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ABSTRACT OF THE THESIS 

DEVELOPMENT OF A BODY FOR A PNEUMATIC CRAWLER FOR 

RADIOACTIVE WASTE PIPELINES  

by 

Jose Alfonso Matos 

Florida International University, 2013 

Miami, Florida 

Professor Ibrahim Tansel, Major Professor 

The goal of this thesis was to develop a body for a crawler robot to navigate DOE 

Hanford Site transfer pipelines in a timely fashion. Previous work in pipe crawlers was 

analyzed and different configurations were studied by this author in order to design a 

suitable device. Tests were done in CAD to verify the device would fit and be able to 

travel within the confines of the pipelines’3” inner diameter and 90° elbows with 

4.25”radii. Pipelines in Hanford can transition into 2” pipe and this was also taken into 

consideration when selecting the dimensions for the device. Manufacturing methods and 

materials were selected in order to ensure minimal cost and time for manufacture. The 

manufactured device was tested for speed in straight sections and elbows, pulling force, 

and adaptability to changes in pipe dimension from 3” to 2”. Modifications were made 

based on test results.   
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I INTRODUCTION 

1.1 Motivation 

The main application being considered in this work is transfer pipelines for High 

Level Waste (HLW) at the Department of Energy (DOE) Hanford Site. This site in the 

state of Washington stores 56 million gallons of HLW within 177 underground tanks [1]. 

One hundred and forty nine of them are single-shell tanks, and some of these have been 

proven to leak, while others are suspected leakers [2]. DOE Environmental Management 

has addressed the issue by attempting to transfer waste to 28 double shell tanks via 

transfer pipes. The final goal is to transfer the waste to a waste treatment plant which will 

transform the waste into glass, a process called “vitrification.”   

Inside the treatment plant, the waste will pass through a concatenation of pipes. 

This has the potential to become an issue due to the waste being a slurry, its solids can 

settle and form a blockage [3]. The conventional method for addressing this problem is to 

identify the location of the blockage using inspection devices and send humans in 

protective suits to cut out the blocked sections and replace them. This approach is 

expensive and endangers lives, therefore it is not sustainable [4]. An alternative method is 

to flush chemicals through pipes in order to break down blockages. This is less than ideal 

because it generates more waste and further compounds the complex chemistries within 

Hanford waste.  

Various unplugging technologies have been developed to approach this challenge. 

Unfortunately, they have met with limited success. The cause of this is that these 

unplugging technologies are less effective as the distances to blockages in the pipelines 

grow larger [5]. Therefore, a method that can reach and directly act upon a blockage 
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would be ideal. This presents a challenge in which the application of robotics is desirable. 

A robot that can navigate these pipelines could eventually be employed as a platform to 

deliver unplugging tools.  

1.2  Problem Statement 

Unplugging of high level waste transfer pipelines can be a daunting task. The 

majority of technologies tested have been completely unsuccessful or only partially 

successful in providing unplugging alternatives to conventional repair methods. Distances 

to plugs, the elbows in the pipeline, changes in configuration such as reductions to 2” 

pipe, and not knowing the distance to a plug can all create problems for unplugging a 

pipeline. As the pipelines are mostly underground and the documentation of changes 

made over the years is difficult to trace [4], the actual configuration of any given pipe 

will be difficult to model and perform simulations of.  

Designing a robot which can travel within pipelines and deal with their 

configuration is a simpler alternative and test pipelines can be built to resemble possible 

conditions that may be found in pipelines. If such a robot can be made and tested, it could 

serve as a potential platform for future unplugging endeavors. The ideal robot would be 

able to navigate the pipelines at reasonable speeds and would be easy to repair if 

damaged. It should be comprised of materials with resistance to radioactive conditions. 

Finally, its design would need to be simple and robust, capable of being built by an 

average machine shop or factory at a low cost per unit. Use of commercially available 

components would aid in achieving a low cost.  

 

 



3 

1.3 Research Objective 

The primary objective of this research is to develop a robust crawler body which 

will be able to navigate within 3” pipes, transition into 2” pipe, and move through 90° 

elbows with a minimum radius of 4.25” 

The secondary objectives are: 

 Design body such that robot is modular and may be easily repaired or setup 

for performing different tasks. 

 Create a simple and robust controller setup to operate the crawler robot in 

order to minimize risk of control failure. 

1.4 Thesis Structure 

A literature review of past work in pipeline unplugging methods, robotic crawlers, 

and the Hanford Site and its challenges is presented in Chapter 2. Chapter 3 presents the 

possible physical configurations expected of the pipelines and the design and 

manufacturing work that was required to meet them. In Chapter 4, the layout, 

functioning, and programming format of the robot control setup is presented. In chapter 

5, the various tests performed in order to validate the design, the required test setups, and 

test results are presented. Chapter 6 provides a discussion of the results achieved. The list 

of references used in this work is presented in Chapter 7. Chapter 8 presents the 

modifications made to improve performance as a result of testing. 

1.5 Personal Contributions 

1. A modular design that meets all physical requirements imposed by the 3” inner 

diameter and 4.25” radius elbows in Hanford HLW pipelines 
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2. Sizing, material selection, procurement of components, and manufacturing of 

robot 

3. Experimental design and conduction of experiments 

4. Modification of prototype based on test results and observations 

1.6 Expected Outcomes 

1. Development of a modular prototype which will achieve desirable results in the 

areas of speed, maneuverability, and reparability 

2. Small but meaningful modifications to the structure and programming of the 

robot that will improve performance further 
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II Literature Review 

2.1 Varying Methods of Pipeline Unplugging 

A crawler robot is but one of a myriad of techniques used to unplug HLW 

pipelines. There are other technologies available which use various techniques from 

pulses in water or water pressure and other methods of pigging (inserting objects in the 

pipeline in order to push out blockages). These technologies have achieved limited 

success as they lose effectiveness when the distance to blockages increase or because 

they do not provide a full unplugging of the pipe [6].  

NuVision Engineering Inc. developed a technology that functions on the principles 

of wave erosion. NuVision draws a vacuum in a pipeline up to the point where the 

blockage is located. It then fills the pipe with water up to the level of the blockage. Due 

to the fact that the vacuum is incomplete, some air is still caught in the pipe and the 

device takes advantage of this. It runs a series of pulses through the water, resulting in 

waves which wear away at the blockage. A solvent may be used in place of water if faster 

erosion is desired. Pipeline features, such as elbows, do not present a problem for this 

device. However, the action of the wave erosion, like that of erosion in nature, is rather 

slow. The aforementioned addition of solvents in place of water is not desirable, as it 

adds to the complex chemistries of Hanford waste [7].  

A company by the name of The Atlantic Group developed a similar technology for 

pipeline unplugging. This device generates sound waves and amplifies them with water 

in order to cause the pipe and blockage to vibrate. Due to the different materials the pipe 

and blockage are comprised of, they will vibrate at different frequencies, dislodging the 

blockage from the pipe. This is achieved with sound waves at a frequency of 11,250 
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vibrations/min and water which moves at 2100 ft/s [5]. Much like the device from 

NuVision, this is not significantly limited by elbows, pipeline elements, or long lengths 

of pipe— although a longer distance to the blockage would cause some dampening of the 

frequency. Unfortunately, this method cannot deal with blockages which consist of dry 

salt crystals. Also, because they do not dissolve, it is possible for blockages to move 

down the pipe and become lodged in an elbow or other portion of the pipeline [7].  

Other companies have developed more intrusive methods. Ridgid Tool Company 

developed a long flexible rod with a bladed end which can be used to cut up and break 

down blockages. This device is quite limited in that the rod is a mere 150 ft, its blades 

have been found to break against hard blockages, and the blades are not able to clear out 

an entire blockage [7]. This is only feasible for use in pipelines that are blocked near the 

entrance and is therefore not ideal in this application. An intrusive method that provides a 

better solution is that of a nozzle fed by a high pressure washer. Harben Inc. and Carolina 

Equipment and Supply both proposed solutions that use this method. Both consist of a 

high pressure washer, a water reservoir, a hose, and self-driving nozzle. Each device 

simply feeds its respective hose down the pipeline and up to the blockage. Harben Inc. 

has a washer providing 4,000 psi and Carolina Equipment & Supply has one that 

provides 40,000 psi [7]. However, Harben Inc. included a machine that vibrates the hose 

to assist it in managing elbows. The device from Carolina Equipment & Supply was 

found to stop moving forward after two elbows and even in straight pipes, it would stop 

after travelling 200 ft. Both devices fail against tougher blockages, as there is nothing to 

affix the nozzle in position, thus nothing prevents them from moving back as their jets hit 

the blockage [7].  
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The failure of these devices leaves a void which can be filled in with robotics. 

These methods, in particular the high pressure nozzles, show promise. Their drawbacks 

could be addressed with a device that could transport them to and hold them in place or 

even move them forward against a blockage. Crawler robots have been employed in the 

transportation of equipment in pipes and could prove to be a suitable solution for this 

problem.  

2.2 Use of Crawlers in Industry 

Pipe crawlers have been in use across a myriad of industries for many years. The 

most common application of a crawler is that of a pipeline inspection device. Nuclear 

power plants run hazardous substances through pipes and they use crawlers to inspect the 

condition of these pipes. Power plants that work under other principles also use crawlers 

to inspect for damages in pipes. Oil refineries and offshore drilling operations are 

required to maintain their piping due to safety and environmental concerns and have used 

crawlers to do this. Gasoline pipes, waste water systems, sewage treatment plants, 

chemical plants, and the food industry have a need to inspect and maintain pipelines and 

employ crawlers for these purposes [8].  

These crawlers are generally equipped with cameras and light to allow the operator 

to perform visual inspection of the pipes. However, there are conditions which a camera 

may not reveal or cannot address and these are handled by other attachments. Lasers and 

ultrasonic wave generators may be mounted to a crawler in order to inspect for cracks, 

corrosion, and pipe wall thickness [8]. There are also attachments for dealing with 

imperfections or simply for smoothing pipe out. Certain industries require smooth 

surfaces inside pipes and imperfections in the pipes themselves, corrosion, and weld 
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beads can pose a problem. In these cases, crawlers are equipped with milling and 

grinding tools which can correct these imperfections [8].  

2.3 Review of Crawler Designs 

There is an assortment of crawler designs as well as a variety of operating 

principles for them. Some, like the device developed in this thesis, are pneumatic whilst 

others are electronic or even hydraulic. Various patents and designs were reviewed and 

evaluated in order to guide the design process and develop the crawler robot for this 

thesis.  

One such design is described in U.S. Patent 6035786. The device is described as a 

pipe crawler tractor and it uses an adaptable body and wheels to move through a pipe. A 

control system drives the wheels which contact opposed walls in the inside of the pipe. 

