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ABSTRACT OF THE THESIS 

ROLES OF DNA BASE EXCISION REPAIR IN MAINTAINING THE INTERGRITY 

OF DNA METHYLATION 

by 

Jing Zhou 

Florida International University, 2013 

Miami, Florida 

Professor Yuan Liu, Major Professor 

 DNA methylation and demethylation are involved in regulation of gene 

expression. CpG clusters have been identified as hotspots of oxidative damages and 

mutagenesis. DNA base excision repair can remove oxidative DNA damage on CpG 

clusters and mediate an active DNA demethylation pathway. In this study, we examined 

the molecular mechanisms underlying interactions among DNA methylation, 

demethylation and BER. Our results demonstrated that a single 5-methylcytosine did not 

exhibit a significant effect on BER. Surprisingly we found that the abasic site completely 

inhibited the activity of thymine DNA glycosylase (TDG) leading to the sustainment of 

the mismatch efficiently extended by pol β. Interestingly, APE1 3’-5’ exonuclease could 

removed the mismatch. Our results demonstrate a molecular mechanisms underlying 

DNA base lesion and BER in maintenance of a normal DNA methylation pattern and a 

critical role of APE1 to combat pol β extension of the mismatch thereby reducing the 

introduction of mutagenesis. 
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1. Introduction 
DNA methylation is a covalent modification of a cytosine occurring on the 5 

position of the DNA base that results in 5-methylcytosine (5mC) located on CpG 

dinucleotide motifs of the human genome [1-3]. In human somatic cells, 5-mC counts for 

~ 1% of total DNA base. But DNA methylation can affect up to 70%-80% of CpG 

dinucleotides in the human genome [3]. Methylated CpG islands is an important 

epigenetic marker, thus 5-methylcytosine is also called the fifth base of DNA [6]. DNA 

methylation is associated with repressive chromatin features that are mediated by methyl-

CpG binding proteins to affect the accessibility of transcription factors to the promoters 

and other regulatory regions of genes [7]. Moreover, methyl binding proteins also bind to 

domains that interact with histone modification enzymes such as histone 

methyltransferases as SET domain containing 1A (SETD1A) in Myeloid/Lymphoid, or 

Mixed-Lineage, Leukemia (MLL) indicating that DNA methylation can modulate histone 

modifications to activate or repress histones by inducing methylation of arginine or lysine 

residues, thus affecting the packaging of DNA to form chromatins and regulating gene 

functions [8-11].  

        CpG islands usually contain more than 200 base pairs with unmethylated and/or 

methylated CG-rich region containing high densities of CpG dinucleotides which are 

usually located on the 5’-end of human gene promoter regions [12, 13]. The majority of 

CpG islands are unmethylated at all stages of development and in all tissue types [1]. 

However DNA methylation that occurs on a small portion of the CpG islands plays a 

significant role. An unique DNA methylation pattern governs gene expression [14] and 

serves as an important epigenetic marker, that is relevant to gene imprinting, cell 
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differentiation and development as well as the development of human cancer [15]. It has 

been proposed that hypermethylation of CpG islands leads to suppression of tumor 

suppressor gene (TSG) expression [12]. It was reported that DNA hypermethylation 

resulted in silencing of the retinoblastoma gene [16], therefore further resulted in the 

development of retinoblastoma [17]. Furthermore, hypermethylation in the promoter 

regions of the p16 and p53 gene can shut down expression of these genes leading to 

breast cancer and colon cancer, respectively [18]. In addition, hypermethylation at the 

promoters of the glutathione S-transferase pi (GSTP1) gene and the ecotropic viral 

integration site (EVI1) gene is involved in many other cancers such as prostate cancer 

and acute myeloid leukemia (AML) [19-22]. Interestingly, CpG islands in some 

oncogenes in tumor cells were found to be hypomethylated [15]. This resulted in 

activation of oncogene transcription and expression such as cMYC and H-RAS [23-25], 

	
  
Figure 1. CpG islands and its methylation pattern 
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and the activation of oncogene transcription and expression can further lead to metastatic 

hepatocellular cancer and cervical cancer [15]. Thus, DNA methylation on CpG islands is 

closely related to the development of human cancer [15] (Figure 1). In mammalian cells, 

DNA methylation is catalyzed by DNA methyltransferase (DNMT). A group of DNMTs, 

DNMT 3a and DNMT 3b can act as de novo DNMTs, which can methylate double strand 

DNA without any methyl groups, creating the initial pattern of DNA methylation in the 

human genome. Another member of the DNA methyltransferase family, DNMT1, acts as 

a maintenance DNA methyltransferase, which recognizes and methylates hemimethylated 

DNA with a 5-methylcytosine on one strand of DNA. Thus, DNMT1 is responsible for 

sustaining the original DNA methylation pattern in a newly synthesized DNA strand after 

DNA replication. DNMTs use S-Adenosylmethionine [26] as their cofactor and transfer 

the methyl group from SAM to C-5 of a cytosine [27].  

Methylation of DNA can be measured by bisulfite sequencing, which involves 

two steps. In the first step, bisulfite is used to convert an unmethylated cytosine to uracil, 

whereas the methylated cytosine cannot react with bisulfite. In the second step, bisulfite-

treated DNA fragments are amplified by PCR. During PCR, since uracil is produced from 

an unmethylated cytosine, it is base-paired with an adenine. This allows an unmethylated 

cytosine that is converted to a uracil eventually to be converted into thymine after two 

rounds of PCR amplification. In contrast, an intact methylated cytosine is still base-paired 

with a guanine and is maintained at the end of PCR amplification. PCR amplified DNA 

fragments from an unmethylated or methylated DNA template are then cloned into a 

cloning vector and sequenced for identifying the nucleotide alterations of the bisulfite-

treated fragments. If conversion of a cytosine to a thymine is identified in an amplified 
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fragment, this will indicate an unmethylated cytosine. In contrast, if conversion of a 

cytosine residue to guanine is identified, it will indicate that the cytosine is a 5-

methylcytosine (Figure 2)  

Human DNA is under constant attack by exogenous and endogenous oxidative 

stress, that includes ultraviolet light, ionizing radiation, xenobiotic chemicals, and 

activated oxygen group carriers named reactive oxygen species (ROS) or activated 

methyl group carriers from metabolites in cell [28, 29]. Although currently there is no 

accurate estimation about the absolute or relative amount of different types of DNA 

lesions caused by these factors, small deoxynucleotide lesions appear to be the most 

common type of damage [30]. Among different types of DNA damage, the most common 

form is oxidative DNA base lesion which is induced by ROS [31]. Multiple DNA repair 

mechanisms are required to remove DNA damage to sustain cell viability and prevent 

mutagenesis. Base excision repair (BER) of DNA is a mechanism that has evolved to 

primarily remove oxidative DNA base damage as well as other types of base lesions. 

Base excision repair is initiated through the removal of a damaged base by a DNA 

glycosylase that results in an abasic site. Subsequently, AP endonuclease 1 (APE1) 

incises the 5’-end of the abasic site leaving a one-nucleotide gap with a 5’-deoxyribose 

phosphate (dRP) residue. DNA polymerase β (Pol β) removes the dRP group using its 

dRP lyase activity and fills in the gap using its polymerase activity creating a nicked 

DNA. In this scenario, only one nucleotide is replaced. Thus the APE1 and  pol β 

mediated pathway is called single-nucleotide BER (Figure 3)[5]. If a sugar is reduced or 

oxidized, it cannot be removed directly by Pol β dRP lyase.  Removal of the sugar 

phosphate is mediated through removal of one nucleotide attached to the sugar phosphate 
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by flap endonuclease 1 (FEN1) [32] creating a nick is then sealed by DNA ligase I (LIG I) 

or DNA ligase III that generate a phosphoester bond linking the 3’ hydroxyl group with 

the 5’-phosphate at the margin of the nick [28]. 

