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ABSTRACT OF THE DISSERTATION 

NOVEL ONLINE DATA CLEANING PROTOCOLS FOR DATA STREAMS IN 

TRAJECTORY, WIRELESS SENSOR NETWORKS 

by 

Sitthapon Pumpichet 

Florida International University, 2013 

Miami, Florida 

Professor Niki Pissinou, Major Professor 

 The promise of Wireless Sensor Networks (WSNs) is the autonomous collaboration 

of a collection of sensors to accomplish some specific goals which a single sensor cannot 

offer. Basically, sensor networking serves a range of applications by providing the raw 

data as fundamentals for further analyses and actions. The imprecision of the collected 

data could tremendously mislead the decision-making process of sensor-based 

applications, resulting in an ineffectiveness or failure of the application objectives. Due to 

inherent WSN characteristics normally spoiling the raw sensor readings, many research 

efforts attempt to improve the accuracy of the corrupted or “dirty” sensor data. The dirty 

data need to be cleaned or corrected. However, the developed data cleaning solutions 

restrict themselves to the scope of static WSNs where deployed sensors would rarely 

move during the operation. 

      Nowadays, many emerging applications relying on WSNs need the sensor mobility 

to enhance the application efficiency and usage flexibility. The location of deployed 

sensors needs to be dynamic. Also, each sensor would independently function and 

contribute its resources. Sensors equipped with vehicles for monitoring the traffic 
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condition could be depicted as one of the prospective examples. The sensor mobility 

causes a transient in network topology and correlation among sensor streams. Based on 

static relationships among sensors, the existing methods for cleaning sensor data in static 

WSNs are invalid in such mobile scenarios. Therefore, a solution of data cleaning that 

considers the sensor movements is actively needed. 

 This dissertation aims to improve the quality of sensor data by considering the 

consequences of various trajectory relationships of autonomous mobile sensors in the 

system. First of all, we address the dynamic network topology due to sensor mobility. 

The concept of virtual sensor is presented and used for spatio-temporal selection of 

neighboring sensors to help in cleaning sensor data streams. This method is one of the 

first methods to clean data in mobile sensor environments. We also study the mobility 

pattern of moving sensors relative to boundaries of sub-areas of interest. We developed a 

belief-based analysis to determine the reliable sets of neighboring sensors to improve the 

cleaning performance, especially when node density is relatively low. Finally, we design 

a novel sketch-based technique to clean data from internal sensors where spatio-temporal 

relationships among sensors cannot lead to the data correlations among sensor streams. 
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CHAPTER 1 

INTRODUCTION 

 
Sensor devices of ever-increasing versatility and decreasing size are encasing our 

world. They are crowding into embedded systems, tele-care designs, and are deployed in 

increasing ubiquity in sensor networks of every type. While the advent of sensors has 

increased a societal dependence on a continued availability and reliability of data, this 

dependence has been significantly enhanced by the new wireless paradigms where plenty 

of mobile sensors communicate with each other to form mobile Wireless Sensor 

Networks (mWSNs).  

Sensors in mWSNs typically generate high volumes of data streams that are 

anticipated to be used by applications that require a real-time response. It is clear, 

however, that sensors which inherit limitations of low-power wireless transceiver units, 

limited memory and computational capacity do not gather or forward accurate data at all 

times. Interference and congestion alone minimize the quality of the data collected at a 

base station or a point of data acquisition. Degraded quality of the received sensor data 

lowers the service performance of mWSN applications. Therefore, mechanisms to clean 

sensor data which improve quality of sensor data are mandatory. 

Since sensor nodes normally deployed in mWSNs operate in an unattended fashion 

and have disposable and irreplaceable power sources, any mechanisms including data 

cleaning mechanisms that require processes in sensor nodes need to be well designed in 

prolonging the operational sensor lifetime. Meanwhile, most existing data cleaning 

approaches are designed for applications in which sensors’ locations are unchanged. They 
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do not consider the overall cost of data cleaning in an environment that possibly includes 

hundreds or thousands of moving sensors. Instead, an effective data cleaning in such a 

mobile setting needs to recognize the sensor mobility while preserving power 

consumption of the network. In this research, we studied and developed efficient 

techniques to clean sensor data in a centralized scheme to reduce the processing load and 

power consumption spent in a sensor node.  

1.1 Motivating Applications 

Promising applications relying on mWSNs range in various fields, such as security, 

transportation and healthcare systems. These applications become more seamless and bring 

benefits to our daily lives. They need to correctly perform analyses based on the collected 

sensor data and response in a real-time fashion, although the sensors are remote from the 

data acquisition center. The imprecision of collected sensor data could mislead analyzers to 

incorrect action plans and cause unexpected losses. For example, in the vehicular system 

domain, a traffic center can analyze data streams from sensors attached to vehicles. This 

capability could support real time analysis of traffic conditions around a specific area, 

which in turn could activate a notification alert to the other vehicles for a better route. Due 

to data imprecision collected from sensors, the traffic analyzer could misinterpret the traffic 

condition and mislead other vehicles to detour into a wrong path and cause them an 

unnecessary waste of gas consumption or even bring them an unexpected accident risk. 

Another scenario is patient monitoring. A sensor based insulin pump could be used to 

continuously monitor the sugar level of a diabetic patient, auto-detect the glucose content 

in the blood and even inject the exact dosage of insulin into the patient. Sensors can be 
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placed in an artery to measure the blood pressure of an elderly patient. Moreover, sensors 

embedded in the skull of an Alzheimer patient can be used to monitor and regulate the 

patient’s neuron activity and other vital signs. Similarly, a nanotube biomedical sensor can 

be attached to a patient with asthma symptoms to monitor electronic variations caused by 

the presence of asthma nitric oxide and other airborne asthma pathogens when patients 

move from place to place. The sensor alerts the patient immediately when she/he moves 

into areas where the level of pathogens exceeds the specified threshold. Simultaneously, 

the sensor sends the stream of pathogen levels and trajectory data to the health station, 

where the data will be further processed in order to alert other patients in real-time for 

highly precipitated areas. Without data cleaning mechanisms, the poor quality of sensor 

data received at the healthcare center could not only lead to incorrect treatments and extra 

medical costs, but it can even harm patients to death. 

1.2 Research Needs and Challenges 

The motivating examples mentioned above not only demonstrate the significance of 

this study, but also pinpoint a major challenge that needs to be tackled before a feasible 

solution is realized. In particular, a main and common problem of these applications is 

that the location of the sensor nodes keeps changing. It means that the existing data 

cleaning methods that rely on static group of associated sensor nodes would be 

unavailable for these scenarios. The practical solution of data cleaning in mWSNs needs 

to consider mobility of sensor nodes and dynamic topology of sensor networks. While 

researchers have attempted to improve the quality of the received sensor data, little work 

has been done in the field of mWSNs.  
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In works [AFM06,CFG+07,MNP10], the goal is to correct or “clean” the corrupted 

data statically stored in the databases. These techniques require an access to a complete 

set of the data that are stored in the databases in order to formulate comprehensive data 

cleaning solutions. Dealing with a high volume of the stored data, these methods cannot 

provide a timely response to time-sensitive continuous queries inherent in mWSNs; 

therefore, they are not applicable to process data streams in sensor applications. 

Furthermore, most approaches [JAF+06,PS07,EN04] to clean sensor streams assume that 

the sensor locations are static and the contextual relationships in time and space among 

sensors remain unchanged. Such techniques cannot be applied to mWSNs, where the 

sensors keep moving and creating dynamic contextual relationships among sensors.  

Some works view mobile sensors as geometries (e.g., points, lines, areas, volumes) 

[LHW07,ABN08] changing over time. To record the position of a mobile sensor, these 

works define a sensor’s physical movement as a “trajectory” that denotes the evolving 

position of the sensor from its initial position to its final position. They therefore define a 

trajectory as a function of space and time. In reality, however, the description, 

representation and manipulation of a mobile sensor’s trajectory are more complicated. 

Furthermore, although some works [NYZ12,GTW+10] reduce the volume of a mobile 

sensor’s trajectory and sensor readings, they do not focus on cleaning noisy and corrupted 

sensor data. In the face of volumes of data streams transmitted by moving sensors 

displaying various degrees of precision, accuracy, and dynamism, the core challenge is to 

identify techniques that model and infer situations from mobile sensor data that can be 

used in a data cleaning process. Clearly, much work remains to be done to clean sensor 

data streams in mWSNs. 
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1.3 Research Objectives 

In mWSN applications, sensor data are prone to data missing and all types of data 

corruption. The more we can clean or correct the dirty data, the more feasible the 

applications in mWSNs are. This research stems from the recognition that applications of 

mWSNs will remain elusive unless a solution that incorporates dynamism of sensor 

topology into a data cleaning mechanism is developed. This research involves the design, 

development and experimental demonstration of an online data stream cleaning 

methodology for mWSNs that incorporates dynamism of spatio-temporal relationships 

among mobile sensors. In particular, we studied and investigated the following topics.  

1. Data cleaning in dense networks 

Indeed, the sensor selection process is a primary challenge that is not well tackled in 

existing sensor data cleaning methods. In particular, existing methods rely on an 

associated set of static sensors for their cleaning processes. However, when sensors are 

moving, we cannot rely on a predefined static set of sensors. Therefore, these methods 

are not transferable to mWSNs. Our hypothesis is that we can select the most helpful set 

of neighboring sensors to clean data of a sensor if we can characterize the dynamic 

relationship of sensors in a specific area. The higher the density of sensor nodes in the 

area of interest, the easier a set of helpful sensors can be selected. Therefore, our first 

objective is to develop a data cleaning method in dense networks by characterizing the 

dynamic relationships of mobile sensors in a pre-defined area. 
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2. Data cleaning in sparse networks 

According to the developed method for dense networks, we found that it is more 

difficult to select a set of neighboring sensors that is helpful for cleaning data when the 

density of mobile sensors in an area of interest is lower. Our hypothesis is that mobile 

sensors which have highly relative trajectories are helpful in cleaning data for each other.  

In trajectory analysis, existing solutions represent a sensor trajectory as an ordered list of 

location samples at specific instances in time [GS05]. Such a list can express the 

changing positions of an object throughout its lifespan but it does not contain information 

necessary to extract the sensor trajectories into meaningful trajectory relationships. 

Therefore, the objective of this task is to develop a data cleaning in sparse networks by 

exploiting a relative trajectory pattern among mobile sensors. 

3. Data cleaning for internal sensing  

In many scenarios of mWSN applications, mobile sensors are not sensing a shared 

physical phenomenon in environments. These types of sensors include, but are not 

limited to, a measurement device for glucose level, heart rate and blood pressure of a 

patient, or gas consumption, speed and acceleration of a vehicle. The measurement from 

these types of sensors could change abruptly and not be likely to demonstrate a 

correlation to those of neighboring sensors. For such scenarios, we aim to develop a data 

cleaning scheme that does not rely on spatio-temporal or trajectory relationships among 

mobile sensors.   
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1.4 Research Approaches 

We first investigate networks where there are a number of sensors are moving in the 

system. To clean data in a dense network, we developed the Virtual static Sensor (VS) 

concept to help clean data from mobile sensors. We considered that sensors are traversing 

across areas with diverse environments resulting in different levels of sensor readings. 

We assumed that boundaries of areas with different sensing levels are known and all 

forms of dirty data have been detected. This detected set of dirty data would be discarded 

and treated as a missing data before being forwarded to our designed data cleaning 

module. 

The developed data cleaning method deploys a concept of Virtual static Sensor (VS) 

to reinstate the missing data in mWSNs. Before the cleaning process begins, each VS will 

be assigned with the location and the coverage area. Each of them will not move; it will 

observe the sensor data by processing the measurements physically sensed by other 

moving sensors in its coverage area. The VS knows best, compared to moving sensors, 

about the measurement trend in its nearby area. Therefore, the VS is helpful for the 

cleaning process to estimate missing data of real sensors in its vicinity. As an analogy, a 

VS acts as a host who knows best about events happening around her home and can 

provide, if needed, information around her home to her visitors. The developed VS 

concept cooperates with a traditional linear adaptive filter in prediction mode to increase 

the cleaning performance. 