Each wheel is able to spin if needed and is mounted to a hinged track which is what 

allows for its flexibility through pipe elbows. [9] 

 
Figure 1: Pipe Crawler Tractor  [9] 
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Another crawler design that uses electricity to propel itself was built by a team of 

students at Florida Atlantic University. It was designed with the idea of being adaptable 

for various purposes spanning from pipeline inspection to locating survivors in collapsed 

buildings via their pipeline networks. It uses wheels mounted at angles in order to 

generate a helical, twisting motion through pipelines. A DC motor generates the spinning 

motion for the body [10]. 

 
Figure 2: The Pipe Crawler [10] 

U.S. Patent 4372161 depicts a device which uses a series of bladders in order to 

move through a pipe. The body itself does not change in length; rather the sequence of 

inflating and deflating bladders creates a forward motion. It was designed to move 

inspection equipment in a pipe [11].  

 
Figure 3: Pneumatically Operated Pipe Crawler [11] 
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 U.S. Patent 5018451 details a crawler that functions under an entirely different 

concept. This device is comprised of two pneumatic cylinders with a head on either end. 

Each head contains four cylinders with feet on their rods such that they can grab the pipe 

wall when extended. These provide traction whilst the pneumatic cylinders in center 

extend and collapse to provide locomotion. The heads are attached to these cylinders via 

hinges in order to allow the crawler to turn in elbows. It was designed to pull along 

inspection equipment to check pipes for cracks, corrosion, and welding defects [12].  

 
Figure 4: Extendable Pipe Crawler [12]  

The Peristaltic Crawler project by the Applied Research Center (ARC) represents 

yet another approach at a crawler robot. This device uses a head with a bladder at either 

end in order to grab the pipe walls, and a bellows in center which expands and contracts 

to provide locomotion. It actually uses two bellows, installed concentrically in order to 

allow for a hollow center. This was done so that waste water could flow through the 

device during unplugging and in order to run the pressure hose for the nozzle [6]. A fiber 

optic line connected to a camera runs through the center of the current device along with 

the usual pressure hose. This device was designed explicitly for performing pipeline 

unplugging for HLW pipes and has met with some success in unplugging tests [13].  
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Figure 5: ARC Peristaltic Crawler 

The crawler designs reviewed all present their own unique merits. US Patent 

6035786 consists of a series of solid bodies hinged together and wheels used to traverse a 

pipe. Wheels were not considered ideal in the case of a pneumatic crawler for application 

at Hanford as they may lose traction. However, the combination of separate elements via 

hinges was of interest as this would allow freedom to bend in an elbow. Both US Patent 

4372161 and the ARC crawler use bladders to grab the pipe walls. This provides a larger 

surface in contact with the pipe walls than small wheels. The benefit is improved anchor 

force in a pipe, helping these devices to avoid slippage under loads. However, the body of 

the ARC crawler uses a bellows, which was deemed less than ideal. This is due to its 

stiffness which makes it resistant to expansion, contraction, and bending. US Patent 

5018451 contributed a possible solution in the form of pneumatic cylinders. The 

configuration presented is not ideal for application in Hanford as it only uses two 

cylinders to move forth and would be limited on force output. However, pneumatic 

cylinders were deemed an appropriate solution as they can provide large force output 

from a compact package. Due to the constraints imposed by the Hanford 3” ID piping and 

the force needed to pull an umbilical through them, a small body that can exert large 

forces is ideal. If attached to one another via hinges, as in US Patent 6035786, they could 

be placed in an arrangement flexible enough to traverse 90° pipeline elbows.  
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2.4 Materials in Radioactive Environments 

Materials are a matter of primary concern for devices that are to be deployed in 

radioactive areas. Radiation has an adverse effect on electronics and can degrade material 

properties leading to failure of components and even the release of toxic material [14].  

The main threat to a robot in this environment is exposure to gamma radiation [14]. 

Alpha and beta particles can be stopped by very light shielding and do not present a threat 

to a crawler robot. The Gray is a unit of measure typically used for X-rays and gamma 

rays.  Measurements taken of Hanford waste tanks indicate that they emit an amount of 

gamma on the order of 10 Grays per hour (Gy/hr) [15]. The radiation in a transfer 

pipeline would be lower as the amount of waste within it would be lower. However, since 

this is the figure given, it would be ideal to select materials for a robot which can 

withstand these levels.  

Metals in general present a viable solution to selecting materials for exposure to 

gamma rays. A very high dose of radiation accumulated over years will simply cause a 

loss in ductility whilst tensile and yield strength will increase [16]. These damages can 

then be fixed by annealing the metal. These benefits have made metals the most 

commonly used materials in the nuclear industry. The table below was created using data 

from “Designing equipment for use in gamma environments.”  
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Table 1: Radiation Thresholds of Various Metals [16] 

The values presented are thresholds. In simple terms, they represent the maximum 

accumulated dose a material can handle before it degrades due to the radiation. The chart 

indicates that aluminum and aluminum alloys have the highest resistance to gamma 

radiation of the metals listed, followed by 300 series SS. This resistance makes it feasible 

to manufacture deployment grade components for a crawler out of aluminum. This can 

produce a reduction in materials and manufacturing costs.   

Also, fittings for use with pressurized air are generally made from metals, such as 

brass or stainless steel, but sometimes from certain types of plastics [14]. In the case of 

small elbow fittings, plastic would be a more common material; therefore, it is necessary 

to find which plastics would be suitable. Rigid plastics, generally made from heating or 

curing thermosetting plastic, can withstand more radiation than soft, thermoplastics. A 

common plastic in small fittings is polyethylene, in particular, high-density polyethylene 

(HDPE) which has a recommended service limit of 1x106 Gy [16]. The following table 

was found in “Designing Equipment for Use in Gamma Radiation Environments” and 

categorizes plastics based on levels of resistance to radiation. 

Metal Threshold level (rad) Threshold (Gy)
Aluminum and Aluminum Alloys 5x1013 5x1011

300 Series SS 1x1013 1x1011

400 Series SS 5x1012 5x1010

Iron 3x1012 3x1010

Copper 2x1012 2x1010

Brass and Bronze 1x1012 1x1010

Nickel and Nickel Alloys 1x1012 1x1010

Beryllium Copper 6x1011 6x109
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Table 2: Radiation Tolerance of Plastics [16] 

Acceptable elastomers must be found as well in order to select a material that can 

serve as bladders for the crawler robot. Elastomers exposed to radiation are typically 

subject to changes in tensile strength, compression set, and elongation properties [16]. 

The table below, taken from “Designing Equipment for Use in Gamma Radiation 

Environments,” does not give tolerance figures; however, it indicates that among 

elastomers of interest for this application, polyurethane and natural rubber are in the 

range of the highest radiation resistance. Further reading revealed that natural rubber has 

an acceptable threshold of changes for elongation, tensile strength, and compression set 

of 5.5x104, 2.4x105, and 2x104 Gy. However, even butyl, the least radiation resistant of 

Radiation Resistance Plastic
glass-­‐fiber	
  phenolic

asbestos-­‐filled	
  phenolic
epoxy	
  systems

polyurethane

polystyrene

mineral-­‐filled	
  polyester

mineral-­‐filled	
  silicone

furane	
  resins
polyvinyl	
  carbazole

polyethylene
melamine-­‐formaldehyde	
  resin

urea-­‐formaldehyde	
  resin
aniline-­‐formaldehyde	
  resin

urfilled	
  phenolic	
  resin
silicone	
  resin

methyl	
  methacrylate
unfilled	
  polyesters

cellulosic
polyamides

Teflon

Highest

Moderate

Poor
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rubbers, was found to lose 25 % of its tensile strength at 7x103 Gy and 50 % at 3x104 Gy 

[16]. Readings from Hanford tanks indicate that tank waste generates around 10 Gy/hr 

[15], thus even butyl could survive within pipelines (which have a lower gamma emission 

level due to lower waste concentration). 

 
Table 3: Radiation Tolerance of Elastomers [16] 

 

 

 

Radiation Resistance Rubber
polyurethane

natural
adduct

ethylene propylene
styrene-butadiene

Viton-A (in oil)
Poly FBA

Cyanosilicate 
vinyl pyride elastomer

acrylonitrile
nitrile

neoprene
Hypalon
Kel-F

silicone 
polyacrylic

butyl
polysulfide (Thiokol)

Highest

Moderate

Poor
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III Design and Manufacturing 

3.1 Theoretical Kinematics 

The motion of the crawler robot can be broken down into two areas, motion in 

straight pipe and motion in an elbow. This analysis is simplified by eliminating the heads 

and simply analyzing the body. Thus, the analyzed robot will consist of four revolute 

joints and four prismatic joints. A revolute joint is a one- degree- of- freedom joint which 

allows for angular displacement. A prismatic joint is a one- degree- of- freedom joint 

which allows for linear displacement. The kinematics equations are developed with the 

crawler in expanded configuration for both motion in straight pipes and motion in 

elbows. Values for the collapsed configuration simply vary by a factor, that being the 

stroke length of the pneumatic cylinders. 

	
  
Figure 6: Diagram of Straight Line Kinematics 

The position equations of the robot end effector in straight line motion are defined as 

𝑥𝑥 = 𝑆𝑆 + 𝑆𝑆 + 𝑆𝑆 + 𝑆𝑆                  (1)	
  

𝑦𝑦 = 0                  (2) 

as there is no motion in the y direction 

In this case, 𝑆𝑆 = 𝑆𝑆 = 𝑆𝑆 = 𝑆𝑆 = 𝑆𝑆                (3) 
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and thus 

𝑥𝑥 = 4𝑆𝑆                   (4) 

The velocity of vector of this robot’s end effector is  

𝑉𝑉
𝑉𝑉 = 𝑆𝑆

0
= 4𝑆𝑆

0
                (5) 

This velocity holds the same for both expanding and collapsing, thus if  𝑆𝑆 is 1 in/s, the 

robot configuration can expand at a velocity of 4 in/s and contract at a velocity of 4 in/s. 

As contraction must take place before the next expansion, the robot will have shifted 4” 

overall in 2 seconds, one for expansion and one for contraction. This translates to the 

position of the front of the robot changing by 4” in one expansion/contraction cycle, a 

theoretical velocity of 600 ft/hr.  