 Many oxidative DNA base lesion hotspots have been identified in the human 

genome. Among them, CpG clusters are the typical example. Methylated and 

unmethylated CpG clusters can be attacked by oxidative DNA damaging agents, and this 

usually result in a series of DNA base lesions that include 5-

	
  
Figure 2. Bisulfite sequencing for methylation detection 
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Figure 3. Base excision repair (BER) of oxidized DNA base lesions[5] 
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hydroxymethylcytosine, 5-hydroxycytosine, 5,6-dihydroxycytosine, 8-oxoguanine and 8-

hydroxyguanine [23, 33, 34]. Recent studies have indicated that DNA base damage and 

repair have an important impact on DNA methylation. It has been found that 8-

oxoguanine (8-oxoG), the most abundant oxidative base lesion in DNA can further cause 

a mismatched base pair [35, 36], when it occurs adjacent to a 5mC, it can inhibit methyl-

CpG binding domain (MBD) binding to 5-mC thereby inhibiting DNA methylation [37]. 

In addition, free radicals generated from inflammation can result in 5-bromocytosine and 

5-chlorocytosine that can mimic a 5mC. It is conceivable that the size and hydrophobic 

properties of chlorine and bromine substituent may mimic the methyl group of 5-

methylcytosine and can be recognized by DNMT1 as a methyl group allowing a direct 

DNA methylation of target cytosine on the template strand DNA [11]. The methylated 

DNA can be subsequently bound by MBD inducing suppression of expression of a gene. 

Interestingly, cooperation among DNA methyltransferases, BER enzymes and cofactors 

has been implicated [38, 39]. It has been found that DNMT 3a and 3b can interact and 

stimulate thymine DNA glycosylase (TDG) activity [38, 39]. Furthermore, an in vivo 

study indicated that DNMT1 was recruited on DNA damaged sites along with a BER 

cofactor, proliferating cell nuclear antigen (PCNA) [40]. These results suggest that 

DNMTs can facilitate DNA base lesion repair.  

A methlyated cytosine can be also removed by a process called DNA 

demethylation. DNA demethylation can occur either passively or actively. Passive DNA 

demethylation is the consequence of the failure of DNA methyltransferases to maintain 

DNA methylation pattern during cell division and DNA replication, whereas active DNA 

demethylation is mediated by sequential enzymatic reactions that occur in a large scale 
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independent of cell division and DNA replication. Active DNA demethylation has 

emerged as a new hot research topic [4, 41-43]. Many studies have demonstrated that a 

series of enzymes are involved in removing a 5’-methylcytosine and replacing the 

methylated nucleotide with an unmethylated cytosine through a DNA repair process. 

Removal of a 5-methylcytosine involves several sequential steps that modify a 5-

methylcytosine. These include its hydroxylation, deamination, oxidation or combination 

of these steps [4, 16, 44-57]. Recent studies have indicated that BER is actively involved 

in DNA demethylation through several sub-pathways that depends on the type of DNA 

glycosylases [4, 58, 59]. One of important BER sub-pathways is initiated by a direct 

deamination of 5mC by activation-induced (cytidine) deaminase (AID) that converts 

5mC to a thymine resulting in a T/G mismatch [59], which can be subsequently removed 

by TDG.  Removal of the T/G mismatch by TDG leads to subsequent BER steps that 

convert the 5mC into a unmethylated C. Another BER-mediated DNA demethylation 

pathway is initiated by single-strand-selective monofunctional uracil-DNA glycosylase 1 

(SMUG1) that removes a 5-formyluracil generated either from oxidation of a 5mC by a 

family of enzymes called Ten Eleven Translocation (TET) enzymes (Figure 4) [4, 16, 46, 

47, 49, 50, 55] or from oxidative DNA damage caused by hydroxyl radicals [60, 61]. 

Thus, DNA base damage and BER is actively involved in both and passive and active 

DNA demethylation [62]. However, many questions remain to be answered as to if and 

how DNA base lesions may interfere DNA methylation and how these damages may be 

repaired in the context of DNA methylation by BER to restore a normal DNA 

methylation pattern, and if a DNA base lesion can affect DNA demethylation, and if 

DNA methylation can alter the efficiency of BER.  To answer these questions, we 
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initially characterized if DNA methylation has any effects on BER if a base lesion occurs 

on a CpG dinucleotide. We then characterized the effect of DNA methylation on BER 

efficiency and the effect of a DNA base lesion on an essential step of DNA 

demethylation . 

 

 

 

 

 

 

 

 

	
  
Figure 4. DNA demethylation pathways [4]  
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2. Material and methods 
2.1 Materials – DNA oligonucleotides containing a THF residue and a 5-methylcytosine 

or a T/G mismatch were purchased from Integrated DNA Technologies Inc. (Coralville, 

IA). The radionucleotide (γ- 32P) ATP (6000 Ci/mmol), Deoxyadenosine 5’-triphosphate 

(6000 Ci/mmol) and cordycepin 5’-triphosphate 3’-(α-32P) (5000 mCi/mmol) were 

obtained from Perkin Elmer (Boston, MA). Micro Bio-Spin 6 chromatography columns 

were obtained from Bio-rad (Hercules, CA). T4 polynucleotide kinase (PNK) and 

terminal deoxynucleotidyl transferase (TdT) were from Fermentas (Glen Burnie, MD). 

Adenosine 5’-triphosphate (ATP) (100 mM) was from USB (Cleveland, Ohio). AID and 

TDG were from Enzymax, LLC (Lexington, Kentucky).  Purified uracil-DNA 

glycosylase (UDG), APE1, pol β, FEN1 and LIG I were generous gifts from Dr. Samuel 

H. Wilson at the Laboratory of Structural Biology, National Institute of Environmental 

Health Science/National Institutes of Health (NIEHS), Research Triangle Park, NC. All 

other reagents were from Thermo Fisher Scientific (Pittsburgh, PA) and Sigma-Aldrich 

(St. Louis, MO). 

2.2 Oligonucleotide substrates – The DNA oligonucleotide substrates containing a 5-

methylcytosine and a tetrahydrofuran (THF), an abasic site analog were designed to 

mimic the products resulting from monofunctional OGG1 removal of 8-oxoG. In the 

present study, THF residue is used to represent an oxidized sugar phosphate. Substrates 

containing a nick were designed to mimic the product from removal of a flap by FEN1 

cleavage. The BER substrates were prepared by annealing an oligonucleotide primer with 

a base lesion to its template strand at a molar ratio of 1:1.5 (template) or by annealing the 

upstream and downstream oligonucleotides to their template strand at a molar ratio of 
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1:1.5 (template). The BER substrates were radiolabeled at the 5’-end of the damage-

containing strand, and FEN1 substrates were radiolabeled at the 3’-end of the damage-

containing strand as indicated in Table I. The sequences of the oligonucleotides are listed 

in Table I. A DNA oligonucleotide substrate containing a T/G mismatched base pair or a 

C/G matched base pair adjacent to a THF residue was designed to mimic the 

intermediates resulting from demethylation of a 5-methylcytosine by AID [4, 52] that is 

adjacent to an undamaged base or a base lesion, i.e., abasic site (AP site). The DNA 

oligonucleotide substrates containing a T/G mismatch at the upstream primer and a 5’-

THF residue at the downstream primer were designed to mimic the BER intermediates 

that contain an APE1-incised oxidized AP site that is adjacent to a T/G mismatched base 

pair and opposite to a template C or T. A control substrate contains an AP site adjacent to 

C/G matched base pair and opposite to a template C. Substrates for measuring TDG 

activity were constructed by annealing a strand containing a mismatched T/G base pair 

with its template strand at a molar ration of 1:1.5. Substrates for measuring BER 

enzymatic activity were constructed by annealing an upstream primer with a 3’-T/G 

mismatched base pair and a downstream primer with a 5’-THF residue to its template 

strand at a molar ratio of 1:1:2. Substrates for measuring the activities of APE1, pol β, 

LIG I were radiolabeled at the 5’-end of the upstream strand, whereas substrates for 

measuring FEN1 cleavage were radiolabeled at the 3’-end of the downstream strand. The 

sequences of the oligonucleotides used are listed in Table I. 

