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ABSTRACT OF THE DISSERTATION 

A GENERALIZED ADAPTIVE MATHEMATICAL MORPHOLOGICAL FILTER 

FOR LIDAR DATA 

by 

Zheng Cui 

Florida International University, 2013 

Miami, Florida 

Professor Shu-Ching Chen, Co-Major Professor 

Professor Keqi Zhang, Co-Major Professor 

Airborne Light Detection and Ranging (LIDAR) technology has become the 

primary method to derive high-resolution Digital Terrain Models (DTMs), which are 

essential for studying Earth’s surface processes, such as flooding and landslides. The 

critical step in generating a DTM is to separate ground and non-ground measurements in 

a voluminous point LIDAR dataset, using a filter, because the DTM is created by 

interpolating ground points. As one of widely used filtering methods, the progressive 

morphological (PM) filter has the advantages of classifying the LIDAR data at the point 

level, a linear computational complexity, and preserving the geometric shapes of terrain 

features. The filter works well in an urban setting with a gentle slope and a mixture of 

vegetation and buildings. However, the PM filter often removes ground measurements 

incorrectly at the topographic high area, along with large sizes of non-ground objects, 

because it uses a constant threshold slope, resulting in “cut-off” errors. A novel cluster 

analysis method was developed in this study and incorporated into the PM filter to 

prevent the removal of the ground measurements at topographic highs. 
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Furthermore, to obtain the optimal filtering results for an area with undulating 

terrain, a trend analysis method was developed to adaptively estimate the slope-related 

thresholds of the PM filter based on changes of topographic slopes and the characteristics 

of non-terrain objects. The comparison of the PM and generalized adaptive PM (GAPM) 

filters for selected study areas indicates that the GAPM filter preserves the most “cut-off” 

points removed incorrectly by the PM filter.  The application of the GAPM filter to seven 

ISPRS benchmark datasets shows that the GAPM filter reduces the filtering error by 20% 

on average, compared with the method used by the popular commercial software 

TerraScan. The combination of the cluster method, adaptive trend analysis, and the PM 

filter allows users without much experience in processing LIDAR data to effectively and 

efficiently identify ground measurements for the complex terrains in a large LIDAR data 

set.  The GAPM filter is highly automatic and requires little human input.  Therefore, it 

can significantly reduce the effort of manually processing voluminous LIDAR 

measurements. 
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Chapter 1   

INTRODUCTION 

LIDAR (Light Detection And Ranging) has become a widely used technology in 

surveying and industrial measurement applications in recent years. Ground-based 

scanning LIDAR systems can produce very high resolution point clouds of three-

dimensional objects at millimeter accuracy; three-dimensional models, such as DEMs [2], 

DTMs, and digital surface models (DSMs), can be generated from these high-resolution 

topographic data. These topographic information is critical for a wide variety of 

applications, including engineering projects (e.g., transportation, mining reclamations, 

urban planning), hydrology and floodplain management, corridor mapping (e.g., for roads, 

telecommunications), landside analysis, geological studies, and natural-resource 

assessments. Therefore, effective and efficient methods to analyze and process these 

three-dimensional data are very important to all the applications [3]. 

The general processing of ground-based LIDAR data has some major components 

for most of the applications. It includes data interpolation, data filtering, objects 

classification, and model generation. Many methods have been developed in each 

component. Among these methods, the filtering methods which focus on the separation of 

ground and non-ground objects are very critical to most of the applications. Since LIDAR 

data is normally high-resolution data, there would be huge volume of data points in the 

surveyed area; it is very important to develop some automatic processing methods to 

separate ground and non-ground objects with as little human interactions as possible. 

Although many filtering methods have been studied, they all have their own advantages 

and limitations on different kinds of terrain types. It is very difficult for any method to 
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handle a data set with complex terrain types mixed together. Due to this reason, an 

adaptive filtering solution was proposed in this dissertation. It will provide an adaptive 

framework for the filtering method to make the LIDAR processing more automatic and 

rely less on human interactions. 

