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ABSTRACT OF THE DISSERTATION 

RAPID INLINE DERIVATIZATION OF PRIMARY AND SECONDARY AMINE 

CONTAINING DRUGS BY CAPILLARY ELECTROPHORESIS WITH LASER-

INDUCED FLUORESCENCE 

by 

Britt E. Turnquest 

Florida International University, 2013 

Miami, Florida 

Professor Bruce R. McCord, Major Professor 

Despite the ongoing “war on drugs” the seizure rates for phenethylamines and 

their analogues have been steadily increasing over the years. The illicit manufacture of 

these compounds has become big business all over the world making it all the more 

attractive to the inexperienced “cook”. However, as a result, the samples produced are 

more susceptible to contamination with reactionary byproducts and leftover reagents. 

These impurities are useful in the analysis of seized drugs as their identities can help to 

determine the synthetic pathway used to make these drugs and thus, the provenance of 

these analytes. In the present work two fluorescent dyes, 4-fluoro-7-nitrobenzofurazan 

and 5-(4,6-dichlorotriazinyl)aminofluorescein, were used to label several phenethylamine 

analogues for electrophoretic separation with laser-induced fluorescence detection. 

The large scale to which law enforcement is encountering these compounds has 

the potential to create a tremendous backlog. In order to combat this, a rapid, sensitive 

method capable of full automation is required. Through the utilization of the inline 

derivatization method developed whereby analytes are labeled within the capillary 
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efficiently in a minimum span of time, this can be achieved. The derivatization and 

separation parameters were optimized on the basis of a variety of experimentally 

determined factors in order to give highly resolved peaks in the fluorescence spectrum 

with limits of detection in the low µg/mL range.   
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CHAPTER 1: INTRODUCTION 

The term phenethylamine represents a large group of molecules all with a 

structural skeleton comprised of a benzene ring with an attached ethylamine group [14]. 

The presence and position of different substituents alters the pharmacological effects of 

these compounds giving them a wide variety of legitimate and illicit uses [44]. They can 

be found naturally in different plants or synthesized in a laboratory setting. It is these 

synthetic versions which are of greatest interest as they are primarily abused as 

psychostimulants [59].  

According to the United Nations Office on Drugs and Crime (UNODC) in their 

world drug report for the year 2013, the seizures of amphetamine-type stimulants (ATS) 

increased by 66% in 2011 from the previous year’s value of 74 tons (figure 1) [92]. These 

seizures were mostly in the form of methamphetamine which amounted to 31 tons being 

seized in Mexico alone. 

It was been reported that in 2011, an estimated 33.8 million persons between the 

ages of 15 and 64 years admitted to using ATS in the preceding year globally. The 

increasing prevalence of these compounds is why a rapid, sensitive, selective, and 

inexpensive method of analysis of these drugs is needed.   
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Figure	
  1:	
  Bar	
  chart	
  showing	
  trends	
  in	
  global	
  seizures	
  of	
  ATS	
  from	
  the	
  year	
  2002	
  to	
  2011.	
  Total	
  includes	
  seized	
  
amphetamine,	
  “ecstasy”-­‐type	
  substances,	
  methamphetamine,	
  non-­‐specified	
  amphetamine-­‐type	
  stimulants,	
  other	
  
stimulants	
  and	
  prescription	
  stimulants.	
  For	
  the	
  categories	
  of	
  other	
  stimulants	
  and	
  prescription	
  stimulants,	
  seizures	
  
reported	
  by	
  weight	
  or	
  volume	
  only	
  are	
  included.	
  Adapted	
  from	
  [92]. 

1.1 Synthesis 

There are a variety of synthetic pathways for the illicit manufacture of 

phenethylamines, most of which involve the conversion of non-controlled analogues via a 

reduction reaction [75]. These reduction reactions can be grouped into four main 

classifications; heterogeneous catalysis, dissolving metal reductions, metal hydride 

reductions, and non-metal reductions [75, 93]. The method used is dependent not only on 

the starting materials available, but also the chemical knowledge of the manufacturer. 
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Amphetamine precursors which can be used include safrole, ephedrine, pseudoephedrine, 

phenyl-2-propanone (P2P), and benzaldehyde [75].  

Ephedrine and pseudoephedrine are diastereomers of the same molecule meaning 

they have the same formula but differ in configuration at one or more stereocenters 

without being mirror images of one another. As a result of these structural differences 

these diastereomers have different physical properties and reactivity [44]. They can be 

converted to ATS through a variety of methods as seen in figure 2. By determining the 

synthetic pathway by which a precursor is converted into an illicit drug, one is able to 

track its location of origin and gain insight into how it was manufactured (home-based 

“cook” or large scale operation)[75, 102]. 

The conversion of ephedrine into methamphetamine via the reduction of a 

halogenated intermediate was first observed by Emde in the early 1900s [102]. The 

reaction targets the hydroxyl group of the (pseudo)ephedrine via an SN2 reaction with 

thionyl chloride to produce chloroephedrine. The chloroephedrine intermediate is 

subsequently reduced through catalytic hydrogenation. This method often produces a 

number of synthesis byproducts whose presence in a seized sample could indicate the 

synthesis method used. Some of these contaminants include chloroephedrine, 

methylephedrine, and N,O-diacetylephedrine. In a typical Birch reduction sodium and an 

alcohol are used, however, the more common “Nazi” method utilizes lithium which has 

greater reactivity. The final product is treated with muriatic acid in order to crystallize the 

hydrochloride salt form.  

 



4

Figure	
  2:	
  Synthetic	
  routes	
  for	
  converting	
  ephedrine	
  (or	
  pseudoephedrine)	
  to	
  d-­‐methamphetamine.	
  (a)	
  Emde	
  
method	
  (b)	
  Modified	
  Birch	
  reduction/"Nazi"	
  method	
  (c)	
  Nagai	
  method	
  [2,	
  75,	
  102]	
  

In the Nagai method, hydroiodic acid is used to halogenate the starting compound 

at the site of the hydroxyl moiety via an SN2 reaction [75]. The iodoephedrine product 

formed is further reduced to methamphetamine in the presence of red phosphorus [75]. 

There are several modifications of this method also. In the “Moscow” route, hydrogen 

iodide is replaced by iodine and water [102]. The “Hypo” route involves the substitution 

of red phosphorous with hypophosphorous or phosphorous acid [75, 102]. While this 

produces a highly pure product, it is inherently more dangerous as toxic phosphine gas 

and white phosphorous can be produced as waste [75]. Some of the synthesis byproducts 

associated with these methods when utilizing ephedrine or pseudoephedrine as the 

starting material include (2E)-N-methyl-3-phenyl-N-(1-phenylpropan-2-yl)prop-2-
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enamide, iodoephedrine, N-methyl-N-(alpha-methylphenyl)amino-1-phenyl-2-propanone, 

and (Z)-N-methyl-N-(alpha-methylphenylethyl)-3-phenylpropanamide. 

Safrole is a phenylpropene which is found in the sassafras plant as well as other 

spices such as cinnamon and nutmeg. It is easily converted to 

methylenedioxyamphetamine (MDA) and similar analogues via an amination reaction. In 

2011 at a Mexican airport, 2,500 liters of safrole were seized by authorities, further 

indicating large-scale manufacturing operations there [92].  

 

Figure	
  3:	
  Conversion	
  of	
  safrole	
  to	
  generic	
  methylenedioxyphenethylamine.	
  The	
  actual	
  product	
  generated	
  is	
  
dependent	
  on	
  the	
  structure	
  of	
  the	
  R1	
  substituent.	
  R1	
  =	
  H,	
  3,4-­‐methylenedioxyamphetamine	
  (MDA);	
  R1	
  =	
  CH3,	
  3,4-­‐
methylenedioxy-­‐N-­‐methamphetamine	
  (MDMA);	
  R1	
  =	
  CH2CH3,	
  3,4-­‐methylenedioxy-­‐N-­‐ethylamphetamine	
  (MDEA).[2,	
  
75,	
  102]	
  

Phenyl-2-propanone has the distinction of being a precursor for amphetamine 

production, as well as a product of amphetamine metabolism in the human body. Because 

of restrictions in accessing other precursors such as ephedrine and pseudoephedrine, there 

has been an increase in production methods utilizing it as the starting material. It can be 

prepared via the ketonization of phenylacetic acid and acetic acid at high temperature 

with aluminum oxide as a catalyst.  
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Figure	
  4:	
  Synthesis	
  of	
  amphetamine-­‐type	
  stimulant	
  through	
  Leuckart	
  reductive	
  amination	
  of	
  phenyl-­‐2-­‐propanone.	
  
[2,	
  75,	
  102]	
  

Another synthesis method is through the condensation of benzaldehyde with 

nitroethane followed by a reduction reaction. Benzaldehyde and its derivatives, such as 

piperanol, can also be used in the manufacture of ATS directly.  

 

Figure	
  5:	
  Synthesis	
  of	
  ATS	
  from	
  benzaldehyde	
  in	
  the	
  presence	
  of	
  nitroethane.	
  [2,	
  75,	
  102]	
  

In the presence of a basic catalyst, such as an amine, benzaldehyde can be converted to 

phenyl-2-nitropropene through a condensation reaction. The product generated can then 

either be reduced to (a) phenyl-2-propanone or (b) amphetamine as seen in figure 5. 

 By identifying the synthetic pathways used to generate seized samples law 

enforcement officials gain valuable intelligence. This is done through the identification of 

any contaminants/byproducts present, as well as their ratios to each other and the target 

compound. This assists investigators in tracing distribution patterns from the 
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manufacturers to the customers, and determining what kind of scale said manufacturers 

are operating at.  

1.2 Toxicology 

Because of their similarity in structure to that of catecholamines such as dopamine, 

and adrenaline, the mechanism of behavior for these sympathomimetic compounds is 

somewhat well understood. They can be classified as either, direct-acting, indirect-acting, 

or mixed acting which is a combination of the two [21]. Direct-acting drugs target 

adrenergic receptors (with varying degrees of specificity) and in essence, act as false 

transmitters. An example of one such compound is phenylephrine. Indirect-acting 

compounds increase the concentration of the neurotransmitters within the synaptic cleft, 

thus increasing the level of stimulation experienced by the receptors. Examples of this 

type of agonist are amphetamine and MDMA. Mixed action agonists utilize both 

mechanisms increase the neurotransmitter concentration within the synapse. An example 

of a mixed action sympathomimetic compound is ephedrine. 

This stimulation can be achieved through various modes of action including 

interactions with the synaptic vesicles or pre-synaptic membrane of different neurons 

inducing the release of the neurotransmitter from the nerve terminal. Binding with the re-

uptake transporter for specific catecholamines can cause a reverse in directional flow of 

the corresponding neurotransmitter, also resulting in increased concentrations within the 

synaptic cleft. In high doses, ATS have also been observed to act as monoamine oxidase 

inhibitors (MAOIs) preventing the degradation of previously released neurotransmitters. 
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Adrenergic neurotransmitters such as dopamine, adrenaline, and noradrenaline are 

responsible for fight-or-flight responses. Physiological hallmarks of this kind of reaction 

include increased heart rate and respiration, constriction of various blood vessels, and 

elevated blood pressure. As a result of excessive stimulation of the receptors controlling 

this phenomenon, persons under the influence of ATS’s can experience arrhythmias, 

sudden death, and stereotyped behaviors such as facial tics and muscular twitching. [21] 

Actions at dopaminergic sites within the brain can also affect behavior and motor control. 

As these compounds are neurotoxic, prolonged use can result in permanent nerve damage 

at the various receptor sites. [14] 

Amphetamine-type stimulants can be taken via a variety of routes including oral 

ingestion, smoking, and intravenous injection. They have a half-life ranging from 4 to 30 

hours and are metabolized in the liver. Under normal conditions ATS are excreted with a 

significant portion unchanged, however, urinary pH plays a major role in this process, 

and in the half-life observed for these drugs. At acidic pH, ATS are highly ionized and 

excreted rapidly [21, 44]. Due to this, there is little opportunity for metabolism to take 

place resulting in high concentrations of the parent drug being excreted. At more basic 

pHs, the drug is partly neutralized yielding greater retention.  As a result, these 

compounds remain within the system for longer periods of time which allows for more 

extensive absorption and metabolism to occur. The metabolic pathway for 

methamphetamine is given in figure 6. 
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Figure	
  6:	
  Simplified	
  metabolic	
  pathway	
  for	
  methamphetamine	
  with	
  relative	
  amounts	
  of	
  each	
  product	
  from	
  a	
  single	
  
dose.	
  Adapted	
  from	
  [44].	
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1.3 Methods of Analysis 

There are several presumptive and confirmatory methods for the analysis of 

amphetamine-type stimulants. Three presumptive methods commonly utilized in forensic 

settings are color tests, thin-layer chromatography (TLC) and immunoassay. Color tests 

utilize characteristic reactions between analytes and reagents to induce a change in 

appearance. These changes are based on the properties of the product formed and tend to 

be specific for particular moieties. While this is helpful in distinguishing between 

compounds with similar physical properties but different molecular structures, to 

differentiate among different compounds from the same class of drugs multiple testing 

reagents must be used. Some color tests typically used for ATS are Chen, Mandelin, 

Marquis, Mecke, Robadope, and Simon. A summary of the expected positive results of 

three of these tests (Marquis, Simon, and Chen) with various ATS is given in table 1 [91]. 

Table 1: Summary of positive responses for selected ATS with three common color tests. [91] 
Compound Marquis Simon Chen 

Amphetamine 
Orange, slowly 

turns brown 
No reaction No reaction 

Methamphetamine 
Orange, slowly 

turns brown 
Deep blue No reaction 

Ephedrine/ 

pseudoephedrine 
No reaction No reaction Purple 

Cathinone No reaction No reaction 
Slowly turns yellow or 

orange 

4-Bromo-2,5-

dimethoxyphenethylamine 
Yellow to green No reaction No reaction 
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(2C-B) 

Methcathinone No reaction 
Slightly blue, spot or 

ring-like precipitate 

Slowly turns yellow or 

orange 

para-

Methoxyamphetamine 

(PMA) 

No reaction to 

light green 
No reaction Unknown 

MDA Dark blue/black No reaction No reaction 

MDMA Dark blue/black Deep blue No reaction 

MDEA Dark blue/black Blue to brown No reaction 

Methylone 

(MDMC) 
Brown Blue No reaction 

 

In TLC samples are extracted and treated with various chemicals before being 

spotted on a plate coated with a sorbent material. Plates are inserted into chambers with 

an appropriate solvent system which then travels up via capillary action moving the 

solutes with it. Spots are visualized under UV light and the distance traveled by each 

analyte is measured. The ratio between the distance traveled by the analyte and the 

distance traveled by the solvent is known as the retention factor (Rf). The Rf value is 

characteristic of specific analytes under specific conditions. However, TLC can be labor 

intensive and time consuming with somewhat high limits of detection at 0.5mg/L [44].  

Immunoassays are a more sensitive alternative to spot tests as they are based on 

specific binding behaviors between the analytes of interest and the antibodies. The extent 

to which the analytes bind to the antibodies can be determined in a variety of ways 

depending on the type of immunoassay being utilized. The most common detection 
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mechanisms include enzymes, radioactive isotopes, and fluorescence. In enzyme based 

immunoassays the antibodies used preferentially bind to the analytes of interest over an 

analyte-bound enzyme in the system. The analyte then displaces the bound enzyme that is 

attached to the antibody. Analyte-bound enzymes are deactivated when attached to the 

antibody so by displacing some of them, the analyte of interest changes the alters the 

level of enzyme activation . This deactivation of the enzyme typically is expressed by 

some visible change in appearance such as, color or the emission of light. The extent to 

which the enzyme present is bound to the antibody, determines the intensity of the signal 

produced. While immunoassays are very useful and convenient for usage as a screening 

method, particularly for routine drug testing, they are susceptible to cross-reactivity 

between analytes of similar structure. 

1.3.1 Chromatographic Methods 

Unlike the presumptive methods previously discussed, chromatographic methods 

are capable of separation individual analytes and confirmatory identification based on the 

characteristic partitioning behavior of the analyte between the mobile and stationary 

phases utilized. Chromatography is a separation method which is based on the 

partitioning of the analyte of interest between the mobile phase and the stationary phase. 

The two major chromatographic methods used in the analysis of ATS are gas 

chromatography (GC), and reversed-phase high performance liquid chromatography 

(HPLC). Both techniques are capable of being coupled to a variety of detectors. For GC 

analysis of phenethylamines, the current “gold standard” of detection is mass 

spectrometry (MS) with electron impact ionization. As a result, qualitative and 
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quantitative results can be obtained. Due to some ATS being thermally labile under GC 

conditions, the possibility of sample decomposition before the analytes can be detected is 

a legitimate concern. Due to this, amphetamines are almost always derivatized prior to 

sample injection. This also can serve as a method to increase the analyte’s volatility 

making the analysis more efficient.   

Derivatization agents commonly encountered include heptafluorobutyric 

anhydride (HFBA), pentafluoropropionic anhydride (PFPA), and trifluoroacetic 

anhydride (TFAA). The derivatives generated from these reactions can be of diagnostic 

value given the commonality in structure between phenethylamines. The derivatives 

synthesized generally produce larger mass fragments giving a more definitive spectrum 

for each compound. In Habrdova’s work analyzing several synthetic cathinones and 

mescaline in blood plasma, limits of quantitation (LOQs) for all analytes was determined 

to be 5.0 µg/L [30]. However, the extraction and derivatization process leading up to 

these results had twenty individual steps before the sample could even be injected. For 

this reason, liquid based techniques such as HPLC and capillary electrophoresis are 

commonly suggested as alternatives to GC, as there is no need to produce volatile 

analytes. 

Reversed-phase HPLC is another method commonly used for the analysis of 

amphetamines. It is typically coupled to an ultraviolet (UV) / diode-array detector (DAD) 

detector. Identification of compounds requires the combination of a separation and 

spectroscopic technique which results in characteristic retention times and spectral 

response under specific conditions. In HPLC this can easily be done by incorporating an 
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internal standard to stabilize retention time and using a chromatographic library for 

comparison of UV spectra. However, spectra of ATS can be very similar and minor 

changes in the pH or separation conditions can affect retention values making the library 

ineffective. Quantitation is usually done by calculating peak area rather than height since 

band broadening can occur as the stationary phase deteriorates [89].  