2.3 Thymine DNA glycosylase (TDG) activity assay – Thymine DNA glycosylase (TDG) 

activity for removing the T from a T/G mismatch adjacent to a THF residue was 

examined at 37 oC for 30 min in 10 µl reaction buffer with 50 mM Tris-HCl, pH 7.5, 1 
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mM EDTA, 1 mM DTT, 0.1 mg/ml BSA, 0.01% Nonidet P-40). Reactions were 

terminated by transferring the reaction mixture to 95 oC for 5 min. Reaction mixture was 

then treated with 0.1 M NaOH and denatured at 95 oC for 10 min in buffer containing 

95% formamide and 10 mM EDTA. Substrates and products were separated by 15% 

urea-denaturing polyacrylamide gel electrophoresis (PAGE) and detected by a Pharos FX 

Plus Molecules Imager (Bio-rad, Hercules, CA).   

2.4 BER enzymatic activity assays – The AP endonuclease 1 (APE1) incision of the THF 

residue, an abasic site analog that is adjacent to 5-methylcytosine or a T/G mismatch, was 

measured at 37 oC in a 20-µl reaction mixture containing 50 mM Tris-HCl, pH 7.50, 50 

mM KCl, 0.1 mM EDTA, 0.1 mg/ml BSA, 5 mM MgCl2, 50 µM dNTPs, and 0.01% 

Nonidet P-40. Pol β DNA synthesis on a single-nucleotide gapped substrate to extend a 

3’-mismatched T or 3’-matched C was measured using a one-nucleotide gapped substrate 

containing a mismatched T or a matched C at the 3’-terminus of the upstream primer that 

is adjacent to a THF residue at the downstream primer. The enzymatic reaction was 

performed by incubating 25 nM substrates with various concentrations of pol β at 37 oC 

for 15 min in a 10 µl reaction mixture containing BER buffer (50 mM Tris-HCl, pH 7.5, 

50 mM KCl, 0.1 mM EDTA, 0.1 mg/ml BSA, 0.01% Nonidet P-40, 5 mM MgCl2). AP 

endonuclease 1 (APE1) 3’-5’ exonuclease activity for removing the T from a T/G 

mismatch was measured in BER buffer at 37 oC for 15 min. FEN1 cleavage activity for 

removing the THF residue on the same substrate was examined in BER reaction buffer 

with 50 µM dNTPs in the absence or presence of 5 nM pol β at 37 oC for 15 min. 

Reactions were terminated by transferring to 95 oC for 5 min in a solution containing 95% 
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formamide and 10 mM EDTA. Substrates and products were separated by 15% urea-

denaturing PAGE and detected by a Pharos FX Plus Molecules Imager.   

2.5 The efficiency of pol β and APE1 activity in the context of a T/G mismatch – The 

efficiency of pol β gap-filling synthesis activity and APE1 3’-5’ exonuclease activity was 

measured with 5 nM pol β and/or 50 nM APE1 using 25 nM 5’-32P-labeled substrates. 

The reactions were performed with 5 nM pol β or 50 nM APE1 in the absence or 

presence of pol β.  Reaction mixture was assembled on ice and incubated at 37 oC for 1, 2, 

5, 10 and 15 min, then terminated by transferring to 95 oC for 5 min in stopping buffer 

containing 95% formamide and 10 mM EDTA. DNA substrates and products were 

separated by 15% urea-denaturing PAGE and detected by a Pharos FX Plus Molecules 

Imager. 

2.6 In vitro BER reconstitution with purified enzymes – Base excision repair (BER) in 

the context of a 5mC and T/G mismatch was reconstituted with purified APE1, pol β, 

FEN1, LIG I and 1 nt-gapped substrate with a 5mC or T/G mismatch on the upstream 

primer, and a THF residue on the downstream primer. The 10-µl reaction mixture 

contained BER buffer with 50 µM dNTPs, 2 mM ATP, 5 mM Mg2+ and the indicated 

amounts of BER enzymes. Reaction mixture was assembled on ice and incubated at 37 oC 

for 15 min. Reactions were terminated by transferring to 95 oC for 5 min in stopping 

buffer containing 95% formamide and 10 mM EDTA. DNA substrates and products were 

separated by 15% urea-denaturing PAGE and detected by a Pharos FX Plus Molecules 

Imager. 
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3. RESULTS 

3.1 The effects of DNA methylation on base excision repair. 

3.1.1 A 5mC does not exhibit a significant effect on APE1 cleavage on the abasic site. 

To examine whether DNA methylation may have any effects on in major BER enzymes 

such as APE1, Pol β, FEN1, LIG I, initially we examined APE1 5'-incision of both native 

and oxidized abasic site. Substrates containing 31-nt with a 5mC adjacent to a 5'-THF 

residue or a uracil were used to mimic BER intermediates with an abasic lesion that 

represents a native abasic site resulting from a DNA glycosylase or a modified abasic site 

resulting from ROS. An unmethylated substrate was used as a control (Figure 5). 

Experiments were initially performed using the hemimethylated substrates with a 5mC on 

damage strand (Figure 5, lanes 1-6 and 13-17). Enzymatic reactions were assembled on 

ice in buffer containing 0.1 nM, 0.25 nM, 0.5 nM, 1 nM APE1 and 5 mM Mg2+ in the 

presence and absence of 2.5 nM UDG. The results showed that low concentration of 

APE1 at 0.25 nM efficiently incised both a native and a modified abasic site, and there is 

no difference in its cleavage efficiency between substrates containing a 5-methylcytosine 

and unmethylated substrates. We then subsequently examined the effect of a 5mC on 

APE1 5’-incision of an abasic lesion when it is located at the template strand and 

opposite to the abasic site (Figure 6). We found that the 5mC did not significantly affect 

APE1 activity (Figure 6, lanes 1-6 and lanes 13-17). We then determined if a complete 

methylation of a CpG dinucleotide with a 5mC on the damaged strand and a 5mC on the 

template strand may alter APE1 activity during repair of an abasic site. The results 

showed that a complete methylation of CpG dinucleotides failed to influence APE1 
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activity (Figure 6, lanes 6-10). These indicate that a methyl group does not exhibit any 

significant effect on APE1 5'-incision of a native or modified abasic site an abasic site.  

 

 
Figure 5. APE1 5’-incision activity on abasic site with a native or a modified sugar 
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3.1.2 A 5mC has no effect on pol β DNA synthesis. We then examined the effects of a 

5mC on pol β gap-filling synthesis and strand displacement synthesis using substrates 

that contained a 5mC adjacent to a THF residue or uracil or two 5mCs located next to and 

opposite a base lesion (Figures 7, 8 and 9). Experiments were conducted in presence of 

excessive amount of APE1 (10 nM) and UDG (2.5 nM) or the presence of APE1 alone to 

generate a 1 nt-gapped substrate for pol β to perform gap-filling synthesis and strand 

displacement synthesis. The enzymatic activity was measured using 1 nM, 2 nM and 5 

nM pol β (Figure 7, lanes 4-6, 10-12, 15-17 and 20-22) with the substrates containing a 

uracil that further created a native abasic site or a THF residue. The results showed that 

for both of a native and modified abasic site, pol β mainly inserted one nucleotide using 

	
  
Figure 6. APE1 5’-incision in the context of a complete DNA methylation 
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its gap-filling synthesis activity (Figure 7 lanes 4, 10, 15 and 20). However, no significant 

difference in pol β gap-filling synthesis and strand displacement synthesis was detected 

between methylated substrates and unmethylated substrates (Figure 7 lanes 4-6, 10-