1.1 Challenges 

Since the LIDAR data normally contains a huge number of points in the surveyed 

area, it would make the processing of them very difficult in terms of efficiency, 

effectiveness and automation. The most challenging work of LIDAR data processing is to 

find some methods to process varied data sets in a generalized way without human 

interactions [12]. LIDAR data processing normally involves some common procedures, 

such as data retrieving, storage, interpolation, filtering, and model generation. Each 

procedure needs to have appropriate methods to accomplish the task in terms of 

correctness, efficiency, effectiveness, and automation. Among these procedures, data 

retrieving and storage will affect how fast the data can be read and written, which will 

influence the processing speed significantly. Another critical issue of data retrieving and 

storage is how to retrieve the data for different processing purposes. Since one surveyed 

area could contain different terrain types and a tremendous number of data points, how to 

split the data into smaller parts and process them separately is very critical for the 

effectiveness of different interpolation and filtering methods. Because different methods 

are suited for different terrain types, smaller pieces of a large data set would speed up the 

processing significantly for some methods. 



3 
 

The interpolation procedure is a very important preparation step for the filtering 

procedure. Most grid-based filtering methods need to have interpolation before filtering. 

Since the data set will be partitioned into grids before filtering, some of the grids would 

be empty; therefore good interpolation methods would guarantee the correctness and 

effectiveness of the filtering methods. Some filtering methods might need special 

interpolation to make them work properly. 

Filtering methods are the key procedure for the LIDAR processing in that these 

methods will identify and extract different points based on the application needs. The 

correctness and effectiveness of the filtering procedure would affect the model generation 

results significantly. Therefore, this will be the major topic discussed in this dissertation. 

Model generation is very important for many applications, because it is a more 

intuitive way for the user to view the data. Good model generation methods would help 

people analyze and research the data in an efficient and interactive way.  

1.2 Proposed Methods 

In this dissertation, several methods have been proposed for the interpolation and 

filtering procedure in the LIDAR processing. Many experiments have been done on 

different terrain types. The results demonstrated the improvement of interpolation and 

filtering quality. 

1.2.1 Outlier Removal and Grid Interpolation 

Most of our LIDAR processing methods are based on the grid data structure, 

therefore, there would be some empty grids left after a data set was gridded. Accordingly, 
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the interpolation procedure is very important before the filtering process, in that it will 

remove non-related points, such as outlier points, and interpolate useful points in the 

empty grids. In this dissertation, some morphological outlier removal methods were 

discussed to filter out extremely high and low elevation points from the original data set. 

Different filtering methods might need some special interpolation methods to fill 

meaningful points into the empty grids in order to benefit the filtering procedure. In this 

dissertation, a grid-based priority interpolation method was proposed to interpolate empty 

grids based on customized priority. This solution would benefit the filtering method in 

certain terrain types [11]. It can be used for a multi-pass filtering solution. In this 

dissertation, a multi-pass morphological filter was proposed to process the data set in 

multiple rounds. The grid-based priority interpolation method was used between each 

filtering pass. This multi-pass morphological filter offers a means to filter the terrain with 

large non-ground features under relatively small filtering window, while the 

morphological filter itself has difficulty on these complex terrain data sets. 

1.2.2 Cluster-Based Morphological Filter 

Mathematical morphology is an important methodology in LIDAR filtering. It has 

many variant methods, which are normally grid-based filtering. However, due to the 

method’s intrinsic weakness, they would normally have top cut-off problem, such as cut-

off of the mountain ridge. This problem would be deteriorated when the morphological 

filtering window increases to a large size. It would cut off many ground surface points, 

especially on the undulated terrain. In order to solve this problem, a cluster analysis 

mechanism [10] was introduced to help judge the ground and non-ground points during 
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morphological filtering. Combined with morphological filtering, this cluster analysis 

method would prevent the cut-off problem on many complex terrain types. Also, this 

cluster-based method would provide a foundation for the adaptive trend analysis method 

proposed in the next section. 

1.2.3 Adaptive Trend Analysis Morphological Filter 

Since the morphological filter normally uses windows with different sizes to filter 

the data, for each window size, a different threshold value has to be selected as the 

criteria for separating ground and non-ground objects. Most of the morphological 

filtering methods use the constant value for each window size, which would make the 

filter not suitable for the complex terrain types. Because constant threshold values for the 

same morphological filter window implies uniform ground slope in the data set, it would 

work well in the simple terrain areas, such as flat terrain, while it would not work very 

well in the complex terrain areas, especially undulating terrain, such as mountain areas. 