In 2002, Santagati reported an HPLC method specific for primary 

phenethylamines using electrochemical detection (ECD) [71]. However, ECD is not a 

commonly utilized detection method as it is dependent on analytes being 

electrochemically active. For HPLC analysis, as with GC, the most commonly used 

detection method is mass spectrometry. Concheiro et al demonstrated this with the 

analysis of seven phenethylamines in urine using a reversed-phase HPLC column 

coupled to a triple quadrupole mass spectrometer [18]. An electrospray ionization (ESI) 

source was used to introduce the extracted samples to the mass spectrometer which was 

run in positive ion mode. Limits of detection ranging from 0.2 to 2 ng/mL were 

determined for all analytes. 

1.3.2 Capillary Electrophoresis 

Capillary electrophoresis (CE) is a separation method whereby analytes of interest 

are separated on the basis of their relative mobility when placed under the influence of an 

electric field. The distal ends of the capillary are placed in an electrolytic solution, known 

as a buffer, along with electrodes through which a voltage can be applied. This produces 

an electric field (E) whose magnitude depends on the applied potential and the length of 

the capillary.  
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Figure	
  7:	
  Simplified	
  schematic	
  of	
  a	
  capillary	
  electrophoresis	
  system.	
  

Electrophoretic mobility (µep) is based on the analyte’s charge (q), radius (r), and the 

viscosity of the buffer (η) being utilized.  

𝜇𝜇 = 𝑞𝑞 6𝜋𝜋𝜋𝜋𝜋𝜋 

Because of these  parameters and their relation to one another, ions are separated on the 

basis of their charge-to-size ratio. The speed at which the analytes migrate is known as 

the electrophoretic velocity (vep). It is the product of the analyte’s electrophoretic 

mobility and the magnitude of the electric field. 

𝑣𝑣 = 𝜇𝜇 𝐸𝐸 
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Aside from the electrophoretic velocity, there is also the bulk movement of the 

buffer solution which plays a role in a CE separation. This electrodriven motion of the 

buffer is known as the electroosmotic flow (EOF) and it is affected by the chemistry of 

the capillary walls and that of the buffer itself. At a pH greater than three, the silanol (Si-

OH) groups on the surface of the fused silica capillary are negatively charged as silanoate 

(Si-O-) groups [41]. As a result of this, the positively charged ions in the buffer solution 

are drawn to the walls forming a layer of cations. This initial cation layer is not capable 

of fully neutralizing all of these negatively charged groups so a second layer of cations is 

formed. This is known as the electrical double layer. 

 

Figure	
  8:	
  Diagram	
  of	
  the	
  electric	
  bilayer	
  formed	
  on	
  the	
  walls	
  of	
  silica	
  capillaries	
  in	
  electrophoresis.	
  

 

While the innermost layer is fixed to the walls of the capillary, the second layer is 

not given its distance from the actual silanoate groups [41]. As a result of this, when the 
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electric field is applied, the charged cations of the mobile layer are pulled towards the 

cathode. Given that these cations are solvated, they in essence drag the bulk solution 

towards the cathode as well thus generating the EOF. The electroosmotic velocity (veo) 

depends on the dielectric constant and viscosity of the buffer, and the zeta potential at the 

surface of the capillary. 

𝑣𝑣 = 𝜀𝜀𝜀𝜀𝜀𝜀 4𝜋𝜋𝜋𝜋 

It can also be expressed in terms of mobility. 

𝜇𝜇 = 𝜀𝜀𝜀𝜀 4𝜋𝜋𝜋𝜋 

Therefore, the overall mobility of an analyte of interest is the sum of its electrophoretic 

mobility and the electroosmotic mobility of the buffer [41, 73]. 

𝜇𝜇 = 𝜇𝜇 + 𝜇𝜇  

Under normal polarity conditions, small, highly charged cations will elute first 

followed by cations of lesser charge, neutral molecules, and finally anions of increasing 

charge last. Because of their lack of charge, neutral molecules will not separate and thus 

will elute as a single peak midway through the separation. This characteristic elution 

order is observed in capillary zone electrophoresis (CZE) which is the most common 

mode of CE analysis [73]. Other modes of CE include micellar electrokinetic 

chromatography (MEKC), capillary isoelectric focusing (CIEF), capillary gel 

electrophoresis (CGE), and capillary isotachophoresis (CITP). In MEKC, a 

pseudostationary phase, typically in the form of a surfactant, is added to the run buffer. 

These surfactants interact with the analytes based on their polarity and can allow for 
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neutral molecules to be separated. This is done by the formation of micelles around the 

analytes of interest, altering their electrophoretic mobility. 
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Abstract 

The rise in production and seizures of amphetamines and related phenethylamine 

analogues has highlighted the need for rapid, sensitive, and selective methods of analysis 

for these compounds. One analytical technique which is very versatile for the 

investigation of these compounds is capillary electrophoresis. In this review, the 

application of capillary electrophoresis towards phenethylamine analysis is discussed.  

The review will cover various modes of separation including CE, MEKC, and CEC in 

standard and chip based formats.   Methods of detection such as UV, LIF and mass 

spectrometry will also be discussed.    

Introduction 

In 1991 Weinberger and Lurie published one of the first applications of capillary 

electrophoresis as an analytical method for illicit drugs [1]. In that work, micellar 

electrokinetic capillary chromatography (MEKC) was compared to high-performance 

liquid chromatography (HPLC) for the analysis of several drugs and associated 

impurities, which spanned several drug classifications. Thirty-five analytes were 

observed in total including benzodiazepines, cannabinoids, amphetamines, and opiates. 

Capillaries of varying length were used and detection was performed by utilizing a 

photodiode array detector to measure UV absorbance. Since this seminal work, a number 

of differing variations of capillary zone electrophoresis (CZE) and micellar electrokinetic 

chromatography (MEKC) have been utilized for the analysis of phenethylamines and 

related compounds. There are a variety of possible detection methods which can be 

utilized based on the nature of the separation. 
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Capillary Zone Electrophoresis  

 In capillary zone electrophoresis (CZE) the movement of analytes within the 

system to achieve separation is electro-driven, rather than pressure-driven as is seen in 

chromatographic methods. Capillaries of small diameter are filled with electrolytic 

solutions and when a voltage is applied to its distal ends, the electric field generated 

results in the electroosmotic flow of the buffer towards the cathode. By taking advantage 

of this characteristic behavior, analytes of interest, particularly those which are charged 

can be separated based on their inherent mobility.  

 Given the sample volumes utilized in electrophoretic experiments and the high 

sensitivity which can be achieved, this method of analysis has great potential for the field 

of forensic science. As a result of this, the applications of electrophoresis grow more 

every year particularly in the areas of drug and explosives analysis.   

Micellar Electrokinetic Capillary Chromatography 

As previously mentioned, phenethylamines have a common structural skeleton 

which can make traditional CZE difficult as a consequence of similar mobilities between 

different compounds. To overcome this analytical hurdle and promote greater distinction 

between analyte zones, modifiers can be added to the separation buffer. These modifiers 

achieve their purposes either by direct interactions with the solutes or, by affecting the 

electroosmotic flow within the capillary. Examples of modifiers include surfactants such 

as sodium dodecyl sulfate (SDS), complexating agents such as cyclodextrins, and organic 

solvents like isopropanol. Though SDS is still commonly used, a greater focus has now 
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been turned towards cyclodextrins. These sugar rings can be substituted with different 

functional moieties which in turn, affect the inclusion complexes they make with analytes 

in solution. 

The use of MEKC with UV absorption detection for the analysis of several 

phenethylamines including seized samples was done by Trenerry [5] and results were 

compared to that obtained by gas chromatography. The micellar additive used in this 

work was cetyltrimethylammonium bromide (CTAB) rather than SDS. The run buffer 

was comprised of 10mM sodium tetraborate, pH 11.5 and 25mM CTAB solution with 

1% ethanolamine and 11% dimethylsulfoxide (DMSO). The results obtained 

demonstrated not only that the two methods were comparable in terms of quantitative 

ability.  

In Meng et al [6], cation-selective exhaustive injection (CSEI) was used as an on-

column concentration method for the analysis of selected phenethylamines 

(amphetamine, methamphetamine, and MDMA) using MEKC. Cation-selective 

exhaustive injection is based on the theory of sample stacking whereby differences in the 

ionic strength between buffer zones is used to restrict the analytes of interest to a 

particular zone as they are electrokinetically injected so that the sample is highly 

concentrated prior to separation being implemented. This in turn increases the sensitivity 

of the method. Cation-selective exhaustive injection-sweeping changes the capillary wall 

chemistry to the extent that positively charged analytes are preferentially 

electrokinetically injected. In order to modify the wall chemistry the capillary is first 

conditioned with a non-micellar BGE (100mM phosphate, pH 2.9 with 20% methanol) 
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and then injecting a plug of buffer at greatly increased conductivity (200mM phosphate 

buffer, pH 2.9) followed by a plug of water. Analytes were prepared in low conductivity 

solutions such as water and electrokinetically injected. Due to the huge differences in 

conductivity between the injected buffer and water, the analytes stacked in the interface 

between the two zones.  

The analytes were then separated by a micellar run buffer (100mM phosphate, pH 

2.9 with 25mM SDS and 20% methanol) using reverse polarity. An applied voltage of -

18kV was able to fully resolve all three analytes and the internal standard (benzylamine). 

This resulted in a limit of detection of 0.05 ng/mL which is a thousand-fold improvement 

over that determined using MEKC without CSEI (0.5 µg/mL) 

These guest-host complexes are not only analyte specific in their level of 

interaction (e.g., amphetamine versus methamphetamine), they are also stereochemistry 

specific (e.g., ephedrine versus pseudoephedrine). This specificity makes them very 

useful in enantiomeric separations where isomer conformation is the major determination 

for legality. Both Liu [2] and Mohr [3] have discussed the use of different cyclodextrins 

for the separation of phenethylamine enantiomers. CE coupled to electrospray mass 

spectrometry (CE-ESI-MS) is also gaining a foothold as an excellent method of analysis. 

It maintains the high efficiency and resolution which CE is well noted for while 

incorporating the high selectivity and sensitivity of mass spectrometric techniques. 

Liu used a 75mM Tris buffer, pH 2.5 with 40mM dimethyl-β-cyclodextrin (DM-

β-CD) to analyze ephedrine and several related compounds including enantiomers. A 

75µm inner diameter capillary with an effective length of 50 cm was used for the 
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separation. Prior to analysis the walls of the capillary were cleaned and activated by 

washing sequentially with methanol, 1M hydrochloric acid, and 1M sodium hydroxide 

with water washes between each. All analytes were fully resolved within 22 minutes and 

the detection limits ranged from 65 to 161 ng/mL.  

In Mohr’s work several types of cyclodextrins were tested to determine the 

optimal conditions for the enantiomer-selective separation of 19 cathinone derivatives. 

These included native β-cyclodextrin, carboxymethyl-β-cyclodextrin, 2-hydroxypropyl-β-

cyclodextrin, sulfated- β-cyclodextrin, and native γ-cyclodextrin. The optimal buffer 

composition was determined to be 50mM ammonium acetate, pH 4.5 with 20 mg/mL 

sulfated- β-cyclodextrin and 10% acetonitrile. Of the 19 total analytes, all except 

methedrone were resolved although its’ presence was confirmed using chiral HPLC. 

Capillary Electrochromatography 

In capillary electrochromatography (CEC) analysis, capillaries are filled with a 

stationary phase which allows for partition-based separation as in traditional 

chromatography with the efficiency characteristic of electrophoresis. In its initial 

incarnation capillaries were manually packed with the stationary sorbent which was held 

in place by frits at the terminal ends. However, this was difficult to do, susceptible to 

shifting, and not as efficient as the chromatographic methods it was meant to emulate.  

 Monolithic stationary phases provide a useful alternative to packed CEC columns 

which are susceptible significant backpressure. These monoliths, unlike traditional 

packing, are chemically linked to the wall of the capillary itself so there is little chance of 
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the packing shifting. Also, the chemical nature and pore sizes within the monolith can be 

easily designated based on the cross-linking agents, monomers and porogens used. The 

temperature at the time of polymerization can also play a role. Other monoliths available 

include modified silica and sol gels depending on the analytes of interest.  

Given that the presence of the monolith reduces the available volume within the 

capillary, CEC injections are low in volume. As a result of this, only small amounts of 

analyte can be introduced into the system resulting in lower sensitivity. This issue can be 

overcome somewhat, however, by preconcentrating the analyte at the column head 

(before the monolith starts). In the work by Lurie [7] CEC with laser-induced 

fluorescence detection was used to analyze natively fluorescent impurities in heroin. A 

sulfonic acid C12 polymer monolith was prepared within UV transparent capillaries with 

an inner diameter of 100µm. The packed length was 39 cm in total (effective length, 29 

cm), and a doubled argon laser with a 257nm wavelength was utilized. This investigation 

resulted in a limit of detection of 66 pg/mL for the most abundant analyte, acetylthebaol. 

Aturki utilized a cyano-derivatized silica monolith for the analysis of nine drugs 

of abuse, including amphetamines, with mass spectrometry as the detection method [8]. 

Prior to CEC-MS analysis, samples were first extracted using a strong cation exchange 

solid-phase extraction cartridge which provided a recovery of 80 to 95%. Limits of 

detection were determined to range between 0.78 and 3.12 ng/mL for all the analytes of 

interest. A recent modification of the CEC technique is pressure-assisted CEC (pCEC) 

which combines the efficiency of CE with the selectivity of HPLC [9].  
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A novel analysis method utilizing magnetic solid-phase extraction coupled with 

capillary zone electrophoresis (MSPE-CZE) was used by Chen et al [4] to determine the 

presence of eight illicit drugs in urine. The magnetic microspheres used in this work were 

comprised of magnetite, silica, and poly(methacrylic acid-co-ethylene glycol 

dimethacrylate). The separation buffer utilized was comprised of 30mM phosphate, pH 

2.0 with 15% acetonitrile. Extraction, baseline separation, and detection of these analytes 

by UV-Vis absorption was achieved within 20 minutes. Limits of detection ranged from 

0.015 to 0.105 µg/mL with field-amplified sample stacking (FASS) to enhance the 

method sensitivity.  

Microfluidics 

As electrophoretic methods are continuously investigated and developed, the 

conversion of traditional techniques to miniaturized systems is increasing as well. One 

example of this is the analysis of DNA fragments and proteins using which was initially 

done using gels before being taken onto capillary electrophoresis. Now, there are several 

lab-on-chip (LOC) platforms for this kind of work. One such is the Agilent Bioanalyzer 

which is available commercially. Lab-on-chip devices have the benefits of being fast, 

portable, and relatively inexpensive. In the work by Lloyd et al [10], the Agilent 

Bioanalyzer was used to separate several phenethylamines which had been fluorescently 

labeled prior to chip loading with fluorescein isothiocyanate (FITC). The separation 

buffer was comprised of 50mM sodium tetraborate, pH 9.66 with 50mM SDS and 

completed in less than a minute with 3 minutes for fluorescent labeling beforehand. An 

average limit of detection was determined to be 0.6 µg/mL, which is comparable to that 
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of a full-sized CE method. Microfluidic chips can be made from a variety of materials 

based on the wall chemistry desired including borosilicate glass and 

polydimethylsiloxane (PDMS).  

An example of the use of glass chips is the work done by Wallenborg [11] where 

a mixture of chiral phenethylamines were separated and detected via laser-induced 

fluorescence after being labeled with 20mM 4-fluoro-7-nitrobenzofurazane (NBD-F). 

The separation chips utilized in this work were developed from commercially available 

glass wafers. The chip patterns used were generated by transferring the desired design 

onto the wafers which had been coated with chromium and photoresist. Hydrofluoric acid 

was utilized to chemically etch the channels and leftover photoresist and chromium were 

removed. Labeled analytes were diluted 10-20 fold in buffer before being separated using 

with a running buffer comprised of 50mM borate, pH 8.5, 50mM SDS, and 20% 1-

propanol. Voltage applied was 4kV and the entire separation was complete in less than 

ten minutes.   

Non-aqueous Capillary Electrophoresis 

In conventional electrophoresis the electrolytic buffer is comprised of an 

appropriate salt dissolved in aqueous solution. This environment can make the analysis of 

hydrophobic species difficult. In non-aqueous capillary electrophoresis (NACE), all 

water within the system is replaced with the organic solvent of choice. The use of organic 

solvents has many advantages over aqueous solution based electrophoresis in terms of 

analytical parameters. In conventional CE, capillaries with very small internal diameters 

are utilized in order to minimize Joule heating which can increase the amount of 
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longitudinal diffusion resulting in band broadening. In NACE less heat is produced due to 

the organic buffer’s lower thermal conductivity in comparison to that of an aqueous 

buffer [11]. This not only allows for the usage of larger diameter capillaries, but also for 

higher salt concentrations and larger electric fields. Larger capillaries translate into larger 

sample sizes and longer optical path lengths which in turn, increase sensitivity. 

Despite the lack of water in NACE, electroosmotic flow (EOF) can still be 

generated due to the solvents accepting protons from the silanol groups on the capillary 

wall. However, the extent to which an organic solvent can do so is dependent on the 

chemical nature of the solvent itself. The magnitude of the EOF generated is based on 

various solvent properties including dielectric constant (ε), zeta potential (ζ), and 

viscosity (η).  

 𝑣𝑣 =
𝜀𝜀𝜀𝜀
4𝜋𝜋𝜋𝜋 𝐸𝐸 (1) 

 

Given that these properties can greatly differ between different solvents, this gives NACE 

the potential to be extremely selective. NACE can effectively be coupled to many 

different detection techniques. 

When coupled to ESI-MS, the spray produced is stable in nature and evaporates 

very quickly. This stable, volatile electrospray allows for lower gas flow rates to be used 

and thus, greater amounts of ions to be introduced to the mass spectrometer. Steiner [12] 

found while assessing the influence of different organic solvents in the separation of 

basic analytes similar to phenethylamines NACE-MS was capable of resolving between 
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analytes which would normally coelute under aqueous conditions. Other useful detection 

methods include direct and indirect UV absorbance spectroscopy, direct and indirect 

fluorescence, and electrochemical detection.     