12,15-17, 20-22). To rule out the possibility that maybe pol β was too active in Tris 

buffer used in our experimental conditions, and this diminished any effect of 5mC on pol 

β DNA synthesis activity, we then examined pol β gap-filling synthesis and strand 

displacement synthesis activities in HEPES buffer (Figure 8). The enzymatic activity was 

measured using 1 nM, 2 nM and 5 nM pol β (Figure 8, lanes 4-6, 10-12, 15-17 and 20-

22). Interestingly, in this buffer, pol β exhibited a little bit of better DNA synthesis 

activity on substrates containing a THF than substrates with a native abasic site in the 

context of a 5mC (Figure 8, lanes 15-17 and 20-22). It was shown that even at a low 

concentration of pol β at 1 nM, it inserted up to eight nucleotides or more. However, no 

significant difference shown in pol β DNA synthesis between substrates containing 5mC 

and those containing an unmethylated cytosine. We then examined if a 5mC opposite an 

abasic lesion may affect the activity of pol β DNA synthesis and found that a 5mC at this 

location did not affect pol β DNA synthesis either (Figure 9, lanes 3-6). Finally, we 

determined if pol β DNA synthesis could be affected by the presence of two 5mCs that 

are located adjacent to and opposite a base lesion. The results showed that the presence of 

both 5mCs did not exhibit a significant effect on pol β DNA synthesis (Figure 9, lanes 9-

12). Thus our results support a notion that DNA methylation does not affect pol β gap-

filling synthesis and strand displacement synthesis activity during both single-nucleotide 
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and long-patch BER, and this is buffer condition independent. 

 

	
  
Figure 7. Pol β DNA synthesis in the context of DNA methylation during BER 

	
  
Figure 8. Pol β DNA synthesis in the context of DNA methylation in HEPES 

buffer 
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3.1.3 Pol β DNA synthesis is slightly stimulated by a 5mC in the presence of FEN1. 

Since it has been reported that FEN1 and pol β can coordinate with each other to mediate 

efficient long-patch BER [32, 63]. We examined pol β DNA synthesis in the presence of 

FEN1 to determine if a 5mC has any effect on FEN1-pol β coordination. Experiments 

were conducted using a substrate containing a 5mC adjacent to an abasic lesion (Figure 

10). Excessive amount of APE1 (10 nM) was used to precut an abasic site to ensure that 

all abasic sites were 5’-incised.  Pol β activity was examined in the absence or the 

presence of increasing concentrations of FEN1 from 0.5 nM to 10 nM (Figure 10, lanes 

3-6, 8-11, 14-17 and 19-22). For a substrate with a 5mC, pol β exhibited better DNA 

	
  
Figure 9. Pol β DNA synthesis in the context of DNA methylation in the presence of 

APE1 
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synthesis by inserting more nucleotides than it did with an unmethlyated substrate (Figure 

10, lanes 8-11 and 19-22). The effect of pol β synthesis is FEN1 independent (Figure 10, 

compare lane 7 with lanes 8-11). The results indicate that a 5mC adjacent to an abasic 

site slightly stimulated pol β DNA synthesis as well as facilitates pol β-FEN1 

coordination during long-patch BER.  

	
  
Figure 10. Pol β DNA synthesis in the context of DNA methylation in the presence of 

FEN1 
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3.1.4. A 5mC does not affect on FEN1 cleavage during long-patch BER. To determine 

if a 5mC can affect FEN1 cleavage of a sugar phosphate during long-patch BER, we used 

substrates with a 5mC adjacent to a THF residue or with a 5mC opposite a THF residue 

or with two 5mCs both adjacent to and opposite an abasic site. Experiments were 

conducted using 3’-32P labeled methylated substrates, and an unmethylated substrate used 

as a control (Figure 11 and 12). FEN1 flap cleavage activity was examined in the absence 

or the presence of 2 nM pol β with increasing concentrations of FEN1 ranging from 0.5 

nM to 5 nM. In the absence of pol β, FEN1 exhibited a poorer cleavage activity only 

generating cleavage product at higher concentration at 5 nM (Figure 11, lanes 4, 8, 12 

and 16). In the presence of pol β, FEN1 cleavage activity was significantly increased, and 

more cleavage products were observed (Figure 12, lanes 4-6, 10-12, 16-18 and 22-24). 

	
  
Figure 11. FEN1 cleavage in the context of DNA methylation in the absence 

of pol β 
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The presence of a 5mC adjacent to a THF did not exhibit any significant effect on FEN1 

flap cleavage compared with the unmethylated substrate (Figure 12, lanes 4-6, 10-12, 

lanes 16-18 and 22-24) indicating that a 5mC next to an abasic site does not affect FEN1 

cleavage. We further examined FEN1 cleavage on a substrate with a 5mC opposite to a 

THF residue. The experiment was conducted with increasing concentrations of FEN1 

ranging from 0.5 to 5 nM (Figure 12, lanes 10-12). The results showed that FEN1 

cleavage of a THF residue opposite a 5mC did not exhibit a significant difference from it 

did with an unmethylated substrate indicating a 5mC failed to affect FEN1 cleavage of 

the THF residue by its flap cleavage activity (Figure 12, lanes 10-12). We then asked if 

two 5mCs located both next to and opposite an abasic site could have an effect on FEN1 

cleavage. We examined the possibility using a substrate with two 5mCs located next to 

	
  
Figure 12. FEN1 cleavage in the context of DNA methylation in the presence 

of pol β 
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and opposite a THF residue (Figure 12, lanes 4-6). We found that FEN1 cleavage on this 

substrate did not show a significant difference from its cleavage on the unmethylated 

substrate. No difference indicates that FEN1 cleavage is not altered by a complete 

methylated CpG dinucleotide. Our results demonstrate that DNA methylation does not 

alter FEN1 flap cleavage activity during long-patch BER.  

3.1.5 A 5mC does not affect DNA LIG I activity during BER. We then examined the 

effect of DNA methylation on the activity of LIG I in sealing a nick. A series of 

substrates containing a nick with a 5mC on different positions were used to mimic a 

nicked DNA that is adjacent to a 5mC or opposite to a 5mC or adjacent and opposite a 

5mC simultaneously. The substrates were used to examine if a hemimethylated and 

complete methylated CpG dinucleotide can affect the ligation step of BER mediated by 

LIG I. The results demonstrated that no significant difference in ligation mediated by LIG 

I ranging from 1 nM to 5 nM was detected with all the substrates tested (Figure 13).  

 

	
  
Figure 13. DNA LIG I ligation in the context of DNA methylation 
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Therefore we concluded that DNA methylation does not influence the activity of LIG I 

for sealing nicked DNA.  

3.1.6 DNA methylation does not affect BER efficiency. Since we identified a slight 

stimulatory effect of a 5mC on pol β during long-patch BER, we wanted to examine 

whether the effect may influence total BER capacity through facilitating pol β-FEN1 

coordination by conducting enzyme reconstitution experiments using a series of 

substrates containing a 5mC located at various positions related to a THF residue. The 

unmethylated substrate was used as a control. BER was reconstituted with purified APE1, 

Pol β, FEN1 and LIG I. Experiments were conducted firstly using a limited concentration 

of APE1 at 0.25 nM and 2 nM pol β, 1 nM FEN1 and 5 nM LIG I to determine if there is 

	
  
Figure 14. Reconstituted BER in the context of DNA methylation with a limited 

concentration of APE1 
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any stimulatory effect from a 5mC group on BER capacity (Figure 14). The results 

showed that no significant difference was detected in BER capacity with the methylated 

substrates from the unmethylated control substrate (Figure 14, lanes 4, 8, 12 and 16).  We 

then asked if under limited concentration of pol β at 0.5 nM, a 5mC could play a role on 

affecting BER efficiency (Figure 15). BER was reconstituted with 10 nM APE1, 1 nM 

FEN1 and 5 nM LIG I. We found similar amount of repair products were produced from 

all four different substrates indicating that that the methyl group does not significantly 

affect BER capacity in the presence of limited amount of pol β (Figure 15, lanes 4, 8, 12 

and 16). In conclusion, our results indicate that DNA methylation does not significantly 

alter BER capacity.  

