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ABSTRACT OF THE THESIS 

SOIL BUILDING PROCESSES IN RECONSTRUCTED TREE ISLANDS IN THE 

EVERGLADES, FLORIDA 

by 

Andres F. Rodriguez 

Florida International University, 2013 

Miami, Florida 

Professor Leonard J. Scinto, Major Professor 

 Soil building processes were studied in reconstructed tree islands in the 

Loxahatchee Impoundment Landscape Assessment, Florida. Soil building was evaluated 

by measuring litter production, litter decomposition, soil accretion, and changes in soil 

elevation under different hydrologic conditions, and by determining physicochemical 

characteristics of newly accreted soils.  Tree islands showed higher litter production and 

soil accretion but a larger loss of soil elevation caused by subsidence at higher elevations 

and shorter inundation periods. Newly accreted soils exhibited higher nutrient 

concentrations, and organic matter (OM) than older soils. Most of the soil phosphorus 

was stored in the organic fraction. A positive correlation was found between soil nutrients 

and OM. Reconstructed tree islands are increasing in soil OM and nutrients, generating a 

positive feedback that increases tree productivity, and soil building. These findings 

contribute to the understanding of tree islands’ dynamics and can be used by managers 

for restoration efforts in the Everglades. 
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INTRODUCTION 

 

The Everglades are located at the southern end of the peninsula of Florida in the 

southeastern United States. They occupy an area of 28490 m2, have an average rainfall of 

157 cm yr-1, and are exposed to wet season hurricanes and dry season fires (Perry, 2004). 

The Everglades wet season takes place between May and October, and the dry season 

between November and April (Wetzel et al., 2005). The deepest water levels lag behind 

the precipitation pattern with highest from September to January, and the lowest from 

April to June. The average temperatures range in the mid 20 °C with lows in the winter 

averaging 15 °C and highs in summer of about 27 °C (Brown et al., 2006). Differences in 

soil building processes within the Everglades produce different landscape features, and 

increase the heterogeneity of the ecosystem.     

 

The Everglades are referred to as a meta-ecosystem with differentiated ecosystem 

components (Wetzel et al., 2005), meaning that it is a big ecosystem composed of sub-

systems that act and interact in an independent way. The natural landscape of the 

Everglades is composed by large peat ridges dominated by sawgrass, lower and more 

open peat sloughs, dominated by water lilies, and teardrop or cigar-shaped tree islands 

which contain a diverse assemblage of trees, shrubs and ferns (Larsen et al., 2011). The 

rapid precipitation of phosphorus bounded compounds like Ca-P, Mg-P, Al-P, Fe-P or 

PO4 compounds that takes place when P is intercepted by periphyton, make the 

Everglades a P limited ecosystem (Wetzel et al., 2005 ).  
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Everglades tree islands range in area from 10 m2 to 70 ha, and typically have 

elevations from 20 to 100 cm above the surrounding marsh (Wetzel et al., 2005). 

Different sections within tree islands experience different periods of inundation 

(hydroperiods). The head of tree islands which is located upstream, and has a well 

defined canopy, has the highest soil elevation, and is permanently above water. The tail, 

located downstream, with an open canopy, experiences long floods because of its lower 

soil elevation (Bazante et al., 2006). These two sections (head, and tail) within tree 

islands, have different soil dynamics because of the differential influence of hydroperiod.   

 

Hydrology is a determining factor for tree islands. Water levels in tree islands 

affect vegetation establishment, and characteristics. Plant communities that are flooded 

longest and deepest support more open canopies, while woody communities less affected 

by flooding support denser canopies (Ross et al. 2006). Shape and orientation of tree 

islands are determined by the direction of the flow of water. Bazante et al. (2006) found 

that vegetation at the head of the tree islands forms channels that transport sediments 

from the head to the tail where submerged vegetation intercepts them favoring sediment 

accumulation and elongation of tree islands. Troxler et al. (2006) reported the 

development of a higher canopy in tree islands under flowing conditions compared to 

non-flowing tree islands in the southern Everglades. Troxler et al. (2005) found that 

flowing tree islands have higher litter turnover rates, higher N concentrations, and lower 

dissolved organic C than non-flowing tree islands. Hydrological variations in tree islands 

help to explain changes in surface water P and N concentrations. Phosphorus loading 

increased through the wet season while N loading decreased in tree islands located in the 
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southern Everglades (Troxler et al., 2005). Troxler and Childers (2009) found that more 

mass was lost in decomposition experiments with litter in Everglades tree islands under 

flowing conditions compared to islands with non-flowing conditions. Hydrologic 

variations affect nutrient concentrations in tree islands soils. Different sections within tree 

islands exposed to different hydroperiods are expected to exhibit differences in soil 

characteristics. 

 

An important input to tree island soil organic matter comes from litter produced 

by plant communities. Troxler et al. (2005) found that Litter production did not have a 

clear seasonal pattern on tree islands of the southern Everglades, and that species 

contribution to litterfall varied throughout the year. Litter production in tree islands is 

controlled by external factors such as temperature (Troxler et al., 2005). Givnish et al. 

(2008) found that, after hydrological modifications, similar plant communities occupy 

different levels of water depth and hydroperiod, most likely because communities have 

not equilibrated yet to recent regional changes in hydrology. Vegetation establishment in 

slightly elevated surfaces in the Everglades initiates a feedback mechanism by producing 

litter which returns OM, and nutrients to the soil. These inputs promote the growth of 

more vegetation, and in time tree islands are formed. Litter production and decomposition 

are important processes in tree islands’ soil development. The influence of hydroperiod in 

these variables can determine the extent to which plant productivity can promote soil 

building in tree islands.   
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Vegetation exerts a control on nutrient availability in tree islands. Troxler et al., 

(2005) found dissolved  nutrient concentrations and organic C concentrations that reflect 

low nutrient availability, attributed to high demand in tree islands, caused by trees. 

Phosphorus availability in tree islands may cause mineralized N to be taken up more 

rapidly, decreasing its concentration in the soil (Ross et al., 2006). Declining foliar N:P 

ratios from the surrounding marsh to the less flooded areas at the head of the tree islands 

indicate N limited conditions on tree islands (Ross et al., 2006).  

 

Tree islands are considered a biogeochemical hotspot because of their higher 

nutrient concentration compared to the surrounding marsh, and high rate of nutrient 

cycling (Wetzel et al., 2005; Orem et al., 2002). Tree island soil pH is lower than marsh 

soil (Troxler et al., 2005). Troxler et al. (2005) found high nutrient use efficiency on 

highly organic seasonally flooded tree islands, and immobilization of N and P taking 

place on tree islands. Surface water on tree islands contains two times greater total 

nitrogen (TN) and total organic carbon (TOC) concentrations than marsh sites (Troxler 

and Childers, 2009). Litter decomposition experiments on nine tree islands in the 

southern Everglades indicate that N and P increase while C decreases as the litter 

decomposition process takes place (Troxler and Childers, 2009). A steep gradient exist in 

soil total phosphorus (TP) concentration from the most flood prone to the least likely to 

be flooded on tree islands soils, with higher values at the less flooded section (Ross et al., 

2006) (Fig. 1), as a consequence, TP concentrations are higher at the head of tree islands 

and decreases at their tails. Phosphorus concentration in tree islands influence peat 

accretion directly, through local effects on organic matter production and decomposition 
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rates, and indirectly, by exerting control over the composition of the vegetation 

community and its ability to sequester additional P (Larsen et al., 2011). Tree islands 

store P in different fractions, Ca-and Mg-bound P being the predominant fraction in tree 

islands in the southern Everglades (Irick et al., 2013). Sequential fractionation procedures 

define P extracted with DDI H2O as water soluble P, and P extracted with NaCl as 

available P not solubilized by DDI. These two fractions constitute the available P pool. 

The HCl extracted P is defined as Ca and Mg bound P (Reddy et al., 1998). Differences 

in hydroperiod within tree islands generate gradients in nutrient concentrations. These 

nutrient gradients are a distinctive characteristic of tree islands. 

 

Soil accretion in wetland soils is largely controlled by plant communities, and 

relative soil elevation.  Sedimentation rates from autochthonous and allocthonous sources 

tend to be highest where plant density is greatest and marsh surface elevation is highest 

(Cahoon and Turner, 1989, Scinto et al., 2013). Roots can increase soil strength and thus 

new roots should help stabilize storm deposits and slow soil surface erosion (Whelan et 

al., 2009). Sedimentation could be an important mechanism in tree island formation 

particularly at the tail of the tree islands where an elongation process takes place. 