	
  
Figure 7: Diagram of Angular Kinematics 
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The position equations of the robot in an elbow are defined as  

𝑥𝑥 = 𝑆𝑆 cos𝜙𝜙 + 𝑎𝑎 cos𝜙𝜙 + 𝑆𝑆 cos 𝜙𝜙 + 𝛽𝛽 + 𝑎𝑎 cos 𝜙𝜙 + 𝛽𝛽 + 𝑆𝑆 cos 𝜙𝜙 + 𝛽𝛽 +

𝛾𝛾 + 𝑎𝑎 cos 𝜙𝜙 + 𝛽𝛽 + 𝛾𝛾 + 𝑆𝑆 cos 𝜙𝜙 + 𝛽𝛽 + 𝛾𝛾 + 𝛿𝛿 + 𝑎𝑎 cos 𝜙𝜙 + 𝛽𝛽 + 𝛾𝛾 + 𝛿𝛿 	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  (6)	
  

𝑦𝑦 = 𝑆𝑆 sin𝜙𝜙 + 𝑎𝑎 sin𝜙𝜙 + 𝑆𝑆 sin 𝜙𝜙 + 𝛽𝛽 + 𝑎𝑎 sin 𝜙𝜙 + 𝛽𝛽 + 𝑆𝑆 sin 𝜙𝜙 + 𝛽𝛽 + 𝛾𝛾 +

𝑎𝑎 sin 𝜙𝜙 + 𝛽𝛽 + 𝛾𝛾 + 𝑆𝑆 sin 𝜙𝜙 + 𝛽𝛽 + 𝛾𝛾 + 𝛿𝛿 + 𝑎𝑎 sin 𝜙𝜙 + 𝛽𝛽 + 𝛾𝛾 + 𝛿𝛿 	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  (7)	
  

𝛷𝛷 = 𝜙𝜙 + 𝛽𝛽 + 𝛾𝛾 + 𝛿𝛿	
   	
   	
   	
   	
   	
   	
   	
   	
  	
  	
  	
  	
  	
  	
  	
  (8) 

In order to obtain the equations describing the velocity of the end effector in the elbow, 

the position equations are differentiated with respect to time. Let 

𝑥𝑥 = 𝑥𝑥 𝑆𝑆 , 𝑆𝑆 , 𝑆𝑆 , 𝑆𝑆 , 𝜙𝜙 , 𝛽𝛽, 𝛾𝛾, 𝛿𝛿, 	
   	
   	
   	
   	
   	
   	
   	
  	
  	
  	
  	
  	
  	
  	
  (9)	
  

𝑦𝑦 = 𝑦𝑦 𝑆𝑆 , 𝑆𝑆 , 𝑆𝑆 , 𝑆𝑆 , 𝜙𝜙 , 𝛽𝛽, 𝛾𝛾, 𝛿𝛿, 	
   	
   	
   	
   	
   	
   	
   	
  	
  	
  	
  	
  	
  (10)	
  

𝛷𝛷 = 𝜙𝜙 𝑆𝑆 , 𝑆𝑆 , 𝑆𝑆 , 𝑆𝑆 , 𝜙𝜙 , 𝛽𝛽, 𝛾𝛾, 𝛿𝛿, 	
   	
   	
   	
   	
   	
   	
   	
  	
  	
  	
  	
  	
  (11) 

Then, 

𝑉𝑉 = 𝑥𝑥 = 𝑆𝑆 + 𝑆𝑆 + 𝑆𝑆 + 𝑆𝑆 + 𝜔𝜔 + 𝜔𝜔 + 𝜔𝜔 + 𝜔𝜔 	
  (12) 

This can be rewritten as 

𝑉𝑉 = 𝑔𝑔 𝑆𝑆 + 𝑔𝑔 𝑆𝑆 + 𝑔𝑔 𝑆𝑆 + 𝑔𝑔 𝑆𝑆 + 𝑔𝑔 𝜔𝜔 + 𝑔𝑔 𝜔𝜔 + 𝑔𝑔 𝜔𝜔 + 𝑔𝑔 𝜔𝜔 	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  (13) 

In the same fashion, 

𝑉𝑉 = 𝑔𝑔 𝑆𝑆 + 𝑔𝑔 𝑆𝑆 + 𝑔𝑔 𝑆𝑆 + 𝑔𝑔 𝑆𝑆 + 𝑔𝑔 𝜔𝜔 + 𝑔𝑔 𝜔𝜔 + 𝑔𝑔 𝜔𝜔 + 𝑔𝑔 𝜔𝜔 	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  (14)	
  

𝛺𝛺 = 𝑔𝑔 𝑆𝑆 + 𝑔𝑔 𝑆𝑆 + 𝑔𝑔 𝑆𝑆 + 𝑔𝑔 𝑆𝑆 + 𝑔𝑔 𝜔𝜔 + 𝑔𝑔 𝜔𝜔 + 𝑔𝑔 𝜔𝜔 + 𝑔𝑔 𝜔𝜔 	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  (15) 

Placing into matrix form, we obtain 
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𝑉𝑉
𝑉𝑉
𝛺𝛺

=
𝑔𝑔
𝑔𝑔
𝑔𝑔

𝑔𝑔
𝑔𝑔
𝑔𝑔

𝑔𝑔
𝑔𝑔
𝑔𝑔

𝑔𝑔
𝑔𝑔
𝑔𝑔

𝑔𝑔
𝑔𝑔
𝑔𝑔

𝑔𝑔
𝑔𝑔
𝑔𝑔

𝑔𝑔
𝑔𝑔
𝑔𝑔

𝑔𝑔
𝑔𝑔
𝑔𝑔

𝑆𝑆
𝑆𝑆
𝑆𝑆
𝑆𝑆
𝜔𝜔
𝜔𝜔
𝜔𝜔
𝜔𝜔

	
   	
   	
   	
   	
   	
  	
  	
  	
  	
  	
  (16) 

This follows the form 

𝑉𝑉 = 𝐽𝐽𝜔𝜔	
   	
   	
   	
   	
   	
   	
   	
   	
   	
   	
  	
  	
  	
  	
  	
  (17) 

Where 

𝑉𝑉 =
𝑉𝑉
𝑉𝑉
𝛺𝛺

	
   	
   	
   	
   	
   	
   	
   	
   	
   	
   	
  	
  	
  	
  	
  	
  (18)	
  

𝐽𝐽 =
𝑔𝑔
𝑔𝑔
𝑔𝑔

𝑔𝑔
𝑔𝑔
𝑔𝑔

𝑔𝑔
𝑔𝑔
𝑔𝑔

𝑔𝑔
𝑔𝑔
𝑔𝑔

𝑔𝑔
𝑔𝑔
𝑔𝑔

𝑔𝑔
𝑔𝑔
𝑔𝑔

𝑔𝑔
𝑔𝑔
𝑔𝑔

𝑔𝑔
𝑔𝑔
𝑔𝑔

	
   	
   	
   	
   	
   	
   	
   	
  	
  	
  	
  	
  	
  (19) 

And  

𝜔𝜔 =

𝑆𝑆
𝑆𝑆
𝑆𝑆
𝑆𝑆
𝜔𝜔
𝜔𝜔
𝜔𝜔
𝜔𝜔

	
   	
   	
   	
   	
   	
   	
   	
   	
   	
   	
  	
  	
  	
  	
  (20) 

The matrix VH represents the end effector velocities, ω represents the joint 

velocities, and J is the Jacobian. The Jacobian transforms the joint velocities of ω to the 

end effector velocities VH. The Jacobian dimensions are 3xn where n is the quantity of 

one degree of freedom joints in the section of the crawler body being analyzed. 

Solving for the translational and rotational g-functions, we obtain  
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𝑔𝑔 = = cos𝜙𝜙 , 𝑔𝑔 = = cos 𝜙𝜙 + 𝛽𝛽 ,   𝑔𝑔 = = cos 𝜙𝜙 + 𝛽𝛽 + 𝛾𝛾 ,   

𝑔𝑔 = = cos 𝜙𝜙 + 𝛽𝛽 + 𝛾𝛾 + 𝛿𝛿 ,  

𝑔𝑔 =
𝜕𝜕𝑥𝑥
𝜕𝜕𝜙𝜙 = −𝑆𝑆 sin𝜙𝜙 − 𝑎𝑎 sin𝜙𝜙 − 𝑆𝑆 sin 𝜙𝜙 + 𝛽𝛽 − 𝑎𝑎 sin 𝜙𝜙 + 𝛽𝛽

− 𝑆𝑆 sin 𝜙𝜙 + 𝛽𝛽 + 𝛾𝛾 − 𝑎𝑎 sin 𝜙𝜙 + 𝛽𝛽 + 𝛾𝛾 − 𝑆𝑆 sin 𝜙𝜙 + 𝛽𝛽 + 𝛾𝛾 + 𝛿𝛿

− 𝑎𝑎 sin 𝜙𝜙 + 𝛽𝛽 + 𝛾𝛾 + 𝛿𝛿  

𝑔𝑔 =
𝜕𝜕𝑥𝑥
𝜕𝜕𝜕𝜕 = −𝑆𝑆 sin 𝜙𝜙 + 𝛽𝛽 − 𝑎𝑎 sin 𝜙𝜙 + 𝛽𝛽 − 𝑆𝑆 sin 𝜙𝜙 + 𝛽𝛽 + 𝛾𝛾

− 𝑎𝑎 sin 𝜙𝜙 + 𝛽𝛽 + 𝛾𝛾 − 𝑆𝑆 sin 𝜙𝜙 + 𝛽𝛽 + 𝛾𝛾 + 𝛿𝛿

− 𝑎𝑎 sin 𝜙𝜙 + 𝛽𝛽 + 𝛾𝛾 + 𝛿𝛿  

𝑔𝑔 =
𝜕𝜕𝑥𝑥
𝜕𝜕𝜕𝜕 = −𝑆𝑆 sin 𝜙𝜙 + 𝛽𝛽 + 𝛾𝛾 − 𝑎𝑎 sin 𝜙𝜙 + 𝛽𝛽 + 𝛾𝛾 − 𝑆𝑆 sin 𝜙𝜙 + 𝛽𝛽 + 𝛾𝛾 + 𝛿𝛿

− 𝑎𝑎 sin 𝜙𝜙 + 𝛽𝛽 + 𝛾𝛾 + 𝛿𝛿  

𝑔𝑔 =
𝜕𝜕𝑥𝑥
𝜕𝜕𝜕𝜕 = −𝑆𝑆 sin 𝜙𝜙 + 𝛽𝛽 + 𝛾𝛾 + 𝛿𝛿 − 𝑎𝑎 sin 𝜙𝜙 + 𝛽𝛽 + 𝛾𝛾 + 𝛿𝛿  

	
  	
  	
  	
  	
  	
  	
  (21)	
  