Since the performance of the VS method is significantly decreased when sensor nodes 

in the network are sparse, we also developed a cleaning method that performs well within 

a sparse network. This method also considers the sensor trajectory relative to a pre-
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defined area. It would select the most helpful and reliable moving sensors and deploy 

their data into the cleaning module. The selection mechanism is based on the sensing 

consistency of each sensor stream for a pre-defined area. Like our previous design, it is 

assumed that all forms of corrupted data are detected before being forwarded to our 

proposed data cleaning module. Again, the designed cleaning process is a centralized 

based architecture, i.e., all cleaning mechanisms including the detection of dirty data and 

data stream management are conducted at the base station, where all sensor data streams 

are forwarded. The trajectory data and the sensor readings from a sensor could be 

delivered to the base station via different channels as an out-of-bound transmission. 

Although the sensor measurements are dirty and need to be cleaned, we assume that the 

trajectory data is correctly received at the base station. 

This developed data cleaning method is an area-based approach, assuming a priori 

knowledge of sub-area boundaries. The cleaning process computes the replacement of 

dirty data by utilizing the readings from a group of sensors that are believed to be 

offering enough consistent readings from a specific sub-area. Based on a priori 

knowledge of sub-area boundaries, each sub-area has been indexed and matched with a 

belief table. Our approach uses the belief table, which contains the updated belief degree 

of each sensor for each sub-area. For a sub-area, the belief degree of each sensor 

represents the consistency and reliability level of readings from a sensor that could help 

in cleaning dirty samples collected from the corresponding sub-area at a time. 

However, there are many types of sensors that do not measure a surrounding 

phenomenon, for example, sensors measuring heart rate, blood pressure and glucose level 

of patients, or sensors gauging acceleration and gas level of vehicles, etc. The readings 
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from these sensors are not likely correlated although the locations and trajectories of 

these sensors are close. We are motivated by these common scenarios, where the existing 

online data cleaning techniques including our developed methods are not applicable. In 

this case, we further developed a sketch-based data cleaning method that can clean data 

streams of sensors in such environments. The sketch-based method is a pairwise cleaning 

between the base station and a corresponding mobile sensor. Each sensor exploits the 

unique characteristic of a super-increasing set to formulate a sketch packet, which can 

help clean N samples of sensor data once received at the base station. 

1.5 Research Contributions 

According to the research objectives and approaches, we have developed 

comprehensive data cleaning solutions that include protocol design, algorithm 

development, experimental and simulation proofs and analyses. Specifically, we make 

the following contributions. 

1. Developed the virtual static sensor concept to clean sensor streams in dense 

networks. 

To clean sensor data in dense networks, we developed a novel data cleaning method 

using the concept of virtual static sensor. In this work, our main contributions are listed 

as follows. 

 We developed a concept of virtual static sensor to collect data from mobile 

sensors which have close spatio-temporal relationships within a coverage area of 

a virtual sensor. To our best knowledge, this method is the first data cleaning 
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method that is designed and validated to mWSNs, where network topology 

among sensors is transient. 

 We applied the use of adaptive filter in prediction mode by combining it with 

virtual sensor to reinstate the value of missing sensor data in mWSNs. 

2. Developed the belief-based data cleaning method for sparse networks. 

To overcome a limitation of the virtual sensor based method, we focused on 

investigating how to clean sensor data streams in sparse networks. In this work, our main 

contributions are as follows. 

 We introduced a belief-based sensor selection method to identify the group of 

sensors that is helpful in cleaning data based on their current trajectories and the 

quality of their data streams. 

 We developed a novel online data cleaning method designed for the dynamic 

environment in mWSN applications. Our evaluation results show that the cleaning 

performance of this method outperforms those of the virtual sensor-based method 

and an existing method designed for stationary sensor networks. 

	
  
3. Developed the sketch-based data cleaning method for internal sensing 

environments. 

In scenarios where sensors are not measuring a shared environment, we developed a 

novel sketch-based data cleaning method. The main contributions of this work are listed 

as follows. 
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 We developed a sketch-based data cleaning method for data streams in mWSNs 

where moving sensors do not measure a shared phenomenon and when they are 

also deployed in a sparse network.  

 We exploit a unique characteristic of a super-increasing set to help formulate a 

sketch packet which plays a key role in cleaning data when received at the base 

station. 

1.6 Organization of the Dissertation 

Up to this point, we have introduced the background, challenges, research objectives 

and approaches of this dissertation. The remainder of this dissertation is organized as 

follows. First, we review the comprehensive literature works related to data cleaning in 

mWSNs. We then present the use of the virtual sensor concept for cleaning sensor data 

and its justification in Chapter 3. We describe the belief-based cleaning method that 

analyzes patterns of sensor movements relative to sensing boundary in Chapter 4. In 

Chapter 5, we discuss the novel cleaning method based on a sketch technique. Finally, we 

conclude what we achieved and project the potential research directions in Chapter 6.   
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CHAPTER 2 

RELATED WORKS 

Data cleaning is a pre-process that is commonly used to reduce all types of data 

imprecision. Types of data imprecision include, but are not limited to, data missing, noisy 

data, data misplacement and data replication, etc. The suitable technique for data cleaning 

is application dependent. That is, there is no generic mechanism for cleaning data in all 

types of applications.  

Data cleaning is firstly used in applications involving databases with forms of data 

imprecision. For more than a decade, researchers have focused primarily on cleaning data 

in the static databases or data warehouse. Applications of cleaning databases include 

outlier detection and replacement [SPP+06], data consistency maintenance [CFG+07] and 

reduction of the data uncertainty [CCX08]. To accomplish such tasks, existing 

approaches require access to a complete set of static databases. However, deployment of 

sensors in a domain normally generates a very high volume of streaming data, while most 

sensor applications need a timely response through types of continuous queries 

[TM06,Agg02]. Storing the whole received sensor data and then processing them in a 

static database cannot respond to this requirement of sensor applications. Therefore, 

current solutions to data cleaning are not suitable for typical WSN and mWSN 

applications. 

The purpose of this chapter is to provide the survey on data cleaning mechanisms, 

frameworks, and architectures in both static and mobile Wireless Sensor Networks (WSNs) 

and to discuss how they are related to this research as follows. 
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2.1 Data Cleaning in Static Wireless Sensor Networks 

2.1.1  Sequential based methods 

The first sequential based data cleaning method for WSN was proposed in [JAF+06]. 

This work was the collaboration of a research group that is responsible for developing the 

Stanford data stream management system (STREAM) [ABB+03]. In [JAF+06], authors 

proposed a data cleaning framework, Extensible Sensor stream Processing (ESP), which 

is applicable for both RFID and WSN data. This work was designed to be integrated with  

the STREAM data stream management system. ESP data cleaning framework, as shown 

in Fig 2.1, proposed the cleaning operation with a cascade of five programmable stages: 

Point, Smooth, Merge, Arbitrate and Virtualize. All five of these stages are not necessary 

to clean sensor data for a given application. Basically, the objective of the Point stage is 

to screen the individual readings that conflict with the predicated system rules, for 

example, clear distanced based outliers. The Smooth stage aims to clean the missed 

readings in a single data stream based on temporal relationships of the data sequence. In 

the Merge stage, the cleaning process needs to use spatial properties of at least one stream 

to correct the data. The Arbitrate stage deals with conflicts of readings, such as the 

conflicted location information of a sensor. Finally, the Virtualize stage would clean 

incorrect readings by combining readings of multiple types of sensors of which readings 

are related to each other. 

The main advantage of the pipelined based architecture, ESP, is that it is easier to 

integrate into data stream management systems that deploy a sequential query plan. 

However, in WSN applications, the nature of data streams is dynamic and cleaning data 
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streams in a sequential set of modules in ESP without a dynamic justification might not 

be efficient. Moreover, the work proposed just only a framework for cleaning sensor data, 

without clarifying a specific technique to clean data in dynamic sensor environments. 

Figure 2.1 Modules in sequential based data cleaning method (ESP) 

As the extension part of ESP framework, authors in [SJFW06] proposed a mechanism 

to estimate the quality of the cleaned data in streams for object detection applications. The 

authors proposed a quality track pipeline that will be used along with the cleaning pipeline 

in ESP to alleviate the drawbacks of the sequential ESP process in which the pipelined 

cleaning process cannot adapt to the dynamic nature of data in sensor applications. Two 

metrics, confidence and coverage, are used as measures of data quality. As designed for the 

object detection applications, the confidence metric accounts for false positive reports and 

the coverage metric accounts for false negative reports of the reality of object existence. 

The authors introduced formulas to calculate the confidence and coverage metrics in 

temporal and spatial smooth modules as well as the arbitration cleaning module. 
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The result of this work provides a reliability metric of the output of cleaned data 

streams. However, the design of this work is still restricted on the pipeline ESP data 

cleaning framework and it also restricts itself to the object detection applications. More 

importantly, it does not address how to correct any types of corrupted samples in data 

streams.  

Later, authors in [JGF06] proposed a statistical Smoothing for Unreliable RFID data 

(SMURF) as an improvement of the ESP pipelined data cleaning framework for Radio 

Frequency Identification (RFID) applications. The key idea behind this work is that a 

RFID data stream could be viewed as a random sample of tags that are detected by RFID 

readers. Instead of using the fixed window size, the algorithm proposed in this work 

continuously computes and adapts a suitable window size based on the evaluation of 

binomial distribution of the observed readings. The algorithm employs the statistical 

sampling theory to clean the readings of single RFID tag and uses the Horvitz-Thompson 

estimator to clean an aggregated sample of a multi-tag population. SMURF is a 

mechanism to clean RFID data in the ESP pipelined data cleaning framework. 

Nonetheless, the SMURF cleaning mechanism was designed only for RFID systems. 

Data cleaning in an RFID system could not always be used in a WSN application because 

the RFID system mostly has a priori information of the observed data, such as range of 

tag values, class of tags and number of digits in a tag. Such data are discrete numbers, 

which are contrast to continuous numbers generated by wireless sensor devices. Cleaning 

the sensor data that contains multiple fields of continuous numbers intuitively needs a 

more complex technique. 

 



 
 
 

16 
 

2.1.2 Non-sequential based methods 

In non-sequential based data cleaning methods, authors in [EN03] proposed a data 

cleaning method to detect and clean distance-based outliers by using the Bayesian 

theorem. The feature of sensor data and noise pattern are assumed to be a priori 

knowledge. In this work, the authors modeled the distribution of sensor data and noise by 

using Gaussian distribution with pre-defined and constant priori mean and variance 

values. This work was designed to answer a common set of user queries, such as Single 

Source Queries (SSQ), Set Non-Aggregate Queries (SNAQ), Summary Aggregate 

Queries (SAQ) and Exemplary Aggregate Queries (EAQ), with a “confidence level,” 

which is the user-defined threshold that reflects the desired user’s confidence of the 

expected query responses. However, this technique only considers the temporal relations 

of sensor readings from an individual sensor by using a priori, constant statistical 

knowledge, i.e., the distribution and related statistical parameters of the interested sensor 

readings are pre-defined and static. Considering that WSN data is normally dynamic, this 

technique is not suitable for typical WSN scenarios. 

There are works deploying machine learning methods to solve the problem of 

inaccurately received sensor data. In [PS07], authors applied the neuro-fuzzy regression 

approach to estimate a new proper value for a sample with noise and a missing data 

sample. This approach formulates a regression model, which is derived from a training 

sample set of sensor readings. This model relies on the data feature of the entire sensor 

network and the spatio-temporal relationships between sensors. The authors also 

addressed how to deal with the uncertainty of data readings by using a neural network 

based fuzzy logic system to tune the parameters and structure of the regression prediction 
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system. Another work that uses a technique in machine learning is addressed in 

[ZCWL07]. The authors proposed to clean the sensor data by using the moving-average 

based method to predict the corrupted or missing sensor readings as to address the 

dynamic data features of sensor readings. 

In [BPM09], authors introduced the belief-based non-sequential data cleaning 

framework with the concept of time of arrival to identify the unreliable data streams 

received at the base station. The concept of time of arrival is that the higher jitter of the 

received samples of a stream implies the lower and less inconsistent quality of the 

wireless transmission links along the route used to forward the data samples. 

The authors developed a data cleaning framework called Time Of Arrival for Data 

cleaning (TOAD), as shown in Fig. 2.2, that addresses the dynamic spatio-temporal 

correlations between two static sensors that are selected from a static set of immobile 

sensors.  The framework also considers the inconsistency of time when samples of a 

sensor data stream are received at the base station. With both the spatio-temporal 

correlations and the time inconsistency factor, the authors proposed a belief based 

mechanism to filter out any anomalies in sensor data.  