 

Soil decomposition processes, and peat accumulation in tree islands depend on 

vegetation characteristics, and differences in soil elevation. Tree islands have unique peat 

elevations because of the difference existing between their organic matter production and 

decomposition curves (Fig. 2), with higher production compared to decomposition in 

places with higher peat elevation (Larsen et al., 2011). Detrital material with relatively 



6 
 

high lignin content found in tree island soils decay less rapidly than material found in 

ridges and sloughs (Debusk and Reddy, 1998). Enhancement of nutrient availability at 

higher elevations is expected to improve plant production and consequently soil aeration, 

and sediment accumulation (Ross et al., 2006). Givnish et al. (2008) found evidence 

indicating a positive relation between plant productivity and the net rate of peat 

decomposition in slightly elevated surfaces. There is a positive feedback between organic 

soil accumulation and productivity, the feedback is limited by increased susceptibility to 

fire during dry periods, and a faster rate of decomposition in higher elevations above the 

water table, where aerobic conditions are always present (Ross et al. 2006). The factors 

controlling peat accumulation ultimately control tree islands because peat accumulation is 

vital for tree islands to achieve the distinctive elevation over the surrounding marsh and 

allow vegetation establishment.  

 

The marker horizon technique has being extensively used to measure rates of 

accretion (Cahoon and Turner, 1989; Cahoon et al., 1995; Cahoon et al., 2000; Cahoon 

and Lynch, 1997; Whelan et al., 2009; Van Dyke, 2012). A marker horizon is a visible 

layer set into the soil which allows the determination of how much new soil has accreted 

on top of it in a given period of time. The soil marker horizon method integrates 

processes such as sediment deposition, erosion, and root growth occurring in the top 

millimeters or centimeters of the soil (Cahoon 2006).  

 

External factors such as climate events or hydrologic manipulations can affect soil 

processes in wetlands, disturbing the balance between hydrology and soil that ultimately 
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defines wetland ecosystems.  The long term growth, stability or decay of coastal wetlands 

can be responsive to several factors including climatic, and hydrologic both of natural 

and man-made origin (Cahoon and Turner, 1989). Storm events can increase elevation of 

wetlands by depositing material, and folding peat layers or can decrease wetland’s 

elevation by eroding sediments, compacting marshes, and collapsing peat by killing the 

above ground trees (Whelan et al. 2009) (Cahoon, 2006). Day Jr. et al. (1995) found that 

hydrologically modified deltas in which the influence of pulsing events have been 

restricted, have relative sea level rise rates higher than the eustatic sea level rise, meaning 

that these wetlands lose elevation because of subsidence and compaction. Subsurface 

processes, in many cases caused by external events like storms can affect soil elevation in 

wetlands. Cahoon (2006) found that subsurface processes dominate most wetland soil 

elevation responses to storm events. Tree islands of the Everglades are located inland 

compared to coastal wetlands, however they can also be affected pulsing events that 

influence hydrology. Under controlled hydrologic conditions, such as the ones present in 

South Florida, the dominant factors affecting soil elevation in tree islands have to do with 

the relation between plant communities and hydrology. Changes in soil volume such as 

compaction, shrink-swell and decomposition can affect the top layers of the soil, and 

produce changes in elevation (Cahoon et al. 1995; Cahoon, 2006; Cahoon and Lynch, 

1997). Compressibility of peat is directly related to organic matter content (Cahoon et al. 

1995). Variations on water content of the soil caused either by seasonal variations, human 

manipulation, storm events, or evapotranspiration can affect soil elevation (Cahoon et al. 

1995; Cahoon, 2006; Day Jr. et al. 1995). Changes in soil elevation have been extensively 

studied in rapidly subsiding areas such as the Mississippi delta. Recreated tree islands in 
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the Everglades could also exhibit negative changes in soil elevation generated because of 

the recent process of construction, and this loss of elevation could jeopardize restoration 

efforts on tree islands.    

 

Changes in wetland soil elevation have been documented using Surface Elevation 

Tables (SETs) (Boumans and Day Jr., 1993). In combination with marker horizons SETs 

can be used to measure shallow subsidence, and accretion rates (Cahoon et al., 1995; 

Cahoon and Lynch, 1997; Cahoon et al., 2000; Whelan et al., 2009; Van Dyke, 2012). A 

SET is a portable device designed to attach to a pipe that has been driven into the soil 

(Cahoon and Lynch, 1997). The Rod SET (RSET) developed by Cahoon et al. (2002) 

allows to obtain a fixed reference point given by the benchmark pipe to which the arm is 

attached. The RSET can be located at eight different angles separated by 45°. Its 

confidence interval varies from ± 1.3 to ± 4.3 mm. with a larger error on flooded surfaces 

(Cahoon et al., 2002).  

 

Throughout the 20th Century the Everglades have suffered a rapid transformation 

because of drainage or flooding of selected areas with the objective of guarantee water 

supply for South Florida’s population, and flood protection in the event of tropical storms 

(Wetzel et al., 2005; Givnish et al., 2008).  Changes in hydrology have impacted the 

ecosystem i.e., shorter hydroperiods reduce peat accretion, and increase both oxidation 

and subsidence of organic soils by exposing peat to aerobic conditions (Craft, 1993). Tree 

islands in Everglades National Park are receiving insufficient amount of water and 

decreasing in numbers (Sklar pers. Comm.). In most of the Water Conservation Areas 
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(WCAs) tree islands are receiving excessive amounts of water. Small tree islands (< 3.2 

ha) have decreased by 98% in the Water Conservation Area 2A (WCA-2A), tree island 

density declined from 16 to three islands per 100 ha, and the distance between tree 

islands increased from 253 m in 1953 to 874 m in 1995 (Wetzel et al. 2005). Rutchey et 

al. (2008) found that in WCA-2A only three tree islands (51 ha) remained compared to 

the approximately 40 to 50 islands (1500 ha) that previously existed. Tree islands require 

an adequate hydroperiod that enables the establishment of plant communities, and soil 

development processes to take place. 

 

The understanding of how different hydroperiods, or the length of time a soil is 

flooded per year, affect soil building processes on tree islands is important to establish 

parameters that could be applied by managers to improve the condition of tree islands, 

reduce their decline in numbers, and increase the understanding of tree island dynamics 

to be used in restoration projects in the Everglades. The main objective of the present 

research was to identify processes that are important for tree island structure by 

determining the influence of hydroperiod on soil building processes under semi-

controlled hydrologic conditions. The specific objectives were to determine rates of litter 

production, rates of litter decomposition, rates of soil accretion, rates of changes in soil 

elevation, and soil physicochemical characteristics under different hydroperiods in 

created tree islands, and to determine the characteristics of newly accreted soils. An 

increase in hydroperiod is expected to increase the amount of organic matter in soils, 

reduce litter production, and litter decomposition. Shorter hydroperiods are expected to 
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increase soil accretion, and create a positive change in soil elevation. Newly accreted 

soils are expected to be higher in TP concentrations compared to old soils. 

 

 

STUDY AREA 

 

This study was conducted at the Loxahatchee Impoundment Landscape 

Assessment (LILA). The LILA site is located in Boynton Beach, Florida, at the eastern 

border of the Arthur R. Marshall Loxahatchee National Wildlife Refuge (ARMLNWR). 

Research in LILA is oriented to test models on hydrology, soils, and vegetation that will 

reduce uncertainty and help establish targets in restoration efforts for the Everglades. 

 

 
The purpose of LILA is to model the main landscape features of the everglades 

(tree islands, ridges, and sloughs) under semi-controlled hydrologic conditions. The 

LILA site consists of four eight-hectare macrocosms, each composed of two tree islands, 

a ridge and a slough (Figs. 3 and 4). For this study, tree islands will be labeled as M 

(macrocosm) 1-4 (macrocosm number) with 1 as the northern-most macrocosm, and 4 the 

southern-most macrocosm, and W or E (W corresponding to the tree island in the west 

half of the macrocosm, and E to the east tree island).  

 
 

Each 8-ha macrocosm has two tree islands, two ridges, and both a deep and a 

shallow slough. These landforms were created by mounding (tree islands and ridges) or 

excavating (sloughs) earth to create the different topographies (Serna et al., 2013). The 
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construction of LILA tree islands began in 2002 and was completed in 2003. The M1E, 

M2W, M3W, and M4E islands were built around a limestone core, obtained from locally 

mined limestone, and were capped with ca. 0.3 m of peat (Stofella et al. 2010). The 

limestone tree islands resemble the tree islands of the southern Everglades whereas 

M1W, M2E, M3E, and M4W were constructed using the same peat soil found in LILA to 

resemble the peat tree islands that predominate in the northern Everglades. The slopes of 

the central plateau of the tree islands were graded 16:1 along the north-south axis and 

12:1 along the east-west axis (Stofella et al. 2010).  

 

Water levels in LILA were manipulated via an operational hydrograph developed 

based on historic water levels recorded at a well-established northern Everglades water 

level recorder. Stage and water level in LILA lag behind rainfall, with the deepest water 

levels occurring from September to January and the lowest levels occurring from April to 

June (Serna et al., 2013). (Fig. 5). 