The second row of the Jacobian 

𝑔𝑔 = = sin𝜙𝜙 , 𝑔𝑔 = = sin 𝜙𝜙 + 𝛽𝛽 ,   𝑔𝑔 = = sin 𝜙𝜙 + 𝛽𝛽 + 𝛾𝛾 ,   

𝑔𝑔 = = sin 𝜙𝜙 + 𝛽𝛽 + 𝛾𝛾 + 𝛿𝛿 ,  

𝑔𝑔 =
𝜕𝜕𝑦𝑦
𝜕𝜕𝜙𝜙 = 𝑆𝑆 cos𝜙𝜙 + 𝑎𝑎 cos𝜙𝜙 + 𝑆𝑆 cos 𝜙𝜙 + 𝛽𝛽 + 𝑎𝑎 cos 𝜙𝜙 + 𝛽𝛽

+ 𝑆𝑆 cos 𝜙𝜙 + 𝛽𝛽 + 𝛾𝛾 + 𝑎𝑎 cos 𝜙𝜙 + 𝛽𝛽 + 𝛾𝛾 + 𝑆𝑆 cos 𝜙𝜙 + 𝛽𝛽 + 𝛾𝛾 + 𝛿𝛿

+ 𝑎𝑎 cos 𝜙𝜙 + 𝛽𝛽 + 𝛾𝛾 + 𝛿𝛿  
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𝑔𝑔 =
𝜕𝜕𝑦𝑦
𝜕𝜕𝜕𝜕 = 𝑆𝑆 cos 𝜙𝜙 + 𝛽𝛽 + 𝑎𝑎 cos 𝜙𝜙 + 𝛽𝛽 + 𝑆𝑆 cos 𝜙𝜙 + 𝛽𝛽 + 𝛾𝛾

+ 𝑎𝑎 cos 𝜙𝜙 + 𝛽𝛽 + 𝛾𝛾 + 𝑆𝑆 cos 𝜙𝜙 + 𝛽𝛽 + 𝛾𝛾 + 𝛿𝛿

+ 𝑎𝑎 cos 𝜙𝜙 + 𝛽𝛽 + 𝛾𝛾 + 𝛿𝛿  

𝑔𝑔 =
𝜕𝜕𝑦𝑦
𝜕𝜕𝜕𝜕 = 𝑆𝑆 cos 𝜙𝜙 + 𝛽𝛽 + 𝛾𝛾 + 𝑎𝑎 cos 𝜙𝜙 + 𝛽𝛽 + 𝛾𝛾 + 𝑆𝑆 cos 𝜙𝜙 + 𝛽𝛽 + 𝛾𝛾 + 𝛿𝛿

+ 𝑎𝑎 cos 𝜙𝜙 + 𝛽𝛽 + 𝛾𝛾 + 𝛿𝛿  

𝑔𝑔 =
𝜕𝜕𝑦𝑦
𝜕𝜕𝜕𝜕 = 𝑆𝑆 cos 𝜙𝜙 + 𝛽𝛽 + 𝛾𝛾 + 𝛿𝛿 + 𝑎𝑎 cos 𝜙𝜙 + 𝛽𝛽 + 𝛾𝛾 + 𝛿𝛿  

	
  	
  	
  	
  	
  	
  	
  (22)	
  

The third row of the Jacobian 

𝑔𝑔 = = 0,  𝑔𝑔 = = 0,   𝑔𝑔 = = 0,   𝑔𝑔 = = 0, 𝑔𝑔 = = 0 

 

𝑔𝑔 = = 1, 𝑔𝑔 = = 1, 𝑔𝑔 = = 1, 𝑔𝑔 = = 1 

	
  	
  	
  	
  	
  	
  	
  (23)	
  

With these equations established, it is possible to specify the joint velocities, ω and 

solve equation (17) in order to obtain the end effector velocities, VH.  For demonstration, 

angular position values of ϕ1=90, β=16, γ=17, δ=15, linear joint velocities of 1 in/s, and 

rotational joint velocities of 1, 2, 3, 1 rad/s are assumed. Using these values, the end 

effector velocities 𝑉𝑉 =-44.73 in/s,  𝑉𝑉 = −26.04 in/s, and 𝛺𝛺 = 7 rad/s are obtained. 

The negative values of the linear velocities indicate that the end effector is travelling in 

the opposite direction relative to the first link. This is accurate to the positioning of a 

crawler in an elbow.  
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3.2 Possible Configurations 

As per the kinematics, it was decided to run the cylinders in a straight line 

arrangement. This style is simple and only presents a challenge in running lines as the 

center no longer serves as a tunnel for them. For this reason, ports were designed into the 

rear head, which allow for pipes to run from the umbilical up to the cylinders and front 

head. Similar ports can be added to the front rim to allow for waste flow and running of 

lines for cameras or unplugging tools. However, the effectiveness of the unplugging 

method has already been verified, and this thesis focuses solely on improving the body 

that delivers the unplugging tool. For this reason, all designs and the final prototype were 

configured solely as inspection devices which could be used to verify the effectiveness of 

the body. A configuration for unplugging can be achieved by drilling the necessary ports 

and running the lines.  

In order to keep controls simple and to reduce the number of air feed lines, the 

body was limited to four pneumatic cylinders. Double acting cylinders are ideal for this 

application as both expansion and contraction are handled by air pressure. A vacuum 

pump and slow vacuum cycles are thereby eliminated; however, this does mean that each 

cylinder requires two air lines to operate. Thus, the overall number of cylinders should be 

kept down to reduce excess hoses. Double acting cylinders also provide an advantage in 

reliability as the springs that retract single acting cylinders can fatigue over time.  

The stroke length of the cylinder is important here because the stride length of 

each cycle plays into the overall speed of the crawler. Velocity is simply displacement 

over time, thus the greater the displacement per unit of time, the greater the velocity. 

However, the stroke of the cylinders is limited by the dimensions of the elbow. A long 
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stroke means a long cylinder, and it becomes possible for them to wedge in the elbow and 

keep the crawler from moving forth. The thicker the cylinder, the more this becomes a 

problem. Cylinder bore is also an important factor because it determines the force output 

of the cylinder. 

Theoretically, force is equal to the product of pressure and area, 

𝐹𝐹 = 𝑃𝑃𝑃𝑃                          (24) 

In this case, the pressure is the inflation pressure in lb/in2 (psi) and the area is the 

cross sectional area of the cylinder. This equation describes the force generated when a 

cylinder extends or performs an outstroke.  

When it retracts, or instrokes, the force generation can be described as  

𝐹𝐹 = 𝑃𝑃𝑃𝑃                                                                      (25) 

Where d1 is the diameter of the cylinder and d2 is the diameter of the rod [17]. 

This lower force is due to the smaller chamber area caused by the rod taking up space. In 

this application, the load is pulled forth by the outstroke; therefore, it is more important. 

Instroke force is mostly beneficial for keeping the rear from getting stuck as it moves 

forth. Air is a compressible fluid, such that these equations cannot accurately describe 

how much force is generated if the cylinder is under a load. However, industry standard 

approach in pneumatic cylinder sizing is to use these equations to oversize the system by 

25% over the load being pushed by the pneumatics [17]. The amount of force required to 

pull an umbilical a set distance in these pipes is unknown; therefore the only available 

approach is to obtain the strongest cylinders that will fit within the pipelines. Inflation 

pressures are limited to 300 psi as per Hanford regulations, leaving cross sectional area as 
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the only factor than can be increased. It is desirable then, to have as large of a bore as the 

pipe dimensions will allow.  

 
Figure 8: Straight Line Configuration Check 

Looking at the images above, two possible ways for the crawler to move through 

an elbow are depicted. The scenario on the left is ideal, would allow the crawler to move 

through unhindered, and is also unlikely. The scenario on the right is more realistic as 

pushing against the wall of the elbow is what causes it to turn. Here, the importance of 

having a balance between length and diameter of the cylinders is evident. Already, the 

cylinders are likely to turn and get caught in the elbow walls. The cylinders modeled here 

have a stroke of 2.25,” a cylinder length of 2.70,” and a diameter of 0.5.” The inner bore 

is 0.25,” meaning that at 300 psi, these cylinders would output around 14.7 lb of force.  
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3.3 Cylinder Sizing Methodology 

The need to balance the goal of maximum force output with the sizing and 

pressure constraints of the pipe requires that a sizing methodology be defined. This can 

be done by observing the method in which a cylinder could become wedged in an elbow 

and using this to determine a maximum package size. If the diagonal length of the 

cylinder is 3” or greater, it has the potential to become wedged in the elbows. Using a 

diagonal length of 2.9,” a rectangle is drawn which contains the maximum package size 

possible. In turn, this sets a limit on the maximum possible bore and stroke the cylinder 

can have.  

 
Figure 9: Maximum Allowable Package Size 

The rectangle has lengths of 1.92” and 2.9.” The 1.92” side is set as the limit for the 

diameter of the cylinder, such that it can pass through a 2” ID pipe. The limit on length of 

the cylinder is then 2.174.” In this application, the cylinders will be hinged together, thus 

it is necessary that the hinge on each cylinder fit within the package size. Typically, 

compact cylinders are sold in 9/16, 3/4, 11/16, 11/2, and 2” bores. 11/2 is the largest bore that 

fits within the package size, but the end caps would have a 2.62” OD. This leaves ¾” 

bore which have end caps with 1.5” OD, this is within the package size. Compact 
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cylinders with ¾” bore come in stroke lengths of 0.5, 0.75, 1, and 1.5.” At 1.5” of stroke, 

the cylinder alone is 2.06,” thus the addition of a hinge will exceed the package size. At 

1” stroke, the cylinder length is 1.56,” allowing 0.614” for the hinge. Therefore, the 

selected cylinder should have a bore of ¾” and a stroke of 1.”  

With the size of the cylinder selected, it is necessary to determine the appropriate 

valves for supplying them with air. The coefficient of velocity or Cv, a valve needs in 

order to feed a cylinder of a given dimension can be described by the following equation: 

𝐶𝐶𝐶𝐶 = ( )
( )

  [17]                                                       ( 26) 

Where the unit for area is in2, stroke is measured in inches, A is the pressure drop 

constant, and Cf is the compression factor. The pressure drop constant and compression 

factor may be obtained in the following table: 

 
Table 4: Reference Table for Compression Factors and “A” Constants [17] 

2	
  PSI	
  ΔP 5	
  PSI	
  ΔP 10	
  PSI	
  ΔP

10 1.6 0.102
20 2.3 0.129 0.083 0.066

30 3 0.113 0.072 0.055

40 3.7 0.097 0.064 0.048

50 4.4 0.091 0.059 0.043

60 5.1 0.084 0.054 0.04

70 5.7 0.079 0.05 0.037
80 6.4 0.075 0.048 0.035
90 7.1 0.071 0.045 0.033
100 7.8 0.068 0.043 0.031
110 8.5 0.065 0.041 0.03
120 9.2 0.062 0.039 0.029

Inlet	
  Pressure	
  (PSI) Cf	
  Compression	
  Factor
"A"	
  Constant	
  for	
  various	
  pressure	
  drops
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The “A” values used for critical applications are found in the 2 PSI ΔP column 

[17]. Assuming 120 psi inflation, the corresponding Cf is 9.2 and the “A” constant is 

0.062. Using these values with the desired dimensions of 0.75” bore and 1” stroke, the 

required Cv for operating each cylinder for 10 seconds is 0.869x10-3. In order to limit 

complexity, all four cylinders should be fed by one valve. This means the valve would 

need four times the Cv, or 3.476x10-3.  