Concluding Remarks 

Advantages of capillary electrophoresis include small sample sizes, minimal waste 

produced, sensitivity, and wide applicability to a variety of analytes of interest. All of 

these and more make it an excellent technique for the analysis of phenethylamines, 

particularly those in seized samples.  
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CHAPTER 2: FLUORESCENCE DETECTION 

2.1 Detection Methods in Electrophoresis 

In capillary electrophoresis there are many detection techniques available, each with 

its own advantages and shortcomings. Some of the most commonly encountered are 

ultraviolet-visible (UV-Vis) absorbance spectroscopy, mass spectrometry (MS), and 

laser-induced fluorescence (LIF). Ultraviolet/visible spectrophotometry, while being a 

virtually universal detector, is limited in sensitivity. This is a result of Beer’s Law which 

states that an analyte’s absorbance is dependent on its molar absorptivity (ε), 

concentration (c), and the distance light must travel to cross through it or path length (b). 

As a result of this, the size of the capillary’s inner diameter a vital factor. 

𝐴𝐴 = 𝜀𝜀𝜀𝜀𝜀𝜀 

While immunoassays and color tests are relatively fast and can be utilized for 

several compounds, they are often subject to issues with cross-reactivity and are not often 

selective for individual compounds, just classes analytes (e.g., phenethylamines and 

opiates rather than methamphetamine, MDMA, heroin, morphine, etc.). Mass 

spectrometry is another universal detector with quantitative capabilities. However, its 

usage is limited by the mode of CE being utilized. Certain surfactants and modifiers 

which are used in micellar electrokinetic chromatography would result in heavy and 

persistent contamination within the instrument if ever they were introduced making 

analysis and device maintenance difficult.  
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Table 2: Relative sensitivity of CE detection systems towards appropriate compounds. Adapted from [59]. 

Detection Mode 
LOD 

(moles injected) 

LOD 

(mol/L) 
Comments 

UV/Visible 10-13-10-16 10-3-10-8 
At <200 nm almost a universal detector; 

sensitivity limited by capillary ID 

Fluorescence 10-15-10-17 10-5-10-9 
Limited to fluorescent compounds and 

derivatives; xenon-lamp-based 

Laser-induced 

fluorescence 
10-18-10-22 10-10-10-16 

Very sensitive, but restricted to situations 

where the wavelength of lasers matched the 

excitation wavelength of the analyte 

Amperometric 10-18-10-20 10-5-10-11 Limited to electroactive species 

Conductivity 10-15-10-16 10-4-10-8 Universal towards ions, but lacks sensitivity 

Mass spectrometry 10-15-10-17 10-8-10-10 Universal detection, but CE modes limited 

Indirect UV 10-10-10-12 10-2-10-5 Universal for ions, but lacks sensitivity 

Indirect fluorescence 10-15-10-17 10-5-10-6 Universal for ions, but lacks sensitivity 

 

Fluorescence detection makes use of the characteristic nature of the photons 

produced when excited electrons in a compound deactivate from higher electronic energy 

levels via radiation. The intensity of the radiation produced as a result of the deactivation 

of the excited electrons can be affected by the route in which the analyte’s electrons take 

in order to return to the ground state. These include vibrational relaxation, internal 

conversion, external conversion, and intersystem crossing. A few of these is shown in the 

simplified Jablonski diagram given in figure 9.  

The mechanism for the internal conversion process is not very well understood. 

However, the general consensus is that it is the result of two energy levels being near 
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enough to one another for an overlap in the vibrational energy of the excited molecule to 

occur. External conversion, on the other hand, is the result of energy being lost as the 

result of interactions/collisions between the excited molecules and other molecules 

present in the solution. Intersystem crossing is also the result of nearby energy levels 

experiencing overlap. However, in this case it results in a reversal of the excited 

electron’s spin. 

Figure	
  9:	
  Simplified	
  Jablonski	
  diagram	
  illustrating	
  energy	
  deactivation	
  routes.	
  

In laser-induced fluorescence, a fluorophore is excited by irradiation from laser of 

set wavelength. The excited molecules in the sample can then relax back to the ground 

state through the emission of a photon, whose intensity varies based on the quantum yield 

and absorbance cross section of the fluorophore.  
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Figure	
  10:	
  Schematic	
  of	
  LIF	
  detection	
  system	
  coupled	
  to	
  CE.	
  

The intensity of the light produced through this process at each wavelength is then 

transmitted to the photomultiplier within the detector at a 90° angle to the incident beam. 

The photons produced generate a signal as they strike the detector which is plotted with 

the corresponding wavelength to give a fluorescence spectrum such as that seen in figure 

11 for fluorescein isothiocyanate (FITC). The closer in wavelength the laser beam is to 

the apex of the absorbance/excitation spectrum, the greater the intensity of the produced 

emission spectrum.   

𝐼𝐼 = 𝐼𝐼°𝜀𝜀𝜀𝜀𝜀𝜀𝜀𝜀𝜀𝜀 

Laser induced fluorescence is particularly advantageous in capillary 

electrophoresis due to the fact that fluorescence output I is proportional to the input light 

flux Io.  By focusing the laser to a small detection zone created by etching a window in 
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the capillary, the inherent disadvantage of the relatively short detection path length in 

capillary electrophoresis is overcome 

Figure	
  11:	
  Excitation	
  and	
  emission	
  fluorescence	
  spectrum	
  for	
  fluorescein	
  isothiocyanate	
  using	
  a	
  488nm	
  laser.	
  

The LIF method has the benefits of being both sensitive and selective. However, very few 

compounds naturally fluoresce thus derivatization is necessary to permit this type of 

detection. To do this it is necessary to covalently attach a fluorescent agent or a 

functional moiety which produces a fluorescent effect to the molecule of interest. This 

derivatizaton reaction can be undertaken either before the sample is injected into the 

system (pre-capillary), after the separation has taken place (post-capillary), or within the 

capillary (inline) prior to or during separation [99].  

Pre-capillary derivatization can be time consuming and often requires harsh working 

conditions [37]. The use of such a labor-intensive method is not desirable in a forensic 

setting where the caseload can be significant. It also introduces greater probability of 

user-based errors.  
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Figure	
  12:	
  Workflow	
  diagram	
  for	
  pre-­‐capillary	
  derivatization.	
  

The alternative to derivatization prior to sample injection is post-capillary 

derivatization whereby the analytes are fluorescently labeled after the separation has 

taken place. One way in which is method can be implemented is by introducing a coaxial 

sheathed capillary reactor [41]. The reactor encompasses the separation capillary which 

has had its terminal end fitted into a significantly larger diameter capillary. As the 

separated analytes pass through the fluorescent reagent is released into the top of the 

chamber and the fills the large capillary. As analyte zones reach the end of the separation 

capillary, they are labeled and detected. This method, while effective, is difficult to 

integrate into commercially available systems and often presents issues in obtaining 

reproducible results [99].  
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Figure	
  13:	
  Schematic	
  of	
  coaxial	
  sheathed	
  capillary	
  reactor	
  for	
  post-­‐capillary	
  derivatization.	
  [41]	
  

An alternative to pre and post column derivatization methods involves in-line 

derivatization.  While inline derivatization methods can be restricted by limited sample 

size and reaction time, the ease of automation reduces the potential for user errors and 

reproducibility issues. There are three main inline derivatization methods which will be 

discussed; at inlet, zone passing, and throughout capillary. 

2.2 Derivatization of Analytes

2.2.1 At Inlet 

When using the at inlet derivatization method, the process is exclusively driven 

by diffusion. The sample and fluorescent tag of choice are alternately injected several 

times followed by a large amount of electrophoretic buffer. The instrument then sits for a 

prescribed wait period during with the different layers diffuse into one another [77]. At 



42

the end of this wait time the potential is applied and the actual separation takes place. A 

diagram of the process is given in figure 14. 

 

Figure	
  14:	
  Schematic	
  of	
  at	
  inlet	
  method	
  of	
  inline	
  derivatization.	
  (a)	
  Several	
  plugs	
  of	
  the	
  fluorescent	
  tag	
  and	
  analyte	
  
are	
  injected	
  in	
  alternating	
  order.	
  (b)	
  During	
  a	
  set	
  waiting	
  period,	
  diffusion	
  between	
  the	
  zones	
  starts	
  to	
  take	
  place.	
  
(c)	
  Plugs	
  have	
  completely	
  mixed	
  and	
  derivatization	
  reaction	
  has	
  gone	
  to	
  completion	
  leaving	
  the	
  fluorescent	
  
derivatives	
  of	
  the	
  analytes	
  of	
  interest	
  to	
  be	
  separated.	
  

While this method is simple to implement, it is based on two assumptions. Firstly, 

that the derivatization reaction between the sample and the fluorescent tag is one hundred 

percent (or nearly) efficient leaving little excess reagent. This is rarely the case and 

unless the labeling reagent being used is non-fluorescent in its underivatized state, the 

separation will experience a large background making interpretation difficult [99]. The 

second assumption is that substantial diffusion between the two liquids is possible given 

the miniscule diameter, and therefore small cross-sectional area, of the capillary itself

[60]. 



43 
	
  

2.2.2 Zone Passing 

In zone passing, a more moderate injection approach is used in comparison to at 

inlet. Rather than injecting several alternating plugs, only one injection of the sample and 

fluorescent label is introduced into the system [106]. These are done sequentially and the 

order is based on the relative mobility of each aliquot. The liquid with the higher mobility 

(and thus, the one which will move faster when the electric field is active) is injected 

second.  

Instead of relying on diffusion to mix the layers, a small potential is applied for a 

short time span. This results in a solutes migrating a bit due to the generated EOF and 

their own electrophoretic mobility. Given that the aliquot with the faster mobility was 

injected second, it then moves through the other zone towards the detector. This is known 

as electrokinetic mixing, which is much more effective than longitudinal diffusion alone 

[106]. An outline for this derivatization scheme is given in figure 15.  
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Figure	
  15:	
  Schematic	
  of	
  zone	
  passing	
  method	
  of	
  inline	
  derivatization.	
  (a)	
  Plugs	
  of	
  analyte	
  and	
  fluorescent	
  tag	
  are	
  
injected	
  sequentially	
  into	
  a	
  buffer	
  filled	
  capillary	
  (with	
  faster	
  moving	
  plug	
  injected	
  second).	
  (b)	
  Potential	
  is	
  applied	
  
generating	
  an	
  electric	
  field.	
  Faster	
  moving	
  zone	
  begins	
  to	
  move	
  through	
  preceding	
  zone	
  allowing	
  the	
  two	
  to	
  mix.	
  (c)	
  
As	
  derivatization	
  reaction	
  takes	
  place,	
  fluorescent	
  derivatives	
  produced	
  are	
  separated.

Zone-passing derivatization is a much more efficient labeling technique than at inlet, 

using less of the sample and reagent. The electropherogram generated also tends to be 

easier to interpret as the background produced is much diminished in comparison, and the 

position of underivatized products is easier to predict based on the injection sequence 

[78]. The faster moving compound is injected second but due to its faster mobility, will 

tend to elute first.  

2.2.3 Throughout Capillary 

In throughout capillary derivatization, the separation buffer is usually spiked with 

a fluorescent derivatization agent.  As the injected analyte moves through the capillary 
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under the influence of the electric field, derivatization occurs, producing highly 

fluorescent products. However, throughout capillary derivatization is reliant on the 

underivatized dye having minimal or no fluorescence at the wavelengths being monitored 

as otherwise a large and constant background would interfere with analysis. This makes 

its applicability very limited. A schematic of this process is shown in figure 16. 

An early example of this procedure is seen in the experiments done by Taga et al 

[79]. In this work, amino acids were analyzed via this technique using o-phthaldialdehyde 

(OPA) as the derivatizing agent. The 100mM borate buffer, pH 10.0 was combined in 

equal quantities with the fluorescent label OPA at varying concentrations. These spiked 

buffers were then used to separate the non-fluorescent amino acid analytes which were 

being labeled as the separation occurred [79].  
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Figure	
  16:	
  Schematic	
  of	
  throughout	
  capillary	
  method	
  of	
  inline	
  derivatization.	
  (a)	
  Analyte	
  is	
  injected	
  into	
  capillary	
  
filled	
  with	
  run	
  buffer	
  spiked	
  with	
  fluorescent	
  dye.	
  (b)	
  Electric	
  field	
  is	
  generated	
  causing	
  sample	
  to	
  migrate	
  towards	
  
the	
  detector,	
  mixing	
  with	
  the	
  fluorescent	
  label	
  in	
  the	
  bulk	
  solution.	
  (c)	
  Fully	
  derivatized	
  sample	
  moves	
  towards	
  the	
  
detector	
  while	
  being	
  separated	
  into	
  individual	
  components.	
  

2.3 Fluorescence Derivatization of Phenethylamines 

There are several criteria which should be considered when selecting a fluorescent 

tag. It should be selective for the analyte of interest, in order to minimize interferences. 

The derivatization reaction should be able to go to completion within a reasonable 

amount of time under relatively mild conditions. Also, the fluorescent derivative 

generated should provide a high quantum yield for the analyte in order to permit    

sensitive detection of the analyte.  For phenethylamines, the best site for derivatization to 

take place is the characteristic terminal amine moiety present in this group of compounds. 
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The level of reactivity of the molecule is dependent on the level of substitution of the 

amine, (primary or secondary) with primary amines being the most reactive.  

In the research undertaken, several amine reactive dyes were assessed for their 

suitability with the analytes of interest and the instrumentation available. A 

comprehensive list of available reagents, their peak excitation and emission wavelengths, 

and target moiety is given in table 3 [33].  

Table 3: Overview of selected fluorescent labels and their fluorescence properties. Adapted from [33] 

Fluorescent Label Abbreviation 
Molecular 

Weight 

Absorption 

Wavelength, 

λabs (nm) 

Emission 

Wavelength, 

λem (nm) 

Target 

Moiety 

4-Fluoro-7-

nitrobenzofurazan 
NBD-F 183.1 

337 

(464) 

None 

(512) 

-NH2  

-NHR  

-SH 

4-Chloro-7-

nitrobenzofurazan 
NBD-Cl 199.6 

337 

(464) 

None 

(512) 

-NH2 

-NHR 

-SH 

5-(4,6-Dichlorotriazinyl) 

aminofluorescein 
5-DTAF 495.3 492 517 

-NH2 

-NHR 

-SH 

-OH  

Naphthalene-2,3-

dicarboxaldehyde 
NDA 184.2 419 493 -NH2 

Fluorescamine  278.3 
315 

(385) 

None 

(486) 
-NH2 
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Fluorescein isothiocyanate FITC 389.4 494 519 

-NH2 

-NHR 

-SH 

Rhodamine-B-

isothiocyanate 
RITC 536.1 552 588 

-NH2 

-NHR 

Rhodamine-B-sulfonyl 

chloride 
Lissamine 577.1 568 584 

-NH2 

-NHR 

5(6)Carboxy-X-rhodamine-

N-succinimidyl ester 

5(6)-ROX, 

SE 
631.7 575 602 

-NH2 

-NHR 

Tetramethylrhodamine-5-

isothiocyanate 
5-TRITC 443.5 543 571 

-NH2 

-NHR 

5-Carboxytetramethyl-

rhodamine 
5-TAMRA 430.5 541 568 

-NH2 

-NHR 

C2-Dichlorotriazine Texas Red 796.7 588 601 

-NH2 

-NHR 

-OH 

5(6)-Carboxyfluorescein, 

succinimidyl ester 

5(6)-FAM, 

SE 
473.4 494 519 

-NH2 

-NHR 

Eosin Y  691.9 527 556 
-NH2 

-NHR 

 

Prior to the completion of the initial experimental design each fluorescent 

derivatizing agent was assessed to determine its suitability for the proposed work. Factors 

utilized in assessing the viability of these compounds included the absorption/excitation 

spectrum of the tags, the target moiety, and the minimum reaction conditions required in 

order to obtain a high yield of the fluorescent derivative. The level of background signal 
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generated was also a cause of concern, as underivatized reagents and their by-products 

can greatly complicate interpretation. Unfortunately, while some analytes such as NDA 

and fluorescamine are non-fluorescent in their underivatized form, they are generally 

only reactive with primary amines. As a result of this, they are unsuitable for the 

determination of analytes which may contain secondary amine moieties. At the 

completion of the assessment, NBD-F and 5-DTAF were selected for further study. The 

selection of these compounds was based on their ability to produce maximum excitation 

at wavelengths near to that of the laser being used (488nm argon), both permit the 

analysis of primary and secondary amines, and both produce highly fluorescent products 

following derivatization at room temperature [33]. Also, in the case of NBD-F, the 

underivatized reagent does not fluoresce therefore minimizing the resulting background 

signal [33].  

4-Fluoro-7-nitrobenzofurazan (NBD-F) is comprised of a fluorinated benzene ring 

with a furazan group attached. It is reactive with both primary and secondary amines, as 

well as thiols. NBD-derivatives of amines produce maximum absorbance and emission at 

wavelengths from 465-485nm and 535-540nm, respectively. The fluorescent spectra 

observed is dependent on whether they are primary phenethylamines   (λex=465nm, 

λem=535) or secondary phenethylamines (λex =485nm, λem =540nm). The derivatization 

of an amine-containing analyte takes place via an SN2 reaction as illustrated in figure 17. 
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Figure	
  17:	
  Derivatization	
  mechanism	
  for	
  NBD-­‐F	
  via	
  an	
  SN2	
  reaction	
  scheme.	
  The	
  nucleophilic	
  amine	
  group	
  of	
  the	
  
analyte	
  attacks	
  at	
  the	
  fluorine	
  bound	
  carbon	
  site	
  prompting	
  the	
  migration	
  of	
  electrons	
  from	
  the	
  double	
  bond	
  
eventually	
  resulting	
  in	
  the	
  fluorine	
  and	
  a	
  hydrogen	
  atom	
  being	
  ejected	
  from	
  the	
  molecule	
  [33].	
  

The resulting NBD-derivative has a good fluorescent yield as opposed to the 

underivatized NBD-F which is non-fluorescent. However, in aqueous solutions, NBD-F 

will form a hydrolysis product which is weakly fluorescent.  