 

Tree islands were initially planted in 2004, however the survival rate was less 

than 10% (Van der Valk et al., 2008). Successful planting using herbicides and prescribed 

fire to prepare the tree islands was achieved in the years 2006 and 2007, M1 and M4 were 

planted in 2006, while M2 and M3 were planted in 2007. Eight species common to the 

Everglades tree islands were planted with a total of 89 individuals of each species per 

island. Four planting densities were implemented in each tree island (Fig. 6) with trees 

arranged along rectangular lattices at spacing of 1.00, 1.66, 2.33, and 3.00 m, each 

quadrant in the tree island was randomly assigned to one of the four planting densities 
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allowing for buffer zones of 2 m (E-W direction) and 3 m (N-S direction) (Stofella et al. 

2010). 

 
 

 
METHODS 

 

Soil building processes at different hydroperiods were determined by measuring 

rates of litter production, litter decomposition, soil accretion, changes in soil elevation, 

and physicochemical soil characteristics at two elevations within the tree islands (Head 

High, HH and Head Low, HL) (Figs. 4 and 7). The HH elevations were located at the 

center of the tree islands, at HH soils were never flooded, the HL elevations were located 

down slope of the head of the tree islands, and were flooded between 179 and 271 days y-

1 with an average of 232 days y-1 (Fig. 8). 

 

To determine if litter production was higher in locations with shorter 

hydroperiods, rates of litter production steel wire fine-mesh (0.50 x 0.50 m2) litter traps 

were installed on the four western tree islands (six traps per island; 3 HH and 3 HL) at the 

heads, at high and low elevations in July 2010. Litter was collected from the traps every 

two months starting in September 2010 for 12 events until July 2012. Material from the 

litter traps was transported to the Freshwater Biogeochemistry Laboratory at Florida 

International University where they were dried to constant weight at 60 °C for 48 h. and 

weighed. Litter fall per unit area was determined by dividing the dry weight of litter 

collected into the trap. Annual rates of litter production were estimated by adding the 
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litter collected in each trap across all sampling dates and dividing the value into the 

number of years recorded. 

 

To determine if rates of litter decomposition were higher in shorter hydroperiods 

0.2 x 0.2 m2 litter bags were constructed with 1.6 mm fiberglass window screening. Litter 

used in the experiment was previously collected from the litter layer of the highest 

density tree planting of the M1W tree island. Litter was dried at 60 °C for 24 h and used 

to fill the tared litter bags. Litter-containing bags were then re-dried and reweighted to get 

an initial litter weight. Ten bags were attached to each litter trap in August 2010 and 

collected one month later (30, 59, 92, 120 d) for four events, at two months (180 and 243 

d) intervals for two events, and at 4 months (367, 488, 606, 732 d) intervals for four 

events until August 2012. Upon retrieval, bags were gently rinsed of silt and debris with 

deionized water (Newman et al., 2001), and dried at 60 °C for a minimum of 24 h 

(Wieder et al., 2009) or until constant weight, and then reweighed to determine mass loss 

and daily decomposition rates (k values). Decomposition rates were determined using the 

negative exponential decay model of Olson (1963), as given by Mt = M0 e-kt, where M0 is 

the initial mass (M0, g) and Mt (g) is the mass remaining at time t (d).  

 

To determine if shorter hydroperiods produce higher soil accretion three feldspar 

markers were placed as replicates in proximity to one another (n = 3) at the HH, and HL 

elevations in the high density planting of the eight tree islands, and the tail high (TH), and 

the tail low (TL). The tail of the tree islands is located downstream with the TH halfway 

from the base of the tail, and was flooded for an average of 248 d y-1. The TL was located 
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down slope on the deep slough, and was permanently flooded. The TH, and TL locations 

were not located under the planted vegetation (Fig. 7). Feldspar markers were made using 

F4 ceramic feldspar (Unimin Corporation). Feldspar was mixed with water to form a 

consistent paste; the paste was frozen and the resulting discs were then transported to the 

field where they were deployed. Marker horizons were 44 cm diameter and between 3 

and 5 cm thick. Accretion measurements were taken by extracting a core at the feldspar 

locations and measuring the amount of soil that had accreted above the bright white 

feldspar layer (Fig. 8). Annual measurements were made in 2010, 2011, and 2012 

between April and June on each of the eight tree islands. 

 

To test if shorter hydroperiods produce a positive change in soil elevation SET 

platforms were established on spring 2009 on all eight tree islands. In each island, two 

SETs are located downstream of the tree islands with one at the TL and the other at the 

TH locations. Two other SETs were located at the head of the tree islands, one at the HH 

location, and the other at the HL location on the highest density planting in the vicinity of 

the feldspar markers, and the litter traps (Fig. 7). The initial SET measurement was made 

in May 2009 and measurements were repeated during periods of relatively low water 

stage in LILA, April – May 2010, April 2011, and April – May 2012, at the same time 

than feldspar maker horizon measurements. The SET arm was fixed at four positions, in 

each platform. At each position, nine pins were measured for a total of 36 measurements 

per site (Fig. 9). Measurements were taken from the top of each pin to the arm of the 

SET, a reduction in a measurement from a previous reading means a positive change in 

elevation. The SET arm was fixed at the same position each subsequent year to assure 
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reoccupation of exactly the same pin position each time. Shallow subsidence was 

estimated by subtracting change in elevation from soil accretion for the HH and HL 

elevations on the eight tree islands (Fig. 10). 

 

Soil physicochemical characteristics were analyzed by taking 10 cm soil cores in 

March 2013. Samples were extracted using cellulose acetate butyrate (CAB) tubes (2.3 

cm diameter) from the four western islands at high and low elevations in the high and low 

density plantings (four sites per island), samples were taken in triplicates for a total of 12 

cores per island, 48 cores total. Cores were separated in two increments: top (0-3 cm), 

and bottom (3-10 cm), the top increment representing newly accreted soil on the basis of 

previous marker horizons measurements. Soils were analyzed for TP by dry combustion 

with MgSO4 in muffle furnace for 2 hr at 550°C, followed by ash dissolution in 0.24 M 

HCl (Solorzano and Sharp, 1980), and a colorimetric analysis using a Technicon 

Autoanalyzer II System (Pulse Instruments Ltd.), according to the standard method for 

orthophosphate P (EPA method 365.1). Total nitrogen (TN), and total carbon (TC) were 

analyzed on oven-dried samples by the high-temperature dry combustion method using a 

Carlo-Erba NA-1500 CNS Analyzer (Nelson and Sommers, 1996). Organic matter (OM) 

was determined by loss on ignition (LOI) (Håkanson and Jansson 1983). The pH was 

determined by using a standard electrode in 1:1 slurries. Field bulk density (FBD) was 

determined drying soil at 80 °C and using oven-dry soil mass (g) per unit volume 

excavated (cm3). Phosphorus fractions were calculated to determine in which fraction the 

P was predominantly stored on LILA tree islands. Fractions were determined by using a 

sequencial fractionation procedure modified from Hieltjies and Liklema (1980), and 
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Reddy et al., (1998). The fractionation procedure consisted of three solutions: DDI H2O, 

0.5M NaCl, and 0.5M HCl. A sample to solution ratio of 1:50 was used. The soil + 

solution mixture was shaken for 1 h., 30 mins. and 24 h., for the DDI, NaCl, and HCl 

solutions respectively. After equilibration, samples were centrifuged at 2100 rpm	  for 10 

mins., and filtered using nitrocellulose filters 0.45µm. The resulting solution was 

analyzed by colorimetric analysis using a Technicon Autoanalyzer II System (Pulse 

Instruments Ltd.). Water soluble P, and P extracted with NaCl constitute the available P 

fraction. The HCl-extracted P constitutes the inorganic P fraction, and the difference 

between TP and the previous fractions constitute the residual P, which includes the 

organic bound P. C:N, C:P, and N:P molar ratios were calculated by dividing the nutrient 

concentrations into the molecular weight of each element and calculating the 

corresponding ratio. To perform comparisons between planting density, substrate, and 

elevation without discriminating between new and old soil, nutrient concentrations, OM, 

and FBD were calculated for 0 – 10 cm cores by multiplying the respective variables for 

the corresponding fraction of mass of each increment and adding both increments. 

 

Statistical analysis 

 

Analyses were performed using SPSS 18.0 (SPSS Inc., Chicago, Illinois, USA). 