3.4 Selected Components 

In order to reduce manufacturing costs and time, a point was made to use as many 

commercially available components as possible. Pneumatic cylinders are commercially 

available in a variety of specifications to meet the requirements of several different 

applications. Nitra™ produces a micro pneumatic cylinder with a ¾” bore and a 1” stroke 

with an O.D. of just 1.5” and a length of 1.56,” making it ideally sized for this 

application. Furthermore, with a maximum inflation pressure of 250 psi it is capable of 

producing a force of 110.4 lbs on outstroke. Each weighs in at a mere 0.17 lbs. The 

company markets a set of rod eyes which thread into the rod on the cylinders using a 10-

32UNF thread and a clevis bracket for these. However, the clevis bracket is not made to 

attach to the back of one of the cylinders, creating an array of them as in this application. 

For this reason, a set of flanges had to be designed and manufactured to adapt a clevis 

bracket to the back of each cylinder that needed it.  
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3.3.1 Component Specifications 

 
Table 5: Component Details 

Manufacturer/Vendor Part# Description

Nitra C12010D
Double acting pneumatic cylinder with a 304 stainless 
steel body, 1” stroke, ¾” bore, single end rod, and 10-
32 female ports

Nitra CCB-17
Anodized aluminum clevis bracket with 304 stainless 
steel pin

Nitra CRP-12
Zinc plated alloy steel rod eye with 10-32 threaded 
end and eye with bronze pivot bushing

Clippard MEV-2
Miniature quick exhaust valve with 10-32 threaded 
ends

McMaster 92185A144 socket head screw, 1/4" long with 6-32 thread
McMaster 92185A148 316 SS Socket head screw, 1/2" long with 6-32 thread
McMaster 92185A161 316SS socket head screw, 1-3/4" long with 6-32 
McMaster 5423K13 201SS low profile hose clamp, 3/8” wide

McMaster 5454K61
Miniature brass male connector fitting, 10-32 thread, 
1/16” hose barb 

McMaster 92949A259 18-8SS socket cap screw, 10-32 thread, 3/16” long

Parker 28-4-10X32
Brass male connector, 10-32 thread, barb for ¼” tube, 
150 psi maximum pressure

Eldon James L1032-1HDPE
High density polyethylene male 90° elbow, 10-32 
thread and 1/16” hose barb, 260 psi maximum 
pressure, high chemical resistance

Pneumadyne EB10
Brass male connector, 10-32 thread and 1/16” hose 
barb, maximum pressure 125 psi @ 75°F

Sunlite 6321 26x1.95-2.35 butyl inner tube,  heavy duty
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3.3.2 Component Cost 

 
Table 6: Cost and Quantity of Components 

3.5 Prototype Design 

With the selected components and their specifications known, a design of the 

prototype was put together in SolidWorks®. The cylinders were mated to the clevis 

brackets via the adapter flanges on their closed end and to the rod eyes on their rod ends. 

With this assembly complete, measurements were taken in order to design a set of heads 

that would be appropriate for the prototype. The heads were designed such that the 

sections with largest diameter would be 1.75,” allowing for a smooth transition into 2” 

pipe. Each head consists of a cylinder with a lip on either end for keeping clamps from 

sliding off and a port which runs axially from one face through to the center line of the 

head where it meets with a perpendicular port. This port exits radially out to the 

circumference of the cylinder. These ports were sized for a #21 drill bit to allow for a 10-

32 thread to be cut into the face of each head. A central groove is made around the 

Manufacturer/Vendor Part	
  # Unit Cost	
  per	
   Quantity Overall	
  Cost
Nitra C12010D ea 38 4 152
Nitra CCB-17 ea 16 5 80
Nitra CRP-12 ea 11 5 55

Clippard MEV-2 ea 6.21 2 12.42
McMaster 92185A144 pk.	
  25 2.36 1 2.36
McMaster 92185A148 pk.	
  25 2.5 1 2.5
McMaster 92185A161 pk.	
  10 5.54 2 11.08
McMaster 5423K13 pk.	
  8 14.09 2 28.18
McMaster 5454K61 pk.	
  10 7.8 1 7.8
McMaster 92949A259 pk.	
  50 7.8 1 7.8

Parker 28-4-10X32 ea 2.17 2 4.34
Eldon James L1032-1HDPE Pk.	
  10 9.79 1 9.79
Pneumadyne EB10 ea 1.26 2 2.52

Sunlite 63390 ea 6.99 1 6.99
Total 382.78
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circumference at the point where the port is, in order to dissipate air even when the 

bladder material is tight against the head. From here, each head has adaptations based on 

what is needed at its location. 

 The rear head has two ports running axially through it in order to allow for air 

lines to be run to the cylinders. On the face where it meets the cylinders, it also has a 

threaded hole for threading it onto the nearest cylinder.  

 
Figure 10: Rear Head Design 

The front head has four threaded holes near the air port for attaching it to the clevis 

bracket of the cylinder on that end. This clevis bracket is notched to allow clearance for 

the fitting that goes into this air port. 
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Figure 11: Front Head Design 

The aforementioned adapter flanges each consist of an aluminum disk with eight 

holes drilled in. The holes are arranged in two patterns of four holes each. One hole 

pattern corresponds to the hole pattern on the clevis bracket, whereas the other pattern 

corresponds to that of the pneumatic cylinder. These holes were sized for a #36 drill bit to 

allow for cutting them to a 6-32 thread.  

 
Figure 12: Adapter Flange Design 

The final assembly has an appearance similar to a set of vertebrae. It has a 

collapsed length of approximately 17” and an expanded length of 21.” The 1” stroke adds 
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up over the four cylinders to provide the prototype with a 4” stroke. The figure below is 

an image of what the prototype will look like.  

 
Figure 13: Prototype Rendering 

These dimensions allow for a design which can move through a regulation 

Hanford elbow without obstruction. Provided the bladders can expand enough to grip the 

pipes, the 1.75” maximum O.D. of the prototype will not pose a problem in the 3” I.D. 

pipe. This maximum diameter also leaves 0.25” of clearance to move through a 2” I.D. 

pipe.  The prototype design was tested in an elbow in SolidWorks® and also in a pipeline 

which transitions from 3” to 2” I.D. pipe.  
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Figure 14: Depiction of Kinematics Through Elbow 

3.6 Valves 

If conventional solenoid valves were used for this device, they would prove to be 

too large and would have to be mounted outside the pipeline. This was the case with 

previous versions of the crawler produced by the Applied Research Center [13]. This is 

not ideal because it creates large delays in the response of the device. Every time a valve 

is given current, there is a delay between this action and when the air line it feeds 

becomes fully pressurized. The longer the line, the longer this takes. Once deployed in 

waste transfer pipes measuring over 100’ this would make for a device akin to a MARS 

Rover, i.e., one which responds to a command a long time after it is sent.  

The chart below was obtained by timing how long it took for the body of the third 

generation device developed by ARC to reach the set pressure over three different lengths 

of line spanning from 277” to 554” and over a range of 10-60 psi. At the 554” inches, 
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which are approximately 46’, it takes over half a minute to pressurize the bellows to the 

set pressure of 60 psi. Vacuum cycles were found to take even longer. 

 
Table 7: Time to Reach Set Pressure vs. Tubing Length 

This situation was averted on the revised third generation of the device developed 

by ARC via the use of MAC Bullet Valves®. These valves are available in small sizes 

which allow them to be mounted right behind the crawler. The result is that the lines are 

always held under pressure and this pressure only enters the crawler when the valves 

allow for it. Simultaneously, the large time delays are completely eliminated and the 

crawler responds right when commanded. Due to the fact that this modification was 

already tested successfully, it was directly implemented in the crawler developed for this 

thesis. 

554 415.5 277
Pressure (lb/in2) Final Time (s) Final Time (s) Final Time (s) 

10 22.41 22.1 20.78
20 24.23 22.84 21.53
30 26.34 23.59 22.58
40 27.22 24.06 22.81
50 28.76 24.64 23.43
60 32.16 25.36 23.56

  
Tube Lengths (in)
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Figure 15: Mac Bullet Valve® with Anderson Powerpole® Connector 

These valves do present an extra challenge in that their air channels are tapered 

and stepped. These dimensions are not standard and it is normally necessary to use the 

company’s proprietary manifolds in order to use the valves. These manifolds are meant 

for running several valves simultaneously and would not be suitable for this application. 

However, by taking measurements of the steps with a dial caliper and gauging the thread, 

it was possible to manufacture manifolds that suited the application. These manifolds are 

essentially cylindrical sleeves that the valves thread into and they have one side with one 

threaded port and another side with two threaded ports. Two different designs were made 

for the manifolds, one design for feeding the crawler’s heads and one for feeding its 

bodies. The main difference is that the manifold design for the bodies has a larger 

diameter which allows for barb fittings for ¼” tube and a 10-32 thread whilst the valves 

for the head used barbs for 1/16” tube with a 3-48 thread.  
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Figure 16: Manifolds for Mac Bullet Valves® 

It should be noted that these MAC® valves, part number BV309A-CD1, are three 

way universal valves. Each can provide a Cv of 0.06 at 120 psi of inflation [18], making 

them suitable for feeding all four cylinders with a single valve. In the case of the valves 

feeding the heads, the sides of the manifolds with two ports receive one air input line and 

the side with one port is used as an output to the heads. When the valve is given current, 

the air flows from the input to the output- inflating the bladder on the corresponding 

head. When current is removed, the valve switches back, allowing the unused port to 

serve as an exhaust- deflating the bladder. However, in the case of the manifold for the 

bodies, the side with one port serves as the air input and the side with two ports serves as 

the output. The port which flows when the valve is not given current is connected to the 

manifold feeding the retraction ports of the cylinders. As a result, the crawler body 

remains retracted and if the valve fails, it will fail retracted. The controlled port is 

connected to the manifold that feeds the expansion ports of the cylinders. When current is 

sent to the valve, it feeds this port and causes the crawler body to expand.  
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This hose routing presents a problem because it does not allow for an air exhaust. 

As a result, when all the components are sealed properly, the hoses for both the 

expansion and contraction sides of the cylinders will remain pressurized. These even 

pressures on either side of the pistons will cause the cylinders to be incapable of 

expanding and contracting. Initial tests of the system showed that the crawler expanded 

and contracted, this was due to small air leaks that served as exhausts. Once all 

components were sealed, the crawler was paralyzed. This was solved via the addition of 

Clippard MEV-2 quick exhaust valves (QEV). These micro-QEVs are 0.66” in length, 

0.31” in width and height. Addition of QEVs to double acting cylinders is standard 

practice in industry and it helps the cylinders to react without any hesitation. Air flow 

will move an internal poppet forward where it will block an exhaust channel but allow 

flow around it to the application. Once air flow is cut off, the poppet will move back and 

allow the pressure in the line to dissipate through the exhaust channel [19].  