At the base station, for each sensor node, TOAD pre-defines a list of neighboring 

sensor nodes that are believed to facilitate data cleaning. TOAD computes the spatial 

correlations among sensor nodes and updates the belief parameter for each sensor node in 

an online fashion. TOAD introduced three adaptive filter based smoothing modules--

temporal filter, averaging and tap exchange--for cleaning a dirty sensor sample. When a 

data sample of a sensor needs to be cleaned, TOAD justifies the most suitable smoothing 

module from the highest belief parameter that the corresponding sensor has with the pre-
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defined neighboring sensors. This work directly overcomes limitations of the ESP 

pipelined data cleaning framework in that it justifies the most suitable smoothing method 

according to the correlation and reliability between the neighboring sensors’ data streams.

However, for a sensor node, this framework assumes the static list of neighboring sensors 

that are expected to help clean data of the corresponding node. This assumption will not 

be applicable to the dynamic network topology of mobile sensors in mWSNs. 

 

Including the research milestones mentioned above, a number of different approaches 

to clean sensor streams in static WSNs have been proposed. However, they are all 

restricted in that the deployed sensors are assumed to be static and the contextual 

relationships in time and space among sensors remain unchanged. Since sensor mobility 

creates dynamic contextual relationships among sensors, the existing data cleaning 

methods for sensor networks cannot be applied to mobile environments. 

Figure 2.2 Time of arrival for data cleaning technique [BPM09] 
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2.2  Data Cleaning in Mobile Wireless Sensor Networks  

Unlike data cleaning methodologies for static WSNs, data cleaning in mWSNs needs 

to consider the dynamism of sensor behaviors and relationships among themselves due to 

sensors’ mobility. As there is no dedicated research work attempting to clean sensor data 

in mobile environments, we start reviewing the literature on the key task in mWSN data 

cleaning methodology, which is the identification of dynamic properties of sensor 

trajectories. 

Normally, mobile sensors would periodically report their readings attached with the 

corresponding localization output. The sequence of corresponding sensor location and 

time represents the trajectory data of each sensor. Research related to trajectory data can 

be categorized into two main classes, offline and online. The offline class is a group of 

research works of which methodologies prepare, process, and extract information out of 

trajectory data, which are statically stored in databases or a data warehouse. Research in 

this class includes, but is not limited to, trajectory similarity search [FGT07] and 

trajectory pattern mining [GNPP07], etc. In contrast, research in the online class 

addresses the methodology that needs to manipulate a high volume of streaming data. 

The applications relying on the online class methodology typically need a real-time 

analysis for promptly taking a suitable action.    

Since this research focuses on an online methodology, we here mainly review related 

works in the online fashion. In trajectory and moving object related works, there are 

attempts to resolve specific problems directed only to trajectory data. They do not address 

related problems that we address in this research. The example research works mentioned 

here include location prediction [MPTG09], trajectory classification [LHLG08], 
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trajectory reduction [GTW+10], density query [JLOC06] and enhanced semantic 

annotation [YCP+11,Yan09]. Although some works [TTD+09,TPL+10,Tra11] address the 

manipulation of the uncertainty of trajectory data streams, they do not associate their 

solutions with sensor data. The research, which is the most relevant to data cleaning, 

addresses outlier detection [BCFL09,LHL08,LHKG07] from the trajectory perspective in 

which the proposed solutions can detect a different trajectory pattern of a moving node 

compared to those of its counterparts. In sum, we found none of them proposed a method 

in which the relationships between sensor trajectories, contexts and readings are 

coordinated to clean data streams in mWSN systems. 
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CHAPTER 3 

VIRTUAL SENSOR FOR MOBILE SENSOR DATA CLEANING 

Missing data is a common data uncertainty occurring in mobile wireless sensor 

networks. Node mobility prevents existing data cleaning techniques designed for 

stationary counterpart to properly estimate the missing data. In this chapter, we present a 

novel method to clean the missing data in mobile sensor environments. This method 

employs computation and memory resources at the base station to establish virtual static 

sensors collaborating with traditional adaptive filters in prediction model. With certain 

constraints given below, implementing the virtual sensor based algorithm cleans more 

than 80% of missing data, an increase in performance as compared to existing cleaning 

methods without any additional hardware implementations.   

3.1 Introduction  

In chapter 2, we have reviewed literature related to methods in data cleaning. All 

previous works have not dealt with the mobility of sensors which is an irrelevant issue in 

stationary WSN. In addition, there are attempts in literature that used the term of “virtual 

sensor,” to resolve problems in WSN. Researchers [KPJ06,KSR08] deployed virtual 

sensors as a middleware layer to collect data from various heterogeneous stationary 

WSN. Jayasumana et al. [JHI07] proposed virtual sensors to collaborate for an efficient 

resource utilization protocol that supports network operations and maintenance over a 

network. Although the term of virtual sensor is not newly used for WSN, a proper 

algorithm to clean sensor data using virtual sensors has never been addressed. 

In this chapter, we deploy the concept of virtual sensors to help cleaning data for 
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mobile wireless sensor networks. We designed an architecture combining a novel online 

method using the concept of Virtual static Sensor (VS) and the Normalized Least Mean 

Square (NLMS) adaptive filter based predictive model [SH05] to address cleaning the 

missing sensor data in a mobile environment of sensor networks.  

3.2 Assumptions and Methodology 

We assume that the network operation is under single domain and based on a 

centralized architecture. Sensors move within a known and bounded area. All data 

successfully delivered to the base station is non-duplicated, noise-free and synchronized 

before proceeding to the following data cleaning process. 

3.2.1 NLMS-based Linear Adaptive Filter 

The adaptive filter is a tool in digital signal processing which can be applied to 

signal/data prediction when the nature of the data is time-variant; the statistical properties 

evolve over time. The adaptive filter is used in a prediction model as shown in Figure 3.1. 

The adaptive filter, at each step k, takes the latest N samples of input x[k] to compute an 

output y[k] as a prediction of desired value d[k] by, x[k]w[k]y[k] T ⋅= , where w[k] is 

the filter weight vector and x[k] is the input vector, both with dimensions Nx1.  The error 

signal e[k] is the scalar value of difference between the actual desired value d[k] and 

output signal y[k] computed as e[k] = d[k] – y[k]. The error signal e[k] feedbacks to the 

adaptive filter and updates all elements in the weight vector w[k] to, typically, minimize 

the mean square error. Among variety of adaptive filter techniques, the NLMS method is 

chosen due to its low computational complexity and its adaptive convergence rate to suit 

the evolving statistical properties of the nature of mWSN data. The NLMS algorithm 
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applies the error signal to update the weight vector as follows:

x[k]e[k]
[k]xx[k]

αw[k]]w[k T ⋅
⋅

+=+1 , where α is a constant value between 0 and 1 

[SH05]. 

One step delay
(Z-1) Adaptive Filterx[k]

d[k]

y[k]

e[k]

+
-

 

 Figure 3.1 Adaptive filter in prediction model  

3.2.2 Virtual Static Sensor 

A Virtual static Sensor (VS) is, in fact, a memory space allocated at the base station 

to temporally store a vector value calculated from sensor data streams to represent a 

desired measurement from a specific location. In the aspect of online data processing, the 

data stream that is updated to a VS is analogous to a data stream received from a real 

sensor and temporarily stored at the base station.  

To clean data in an area of interest, multiple VSs would be deployed. Before 

deploying VSs for the cleaning process, there are two components to be defined by 

system administrators which are the location and coverage area of each VS. The location 

of VS will be used to calculate the data for updating to a VS. The coverage area is needed 

for: (1) it is the area where each VS can obtain the data from the visited sensors and (2) it 

is the area where a VS can help other real sensors clean their missing data.  

After defining locations and coverage areas of all VSs, the base station will update 

the data from real sensors, which enter the coverage area of a VS, to the corresponding 
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allocated memory space. As mentioned, the VSs are not physically implemented and 

directly sensed the desired measurement in the area of interest. A method to update the 

VS data needs to be defined. To update data of a VS, we assume that the closer the real 

moving sensor is located to the corresponding VS, the more similar the data is from that 

real sensor to the data measured at the VS location. Therefore, at a specific time, we 

update the data for each VS by calculating the weighted average value of data indirectly 

proportional to the distance between each traversing sensor and the corresponding VS. 

The details of how a VS collects/updates its data are explained in the next section. 

Because each VS does not move and is updated with the data based on the 

measurements physically sensed by all moving sensors in its coverage area, the VS 

knows best, compared to moving sensors, about the measurement trend in its nearby area. 

Therefore, the VS is helpful for the cleaning process to estimate missing data of real 

sensors in its vicinity. As an analogy, a VS acts as a host who knows best about events 

happening around her home and can provide, if needed, information around her home to 

her visitors. 

To achieve an efficient performance of data cleaning in real implementations, the 

coverage area and location of a VS must be well defined. The system administrators who 

operate the data cleaning process can design the layout of each VS coverage area. Each 

coverage area is a sub-area where the desired measurements are expected to be similar -- 

the variance of measurements should not be large. For example, the system 

administrators who know the layout of a shopping mall should not place a VS in a 

location with a coverage area that includes both indoor and outdoor areas. This is due to 

their incompatible data features such as unequal mean value and high variance. That is, 
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the more precisely the system administrators can identify the boundary of such 

dissimilarity of data features, the higher the cleaning performance they can achieve. 

In cases where the system administrators might not precisely know about data feature 

differences in the area, the cleaning performance is likely to be lower. To gain higher 

performance in such situations, a smaller VS coverage area is preferred. This situation 

creates a tradeoff between the accuracy and the amount of the cleansed data. However, 

the problem we are addressing is not focused on such environments. 

3.2.3 Adaptive Filter-based Data Cleaning 

With the combination of adaptive filter and VS concepts, our data cleaning approach 

consists of three main steps: (1) VS data update, (2) VS data prediction and (3) real 

sensor data cleaning. 

1) VS data update 

To update the data to the memory space assigned for each VS at a specific time, the 

base station will collect data of all sensors which pass by the coverage area of a VS and 

then calculate the desired value for the VS by weighted averaging the collected data. The 

weight is indirectly proportional to the distance between the VS and sensors traversing in 

the VS area. We assume that the closer the real sensors are to the location of 

corresponding VS, the more weight their data are given in data estimation to update the 

VS data. The data for the VS can be calculated as follows: 

∑

∑

=

=

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

−

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛

−
=

n

i vsi

n

i vsi
i

vs

ll

ll
S

S

1

1

1

1

 



 
 
 

26 
 

,where  

Svs :  The data that updated to the corresponding VS. 

Si : The data sensed by the real sensor i in the coverage area of corresponding VS.  

n  :  The number of sensors in the coverage area of corresponding VS. 

lvs  :  The pre-defined static location of the VS. 

li :  The location of real sensor i. 

The Svs value will be updated to the VS as the current data sensed by the VS. The 

algorithm updating the data to a VS is illustrated as algorithm in table 3.1. 

2) VS data prediction 

Due to the unpredictable movement of real sensors in the network, it is likely that a 

VS may not have sensors passing by to update data, which parallels to data missing in a 

real sensor. This uncertainty of updates reduces the potential of a robust cleaning process. 

To maintain a stream of updates in each VS, there is an NLMS adaptive filter running in 

the prediction model at the base station to temporally estimate the missing VS data. 

However, without real updated data, the accuracy of the data estimation gradually 

deteriorates and the predicted data after N (the size of filter weight vector) consecutive 

predictions will not be used. Once there are N+1 consecutive missing data samples from 

the VS, it stops predicting any missing data and does not restart predicting there are at 

least N consecutive data updates received from real sensors. 
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Table 3.1 VS data update 

// Input:  1)  Location of n sensors at time t: lt ={l1t, l2t, l3t, ..., lnt} 

//  2)  Data sample of sensors at time t: St ={s1t, s2t, s3t, ..., snt} 

//  3) Location of k VSs: lvs ={lvs1, lvs2, lvs3, ..., lvsk} 

// Output: The k data to be updated to the k VS by weighted averaging based on the 

//distance from each sensor to the corresponding VS at time t: Yt = {y1t, y2t, y3t, …, ykt} 

1: Procedure VS_UPDATE_ALGORITHM (St, lt, lvs)   //At time t 

2: for VS = 1 to k do // Loop the number of VSs 

3:  for RS = 1 to n do // Loop the number of real sensors 

4:   if ( (lRSt is in the coverage area of the corresponding VS)  

5:    && (sRSt ≠ missing data) ) then 

6:    //Compute the accumulated total distance 

7:    Dt = Dt + 1/||lRSt–lvs|| 

8:    At = At + ( SRSt / ||lRSt–lvs|| )    

9:    end 

10:   else 

11:    skip to the next sensor; 

12:   end 

13:  end 

14:  // Compute the updated value to the VS 

15:  Yvst =  At /Dt 

16: end 

17: end procedure 
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3) Real sensor data cleaning 

If the base station detects missing data in a real sensor, it starts cleaning the missing 

data in the stream. Normally the sensed data, at a time instance, is sent along with 

location information of the sensor in the same packet. When a sample of data is missing, 

it is common that the location information is missing as well. Since our cleaning method 

selects the most suitable VS to clean the missing data based on the location of the real 

sensor, an arbitrary location prediction algorithm [MZM+09,MPTG09] is required to 

locate the sensor when the missing data occurs. However, if the location information is 

delivered to the base station out-of-band to that of the sensor data and the location of the 

sensor is available, the location prediction is not needed. This case is similar to when a 

selected location prediction can perfectly locate the sensor. Once the real sensor is 

located and the most helpful VS is selected, the cleaning process will replace the missing 

data of the real sensor with the data of the selected VS at the corresponding time instance.  