Effects were considered significant if p < 0.05. Shapiro-Wilk’s tests, skewness, and 

kurtosis were used to evaluate data normality (data were considered normally distributed 

if skewness and kurtosis were between -4 and 4). Data for soil accretion at the tail of tree 

islands were logarithmically transformed to achieve normality. Comparisons of mean 
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values of litter production, soil accretion, changes in soil elevation, and soil 

physicochemical characteristics (FBD, pH, OM, TP, TN, TC) were performed under the 

following treatments: elevation (hydroperiod), substrate, year of planting, planting 

density, and soil increment using ANOVA, and independent samples t-tests. Paired 

sample t-tests using the combined data of the four macrocosms were performed to 

compare the soil elevation differences between years 2009 vs. 2010, 2009 vs. 2011, and 

2009 vs. 2012 at the head and tail locations. One outlier was removed from the litter trap 

data from January 2011, three from the litter bag data, one from the soil accretion data, 

one from the SET data, and one from the lower increment soil data. Kruskal-Wallis tests 

were used to analyze effects of island core type and elevation on percentage mass 

remaining in litter bags after 732 d of decomposition. Annual rates of accretion and 

change in elevation were estimated using regression analysis. Shallow subsidence was 

estimated by subtracting mean values of change in elevation rate from mean values of 

accretion rate.  Pearson correlation was used to evaluate relations between TP, TN, TC, 

OM, pH, and FBD on soils. Independent sample t-tests were used to compare P fractions 

between the two soil increments. Independent samples Mann Whitney tests were used to 

compare P fractions as percentage of TP between soil increments. Comparissons of mean 

values of TP, and available P between all combinations of soil increments and planting 

densities were performed using ANOVA. Multiple comparisons for treatments were 

evaluated with Tukey HSD for TP, and with Dunnet C for available P.     
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RESULTS 

 

Litter production 

The litter fall collected every two months for the two years of the study from the 

four western tree islands varied seasonally, with the highest average values observed in 

March 2012 in most macrocosms, especially in M1W where production averaged more 

than 250 and 120 g m-2 in the two elevations HH and HL respectively (Fig. 11). Litter fall 

was significantly greater (ANOVA, p < 0.001; n = 287,) at high elevations (93.2 ± 60.2 g 

m-2) than at low elevations (49.4 ± 48.7 g m-2). There was significantly higher litter 

production (p < 0.001, n = 287) in the islands planted in 2006 (87.1 ± 65.6 g m-2) than in 

the islands planted in 2007 (55.6 ± 46.6 g m-2), and there was significantly higher litter 

production (ANOVA, p < 0.001, n = 144) in the peat (113.9 ± 64.1 g m-2) than in the 

limestone core tree islands (72.4 ± 48.2 g m-2) (Fig. 12). Annual rates of litter production 

are higher in higher elevations compared to lower elevations, and in peat substrate 

compared to limestone substrate (Table 1). 

 
 
 
 
Litter Decomposition 

Decomposition coefficients (k) were similar for all tree islands and elevations 

(Fig. 13), with nominally higher losses on M4HH and M2HL with 83% and 82% of the 

original mass decomposed, respectively; and the lowest in M1 HL with 58% of the 

original mass decomposed (Fig. 13). Plant litter decayed steadily, though a few samples 

increased in biomass to more than the previous collection, presumably because of roots 
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growing around the bags, and sediment being trapped within the litter. Comparisons of 

mass remaining in the litter bags after 732 d of decomposition showed no significant 

differences in percentage of mass remaining at different elevations (n = 24, p = 0.133, 

Kruskal-Wallis tests), and island core type (p = 0.817). Average decomposition rates (n = 

8), expressed in % loss mo-1 was 2.80 and ranged between 2.43 and 3.44% loss mo-1.  

 
 
Feldspar marker horizons 

There was evidence of soil accretion in all islands, in both locations (heads and 

tails), and at both elevations (high, and low) over time (Figs. 14 and 15), indicating that 

soil is being developed in all locations of the tree islands. Soil development in the young 

tree islands is on average < 1.0 cm y-1. The head of the tree islands showed significantly 

greater soil accumulation at high (2.5 ± 1.1 cm) than at low elevations (1.8 ± 0.8 cm) 

after three years (2009-2012), (Fig. 14). Soil accumulation in the peat islands (2.2 ± 0.8 

cm) was not significantly different than in limestone islands (2.6 ± 1.4 cm), (p = 0.422, n 

= 23). The tail of the tree islands showed significantly greater accretion at low (3.2 ± 1.6 

cm) than at high elevation (1.7 ± 0.5 cm) (Fig. 15) after three years.  

 
 
Surface Elevation Tables and shallow subsidence  

The SETs at the head of the tree islands showed that after three years (2009 - 

2012), subsidence occurred at all elevations, but the higher location (HH) experienced a 

larger decrease in elevation (-2.72 ± 2.01 cm) in comparison to the lower elevation (HL, -

0.80 ± 1.90 cm); however the difference was not statistically significant (p = 0.07, n = 

16) (Fig. 15). Peat tree islands experienced the largest loss of elevation (-3.84 ± 2.15 cm), 
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whereas limestone islands lost less (-1.59 ± 1.19 cm). Again, this difference was not 

statistically significant (p = 0.115, n = 8). In the first and second years most of the SET 

measurements resulted in little change between sampling events as means fluctuated 

around zero (p = 0.227 for 2009 vs. 2010 and p = 0.718 for 2009 vs. 2011). At the third 

year (2012) there was a notable loss of elevation compared to the 2009 elevation (p = 

0.005). The loss of elevation was more pronounced at the higher elevation (Fig. 16), but 

both high and low elevations showed a downward trend reflecting the cumulative change 

in soil elevation over time. The rate of shallow subsidence at the high elevation at the 

head of the tree islands was higher compared to the rate of shallow subsidence at the 

lower elevation at the head of the tree islands (Table 2).  

 

After three years of monitoring (2009-2012) there was variability around zero at the tail 

of the tree islands at both locations (Fig. 17), the mid-slope TH which exhibited a loss of 

-0.61 ± 0.92 cm and the base of the tail slope TL which loss -2.40 ± 5.42 cm. Changes in 

elevation between the two elevations were not significantly different (p = 0.376, n = 8). 

Comparisons of soil elevation of the years 2009 vs. 2010, 2009 vs. 2011, and 2009 vs. 

2012 showed no significant differences (p = 0.675 for 2009 vs. 2010; p = 0.603 for 2009 

vs. 2011, and p = 0.901 for 2009 vs. 2012) confirming variability around zero.  

 
 
Soil physicochemical characteristics  

The soils from LILA tree islands exhibited a significant positive correlation 

between organic matter content OM and concentration of soil nutrients (TP, TN, and TC) 

(Table 3). The pH values exhibit a significant negative correlation with OM and soil 
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nutrient concentrations (Table 3). Previous correlation analysis for soil increments 

separated exhibited the same trends and levels of significance, therefore the two 

increments (0-3 cm, and 3-10 cm) were combined.   

 

Top soil represented by the 0-3 cm increment, on the basis of previous feldspar 

marker horizon measurements, had significantly higher TP, TN, and TC compared to the 

lower (3-10cm) increment (Table 4). Organic matter content was higher in the top soil 

compared to the lower soil (Table 4). The C:P and N:P molar ratios were significantly 

higher at deeper soil depths (Table 4), indicating that P is less limited in the newly 

accreted soils. Field bulk density was significantly higher at the lower increment 

compared to the higher increment (Table 4).  

 
 

The characteristics of the newly accreted (0-3 cm) soil at the high and low 

elevations differed. At higher elevations soils had significantly more TP per volume 

compared to lower elevation soils (Table 5). The C:N molar ratio was significantly higher 

at higher elevations compared to lower elevations (Table 5). Nutrient concentrations, C:P 

and N:P ratios, OM, FBD, and pH were not significantly different between elevations. 

(Table 5). 

 

The upper (0-3 cm) of peat soils had lower FBD compared to lower increment 

soils. Peat soils had higher nutrient concentrations (TP, TN, and TC) compared to 

limestone soils (Table 6). Organic matter content was significantly higher in peat soils 

compared to limestone soils as expected. The C:N molar ratio was significantly higher in 
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peat soils compared to limestone soils. The N:P ratio was significantly lower in peat soils 

compared to limestone soils (Table 6). Total phosphorus per volume was significantly 

higher in peat soils compared to limestone soils (Table 6). 

 

Top soils (0-3 cm) in the higher planting density have higher OM content 

compared to lower planting density soils. High planting density soils had lower FBD 

compared to low planting density soils (Table 7). High density planting soils have higher 

TN, and TC concentrations compared to low planting density soils. The C:N molar ratio 

was significantly higher at the higher planting density soils compared to the lower 

planting density soils. The TP per unit volume is significantly higher in top soil under the 

high density planting compared to the low density planting, although TP concentrations 

were not significantly different between the two planting densities (Table 7). There were 

significant differences in TP between new and old soil that were more pronounced in the 

high planting density. Newly accreted soils at the high planting density had the highest 

TP concentrations indicating the influence of vegetation in soil nutrients (Fig. 18).  