3.7 Material Selection 

The crawler prototype built for this thesis is intended for testing purposes only and 

not for deployment on the actual Hanford site. However, it is ideal to build the robot with 

as many deployable materials as possible so that it remains close to the final weight. It 

was decided that 6061 T6 aluminum would be used for any parts which had to be 

manufactured. This choice reduced the time and associated cost of machining parts as 

well as the cost of materials. The heads, adapter flanges, rod eyes, distribution manifolds, 

and clevis brackets are all made from this material. In the case of the pneumatic 

cylinders, they are made from 304SS with 6061 aluminum end caps. The fittings used are 

either brass or high density polyethylene. 
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Generally, devices developed at ARC for deployment in Hanford pipelines use 

316SS [20]. However, the pipelines and tanks are generally made from steel [15]. The 

findings of the materials section in the literature survey indicate that aluminum is, in fact, 

capable of surviving exposure to Hanford levels of radiation. Tanks at Hanford have been 

measured at 10 Gy/hr [15] whereas the damage threshold of aluminum alloys in gamma 

is 5x1011 Gy/hr [16]. Aluminum alloys are actually more resistant to radiation than 

stainless steels [14]. Brass can withstand 1x1010 Gy/hr before changes in material 

properties are observed.  No number was found for polyethylene; however it is known to 

have moderate resistance [16] and is listed in Hanford standards document TFC-ENG-

STD-34 as an acceptable nonmetal for contact with tank waste [21].  

 
Table 8: Raw Materials 

3.8 Tooling 

The tooling used for the manufacturing part of this thesis was generally made of 

high speed steel (HSS). HSS tooling is cost effective and can be used to cut stainless steel 

as well as aluminum [22]. Carbide tools are available at a higher cost but they can be run 

at higher rpm and surface speeds than HSS. However, for the 6061 aluminum used here, 

HSS can cut at a desirable rate without the cost penalty of carbide [22]. The one 

exception was the cutter used for turning operations which has a C6 carbide tip. In this 

instance, since only a simple tip is made from carbide, the cost was $4.85 and was not 

prohibitive. Also, the removal rates used with this tool were calculated under the 

assumptions of a HSS tool. The various tools used are shown below: 

Vendor Part# Description Unit Cost	
  per
McMaster 8974K711 6061	
  Aluminum	
  rod	
  2"	
  O.D.,	
  12"	
  long ea 59.97
McMaster 8974K181 6061	
  Aluminum	
  rod	
  1.5"	
  O.D.,	
  12"	
  long ea 35.13
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Figure 17: Tooling 

Pictured from left: No3 starting bit, C6 right hand lathe cutter, #47 drill bit and 3-

48 tap, #36 drill bit and 6-32 tap, and #21 drill bit and 10-32 starting and bottoming taps, 

9.25mm drill bit and M10x0.75 tap, tap guide, and tap wrench. 1/2” end mill not shown. 

3.9 Manufacturing Processes 

Each flange was machined from 1.5” OD 6061 T6 aluminum rod by facing off an 

end on the lathe and then cutting the faced off disk on a horizontal band saw.  The 

process would then be repeated in order to create the next flange disk. The flanges were 

then clamped in the jaws of a milling machine with the band saw cut facing up. This side 

was then milled down, bringing the disk to the desired thickness. From here, holes were 

marked and drilled with a #36 bit on a drill press, followed by tapping them to a 6-32 

thread.  
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Figure 18: Freshly Turned Adapter Flanges  

The heads on either end of the crawler were made by turning 2” OD 6061 T6 

aluminum stock on a lathe. The lathe was used in order to produce the external features 

of the heads and in order to mark where they were to be cut off from the stock. Each head 

was then parted from the stock and the drill locations for its holes were marked. The 

holes were drilled by clamping the heads in a vice and drilling with a drill press. The 

holes used for fittings and for mounting bolts were then tapped. For simplicity and 

uniformity, all fittings on the crawler and rod connections use a 10-32 threading and 

mounting bolts use a 6-32 threading. The clevis bracket that the front head attaches to 

was notched with an end mill such that it would not interfere with the front air fitting. 
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Figure 19: Turning Crawler Head on Lathe 

In order to be able to feed all four cylinders with one valve, it is necessary to use 

distribution manifolds. There are two manifolds in the system, one for expansion and one 

for contraction. Each has one input consisting of a barb fitting for 1/4” tube and four 

outputs consisting of barb fittings for 1/16” tube. Their bodies were made by turning a 

1/2” rod of 6061 T6 aluminum down to 3/8” on the lathe and boring it up to a #21 drill 

bit. This rod was milled flat on opposite sides of the circumference and then sectioned 

into two cylinders, each 1.25” in length. Ports were drilled on the milled faces up to a #21 

drill bit, one side with one port and one side with four for each manifold. These ports 

were all tapped to a 10-32 thread. The same was done on either end of each cylinder in 
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order to close off the axial bores using screws and thread sealant. The appropriate fittings 

were then added, completing the process. 

 
Figure 20: Completed Distribution Manifolds 

3.10 Assembly 

Each rod eye has a 10-32 male threaded end that threads into a female end on each 

piston rod in the cylinders. These rod eyes have an opening through which a pin passes. 

This pin is in turn attached to a clevis bracket via two holes and a retaining clip on either 

end. Four stainless 6-32 bolts pass through the openings on the flat end of each clevis 

bracket and into a flange. Through the opposite side of the flange pass another set of 6-32 

bolts which attach each flange to the back of a cylinder. This method is used in order to 

array four cylinders into one crawler body. The rear head is attached to the rear most rod 

eye via a 10-32 threaded female end. The front head attaches to the front clevis bracket 

via four 6-32 bolts. This clevis bracket is also modified with a notch in order to 

accommodate the front air fitting. 
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Ten fittings are used for the crawler, eight for the cylinders and two for the heads. 

The eight fittings on the cylinders are 90° barb fittings with a 10-32 thread and a barb for 

1/16” tube. The fittings on the heads are straight fittings, also with a 10-32 thread and a 

barb for 1/16” tube. 

 
Figure 21: Completed Assembly 
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IV Control Setup  

4.1 Controller Box 

A control box was built in order to facilitate operation of the crawler. The box 

provides the ability to move the crawler forward or backward by using a joystick, or 

simply turning on a switch- one for forward motion and one for reverse. These functions 

are executed by an Omron Zen Programmable Logic Controller (PLC). The controller is 

programmed to send current to the valves in sequence and for a specific amount of time 

in order to generate the crawler’s motion. The control box also includes switches which 

bypass the PLC, sending current directly to each valve, allowing for independent control 

of the crawler’s bodies.  

4.1.1 Omron 

The Omron Zen PLC serves as the brain of the control box for the crawler. The 

top portion of the device consists of inputs. There are inputs L and N which are for line 

and neutral respectively, these provide AC current to the Omron. The other inputs are 

numbered from I0 to I5 and are programming inputs. When current is received by any of 

these inputs, it triggers the program which corresponds to it. This means that a total of six 

programs may be stored on the Omron and this is useful for having the crawler adapt to 

various situations. It may be desirable to have different programs to control each of the 

crawler’s possible motions, these being forward through straight sections, forward 

through elbows, reverse through straight sections, and reverse through elbows. Also, if 

more valves are added, programs can be written for cycling the cylinders in phases in 

order to create different styles of motion. 
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The device has four outputs which are labeled from Q0 to Q3. Each one of these 

outputs is actually a relay and sending current through any of them is how the Omron 

executes its control functions. By sending current in sequence to these relays, for a given 

amount of time per relay, the valves feeding the crawler can be controlled in order to 

create any of its motions. 

 
Figure 22: Control Box Setup 
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4.1.2 Wiring 

 
Figure 23: Control Box Wiring Diagram 

In order for the operator to control the functions of the PLC and thus, the crawler 

robot, switches are needed to trigger its functions. All of the components for making this 

possible are contained within a sealed box. Current comes into the box from a 

conventional 110VAC wall outlet via a two strand power chord. Both strands are bolted 

down on a junction block, allowing for multiple components to take current from them if 

needed. A wire is fed directly from the neutral slot on the PLC to the neutral slot on the 

block whilst the wire from the PLC to the line slot is interrupted by a switch. This switch 

serves as the ON/OFF switch for the system. An AC powered LED is connected to the 

line after the switch and the neutral slot on the junction block in order to indicate when 

the system is on. Line and neutral are also fed off the junction block toward an electrical 

outlet housed within an Underwriters Laboratory industrial enclosure. A 12V 500mA AC 
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to DC transformer is plugged into the outlet. Each valve consumes approximately 

83.3mA under operation, so the transformer provides enough current to run up to six 

valves. Over longer lengths of wire, the voltage drop would require a more powerful 

transformer, however for the 25 ft. test setup, this transformer sufficed.  

The positive strand from the transformer is fed into the left slot on the Q0 relay on 

the PLC. From here it is bridged into the left slots on relays Q1, Q2, and Q3. From there, 

a wire is sent from the right slot on each relay to the top of one of four switches and from 

there to one strand of each respective DC solenoid valve. The second strand of each valve 

is in turn connected to the negative strand of the transformer, thereby completing the 

circuit. This allows for the PLC to send current to each valve as needed via the program 

written into it. At the same time, the bottom of each of the switches is connected to the 

positive strand on the transformer such that the switches may be used to send positive 

current to the DC solenoid valves independent of the PLC. This allows for manual 

override control of each valve. An LED is connected from the positive to the negative 

strand of each DC valve. These serve as indicators that power is being sent to a valve and 

allow for the program sequence to be observed without the robot connected.   

In order to trigger the program sequences in the PLC, both a switch and a joy 

stick are used. The switch receives line from the ON/OFF switch and feeds back into the 

I1 slot of the PLC. When this switch is closed and current flows to I1, it executes the 

program stored under I1. One pole of the joystick is also fed line and run into the I1 slot 

so the I1 program can be executed for as long as the joy stick is pushed forward. The line 

is also bridged to the opposite pole of the joy stick and from there it feeds into the I0 slot 
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on the PLC. This allows for the I0 program to be executed when the joy stick is pushed 

backward. No current flows when the joy stick is at rest in the center position.   

These simple means are used in order to create a sealed control box that contains all 

of the electronics and current needed to operate the crawler robot. The simple internal 

conversion from AC to DC current allows for the use of DC valves, however, the setup 

can be converted to operate AC valves by simply eliminating the transformer and sending 

line into the relays in place of positive current. The remainder of the circuit does not need 

to be modified in any way.  