Unlike NBD-F, 5-DTAF is fluorescent in its native form with excitation and 

emission peak wavelengths at 492nm and 516nm respectively. At pHs greater than 9, this 

dye reacts most rapidly with amines (primary and secondary), followed by thiols, and 

then hydroxyl groups [33]. NBD-F has historically been used in the labeling of proteins 

but applicability in the analysis of amine containing drugs has been apparent for some 

time [37, 90]. 5-DTAF, as with NBD-F, follows the SN2 reaction mechanism as seen in 

figure 18.  
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Figure	
  18:	
  Derivatization	
  mechanism	
  for	
  reaction	
  of	
  5-­‐DTAF	
  with	
  generic	
  amine	
  via	
  an	
  SN2	
  reaction.	
  The	
  
nucleophilic	
  amine	
  group	
  of	
  the	
  analyte	
  attacks	
  at	
  one	
  of	
  the	
  chlorine	
  bound	
  carbon	
  sites	
  prompting	
  the	
  migration	
  
of	
  electrons	
  from	
  the	
  double	
  bond	
  eventually	
  resulting	
  in	
  a	
  chlorine	
  and	
  a	
  hydrogen	
  atom	
  being	
  ejected	
  from	
  the	
  
molecule.	
  [33]	
  

The derivatization reaction between 5-DTAF and amino groups is rather simple in 

nature. However, the electropherograms produced are prone to producing background 

interferences comprised of other, fluorescent byproducts and excess reagent. As a result 

of this, there can be difficulties in interpreting electropherograms as analyte peaks may 

coelute or be overwhelmed by these interferences.   



52

 

Figure	
  19:	
  Chemical	
  structures	
  of	
  several	
  analytes	
  of	
  interest.	
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CHAPTER 3: METHODOLOGY 

3.1 Offline Derivatization  

3.1.1 Chemicals 

Amphetamine sulfate salt, +-methamphetamine, DL-norephedrine hydrochloride, 

ephedrine, phenethylamine, 3,4-methylenedioxy-N-amphetamine (MDA), 3,4-

methylenedioxy-N-methamphetamine (MDMA), and 3,4-methylenedioxy-N-

ethylamphetamine (MDEA) were obtained from Sigma Aldrich (St. Louis, MO) via the 

International Forensic Research Institute (IFRI) at Florida International University. 

Native β-cyclodextrin (β-CD) was obtained from TIC America (Portland, OR), sulfated-

β-cyclodextrin (S-β-CD) and Brij-35 from Sigma Aldrich, and dimethyl-β-cyclodextrin 

(DM-β-CD) was acquired via Beckman Coulter (Brea, CA).  

Acetonitrile, boric acid, ethanol, hydrochloric acid, sodium borate tetrahydrate, 

and sodium hydroxide (NaOH) are commercially available from Fisher Scientific. 

Fluorescein isothiocyanate (FITC) and 1,2-dichloroethane were obtained from Sigma 

Aldrich, sodium bicarbonate from Spectrum Chemical Mfg. Corp. (New Brunswick, NJ), 

fluorescein (single isomer) from Fluka, sodium dodecyl sulfate (SDS) from Acros 

Organics (Geel, Belgium) and 5-DTAF, 6-DTAF, and NBD-F were all acquired from 

AnaSpec (Fremont, CA). 

3.1.2 Apparatus and Conditions  

A  P/ACE MDQ CE (Beckman Coulter) was fitted with an argon laser for laser-

induced fluorescence (LIF) detection. Fluorescence detection was carried out using 
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520nm notch filter. Control of the instrumentation, data acquisition, and sample 

processing was performed using 32 Karat software, version 7.0. Fused silica capillaries 

with polyimide outer coating were used. The capillary was conditioned every day prior to 

analysis by rinsing sequentially with distilled water (5 min), 0.1M NaOH (10 min), and 

running buffer (15 min) at high pressure (20 psi). After each sample run, the capillary 

was flushed sequentially with distilled water (2 min), 0.1M NaOH (3 min), and 

background electrolyte (2 min). The CE system was operated in normal polarity mode 

with the cathode placed at the detector end. Samples were injected hydrodynamically for 

5 seconds at a pressure of 0.5 psi. 

3.1.1.1. NBD-F Analysis 

The capillary system was run at 45°C  using an applied voltage of 15kV. The 

capillary was 40 cm in length (30 cm EL) with an inner diameter of 75µm. Based on 

these parameters, the electric field generated was 375 V/cm. Separations were carried out 

using a running buffer comprised of 50mM sodium borate, pH 8.5, and 10mM SDS. 

3.1.1.2. DTAF Analysis 

The system was run at 35°C with a potential of 20kV. The capillary was 60cm in 

length (50cm EL) with an inner diameter of 50µm. Under optimized conditions 

separations were carried out using a running buffer comprised of 50mM sodium borate, 

pH 9.5, 15mM β-CD, 10mg/mL DM-β-CD, and 15% acetonitrile (by volume).  
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3.1.3 Sample Preparation 

Stock solutions containing 1.0 mg/mL of each drug were prepared in methanol, 

and stored in a refrigerator at 4°C. Prior to analysis samples were diluted to the desired 

concentrations with a dilution solution comprised of deionized water and methanol (9:1, 

v/v). 

3.1.4 Derivatization Procedure 

Thin-walled PCR tubes were used as reaction vessels. A Perkin Elmer DNA 

Thermal Cycler 480 was utilized as it allowed for the steady heating of the analytes. 

Temperature settings and heating times were adjusted at the control panel.  

3.1.1.3. NBD-F Analysis 

Sample, derivatization buffer (50mM borate, pH 6.5), and NBD-F (20mM in 

ethanol) were combined in a 1:1:1 ratio within a PCR tube. The tube was then capped, 

placed in the thermal cycler, and heated at 60°C for 10 minutes. After heating, vials were 

allowed to cool in a light-free environment to avoid photo-bleaching and 5 µL of 1M HCl 

was added to terminate the derivatization reaction.  

3.1.1.4. DTAF Analysis  

An aliquot of the diluted sample (90µL) was added to a thin-walled PCR tube along 

with 20µL of the derivatization buffer (0.5M NaHCO3/Na2CO3, pH 9.5), 10µL of 0.5mM 

5-DTAF in ethanol/1,2-dichloroethane (9:1, v/v), and 80µL of deionized water. The tube 
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was then capped, placed in the thermal cycler, and heated at 35°C for 10 minutes. After 

heating, vials were allowed to cool in a light-free environment to avoid photo-bleaching.  

3.2 Inline Derivatization 

3.2.1 Apparatus and Conditions 

Fused silica capillaries with polyimide outer coating were used. They were 60 cm 

in total length with an effective length (EL, distance to detector) of 50 cm and an inner 

diameter of 50 µm. The capillary was conditioned every day prior to analysis by rinsing 

sequentially with distilled water (5 min), 0.1M NaOH (10 min), and running buffer (15 

min) at high pressure (20 psi). After each sample run, capillary was flushed sequentially 

with distilled water (2 min), 0.1M NaOH (3 min), and background electrolyte (2 min).  

The CE system was operated in normal polarity mode meaning the cathode was at 

the detector end. Samples were injected hydrodynamically with a pressure of 0.5 psi. The 

system was run at 35°C with a potential of 20kV. Under optimized conditions separations 

were carried out using a running buffer comprised of 50mM sodium borate, pH 9.5, 

15mM β-CD, 10mg/mL DM-β-CD, and 15% acetonitrile (by volume). An overview of 

the method is given in table 3. 
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Table 4: Inline derivatization method parameters. 
Action Pressure/Voltage Time Description 

Rinse 20 psi 1.0 min 
Capillary filled with running 

buffer 

Rinse 20 psi 1.0 min 
Capillary filled with 

background electrolyte 

Inject 0.5 psi 5 sec Sample 

Inject 0.5 psi 5 sec 5-DTAF 

Inject 0.5 psi 35 sec Background electrolyte 

Voltage 5kV 0.75 min Electrokinetic mixing 

Wait  10 min Diffusion 

Separate 20kV 15 min  

 

3.2.2 Sample Preparation 

Stock solutions containing 1.0mg/mL of each drug were prepared in methanol, 

and stored in a refrigerator at 4°C. Prior to analysis samples were diluted to the desired 

concentrations with a dilution solvent comprised of distilled water and reagent grade 

methanol (9:1, v/v). Aliquots of diluted sample (180 µL) and derivatization buffer (20 

µL) were transferred to spring vial inserts and capped. Aliquots of distilled water (140 

µL), 5-DTAF (40 µL), and derivatization buffer (20 µL) were transferred to a separate 

spring vial insert and capped. 
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CHAPTER 4: RESULTS 

4.1 Analysis of Pre-capillary Labeled NBD-Derivatives 

Initial investigations were performed utilizing the reagent 4-fluoro-7-nitro-2,1,3-

benzoxadiazole (NBD-F). Derivatizations were performed via heating a 1:1:1 ratio of the 

sample (1.0 µg/mL of norephedrine, ephedrine, MDA, and MDMA), reagent (20mM 

NBD-F), and derivatization buffer (50mM borate, pH 6.5) at 60°C for 10 minutes. This 

process results in NBD-derivatives including hydrolysis product.  

 

Figure	
  20:	
  Reaction	
  between	
  NBD-­‐F	
  and	
  primary	
  amine	
  containing	
  MDA	
  to	
  give	
  NBD-­‐derivative.	
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Figure	
  21:	
  Derivatization	
  products	
  of	
  NBD-­‐F.	
  

In order to assess whether the derivatization process was effective and to determine 

the relative concentration of products and reactants, derivatized samples were directly 

infused into the Agilent electrospray ionization time-of-flight mass spectrometer (ESI-

TOF-MS). The fluorescence intensity of the hydrolysis reaction product was also 

investigated by scanning the entire emission spectrum with the FluoroMax-3 fluorimeter 

(Jobin Yvon Horiba). Given that NBD-F is non-fluorescent unless coupled to an analyte, 

a peak for the unbound label was not expected to be observed.  This analyte (NBD-OH) 
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was generated using the previously outlined offline derivatization method for NBD-F 

with deionized water being used as the analyte of interest. The results are illustrated in 

figures 22 and 23. The expected mass-to-charge ratio of 182 amu (analyte + hydrogen) 

was observed in the mass spectrum. 

 

Figure	
  22:	
  ESI	
  mass	
  spectrum	
  of	
  directly	
  infused	
  NBD-­‐OH.	
  Analyte	
  m/z	
  is	
  observed	
  at	
  182.0190	
  amu	
  which	
  is	
  
representative	
  of	
  the	
  target	
  analyte	
  with	
  an	
  extra	
  hydrogen	
  atom.

	
  Isotopic	
  Mass	
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Figure	
  23:	
  Emission	
  spectrum	
  of	
  NBD-­‐OH	
  following	
  excitation	
  at	
  480nm	
  wavelength.	
  Peak	
  fluorescence	
  was	
  
observed	
  at	
  562	
  nm	
  with	
  a	
  maximum	
  intensity	
  of	
  17,015	
  cps	
  (counts	
  per	
  second).	
  

The experiment was then applied to1.0 µg/mL 3,4-methylenedioxyamphetmine 

(MDA) and the results compared. It was found that the fluorescent derivative was being 

successfully generated by the reaction. However, the quantity produced was very low. 

The maximum of the emission peak was observed to be 557 nm which is near to that of 

the hydrolysis product which was 562 nm. This was to be expected as the fluorescence of 

both compounds is imparted by the presence of the same NBD-moiety making large 

spectral differences unlikely. Unfortunately, both analytes also had fluorescence 

intensities of similar magnitudes. For MDA, 16,444 cps versus 17,015 cps for the 

hydrolysis product was observed. This is seen in figures 24 through 27. 
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Figure	
  24:	
  ESI	
  mass	
  spectrum	
  for	
  NBD-­‐MDA.	
  Fragment	
  for	
  sodium	
  adduct	
  of	
  analyte	
  is	
  observed	
  at	
  365	
  amu.	
  

 

Figure	
  25:	
  Emission	
  spectrum	
  of	
  NBD-­‐MDA	
  following	
  excitation	
  at	
  480nm	
  wavelength.	
  Fluorescence	
  maximum	
  
observed	
  at	
  557	
  nm	
  at	
  a	
  value	
  of	
  16,444	
  cps.	
  

When observing the mass spectrum for the MDA derivative, fragments for the sodium 

adduct of the analyte was observed (at 365 amu), as well as that of an ammonium adduct 

	
  	
  	
  	
  Isotopic	
  Mass	
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(359 amu) as a result of the ammonium formate sheath liquid. Unfortunately, the 

fragment for the derivative was not observed at the expected 343 amu. This fact coupled 

with the overall low intensity for the spectrum suggests that the derivatization is not 

occurring efficiently enough to produce a high yield of derivatives. This trend was further 

observed with all four of the analytes investigated for this study with the exception of 

norephedrine.  

Figure	
  26:	
  ESI	
  mass	
  spectrum	
  for	
  NBD-­‐norephedrine.	
  Fragments	
  for	
  the	
  sodium	
  adduct	
  of	
  the	
  derivative	
  (m/z	
  337	
  
amu),	
  underivatized	
  analyte	
  (m/z	
  152	
  amu),	
  and	
  dehydroxylated	
  underivatized	
  analyte	
  (m/z	
  134	
  amu)	
  were	
  
observed.	
  Dehydroxylated	
  underivatized	
  analyte	
  peak	
  is	
  largest	
  fragment	
  produced	
  further	
  supporting	
  the	
  
hypothesis	
  that	
  the	
  derivatization	
  method	
  is	
  not	
  efficiently	
  labeling	
  the	
  analytes.	
  	
  

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  Isotopic	
  Mass	
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Figure	
  27:	
  Emission	
  spectrum	
  of	
  NBD-­‐norephedrine	
  following	
  excitation	
  at	
  480nm	
  wavelength.	
  	
  	
  Emission	
  spectrum	
  
peak	
  maximum	
  at	
  550	
  nm	
  and	
  352,150	
  cps.	
  

In the case of norephedrine, the mass spectrum produced further supports the theory that 

the derivatization method is inefficient resulting in low yields of fluorescent product as 

the fragments for the underivatized analyte are much larger. However, in comparison to 

the other compounds, the intensity of the NBD-norephedrine mass fragment is ten times 

larger (4,000 counts) and the peak maximum of the fluorescence spectrum is 20 times 

larger (352,150 cps) despite the initial concentrations of all analytes being 1.0 µg/mL. 

This suggests that norephedrine has a greater reactivity with the fluorescent label than the 

other analytes of interest.  
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Figure	
  28:	
  Separation	
  of	
  1.0	
  µg/mL	
  mixture	
  of	
  norephedrine,	
  ephedrine,	
  MDA,	
  and	
  MDMA.	
  Conditions:	
  Fused	
  silica	
  
capillary,	
  75	
  µm	
  I.D.,	
  40	
  cm	
  length,	
  30	
  cm	
  effective	
  length;	
  capillary	
  temperature,	
  25°C;	
  fluorescent	
  tag,	
  20mM	
  NBD-­‐
F	
  in	
  ethanol;	
  buffer,	
  50mM	
  sodium	
  borate,	
  pH	
  8.5/10mM	
  SDS;	
  offline	
  derivatization,	
  10	
  minutes	
  at	
  60°C.	
  

Based on the results of this investigation it was determined that while NBD-F is capable 

of being used fluorescent labeling of these analytes, the yield of derivatives produced is 

very low and the separation conditions utilized were unable to resolve the analyte peaks 

from one another. 

4.2 Analysis of Pre-capillary Labeled DTAF-Derivatives 

As previously stated in section 4.1, usage of NBD-F as a labeling agent for these 

analytes was deemed unsuccessful overall as the derivative yield was very low and 

separation of individual analytes could not be achieved. As a result of this, an alternative 

dye in the form of 5-(4,6-Dichlorotriazinyl)aminofluorescein (5-DTAF) was selected for 

further study. As with NBD-F, 5-DTAF is highly compatible with the 488nm laser 

utilized by the electrophoresis system (λabs = 492nm, λem = 515nm) and is reactive with 

primary and secondary amines. However, unlike NBD-F, efficient derivatization of the 

NBD-­‐OH	
  

NBD-­‐Ephedrine	
  &	
  
NBD-­‐Norephedrine	
  

Minutes	
  

RF
U
	
  

NBD-­‐MDA	
  &	
  
NBD-­‐MDMA	
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analytes using this compound can be achieved at near room temperature with high yields 

of derivatives produced. 

In order to optimize the separation of the fluorescently labeled derivatives, the 

composition of the running buffer was investigated. In the initial adaptation, a method 

developed by Molina for the inline derivatization and separation of amino acids, amino 

phosphonic acid-herbicides, and biogenic amines [57] was utilized as the framework with 

a running buffer of 50mM borate, pH 9.5/40mM Brij-35. This method was chosen due to 

the investigators’ usage of 5-DTAF as a labeling reagent for these amine-containing 

compounds. It was hypothesized that a similar design scheme would allow for the inline 

derivatization of the phenethylamines of interest. Also, at pH 9.5 the fluorescent label 

exists in its dianion form and the analytes are partially ionized. Brij-35 is a nonionic 

surfactant which forms micelles in solution which act as a pseudo-stationary phase. 

However, the micellar solution was not capable of resolving the individual drugs in the 

mixture which consisted   of 100µg/mL of amphetamine, methamphetamine, 

norephedrine, ephedrine and MDMA. 

To improve upon these results, the MEKC buffer was replaced with a separation 

system consisting of mixtures of various β-cyclodextrins. These included sulfated-β-

cyclodextrin (S-β-CD), and dimethyl-β-cyclodextrin (DM-β-CD). Beta-cyclodextrins are 

seven-membered sugar rings which have a distinctive toroid shape. The inner core of the 

β-CD is hydrophobic in nature with a hydrophilic outer frame. Cyclodextrins assist the 

separation by forming inclusion complexes with analytes. The effect of the inclusion 

complex is to modify the mobility of the analyte and thus increase the selectivity between 
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different analyte zones as a result of the differential rate of formation of the guest/host 

complexes.  The complexes modify the charge to size ratio of the analytes.   Selectivity is 

achieved due to variation in the rate of complex formation. A generic example of this is 

shown in figure 29. Native β-CD and DM-β-CD are neutral while S-β-CD is negatively 

charged.  

 

Figure	
  29:	
  Reversible	
  formation	
  of	
  guest-­‐host	
  complex	
  between	
  fluorescently-­‐labeled	
  derivatives	
  and	
  β-­‐
cyclodextrin.	
  

In order to maximize the separation efficiency of the developed method, the 

modifier utilized in the separation buffer and its concentration were investigated by using 

run buffers of various compositions and observing their effect on the analyte signals 

produced. It was found that all of the cyclodextrins gave improved resolution in 

comparison to the Brij-35 surfactant with native β-cyclodextrin being the best. However, 

native β-cyclodextrin on its own was not capable of full resolution so its usage in 

combination with the other two β-cyclodextrins (sulfated and dimethyl) was investigated 

at varying concentrations. The results of this study are summarized in figure 30. It was 

found that sulfated-β-cyclodextrin gave a slight improvement in resolution in comparison 

to native β-cyclodextrin on its own but as the concentration of S-β-CD was increased, the 

analyte signal decreased in intensity and there was a decrease in overall resolution. Also, 
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capillary blockages from the cyclodextrin precipitating was frequently encountered. On 

the other hand, DM-β-CD increased signal strength and resolution as the concentration 

was increased. 