 
Top soils had significantly higher concentrations of available P, Ca-Mg P, and 

residual P compared to lower soils (Fig. 19). Available P, as percentage of TP, was 

significantly higher (7.2 % ± 2.5) at the top soil compared to the lower soil (6.2% ± 6.9) 

(p < 0.001). Ca-Mg P and residual P were not significantly different between the two soil 

increments. There were significant differences in available P between new and old soils 

that were more pronounced at the high planting density. New soils in the high planting 

density had the highest available P concentrations (Fig. 20). 
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To compare the soils without the influence of depth, and determine if 0-10 cm 

cores exhibit similar differences between substrates, elevations, and planting densities, as 

those showed in newly accreted soils 0-10 cm cores were analyzed. For these data, soils 

of peat core islands had significantly higher TP, and TC concentrations compared to soils 

from limestone core islands. Soils from peat core islands had lower FBD compared to 

soils from limestone islands. Organic matter was significantly higher in soils from peat 

islands compared to soils from limestone islands. Total phosphorus per volume was 

significantly higher in soils from peat islands compared to soils from limestone islands.  

(Table 8) 

 

The 0-10 cm cores had higher P concentrations at low elevations compared to 

high elevations. Phosphorus per volume was higher in low elevations compared to low 

elevations. Organic matter was higher in lower elevations compared to higher elevations. 

All parameters were not significantly different between the two planting densities   

(Table 8).      

 

 

 

 

 

 

 



24 
 

DISCUSSION 

 

Litter production 

Litter production was higher in higher elevations and therefore in shorter 

hydroperiods within tree islands. Rates of trees survival and growth were found to be 

higher in higher elevations within LILA tree islands with species adapted to flooded 

conditions less susceptible to be affected by an increase in hydroperiod (Scinto et al., 

2013). Natural tree islands with low elevation are dominated by species that can also be 

found at lower elevations of high natural tree islands (Van der Valk et al., 2008). Species 

found in tree islands are adapted to different hydroperiod conditions. Since the 

arrangement of plant species in LILA tree islands was done in a random way (without 

considering differential tolerance of species to flooded conditions), mortality was higher 

at lower elevations affecting those species that could not tolerate those hydrologic 

conditions, differential mortality in turn, was transformed into less litter being produced 

at lower elevations and also less inputs to the soils. Pande et al., (2002) reported annual 

rates of litter production from 264 to 497 g m-2 y-1 for a tropical dry deciduous forest in 

Chhindwara, India. Luizao and Shubart (1987) reported rates of litter production between 

607 to 742 g m-2 y-1 for a tropical forest in Manaus, Brazil. Ross et al. (2003) found rates 

of litter production between 290 and 740 g m-2 y-1 on five typer of upland forest in the 

Florida Keys. Rates of litter production in LILA tree islands were 559 g m-2 y-1 for higher 

elevations, and 308 g m-2 y-1 for lower elevations. Rates of litter production in this 

recreated tree islands are close to those of tropical forests.  
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Litter production was higher in peat tree islands compared to limestone tree 

islands. Peat substrate in LILA tree islands favors a faster growth compared to limestone 

substrate (Scinto et al., 2013). Van der Valk et al. (2008) suggested that limestone cores 

may be a source of nutrients for tree seedlings. Sullivan et al. (2010) found a depression 

in the water table on LILA tree islands which was more pronounced in the limestone core 

islands compared to the peat islands, which indicate that trees in limestone islands use 

more efficiently groundwater resources. These results however do not correspond to our 

findings in litter production. Peat substrate is a source of nutrients and resources that 

maximize productivity in terms of litter production.  

 

Zalamea et al. (2012) found that the most important factors controlling relative 

abundance of litter fall from species in a litter fall experiment using litter traps were the 

height and crown area for a subtropical wet forest in north eastern Puerto Rico. Litter 

production in LILA tree islands is correlated to tree crown area (Scinto et al., 2013) 

meaning that trees with big crown areas are the main contributors to litter inputs into the 

soil. Big trees with big crown areas can be found mainly in peat substrate (because peat 

supports rapid growth), and in older plantings in which trees have had more time to grow. 

The fact that year of planting was controlling litter production with older plantings 

producing more litter than the most recent plantings was expected and indicates that trees 

in these reconstructed tree islands are actively growing after five and six years of planting 

and they have not reached a plateau in terms of litter production.  
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The seasonality that can be suggested from the pattern of litter production with 

peaks around March and July corresponds to relatively low water levels according to the 

LILA hydrograph in what would be the beginning of the rainy season and still in 

relatively low temperatures (for the case of March). Patterns in litter production are 

responsive to environmental conditions such as climate, temperature, and rainfall (Luizao 

and Shubart, 1987; Pande et al., 2002; and Juman, 2005). The peaks of litter production 

in LILA may also be related to leaf shedding cycles of deciduous and semi-deciduous 

species planted in the tree islands. 

 

Of all tree islands M1W had the highest rates of litter production. M1W and 

M4W were planted in the same year (2006), and have the same peat substrate, The 

difference in litter production between these two tree islands could be attributed to the 

fact that M4W had a high initial mortality rate due to a locust attack (Susana Stoffella, 

pers. comm.). Higher litter production produces higher nutrient inputs into the soil. 

Nutrient concentrations in LILA tree island soils were found to be positively correlated to 

OM. A substantial amount of organic matter returns to the soil via litter fall (Pande et al., 

2002). Litter production can be one of the main drivers in producing distinctive nutrient 

concentrations in tree islands by serving as a source of OM to the soil.  

 

 

Litter decomposition 

Litter decomposition rates did not follow the expected pattern (lower at lower 

elevation of tree islands, compared to higher elevations), produced by reduced conditions 
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on flooded soils. Instead, decomposition rates did not differ significantly from each other. 

Differences in hydroperiod, such as the ones that experience LILA tree islands (an 

average of 232 days y-1 for lower elevations compared to soils which are never flooded at 

the high elevation) are not enough to produce differences in litter decomposition rates, 

another explanation for the similar rates of decomposition may be that the method 

employed is difficult to apply in highly organic soils. To get rid of sediments and roots in 

the decomposition bags was difficult, and if differences in decomposition rates are not 

big, they may appear similar as a result of the methodological problem. Previous studies 

suggest that decomposition is partially controlled by the initial litter chemistry (Currie 

and Aber, 1997; Murphy et al., 1998; Serna et al., 2013). Wieder et al. (2009) found that 

decomposition rates varied significantly between species in a tropical rain forest in Costa 

Rica. These previous findings indicate that initial characteristics of the litter, which vary 

among different species, are one of the main factors controlling rates of decomposition.  

 

The decomposition rates found in my study (from 2.43 to 3.44% loss mo-1) were 

similar to rates of decomposition calculated by Rubio and Childers (2006) for 

macrophyte species; 2.40 and 2.48 % loss mo-1 for Cladium jamaicense and Juncus 

roemerianus in Taylor Slough, Everglades. However, rates of decomposition are slow 

compared to tropical forests, and can be classified as slow (k < 0.005), according to the 

classification of Petersen and Cummins (1974). Slow rates of decomposition in LILA tree 

islands may be a product of high quantity of recalcitrant materials such as lignin present 

in the litter. The seemingly constant decomposition rate, and low values of litter remained 
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after the two years of the study show that decomposition takes place at an active and 

constant rate in LILA tree islands.  

 

Soil accretion 

Soil development at LILA had an average of 0.69 cm yr-1 at the head of tree 

islands. Accretion in LILA tree islands exceed other areas of the Everglades. Craft and 

Richardson, (1998) found rates of accretion between (0.08 and 0.12 cm yr-1) for the 

northern NWR. Craft and Richardson (1993) found rates of accretion between 0.2 and 

0.56 cm yr-1 in the proximity of the Hillsboro Canal in WCA2, and in other wetlands, 

Cahoon and Turner, (1989) found average rates of accretion between 0.7 and 1.3 cm yr-1 

in canals and waterways in Louisiana. Tree islands not only depend on the input of 

sediments to develop new soil, litter in tree islands allows more rapid soil formation 

compared to the surrounding marsh. The rate of accretion found in LILA tree islands is 

comparable to rates of accretion found by Cahoon and Lynch, (1997) within a mangrove 

forest in Rookery bay, Florida. They found mean rates of accretion from 0.44 to 0.72 cm 

yr-1. Mangrove forests are similar to tree islands because they are slightly elevated 

compare to the surroundings (at least some of them), are dominated by trees, and don’t 

have allocthonous sediment inputs. Litter input in both systems is important for soil 

development. 