3.2 Interactions between DNA demethlyation and DNA base lesion and repair  

Because BER plays an essential role in mediating DNA demethylation in mammals by 

removing a modified base that can be produced by various pathways [44, 58, 61, 64, 65], 

and CpG dinucleotides are susceptible to oxidative DNA damage that can readily induce 

a 8-oxoG at a methylated CpG dinucleotide, we asked if DNA demethylation mediated 

by BER can affect repair of a damaged base when the base lesion occurs adjacent to a 

DNA demethylation intermediate such as a mismatched base pair and if DNA base 

lesions can affect the efficiency and paths of DNA demethylation. To answer these 

questions, we characterized a series of BER enzymatic activities and BER capacity in the 

context of a T/G mismatch that results from the AID-mediated DNA demethylation 

pathway [4, 42, 43, 59]. 
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3.2.1 TDG efficiently removes the T from a T/G mismatch. Initially, we used an 

oligonucleotide substrate containing a T/G mismatch located in a CpG dinucleotide 

(Table I) to establish an assay for thymine DNA glycosylase activity. The substrate 

containing a T/G mismatch mimics a T/G mismatch intermediate produced by AID that 

	
  
Figure 15. Reconstituted BER in the context of DNA methylation with limited 

concentration of APE1 
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deaminates a 5-methylcytosine converting the methylated base into a thymine (Figure 16). 

To optimize the condition for TDG to remove the mismatched base pair, increasing 

concentrations of thymine DNA glycosylase from 25 nM to 150 nM was incubated with 

25 nM substrate at 37°C for 15 min (Figure 16, lanes 2-5). The incubation allowed 

thymine DNA glycosylase to remove the mismatched T leaving an abasic site. 

Subsequently excessive amount of APE1 (50 nM) was used to incise the 5’-side of the 

abasic site to ensure the complete incision of the abasic site, resulting in the production of 

a 16 nt cleavage product (Figure 16, lanes 2-5). With increasing concentrations of 

thymine DNA glycosylase, the amount of the APE1 cleavage product was significantly 

increased. When the ratio of enzyme-substrate reached 5:1, all the substrate was 

converted to the product by thymine DNA glycosylase (Figure 16, lanes 2-5). We further 

identified a lowest concentration for thymine DNA glycosylase to efficiently remove the 

	
  
Figure 16. Removal of a 3’-mismatched T by TDG  
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mismatch base pair as 75 nM (data not shown). We then examined the activity of thymine 

DNA glycosylase in the presence of APE1 to determine if TDG activity can be altered by 

an abasic site (Figure 17). We found that TDG efficiently removed all mismatched T that 

was adjacent to an undamaged base in the presence of a high concentration of APE1 at 50 

nM (Figure 17, lanes 4-9). TDG failed to efficiently remove all mismatched T that was 

located adjacent to an abasic site even in the presence of a high concentration of APE1 as 

the cleavage major product was a 17 nt product that should result from APE1 5’-incision 

of the abasic site (Figure 17, lanes 13-18, lanes 22-27). Compared with the control group, 

no cleavage product suggests that TDG removal of a mismatched T was inhibited. 

 

3.2.2 TDG is completely inhibited by an abasic lesion. On the basis of the previous 

results, to further confirm the effect of an abasic lesion can affect TDG activity, initially 

	
  
Figure 17. Removal of a 3’-mismatched T by TDG in the presence of APE1 
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we examined TDG removal of a 3’-mispaired T that was adjacent to an abasic site. 

Substrates containing a 3’-mismatched T next to an undamaged base or a THF residue 

(Table I) were incubated with increasing concentrations of TDG ranging from 50 nM to 

70 nM. The incubation allowed TDG to remove the 3’-mismatched T generating a native 

abasic site. The abasic site was broken using high temperature into a single-strand break 

for detecting TDG products. The results showed that 50 nM TDG removed the 

mismatched T adjacent to a normal base (Figure 18, lane 2). Removal of the base was 

significantly increased with increasing concentrations of TDG from 60 nM to 70 nM 

(Figure 18, lanes 3-4). However, no TDG product was generated from a mismatched T 

adjacent to an abasis site by the same concentrations of the enzyme (Figure 18, lanes 6-

8). Compared to the control group, no product bands indicates that thymine DNA 

glycosylase activity was completely inhibited by an abasic lesion.  

	
  
Figure 18. TDG activity is inhibited by an abasic base lesion 
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3.2.3 APE1 activity is not affected by a 3’-mismatched T in a CpG dinucleotide and 

TDG. To determine any effects from 3’-mismatched T adjacent to an abasic site on APE1 

activity, Substrates containing a 3’-T mismatch next to a THF residue that was opposite 

to an undamaged nucleotide or a thymine were used. This mimics the scenario where a 

single 5mC is demethylated or two 5mCs are demethylated simultaneously. APE1 

activity was measured by incubating 5 nM of APE1 in the absence and presence of 

increasing concentrations of TDG from 10 nM to 75 nM with 25 nM substrates (Figure 

19). The results showed that APE1 efficiently incised the 5’-end of an abasic site at the 

concentration of 5 nM on both types of substrates (Figure 19, lanes 3-6 and lanes 9-12). 

APE1 activity did not exhibit any difference in the absence and presence of increasing 

concentrations of TDG indicating that TDG cannot affect APE1 incision of an abasic site. 

	
  
Figure 19. APE1 5’-incision of the abasic site in the presence of TDG 
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We conclude that a demethylation intermediate 3’-mismatched T does not affect APE1 

5’-incision of an abasic site, and APE1 can efficiently incise an abasic site in the presence 

of TDG. The high efficiency of APE1 5’-incision further indicates that there is no 

inhibitory effect of TDG on APE1 5’-incision of an abasic site. 

3.2.4 Pol β can efficiently extend a 3’-mismatched T. To determine if pol β can still 

perform DNA synthesis in the presence of a 3’-mismatched T, we examined pol β gap-

filling synthesis using substrates with a 3’-matched C or a 3’-mismatched T adjacent to a 

pre-incised THF residue or a 3’-mismatched T along with a T opposite to a THF residue.  

Substrates (25 nM) were incubated with various concentrations of pol β at 1 nM, 5 nM 

and 10 nM.  At all concentrations tested, pol β efficiently inserted one nucleotide to 

extend a 3’-matched C (Figure 20, lanes 2-4). Surprisingly, pol β also extended a 3’-

	
  
Figure 20. Pol β DNA synthesis in the context of a T/G mismatch 
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mismatched T efficiently (Figure 20, lanes 6-8 and lanes 10-12). Pol β DNA synthesis 

was particularly obvious at the concentrations of 5 nM and 10 nM where almost all 

substrates were converted to products (Figure 20, lanes 6-8 and lanes 10-12). 

Interestingly, pol β DNA synthesis to extend a 3’-mismatched T on the substrate with a T 

opposite the THF residue was much weaker than its synthesis with other substrates 

suggesting that the polymerase had difficulty to extend a 3’-mismatched T when it inserts 

a next nucleotide to base pair with A or T. The results indicate that pol β can extend a 3’-

mismatched T suggesting that the polymerase adopts a similar mechanism that is adopted 

by several DNA translesion synthesis polymerases such as pol4 and pol κ that 

demonstrate mismatch tolerance [66, 67]. The results also indicate that pol β performed a 

strand-displacement synthesis to extend a 3’-terminus matched C (Figure 20, lanes 2-4), 

but it failed to perform such synthesis when it extended a 3’-mismatched T suggesting 

that the mismatched base affects pol β further DNA synthesis. In conclusion, pol β can 

tolerate and efficiently extend a 3’-mismatched T that results from DNA demethylation 

of a CpG dinucleotide. 