Figure	
  30:	
  Effect	
  of	
  concentration	
  of	
  secondary	
  β-­‐cyclodextrins	
  in	
  combination	
  with	
  15mM	
  native	
  β-­‐cyclodextrin	
  on	
  
analysis	
  of	
  5-­‐DTAF	
  labeled	
  ephedrine	
  at	
  100ug/mL.	
  

A comparison of the differences in separation efficiency between the three 

modifiers, Brij-35, S-β-CD, and DM-β-CD, is shown in figure 31.  The mechanism of 

selectivity varies as the Brij-35 forms micelles which predominantly affect selectivity 

based on differences in polarity while the cyclodextrins selectivity is also based on 

size/steric interactions.  
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Figure	
  31:	
  Comparison	
  of	
  three	
  selectivity	
  modifiers	
  in	
  50mM	
  borate,	
  pH	
  9.5/15mM	
  β-­‐CD	
  buffer	
  on	
  separation	
  of	
  
100	
  µg/mL	
  drug	
  mixture	
  labeled	
  with	
  0.5mM	
  5-­‐DTAF.	
  (a)	
  40mM	
  Brij-­‐35	
  (b)	
  10mg/mL	
  S-­‐β-­‐CD	
  (c)	
  10mg/mL	
  DM-­‐β-­‐CD.	
  
Brij	
  is	
  a	
  nonionic	
  surfactant	
  that	
  forms	
  micelles,	
  while	
  the	
  cyclodextrins	
  form	
  	
  guest/host	
  complexes.	
  

The electropherogram shown for the separation of the 5-DTAF labeled 100µg/mL 

drug mixture utilizing 50mM borate, pH 9.5/15mM β-cyclodextrin/40mM Brij-35 (figure 

31a) shows no separation of the analytes at all. Other than the internal standard peak, all 

others were the result of excess DTAF and DTAF-byproducts. By substituting the Brij-35 

with sulfated-β-cyclodextrin (S-β-CD) there was some separation observed in figure 31b. 

The first peak represents the amphetamine, methamphetamine, and MDMA components 

of the mixture. The second peak is for norephedrine and ephedrine. By substituting 

dimethyl-β-cyclodextrin (DM-β-CD) individual peaks can further be seen in figure 31c.   

On the basis of the results obtained, it was determined that the combination of 

native β-CD and DM-β-CD provided the improved resolution between the analytes in 

comparison to the other options. However, even with the combination of cyclodextrins, 
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the peaks were not fully resolved. In order to create greater distinctions between the 

moving zones within the capillary, varying concentrations of the polar, aprotic solvent 

acetonitrile was added to the run buffer. The results of that study are summarized in 

figure 32 below.  

 

Figure	
  32:	
  Effect	
  of	
  increasing	
  acetonitrile	
  concentration	
  in	
  running	
  buffer	
  (50mM	
  borate,	
  pH	
  9.5/15mM	
  β-­‐
CD/10mg/mL	
  DM-­‐β-­‐CD	
  on	
  resolution	
  between	
  peaks	
  of	
  DTAF-­‐labeled	
  100	
  µg/mL	
  drug	
  mixture.	
  

Acetonitrile reduces the EOF allowing for the labeled derivatives to separate to a 

greater extent, as well as modifying the buffer polarity. This affects the guest/host 

equilibrium between the analytes and the cyclodextrins which has an overall effect of 

improving resolution. The final result of this investigation is seen in figure 33.
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Figure	
  33:	
  Typical	
  electropherogram	
  of	
  100ug/mL	
  mixture	
  of	
  five	
  phenethylamines	
  derivatized	
  pre-­‐capillary.	
  
Conditions:	
  Fused	
  silica	
  capillary,	
  50	
  µm	
  I.D.,	
  60	
  cm	
  length,	
  50	
  cm	
  effective	
  length;	
  capillary	
  temperature,	
  35°C;	
  
fluorescent	
  tag,	
  0.5mM	
  5-­‐DTAF	
  in	
  ethanol/1,2-­‐dichloroethane	
  (9:1);	
  buffer,	
  50mM	
  sodium	
  borate,	
  pH	
  9.5/15mM	
  β-­‐
CD/10mg/mL	
  DM-­‐β-­‐CD/	
  15%	
  acetonitrile. All	
  other	
  conditions	
  same	
  as	
  table	
  3 with	
  the	
  exception	
  that steps	
  3	
  and 4	
  
were	
  consolidated	
  into	
  a	
  single	
  injection	
  at	
  0.5psi	
  for	
  5.0	
  sec.	
  

In order to determine the optimal parameters for  the derivatization reaction, a 

five-analyte mixture comprised of  amphetamine, methamphetamine, norephedrine, 

ephedrine and MDMA at 100 µg/mL was derivatized offline using increasing 

concentrations of 5-DTAF. These derivatives were then separated using the running 

buffer, 50mM sodium borate, pH 9.5/15mM β-CD/10mg/mL DM-β-CD/ 15% acetonitrile 

in the presence of an internal standard (2.5µM fluorescein in BGE). The results are 

displayed in figure 34.  
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Figure	
  34:	
  Typical	
  electropherograms	
  for	
  100ug/mL	
  mixture	
  of	
  five	
  phenethylamines	
  labeled	
  with	
  varying	
  
concentrations	
  of	
  5-­‐DTAF	
  pre-­‐capillary.	
  Conditions:	
  Fused	
  silica	
  capillary,	
  50	
  µm	
  I.D.,	
  60	
  cm	
  length,	
  50	
  cm	
  effective	
  
length;	
  capillary	
  temperature,	
  35°C;	
  buffer,	
  50mM	
  sodium	
  borate,	
  pH	
  9.5/15mM	
  β-­‐CD/10mg/mL	
  DM-­‐β-­‐CD/	
  15%	
  
acetonitrile.	
  All	
  other	
  conditions	
  same	
  as	
  table	
  3;	
  steps	
  3	
  and	
  4	
  consolidated	
  into	
  a	
  single	
  injection	
  at	
  0.5psi	
  for	
  5.0	
  
sec.	
  

By stacking the electropherograms based on the position of the internal standard 

the steady increase in fluorescence is easily visualized. Also, the consistent elution order 

of the analytes is maintained and while there is slight drift between electropherograms, 

the usage of the internal standard as a bench mark makes it easier to compensate for this. 

At 5.0mM it was found that 5-DTAF had attained its maximum solubility for the solvent 

system being used so further analyses beyond that point were not attempted. An 

individual electropherogram for the 5.0mM analysis is given in figure 35. Based on the 

excellent separation observed of the individual analytes, this buffer composition (50mM 

borate, pH 9.5/15mM β-CD/10mg/mL DM-β-CD/15% MeCN) was selected for the inline 

derivatization experiments.  
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Figure	
  35:	
  Typical	
  electropherogram	
  of	
  100ug/mL	
  mixture	
  of	
  five	
  phenethylamines	
  labeled	
  with	
  5.0mM	
  5-­‐DTAF.	
  
Conditions:	
  Fused	
  silica	
  capillary,	
  50	
  µm	
  I.D.,	
  60	
  cm	
  length,	
  50	
  cm	
  effective	
  length;	
  capillary	
  temperature,	
  35°C;	
  
buffer,	
  50mM	
  sodium	
  borate,	
  pH	
  9.5/15mM	
  β-­‐CD/10mg/mL	
  DM-­‐β-­‐CD/	
  15%	
  acetonitrile.	
  All	
  other	
  conditions	
  same	
  
as	
  table	
  3;	
  steps	
  3	
  and	
  4	
  consolidated	
  into	
  a	
  single	
  injection	
  at	
  0.5psi	
  for	
  5.0	
  sec.	
  

These optimized parameters resulted in limits of detection for the individual drugs 

ranging from approximately 1.4 ng/mL to 0.48 µg/mL. In the design of this method it was 

always intended for the offline procedure to be translated into the inline procedure with 

as little modification to the method as possible. By optimizing the buffer composition and 

separation parameters in this stage of the work, further optimization studies of those 

factors were not necessary in later experiments which will be discussed in the following 

section.  
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Figure	
  36:	
  Calibration	
  curves	
  for	
  online-­‐derivatized	
  analytes	
  using	
  5-­‐DTAF.	
  

Table 5: Figures of merit for offline derivatization with 5-DTAF. 

Analyte 

Linear 

Regression 

Equation 

y=mx+b 

R2 
LOD

(ng/mL) 

Average  

Elution Time  

(min) 

Amphetamine 0.1816, 0.9583 0.9216 5.3 6.6±0.044 

Methamphetamine 0.1140, 0.1414 0.9973 480 6.4±0.031 

Norephedrine 0.1667, -0.4596 0.9167 110 6.9±0.012 

Ephedrine 0.6939, -3.425 0.9557 22 6.9±0.010 

MDMA 0.2186, 1.287 0.9171 1.4 6.5±0.026 
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4.3 Inline Derivatization of Phenethylamines 

The present chapter discusses the modification of the pre-capillary derivatization to 

permit the utilization of the fluorescent dye, 5-DTAF, in an inline derivatization method. 

The effect of reagent concentration and electrokinetic mixing parameters were examined 

to define the optimal parameters for  maximizing labeling efficiency without sacrificing 

peak resolution In the previous stage of method development, the optimal separation 

buffer was determined to be 50mM sodium borate, pH 9.5, 15mM β-CD, 10mg/mL DM-

β-CD, and 15% acetonitrile (by volume). The derivatization method used was adapted 

from the work done by Molina [57] utilizing previously developed buffers and separation 

parameters. A schematic of the inline derivatization method is given below in figure 37. 

 

Figure	
  37:	
  Schematic	
  representation	
  of	
  inline	
  derivatization	
  method.	
  (a)	
  Plugs	
  of	
  sample,	
  5-­‐DTAF,	
  and	
  background	
  
electrolyte	
  (BGE)	
  are	
  injected	
  into	
  capillary	
  filled	
  with	
  more	
  BGE.	
  (b)	
  Voltage	
  is	
  applied	
  generating	
  small	
  electric	
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field	
  for	
  a	
  short	
  time.	
  (c)	
  Capillary	
  is	
  allowed	
  to	
  stand	
  for	
  set	
  time	
  frame	
  with	
  no	
  electric	
  field.	
  (d)	
  Separation	
  
potential	
  is	
  applied	
  and	
  fluorescent	
  derivatives	
  separate	
  as	
  they	
  approach	
  the	
  detector	
  window.	
  

In order to perform the in-line derivatization separate sample and fluorescent label 

vials were designated and prepared. The sample vial was comprised of a 180µL aliquot of 

a 100µg/mL mixture of amphetamine, methamphetamine, norephedrine, ephedrine, and 

MDMA, and 20µL of the derivatization buffer (0.5M NaHCO3/Na2CO3, pH 9.5). The 

fluorescent label vial also contained 20µL of the derivatization buffer as well as, 20µL of 

5.0mM 5-DTAF, and 160µL of distilled water. An aliquot from both the sample and 

fluorescent label vials, as well as the background electrolyte (50mM borate, pH 9.5) vials 

were injected sequentially into a capillary which had already been filled with the same 

background electrolyte using 0.5 psi for 5, 5, and 35 seconds respectively. The actual 

volume of each injection was 6.12 nL, 6.12 nL, and 42.84nL for each vial further 

highlighting how little sample and reagent is consumed utilizing this method. These 

values are based on the internal diameter of the capillary, the buffer viscosity, 

temperature, injection pressure, and injection length. 

The terminal injection of the background electrolyte serves as a spacer between 

the reagents and the running buffer. This helps to prevent reactions occurring between the 

modifiers present in the run buffer and the fluorescent derivatizing agent. A low potential 

(5kV) is next applied in order to induce electrokinetic mixing, and then the reagents are 

allowed to sit and react for 10 min. A separation potential of 20kV was then applied, 

generating EOF and inducing separation of the analytes. The analysis program method 

shown in table 3 was utilized and typical results are given in figure 38. 
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Figure	
  38:	
  Typical	
  electropherogram	
  of	
  100ug/mL	
  mixture	
  of	
  five	
  phenethylamines	
  labeled	
  via	
  inline	
  electrokinetic	
  
mixing	
  with	
  20µL	
  of	
  5.0mM	
  5-­‐DTAF.	
  Conditions:	
  Fused	
  silica	
  capillary,	
  50	
  µm	
  I.D.,	
  60	
  cm	
  length,	
  50	
  cm	
  effective	
  
length;	
  capillary	
  temperature,	
  35°C;	
  buffer,	
  50mM	
  sodium	
  borate,	
  pH	
  9.5/15mM	
  β-­‐CD/10mg/mL	
  DM-­‐β-­‐CD/	
  15%	
  
acetonitrile. All	
  other	
  conditions	
  same	
  as	
  table	
  3.

Experiments were done varying the volume of dye in the reagent vial in order to 

increase the overall molar ratio of analyte versus label. By doing so, theoretically the 

labeling efficiency would increase. This permits an increasing in overall concentration 

without problems of precipitation. At the conclusion of this experiment it was determined 

that 40µL of 5.0mM 5-DTAF gave the best overall labeling efficiency as seen in figure 

39. It increased the intensity of the peaks while maintaining resolution despite a large 

background. 
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Figure	
  39:	
  Typical	
  electropherogram	
  of	
  100ug/mL	
  mixture	
  of	
  five	
  phenethylamines	
  labeled	
  via	
  inline	
  electrokinetic	
  
mixing	
  with	
  40µL	
  of	
  5.0mM	
  5-­‐DTAF.	
  Conditions:	
  Fused	
  silica	
  capillary,	
  50	
  µm	
  I.D.,	
  60	
  cm	
  length,	
  50	
  cm	
  effective	
  
length;	
  capillary	
  temperature,	
  35°C;	
  buffer,	
  50mM	
  sodium	
  borate,	
  pH	
  9.5/15mM	
  β-­‐CD/10mg/mL	
  DM-­‐β-­‐CD/	
  15%	
  
acetonitrile.	
  All	
  other	
  conditions	
  same	
  as	
  table	
  3.	
  

To confirm the suitability of the injection sequence, the order and number of 

injections (single versus multiple) was assessed. In the first experiment, a plug of 5-

DTAF was sandwiched between two plugs of analyte via a sequential injection. While the 

analytes were successfully labeled, their intensity was very low with the largest peak, 

norephedrine, having an intensity of less than 5 RFU.   
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Figure	
  40:	
  Typical	
  electropherogram	
  of	
  100ug/mL	
  mixture	
  of	
  five	
  phenethylamines	
  labeled	
  via	
  inline	
  electrokinetic	
  
mixing	
  with	
  40µL	
  of	
  5.0mM	
  5-­‐DTAF.	
  Conditions:	
  Fused	
  silica	
  capillary,	
  50	
  µm	
  I.D.,	
  60	
  cm	
  length,	
  50	
  cm	
  effective	
  
length;	
  capillary	
  temperature,	
  35°C;	
  buffer,	
  50mM	
  sodium	
  borate,	
  pH	
  9.5/15mM	
  β-­‐CD/10mg/mL	
  DM-­‐β-­‐CD/	
  15%	
  
acetonitrile.	
  Injection	
  order,	
  (5	
  sec	
  at	
  0.5psi)	
  analyte,	
  tag,	
  analyte;	
  all	
  other	
  conditions	
  same	
  as	
  table	
  3.	
  

By reversing the order of the sandwich injection sequence so that the analyte is 

flanked by fluorescent tag it was found that peak intensity increased by an order of 

magnitude (from 4.0 RFU to 44 RFU for norephedrine) as seen in figure 41. However, 

the electropherogram peaks were not fully resolved (between amphetamine and MDMA 

resolution was 0.768) and the signal for ephedrine was completely obscured. Next, single 

injections of reagents in alternating order were assessed. In figure 42 analyte is injected 

followed by 5-DTAF prior to electrokinetic mixing. While the intensity of the peaks 

produced are somewhat significant, ranging from 10 to 45 RFU, as with figure 41, the 

there is no base-line resolution and the electropherogram suffers from peak loss. In this 
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case, the peaks representing ephedrine, and methamphetamine, could not be 

distinguished. 

Figure	
  41:	
  	
  Electropherogram	
  of	
  100ug/mL	
  mixture	
  of	
  five	
  phenethylamines	
  labeled	
  via	
  inline	
  electrokinetic	
  mixing	
  
with	
  40µL	
  of	
  5.0mM	
  5-­‐DTAF.	
  Conditions:	
  Fused	
  silica	
  capillary,	
  50	
  µm	
  I.D.,	
  60	
  cm	
  length,	
  50	
  cm	
  effective	
  length;	
  
capillary	
  temperature,	
  35°C;	
  buffer,	
  50mM	
  sodium	
  borate,	
  pH	
  9.5/15mM	
  β-­‐CD/10mg/mL	
  DM-­‐β-­‐CD/	
  15%	
  
acetonitrile.	
  Injection	
  order,	
  (5	
  sec	
  at	
  0.5psi)	
  tag,	
  analyte,	
  tag;	
  all	
  other	
  conditions	
  same	
  as	
  table	
  3.	
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Figure	
  42:	
  Electropherogram	
  of	
  100ug/mL	
  mixture	
  of	
  five	
  phenethylamines	
  labeled	
  via	
  inline	
  electrokinetic	
  mixing	
  
with	
  40µL	
  of	
  5.0mM	
  5-­‐DTAF.	
  Conditions:	
  Fused	
  silica	
  capillary,	
  50	
  µm	
  I.D.,	
  60	
  cm	
  length,	
  50	
  cm	
  effective	
  length;	
  
capillary	
  temperature,	
  35°C;	
  buffer,	
  50mM	
  sodium	
  borate,	
  pH	
  9.5/15mM	
  β-­‐CD/10mg/mL	
  DM-­‐β-­‐CD/	
  15%	
  
acetonitrile.	
  Injection	
  order,	
  (5	
  sec	
  at	
  0.5psi)	
  analyte,	
  tag;	
  all	
  other	
  conditions	
  same	
  as	
  table	
  3.