3.3 Evaluation and Analysis 

We simulated an mWSN environment using the software package MATLAB. We 

compared the efficiency of our method to method in [BPM09] based on varied sensor 

densities, average sensor speeds and amount of missing data.  

In this scenario, there are n real sensors moving randomly and collecting temperature 

data. The area of interest is 54m x 54m divided into 9 sub-areas of 18m x 18m each. 

There are three different sub-area types with different average temperatures: (1) Indoor 

area, (2) Shaded outdoor area and (3) Outdoor area. 
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Fig. 3.3 Percentage of correctly cleaned data under each error threshold varying with the 
number of real sensors. 

Each area category contains temperature values based on a normal distribution with 

mean values µ1, µ2 or µ3, respectively, and fixed standard deviation of 0.5ºC. The data 

set is from an hourly observation table at the Asheville regional airport during January 1-

15, 2007 [Nat07]. All mean values evolve over time with µ3 approximately 6ºC higher 

than µ2 and 13ºC higher than µ1. We assume that the system administrators allocate 36 

VSs to evenly cover the whole area of interest without overlapping coverage areas. The 

layout of the area is depicted as in Figure 3.2. 
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In each simulation, we assume that each moving sensor samples the data every 30 

seconds. We simulated 40000 data samples per each real sensor and used it as a 

referenced data set. To generate missing data in the set, we randomly took out a set 

percentage of samples. The adaptive filter running in each VS has a length of N = 5 taps. 

The percent ratio of the amount of correctly estimated missing data to the total missing 

data samples indicates the effectiveness of the algorithm. Data is counted as "clean" only 

when the absolute difference between the estimated data and the referenced data is lower 

than a pre-defined error threshold, Emax, which is the user-defined error margin indicating 

whether the data estimation is correct.  

The evaluation was performed by varying three parameters: (1) number of real 

sensors in the system, (2) average sensor speed and (3) the amount of missing data. First, 

we varied the number of real sensors in the area of interest but maintained the average 

sensor speed at 9 meters per minute with 30% missing data. As shown in Figure 3.3, the 

result shows that the increasing the number of real sensors in the environment, the better 

the performance of our algorithm. The increasing number of real sensors in the area 

increases the rate of data updated to each VS. The higher rate of data updates to VS 

lowers the amount of missing data in real sensors that cannot be estimated. By 

considering at the Emax of 0.5ºC, our algorithm can correctly clean more than 80% of the 

missing data when there are 108 moving sensors to 36 deployed VSs; 3 times the number 

of deployed VSs. On the other hand, this result also indicates that, to maintain a specific 

level of cleaning performance, the number of deployed VSs must be limited relative to 

the number of real sensors operating in the area. However, in order to maintain the VS 

coverage over the whole area of interest, when there is a smaller number of VSs, the 
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larger the VS coverage is required. Whenever a VS coverage area is expanded and covers 

the areas with different categories, the cleaning accuracy would be decreased. Therefore, 

this consequence proves that the virtual sensor based algorithm works without 

compromise in the cleaning performance only when the sensor density in the area of 

interest is high. The required number of real sensors is dependent on the required level of 

the guaranteed performance. 

Next, Figure 3.4 shows that our method is unaffected by different sensor speeds when 

the location information field is not missing or perfectly retrieved by a location prediction 

algorithm. With the number of real sensors fixed at 108 and the average sensor speed 

varied, 80% of the missing data is cleaned with an Emax = 0.5ºC. Meanwhile, when an 

existing imperfect location prediction algorithm like NLMS adaptive filter [SR06] is 

applied, the performance decreased. This is the result of the performance degradation of 

location prediction algorithm that provides more incorrect location information to the 

cleaning process when the sensor speed is faster. Although the performance is dropped 

when applied the imperfect location prediction, it still approximately 20% higher than  

that of temporal cleaning method [BPM09]. 

As the number of missing data increases, less data get updated in the VS. This 

reduces the amount of available VS data that could be used in the data cleaning process. 

Therefore, as shown in Figure 3.5, when the amount of missing data increases the 

performance of our algorithm deteriorates. Nevertheless the performance is still higher 

than that of the temporal self-cleaning method [BPM09]. 
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(a) Average sensor speed at 9 meters/minute 

 

 
(b) Average sensor speed at 18 meters/minute 

 

 
(c) Average sensor speed at 27 meters/minute 

 
Fig. 3.4 Percentage of correctly cleaned data at 30% missing data with various sensor 
speeds among (1) VS algorithm with the perfect location prediction (2) VS algorithm 
with NLMS adaptive filter based location prediction, and (3) Self temporal cleaning by 
using NLMS based adaptive filter 
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(a) Missing data at 20% 

 

 
(b) Missing data at 40% 

 

 
(c) Missing data at 60% 

 
Fig. 3.5 Percentage of correctly cleaned data at 9 meters/minute sensor speed with 
various amount of missing data among (1) VS algorithm with the perfect location 
prediction, (2) VS algorithm with NLMS adaptive filter based location prediction, and (3) 
Self temporal cleaning by using NLMS based adaptive filter 
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3.4 Summary 

In this chapter, we present a novel method to clean missing data in mWSN 

applications. This method combines virtual sensors with an NLMS adaptive filter. 

Results demonstrated that, when the location information of the sensor is not missing or 

fully retrieved by a location prediction, our method cleans more than 80% of missing 

data, is independent of the sensor speed when the number of moving sensors is at least 3 

times the number of VSs. Since the method does not need any additional hardware 

implementations, it suits to mWSN applications where the area of interest is temporary 

for operations.  
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CHAPTER 4 

BELIEF-BASED CLEANING IN TRAJECTORY SENSOR STREAMS 

The imprecision in data streams received at the base station is common in mobile 

wireless sensor networks. The movement of sensors leads to dynamic spatio-temporal 

relationships among sensors and invalidates the data cleaning techniques designed for 

stationary networks. As one of the first methods designed for mobile environments, we 

present a novel online method to clean the imprecise or dirty data in mobile wireless 

sensor networks. Our method deploys a belief parameter to select the helpful neighboring 

sensors to clean data. The belief parameter is based on sensor trajectories and the 

consistency of their streaming data correctly received at the base station. The evaluation 

over multiple mobility models shows that the following method outperforms the existing 

data cleaning algorithms, especially in sparse environments where the node density in the 

system is low. 

4.1 Introduction 

In chapter 3, it has been observed that the cleaning method based on the concept of 

virtual sensor does not consider the non-synchronization of sampling time among 

sensors, and its performance is limited by the node density in the system. Thus, we are 

motivated to clean mWSN sensor data with an online method to satisfy the real-time 

applications. The contributions in this chapter are: 

 We introduce a belief-based sensor selection method to identify the group of sensors 

that is helpful in cleaning data based on their current trajectories and the quality of 

their data streams. 
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 We present a novel online data cleaning method designed for the dynamic 

environment in mWSN applications. Our evaluation results show that the cleaning 

performance of our method outperforms those of virtual sensor-based method in 

[PP10] and a method designed for stationary sensor networks in [ZCWL07]. 

4.2 Problem Statement and Assumptions 

Assuming that there is a pre-process operating to detect the dirty data, such as 

outliers, non-ordered data sequence, out-of-date data and missing data, etc., such dirty 

data is discarded by the system. We develop an online algorithm to clean the dirty data 

streams in mWSN environments. The designed cleaning process is centralized based 

architecture, i.e., all cleaning mechanisms including the detection of dirty data and data 

stream management are conducted at the base station where all sensor data streams are 

forwarded.  

In practice, the trajectory data expressing the time-location information and the sensor 

measurements from a sensor could be delivered to the base station via the different 

channel as an out-of-bound transmission. Although the sensor measurements are dirty 

and need to be cleaned, we assume that the trajectory data is correctly received at the 

base station. 

We focus on cleaning the dirty data from sensors, which are moving in a pre-defined 

area of interest.  We assume that multiple sub-areas form up the area of interest. The level 

of reading in the same sub-area is similar and different from that of adjacent sub-areas. 

The boundaries among sub-areas are also assumed to be known. 
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4.3 Belief-based Cleaning Method  

This presented data cleaning method is an area-based approach assuming a priori 

knowledge of sub-area boundaries. The cleaning process computes the replacement of 

dirty data by utilizing the readings from a group of sensors that are believed to be 

offering enough reliable readings from a specific sub-area. In this section, we explain the 

developed cleaning method in detail. We first discuss how a group of neighboring sensors 

is selected for collaborating in the cleaning process. We then describe how the dirty 

sample is cleansed based on the distance function in both time and location of sensors.  

4.3.1 Belief-based Sensor Selection 

With the number of deployed sensors in practice, brute-force methods to select the 

most correlated data readings are not practical. Based on a priori knowledge of sub-area 

boundaries, each sub-area has been indexed and matched with a belief table. This 

approach is using the belief table, which contains the updated belief degree of each 

sensor for each sub-area. For a sub-area, the belief degree of each sensor represents how 

trustworthy a sensor could help cleaning the dirty readings measured within the sub-area 

at a specific time. It is based on two parameters, which are (1) alibi degree and (2) 

detection rate of dirty data, explained as follows: 

1) Alibi Degree (A) 

The alibi degree is computed at a specific time to show the accommodation level that 

a sensor experiences and reads the dedicated measures within a sub-area. At a specific 

time, the higher the alibi degree of a sensor, the more the sensor operates within the 
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corresponding sub-area. The alibi degree is computed from residence vector and the 

frequency of existence in the sub-area.  

The residence vector expresses a series of existence of a sensor located in a sub-area. 

The sensor existence in each sub-area is computed from the trajectory data of each sensor 

received by the base station. The members of the vector are stored in the allocated 

window of memory space. They are of Boolean type; 1 when the sensor is located within 

the corresponding sub-area and 0 when the sensor stays outside that sub-area. For 

example, illustrated in Fig. 1, a sensor is traversing across a sub-area. If the allocated 

window size equals 9, the residence vector from time sequence t1 to t9 will be [0 1 1 0 1 1 

0 0 0].  

t4

t9
t8

t7

t6 t5

t3

t2

t1 Trajectory of
a sensor

Sub-area
A

3 3 2 24

1 0 0 010110
t5 t7 t8 t9t6t4t3t2t1

For tuple at time t5,
alibi degree = 3+3+2 =8

Time sequence

Residence vector

Existence frequency

Time duration for
existence frequency

of tuple t3  
 

Figure 4.1 An example of alibi degree calculation 

While the residence vector is updated, the frequency vector is also computed and 

stored in another window of memory. For a sensor, each member of the frequency vector 

represents the frequency of the sensor existence within the corresponding sub-area. The 

frequency of the sensor existence is calculated per time duration. For instance, Fig. 1 

shows that the time duration for calculating the frequency of existence is set to 5 samples. 
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The existence frequency at time instance t3 is the sum of members of residence vector 

from instance t1 to t5; that of tuple t4 is sum of members of residence vector from instance 

t2 to t6, and so on. Note that existence frequency at the time sequence t3 contains 

residence information in the following tuples, which are those of t4 and t5. As it would be 

later explained, the existence frequency at time instance t3 is needed to clean a dirty 

sample at sequence t3. The cleaning process for the instance at t3 would be delayed by 

half of the user-defined length of time duration. The higher frequency value implies a 

greater chance of the sensor having experience within the corresponding sub-area.  