An adaptive trend analysis method [12] was proposed in this dissertation, which was 

combined with the progressive morphological filter, to make the filter automatically 

select the filtering thresholds for all the points under different filtering window sizes 

according to the local terrain variation. 

1.2.4 GUI-based LIDAR Data Processing System 

A GUI-based LIDAR data processing system is indispensable for the LIDAR 

research. Users need to interactively view the data source, in order to select appropriate 

methods to process the data set according to the application requirements. The processing 
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results also need to be displayed in a proper way and analyzed for research and 

processing purposes. Therefore, a GUI-based LIDAR processing tool was proposed for 

users to display and process the data interactively. Since LIDAR data processing 

normally involves huge volumes of data and many source data files, a batch processing 

tools was proposed in our GUI-based LIDAR processing system. Users can select the 

process methods from a list of implemented methods, configure the processing 

parameters, and add different kinds of jobs into a task list for batch processing. 

1.3 Contributions 

The methods proposed in this dissertation have effectively solved the problem in 

the interpolation and filtering procedures of LIDAR processing. They are combined to 

provide a complete set of LIDAR processing solutions. This set of solutions streamlines 

many LIDAR processing procedures with fewer human interactions.  

First, a grid-based priority interpolation method was proposed to interpolate 

empty grids based on the empty grids’ boundary. It provides a mechanism to interpolate 

empty grids according to the boundary points around a filtering shape with customized 

priority. Users can define the interpolation priority according to their application needs. 

This interpolation method helps filtering method effectively remove the filtering remains 

from large non-ground objects. 

Second, combined with the grid-based priority interpolation, a multi-pass 

morphological filter was proposed to process a complex data set in multiple rounds. It 

would help the filtering of the terrain with large non-ground objects that cannot use large 
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filtering window. The filtering remains of large non-ground objects will be removed in 

multiple filtering passes. 

Third, a cluster analysis method was proposed to provide a mechanism for 

filtering methods to adjust the filtering results by analyzing the cluster property, which 

shows the local terrain shape in general. A new filter, called cluster-based morphological 

filter was proposed by combining this cluster analysis method with the progressive 

morphological filter [51]. It improves the progressive morphological filter on undulating 

and complex terrains. It can also be embedded into some other filters in order to correct 

errors and improve results. 

Fourth, combined with the cluster analysis method, a trend analysis method was 

proposed to provide a mechanism for filtering methods to adaptively select filtering 

parameters according to the local terrain shape, because it can automatically analyze and 

detect the variation of local terrain. A new filter, called adaptive trend analysis 

morphological filter, was proposed by embedding this trend analysis method into the 

progressive morphological filter [51]. This filter provides a generalized filtering 

mechanism to filter different terrain types by adaptively selecting filtering parameters. 

This mechanism can be extended to dynamically select different filtering methods for 

different parts of a data set, based on the terrain type.  

Fifth, many LIDAR data processing related methods have been implemented in a 

GUI-based LIDAR processing system software, which offers researchers and users a 

good tool to display, analyze and process the LIDAR data. It also provides the 

researchers a mechanism to test and compare the performance of different LIDAR 

processing related methods. 



8 
 

1.4 Scope and Limitations 

This dissertation mainly focuses on the study of LIDAR filtering methods. It has 

the following limitations: 

1. Since the proposed filtering methods are based on the three dimensional information 

of LIDAR data, it is very hard to distinguish an artificial terrain shape with human 

construction or landscape. For example, if a terrain was cut or landscaped as a shape 

of building, it is hard for the filter to decide what points should be removed. 

2. The filtering results depend on the resolution of LIDAR data. If the data source does 

not have enough points due to the density, it would affect the filtering results 

significantly. Furthermore, if the data source has too many empty parts, it would 

affect the filtering results when processing the data set as one single area. For 

example, if the surveyed area is a long and narrow strip, and the boundary of the data 

set is very large, it would make a large empty area between the boundary and data 

strip. 

3. It is difficult for a filtering method to automatically detect some terrain features’ 

information, such as the largest non-ground object’s size, at the very beginning of the 

processing. Therefore, some parameters, such as maximum filtering window size, are 

difficult to select programmatically. These parameters might need to be selected by 

users through visual analysis. 