3.2.5 APE1 3’-5’ exonuclease activity efficiently removes a 3’-mispaired T on a T/G 

mismatch. It is known that APE1 3’-5’ exonuclease activity can remove the mismatched 

nucleotide [63]. Thus we hypothesize that APE1 can also efficiently remove the 3’-

terminus mismtached T from a T/G mismatch to increase the fidelity of pol β. To test this 

possibility, we examined APE1 activity on substrate (25 nM) with a 3’-terminus 

mispaired T at the upstream strand and a 5’-THF residue at the downstream strand with a 

template C or T opposite to an abasic site (Figure 21, lanes 7-10 and lanes 12-15). AP 

endonuclease 1 cleavage on a substrate containing a THF residue at the 5’-end of the 
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downstream primer and a 3’-C/G matched nucleotide was also examined to determine the 

activity of APE1 in removing a 3’-terminus matched C  (Figure 21, lanes 1-5). We found 

that APE1 at both low and high concentrations (5 nM, 10 nM, 25 nM and 50 nM) 

exhibited poor cleavage activity in removing the 3’-terminus matched C (Figure 21, lanes 

2-5), indicating that removal of a 3’-terminus matched nucleotide by APE1 3’-5’ 

exonuclease activity was not efficient. Low concentrations of APE1 (5 nM and 10 nM) 

removed the 3’-terminus mismatched T much more efficiently than it removed a 3’-

matched C on a substrate with a template containing C or T opposite to a THF residue 

(Figure 21 lanes 7 and 8, 12 and 13). However, high concentrations of APE1 (25 nM and 

50 nM) removed the 3’-terminus mismatched T with a high efficiency (Figure 21, lanes 9 

and 10, 14 and 15). For all substrates with a T/G mismatch, APE1 mainly removed one  

 

	
  
Figure 21. Removal of a 3’-mimatched T by APE1 3’-5’ exonuclease activity 
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nucleotide from the upstream primer containing a 3’-terminus mismatched T. We 

conclude that APE1 can efficiently remove the mismatched nucleotide.  

3.2.6 Removal of a 3’-mismatched nucleotide by APE1 3’-5’ exonuclease activity 

facilitates pol β DNA synthesis at a nicked DNA. To further examine whether APE1 3’-

5’ exonuclease can modulate pol β DNA synthesis in general, we initially examined its 

effect on pol β DNA synthesis in a nicked DNA with or without a 5’-THF flap that was 

adjacent to a T/C or C/C mismatch (Figure 22). Pol β DNA synthesis was examined 

using 5 nM pol β in the absence or presence of 50 nM APE1 and 75 nM TDG. The 

results showed that pol β alone failed to insert any nucleotides at the nicked DNA 

substrates (Figure 22, lane 2, 6 and 10). Presence of APE1 allowed pol β to insert 

	
  
Figure 22. Removal of a 3’-mismatched nucleotide at a nick by APE1 3’-5’ 

exonuclease activity 
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multiple nucleotides with all the substrates tested (Figure 22, lanes 3-4, lanes 7-8 and 

lanes 11-12) indicating that APE1 3’-5’ exonuclease removed the mismatched nucleotide 

leaving a 1nt gap for pol β to fill in. The effect was more evident with the nicked-THF 

flap substrate (Figure 22, lanes 3-4). For the substrates without a THF flap, APE1 3’-5’ 

exonuclease activity was predominant that somewhat compromised pol β DNA synthesis 

(Figure 22, lanes 7-8 and lanes 11-12). Pol β DNA synthesis did not show a difference in 

the absence and presence of TDG (Figure 22, lanes 3-4, lanes 7-8 and lanes 11-12) 

indicating that TDG does not affect pol β DNA synthesis. We conclude that APE1 3’-5’ 

exonuclease activity facilitates pol β DNA synthesis at nicked DNA, and the effect is 

TDG independent. 

3.2.7 APE1 does not alter pol β gap-filling synthesis for extending a 3’-terminus 

mismatched T. Since our previous results demonstrated that APE1 removed a 3’-

mismatched T efficiently (Figure 23), we further hypothesize that APE1 may stimulate 

the gap-filling synthesis and strand displacement synthesis activity of pol β by removing 

the 3’-terminus mismatched T allowing pol β to insert a C to create a matched C/G base 

pair at the 3’-terminus.  Pol β then extended the 3’-matched C to continue its subsequent 

DNA synthesis. We examined the possibility using the substrate (25 nM) with a 3’-

terminus mispaired T at the upstream strand and a 5’-THF residue at the downstream 

strand with a template C or T opposite to the THF residue (Figure 23, lanes 7-18). The 

substrate with a 3’-terminus matched C was used as a positive control (Figure 23, lanes 1-

6). No significant difference in the amount of pol β DNA synthesis product (Figure 23, 

lanes 3, 9 and 15) was detected in the absence of APE1 (Figure 23, lanes 3, 9,15) and in 
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the presence of 5 nM, 10 nM and 50 nM APE1 (Figure 23, lanes 4-6, 10-12 and 16-18). 

Therefore, APE1 did not affect pol β gap-filling synthesis at both low and high 

concentrations.  

3.2.8 The Klenow fragment of E. Coli DNA polymerase I can efficiently remove a 3’-

mismatched T, whereas the 3’-5’ exonuclease deficient mutant of Klenow fragment can 

extend a 3’-mismateched T. Since we found that pol β efficiently extended and tolerated 

a 3’-mismatched T, and APE1 3’-5’ exonuclease played an important role in removing a 

mismatched nucleotide before pol β can extend the mismatched nucleotide, suggesting 

that APE1 3’-5’-exonuclease can serve as a proofreading factor to cooperate with pol β 

improving the fidelity of the polymerase. We then asked if a replication DNA polymerase 

with a 3’-5’ exonuclease proof reading domain would have the same function as APE1 

3’-exonuclease in removing a mismatched T in a CpG dinucleotide and if deficiency of 

	
  
Figure 23. Pol β DNA synthesis in the presence of APE1 on substrates 

containing a T/G mismatch 
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the proof reading domain would also lead to the extension of the mismatched nucleotide 

in a CpG dinucleotide. We initially characterized the 3’-5’ exonuclease activity of 

Klenow fragment on the substrates containing a THF flap with a 3'-matched C or a 3'-

mismatched T with a template C or T (Figure 24A). We found that Klenow fragment 3'-5' 

exonuclease efficiently removed a 3'-mismatched T at units ranging from 0.1 to 1 (Figure 

24A, lanes 2-5 and lanes 7-10). The enzymatic activity also cleaved nucleotides 

progressively. Klenow fragment also exhibited cleavage on matched nucleotides (Figure 

24A, lanes 12-15). The results indicate that the 3'-5' exonuclease of the replication 

polymerase can remove both mismatched and matched nucleotides. We then examined 

the activity of the 3'-5' exonuclease deficient mutant of Klenow fragment on these 

substrates and found that the mutant enzyme (0.1 U to 1 U) only exhibited an inefficient 

cleavage on a 3'-mismatched T and poor cleavage on a matched nucleotide (Figure 24B). 

The gel result indicates that 3’-5’ exonuclease of Klenow fragment can efficiently 

remove a 3'-mismatched T playing an important role in proofreading for the polymerase. 