4.2 Pneumatic System 

4.2.1 Source 

The source used for providing the crawler setup with air is a conventional air 

compressor. This source cannot provide more than 100 psi of pressure; therefore any 

values of the crawler’s performance above these pressures must be extrapolated from data 

taken at lower pressures. Alternatively, testing can be done at an auto shop which uses a 

larger compressor, body shops are ideal. It is possible to connect a compressor to the 

setup via a female quick-release coupling. A device capable of providing up to 250 psi 

would be ideal in the field as this would allow for the full potential of the cylinders to be 

used.  

4.2.2. Distribution 

The air from the source is fed into a manifold with several outputs. Each output 

has its own regulator, allowing the output pressure at that point to be controlled. This is 

important mainly because the pneumatic cylinders of the crawler and the bladders on its 

heads are kept at different pressures. This also allows for the pressure to be varied as the 
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robot is in motion in order to adapt to changing conditions in the pipe. These changes are 

left at the discretion of the operator.  

4.2.3 Umbilical 

For the purposes of the tests conducted for this thesis, the umbilical for the crawler 

consists of a 25’ line. This line is comprised of a cable with eight conductors in it and 

three ¼” tubes which are attached to each other. The cable has Anderson Powerpole® 

connectors at either end, and only six of the eight conductors are used. On the end that 

goes to the crawler, there are three pairs of connectors, each pair consisting of one 

positive and one negative. These plug into Anderson® connectors on the valves, allowing 

for any damaged valves to be quickly disconnected and replaced. On the end that goes to 

the control box, the three positive strands each have their own connector whereas the 

three negative strands are crimped into a single connector. The Anderson® connectors 

are attached to each other via built in grooves, forming one large connector that plugs 

into a matching one on the box. This connector in turn, is wired to the terminal strip and 

receives current inputs from each one of the control outputs from the PLC. Standard DC 

current color conventions are followed, thus all positive strands have a red connector 

whilst all negatives have a black connector.  

The hoses are connected to the distribution manifold on one end and connected to 

the robot’s valves on the other. On the manifold side, this is accomplished by the use of 

barbed fittings. On the side of the valves, barbed fittings are used again as each valve has 

its own manifold and input/output fittings. Two of the hoses have reducing fittings that 

drop the size down from the ¼” tube to 1/16” I.D. tube so that they can fit the barbs on 

the smaller valve manifolds used to feed the heads of the crawler. The ¼” tube is 
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acceptable for these purposes as it does not create too large of a diameter in the umbilical 

and also because flow rate is not an issue. Thanks to the valves being mounted right 

behind the crawler, the lines are always pressurized. Thus the only requirement is that 

they provide enough air volume to feed the crawler.  This is accomplished thanks to the 

large Cv of the valves. The following is a diagram of the ideal pneumatic system for the 

crawler:  

 
Figure 24: Pneumatic Diagram 

In this configuration, a 5/2 solenoid valve would be used to feed the cylinders of 

the crawler’s body. This would allow for feeding either side of the cylinders with air 

pressure whilst the opposite side is allowed to exhaust [23]. In the configuration actually 

tested, the available 3/2 valve was installed such that it has one input and two outputs and 

exhaust duties are left to the quick exhaust valves.  
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4.3 Programming 

4.3.1 Language 

The Omron Zen can be programmed using the Zen Support Software. This 

program uses a ladder style programming approach [24] which is appropriate for 

operating a PLC. The basic logic is that a circuit of the relays is built in the program and 

time steps are given to each relay during which the relay will provide current to its 

respective output. When timed properly, this creates a program which will actuate the 

valves correctly and move the crawler in the desired way.  

 
Figure 25: Screenshot of Ladder Program 

4.3.2 Approach 

Properly controlling a crawler involves writing a baseline program and then 

optimizing it by testing. The parameters for the baseline program were obtained by using 

the manual control switches to expand each of the cavities in sequence. The time each 
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body takes to expand was measured with a stop watch and the overall cycle time was also 

measured. These numbers were then used to set the times for the program. With this 

written, the crawler was allowed to move down the pipe and timed. The behavior of the 

device was observed carefully and modifications were made to the time steps based upon 

this. The general approach is to modify the time steps such that the crawler can cycle 

within the shortest possible time while not suffering from slippage. 
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V Testing 

5.1 Speed 

5.1.1 Test Setup 

Verifying the approximate speed of the crawler in a straight pipe is a simple 

matter. All that is needed is a section of clear 3” I.D. PVC pipe. The straight section used 

for verifying baseline speeds in a 3” I.D. pipe was actually part of a basic test bed 

consisting of a 43” long, 3” I.D. pipe, a 4.25” radius elbow, and 25.25” long, 3” I.D. pipe. 

In order to gauge the speed of the crawler, the initial position of the front head is marked 

and the crawler is allowed to cycle forth while a stop watch runs. The crawler and stop 

watch are stopped simultaneously right when the crawler is ending an expansion stroke 

and the front rim has anchored. The position of the head is then marked. The distance 

from beginning to end is then measured and with this and the elapsed time, velocity may 

be calculated by dividing the displacement by the time. In this case, the displacement and 

time were in inches and seconds respectively. These results were multiplied by       in 

order to convert to ft/hr.  

The speed of the crawler through an elbow is a different matter. Using the basic 

test bed from the 3” I.D. speed test, the crawler is cycled until the front head is lined up 

with the entrance to the elbow. The crawler is cycled forth while a stop watch runs and 

they are both stopped simultaneously when the back face of the rear head has exited the 

elbow.   

5.1.2 Results 

It was necessary to run a speed test by operating the crawler manually in order to 

time the cycles and tailor a program to operate it. Once a program is written, further 
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testing may be done and cycle times may be optimized. The results of the manually 

controlled tests are shown in the figure below. For linear speed, three trials were 

completed, allowing the crawler to travel 15-16 in per trial. Each successive run provided 

a faster time as operator error decreased and more efficient ways of cycling the crawler 

were realized. The fastest time achieved was 176 ft./hr. For cornering speed, the crawler 

was cycled through a regulation Hanford elbow for three trials. The fastest time through 

the elbow was 14.17 ft./hr. which amounts to clearing an elbow within 1:30. It was found 

that these times were achieved with air leaks at the manifolds. This realization led to the 

manifolds being sealed fully, and was followed by the installation of quick exhaust 

valves.  

   
Table 9:Baseline Linear and Cornering Velocities 

Using these results as a guideline, a program was written to control the crawler. 

Also, it was noticed that the front head ended up angled out of position when coming out 

of the elbow. This was due to the bladder material not expanding enough and allowing 

the head to turn more than desired. This was corrected by using another bladder tube. A 

test with the program was then carried out. For this portion of the testing, an 8 ft section 

of clear, 3” PVC was sourced and used as a test bed. A starting position for the front of 

the robot was marked for the purpose of maintaining a constant travel distance. It was 

marked such that the front is allowed to travel 75.5.” The tests were then conducted again 

Distance	
  (in) Time	
  (s) Speed	
  (ft/hr)
15.06 47.7 94.81
15.63 32.9 142.3
16.00 27.2 176.73

Linear	
  Speed
Distance(in) Time(s) Speed	
  (ft/hr)

4.25 101.00 12.62
4.25 93.00 13.71
4.25 90.00 14.17

Cornering	
  Speed
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with the program modified in order to achieve improvements in the speed. Below are the 

results of the first run of the device with the program: 

 
Figure 26: Linear Speed Results with PLC Program 1 

 
Figure 27: Cornering Speed Results with PLC Program 1 

The average linear speed was 183.7 ft/hr. This was complemented by a 20.86 ft/hr 

speed in the elbow, which translates to clearing the elbow in just over a minute. These 

times were shorter than what was previously achieved; however there was room for 
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improvement. Modifications were made to the program in order to reduce overlap time 

between inflation of the front and rear bladders. Once the program was modified, the 

following results were obtained: 

Figure 28: Linear Speed Results with PLC Program 2 

 
Figure 29: Cornering Speed Results with PLC Program 2 
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The program modifications led to noticeable increases in speed. The time to 

perform the linear cycle was shortened approximately 1.2 seconds, leading to a speed 

increase of around 1.8 ft/hr. The time to traverse an elbow was reduced approximately 

0.6 seconds, leading to a speed increase of around 0.2 ft/hr. These increases in speed can 

add up to considerable time savings over the course of an extended pipeline. It should be 

noted that the limiting factor for the overall speed is the time needed to inflate the 

bladders. If this system were replaced in the future with a more efficient mechanism, the 

crawler could potentially complete a full expansion and contraction cycle in 2 seconds. 

This would translate to a speed of 600 ft/hr, drastically shortening unplugging schedules. 

As there are countless ways to approach a better head design, and because it is beyond 

the scope of developing an improved body, this has been left for future research. 

5.2 Anchor Force 

5.2.1 Test Setup  

The amount of force the crawler can generate to pull forth a load is limited by how 

much force each head can anchor. This in turn is determined by how much pressure the 

bladder material can contain and by how much it can expand. The latter factor being 

important as the more the bladder expands, the larger the surface area it has in contact 

with the pipe, thus the more traction it can gain in order to transfer force without slipping. 

This test setup consisted of one head of the crawler attached via a braided steel cable to a 

spring scale. The opposite end of the spring scale was attached to a manual winch, which 

in turn was attached to the ground. The head was inserted in a 36” long, 3” I.D. pipe and 

the winch was cranked, increasing the force on the head, until the head slipped in the 

pipe. The force just before the slippage was recorded as the maximum anchor force. The 



58 

inflation pressure of the bladder was increased by 10 psi for each successive test in order 

to gauge the anchor force at various pressures. The bladder material consisted of a heavy 

duty inner tube sized for a 26” bicycle tire, with a diameter range of 1.95” to 2.35” in 

uninflated condition. The wall thickness of this tube is 0.135” and it is made of butyl 

rubber. It was inflated to a maximum pressure of 70 psi. 

5.2.2 Results 

 
Table 10: Anchor Force 

The anchor force of a single head using this material would limit how far a crawler 

could travel due to the increasing drag from the umbilical as the distance traveled 

increases. Considering that each cylinder in the crawler is rated at an output of 132 lbs, 

the array of four cylinders could easily surpass the 222.7 lb maximum anchor force. A 

separate thesis could be done on developing an improved method of anchoring this 

crawler in a pipe. Self- actuating mechanical methods of anchoring which do not require 

air would be ideal. This would allow for the elimination of two valves and greatly 

simplify programming.  

5.3 Pulling Force 

The configuration of this crawler is such that it pulls its payload forward in the 

expansion phase. Thus, the pulling force is equivalent to the maximum force the body can 

Pressure	
  (psi) Average	
  Force	
  Anchored	
  (lbs)
10 31.80
20 63.60
30 95.40
40 127.20
50 159.00
60 190.90
70 222.70
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provide on outstroke. Force transfer on outstroke of the crawler can be calculated with 

knowledge of the force output of the cylinders and their angles by using kinematic 

calculations. The following table depicts the theoretical force output of the crawler if the 

body is completely straight. 