 

Rates of accretion vary depending on nutrient loadings (Craft and Richardson, 

1998) (Cahoon and Turner, 1989) with high nutrient sediment/waters producing higher 

rates of accretion, and pulsing events (Whelan et al., 2009) (Day Jr et al., 1999) with 
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pulsing events bringing more sediments and consequently producing higher rates of 

accretion. Litter production in tree islands generates a constant input of organic matter 

and nutrients into tree islands soils. Higher nutrient inputs in turn favor the establishment 

and growth of trees establishing a positive feedback mechanism that allows tree islands to 

survive. Nyman et al. (1993) found a feedback loop in which vertical accretion depended 

on organic matter accumulation, and this in turn depended on plant production in a 

Terrebone Basin in Louisiana, USA. 

  

Rates of soil accretion were higher at higher elevations at the head of tree islands 

with a mean value of 0.78 cm yr-1 compared to the lower elevations 0.60 cm yr-1. The 

same trend was also found in litter production (higher litter production at higher 

elevations). Differences in rates of soil accretion may suggest a positive relation between 

litter production and soil accretion indicating that the more litter is produced the more 

soil is accreted, and suggesting that litter production is crucial for soil development in 

tree islands. 

 

At the tail of the tree islands there was more accretion at the lower elevation 

compared to the higher elevation. The tail of these tree islands act like a marsh 

environment. There are no trees present there so all the inputs come from sediments and 

from the emergent vegetation that dominates this part of the island. The lower elevation 

at the tails is constantly flooded allowing favorable conditions for emergent vegetation to 

establish and proliferate there, when this vegetation is established there are more 

sediments being trapped and accretion takes place. Considerable floc (unconsolidated 
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soil), which is mostly water is present at the TL, the floc can be considered as part of the 

soil formation process at the tail of tree islands, and show the initial sediments being 

trapped, which later will be incorporated into the soil. Soil accretion at the tail of LILA 

tree islands could be the beginning of the process of tail elongation that can be seen in 

natural tree islands, however this process can take a long time. Willard et al. (2002) 

reported that maturation of the Gumbo Limbo and Nuthouse tree islands located in the 

Water Conservation Area (WCA) 3B took between 1000 and 2000 years. 

 

Soil elevation changes 

The LILA tree islands are losing elevation. The loss of elevation does not occur in 

a uniform way. The center of the tree islands lost more elevation than other parts of the 

tree islands. The head high elevation of the tree islands which was the part of the tree 

islands that in general lost more elevation is also the part of the tree islands where more 

litter is being produced, more biomass, and more accretion occurred too. The presence of 

considerable biomass is a big factor affecting soil elevation. Cahoon et al., (2003) found 

that tree mortality induced loss of soil elevation by producing peat collapse after root 

decomposition in a mangrove forest in Honduras. The higher elevation in LILA tree 

islands is more susceptible to change of elevation produced by peat collapse because it 

sustains more trees. Cahoon et al., (2003) found that stronger substrates, with higher 

density, respond less quickly to tree mortality, therefore peat soils with low bulk density 

were expected to respond fast to tree mortality, thereby losing elevation. There were not 

significant differences between limestone and peat substrates in terms of change in soil 

elevation, however, peat substrates had the largest losses of elevation and this may be 
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explained because peat substrate has a lower FBD, being more susceptible to loss of 

elevation. Also the higher tree mortality in peat substrates at LILA produced more peat 

decomposition and peat collapse. Scinto et al., (2013) found that limestone substrates 

exhibit better survival rates compared to peat substrates. The difference in survival rates 

may be a consequence of the higher density and strength of limestone soils which reduces 

the negative change in soil elevation.     

 

Changes in hydroperiod produced changes in soil elevation. Water going into the 

pore spaces in the soil may expand soils. Whelan et al. (2009) found changes in soil 

elevation greater than rates of accretion in a mangrove forest in Everglades National Park 

after Hurricane Wilma. The authors hypothesized that water going into the soil layer 

could expand it. Similar changes in elevation can be produced in tree islands in response 

to changes in hydroperiod. Longer hydroperiods such as the ones experienced by lower 

elevation of tree islands can increase swelling of the substrate and reduce negative 

changes in soil elevation. 

 

Changes in elevation at the tails of tree islands only fluctuated around zero. 

Vegetation structure is different at the tails of LILA tree islands compared to the head 

locations. At the tail there is no influence of planted trees, and therefore the predominant 

input for soils are sediments that are moved by the flowing water. The sediments at the 

tails of tree islands are not well consolidated and changes in elevation are difficult to 

determine, Producing variability of the SETs measurements at the tail of the tree islands. 

Boumass and Day Jr. (1993) concluded that the SET is more accurate if pins are lowered 
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manually and if the sediment surface is determined visually. Cahoon et al., (2002) 

reported higher error given by the SET when measuring flooded surfaces. At the tail low 

elevation soils are always flooded and soil surface cannot be determined visually. These 

reasons may also explain the high variability of the change in elevation at the tail low 

location of the tree islands.    

 

 

Shallow subsidence 

Rates of shallow subsidence were considerably higher at higher elevations at the 

head of LILA tree islands compared to lower elevations. At higher elevations there was 

also more litter production and more accretion. Cahoon and Lynch (1997) found a similar 

pattern in a mangrove forest at Rookery Bay, Florida. In their study the fringe forest had 

the highest rates of accretion, and the highest shallow subsidence. In LILA tree islands 

there is no erosion because of the semi-controlled hydrologic conditions; therefore 

subsurface processes dominate changes in elevation. The new material accreted on top of 

the soil profile has higher OM and lower FBD compared to older soils and has to go 

through a process of consolidation in which it loses density, and produces negative 

changes in soil elevation. Although rates of accretion were high, accretion was not 

enough to produce a positive change in elevation. Low bulk density of peat soils made 

them vulnerable to shallow subsidence. A prolonged hydroperiod that causes tree 

mortality, root decomposition and peat collapse could be the most direct way in which 

shallow subsidence could be affected by water level. Shallow subsidence appear to be 

higher in places where there is more litter production, and more tree growth (estimated 
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based on crown area), which suggest that large amounts of biomass could also increase 

subsidence in unconsolidated soils.  

 

Soil physicochemical characteristics 

Total phosphorus concentrations in LILA tree islands are very low compared to 

other tree island studies. Irick et al. (2013) found mean TP values of 4720 µg g-1 in tree 

islands of the southern Florida Everglades. Orem et al. (2002) found mean TP 

concentrations of 3000 and 1500 µg g-1 at the head of the Gumbo Limbo and Nuthouse 

tree islands in the Water Conservation Area (WCA) 3B. Total phosphorus concentrations 

at LILA tree islands are closer to concentrations present in other parts of the Everglades. 

Noe et al. (2001) summarized several Everglades studies and found mean TP values of 

533.2 for sawgrass environments, and 467.1 µg g-1 for slough environments. Reddy et al. 

(1998) reported mean values of TP concentrations for WCA 1 of 544 µg mg-1, and 

Rivero et al. (2007) found mean TP concentrations of 550.7 µg g-1 for WCA 2A. The TP 

concentrations are not homogeneous in these areas of the Everglades. Nutrient loadings 

affect nutrient concentrations in the soils with more impacted areas having higher TP 

concentrations. The current concentration of TP in LILA tree islands resembles the 

original characteristics of the soils with which tree islands were built (on average 400 µg 

TP g-1). TP concentrations have not increased to levels comparable to natural tree islands 

because processes that concentrate phosphorus take a longer time than the time since 

LILA tree islands were constructed. The TN and TC concentrations are closer to the 

values reported by other studies. Irick et al. (2013) found mean TN values of 12.7 mg g-1, 

and mean TC values of 200 mg g-1.  
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Top soil represented by the 0-3 cm increment had significantly higher OM, and 

nutrient concentrations (TP, TN, and TC) compared to the deeper increment. The pattern 

of higher nutrient concentrations in the top soil was also found in wetlands in WCA 3, 

using 5 cm increments (Wang et al., 2011), and in TP concentrations in WCA 2A  

(Rivero et al., 2007). The opposite pattern (an increase in nutrient concentrations with 

depth) was found for TN, and TC at Everglades National Park, and for TN and TC in 

WCA 2A (Rivero et al., 2007). Higher TP concentrations in newly accreted soils were 

expected in LILA tree islands compared to older soils. Soils produced under tree islands 

conditions such as an established plant community in an elevated surface compared to the 

marsh were expected to set in motions mechanisms such as subsurface water flow to 

islands, and guano accumulation from birds that have been considered as the way in 

which tree islands concentrate P (Wetzel et al., 2005). The TN, TC, and OM were also 

higher in the newly accreted soil suggesting that the higher nutrient concentrations have 

an organic origin, as indicated also by the positive correlation between OM, TP, TN, and 

TC. The C:P and N:P molar ratios were significantly lower in the newly accreted soil as a 

consequence of the higher P concentrations present in the top soil compared to the lower 

soils. 

 

All P fractions were significantly higher in the top soil compared to lower soil. 