With the allocated window size of 9 and time duration of 5 tuples as shown in Fig. 1, 

the existence frequency vector would be fulfilled after the trajectory data of tuple t9 is 

received by the base station. The alibi degree can then be computed as a dot product of 

residence vector and frequency vector. The maximum value of alibi degree is equal to 

length of existence frequency vector times its time duration in samples. At the time of 

tuple t5, the alibi degree would then be equal to 3+3+2 =8, and equals 8/25 after 

normalized. 

2) Detection Rate of Dirty Data (D) 

Although two sensors are in the same sub-area, their different trajectories can lead to 

different environments affecting the quality of data delivery. Here, we present the 

detection rate of dirty data to inversely represent the reliability of the data stream of each 

sensor. As the area-based parameter, the detection rate of dirty data shows the quality of 

streaming data received from a sensor residing in the corresponding sub-area. As an 

online method, we introduce the calculation of the detection rate of dirty data as a ratio of 
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the cumulative number of detected dirty samples to the number of all samples that the 

sensor measured within the corresponding sub-area. 

Note that we assume that a pre-processing module to detect the dirty data exists and 

correctly detects the corrupted samples. Intuitively, the lower the detection rate of dirty 

data, the more reliable the data stream of the sensor residing in a particular sub-area. 

3) Belief Degree and Sensor Selection 

At a time instance, the belief degree of each sensor will be calculated and updated to 

the belief table specific each sub-area. The belief degree would be increasing due to the 

alibi degree but decreasing due to the detection rate of dirty data. The derivation could be 

shown as in Equation 4.1. The high-level description in updating the belief table of all 

sub-areas is illustrated in Table I. 

𝛽𝛽 = 𝛼𝛼 ⋅ 𝐴𝐴 + (1 − 𝛼𝛼) ⋅    1 − 𝐷𝐷  (4.1) 

where β : belief degree 

 α : belief coefficient 

  AN : normalized alibi degree 

 D : detection rate of dirty data 

Our approach to clean a corrupted sample utilizes the readings from sensors, which 

are reliable enough. The sensors with the β value higher than a belief threshold (βth) 

would then be selected to collaborate in the cleaning process. The proper values of belief 

threshold (βth) and belief coefficient (α), ranging between 0 and 1, are depending on 

applications and the nature of measurements of the system. For example, if the 

performance of the dirty data detection module offers a large uncertainty, the belief 

coefficient would be set close to 1. 
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4.3.2 Belief-based Cleaning Process  

After a group of sensors is selected to help cleaning the dirty data for the target 

sensor, a cleaning process will compute the cleansed value to replace the value of the 

dirty sample. The calculation of cleansed data considers (1) the time difference between 

the time that each available data of the selected sensors are sampled and the time when 

the target sensor senses the dirty sample, and (2) the distance between the selected 

sensors and the target sensor when the target sensor senses that dirty sample. Only 

readings of the selected sensors sensed in the same sub-area where the dirty data is 

measured are eligible to be deployed in this belief-based cleaning process.  

We assume that the lower the sampling time difference and the location distance 

between the selected sensors and the target sensor, the more similar the data from 

selected sensors would be to the actual measure of the target sensor. We here use that a 

cleansed value will be equal to a weighted average that is indirect to a distance function 

in sampling time and location, as shown in Equation 4.2. 

𝑑𝑑 =
∙∆ , ∙∆ ,

∆ , ∙∆ ,
 (4.2) 

Where k   : The number of data samples of selected sensors residing in the sub-area 

dc :  Cleansed data of the target sensor 

 di   : The eligible data from selected sensors  

 ∆t(dd ,di) : Difference in sampling time of the dirty sample dd and the eligible data di 

 ∆L(dd,di) : Location distance of target sensor and selected sensors when the target 

sensor senses the dirty sample dd  
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4.4 Evaluation and Analysis 

In this section, we summarize our experiment analysis to evaluate the performance of 

the presented algorithm. To our best knowledge, the virtual sensor-based method (VS) in 

[PP10] and the belief-based method (BB) are the first algorithms attempting to clean dirty 

data in mWSN environments; therefore, the performance of the belief-based method will 

be compared with the VS method and another designed to clean data in static WSN based 

on the moving average method [ZCWL07].  

The performance of algorithms is evaluated in a simulated scenario in which there are 

n sensors moving randomly and sensing the temperature data. The 200 x 200 m2 area of 

interest is divided into 9 sub-areas, as shown in Figure 4.2. These 9 sub-areas will be 

classified into 3 categories based on the area characteristics: (1) Indoor area, (2) Shaded 

outdoor area and (3) Outdoor area.  

Each category exposes temperature values based on a normal distribution with a 

different mean but the same standard deviation of 0.5ºC. The average temperature value 

of each category evolves by time according to the change of data trend collected from the 

Asheville Regional Airport, North Carolina, from January 1-15, 2007 [Nat07]. The mean 

temperature in indoor areas is roughly 7ºC lower than that of shaded area and 13ºC lower 

than that of outdoor areas.  

In each round of simulation, each sensor randomly starts sensing data during 0-30th 

second, and it would constantly sample the data every 30 seconds. With a variety of node 

densities, each sensor senses 1200 samples as a referenced data set. As we assumed that 

the dirty samples are detected before progressing to the presented cleaning module, we 

randomly assigned a fixed percentage of all samples as the detected dirty data that need 
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to be cleaned. The window size of the residence vector equals 9, and time duration for the 

existence frequency is set to 5. 

We considered three mobility models – (1) random waypoint, (2) nomadic, and (3) 

random street in our evaluation. The random waypoint [JM96] is a classic mobility model 

that each node will move from its current location to a randomly selected new location 

with a random speed and it will pause before moving to another new location. Instead of 

the independent random movements, the nomadic mobility [CBD02] represents groups of 

sensors that collectively move from one location to another. This mobility suits to 

scenarios of, for example, a class of students touring in a museum. The random street 

[AS10] is a newly established mobility model that mimics scenarios when there are path 

constraints such as walls, buildings and motorways presented as in a real map.  

Outdoor
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Shaded

Shaded Indoor
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200 meters  
Figure 4.2 Layout of tested area of interest 
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Table 4.1 Belief table update 

// Input:   The location data of sensors in window space at time tk 

// Output: The updated belief table (T) of all sub-areas 

// Update the belief table of each sub-area, one by one 

1:   Procedure Belief_update  

2:   for subA = 1 to S          // S is number of all sub-areas  

3:     for i = 1 to N           // N is number of all deployed sensors 

4:      Calculate the alibi degree; 

5:      Calculate the detection rate of dirty data; 

6:       Calculate the belief degree as shown in Equation (1) in this chapter; 

7:     Update the belief degree matched with sensor(i)  in T; 

8:     end 

9:   end 

10: end procedure 

We used the Bonnmotion mobility scenario generator [Bon02] to generate the 

trajectory data for all mobility models. In nomadic settings, the number of nodes per 

group is at 10 nodes with deviation of 2 nodes and the maximum group radius is at 15 

meters. For the random street, we selected a real area with path constraints in Germany as 

defined in the GIS reference as the EPSG code: 31466; Gauss-Kruger zone 2. The 

maximum pause time is set at 60 seconds as similar to that in the random waypoint 

settings.   

The performance of cleaning methods is evaluated by a ratio of the number of 

“successfully cleaned” samples to the number of whole detected dirty data. This ratio is 
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referred to as the cleaning rate. A dirty sample would be successfully cleaned only when 

the absolute difference between the output of cleaning process and the referenced data is 

bounded under a user-defined error threshold. 

For BB method, we experimented as the alibi degree and detection rate of dirty data 

are equally significant. We then set α equal to 0.5 and experiment with βth at 0.7. As we 

assume that the effective average transmission range of a sensor node is around 20-25 

meters, the coverage of VS is then set at 22.5 meters. 

We first compared the cleaning performance with various densities of sensor nodes 

moving in the area of interest as shown in Figure 4.3. For all tested mobility models, the 

performance of our belief-based cleaning method is superior to that of the VS method 

especially when the node density is low. In random waypoint models with 0.2 nodes/100 

m2, the cleaning rate of the BB method exceeds that of the VS method for at least 50% at 

0.5 error threshold. 

We also evaluated the cleaning rate when the percentage of detected dirty data is 

varied as shown in Figure 4.4. For all mobility models, the cleaning rate of the belief-

based cleaning method surpasses at least 25% compared to other tested methods. 

Scenarios with different average node speed of 2 mph (human walking), 8 mph 

(biking) and 20 mph (car slowly running) were also experimented. The result in Figure 

4.5 shows that the belief-based cleaning method outperforms the VS method for all 

mobility types. Although the cleaning rate of the belief-based method is degraded faster 

than the VS method in the nomadic mobility model, the superior performance is 

remaining up to the speed of car slowly running. 
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(a)  Random Waypoint 

 

 
(b) Nomadic 

 

 
(c) Random Street 

 
Figure 4.3 Cleaning performance with varying node density in different mobility 
models and dirty data of 20% 
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(a) Random Waypoint 

 

 
 (b) Nomadic 

 
(c) Random Street 

 

Figure 4.4 Cleaning performance with varying percentage of missing data in 
different mobility models at 2 mph average speed 
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(a) Random Waypoint 

(b) Nomadic 

(c) Random Street 
 

Figure 4.5 Cleaning performance with varying average speed of sensors in the area 
in different mobility models and dirty data of 30% 
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4.5 Summary 

In this chapter, we have presented a novel simple method of data cleaning suited to 

mWSN applications. Rather than relying on the static spatio-temporal relationships 

among sensors, which is invalid to mWSNs, we analyzed the area-based trajectory 

features as the residence pattern and existence frequency to reveal how a neighboring 

sensor can help in the cleaning process. Moreover, the cumulative detection rate of dirty 

data is also utilized to grade the trustworthy level of a data stream within per particular 

sub-area. The superior performance compared to that of the existing cleaning methods is 

demonstrated for various mobility models, dirty data rate and average sensor speed. 

Since this work is one of the first solutions to clean dirty data in mWSN next to 

virtual sensor based method, there are more challenging limitations to overcome. The 

trajectory information can also be dirty or imprecise. Also, the area classification might 

be unknown and dynamic. One of the promising research directions is to find solutions to 

cope with such complex situations. 
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CHAPTER 5 

SKETCH-BASED CLEANING IN SENSOR DATA STREAMS 

As mentioned, the data imprecision received at a base station is common in mWSNs. 

In scenarios, data cleaning based on spatio-temporal relationships among sensors is not 

practical due to the unique, but commonly found, characteristics of sensor networks. The 

data cleaning method presented in this chapter deploys a sketch technique to periodically 

summarize N sensor samples into a fixed size array of memory and manages to recover 

values of missing or corrupted sensor samples at the base station. Our evaluation 

demonstrates that, with a small fixed portion of additional data transmission compared to 

original N data, this method outperforms the existing data cleaning methods, which 

assume the spatio-temporal relationships among sensors. 

5.1 Introduction  

Currently mobile wireless sensors have been deployed in ranges of applications 

[HBZ+06,EGH+08] mainly to monitor and collect a high volume of data streams. 

Meanwhile, a large amount of data transmitted by sensors is missing and corrupted at 

points of data collection [Int08]. For more than a decade, online data cleaning has been a 

research area, which is on focus of researchers in order to improve the quality of data 

streams of static WSNs. Common techniques are in forms of statistics, probabilistic, 

logics and machine learning methods. The majority of them deploys the temporal 

[EN03,PS07,ZCWL07] and spatio-temporal relationships [MSHR02,BPM09,DGMH04] 

of nearby sensors to help recover the missing or corrupted sensor data, assuming that data 

from these nearby sensors are correlated to each other.  
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Although this assumption is widespread and well used in static wireless sensor 

systems, there are common scenarios in which techniques that rely on this assumption 

cannot be applicable, for example:  

(1) Mobile wireless sensors: In this case, the moving sensors could traverse through areas 

with significantly different environment, for example, temperature sensors that are 

moving indoors and outdoors. The data cleaning methods based on features of its own 

historical data of a sensor are not efficient. Furthermore, mobile sensors also create a 

dynamic network topology and transient spatio-temporal contexts among themselves. 

Correlations of data from a specific pair of mobile sensors are fluctuated and cannot 

be deployed to clean their data. 

(2) Sparse network: Although tiny sensors typically have low-power transceiver units, 

micaZ sensors from the Crossbow, for example, can have a typical one-hop 

transmission range at 20-30 meters outdoors and up to 10-12 meters indoors based on 

our experiment. With this range of transmission, sensors may not measure a similar, 

shared environment, even when they are located next to each other or they are sharing 

a logical communication link.  

