-means cluster analysis. Mean water depth over 20 years and inundation frequency 
(hydroperiod) are shown for each community. Error bars are standard deviations. The 
PSUs are ranked by 20 year mean water depth. 
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Figure 11. Odds Ratio Test for k-means derived clusters within communities. R is the 
ridge community; WP is wet prairie; S is slough. Communities across the Ridge and 
Slough landscape were designated in the field and the k-means clustering was 
conducted globally (across all PSUs simultaneously). The test examines the odds of the 
first community being in cluster 1 compared to the second community (for example, the 
first bar shows that ridges are 156.3 times more likely to be in cluster 1 compared to 
sloughs). 



54 

 

 

Figure 12. Vegetation community distinctness along the hydrologic gradient. Distinctness 
was measured by the distance between k-means derived clusters within each PSU from 
the NMDS ordination space. The distribution was fitted using a Gaussian function for 
each sampling point averaged over 20 years of variable water depth. The distribution’s 
mean is the mean of the PSUs 20 year water depths; the standard deviation of the 
distribution is the standard deviation of the PSUs 20 year water depths. ENP is 
Everglades National Park; LNWR is Loxahatchee National Wildlife Refuge; WCA 2; 
Water Conservation Area 2; WCA 3A S is Water Conservation Area 3A South; WCA 3A 
N is Water Conservation Area 3A North; WCA 3B is Water Conservation Area 3B. 
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Figure 13. Vegetation community distinctness’ association with topographic variation. (r2 
= 0.49, Pr (>F) < 0.001.) Distinctness was measured by the distance between k-means 
derived clusters within each PSU from the NMDS ordination space. ENP is Everglades 
National Park; LNWR is Loxahatchee National Wildlife Refuge; WCA 2; Water 
Conservation Area 2; WCA 3A S is Water Conservation Area 3A South; WCA 3A N is 
Water Conservation Area 3A North; WCA 3B is Water Conservation Area 3B. 
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Figure 14. Vegetation community distinctness and topographic variation counts and 
KDE. Vegetation community distinctness is derived from the k-means derived between 
cluster distance for each PSU across the Ridge and Slough landscape (6a); topographic 
variability is derived from each PSU’s mean water depth standard deviation (6b). The 
KDE (kernel density estimations) troughs are used to separate each process into 
conserved and degraded condition.
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Figure 15. The k-means cluster distance difference in MWD across the hydrologic 
gradient. The mean water depth difference (MWD; cm) between the two k-means 
derived clusters across the Ridge and Slough landscape are compared to the hydrologic 
gradient defined as the mean water depth for each PSU over the 20 year hydrologic 
record. The distribution was fitted using a Gaussian function for each sampling point 
averaged over 20 years of variable water depth. The distribution’s mean is the mean of 
the PSUs 20 year water depths; the standard deviation of the distribution is the standard 
deviation of the PSUs 20 year water depths. ENP is Everglades National Park; LNWR is 
Loxahatchee National Wildlife Refuge; WCA 2; Water Conservation Area 2; WCA 3A S 
is Water Conservation Area 3A South; WCA 3A N is Water Conservation Area 3A North; 
WCA 3B is Water Conservation Area 3B. 
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Figure 16. Sawgrass abundance and MWD correlation across the hydrologic gradient. 
Sawgrass (Cladium jamaicense) mean abundances within each PSU across the Ridge 
and Slough landscape is compared to the hydrologic gradient defined as the mean water 
depth (cm) for a PSU over the 20 year time period. The distribution was fitted using a 
Gaussian function for each sampling point averaged over 20 years of variable water 
depth. The distribution’s mean is the mean of the PSUs 20 year water depths; the 
standard deviation of the distribution is the standard deviation of the PSUs 20 year water 
depths. ENP is Everglades National Park; LNWR is Loxahatchee National Wildlife 
Refuge; WCA 2; Water Conservation Area 2; WCA 3A S is Water Conservation Area 3A 
South; WCA 3A N is Water Conservation Area 3A North; WCA 3B is Water Conservation 
Area 3B. 
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Figure 17. Mantel r vegetation-topography correlation across the hydrologic gradient. 
The Mantel Test measures the correlation between vegetation abundances and 
topographic elevation (i.e., 20 year mean water depths) for each PSU across the Ridge 
and Slough landscape and is compared to the hydrologic gradient defined as the mean 
water depth (cm) for a PSU over the 20 year time period. The distribution was fitted 
using a Gaussian function for each sampling point averaged over 20 years of variable 
water depth. The distribution’s mean is the mean of the PSUs 20 year water depths; the 
standard deviation of the distribution is the standard deviation of the PSUs 20 year water 
depths. ENP is Everglades National Park; LNWR is Loxahatchee National Wildlife 
Refuge; WCA 2; Water Conservation Area 2; WCA 3A S is Water Conservation Area 3A 
South; WCA 3A N is Water Conservation Area 3A North; WCA 3B is Water Conservation 
Area 3B. 
 
 
  



60 

Figure 18. Vegetation community distinctness across the Ridge and Slough landscape. 
Green PSUs are most distinct and red the most homogeneous. Black hashed PSUs in 
the Everglades National Park are located outside the historic Ridge and Slough 
landscape. Dense stands of cattail prohibited sampling of PSU 5 in WCA 2. 
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Figure 19. Topographic variation across the Ridge and Slough landscape. Green PSUs 
are most distinct and red the most homogeneous. Black hashed PSUs in the Everglades 
National Park are located outside the historic Ridge and Slough landscape. Dense 
stands of cattail prohibited sampling of PSU 5 in WCA 2. 
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Figure 20. The k-means difference in MWD across the Ridge and Slough landscape. 
Green PSUs are most distinct and red the most homogeneous. Black hashed PSUs in 
the Everglades National Park are located outside the historic Ridge and Slough 
landscape. Dense stands of cattail prohibited sampling of PSU 5 in WCA 2. 



63 

Figure 21. Sawgrass—MWD correlation across the Ridge and Slough landscape. Green 
PSUs are most distinct and red the most homogeneous. Black hashed PSUs in the 
Everglades National Park are located outside the historic Ridge and Slough landscape. 
Dense stands of cattail prohibited sampling of PSU 5 in WCA 2. 
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Figure 22. Mantel r vegetation-topography across the Ridge and Slough landscape. 
Green PSUs are most distinct and red the most homogeneous. Black hashed PSUs in 
the Everglades National Park are located outside the historic Ridge and Slough 
landscape. Dense stands of cattail prohibited sampling of PSU 5 in WCA 2. 
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Figure 23. Conservation status for each PSU across the Ridge and Slough landscape. Green 
(PSUs 2, 4, 17, 21, 23, 26, 27); conserved vegetation community distinctness (high distinctness) 
and topography (high variation). Red (PSUs 3, 6, 9, 11, 13, 15, 18, 20, 24, 25, 28, 29, 81); both 
degraded vegetation community distinctness and topography. Yellow (PSUs 0, 1, 7, 19, 22, 30, 
31) PSUs were found to have conserved vegetation community distinctness and degraded 
topographic variation. Black hashed PSUs in the Everglades National Park are located outside 
the historic Ridge and Slough landscape. Dense stands of cattail prohibited sampling of PSU 5 in 
WCA 2. Darkened areas are areas significantly affected by cattail (Typha Domingensis) which 
may distort the interpretation of both vegetation community distinctness and topographic variation 
measures in this study. 
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