Most of the P was stored in the residual pool, which also includes organic P. These 

results support the strong correlation between OM and TP that was previously mentioned. 

Tree islands in the southern Florida Everglades behave in a different way with > 80% of 

the P bound in an inorganic form, and approximately 10% bound in an organic form 
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(Irick et al. 2013). The pattern found in LILA tree islands resembles more the one found 

by Reddy et al. (1998) in WCA 1 in which organic P was between 53 and 84% of TP, and 

inorganic P represented between 9-47 % of TP with lower percentages in less polluted 

areas. The difference between the pattern found in the tree islands in the southern 

Everglades and LILA tree islands may be explained because the mechanisms by which P 

bounds to Ca and Mg are not predominant in LILA tree islands and P is instead bound to 

organic compounds. The fact that available P is significantly higher as a fraction of TP in 

the top soil compared to the older soil links P concentrations with productivity and 

indicates that newly accreted soil is a better substrate for trees to grow because P is more 

available.  

 

The effect of elevation in newly accreted soils could only be detected in TP per 

volume with significantly higher values at higher elevations compared to lower 

elevations, and in C:N ratios which were higher in higher elevations. Total phosphorus 

per volume was higher at higher elevations presumably because at higher elevations there 

is more litter production as well as more accretion, meaning that the nutrient input is 

higher, and produces more P per volume. The C:N molar ratios indicate that N is more 

limiting at higher elevations compared to lower elevations in top soils, which means that 

at higher elevations where vegetation is dominated by trees N begins to be a limiting 

nutrient. 

 

Newly accreted soils from peat substrates had higher nutrient concentrations, and 

higher OM. These findings support the idea that peat substrates promote rapid tree 
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growth. Rapid tree growth increases litter production, accretion, and OM inputs into the 

soil. Higher nutrient concentrations correspond to higher OM inputs. The significantly 

higher C:N and lower N:P ratios in peat soils support the idea that in places where there 

is more tree productivity N is the limiting nutrient. 

  

Newly accreted soils at the higher planting density had higher OM, TN, TC, and 

TP per volume compared to soils from the low planting density. These findings support 

the idea that more tree productivity like the one that can be found at the high planting 

density produces more OM and increases nutrient concentrations, in this case TN, and 

TC. The fact that TP per volume is higher in the high planting density is a consequence of 

the higher litter inputs received by the soil. 

 

New soils at the high planting density had the highest values of TP, and available 

P. This shows that vegetation influences soil nutrient concentrations. The high litter 

production at the high planting density produces higher P concentrations compared to 

soils which receive less litter input such as the soils located at the low planting density. 

Total P is positively correlated to OM, TN, and TC therefore OM, TN, and TC are 

expected to follow the same trend. Higher litter input produces in turn higher nutrient 

concentrations building soil with higher nutrients which in turn can support a better plant 

growth.  

 

Results from the soils analyzed as 0-10 cm cores indicate peat substrates have 

higher OM, and nutrients compared to limestone soils because the influence of limestone 



37 
 

substrate at the lower soil does not contribute in the same way as peat does to OM and its 

associated nutrients. Low elevations show higher P concentrations and OM compared to 

high elevations. Serna et al., (2013) found low nutrient concentrations in LILA sloughs 

which they attributed to the grading process involved in LILA construction; however, 

low elevations within LILA tree islands were not affected by grading because no soil was 

removed from tree islands in the construction process. Higher TP, and OM concentrations 

at lower elevations occurred possibly because at this elevation there are longer 

hydroperiods, a reduction in microbial activity, and there is more peat accumulation. 

Longer hydroperiod sites are also more exposed to nutrients present in the water, which 

acts as a nutrient source (Newman et al., 1997). 

 

 

 

CONCLUSIONS 

 

After six and seven years of planting in recently constructed tree islands in LILA, 

soil building processes are taking place at a very active rate. Hydroperiod affects tree 

productivity. Trees exposed to shorter hydroperiods produce more litter. Soil accretion is 

related to tree productivity, and is therefore higher in shorter hydroperiod locations 

within tree islands. Subsidence is higher in places where there is more accretion, and 

litter production. Soil nutrients are related to OM. Peat substrates promote faster tree 

growth, and soil accretion, but are also more susceptible to subsidence. Soil nutrients in 

LILA tree islands differ from natural tree islands of the Everglades, particularly in TP 
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concentrations, which have not reached yet the very high concentrations exhibited by tree 

islands. Though biogeochemical characteristics of natural tree islands are not present yet 

in these young tree islands, presumably because time has not been enough to establish the 

mechanisms that allow such conditions, soil nutrients are increasing because of the 

addition of OM to the soil. Recreating tree islands provides a means of establishing plant 

communities, but long-term survival of these forests depend on continued soil 

development. In order to evaluate their long term viability, further research and 

monitoring is required to determine the trend the young  tree islands described here will 

follow, particularly in view of the shallow subsidence observed over the three years of 

my study. 
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FIGURES AND TABLES 

 

Figure 1 total phosphorus concentrations in different sections of a tree island and in the surrounding mash. 
Concentrations are in µg g-1. Image from Wetzel et al., 2005. 

Figure 2 Peat equilibrium elevation relative to decomposition rates. Figure from Larsen et al., 2011.  
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Figure 3 Diagram showing the location and components of LILA macrocosms, modified from Aich et al., 
2011 
 

 

 

 

 

Figure 4 Cross section of a LILA macrocosm with all features and their correspondent elevations 
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Figure 5 LILA operational hydrograph 
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Figure 6 Diagram showing a detail of four planting densities in M4W (dots represent trees of d  
species) 
 

 
Figure 7 Aerial photograph of a LILA tree island showing the sections within the tree island, a   
location of the experiments. LICOR experiment is not part of this 
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Figure 8 Hydrograph showing water levels for the four LILA macrocosms, and average elevation of the head high and head low plots from April 2009 to 
August 2012. Dashed lines correspond to 1 SD for the head low plots.
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Figure 9 measurement of accretion using a feldspar marker. The amount of accreted soil is on top of the 
feldspar white layer. 
 

 
Figure 10 measurement of soil elevation using a surface elevation table (SET) in one of LILA tree islands 
at the high elevation in the highest density planting.  
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Figure 11 diagram showing an example of shallow subsidence calculation by using accretion and changes 
in soil elevation. 
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Figure 12 Mean (± 1 SD) leaf litter collected in the four western tree island heads at high (HH) and low 
(HL) elevations, in the highest density planting with 1 m spacing between trees from September 2010 to 
July 2012.  Figure shows year of plantation of each tree islands.  
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Figure 13 Litter collected at the highest density planting (1 m space between trees) in the four western tree 
islands combined (only in the head high locations) for different substrates from September 2010 to July 
2012). 
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Figure 14 Decomposition expressed as percentage remaining litter mass after 732 d (24 mo) of 
decomposition in the western tree islands at high (HH) and low (HL) elevations. Decomposition constants 
k (d-1) are based on an exponential decomposition model [Mt = M0 e -kt, where Mt is the mass remaining 
at time t and M0 is the initial mass] and r2 from regression analysis. Values are mean ± 1 SD from 
triplicate bags (n = 3). Percentages of mass loss after 732 d (24 mo) of decomposition are also showed. 
 
 
 
 
 
 
 
 
 



55 
 

 
Figure 15 Soil accreting one (2010), two (2011), and three (2012) years after 2009 initial measurements 
above feldspar markers located at high (Head High, HH) and low elevations (Head Low) at the heads of 
eight tree islands combined. 
 

 
Figure 16 Sediment accreting one (2010), two (2011), and three (2012) years after 2009 initial 
measurements above feldspar markers located at the mid-slope (Tail High) and at the base (Tail Low) of 
eight tree islands tails combined. 
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Figure 17 Surface elevation table (SET) elevation differences one (2010), two (2011), and three (2012) 
years after 2009 initial measurements at high (Head High) and low elevation (Head Low) of heads of eight 
tree islands combined. 
 

 
 
 
Figure 18 Surface elevation table (SET) elevation differences between 2009 initial measurements and 
subsequent years 2010, 2011 and 2012 data (n = 8) at mid-slope (Tail High, TH) and at the base of the tail 
slope (Tail Low, TL) of eight tree islands combined. 
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Figure 19 Total phosphorus concentrations for combinations of soil depth and planting density. All islands 
combined, all elevations combined. Letters correspond to groups according to Tukey HSD Post Hoc 
comparisons. 
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Figure 20 Concentration of P fractions for two soil increments top (0-3 cm), and bottom (3-10 cm). n = 48. 
Values are means +/- SD. p values correspond to independent samples t-tests between soil increments. 