(3) Internal sensing: There are many types of sensors that do not measure a surrounding 

phenomenon, for example, sensors measuring heart rate, blood pressure, and glucose 

level of patients or sensors gauging acceleration and gas level of vehicles, etc. The 

measurement from these types of sensors could change abruptly and not be likely to 

demonstrate a correlation to those of neighboring sensors. 
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We are motivated from these common scenarios where the existing online data 

cleaning techniques are not applicable. In this chapter, we present a sketch-based method 

that can clean data streams of sensor environments mentioned above.  

The idea of the sketch technique was first introduced to determine a representative 

trend of data in time series [IKM00], which is the extension of a random projection 

technique [JL84]. This technique was designed to reduce the dimensionality of offline 

massive time series data. It is not satisfied in scenarios, where continuous querying and 

processing are required over the data stream [MSHM02]. Later, many different sketch 

techniques for data streams were proposed for various applications. They include item 

frequency tracking [CM05], data stream clustering [Ind03], page rank approximation 

[SBC+06] and entropy estimation [GL06] on data streams.  

Our focus is to modify the Count-Min sketch method, which basically proposed a 

data structure to summarize an arbitrary set of data into a compact, fixed-size array that is 

usually small enough to fit within a cache [CM05]. The fixed array memory is reserved 

for counters to record the number of types of items in a data stream. However, the 

summary of data streams is presented as item counts and does not provide the temporal 

information of each item. 

This method modifies how to update data into this fixed array to be able to store the 

sensor data with their relative temporal information, instead of only item counts without 

the corresponding temporal data. The new scheme of data update will allow the base 

station to recover the value of missing data or corrupted data, which have been prior 

detected. 
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The main contribution of this work is that we develop a sketch-based data cleaning 

method for data streams in mWSN environments, where moving sensors do not measure 

a shared phenomenon or are deployed in a sparse network. 

5.2  Problem Statement and Assumptions 

In this context, we consider sensor applications, where a number of moving sensors 

measure and deliver streams of their sensor data back to a centralized station. The 

imprecise and incomplete streams of sensor data received at the centralized station 

include, but are not limited to, outliers, missing and noisy data. However, we assume that 

there are arbitrary prior modules that function to detect such missing, imprecise and 

corrupted data samples. We assumed that all imprecise data samples are detected and 

then discarded. Thus, in this work, we will refer all imprecise samples as missing 

samples. 

We focus on cleaning a numerical type of data from mobile sensors. We assume that 

sensors are periodically sampling with a pre-defined period before being deployed in the 

system. Each sample is paired with a sequence number to represent the order of 

sequential sampling. With a known sampling period, the sampling time of a missing data 

sample can be retrieved by referring to the sampling time of the adjacent sequence 

numbers. 

5.3 Sketch-based cleaning 

Principally, this cleaning mechanism consists of two main processes, the sketch and 

cleaning process. The sketch process is executed at sensors and the cleaning is processed 

at the base station. Each sensor will operate and transmit the outcome of sketch process 
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periodically. The cleaning mechanism at the base station is then a one-to-one process. 

That is, it would deploy only the outcome of the sketch process, including recently 

received data of a sensor to estimate the value of missing data of the corresponding 

sensor.   

Sketch process: Before the sketch process starts, each sensor will reserve two fixed 

arrays of memory of width w and depth d. One is called sketch array, [a(1,1),…,a(d,w)] 

and the other is the counter array that counts a number of updates of each corresponding 

member of the sketch array, [c(1,1),…,c(d,w)]. All initial values in the sketch array and 

counter array are set to zero. The size of w represents the base number that will be used to 

update sensor data into the array. The size of d represents the number of digits of the 

number base w. That is, the number of possible values or sub-ranges that would represent 

values from sensor measurements is equal to wd.  

We also assume that the upper and lower bound of valid values of a measurement are 

pre-defined to each sensor. The measurement with values out of this valid range (R) will 

be simply judged as an outlier. The sensor will not transmit such readings and not update 

to the sketch array. Therefore, assuming an equal weight of all sub-ranges of the valid 

measurement, the resolution of sketched data (r) would be equal to the range of valid 

measurements divided by wd, 𝑟𝑟 = 𝑅𝑅/𝑤𝑤 . On the other hand, the resolution of sketched 

data is the error bound of the value estimation of a missing sample. 

In the sketch process, we assume a window-based streaming process. That is, each 

sensor periodically updates a pre-defined number (N) of sensor readings, (n1, n2, n3,…, nN), 

into the fixed-sized sketch and counter array. This number is preset both at the base 

station and at sensor nodes, as it will be used as a period of cleaning process per sketch 
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array. The number could be independent among different sensors and also dynamic, if 

needed. In this work, we only show a use of a fixed number of N in describing a simple 

concept of this work. Meanwhile, the use of the dynamic size of N needs a mechanism to 

optimize the value of m and coordinate it to both the base station and sensors.      

We use a super-increasing set to update a sensor reading into a sketch array. A unique 

characteristic of the super-increasing set is that if there is a number, which is equal to a 

sum of members in a super-increasing set when no members are added more than one 

time, the set of members which produce the summation is unique [MH78]. Where the 

existing Count-Min sketch method [CM05] cannot recover a value of a specific missing 

sensor sample, we exploit this unique characteristic of the super-increasing set to be able 

to retrieve the missing sensor values matching with their corresponding temporal data 

such as their sampling sequence numbers. 

Definition 1. The super-increasing set (S) is the set that the value of members is a 

positive integer and value of the ith member is greater than the sum of all the 1st to (i-1)th 

members. 

S = {𝑠𝑠  | [𝑠𝑠 > 𝑠𝑠 ]}     

Lemma 1. The minimum value of the ith member in the super-increasing set (S) is equal 

to 2i-1. 

Smin = {𝑠𝑠 𝜖𝜖 S | si = 2i-1} 

Proof: The lemma 1 can be proven by using the induction proof. (1) The minimum value 

of the first member of set S is the minimum positive integer, s1,min =1 = 21-1. (2) The 

minimum value of the 2nd member of set S is s2,min =1+1 = 22-1. (3) For i ≥ 3, si > si-
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1+…+s2+s1. Because 2 = 2 − 1, the minimum value of the ith member of set S 

equal to si,,min =2i-1 

Before a sensor deployment phase, a super-increasing set with a size of m is also 

stored in both the base station and sensors where N must be divisible by m, which is the 

size of the super-increasing set S={s1, s2, s3,…, sm}. In the following analysis part, we will 

show that the maximum value of sm is proportional to the energy spent in transmitting the 

sketch array. For the optimal energy cost, we will use Smin as our super-increasing set in 

the rest of this chapter.  

To update a sensor reading into the sketch array, three operations need to be 

executed–(1) the operation to find a sub-range that would represent values of the sensor 

reading, (2) the operation to figure out a value to be added or updated into the sketch 

array and (3) the operation to figure out which components or members in the sketch 

array will be altered. In the first operation, a sub-range that represents values of the 

corresponding sensor reading (ni) will be computed. As we assume that all sub-ranges in 

the valid range (R) are equally weighted, the suitable sub-range (rsub) then simply equals 

𝑛𝑛 /𝑟𝑟 .   

In the second operation, we use the sequence order of the sensor reading, not the 

value of the reading. For a sensor reading with a sequence order i, where i 𝜖𝜖 [1,..,N], the 

value that would be updated into the sketch array (vi) equals the super-increasing member 

of which its order in the set equals the sequence order of sensor readings (i) modulo with 

the size of the super-increasing set (m). That is, vi = s(i mod m). 

Thirdly, to find out what array members will be updated, we use the value of the 

suitable sub-range (rsub) calculated in the first operation. The set of array members that 
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will be updated is U = {a(p,q) | q =  𝑟𝑟   /  𝑤𝑤   𝑚𝑚𝑚𝑚𝑚𝑚  𝑤𝑤}, where p 𝜖𝜖 [1,..,d] and q 𝜖𝜖

[1,..,w]. Then, for a sensor reading (ni), it will be updated into the sketch array, as shown 

in Equation 5.1.  

a(p,q) ← a(p,q) + vi  when  a(p,q) 𝜖𝜖 U 

a(p,q) ← a(p,q)    when  a(p,q) ∉ U 

Simultaneously, the corresponding counter array c(p,q) will be updated accordingly,

as shown in Equation 5.2. 

c(p,q) ← c(p,q) + 1  when  a(p,q) 𝜖𝜖 U 

c(p,q) ← c(p,q)    when  a(p,q) ∉ U 

Here, we demonstrate an example of how to update sensor data into a sketch array. 

To simplify, we will use w with size of 10 and d with size of 2, assuming that the 

cleaning system sets the range of valid measurements (R) at [0,200) and needs the sketch 

resolution within ±2 units. Also, assume that we are periodically cleaning a stream of a 

sensor every 20 samples and using a super-increasing set with size of m=5, {1, 2, 4, 8, 

16}, for this example scenario. Then, the initial sketch and counter arrays would be the 

same and could be perceived as Figure 5.1. 

.

Array 1 2 3 4 5 6 7 8 9 0 

0 0 0 0 0 0 0 0 0 0 0 

1 0 0 0 0 0 0 0 0 0 0 

Figure 5.1 Initial sketch and counter arrays with dimension 2x10 

(5.1) 

(5.2) 
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Array 0 1 2 3 4 5 6 7 8 9 

0 16 1 0 4 0 0 8 0 0 0 

1 8 20 1 0 0 0 0 0 0 0 

Sketch array 

Array 0 1 2 3 4 5 6 7 8 9 

0 1 1 0 1 0 0 1 0 0 0 

1 1 2 1 0 0 0 0 0 0 0 

Counter array 

Figure 5.2 The sketch and counter array updated by the 8th-11th sample 

For example, if the 8th-11th sensor samples are 25, 12, 20 and 41, respectively, for the 

first operation, the suitable sub-range of each sensor sample is then 13, 6, 10 and 21, 

respectively. Secondly, the value that will be updated into the sketch array for each 

sensor sample is 4, 8, 16 and 1. Then, by the third operation, members in the sketch array 

will changed as a0,3 and a1,1 by the 8th sample, a0,6 and a1,0 by the 9th sample, a0,0 and a1,1 

by the 10th sample and a0,1 and a1,2 by the 11th sample. Finally, the array members will be 

updated, as shown below. The sketch and counter array updated by the 8th-11th sensor 

sample can be illustrated, as in Figure 5.2. 

a0,0 =16, a0,1 =1, a0,3 =4, a0,6 =8, a1,0 =8, a1,1 =4+16 =28, a1,2 =1 and others remain 0.  

Also, c0,0 =1, c0,1 =1, c0,3 =1, c0,6 =1, c1,0 =1, c1,1 =2 and c1,2 =1 and others remain 0.  

Cleaning process: For a particular sensor, the cleaning process is executed at the base 

station after the base station receives N sensor samples, as well as the corresponding 
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sketch and counter arrays from the sensor. If there is no missing or corrupted sample 

detected, the cleaning process for these N samples is skipped. 

The cleaning process is indeed a reverse calculation of the sketch process. For the 

available samples, which are received and not corrupted at the base station, the cleaning 

process will perform the second and third operations of the sketch process to figure out 

the value of vi and the corresponding sketch member a(p,q). Instead of adding vi, the 

cleaning process deducts vi and deducts by 1 out of the values in the corresponding a(p,q) 

and c(p,q), respectively. Then, the remaining values in the sketch and counter arrays are 

those of missing samples. For each member of the sketch array that the remaining values 

is not equal to 0, the suitable sub-range value (rsub) of each missing sample could be 

retrieved by algorithm in Table 5.1.  

However, if there are any two or more missing samples that have been paired with the 

same vi, the retrieval rsub value could have multiple solutions and the cleaning process 

will not be able to recover the value of missing samples. Once the value of rsub of each 

missing samples is retrieved, the value of the missing sample could then be computed by 

reverting the first operation of the sketch process. 

For example, if the 8th and 10th sensor samples are missing but the 9th and 11th data 

are correctly received, the process will deduct the value of v9= s(9 mod 5) from a0,6 a1,0 and 

v11= s(11 mod 5) will be deducted from a0,1 and a1,2.The remaining values are a0,0 =16, a0,3 

=4 and a1,1 =20. Because we know that there are two missing samples, it could be simply 

extracted that the value of a1,1 is uniquely an addition of s3 =4 and s5=16. Then, we can 

recover the suitable sub-range values of the missing samples, which are 10 at sequence 

order of (5 mod 5) = (10 mod 5), and 13 at the sequence order of (13 mod 5) = (8 mod 5). 
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Lastly, by multiplying with the resolution which equals 2, the estimated missing value is 

26 for the 8th sample and 20 for the 10th sample.  