Further analysis of DNA synthesis on these substrates by wild-type and mutant Klenow 

fragment demonstrated that wild-type enzyme synthesized DNA on both 3'-mismatched 

and 3'-matched containing substrates with similarly efficiency generating the same 

species of product indicating its 3'-5' exonuclease activity removed a 3'-mismatched T 

and allowed the polymerase to insert a correct nucleotide to base pair with a template G 

preventing mutagenesis resulting from a T/G mismatch (Figure 25A and 25B). The 3'-5' 

exonuclease mutant Klenow fragment efficiently performed DNA synthesis and 

generated a product one-nucleotide longer than the full length of the template strand 

(Figure 25B, lanes 47-50 and 52-55), indicating that the mutant Klenow fragment can 



	
  
	
  

38 

readily extend a 3'-mismatched or it can budge out the mismatched T to insert a correct 

nucleotide to base pair with the template G to extend the mismatched T. The results 

further indicate that similar to pol β, the replication polymerase with its proofreading 

function deficiency can readily extend a 3'-mismatched T generating mutation. 

	
  
Figure 24A. Wild type Klenow fragment’s 3’-5’ exonuclease activity 
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Figure 24B.  3’-5’ exo- mutant Klenow fragment’s 3’-5’ exonuclease activity 

	
  
Figure 25A. Wild type Klenow fragment’s DNA synthesis activity assay 
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3.2.9 The efficiency of pol β to extend a 3’-mismatched T and APE1 3'-5' exonuclease 

to remove a 3'-mismatched nucleotide. Since our previous results indicate that removal 

of a 3’-mismatched T by APE1 is critical in improving pol β fidelity, we asked if APE1 

can remove the mismatch T before pol β can extend the mismatched nucleotide. We 

examined the efficiency of pol β DNA synthesis at 5 nM and that of APE1 3'-5' 

exonuclease activity at 5 nM and 50 nM using a substrate (25 nM) containing a 3’-

mispaired T at the upstream primer and a 5’-THF residue at the downstream primer with 

a template C opposite to a THF residue. The products were measured at different time 

intervals ranging from 0 min to 30 min. The percentage of products was plotted against 

incubation time (Figure 26).  The result have shown that 5 nM pol β extended a 3'-

	
  
Figure 25B. 3’-5’ exo- mutant Klenow fragment’s DNA synthesis activity assay 
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mismatched T much faster than APE1 3'-5' removed the mismatched T. However the 3’-

5’ exonuclease activity of 50 nM APE1 removed the mismatched T much faster than 5 

nM pol β to extend the mispaired base (Figure 26). Removal of the T/G mismatch by AP 

endonuclease 1 indicates high concentration of APE1 can combat pol β extension of a 

mispaired nucleotide. Since APE1 is much more abundant than pol β in cells, the result 

indicates that APE1 can remove a mismatched T before it can extended by pol β in cells. 

 

3.2.10 FEN1 failed to efficiently cleave a sugar phosphate flap in the context 

of a T/G mismatch.	
   Since our previous results indicate that both APE1 and pol β 

activities were not affected by a 3’-mismatch T, we wanted to examine whether it can 

influence FEN1 flap cleavage activity using a series of substrates containing a 3'-

	
  
Figure 26. Efficiency of APE1 3’-5’ exonuclease and pol β extension of a mismatched T 
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mismatched T (Figure 27). The substrate with a 3'-matched C was used as a control. To 

examine whether 3'-mismatched T will have any effect on FEN1 cleavage, various 

substrates (25 nM) were incubated with increasing concentrations of FEN1 from 5 to 25 

nM. The results showed that at all concentrations tested, FEN1 along cleaved on the 

substrates inefficiently (Figure 27, lanes 2 to 4, 6 to 8 and 10 to 12). No significant 

difference was detected between FEN1 cleavage on the mismatch containing substrates 

and the substrate without a mismatch. In the presence of pol β, more cleavage FEN1 

products were detected from the substrate without a mismatch (Figure 28, lanes 5-7) 

indicating that pol β strand-displacement synthesis created a longer flap for FEN1 

cleavage. However, the presence of pol β did not significantly improve FEN1 cleavage 

	
  
Figure 27. FEN1 cleavage in the context of a T/G mismatch in the absence of pol β 
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on a flap next to a 3'-mismatched T (Figure 28, lanes 12-14 and lanes 19-21). The low 

efficiency of FEN1 indicates a 3'-mismatched T exhibited an inhibitory effect on FEN1 

cleavage.  

3.2.11 Base excision repair can occur in the presence of a 3’-mismatched T. Our 

previous results have shown that 3’-mismatched T does not have influence on the 

efficiency of pol β and APE1 enzymatic activity, however, it slightly inhibited FEN1 flap 

cleavage efficiency, we wanted to further examine whether the 3’- mismatched T/G may 

affect BER capacity. We performed enzyme reconstitution experiments by incubating the 

mismatch-containing substrates and the control substrate without any mismatches with 

APE1, pol β, FEN1 and LIG I (Figure 29). The results showed that a BER product was 

detected with the substrates containing a 3'-mismatched T in the absence of APE1 (Figure 

29, lanes 6 and 10) although the amount of the product was less than the one generated 

	
  
Figure 28. FEN1 cleavage in the context of a T/G mismatch in the presence of  

pol β 
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from the control substrate (Figure 29, lane 2). Pol β DNA synthesis indicates that in the 

absence of APE1, a 3'-mismatched T can be extended by pol β leading a repair product 

with a mismatched base pair. Presence of high concentrations of APE1 (50 nM and 100 

nM) significantly stimulated the production of the repair product (Figure 29, lanes 7-8) 

from the substrate with a 3'-mismatched T and a template C. However, pol β DNA 

synthesis was not observed with the substrate with a 3'-mismatched T and a template T 

(Figure 29, lanes 11-12).   We conclude that DNA base lesion repair can be accomplished 

with a tolerance of a 3'-mismatched T that is mediated by pol β leading to mutagenesis. 

However this effect can be combated by a high concentration of APE1 3'-5' exonuclease 

that can efficiently remove a 3'-mismatched nucleotide thereby improving pol β fidelity 

and preventing mutagenesis.  

	
  
Figure 29. Reconstituted BER in the context of a T/G mismatch in the absence or 

presence of 50 nM and 100 nM APE1 
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4. Discussion 

4.1 DNA methylation has no effect on BER – In the present study, we systematically 

characterized the effects of DNA methylation on the core BER enzymes that include 

APE1, pol β, FEN1 and LIG I as well as its effect on BER capacity. We found that a 

5mC located adjacent or opposite to an abasic site did not significantly influence the 

activities of the major BER enzymes (Figure 5-15). Interestingly we found that a 5mC 

slightly stimulated pol β DNA synthesis in the presence of FEN1 suggesting that it 

facilitates pol β-FEN1 coordination during long-patch BER. However, this effect did not 

lead to a significant effect on total BER capacity indicating that DNA methylation does 

not interfere with or stimulate repair of a DNA base lesion adjacent or opposite to a 5mC. 

Our results are consistent with a recent finding by the Wilson group showing that a 5mC 

adjacent to an 8-oxoG at a CpG dinucleotide failed to affect the removal of the base 

lesion by OGG1 [68]. This further suggests that a DNA base lesion can be efficiently 

repaired in the presence of DNA methylation. 

4.2 Removal of a T/G mismatch generated by a DNA demethylation pathway is 

inhibited by an abasic lesion and pol β can extend the 3’-mismatched T  – In this study, 

for the first time, we studied a scenario where oxidative DNA base lesions occur along 

with DNA demethylation that generates a T/G mismatch from a 5mC of a CpG 

dinucleotide located adjacent or opposite to the base lesions. Both 3’-mismatched T and 

damaged bases can be subject to BER. The 3’-mismatched T can be removed by TDG. 