 
Table 11: Theoretical Linear Force Output 

From simulation and observation of actual testing through an elbow, the angle of 

one cylinder relative to the axis of the one preceding it will always be smaller than 90°. 

Assuming an angle between cylinders of 89°, the effective thrust is calculated and 

depicted in the table below. Effective thrust in this case is equal to Fsin(θ), where θ 

represents the angle between the axis of one cylinder and the cylinder it acts upon [23]. 

 
Table 12: Theoretical Angular Force Output 

In an effort to understand the force output on a part by part basis, an individual 

cylinder was evaluated over changing inflation pressures. The theoretical output of one 

cylinder was calculated and then compared to actual measurements of the force output.  

P 250 lb/in2
D 0.75 in
A 0.44 in2
F 110.45 lb

Overall 441.8 lb

Theoretical	
  Force	
  Output	
  (F=PA)

Maximum	
  Angle 89 °

Angular	
  Force	
  (effective	
  thrust) 110.43 lb

Force	
  Lost 0.02 lb

Overall 441.71918 lb

Angular	
  Thrust
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Table 13: Theoretical Output of Single Cylinder 

Force outputs can be measured by attaching the cylinder to a jig with a digital scale 

on one end. It must be noted that in order to reach the 250 psi maximum pressure, a 

conventional compressor would not suffice. A large compressor with a tank size in the 

triple digits from an auto body shop was used. The plastic fittings at the cylinder ports 

were replaced with the stainless steel units in order to avoid failure at these pressures. A 

pressure gauge was installed at the base of the cylinder. Air is then provided to the 

cylinder; allowing it to outstroke and apply force to the scale until the gauge reads the set 

pressure. There are some losses due to internal friction of the cylinder; at 250 psi, the 

measured output is 0.64 lbs. below the theoretical output. This loss in force output is 

smaller than the force loss that would result from a 1 psi drop in pressure. 

Pressure	
  (psi) Force	
  (lb)
25 11.04
50 22.09
75 33.13
100 44.18
125 55.22
150 66.27
175 77.31
200 88.36
225 99.4
250 110.45

Theoretical	
  Force	
  Output
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Table 14: Measured Output of Single Cylinder 

In order to test for force output of the entire robot, the crawler was placed in a 

longer jig consisting of a 3” diameter pipe attached to the digital scale via a support 

structure. This allows for mounting the crawler assembly on one side and having it push 

on the scale on the other. Each test was done at a given inflation pressure for the 

cylinders and the pressure was increased in 10 psi increments for each successive test. 

Exerting force on the scale while within a pipe allows the cylinders to change angle as 

they would when pulling a load. It should be noted that in an unplugging configuration, 

part of the umbilical would be a pressure hose. This could help right the robot as it 

expands, providing larger overall force transfer. Even without this aid, the crawler did not 

toggle significantly during expansion against the scale, leading to a very small loss of 

force output.  

Pressure	
  (psi) Force	
  (lb)
25 11.00
50 21.98
75 32.95
100 43.94
125 54.91
150 65.89
175 76.87
200 87.85
225 98.82
250 109.81

Measured	
  Force	
  Output
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Table 15: Measured Output of Crawler 

5.4 Dimensional Adaptability 

5.4.1 Test Setup  

In order to test the adaptability of the designed crawler in the event of a dimension 

change in the pipelines, a test bed was constructed consisting of a 27” long, 3” I.D. pipe 

followed by a reducer into a 60” long, 2” I.D. pipe, and ending in an enlarger back to an 

11” long, 3” I.D. pipe. The crawler was inserted at the 27” section of the test bed and 

cycled forth until the front head lined up with the end of the 11” section on the opposite 

end. Measuring from initial position of the front head to the end, this translates to 80.94.” 

The figure below is an image of the adaptability test bed.  

 
Figure 30: Adaptability Test Bed 

Pressure	
  (psi) Force	
  (lb)
25 43.98
50 87.90
75 131.79
100 175.72
125 219.61
150 263.53
175 307.42
200 351.34
225 395.23
250 439.16

Measured	
  Force	
  Output
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5.4.2    Results 

Adaptability was first evaluated with the initial version of the PLC program and 

later evaluated with the modified program. It was important to observe if the 

conventional straight line programming scheme could handle sudden changes in pipeline 

diameter. The body was designed to handle the transition without physical impediment; 

however the program was designed around locomotion in a continuous diameter of pipe. 

Testing showed that an alternative programming scheme is not necessary in order to 

manage transitions in diameter. The results of the adaptability test with the initial 

program are presented below: 

 
Table 16: Adaptability Test with Initial Program 

The transition into a reducer creates a slight reduction in speed as opposed to the 

expansion where the crawler simply comes out to the larger pipe without resistance. This 

led to the overall speed of the crawler decreasing by over 0.5 ft/hr on average. With the 

initial program tests complete, the modified program was developed and installed on the 

PLC. The adaptability testing was conducted once more with the new program. The 

results are presented below: 

Distance(in) Time(s) Speed	
  (ft/hr)
80.94 132.53 183.21
80.94 132.53 183.21
80.94 132.55 183.19
80.94 132.56 183.18
80.94 132.56 183.18
80.94 132.56 183.18
80.94 132.54 183.20
80.94 132.52 183.23
80.94 132.52 183.23
80.94 132.52 183.23

Average 132.54 183.20

Adaptability	
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Table 17: Adaptability Test with Modified Program 

As before, the modified version of the program presented an improvement in time. 

A time savings of approximately 1.3 seconds was realized, translating to an overall 

improvement of 1.77 ft/hr. Reductions in overlap times ensured that the front would 

deflate sooner, allowing more time for the bladder to contract before the head entered the 

transition, thereby providing less resistance. 

 

 

 

 

 

 

 

 

Distance(in) Time(s) Speed	
  (ft/hr)
80.94 131.27 184.97
80.94 131.27 184.97
80.94 131.29 184.95
80.94 131.29 184.94
80.94 131.29 184.94
80.94 131.27 184.98
80.94 131.28 184.97
80.94 131.25 185.00
80.94 131.25 185.01
80.94 131.26 184.99

Average 131.27 184.97

Adaptability



65 

VI Discussions 

The goal of this thesis was to develop a body which would allow a robot to 

navigate and survive in the dimensional and radioactive conditions present within HLW 

pipelines. The main site of interest was the DOE Hanford site, where there are HLW 

pipelines with a 3” ID, some 2” ID sections, and 90° elbows. However, this device can be 

adapted to work with various pipeline dimensions and for different applications. The end 

goal for a crawler at Hanford would be to unplug pipes. No configuration for unplugging 

has been presented here, it is left to others to determine how they would adapt this 

crawler for their particular needs.  

Pneumatic cylinders were used for the body because of the advantages they present 

in response, force output, and size. A methodology for sizing the device was determined 

and followed in order to achieve a balance between force output and overall size. 

Essentially, the largest possible cylinder bore that could pass through an elbow was 

determined and selected. The maximum possible stroke was selected similarly. The 

kinematics of the desired configuration were calculated and the cylinders were arrayed 

such that each cylinder is easily replaced via removal of four bolts and one pin, making 

the robot simple to repair. The final prototype was designed such that a regular machine 

shop can replicate it without need for expensive tooling or fixtures.   

The device developed in this thesis was tested using pipes set up in various 

configurations. In the category of straight line speed, the device was capable of a 

maximum linear speed of 185.51 ft/hr. The maximum cornering speed was also 

measured, with the elbow being cleared in 60.5 seconds. Straight line force output topped 
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out at a maximum of 439.16 lbs. This body also has the capacity to transition into a 2” 

pipe. The overall material cost of the prototype is $527.88. However, machining took a 

total of 15 hours and 43 minutes. At a typical shop charge of $50/hr. and the 43 min 

being charged as an hour, the cost of machining adds $800. With more development time, 

accessories for unplugging and inspecting pipelines could be implemented, requiring that 

only the heads be modified. However, the goals set for this thesis have been met.  
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VIII Appendix: Modifications 

8.1 Physical Modifications 

Upon initial testing of the crawler in a 3” I.D. pipe, it was found that the hinges 

allowed too much slop. Any attempt at cycling the crawler forward would result in the 

front head changing angle and the entire device would toggle in the pipe. In order to 

eliminate this, the speed of angular change had to be limited. Application of torsion 

springs at the hinges was considered, however, these would add too much mechanical 

complexity and manufacturing times/costs. A simple, rubber bushing was inserted into 

each hinge such that it applied pressure to the rod eye. With this in place, the speed of 

angular changes was reduced, such that force from an elbow would be necessary to cause 

the bodies to turn. With this, the crawler was able to move forward in a straight line and it 

did not create a problem in elbows. It should be noted that all of the above testing of the 

device was carried out with this modification in place. 

Initial testing also revealed a tendency for bladders to inflate unevenly, and for 

them to rupture. The first issue can be mitigated via a process change in the bladder 

installation. Uneven inflation was addressed by cutting the material longer than the head 

and clamping it to one end of the head while stretched past the other end. This allows for 

the material to flow away from the clamp, over the free end, reducing the tendency for it 

to twist under clamping. Tape was wrapped over the central section of the bladder before 

clamping the other end. This reduced bulging toward the center of the bladder. 
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 Analysis of the disassembled heads and rupture points on the bladders revealed 

small edges on the heads were producing a slight amount of wear on the bladders each 

cycle, eventually leading to failure after several cycles. Eliminating this issue was 

accomplished by changing the finish on the heads. These were polished with a medium 

and then a fine grain steel wool, creating a smooth, mirror-like surface. However, this 

issue highlights the possibility of rupture due to sharp edges inside the pipes. This is yet 

another indication that the bladder system should be replaced with a more durable, 

mechanical solution. Using a bladder with a tougher outer layer could potentially mitigate 

the issue in lieu of such a modification.  

8.2 Program Modifications 

The initial form of the program written for the crawler used certain overlaps in 

cycles to avoid slippage. Essentially, the rear bladder would expand, followed by the 

body expanding, and then the front bladder would expand. At this point the rear and front 

are both inflated, before the rear releases and the body contracts. This overlap keeps the 

body from cycling before the appropriate bladder has anchored. The original program 

allowed for this overlap to last more than a second. In exchange for eliminating any 

chances of slippage, this added some time to the cycle and reduced speed. By adjusting 

the time tables to reduce this overlap, approximately 1.8 ft./hr. was gained in straight line 

speed and 0.20 ft./hr. in cornering. In the final time table, rear and body are inflated for 

approximately 3 seconds before the front turns on. At this point, there is an overlap 

lasting just 0.5 second before the rear releases and the body contracts. This cycle 
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completes when the rear re-inflates with the body contracted, right before the next 

expansion cycle. The extend/collapse cycle takes about 6.5 seconds to complete.  
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