Note that the error of the estimated value could be at most ±2 units, which are the 

sketch resolution preset at the beginning of sensor deployment. In addition, the cleaning 

process cannot recover the values of any two or more missing samples, when the results 

of their sequence numbers modulo by m are the same. The details of this limitation will 

be discussed in the following section. 

Table 5.1: Retrieve sub-range of a missing sample 

Input: (1) packet sequence of missing sample (miss_seq),  

  (2) super-increasing set (S),  

  (3) Sketch array (A),  

  (4) Counter array (C) 

Output: (1) sub-range of missing sample (rsub) 

1: IF miss_seq mod size(S) ≠ 0 THEN  

2:     si_seq = miss_seq mod size(S) 

3: ELSE si_seq = size(S) END 

4: FOR digit = 1 to d 

5: FOR  num = 1 to w  

6: FOR j = size(S) to 1 

7: bj ← A(digit,num)/S(j) 

8: A(digit,num) ← A(digit,num) mod S(j)  

9: END 

10: WHILE 𝑏𝑏 ≠ 𝐶𝐶(𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑, 𝑛𝑛𝑛𝑛𝑛𝑛) DO 
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11: Set k equal to maximum index where bk>0   

12: bk ← bk-1 

13: bk-1 ← bk-1+2 

14: END 

15: append S(k) to Missing component set for ∀k{bk ≠ 0} 

16: IF S(si_seq) 𝜖𝜖 Missing component set THEN  

17: add (w^(digit-1))*(num-1) to rsub 

18: skip to the next digit 

19: END 

20: END 

21:END 

 

5.4 Evaluation and Analysis 

5.4.1 Analysis of Cleaning Performance 

As mentioned, the cleaning process cannot recover when two or more missing sensor 

samples have been paired in the sketch process with the same member of the super-

increasing set during sketch process due to the chance of obtaining the incorrect result of 

the extraction procedure. We use a metric, called cleaning performance, to define a 

capability that a method can correctly recover the value of missing data. The following is 

the analysis of the cleaning performance of the presented method. 

Let N be the number of sensor samples that are sketched into a fixed array of 

memory, m be the size of the pre-defined super-increasing set, p be the probability that a 
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sample will be missing, named as missing rate, and X be the number of missing samples 

that are matched with a particular member of the super-increasing set. To simply 

demonstrate the proof of concept, let N be divisible by m. 

The probability that the missing samples are not mapped with the same member of 

the super-increasing set can be shown in Equation 5.3. 

𝑃𝑃{𝑋𝑋 = 1} = 𝑝𝑝(1 − 𝑝𝑝)( )  (5.3) 

Similarly, the probability that there are at least two missing samples which are paired 

with the same member of the super-increasing set can be computed in Equation 5.4.  

𝑃𝑃{𝑋𝑋 ≥ 2} = / 𝑝𝑝 (1 − 𝑝𝑝)( )
/

 (5.4) 

Then, the cleaning performance (C) can be calculated as shown in Equation 5.5. 

𝐶𝐶 =
( )( )

( )( ) / ( )( )
/    

=
( )( )

/ ( )( )
/  (5.5) 

Since the cleaning performance is a function of the missing rate and the N/m ratio, 

Figure 5.3 shows the cleaning performance in the function of the missing rate with 

varying N/m ratios. 

However, in fact, a sketch packet transmitted after each set of N sensor samples could 

also be missing. In this case, the missing samples in which the corresponding sketch 

packet is missing could not be recovered. The cleaning performance would be decreased 

by the factor of the missing rate, as shown in Equation 5.6. 



 
 
 

63 
 

𝐶𝐶 = 𝑝𝑝  .
( )( )

/ ( )( )
/  (5.6) 

Since the transmission of a sketch packet could be perceived as a transmission of a 

packet that contains information of N sensor samples, it is insightful to consider the 

cleaning performance compared with a simple retransmission of N sensor samples. As the 

retransmission of a packet can recover the value of a missing sensor sample only when it 

is not missing or corrupted, we therefore compare its cleaning performance with that of 

the presented method, as shown in Figure 5.4. Although it shows that the performance of 

the retransmission is higher than those of variations of the presented method, the 

presented method consumes significantly less energy in the packet retransmission, as 

described in details in the following analysis section. 

 
Figure 5.3 The cleaning performance in the function of the missing rate with varying N/m 
ratios. 
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Figure 5.4 The cleaning performance of the sketch-based method and the simple 
retransmission. 
 
 
5.4.2 Analysis of the Communication Cost 

In this section, we analyze the communication cost in term of energy that the 

presented method spends for cleaning N sensor samples compared to that of the 

retransmission counterpart. In the analysis, we focus on the energy spent on a link 

between two neighboring sensors in transmitting and receiving packets for cleaning N 

sensor samples. We here adopt the energy model demonstrated in [SAM03]. The model 

of energy spent in transmission of an n-bit packet (En) is illustrated as follows. 

𝐸𝐸 = 𝑃𝑃 + 𝑃𝑃 + 𝑃𝑃 𝑇𝑇 + 𝑃𝑃 + 𝑃𝑃 𝑇𝑇 + 𝐸𝐸   (5.7) 

where  

Pte/re :  Power consumed in transmitter/receiver electronics 

Ptst/rst : Start-up power consumed in the transmitter/receiver 

Po :  Output transmit power 

R :  Transmission data rate (~20Kbps) 

Edec :  The energy to decode the error correction per packet 
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𝛼𝛼 : The length of header bits per packet 

l : The length of payload bits per packet 

𝜏𝜏 : The length of the trailer bits per packet 

To simplify the analysis, we assume the packet transmission without an error 

correction scheme which makes 𝜏𝜏 and Edec equal zero. Then, the Equation 5.7 can be 

simplified in terms of radio parameters k1 and k2 as 

𝐸𝐸 = 𝑘𝑘 𝛼𝛼 + 𝑙𝑙 + 𝑘𝑘  (5.8) 

, where k1 and k2 are derived as k1 =   and k2 = 𝑃𝑃 𝑇𝑇 + 𝑃𝑃 𝑇𝑇 . Based on 

the RFM-TR1000 transceiver equipped in Mica sensors, k1 ≈ 1.85 µJ/bit and k2 ≈ 24.86 

µJ [SAM03].  

In the case of the presented method, only one sketch and one counter array would be 

transmitted for cleaning N sensor samples. For a counter array, the maximum number of 

each counter is at N. Thus, each member of the counter array needs to spare 𝑙𝑙𝑙𝑙𝑙𝑙 𝑁𝑁  bits 

for counting the number of updates of each array member. 

For a sketch array, size of the pre-defined super-increasing set is proportional to the 

size of a sketch array member. As shown in proof of Lemma 1, the minimum value of the 

addition of all members of the super-increasing set with size of m equals to 2m-1. 

However, for cleaning N sensor samples, all members of a super-increasing set could be 

added up to  times. Each array then needs to be able to contain values, which are at 

∗ (2 − 1). Thus, the minimal size of an array member equals 𝑙𝑙𝑙𝑙𝑙𝑙 ((2 − 1) ∗

) =    𝑚𝑚 + 𝑙𝑙𝑙𝑙𝑙𝑙   bits.  
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Since a set of a sketch and counter array consists of w ∗ d members, the size of a set 

of sketch and counter arrays are then equal to 𝑤𝑤 ∗ 𝑑𝑑 ∗ 𝑚𝑚 + 𝑙𝑙𝑙𝑙𝑙𝑙 + 𝑙𝑙𝑙𝑙𝑙𝑙 𝑁𝑁  bits. 

Thus, energy used in micro Joules for a link transmission of an l-bit packet, when 𝛼𝛼 is 

assumed at 16 bits [SAM03], is given as follows. 

𝐸𝐸 = 1.85 16 + 𝑤𝑤 ∗ 𝑑𝑑 ∗ (𝑚𝑚 + 𝑙𝑙𝑙𝑙𝑙𝑙 ) + 24.86 (5.9) 

Meanwhile, for the retransmission case, the retransmission of N samples needs to 

consume energy, as shown in Equation 5.10, assuming that each packet contains an 8-bit 

sensor data and a 16-bit header. 

𝐸𝐸 = 𝑁𝑁 ∗ [1.85 16 + 8 + 24.86]  (5.10) 

Then, in cleaning N sensor samples, the energy consumption between the sketch-

based method and the simple retransmission can be illustrated in Figure 5.5. 

It is obvious that the retransmission method would consume less energy if the number 

of retransmission packets (Nre) is reduced to be less than the number of N sensor samples, 

Nre < N. However, to do so, the cleaning performance of the retransmission method 

would also decrease.  Figure 5.6 demonstrates the cleaning performance between the 

sketch-based method with 𝑁𝑁/𝑚𝑚 = 2 and 3, and that of the retransmission method, which 

consumes energy equal to that of the sketch-based method. 
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Figure 5.5 Comparison of energy consumption in cleaning N sensor samples among the 
sketch-based method with R=102, R=103 and the retransmission. 

 
Figure 5.6 Cleaning performance of the sketch-based method compared with that of the 
retransmission method with adjusted energy consumption. 
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5.4.3 Evaluation on Synthetic Data 

In this section, we evaluate the cleaning performance of the presented method with a 

set of synthetic data of mobile sensors measuring temperature in a 200 x 200 square 

meter area. This area consists of 9 sub-areas with 3 different mean values of temperature–

indoors, shaded and outdoors area – as shown in Figure 5.7.  

The average temperature difference between the indoors and shaded area is about 6 

degree Celsius, and that between shaded and outdoors area is about 7 degree Celsius. The 

temperature in each area is evolving according to the data observed at Asheville regional 

airport during Jan 1-15, 2007 [Nat02]. 

We experimented on mobile sensors, which move according to various mobility 

models–random waypoint, nomadic and random street [CBD02,Bon02]. The traces of 

sensor movements are generated by using the Bonnmotion mobility generator [Bon02] 

with different node speeds – 10, 20 and 30 meters/minute.  

As we assumed that data from neighboring sensors are not valid or available to use 

for cleaning a sensor sample, we then compared the cleaning performance of the sketch-

based method with those of the existing data cleaning methods that use only temporal 

data of a sensor, not data from other sensors. Besides the retransmission counterpart with 

the same energy consumption, we also compared the proposed method with the cleaning 

method using adaptive filter [5], which is one of the most popular methods to predict the 

value of missing samples by using only temporal data of a specific sensor. In addition, we 

did not consider the spatio-temporal based techniques because their mechanisms to select 

the associated neighboring sensors for the cleaning process are not practical to the 

transient environment in mWSNs. The comparison result is shown in Figure 5.8.  
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From Figure 5.8, we found that the cleaning performance of the sketch-based method 

is not affected by the speed and mobility pattern of mobile sensors. The overall 

performance is lower than that of the theoretical performance as expected due to the 

probability of the incorrect component extraction in the cleaning process. However, the 

performance remains higher than those of adaptive filter and the retransmission methods 

when they consume the same energy to retransmit packets for cleaning. 

In fact, the adaptive filter based cleaning method does not require sensors to transmit 

any additional packets for the purpose of cleaning. However, the results demonstrate that 

it performs poorly and worse when sensor nodes move faster. That is, the prediction 

cannot cope with the reading fluctuations especially when sensors move across the sub-

areas. Meanwhile, the sketch-based method needs additional energy consumption in 

sensor nodes but it is not affected by changes of sensor speeds or fluctuations in readings. 

5.5 Summary 

In this chapter, we have presented a novel sketch-based data cleaning method to 

recover the values of missing samples in a sensor data stream. The sketch-based cleaning 

method relies only on a sketch packet, which plays a role in a summary of N sensor 

samples. It does not rely on data from other nearby sensors with any types of contextual 

relationships. It requires a small portion of additional power consumption to transmit a 

sketch packet compared to that of transmission of the original sensor data for the increase 

of ability to recover the missing or corrupted sensor data. Meanwhile, this work can be 

applied to the static WSNs. We focused our design to clean data for mWSNs where 

sensor data from different sensors do not demonstrate any forms of data correlation. 
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(a) 10 meters/min 

 

 
(b) 20 meters/min 

 

 
(c) 30 meters/min 

 
Figure 5.8 Cleaning performance of the sketch-based method compared with those of the 
adjusted-energy consumption retransmission method and the temporal adaptive filter with 
various average sensor speeds 
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CHAPTER 6 

DISCUSSION, FUTURE WORKS AND CONCLUSION 

This dissertation described methods to clean the real-time sensor data streams in 

different system restrictions. These include data cleaning methods in dense and sparse 

mWSNs, as well as a method to clean data when sensors are not observing a shared 

environment. In this chapter, we discuss the contributions and limitations of what we 

achieved, outline future works and conclude this dissertation. 