Finally, the effect of sequential injection of the fluorescent label followed by the 

sample was assessed. This injection sequence resulted in distinct peaks for each analyte 

present in the mixture with good intensity as seen in figure 43. The observed increase in 

labeling efficiency is likely because of the maintenance of the derivatizing reagent in its 

dianion form at pH (9.5).  Under these conditions, the mobility of the reagent is opposite 

that of the EOF. As a result there is a longer interaction between analyte and reagent and 

more efficient mixing within the capillary. 
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Figure	
  43:	
  Typical	
  electropherogram	
  of	
  100ug/mL	
  mixture	
  of	
  five	
  phenethylamines	
  labeled	
  via	
  inline	
  electrokinetic	
  
mixing	
  with	
  40µL	
  of	
  5.0mM	
  5-­‐DTAF.	
  Conditions:	
  Fused	
  silica	
  capillary,	
  50	
  µm	
  I.D.,	
  60	
  cm	
  length,	
  50	
  cm	
  effective	
  
length;	
  capillary	
  temperature,	
  35°C;	
  buffer,	
  50mM	
  sodium	
  borate,	
  pH	
  9.5/15mM	
  β-­‐CD/10mg/mL	
  DM-­‐β-­‐CD/	
  15%	
  
acetonitrile.	
  Injection	
  order,	
  (5	
  sec	
  at	
  0.5psi)	
  tag,	
  analyte;	
  all	
  other	
  conditions	
  same	
  as	
  table	
  3.	
  

4.3.1 Optimization of Inline Derivatization Method 

To establish optimal electrokinetic mixing conditions the statistical software, 

Nemrodw, was utilized to assess which combination of the three parameters (mixing 

voltage, mixing time, wait time) would produce optimal labeling efficiency. Typically in 

the preliminary stages of optimization first order models, such as Plackett-Burman, are 

used [27]. These are done in order to determine which experimental factors are most 

influential. However, when attempting to optimize an experimental process, second order 

models are more useful than the preliminary first order models. Commonly used 

experimental design models use a symmetrical, spherical experiment domain and a 
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minimum of two factor levels. The Doehlert matrix is one such surface response design 

[31]. 

The Doehlert matrix is comprised of a uniform, spherical shell design which 

stresses uniformity in space filling within the experimental region. With such a model, 

the influence of different parameters can be predicted with much greater accuracy. 

Depending on how many factors are being assessed, the number of levels of each factor 

may vary as will the total number of experiments. For this work three parameters of the 

electrokinetic mixing for the inline derivatization method were assessed; mixing voltage, 

mixing time, and wait time. For the Doehlert matrix, the number of experiments (N) is 

determined using the following equation where k is the number of variables and C0 is the 

number of center points [27].  

𝑁𝑁 = 𝑘𝑘 + 𝑘𝑘 + 𝐶𝐶  

When three variables are utilized with a single center point, the number of 

experiments calculated is thirteen. The coded matrix for our particular experiment is 

outlined in table 4. 

Table 6:	
  Coded matrix for Doehlert optimization of 
electrokinetic mixing parameters.	
  

Mix Voltage Mix Time Wait Time 

1 0 0 

-1 0 0 

0.5 0.86603 0 

-0.5 -0.86603 0 
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0.5 -0.86603 0 

-0.5 0.86603 0 

0.5 0.28868 0.8165 

-0.5 -0.28868 -0.8165 

0.5 -0.28868 -0.8165 

0 0.57735 -0.8165 

-0.5 0.28868 0.8165 

0 -0.57735 0.8165 

0 0 0 

In order to convert the coded matrix values to real experiment values, each must 

be assessed using the following equation where Ci is the coded value for the level of the 

factor, i. Xi is the real value in the experiment, X0
i is the real value at the center of the 

experimental domain, and ΔXi is the step of variation of the real value. The coded value 

limit for each factor is represented by α. 

𝐶𝐶 =
𝑋𝑋 − 𝑋𝑋
∆𝑋𝑋 𝛼𝛼 

𝑋𝑋 =
𝑋𝑋 , + 𝑋𝑋 ,

2  

∆𝑋𝑋 =
𝑋𝑋 , − 𝑋𝑋 ,

2  

For this experiment, the range for mixing voltage was 2 to 10kV, mixing time was 

30 to 75 minutes, and wait time was 3 to 15 minutes. For example, the first cell of the 

mixing voltage factor has the following corresponding values; Ci = 1, X0
i = 6, ΔXi = 4, 

and α = 1. Using these values, the calculated experimental value is 10kV as shown in 
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table 5. This was repeated for all of the parameters at every level to give the uncoded 

matrix as seen in table 5. 

 

Table 7: Uncoded matrix for Doehlert optimization of 
electrokinetic mixing parameters. 

Mix Voltage 

(kV) 

Mix Time 

(sec) 

Wait Time 

(min) 

10 52.5 9 

2 52.5 9 

8 71.99 9 

4 33.01 9 

8 33.01 9 

4 71.99 9 

8 59 13.9 

4 46 4.1 

8 46 4.1 

6 65.49 4.1 

4 59 13.9 

6 39.51 13.9 

6 52.5 9 

 

Samples comprised of a 100µg/mL mixture of amphetamine, methamphetamine, 

norephedrine, ephedrine, and MDMA were run in triplicate and the responses for each 

identified analyte were entered into the Nemrodw software for analysis to calculate the 
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coefficients for the polynomial model designed and generate contour plots as seen in 

figures 44-46.  

𝑌𝑌 = 𝑏𝑏 + 𝑏𝑏 𝑋𝑋 + 𝑏𝑏 𝑋𝑋 + 𝑏𝑏 𝑋𝑋 + 𝑏𝑏 − 1 𝑋𝑋 + 𝑏𝑏 − 2 𝑋𝑋 + 𝑏𝑏 − 3 𝑋𝑋

+ 𝑏𝑏 − 2 𝑋𝑋 𝑋𝑋 + 𝑏𝑏 − 3 𝑋𝑋 𝑋𝑋 + 𝑏𝑏 − 3 𝑋𝑋 𝑋𝑋  

The contour plots graphically show changes in signal intensity which can be used to 

interpret the most efficient parameters for the method of interest. 

 

Figure	
  44:	
  Two-­‐dimensional	
  and	
  three-­‐dimensional	
  contour	
  plots	
  for	
  amphetamine	
  peak	
  in	
  100ug/mL	
  mixture	
  of	
  
five	
  phenethylamines	
  labeled	
  via	
  inline	
  electrokinetic	
  mixing	
  with	
  40µL	
  of	
  5.0mM	
  5-­‐DTAF.	
  Conditions:	
  Fused	
  silica	
  
capillary,	
  50	
  µm	
  I.D.,	
  60	
  cm	
  length,	
  50	
  cm	
  effective	
  length;	
  capillary	
  temperature,	
  35°C;	
  buffer,	
  50mM	
  sodium	
  
borate,	
  pH	
  9.5/15mM	
  β-­‐CD/10mg/mL	
  DM-­‐β-­‐CD/	
  15%	
  acetonitrile.	
  Injection	
  order,	
  (5	
  sec	
  at	
  0.5psi)	
  tag,	
  analyte;	
  all	
  
other	
  conditions	
  same	
  as	
  table	
  3.	
  Varying	
  mix	
  voltage	
  and	
  mix	
  time	
  values	
  were	
  plotted	
  while	
  holding	
  wait	
  time	
  
constant	
  at	
  9.00	
  min.	
  The	
  saddle	
  shape	
  generated	
  indicates	
  maximum	
  labeling	
  efficiency	
  at	
  the	
  extremes	
  of	
  the	
  
mixing	
  voltage	
  range	
  (2-­‐10kV)	
  particularly	
  at	
  the	
  median	
  mixing	
  time	
  value	
  (52.5	
  sec).	
  

In figure 44 the magnitude of the mixing voltage and the length of the mixing 

time were plotted in relation to one another with the wait time being held constant. This 

created a saddle-shaped three-dimensional plot where best results were achieved at the 

extremes of the mix voltage experimental range. 
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Figure	
  45:	
  Two-­‐dimensional	
  and	
  three-­‐dimensional	
  contour	
  plots	
  for	
  amphetamine	
  peak	
  in	
  100ug/mL	
  mixture	
  of	
  
five	
  phenethylamines	
  labeled	
  via	
  inline	
  electrokinetic	
  mixing	
  with	
  40µL	
  of	
  5.0mM	
  5-­‐DTAF.	
  Conditions:	
  Fused	
  silica	
  
capillary,	
  50	
  µm	
  I.D.,	
  60	
  cm	
  length,	
  50	
  cm	
  effective	
  length;	
  capillary	
  temperature,	
  35°C;	
  buffer,	
  50mM	
  sodium	
  
borate,	
  pH	
  9.5/15mM	
  β-­‐CD/10mg/mL	
  DM-­‐β-­‐CD/	
  15%	
  acetonitrile.	
  Injection	
  order,	
  (5	
  sec	
  at	
  0.5psi)	
  tag,	
  analyte;	
  all	
  
other	
  conditions	
  same	
  as	
  table	
  3.	
  Varying	
  	
  mix	
  time	
  and	
  wait	
  time	
  values	
  were	
  plotted	
  while	
  holding	
  mix	
  voltage	
  
constant	
  at	
  6.00	
  kV.	
  The	
  bowl	
  shape	
  generated	
  indicates	
  maximum	
  labeling	
  efficiency	
  at	
  the	
  wait	
  time	
  upper	
  
extreme	
  value	
  (15.0	
  min)	
  and	
  the	
  mixing	
  time	
  lower	
  extreme	
  value	
  (30.0	
  sec).	
  

For figure 45, mixing time and wait time were plotted while holding the mixing voltage 

constant. This produced a shape similar to an inverted bowl where the apex runs 

diagonally across the shape. Based on this it can observed that there is an inverse 

relationship between these two factors with maximum efficiency when longer wait times 

are coupled with shorter mixing times. 
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Figure	
  46:	
  Two-­‐dimensional	
  and	
  three-­‐dimensional	
  contour	
  plots	
  for	
  amphetamine	
  peak	
  in	
  100ug/mL	
  mixture	
  of	
  
five	
  phenethylamines	
  labeled	
  via	
  inline	
  electrokinetic	
  mixing	
  with	
  40µL	
  of	
  5.0mM	
  5-­‐DTAF.	
  Conditions:	
  Fused	
  silica	
  
capillary,	
  50	
  µm	
  I.D.,	
  60	
  cm	
  length,	
  50	
  cm	
  effective	
  length;	
  capillary	
  temperature,	
  35°C;	
  buffer,	
  50mM	
  sodium	
  
borate,	
  pH	
  9.5/15mM	
  β-­‐CD/10mg/mL	
  DM-­‐β-­‐CD/	
  15%	
  acetonitrile.	
  Injection	
  order,	
  (5	
  sec	
  at	
  0.5psi)	
  tag,	
  analyte;	
  all	
  
other	
  conditions	
  same	
  as	
  table	
  3.	
  Varying	
  mix	
  voltage	
  and	
  wait	
  time	
  values	
  were	
  plotted	
  while	
  holding	
  mix	
  time	
  
constant	
  at	
  52.50	
  sec.	
  The	
  saddle	
  shape	
  generated	
  indicates	
  maximum	
  labeling	
  efficiency	
  at	
  the	
  extremes	
  of	
  the	
  
mixing	
  voltage	
  range	
  (2-­‐10kV)	
  particularly	
  at	
  the	
  median	
  wait	
  time	
  value	
  (9.00	
  min).	
  

In figure 46, the saddle shape is again produced when varying mixing voltage and wait 

time are plotted while holding the mixing time constant. These contour plots generated 

once again suggests that optimal mixing voltage values are at the higher and lower ends 

of the range regardless of the length of the wait time.  

Using the contour plots generated for each analyte in the five drug mixture, the 

optimal parameters for the electrokinetic mixing of each drug was determined as is 

summarized in table 7 below.  
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Table 8: Optimal parameter conditions for inline derivatization of each analyte in a mixture. 
Parameter Amphetamine Methamphetamine Norephedrine Ephedrine MDMA 

Mixing 

Voltage 

(kV) 

9 10 10 9 9 (10) 

Mixing Time 

(sec) 
41.25 41.25 (52.5) 52.5 41.25 41.25 (52.5) 

Wait Time 

(min) 
9 9 11 9 9 

 

Based on these observations, the overall optimal mixing conditions were determined to 

be 9.5 kV for 46.875 sec, and 9 minutes of wait time. However, under these conditions 

there was excessive signal produced by the excess 5-DTAF leading peaks being 

obscured. In order to avoid this, mixing conditions of 8 kV for 33 sec, and 9 minutes of 

wait time were utilized instead. This is illustrated in figure 47 below. 
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Figure	
  47:	
  Separation	
  of	
  100	
  g/mL	
  mixture	
  of	
  five	
  analytes	
  derivatized	
  on-­‐capillary	
  by	
  1.0mM	
  5-­‐DTAF.	
  Conditions:	
  
Fused	
  silica	
  capillary,	
  50	
  µm	
  I.D.,	
  60	
  cm	
  length,	
  50	
  cm	
  effective	
  length;	
  capillary	
  temperature,	
  35°C;	
  buffer,	
  50mM	
  
sodium	
  borate,	
  pH	
  9.5/15mM	
  β-­‐CD/10mg/mL	
  DM-­‐β-­‐CD/	
  15%	
  acetonitrile;	
  mixing	
  voltage,	
  8kV;	
  mixing	
  time,	
  33	
  sec;	
  
wait	
  time,	
  9	
  min;	
  injection	
  order,	
  (5	
  sec	
  at	
  0.5psi)	
  tag,	
  analyte;	
  all	
  other	
  conditions	
  same	
  as	
  table	
  3.	
  

Table 9: Figures of merit for inline derivatization with 5-DTAF. 

Analyte 

Linear 

Regression 

Equation 

y=mx+b 

LOD 

(µg/mL) 

Elution Time  

(min) 

Amphetamine 0.4910, 15.37 6.1 6.5±0.074 

Methamphetamine 0.4232, -1.397 7.1 6.3±0.26 

Norephedrine 0.3970, 35.45 7.6 6.5±0.25 

Ephedrine 0.3773, 6.828 8.0 5.7±0.17 

MDMA 0.7035, 7.3989 4.3 6.3±0.23 
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CHAPTER 5: CONCLUSIONS 

5.1 Conclusions 

This research project demonstrates the usefulness of 5-(4,6-

dichlorotriazinyl)aminofluorescein in the analysis of amphetamine-type stimulants as 

well as the viability of an inline derivatization method for fluorescence detection in 

capillary electrophoresis. The reactivity of the 5-DTAF with the analytes of interest made 

it an excellent reagent for this work despite the complexity of the electropherograms 

produced as a result of it being a natively fluorescent label. It was determined that 

efficient inline derivatization of multiple phenethylamines could be achieved using a 

5.0mM 5-DTAF solution in ethanol/1,2-dichloroethane (9:1). By injecting the fluorescent 

tag prior to the analyte, the electrokinetic mixing of the two zones produced higher yields 

of the DTAF-derivatives. These fluorescent derivatives eluted first due to their faster 

mobility in comparison to the excess reagent and derivative byproducts. As a result a 

novel technique for the fast, inline derivatization and separation of multiple 

phenethylamines was successfully developed. 

The work completed also demonstrates the importance of modifiers such as β-

cyclodextrins and organic solvents on separation efficiency. Given how closely related in 

size and structure these analytes are prior to and after derivatization, traditional zone 

electrophoresis is not capable of separating these compounds. It is only after the 

introduction of β-cyclodextrins (which form inclusion complexes to varying degrees with 

the different derivatives) and acetonitrile (which reduces the electroosmotic flow to allow 

the analyte zones to spread out more) that separation of individual compounds from a 
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mixture is obtained. The behavior of these compounds in the running buffer was 

discussed with particular attention paid to the type and concentration of the β-CDs 

utilized as well as the amount of organic solvent added.  

This resulted in the adoption of a 50mM sodium borate, pH 9.5/15mM β-

CD/10mg/mL DM-β-CD/ 15% acetonitrile running buffer. The modifiers utilized and 

their concentrations were determined through a systematic analysis of their effects on the 

baseline resolution between analyte peaks. It was found that cyclodextrin concentrations 

surpassing the optimal levels determined had greatly diminished solubility in the run 

buffer solution. Due to this, heat dissipation along the length of the capillary was reduced 

leading to the cyclodextrins precipitating and creating blockages. It was also found that as 

the concentration of acetonitrile increased, so did the degree of peak separation. 

However, it was observed that this trend reached its apex at 15% after which point the 

resolution experienced a downturn. This portion of this work further highlighted the 

significant effect optimization of the run buffer composition can on sensitivity and 

selectively. 

An efficient way of predicting the effect of changes in different parameters and 

optimal conditions is through the usage of predictive modeling software. These software 

suites allow users to choose the type of statistical model used (Doehlert, Box-Behnken, 

etc.), the variables being assessed, and the experimental region they will be applied to. In 

this work the experimental design program, Nemrodw, was utilized to determine the 

optimal conditions for the inline derivatization method developed by assessing 
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electrokinetic mixing voltage, length of time for the mixing step, and length of the 

standby time (for longitudinal diffusion to take place).   

5.2 Future Work 

The development of an inline derivatization with laser-induced fluorescence 

detection marks a significant step in the development of truly complete portable 

electrophoretic systems. In the work done by Lloyd et al [47], the Agilent Bioanalyzer 

lab-on-a-chip system, which was developed for DNA and protein analysis, was used for 

the analysis of ATS using fluorescein isothiocyanate (FITC) as the label and a 

borate/SDS buffer. The labeling in this was done prior to injection in foil-lined tubes. If 

this could all be done in the chip, this method would be very useful in a forensic setting 

as it could be completely automated.  

Other microfluidic systems such as the M150 by Cascade Microtech utilize both 

commercially available glass electrophoretic chips and custom-designed polymer-based 

chips. The ability to integrate an online derivatization method into these existing systems 

either as they are or via the attachment of nanoports (increasing sample well sizes) would 

assist in the development of a fully automated and portable analytical method for 

presumptive testing of seized samples. This would be especially useful given the rapid 

proliferation of designer phenethylamine-based compounds.  

Also, the incorporation of a demethylation method for tertiary amines, such as the 

one utilized by Alnajjar et al [3], would greatly extend the usefulness of the method by 

allowing the analysis of other drugs of abuse such as cocaine and heroin. This is 
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particularly of interest as many seized samples which are purported to be 

phenethylamines are often cut or contaminated with other substances. Being able to 

identify all the components of a seized pill can make determining if toxic interactions 

play a role in drug-related sudden death cases.