4. When comparing the accuracy of different filters, there would be some subtle 

differences. For example, for grid-based methods, the accuracy of the filtering results 

is based on the gridded results of reference points, while the accuracy of non-grid 



9 
 

methods is based directly on the reference points. There would be some arguments 

on the accuracy between different types of methods. Therefore, it would be better to 

have the same standard to compare different types of filters. For example, we can 

grid the non-grid method’s results to compare them with the grid-based method’s 

results. However, it might not be perfectly appropriate to use the same standard to 

judge the accuracy of different methods. 

1.5 Outline 

The organization of this dissertation is as follows:  

Chapter 2 gives the literature and background reviews in the areas of LIDAR data 

interpolation, filtering and model generation methodologies. 

Chapter 3 focuses on an overview of our LIDAR processing framework with all 

its components. Each component is briefly introduced and discussed, and the 

relationships between components are shown. 

Chapter 4 discusses the data pre-processing step in our framework, exceptional 

data handling and data interpolation in detail. A gird-based priority interpolation method 

and a multi-pass morphological filter are proposed and discussed in detail. 

Chapter 5 discusses the proposed cluster-based morphological filter in detail, 

which helps the morphological filter solve the cut-off problem of filtering certain types of 

terrains. 

Chapter 6 discusses the proposed trend analysis method in detail, which is 

combined with the cluster method introduced in chapter 5. It provides a mechanism for 

the filters to automatically and adaptively estimate filtering parameters, which are related 
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to the terrain shape. It can be coupled with any filter that needs local terrain shape 

information, and makes the filter parameters’ selection automatically and adaptively with 

fewer human interactions. 

Chapter 7 introduces a GUI-based LIDAR data processing system for model 

generation and mapping. It includes many LIDAR processing methods developed in our 

research work and other commonly used LIDAR processing related methods. 

Chapter 8 summarizes with the conclusions and the future work of this research.
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Chapter 2   

BACKGROUND AND RELATED WORK 

In this chapter, a detailed survey of LIDAR technology and data processing 

methods are overviewed. It covers the existing research in the fields that are related to the 

important components of the proposed framework, which is discussed in the following 

chapters. 

The general processing of ground-based LIDAR data has some major components 

for most of the applications. It includes data interpolation, data filtering, objects 

classification, feature extraction, and model generation. Many methods have been 

developed in each part. Data interpolation is a very important preparation step for many 

filtering methods. Normally it involves the error point removal (e.g. outliers and 

redundant point removal), data gridding, and empty grids interpolation. The filtering 

methods are the key part of the LIDAR data processing, which would provide appropriate 

filtering results according to different application purposes. 

2.1 Airborne LIDAR Data Collection 

In this section, LIDAR technology, mapping, and data acquisition are overviewed. 

The general LIDAR data collection procedure will be explained. In addition, the common 

data format of LIDAR will be introduced. 

2.1.1 What is LIDAR 

LIDAR stands for Light Detection And Ranging, which is a widely used remote 

sensing technology in recent years. It uses a laser beam to bounce between the aircraft 
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and ground, assessing distances from the camera to the ground at set points. The laser 

beams can penetrate vegetation, allowing measurement to be conducted, even when 

vegetation is thick. LIDAR surveys satisfied many topographic mapping needs for 

various applications. 

2.1.2 Airborne Laser Mapping 

Airborne laser mapping is an emerging technology in the field of remote sensing, 

which is capable of rapidly generating high-density, geo-referenced digital elevation data 

with an accuracy equivalent to traditional land surveys but significantly faster than 

traditional airborne surveys. 

Compared to traditional survey methods, airborne laser mapping offers lower 

operation costs and post-processing costs. The cost to produce the data is significantly 

less than other types of traditional topographic data collection, which makes it an 

attractive technology for a variety of survey applications. These survey applications can 

provide low cost, high-density, and high-accuracy geo-referenced digital elevation data. 

Airborne laser mapping uses a combination of three mature technologies: Light 

Detection And Ranging (LIDAR), highly accurate Inertial Reference Systems (IRS) and 

the Global Positioning System (GPS). By integrating these subsystems into a single 

instrument mounted in a small airplane or helicopter, it is possible to rapidly produce 

accurate digital topographic maps of the terrain beneath the flight path of the aircraft. 