6.1 Virtual Sensor for Mobile Sensor Data Cleaning 

In Chapter 3, we have presented a novel method to clean missing data in mWSN 

applications. This method applies the concept of virtual sensor combining with an 

adaptive filter. When the location information of the sensor is precisely and completely 

received at the base station, this method can cleans dirty samples more than 80% of 

missing data. The average speed of sensor nodes does not affect the cleaning 

performance. In addition, the method does not need any additional hardware 

implementations. This method can be efficiently implemented in scenarios, where the 

area of interest is temporary for operations. 

Furthermore, a requirement to gain an efficient cleaning performance is that the 

coverage area and location of a VS must be well defined. In particular, each coverage 

area should be an area where the desired measurements are expected to be similar, i.e., 

the variance of measurements is not expected to be large. The more precisely the system 

administrators can identify the boundary of such dissimilarity of data features, the higher 

the cleaning performance they can achieve. 
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Although the VS method successfully cleans mobile sensor data, it is limited in that a 

priori knowledge of the coordinates that define the VS boundaries is needed to attain a 

satisfactory cleaning performance. Since site surveys can be fuzzy or not well developed 

for locations without a permanent presence, boundary coordinates are often naturally 

indistinct, or too costly. This is a considerable limitation of this work. 

6.2 Belief-based Cleaning in Trajectory Sensor Streams 

In Chapter 4, we have presented another novel, but simple method of data cleaning 

suited to mWSN applications. Rather than relying on the static spatio-temporal 

relationships among sensors, which is invalid to mWSNs, we analyzed sensor trajectories 

relative to pre-defines area as the residence pattern and existence frequency to indicate 

how a neighboring sensor can help in the cleaning process. In addition, we also 

introduced the cumulative detection rate of dirty data to quantify the reliability level of a 

data stream within a particular sub-area. We evaluated the cleaning performance under 

scenarios with various mobility models, dirty data rate and average sensor speed. The 

cleaning performance of this method is superior to those of the existing cleaning 

methods. 

Although the performance of the belief-based method outperforms those of its peers, 

there are still constraints to overcome. First, the interpretation of the desired context still 

mainly relies on a priori-knowledge of sub-area boundaries. This is the same constraint as 

that in the virtual sensor-based method, as stated above. Second, the trajectory readings 

must be precise and complete. In reality, location reports always contain an extent of 

uncertainty. Furthermore, another major constraint is that the design and evaluation still 
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consider sensors that monitor the shared environment. If the sensors, for example, are 

measuring the stress level of soldiers, this method will not provide a good cleaning 

performance. 

6.3 Sketch-based Cleaning in Sensor Data Streams 

In Chapter 5, we have presented a novel sketch-based data cleaning method to 

recover the values of missing samples in a sensor data stream. This method utilizes a 

unique feature of the super-increasing set to summarize information of N sensor samples 

into a sketch packet. The sketch packet then plays an important role as a summary of N 

preceding sensor samples and it could be used to recover corrupted or missing samples at 

the base station.  

This method does not rely on data from other nearby sensors with any types of 

contextual relationships. Therefore, it is suitable to scenarios, where sensors are distant 

from each other, including where sensors are not measuring a shared environmental 

phenomenon. Although this method was designed for mWSNs, it can be applied to static 

WSNs since the cleaning mechanism of a sensor stream utilizes information only from 

the corresponding sensor stream. 

Since this method can clean sensor data when the corrupted data samples are not 

sharing the same sequence of sketching process, the cleaning performance will rapidly 

decrease when all types of interference causes a burst of errors to transmitted data. 

Furthermore, this method requires an additional power consumption to transmit the 

sketch packets for recovering the missing or corrupted sensor data, compared to existing 

methods that rely on spatio-temporal correlations of sensors. It is then more proper to 
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clean sensor data in mWSNs when other types of contextual relationships among sensors 

cannot be resolved.  

6.4 Future Work 

In spite of what we achieved, there are more challenges in the field of data cleaning in 

mWSNs. We here outline the potential research directions that can enhance our current 

works for more comprehensive data cleaning mechanisms in mWSNs as follows. 

6.4.1 Design and develop a semantic trajectory relationship model 

 One research direction is to build a trajectory-based relationship model that illustrates 

how the physical, spatial-temporal, symbolic, absolute, relative contexts of trajectories 

affect correlations among sensor data in mWSNs. A semantic trajectory relationship 

model could be designed to support the development of a sensor selection process by 

providing the definition and format of dependencies among trajectory relationships. To 

develop this model, it first needs to extract semantically meaningful trajectory 

relationships from spatio-temporal instances. Then, one can investigate how each 

semantic trajectory relationship can be used to determine the structural and behavioral 

correlations among sensor data streams. 

To analyze the trajectory of a mobile sensor, existing solutions represent an object’s 

trajectory as an ordered list of location samples at specific instances in time [GH05]. 

Although such a list can adequately represent the changing positions of an object 

throughout its lifespan, it does not contain data necessary to segment an object’s 

trajectory into semantically meaningful trajectory relationships, such as moving together, 

following and overtaking one another. Even if the ordered list of location samples was 
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mechanically broken down into smaller sets of ordered lists of locations, it would still not 

provide any insight into the behavioral or structural meaning of this list unless semantic 

relationships among trajectories were identified. 

 To identify relationships among trajectories of different sensors, one needs first 

extract the intended semantics from individual sensors’ trajectories. Second, an analysis 

of these semantics to identify meaningful relationships among trajectories of different 

sensors is needed. The promising design could integrate spatio-temporal reasoning 

operators [All83,GN02] with structural and behavioral semantics for annotating 

trajectories. Although a simple framework for semantic trajectory annotation has been 

developed [TCP+11], this framework lacks a mechanism that identifies trajectory 

relationships between multiple sensors’ trajectory semantics. Yet, a comprehensive 

mechanism that does so is critical for developing a sensor selection process for data 

cleaning. 

      As mentioned, the sensor selection process is a primary issue that is not well 

addressed in existing sensor data cleaning methods. The existing methods currently rely 

only on an associated set of static sensors to help in cleaning processes. However, when 

sensors are moving in mWSNs, we can no longer rely on such a pre-defined static set of 

helpful sensors. These methods are thus not applicable to mWSNs. To solve this issue, 

one can perceive a data cleaning method that is grounded in the dynamic correlations 

between sensor data streams and semantic trajectory relations. The hypothesis of this 

research direction is that if the relationships between semantic sensor trajectories are 

identified, they can be used to determine the correlations between sensor data streams of 

moving sensors that are sensing a phenomenon related to a shared environment. If 
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identified, a semantic trajectory relationship model could be designed to support the 

development of a sensor selection process by providing the definition and format of 

dependencies among trajectory relationships. Therefore, determining structural and 

behavioral dependencies among trajectories will result in a model that denotes streams, 

not just as an ordered sequence of points, but also as a sequence of points annotated with 

semantics.  

6.4.2 Design and develop a dynamic trajectory and context-aware annotation 

method for trajectory sensor streams. 

While semantic trajectory relationships provide insight into the structural and 

behavioral aspects of sensors, they do not reflect the current state of the environment or 

the entity that houses the sensor. To illustrate the importance of solving this issue, 

consider the following example: suppose sensor A and B share a semantic trajectory 

relationship (e.g., sensor A and sensor B follow the same trajectory and arrive at a given 

destination at the same time), it does not by default mean that these two sensors operate 

under the same sensing environment (e.g., sensor A senses humidity and sensor B senses 

temperature). Although sensor A and B share a semantic trajectory relation, they might 

not operate under the same context. More specifically, if each sensor monitors the body 

temperature of different officers, a difference in measurement could be due to the fact 

that one officer was jogging while the other had a fever.  

The objective of this direction is to design and develop a method that dynamically 

gives context to semantic trajectory relationships and sensing environments. Therefore, 

determining structural and behavioral dependencies among trajectories will result in a 
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model that denotes streams, not just as an ordered sequence of points, but also as a 

sequence of points annotated with semantics. In contrast to the previous direction, in this 

stage one should focus on cleaning sensor data using sensors’ surrounding environments 

and contexts. The context should not be based on the spatio-temporal or other sematic 

features of sensor trajectories, although one could later integrate sematic trajectory 

relationships and context to form a comprehensive sensor selection mechanism for data 

cleaning. 

One way to accomplish this objective is that one could develop a method to select the 

contexts of sensor operations, which can be used to extract knowledge about the sensor 

streams of interest. Then, one could continue by determining how to transform the raw 

context information into meaningful semantics. Later, one could develop a method to 

efficiently annotate semantics with trajectory-sensor streams. The classification concept 

of trajectory relations might be helpful and deployed for cleaning sensor data in scenarios 

in which sensors are measuring a shared spatio-temporal phenomenon. Moreover, one 

should examine context awareness separately from semantic trajectory relationships 

because there are scenarios in which sensor streams’ correlations can only be identified 

based on context alone rather than trajectory semantics. For example, there are sensing 

environments in which sensor reports would be better correlated based on context, such 

as soldier activity, exposure to blasts, and transportation method, as opposed to trajectory 

relationships. For example, the readings of two soldiers’ health sensors are not 

necessarily reflected by the proximity of the soldiers. Instead, the readings might be 

reflected by other “context semantics,” such as the number of hours a solider sleeps per 

night or stress level of a soldier.  
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A hypothesis of this research direction is that there are application domains in which 

context awareness or semantic trajectory relationships are sufficient for data cleaning, 

and there are other domains in which it is necessary to consider both context awareness 

and semantic trajectory relationships. If this hypothesis proves to be true, the end result of 

this phase of this research direction will be a comprehensive sensor selection tool for data 

cleaning that considers three scenarios noted above. Otherwise, a novel sensor selection 

process for each of the scenarios listed above needs to be separately developed. 

6.4.3 Design and develop a comprehensive data cleaning method that tolerates the 

uncertainty of trajectory readings. 

The main approach of this direction is to develop a comprehensive data cleaning 

method for mWSNs that integrates context awareness and semantic trajectory 

relationships. On the one hand, one can assume that mobile sensing devices report their 

precise location and move directly into the development of the solution. On the other 

hand, in practice, noisy sensor readings generate imprecise localization data, which in 

turn reduces the accuracy of trajectory data. A data cleaning method should either tolerate 

the uncertainty of trajectory readings or address this issue prior to implementing a 

comprehensive data cleaning solution.  

Besides the inborn locality imprecision of sensing device, many phenomena, such as 

the limited power of radio transceivers, battery outages, and indoor signal losses, can lead 

to GPS data loss. The uncertainty of the trajectory data prevents an accurate classification 

of the trajectory relations and the interpretation of helpful semantics. Therefore, in this 

research direction, one should focus on developing an efficient online trajectory 
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extraction technique for estimating imprecise sensor locations that tolerates trajectory 

uncertainty. It is expected that an insight from this research into semantic trajectory 

relationships and context awareness will help identify which groups of trajectories are 

most similar and therefore provide a basis for assessing the degree of uncertainty of 

individual trajectory readings. Once the uncertainty has been assessed, one could explore 

the feasibility of incorporating machine learning based sensor cooperation solutions to 

provide estimation schemes that reinstate the values of corrupted sensor data with 

uncertain trajectory data. The accomplishment of this future work will deliver the data 

cleaning solution that can tolerate the uncertainty of trajectory data reported by mobile 

sensors that are measuring phenomena of both the shared environment and non-shared 

environment. 

6.5 Conclusion 

Modern mobile applications are emerging and exploiting all kinds of sensors. These 

applications will become more seamless to our daily lives and enhance life quality of 

humankind. However, these applications will be not viable unless the imprecision of the 

collected sensor data is corrected. This dissertation stems from the recognition of the 

significant need in data cleaning in mWSNs. Data cleaning methods for mWSNs 

scenarios that consider dynamic sensor characteristics and relationships are investigated 

and developed. There remain more challenges in this area. We hope our fulfilling work 

will benefit the emerging mobile sensor applications and inspire scholars to accomplish 

more comprehensive data cleaning solutions in mWSNs. 
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