With the presence of a base lesion adjacent to the 3’-mismatched T, this initiates BER in 

the context of a base lesion. We found that a 3’-mismatched T did not affect APE1 5’-

incision of an abasic lesion indicating the base lesion does not affect removal of abasic 
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site. Surprisingly, however, we found that the abasic lesion completely inhibited the 

activity of TDG in removing the 3’-mismatched T indicating a base lesion adjacent to the 

mismatched nucleotide completely disrupts the ability of TDG to remove the mismatched 

T. This allows the maintenance of the mismatched nucleotide. More surprisingly, we 

found that pol β efficiently extended the 3’-mismatched T thereby maintaining the 

mispaired base. Thus the repair product generated by the process bears a T/G mismatch 

and may introduce mutations during subsequently DNA replication process.  

4.3. Tolerance of 3’-mismatched T by Pol β and other DNA polymerases – Studies from 

the Sweasy group have shown that pol β is a low fidelity enzyme in gap-filling synthesis 

and strand displacement synthesis and can extend a mismatched nucleotide to tolerate 

mismatches and insert the incorrect nucleotide to bypass a DNA lesion at DNA template 

strand [69]. A group of DNA polymerases, translesion synthesis polymerase such as pol κ 

has also been found to extend a 3’-mispaired termini using similar pattern of mismatch 

tolerance [66]. Another translesion synthesis polymerase pol µ has also been found to be 

able to extend a 3’-mismatched nucleotide [70, 71]. Our discovery of pol β to extend a 3’-

mismatched nucleotide demonstrating that pol β can adopt a similar mechanism as 

translesion DNA polymerases. Since our results indicate that pol β exhibited an efficient 

extension of a 3’-mismatched T to fill in a gapped DNA during BER, and the mismatch 

tolerance of pol β can lead to fully repaired product that bears a mismatch, it is important 

for further identify a mechanism for removing the mismatched nucleotide before pol β 

extends it. Interestingly, by characterizing the ability of a DNA replication polymerase, 

the Klenow fragment of bacterial DNA polymerase I, we found that its 3’-5’ exonuclease 

deficient mutant can also readily tolerate a 3’-mismatched T generating a DNA strand 
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that bears a mismatch. These results evidently indicate that a 3’-5’ exonuclease for the 

proofreading function of DNA replication or repair polymerase is essentially needed for 

removing a T/G mismatch at a CpG dinucleotide resulting from DNA demethylation.  

4.4 APE1 3’-5’ exonuclease removes a 3’-mismatched T and prevents pol β extension 

of the mismatched nucleotide performing a proofreading function – It was reported by 

the Cheng group that APE1’s 3’-5’ exonuclease activity is critical in removing a 3’-

misparied nucleotide in DNA [72]. APE1 3’-5’ exonuclease activity in removing a 3’-

mismatched nucleotide is significantly higher (160 fold) than that in removing a matched 

nucleotide [72]. Thus, it has been proposed that APE1 plays a critical role in correcting 

the mismatch introduced by error-prone pol β. This has been supported by our results 

showing that high concentrations of APE1 removed the 3’-mismatched T more efficiently 

than pol β extension of the 3’-mismatched nucleotide. Since in cells, APE1 is much more 

abundant than pol β, this further indicates that APE1 3’-5’ exonuclease activity can 

cooperate with pol β to allow the polymerase to insert the correct nucleotide after APE1 

removes the mismatched nucleotide. Our results support the notion that APE1 serves as a 

proofreading function to increase pol β fidelity by removing a mismatched nucleotide. 

Besides, as our results have shown that pol β DNA synthesis in the context of matched 

C/G base pair is more efficient than mismatched T/G (Figure 20), thus removal of a 

mismatched T by APE1 will increase pol β’s efficiency of DNA synthesis and accelerate 

insertion of the correct nucleotide to form a repaired product without a mismatch. Thus, 

sufficient amount of APE1 in cells should lead to a reduced mutation frequency resulting 

from DNA demethylation through pol β-dependent BER sustaining genome stability [62].  
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4.5 DNA demethylation on both strand of genes located on the CpG islands results in 

mutation that could not be corrected by BER – In a scenario where 3’-mismatched T is 

adjacent to an abasic site in a CpG dinucleotide, the potential T/G mismatch mutation can 

be diminished by BER as long as APE1 removes the mismatched T before pol β can 

extend it. However, in the scenario of DNA demethylation occurs on the template strand 

of a CpG dinucleotide creating a T opposite an abasic site, a conversion of G/C base pair 

will occur during BER, thereby introducing an A/T mutation.  In this case, APE1 3’-5’ 

exonuclease cannot remove the T. Pol β gap-filling synthesis will lead to the conversion 

of G/C base pair into an A/T base pair causing a mutation. Here we have provided the 

first evidence as to how a DNA demethylation contributes to mutations in CpG islands. 
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5. Table I Oligonucleotide sequence 

 

 
F: tetrahydrofuran; 5mC: 5-methylcytosine, U: deoxyuridine 
 

 

 

Oligonucleotides nt Sequence (5’-3’) 
Downstream   
D1 31 CTG CAG CTG ATG C5mCU GGT GCG GAT CCG GTG C 
D2 31 CTG CAG CTG ATG C5mCTHF GGT GCG GAT CCG GTG C 
D3 
D4 
D5 
D6 
D7 
D8 
D9 
D10 
D11 
D12 
D13 
D14 
D15 

31 
31 
17 
16 
17 
31 
31 
31 
31 
13 
15 
15 
33 

CTG CAG CTG ATG CCU GGT GCG GAT CCG GTG C 
CTG CAG CTG ATG CCTHF GGT GCG GAT CCG GTG C 
THF-GGG TGC GGA TCC GGT GC 
THF-GGT GCG GAT CCG GTG C 
GGG TGC GGA TCC GGT GC 
CTG CAG CTG ATG C5mCTHF GGT GCG GAT CCG GTG C 
CTG CAG CTG ATG C5mCU GGT GCG GAT CCG GTG C 
GCA CCG GAT CCG CAC CTG GCA TCA GCT GCA G 
GCA CCG GAT CCG CAC CTTHF GCA TCA GCT GCA G 
THF-GCA TCA GCT GCA G 
THF-GTG CGG ATC CGG TGC 
GTG CGG ATC CGG TGC 
THF-GCA TCA GCT GCA GTA CGT AGA CTT ACT CAT TGC 

Template   
T1 31 GCA CCG GAT CCG CAC CCG GCA TCA GCT GCA G 
T2 31 GCA CCG GAT CCG CAC C5-mCG GCA TCA GCT GCA G 
T3 31 CTG CAG CTG ATG CCG GGT GCG GAT CCG GTG C 
T4 
T5 
T6 
 
T7 
 

31 
31 
71 
 
71 

CTG CAG CTG ATG CTG GGT GCG GAT CCG GTG C 
GCA CCG GAT CCG CAC CGC GCA TCA GCT GCA G 
GCA ATG AGT AAG TCT ACG TAC TGC AGC TGA TGC CGG 
GTG CGG ATC CGG TGC TAC GGA TGC TAG ATG ACT CG 
GCA ATG AGT AAG TCT ACG TAC TGC AGC TGA TGC TGG 
GTG CGG ATC CGG TGC TAC GGA TGC TAG ATG ACT CG 

Upstream   
U1 14 CTG CAG CTG ATG C5mC 
U2 14 CTG CAG CTG ATG CC 
U3 
U4 
U5 
U6 
U7 
U8 
U9 
U10 

15 
15 
17 
17 
16 
16 
37 
37 

CTG CAG CTG ATG C5mCG 
CTG CAG CTG ATG CCG 
GCA CCG GAT CCG CAC CT 
GCA CCG GAT CCG CAC CC 
CTG CAG CTG ATG CGC T 
CTG CAG CTG ATG CGC C 
CGA GTC ATC TAG CAT CCG TAG CAC CGG ATC CGC ACC 
T 
CGA GTC ATC TAG CAT CCG TAG CAC CGG ATC CGC ACC 
C 
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