95 
	
  

REFERENCES 

1. Abdel-Hay, K. M.; Awad, T.; DeRuiter, J.; Clark, C. R. Differentiation of 
methylenedioxybenzylpiperazines (MDBPs) and 
methoxymethylbenzylpiperazines (MMBPs) By GC-IRD and GC-MS. Forensic 
Sci. Int. 2011, 210, 122-128.  

2. Allen, A.; Cantrell, T.S. Synthetic Reductions in Clandestine Amphetamine and 
Methamphetamine Laboratories – A Review. Forensic Sci. Int. 1989, 42, 183-
199. 

3. Al Najjar, A. O. Enhancement of Sensitivity in Capillary Electrophoresis: Forensic 
and Pharmaceutical Applications, Ohio University, Athens, Ohio, 2004.  

4. Anastos, N.; Barnett, N. W.; Lewis, S. W. Capillary electrophoresis for forensic 
drug analysis: A review. Talanta 2005, 67, 269-279.  

5. Aoyama, C.; Santa, T.; Tsunoda, M.; Fukushima, T.; Kitada, C.; Imai, K. A fully 
automated amino acid analyzer using NBD-F as a fluorescent derivatization 
reagent. Biomedical Chromatography, Biomed. Chromatogr 2004, 18, 630.  

6. Araujo, P. W.; Brereton, R. G. Experimental design II. Optimization. TrAC, Trends 
Anal. Chem. 1996, 15, 63-70.  

7. Araujo, P.; Janagap, S. Doehlert uniform shell designs and chromatography. 
Journal of Chromatography B 2012, 910, 14-21.  

8. Aubrey, A.D.; Chalmers, J.H.; Bada, J.L.; Grunthaner, F.J.; et al. The Urey 
Instrument: An Advanced In Situ Organic and Oxidant Detector for Mars 
Exploration. Astrobiology 2008, 8, 1-13. 

9. Bishop, S. C.; Lerch, Margaret; McCord, B. R. Micellar electrokinetic 
chromatographic screening method for common sexual assault drugs administered 
in beverages. Forensic Science International 2004, 141, 7. 

10. Bishop, S. C.; McCord, B. R.; Gratz, S. R.; Loeliger, J. R.; Witkowski, M. R. 
Simultaneous Separation of Different Types of Amphetamine and Piperazine 
Designer Drugs by Capillary Electrophoresis with a Chiral Selector. Journal of 
Forensic Sciences, J Forensic Sci 2005, 50, 1.  

11. Boulos, S.; Cabrices, O.; Blas, M.; McCord, B. R. Development of an entangled 
polymer solution for improved resolution in DNA typing by CE. Electrophoresis 
2008, 29, 4695-4703.  

12. Brettell, T.A.; Butler, J.M.; Almirall, J.R. Forensic Science. Analytical Chemistry 
2007, 79, 4365. 



96 
	
  

13. Brettell, T.A.; Butler, J.M.; Almirall, J.R. Forensic Science. Analytical Chemistry 
2009, 81, 4695. 

14. Brunton, L.L.; Lazo, J.S.; Parker, K.L. Gilman's and Goodman's the 
pharmacological basis of therapeutics; MacMillan: New York [u.a., 1985.  

15. Casarett, L.J.; Doull, J.; Klaassen, C.D. Casarett and Doull's toxicology: the basic 
science of poisons; McGraw-Hill: New York [u.a.], 2001.  

16. Chen, B.; Liu, J.; Chen, W.; Chen, H.; Lin, C. A general approach to the 
screening and confirmation of tryptamines and phenethylamines by mass spectral 
fragmentation. Talanta 2008, 74, 512-517.  

17. Chen, M. L.; Suo, L. L.; Gao, Q.; Feng, Y. Q. Determination of eight illegal drugs 
in human urine by combination of magnetic solid-phase extraction with capillary 
zone electrophoresis. Electrophoresis 2011, 32, 2099-2106. 

18. Concheiro, M.; dos Santos Sadler Simoes, S.M.; Quintela, O.; de Castro, A.; et al. 
Fast LC-MS/MS method for the determination of amphetamine, 
methamphetamine, MDA, MDMA, MDEA, MBDB and PMA in urine. Forensic 
Science International 2006, 171, 44-51. 

19. Deng, Y.; Zhang, H.; Du, X.; Wang, H. Quantitation of biogenic amines in human 
plasma base on the derivatization with N-hydroxysuccinamidyl fluorescein-O-
acetate by high-performance liquid chromatography. J Sep Sci 2008, 31, 990-998.  

20. Drake, S. J.; Morrison, C.; Smith, F. Simultaneous chiral separation of 
methylamphetamine and common precursors using gas chromatography/mass 
spectrometry. Chirality 2011, 23, 593-601.  

21. Drummer, O. H.; Odell, M. The Forensic Pharmacology of Drugs of Abuse; 
Arnold: Great Britain, 2001.  

22. Elie, L.; Baron, M.; Croxton, R.; Elie, M. Microcrystalline identification of 
selected designer drugs. Forensic Sci. Int. 2012, 214, 182-188.  

23. Fanali, S.; Aturki, Z.; Desiderio, C. New strategies for chiral analysis of drugs by 
capillary electrophoresis. Forensic Sci. Int. 1998, 92, 137-155.  

24. Fanali, S.; Cristalli, M.; Vespalec, R.; Bocek, P. Chiral separations in capillary 
electrophoresis. Adv. Electrophor. 1994, 7, 1-86.  

25. Fanali, S.; Desiderio, C.; Aturki, Z. Enantiomeric resolution study by capillary 
electrophoresis. Selection of the appropriate chiral selector. J. Chromatogr. A 
1997, 772, 185-194.  



97 
	
  

26. Ferrance, J.; Landers, J. P. Exploiting sensitive laser-induced fluorescence 
detection on electrophoretic microchips for executing rapid clinical diagnostics. 
Luminescence 2001, 16, 79-88.  

27. Ferreira, S. L. C.; Dos Santos, W. N. L.; Quintella, C. M.; Neto, B. B.; Bosque-
Sendra, J. M. Doehlert matrix: a chemometric tool for analytical chemistry-
review. Talanta 2004, 63, 1061-1067.  

28. Furlanetto, S.; Orlandini, S.; La Porta, E.; Coran, S.; Pinzauti, S. Optimization 
and validation of a CZE method for rufloxacin hydrochloride determination in 
coated tablets. J. Pharm. Biomed. Anal. 2002, 28, 1161-1171.  

29. Gübitz, G.; Schmid, M. G. Chiral separation by capillary electromigration 
techniques. Journal of Chromatography A 2008, 1204, 140-156.  

30. Habrdova, V.; Peters, F.T.; Theobald, D.S.; Maurer, H.H. Screening for and 
validated quantification of phenethylamine-type designer drugs and mescaline in 
human blood plasma by gas chromatography/mass spectrometry. Journal of Mass 
Spectrometry, 2005, 40, 785. 

31. Hibbert, D. B. Experimental design in chromatography: A tutorial review. 
Journal of Chromatography B 2012, 910, 2-13.  

32. Higashi, Y.; Nakamura, S.; Matsumura, H.; Fujii, Y. Simultaneous liquid 
chromatographic assay of amantadine and its four related compounds in 
phosphate-buffered saline using 4-fluoro-7-nitro-2,1,3-benzoxadiazole as a 
fluorescent derivatization agent. Biomedical Chromatography 2006, 20, 423.  

33. Johnson, I.; Spence, M.T.Z., Ed.; Molecular Probes Handbook, A Guide to 
Fluorescent Probes and Labeling Technologies, 11th Edition; Invitrogen, 2010. 

34. Jouyban-Gharamaleki, A.; Khaledi, M. G.; Clark, B. J. Calculation of 
electrophoretic mobilities in water-organic modifier mixtures in capillary 
electrophoresis. J. Chromatogr. A 2000, 868, 277-284.  

35. Kato, M.; Gyoten, Y.; Sakai-Kato, K.; Toyo'oka, T. Rapid analysis of amino acids 
in Japanese green tea by microchip electrophoresis using plastic microchip and 
fluorescence detection. J Chromatogr A 2003, 1013, 183-189.  

36. Khalaf, H.; Steinert, J. Determination of secondary amines as highly fluorescent 
formamidines by high-performance liquid chromatography. Analytica Chimica 
Acta 1996, 334, 45.  

37. Kuroda, N.; Nomura, R.; Al-Dirbashi, O.; Akiyama, S.; Nakashima, K. 
Determination of methamphetamine and related compounds by capillary 
electrophoresis with UV and laser-induced fluorescence detection. J Chromatogr 
A 1998, 798, 325-334.  



98 
	
  

38. Lacroix, M.; Poinsot, V.; Fournier, C.; Couderc, F. Laser-induced fluorescence 
detection schemes for the analysis of proteins and peptides using capillary 
electrophoresis. Electrophoresis 2005, 26, 2608-2621.  

39. Laing, R. R., Ed.; Siegel, J. A., Ed.; Hallucinogens: A Forensic Drug Handbook; 
Academic Press: San Diego, CA, USA, 2003.  

40. Landers, J. P., Ed.; Handbook of Capillary and Microchip Electrophoresis and 
Associated Microtechniques; CRC Press: Boca Raton, FL, USA, 2008.  

41. Landers, J. P. Handbook of capillary electrophoresis; CRC Press: Boca Raton, 
FL, USA, 1997.  

42. Leardi, R. Experimental design in chemistry: A tutorial. Anal. Chim. Acta 2009, 
652, 161-172.  

43. Lemos, N. P.; Bortolotti, F.; Manetto, G.; Anderson, R. A.; Cittadini, F.; Tagliaro, 
F. Capillary electrophoresis: a new tool in forensic medicine and science. Sci. 
Justice 2001, 41, 203-210.  

44. Levine, B. Principles of forensic toxicology; American Association for Clinical 
Chemistry: [Washington, D.C.], 1999; .  

45. Li, S. F. Y. Capillary Electrophoresis: Principles, Practice and Applications; 
Journal of Chromatography Library; Elsevier Science: Amsterdam, The 
Netherlands, 1992; Vol. 52, pp 582.  

46. Liu, L.; Zheng, Z.; Lin, J. Application of dimethyl-beta-cyclodextrin as a chiral 
selector in capillary electrophoresis for enantiomer separation of ephedrine and 
related compounds in some drugs. Biomedical Chromatography 2005, 19, 447.  

47. Lloyd, A.; Blanes, L.; Beavis, A.; Roux, C.; Doble, P. A rapid method for the in-
field analysis of amphetamines employing the Agilent Bioanalyzer. Analytical 
Methods, 2011, 3, 1535. 

48. Lomsadze, K.; Dominguez Vega, E.; Salgado, A.; Crego, A. L.; Scriba, G. K. E.; 
Marina, M. L.; Chankvetadze, B. Separation of enantiomers of norephedrine by 
capillary electrophoresis using cyclodextrins as chiral selectors: Comparative CE 
and NMR studies. Electrophoresis 2012, 33, 1637.  

49. Lurie, Ira S. Capillary electrophoresis of illicit drug seizures. Forensic Science 
International 1998, 92, 125. 

50. Lurie, I. S.; Bozenko Jr., J. S.; Li, L.; Miller, E. E.; Greenfield, S. J. Separation of 
Methamphetamine and Related Compounds using Capillary Electrophoresis with 
Dynamically Coated Capillaries. Microgram Journal , 8, 24.  



99 
	
  

51. Mandrioli, R.; Mercolini, L.; Raggi, M. A. Chiral analysis of amphetamines, 
methadone and metabolites in biological samples by electrodriven methods. 
Electrophoresis 2011, 32, 2629-2639.  

52. Mateus, L.; Cherkaoui, S.; Christen, P.; Veuthey, J. Use of a Doehlert design in 
optimizing the analysis of selected tropane alkaloids by micellar electrokinetic 
capillary chromatography. J. Chromatogr. A 1998, 829, 317-325.  

53. McCord, B. R.; Turner, C.; Blas, M.; Bishop, S. C.; Lerch, M.; Dehere, S.; 
Pannepucci, R. Development of Microfluidic Devices for the Rapid Isolation and 
Detection of Drugs of Abuse. National Institute of Justice , 2004-WG-BX-K077.  

54. Meng, L.; Wang, B.; Luo, F.; Shen, G.; Wang, Z.; Guo, M. Application of 
dispersive liquid-liquid microextraction and CE with UV detection for the chiral 
separation and determination of the multiple illicit drugs on forensic samples. 
Forensic Sci. Int. 2011, 209, 42-47.  

55. Meng, P.; Fang, N.; Wang, M.; Liu, H.; Chen, D. D. Y. Analysis of amphetamine, 
methamphetamine and methylenedioxy-methamphetamine by micellar capillary 
electrophoresis using cation-selective exhaustive injection. Electrophoresis 2006, 
27, 3210-3217. 

56. Mohr, S.; Pilaj, S.; Schmid, M. G. Chiral separation of cathinone derivatives used 
as recreational drugs by cyclodextrin-modified capillary electrophoresis. 
Electrophoresis 2012, 33, 1624.  

57. Molina, M.; Silva, M. In-capillary derivatization and analysis of amino acids, 
amino phosphonic acid-herbicides and biogenic amines by capillary 
electrophoresis with laser-induced fluorescence detection. Electrophoresis 2002, 
23, 2333-2340.  

58. Morrison, C.; Smith, F. J.; Tomaszewski, T.; Stawiarska, K.; Biziuk, M. Chiral 
gas chromatography as a tool for investigations into illicitly manufactured 
methylamphetamine. Chirality 2011, 23, 519-522.  

59. Negrusz, Adam., Cooper,Gail Audrey Ann., Clarke's analytical forensic 
toxicology; Pharmaceutical Press: London, 2013; .  

60. Okhonin, V.; Liu, X.; Krylov, S. N. Transverse Diffusion of Laminar Flow 
Profiles to Produce Capillary Nanoreactors. Anal. Chem. 2005, 77, 5925.  

61. Paez, Ximena; Hernandez, Luis. Biomedical Applications of Capillary 
Electrophoresis with Laser-Induced Fluorescence Detection. Biopharmaceutics & 
Drug Disposition 2001, 22, 273. 



100 
	
  

62. Pascali, J. P.; Bortolotti, F.; Tagliaro, F. Recent advances in the application of CE 
to forensic sciences, an update over years 2009-2011. Electrophoresis 2012, 33, 
117-126.  

63. Paugam, L.; Menard, R.; Larue, J. -.; Thouvenot, D. Optimization of 
glucosinolate separation by micellar electrokinetic capillary chromatography 
using a Doehlert's experimental design. J. Chromatogr. A 1999, 864, 155-162.  

64. Ramseier, A.; von Heeren, F.; Thormann, W. Analysis of fluorescein 
isothiocyanate derivatized amphetamine and analogs in human urine by capillary 
electrophoresis in chip-based and fused-silica capillary instrumentation. 
Electrophoresis 1998, 19, 2967-2975.  

65. Riekkola, M.; Jussila, M.; Porras, S. P.; Valko, I. E. Non-aqueous capillary 
electrophoresis. J. Chromatogr. A 2000, 892, 155-170.  

66. Romao, W.; Lalli, P. M.; Franco, M. F.; Sanvido, G.; Schwab, N. V.; Lanaro, R.; 
Costa, J. L.; Sabino, B. D.; Bueno, M. I. M. S.; de Sa, G. F.; Daroda, R. J.; de 
Souza, V.; Eberlin, M. N. Chemical profile of meta-chlorophenylpiperazine (m-
CPP) in ecstasy tablets by easy ambient sonic-spray ionization, X-ray 
fluorescence, ion mobility mass spectrometry and NMR. Anal. Bioanal. Chem. 
2011, 400, 3053-3064.  

67. Ruppel, T. D. Drugs of Abuse in Urine by GC/MS Following SAMHSA (NIDA) 
Procedures. PerkinElmer Application Note 2008.  

68. Russell, M. J.; Bogun, B. New "party pill" components in New Zealand: The 
synthesis and analysis of some Î²-ketone analogues of 3,4-
methylenedioxymethamphetamine (MDMA) including Î²k-DMBDB (Î²-ketone-
N,N-dimethyl-1-(1,3-benzodioxol-5-yl)-2-butanamine). Forensic Sci. Int. 2011, 
210, 174-181.  

69. Ruyters, H.; van der Wal, S. Enantiomeric Analysis of Primary and Secondary 
Amines by Fully Automated Derivatization on a P/ACE System with LIF 
Detection. Beckman Coulter Application Information: Amino Acids 1993, A-1754, 
1-4.  

70. Sanchez-Hernandez, L.; Castro-Puyana, M.; Marina, M. L.; Crego, A. L. Recent 
approaches in sensitive enantioseparations by CE. Electrophoresis 2012, 33, 228-
242.  

71. Santagati, N. A.; Ferrara, G.; Marrazzo, A.; Ronsisvalle, G. Simultaneous 
determination of amphetamine and one of its metabolites by HPLC with 
electrochemical detection. J. Pharm. Biomed. Anal. 2002, 30, 247-255.  



101 
	
  

72. Sarmini, K.; Kenndler, E. Influence of organic solvents on the separation 
selectivity in capillary electrophoresis. J. Chromatogr. A 1997, 792, 3-11.  

73. Skoog, D.A.; Holler, F.J.; Nieman, T.A. Principles of Instrumental Analysis 5th 
Ed. Harcourt Brace.: Philidelphia, PA, USA, 1998. 

74. Steiner, F.; Hassel, M. Influence of solvent properties on separation and detection 
performance in non-aqueous capillary electrophoresis-mass spectrometry of basic 
analytes. J. Chromatogr. A 2005, 1068, 131-142.  

75. Stojanovska, N.; Fu, S.; Tahtouh, M.; Kelly, T.; Beavis, A.; Kirkbride, K. P. A 
review of impurity profiling and synthetic route of manufacture of 
methylamphetamine, 3,4-methylenedioxymethylamphetamine, amphetamine, 
dimethylamphetamine and p-methoxyamphetamine. Forensic Science 
International 2013, 224, 8.  

76. Suzuki, S.; Shimotsu, N.; Honda, S.; Arai, A.; Nakanishi, H. Rapid analysis of 
amino sugars by microchip electrophoresis with laser-induced fluorescence 
detection. Electrophoresis 2001, 22, 4023.  