P	  
µg

	  g
¯ˉ¹
	  

 

28	  ±	  20 0
14	  ±	  16 

50	  ±	  35 5
32	  ±	  31 

296	  ±	  166 

174	  ± 105

5 	  p	  <	  0.001 

p	  <	  0.001 

p	  =	  0.007 
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Figure 21 Available phosphorus concentration for combinations of soil depth and planting density. All 
islands combined, all elevations combined. Letters correspond to groups according to Dunnett C Post Hoc 
comparisons. 
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Table 1 Rates of annual litter production estimated from litter traps at high and low 
elevations, n=24, and peat and limestone substrates, n=12. 
 

 
Values represent mean +/- 1 SD. For high and low elevation rates all traps were used, while for peat and 
limestone substrate only high elevations were used. 
 
 
 
 
 
 
 
 
 
 
Table 2 Rates of accretion, change in elevation, and shallow subsidence for high and low 
elevation at the head of all eight tree islands, n = 8.  
 

 
Accretion and change in elevation values are means +/- 1SE, means were calculated by regression analysis.  
Shallow subsidence = accretion – change in elevation.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Parameter Unit
High Low Peat Limestone

Litter	   g	  m¯ˉ²y¯ˉ¹ 559±235 308±188 684±215 435±187

Elevation Substrate

Elevation Accretion	   Change	  in	  elevation	   Shallow	  subsidence	  
cm	  y¯ˉ¹ cm	  y¯ˉ¹ cm	  y¯ˉ¹

HH 0.78	  ±	  0.13 -‐0.69	  ±	  0.35 1.47
HL 0.60	  ±	  0.41 -‐0.063	  ±	  0.36 0.663
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      Table 3 Pearson correlation for soil characteristics using two increments and all islands combined, n = 95. 
 

 
        ** Significant at 0.01 level, * significant at 0.05 level. 
 

Parameter (units) pH FBD  (gdw cm¯ˉ³) TP (µg g¯ˉ¹ dw ) OM (g g¯ˉ¹ dw) TN (mg g¯ˉ¹ dw) TC (mg g¯ˉ¹ dw) C:N C:P N:P
FBD (gdw cm¯ˉ³) .498**

TP (µg g¯ˉ¹ dw ) -.370** -.791**

OM (g g¯ˉ¹ dw) -.501** -.824** .905**

TN (mg g¯ˉ¹ dw) -.343** -.773** .888** .904**

TC (mg g¯ˉ¹ dw) -.353** -.768** .875** .899** .991**

C:N -.162 -.111 .109 .146 .150 .267**

C:P .138 .368** -.450** -.287** -.089 -.060 .251*

N:P .180 .399** -.496** -.330** -.125 -.121 .025 .969**

TP (µg cm¯ˉ³ ) .063 -.007 .358** .125 .167 .181 .135 -.362** -.413**
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Table 4 Independent samples t tests results for soils separated in two soil increments, all 
four islands, and both planting densities combined. Values are means +/- SD. (n = 48). 
 

 
 
 
 
Table 5 Independent samples t tests results for top soils (0-3 cm) separated in high and 
low elevations, only in peat substrate, both planting densities combined. Values are 
means +/- SD. High elevation n = 12, low elevation n = 24. 
 
 

 
 
 
 
 
 
 
 
 
 

Parameter (Unit) p value
0-3 cm 3-10 cm 

pH 7.28 ± 0.42 7.28 ± 0.39 0.998
FBD (gdw cm¯ˉ³) 0.45 ± 0.22 0.73 ± 0.33 <0.001
TP (µg g¯ˉ¹ dw) 374 ± 202 216 ± 134 <0.001
TP (µg cm¯ˉ³) 135 ± 56 122 ± 38 0.362

TN (mg g¯ˉ¹ dw) 14.4 ± 6.8 10.2 ± 5.7 0.002
TC (mg g¯ˉ¹ dw) 190 ± 90 132 ± 75 0.002

C:N 15.3 ± 1.1 15.2 ± 1.1 0.487
C:P 1401 ± 327 1710 ± 653 0.007
N:P 91 ± 21 113 ± 40 0.001

OM (g g¯ˉ¹ dw) 0.36 ± 0.19 0.25 ± 0.18 0.007

Soil depth

Parameter (unit) p value
High Low

pH 7.09 ± 0.20 7.10 ± 0.20 0.084
FBD (gdw cm¯ˉ³) 0.47 ± 0.13 0.36 ± 0.20 0.059
TP (µg g¯ˉ¹ dw) 398 ± 103 430 ± 239 0.586
TP (µg cm¯ˉ³) 184 ± 76 114 ± 29 0.003

TN (mg g¯ˉ¹ dw) 15.0 ± 2.7 16.0 ± 8.3 0.574
TC (mg g¯ˉ¹ dw) 210 ± 45 208 ± 108 0.933

C:N 16.3 ± 0.9 15.1 ± 0.9 0.001
C:P 1409 ± 287 1336 ± 355 0.399
N:P 87 ± 19 88 ± 22 0.808

OM (g g¯ˉ¹ dw) 0.35 ± 0.20 0.43 ± 0.22 0.124

Elevation
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Table 6 Independent samples T tests results for top soils (0-3 cm) separated in limestone 
and peat substrates only in high elevations, both planting densities combined. Values are 
means +/- SD., n = 12. 
 
 

 
 
 
 
Table 7 Independent samples T tests results for top soils separated in planting densities, 
both elevations combined. Values are means +/- SD., n = 24. 
 
 

 

Parameter (unit) p value
Limestone Peat

pH  7.57 ± 0.56 7.35 ± 0.45 0.306
FBD (gdw cm¯ˉ³) 0.64 ± 0.24 0.47 ± 0.13 0.045
TP (µg g¯ˉ¹ dw ) 238 ± 134 398 ± 103 0.003

TP (µg cm¯ˉ³) 129 ± 45 184 ± 76 0.031
TN (mg g¯ˉ¹ dw) 10.5 ± 4.9 15.0 ± 2.7 0.012
TC (mg g¯ˉ¹ dw) 135 ± 64 210 ± 45 0.003

C:N 14.8 ± 1.1 16.3 ± 0.9 0.001
C:P 1523 ± 292 1409 ± 287 0.322
N:P 103 ± 18 87 ± 19 0.045

OM (g g¯ˉ¹ dw) 0.22 ± 0.13 0.35 ± 0.95 0.012

Substrate

Parameter (units)
High Low p value

pH 7.20 ± 0.46 7.35 ± 0.38 0.236
FBD (gdw cm¯ˉ³) 0.36 ± 0.15 0.54 ± 0.25 0.004
TP (µg g¯ˉ¹ dw) 425 ± 203 323 ± 192 0.08
TP (µg cm¯ˉ³) 129 ± 36 142 ± 70 0.438

TN (mg g¯ˉ¹ dw) 16.4 ± 6.7 12.3 ± 6.5 0.036
TC (mg g¯ˉ¹ dw) 221 ± 85 160 ± 87 0.017

C:N 15.7 ± 1.0 14.9 ± 1.0 0.005
C:P 1441 ± 337 1360 ± 319 0.398
N:P 92 ± 22 91 ± 20 0.953

OM (g g¯ˉ¹ dw) 0.42 ± 0.18 0.31 ± 0.19 0.049

Planting density 
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Table 8 Independent samples t tests results comparing soil characteristics for 0-10 cm cores. Values are mean +/- SD. Substrate 
was evaluated only at high elevations (n = 12), elevation was evaluated only in peat substrate (n = 12 for high, and 23 for low), 
n = 24 for planting density. 
 

 
 
 
 

Parameter (unit) p value p value p value
Limestone Peat High Low High Low

FBD (gdw cm¯ˉ³) 0.86 ± 0.24 0.62 ± 0.78 0.006 0.62 ± 0.08 0.52 ± 0.25 0.08 0.59 ± 0.24 0.67 ± 0.27 0.309
TP (µg g¯ˉ¹ dw) 153 ± 71 233 ± 45 0.003 234 ± 45 309 ± 156 0.04 278 ± 139 220 ± 121 0.13
TP (µg cm¯ˉ³) 161 ± 69 249 ± 46 0.001 249 ± 46 333 ± 160 0.02 304 ± 143 229 ± 125 0.063

TN (mg g¯ˉ¹ dw) 8.0 ± 3.9 10.3 ± 1.8 0.08 10.3 ± 1.8 13.0 ± 6.2 0.055 11.2 ± 4.7 10.8 ± 5.7 0.798
TC (mg g¯ˉ¹ dw) 100 ± 48 139 ± 22 0.017 139 ± 22 170 ± 81 0.09 146 ± 60 142 ± 77 0.852
OM (g g¯ˉ¹ dw) 0.15 ± 0.63 0.22 ± 0.27 0.002 0.22 ± 0.27 0.36 ± 0.20 0.004 0.30 ± 0.17 0.25 ± 0.17 0.312

Substrate Elevation Planting density
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