77. Taga, A.; Honda, S. Derivatization at capillary inlet in high-performance capillary 
electrophoresis Its reliability in quantification. J Chromatogr A 1996, 742, 243. 

78. Taga, A.; Nishino, A.; Honda, S. Characteristic features of the throughout-
capillary technique of in-capillary derivatization in capillary electrophoresis. J 
Chromatogr A 1998, 822, 271.  

79. Taga, A.; Sugimura, M.; Honda, S. Derivatization of amino acids in a moving 
zone of o-phthalaldehyde in the middle of a capillary for amino acid analysis by 
capillary electrophoresis. J Chromatogr A 1998, 802, 243-248.  

80. Tagliaro, F.; Bortolotti, F. Recent advances in the applications of CE to forensic 
sciences (2005-2007). Electrophoresis 2008, 29, 260-268.  

81. Tagliaro, F.; Bortolotti, F. Recent advances in the applications of CE to forensic 
sciences (2001-2004). Electrophoresis 2006, 27, 231-243.  

82. Tagliaro, F.; Bortolotti, F.; Pascali, J. P. Current role of capillary 
electrophoretic/electrokinetic techniques in forensic toxicology. Anal. Bioanal. 
Chem. 2007, 388, 1359-1364.  

83. Tagliaro, F.; Pascali, J.; Fanigliulo, A.; Bortolotti, F. Recent advances in the 
application of CE to forensic sciences: A update over years 2007-2009. 
Electrophoresis 2010, 31, 251-259.  

84. Tagliaro, F.; Turrina, S.; Pisi, P.; Smith, F. P.; Marigo, M. Determination of illicit 
and/or abused drugs and compounds of forensic interest in biosamples by 



102 
	
  

capillary electrophoretic/electrokinetic methods. J. Chromatogr. B: Biomed. Sci. 
Appl. 1998, 713, 27-49.  

85. Taylor, R.B.; Low, A.S.; Reid, R.G. Determination of opiates in urine by capillary 
electrophoresis. Journal of Chromatography B 1996, 675, 213. 

86. Thormann, W.; Aebi, Y.; Lanz, M.; Caslavska, J. Capillary electrophoresis in 
clinical toxicology. Forensic Sci. Int. 1998, 92, 157-183.  

87. Toyo'oka, T.; Mantani, T.; Kato, M. Characterization of labelling and de-labelling 
reagents for detection and recovery of tyrosine residue in peptide. Biomedical 
Chromatography 2003, 17, 133.  

88. Trabelsi, S.; Oturan, N.; Bellakhal, N.; Oturan, M. A. Application of Doehlert 
matrix to determine the optimal conditions for landfill leachate treatment by 
electro-Fenton process. J. Mater. Environ. Sci. 2012, 3, 426-433.  

89. Trenerry, V. C.; Robertson, J.; Wells, R. J. Analysis of illicit amphetamine 
seizures by capillary electrophoresis. Journal of Chromatography A 1995, 708, 
169.  

90. Tsunoda, M.; Kato, M.; Fukushima, T.; Santa, T.; Homma, H.; Yanai, H.; Soga, 
T.; Imai, K. Determination of aspartic acid enantiomers in bio-samples by 
capillary electrophoresis. Biomedical Chromatography 1999, 13, 335.  

91. UNIDCP Rapid Testing Methods of Drugs of Abuse. United Nations publication 
1994. 

92. UNODC World Drug Report 2013. United Nations publication 2013.  

93. UNODC Recommended Methods for the Identification and Analysis of 
Amphetamine, Methamphetamine and their Ring-substituted Analogues in Seized 
Materials. United Nations publication 2006.  

94. Vega, E. D.; Lomsadze, K.; Chankvetadze, L.; Salgado, A.; Scriba, G. K. E.; 
Calvo, E.; Lopez, J. A.; Crego, A. L.; Marina, M. L.; Chankvetadze, B. Separation 
of enantiomers of ephedrine by capillary electrophoresis using cyclodextrins as 
chiral selectors: Comparative CE, NMR and high resolution MS studies. 
Electrophoresis 2011, 32, 2640.  

95. Veledo, M. T.; de Frutos, M.; Diez-Masa, J. C. Amino acid determination using 
capillary electrophoresis with on-capillary derivatization and laser-induced 
fluorescence detection. J Chromatogr A 2005, 1079, 335-343.  

96. Verpoote, E. Microfluidic chips for clinical and forensic analysis. Electrophoresis 
2002, 23, 677-712.  



103 
	
  

97. Wallenborg, S. R.; Lurie, I. S.; Arnold, D. W.; Balley, C. G. On-chip chiral and 
achiral separation of amphetamine and related compounds labeled with 4-fluoro-
7-nitrobenzofurazane. Electrophoresis 2000, 21, 3257.  

98. Wang, H.; Lu, M.; Mei, N.; Lee, J.; Weinfeld, M.; Le, X. C. Immunoassays using 
capillary electrophoresis laser induced fluorescence detection for DNA adducts. 
Anal Chim Acta 2003, 500, 13-20.  

99. Waterval, J. C. M.; Lingeman, H.; Bult, A.; Underberg, W. J. M. Derivatization 
trends in capillary electrophoresis. Electrophoresis 2000, 21, 4029-4045.  

100. Weinberger, R.; Lurie, I. S. Micellar Electrokinetic Capillary Chromatography 
of Illicit Drug Substances. Anal. Chem. 1991, 63, 823.  

101. Westphal, F.; Junge, T.; Girreser, U.; Stobbe, S.; Perez, S. B. Structure 
elucidation of a new designer benzylpiperazine: 4-Bromo-2,5-
dimethoxybenzylpiperazine. Forensic Sci. Int. 2009, 187, 87-96.  

102. White, M. FSS Report on Methylamphetamine: Chemistry, Seizure Statistics, 
Analysis, Synthetic Routes and History of Illicit Manufacutre in the UK and the 
USA for the ACMD Working Group on Methylamphetamine. The Forensic 
Science Service 2004, 63.  

103. Wicks, D. A.; Li, P. C. H. Separation of fluorescent derivatives of hydroxyl-
containing small molecules on a microfluidic chip. Anal Chim Acta 2004, 507, 
107-114.  

104. Wong, E.; Okhonin, V.; Berezovski, M. V.; Nozaki, T.; Waldmann, H.; 
Alexandrov, K.; Krylov, S. N. "Inject-Mix-React-Separate-and-Quantitate" 
(IMReSQ) Method for Screening Enzyme Inhibitors. Journal of the American 
Chemical Society 2008, 130, 11862.  

105. Yassine, O.; Morin, P.; Dispagne, O.; Renaud, L.; Denoroy, L.; Kleimann, P.; 
Faure, K.; Rocca, J. L.; Ouaini, N.; Ferrigno, R. Electrophoresis PDMS/glass 
chips with continuous on-chip derivatization and analysis of amino acids using 
naphthalene-2,3-dicarboxaldehyde as fluorogenic agent. Anal Chim Acta 2008, 
609, 215-222.  

106. Zhang, H.; Le Potier, I.; Smadja, C.; Zhang, J.; Taverna, M. Fluorescent 
detection of peptides and amino acids for capillary electrophoresis via on-line 
derivatization with 4-fluoro-7-nitro-2,1,3-benzoxadiazole. Anal Bioanaly Chem 
2006, 386, 1387-1394.  

107. Zhang, L.; Wang, R.; Yu, Y.; Zhang, Y. Capillary electrophoresis with laser-
induced fluorescence and pre-column derivatization for the analysis of illicit 
drugs. J Chromatogr B 2007, 857, 130-135.  



104 
	
  

108. Zhao, S.; Feng, Y.; LeBlanc, M. H.; Piletz, J. E.; Liu, Y. Quantitation of 
agmatine by liquid chromatography with laser-induced fluorescence detection. 
Analytica Chimica Acta 2002, 470, 155.  

109. Zhou, L.; Luo, Z.; Wang, S.; Hui, Y.; Hu, Z.; Chen, X. In-capillary 
derivatization and laser-induced fluorescence detection for the analysis of 
organophosphorus pesticides by micellar electrokinetic chromatography. Journal 
of Chromatography A 2007, 1149, 377.  

110. Zhu, X.; Shaw, P. N.; Barrett, D. A. Catecholamines derivatized with 4-fluoro-7-
nitro-2,1,3-benzoxadiazole: characterization of chemical structure and 
fluorescence properties. Analytica Chimica Acta, 2003, 478, 259.  

  



105

APPENDICES 

1. Structures and substituent positions of various phenethylamines of interest. 

Table A1: Non-ring substituted phenethylamines 

 

Common Name 
Street Name/ 

Abbreviation 
R1 R2 R3 R4 

Amphetamine Speed H H CH3 H 

Methamphetamine Meth, crank CH3 H CH3 H 

N-Ethylamphetamine 4-EA  H CH3 H 

Dimethylamphetamine  CH3 CH3 CH3 H 

N-Hydroxyamphetamine NOHA H OH CH3 H 

N-

Hydroxymethamphetamine 
 CH3 OH CH3 H 

Cathine  H H CH3 OH 

Cathinone Khat H H CH3 =O 

Methcathinone Cat, Jeff CH3 H CH3 =O 

Fenetylline Captagon H 
theo-

phylline 
CH3 H 

Phenylpropylmethylamine PPMA CH3 H CH3 CH3 
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Table A2: Methylenedioxy substituted phenethylamines 

 

Common Name 
Street Name/ 

Abbreviation 
R1 R2 R3 R6 

3,4-Methylenedioxy-

amphetamine 
MDA H H CH3 H 

3,4-Methylenedioxy-

methamphetamine 
MDMA CH3 H CH3 H 

3,4-Methylenedioxy-

ethylamphetamine 
MDEA C2H5 H CH3 H 

3,4-Methylenedioxy-N,N-

dimethylamphetamine 
MDDM CH3 CH3 CH3 H 

N-Hydroxy-3,4-

methylenedioxyamphetamine 
MDH H OH CH3 H 

N-Hydroxy-N-methyl-3,4-

methylenedioxyamphetamine 
FLEA CH3 OH CH3 H 

N-Methyl-1-(3,4-

methylenedioxyphenyl)-2-

butanamine 

MBDB CH3 H C2H5 H 

1-(3,4-

Methylenedioxyphenyl)-2-
BDB H H C2H5 H 
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butanamine 

5-Methoxy-3,4-

methylenedioxyamphetamine 
MMDA H H CH3 OCH3 
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Table A3: Other ring substituted phenethylamines 

 

Common Name 
Street Name/ 

Abbreviation 
R1 R3 R5 R6 R7 R8 

2,4,5-Ring substituted phenethylamines 

4-Bromo-2,5-

dimethoxyphenethylamine 
2C-B H H OCH3 H Br OCH3 

4-Methylthio-2,5-

dimethoxyphenethylamine 
2C-T H H OCH3 H SCH3 OCH3 

4-Ethylthio-2,5-

dimethoxyphenethylamine 
2C-T-2 H H OCH3 H SC2H5 OCH3 

4-Propylthio-2,5-

dimethoxyphenethylamine 
2C-T-7 H H OCH3 H SC3H7 OCH3 

4-Chloro-2,5-

dimethoxyphenethylamine 
2C-C H H OCH3 H Cl OCH3 

4-Iodo-2,5-

dimethoxyphenethylamine 
2C-I H H OCH3 H I OCH3 

2,4,5-Ring substituted phenethylamines 

2,4,5-

Trimethoxyamphetamine 
TMA-2 H CH3 OCH3 H OCH3 OCH3 

4-Methyl-2,5- DOM H CH3 OCH3 H CH3 OCH3 
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dimethoxyamphetamine 

4-Bromo-2,5-

dimethoxyamphetamine 
DOB H CH3 OCH3 H Br OCH3 

4-Chloro-2,5-

dimethoxyamphetamine 
DOC H CH3 OCH3 H Cl OCH3 

4-Iodo-2,5-

dimethoxyamphetamine 
DOI H CH3 OCH3 H I OCH3 

4-Ethyl-2,5-

dimethoxyamphetamine 
DOET H CH3 OCH3 H C2H5 OCH3 

Other ring substitution patterns 

3,4,5-Trimethoxy-

phenethylamine 
Mescaline H H H OCH3 OCH3 OCH3 

para-

Methoxyamphetamine 
PMA H CH3 H H OCH3 H 

para-Methoxy-

methamphetamine 
PMMA CH3 CH3 H H OCH3 H 

2,5-

Dimethoxyamphetamine 
DMA H CH3 OCH3 H H OCH3 

3,4,5-Trimethoxy-

amphetamine 
TMA H CH3 H OCH3 OCH3 OCH3 

4-Methylthioamphetamine 4-MTA H CH3 H H SCH3 H 
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2. Instructional guidelines for the usage of the Perkin Elmer Thermo Cycler 480. 

 Flip power switch into ON position. 

 Press File button. 

o Select file number 1, “soak”. 

 Press, Step 

 Adjust temperature to desired setting. 

o Press Enter 

 Open instrument lid. 

o Insert capped microvials in desired wells. 

o Close lid 

 Press Start 
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3. Instructional guidelines for the usage of the Beckman P/ACE MDQ system with 

laser-induced fluorescence detection. 

 Creating a method 

o Go to the menu bar. Select File. 

§ Select Method. 

 Select New. 

o A dialog window has opened. Select Initial Conditions tab. 

§ Select auxiliary data channels that will be recorded and 

maximum values (voltage, current, pressure, etc.). 

§ Set cartridge temperature. 

§ Select peak detection parameters (width and threshold). 

o Select LIF Detector Initial Conditions tab. 

§ Enable data acquisition channels. 

 Set dynamic range (in RFU). 

§ Set filter settings. 

§ Select signal type (direct or indirect). 

§ Input laser/filter descriptions. 

§ Set data acquisition rate. 

o Select Time Program tab. In each row define the action to be taken, 

magnitude, length of duration, and electrode positions. 

§ Capillary – sets capillary temperature for duration of method. 

§ Laser – alerts the detector to whether the external laser is on. 

§ Rinse – flushes capillary at high pressure from selected vial. 
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§ Injection – injects aliquot from vial into capillary. Can be done 

kinetically (by voltage) or hydrodynamically (by low pressure). 

§ Wait – sets capillary to wait in specific location. 

§ Separate – can be done via voltage, pressure, or vacuum. 

§ Autozero – sets baseline to zero as separation progresses.  

 Running a method. 

o Turn on laser from external power supply. 

o Go to the menu bar. Select File. 

§ Select Method. 

 Select Open. 

o Choose the correct method file. 

o Go to the menu bar. Select Control. 

§ Select Direct Control. 

 Select Load. 

o Open instrument lid. 

o Place vials in the appropriate position. 

o Close instrument lid. 

 Select Run… 
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4. Instructional guidelines for the usage of the Nemrodw experimental design 

software. 

 Creating a Doehlert matrix 

o New Study – input desired filename and title of study 

o Once a title has been given, options will become available for the type 

of study.  

§ Screening – Study of a large number of factors 

§ Main effects & interactions – Study effects 

§ Response Surface – Study in experimental region 

§ Mixture – Study of mixtures 

§ Study in two disconnected experimental regions 

§ Principal composants analysis 

 Select response surface. 

o Design selection parameters 

§ Number of factors 

§ Region shape (spherical or cuboidal) 

§ Type of model (linear, quadratic, special) 

 For Doehlert select spherical and quadratic. 

 Press OK 

o Classes of experimental design 

§ Standard experimental matrix 

§ Importation of experimental design 

§ Hand built experimental matrix 
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§ Imported or constructed Datasheet 

§ Product experimental design 

 Select “standard experimental matrix” 

 Press OK 

o Spherical experimental region 

§ Matrix 

 Doehlert 

 Composite 

 Box-Benhken 

 Hybride 

§ Indicators for each design are shown 

 Number of experiments 

 Number of levels 

o Select Doehlert 

o Characteristics of experimental matrix 

§ Number of replicates 

§ Modification of size of domain 

o Number of center runs 

§ Already included 

§ To be added 

§ Total number of center runs 

 This option is utilized if additional readings at the 

center of the experimental region are desired. 
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o Construction of the experimental matrix 

§ Addition of another experimental matrix 

§ End of construction 

§ Addition of check points 

 If satisfied with current design, press OK. 

o Coded matrix is produced in Datasheet. 

o Go to experimental matrix tab 

§ Select copy 

§ Paste into Excel 

§ Press OK 

o Description of quantitative factors 

§ Name of factor 

§ Units 

§ Center of domain (center point of experimental range) 

§ Step of variation (distance between center and ends of 

experimental range) 

§ Number of decimals 

 After entering data, press ok. 

 Repeat for every factor being assessed.  

o Uncoded matrix is produced (gives actual experimental values for each 

factor in each experiment). 

§ Select randomization if desired. 

o Go to experimental matrix tab 
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§ Select copy 

§ Paste into Excel 

§ Press OK 

o Press close 

 Inputting responses to the Doehlert matrix 

o Response dialog box has three categories. 

§ Investigation editing 

§ Design evaluation 

§ Treatment 

o Investigation editing 

§ Study summary 

 Number of factors 

 Number of experiments 

 Number of model coefficients 

 Number of responses 

 Model (quadratic equation) 

§ Experimental region 

§ Experimental matrix 

§ Factor descriptions 

§ Datasheet 

o Design evaluation 

§ Information and dispersion matrices 

§ Design summary 
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§ Correlation matrix 

§ Eigenvalues and eigenvectors 

§ Model matrix 

§ Isovariance curves (2 or 3-dimensional contour plots) 

§ Alias matrix 

§ Statistics of variables (box plot) 

o Treatment 

§ Modify/enter responses 

 Modification/addition of experiments to experimental 

matrix 

 Modification/addition of experiments to the Datasheet 

 Deactivation of some experiments (check points) 

 Modification/addition of responses to the experimental 

matrix 

o Select and input responses 

 Modification/addition of responses to the Datasheet 

 Model modification (removing coefficients) 

§ Special matrix 

o After responses are inputted, two more options become available. 

§ Calculate coefficients of model 

§ Desireability 

 Select “calculate coefficients” 
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o Based on response selected, two groups of analytical options are 

provided. 

§ Multilinear regression 

 Analysis of variance 

 Fit summary 

 Residuals 

 Diagnostic plot of residuals 

§ Tools for interpretation 

 Graphical study 

 Canonical analysis 

 Study of optimal path 

 Study of sensitivity 

 Special studies 
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