The absolute accuracy of the elevation data can be less than 15 cm, and the 

relative accuracy can be less than 5 cm. The absolute accuracy of the data depends on the 

operating parameters, such as flight altitude, but is usually from 5 cm to 1 meter. 
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2.1.3 Data Acquisition, Storage and Processing 

Airborne laser mapping technology is illustrated in Figure 2-1, which shows the 

general idea of the airborne laser mapping mechanism. This system was used for the 

airborne laser terrain mapping in Broward County of Florida. 

 

Figure 2-1 Airborne laser mapping project in Broward County Florida 

In terms of operational procedure, a pulsed laser range finder mounted in the 

aircraft accurately measures the distance to the ground by recording the time in which a 

laser pulse shoots and reflects back to the aircraft from the ground or from objects such as 

constructions and vegetation. Since the speed of light is known, the elapsed time is 

converted to an accurate distance or slant range. Some instruments record multiple 

returns from a single laser pulse to capture a vertical profile along the slant range. A 

scanning or rotating mirror is used to provide coverage across the path of the aircraft with 

swath widths dependent on scan angle and operating altitude. Simultaneously, the IRS 
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subsystem records the roll, pitch and heading of the aircraft to determine its orientation in 

space, while the GPS subsystem provides the precise location of the aircraft through a 

differential kinematic solution. During post-processing, the IRS orientation and GPS 

position solutions are combined with the laser slant ranges to accurately calculate three-

dimensional coordinates for each laser return. 

After each flight, LIDAR and GPS data are downloaded to a computer and 

processed by proprietary software (e.g. Optech Airborne LIDAR Software) to produce 

Universal Transverse Mercator (UTM) X, Y coordinates and ellipsoidal heights of each 

laser return. Positional accuracy was improved by calculating a precise aircraft trajectory 

using the KARS software. Elevations were converted from GPS ellipsoidal heights to 

NAVD88 orthometric heights with the NGS GEOID99 model. Data from overlapping 

swaths were checked for internal consistency, combined and subdivided into over tiles 

(e.g. hundreds of 1-km2 tiles). Each tile was then gridded using the nearest neighboring 

interpolation to produce a certain resolution DEMs. 

Airborne laser mapping data is stored in ASCII files, shown in Table 2-1. Each 

line in the file represents a point that consists of four elements: three-dimensional 

coordinates and the laser reflection intensity of the object at this point. Normally, there 

are millions of points for a study area. For example, 140 million points are surveyed for 

the Florida Broward County hurricane flood vulnerable area (140 km2). It is difficult to 

process them together based on the capacity of current workstations. Thus, the data set 

needs to be divided into smaller pieces for further processing. After processing each piece 

of data, the results have to be merged for the final outcome. 
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Table 2-1 Format of ALTM data in ASCII file 

X Y Z Intensity 

573200.00 2891200.00 -19.21 96 

573400.00 2891250.20 -23.57 75 

573600.28 2891200.00 -23.02 72 

573500.25 2891050.96 -23.40 13 

573300.52 2891050.88 -19.57 119 

 

2.2  Interpolation of Data 

After the LIDAR data collection, three-dimensional information and intensity 

information of the scanned terrain were acquired. This information consisted of the major 

objects on which our research focused. The first challenge of our research is how to 

interpolate the data for different purposes. There are many interpolation methods which 

can be used for LIDAR data. Most of them are region based methods, which means the 

data set will be partitioned into regions such as grids, blocks, and triangles, etc. The 

empty regions would be interpolated by non-empty regions in some ways. The most 

popular interpolation methods normally belong to some common categories, such as 

spatial relationship methods, statistical methods, and curve-fitting methods. 

2.2.1 Spatial Relationship Interpolation Methods 

In the spatial relationship interpolation methods, the Nearest Neighbor method is 

a popular one, because it not only runs quickly but effectively for many cases as well. 

This method is very effective and efficient, especially when data are evenly distributed. If 
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there are only small numbers of empty grids in the data set, it would be very efficient to 

use this method to fill the empty grids by interpolating them with neighbor grids. This 

method is the most commonly used interpolation method in our LIDAR processing 

framework too, because LIDAR data are normally enormous and evenly distributed. 

Triangulation interpolation is another popular spatial interpolation method, which 

is normally based on Delaunay triangulation [4]. It uses the original data points to create 

triangles by connecting between data points. The points would be connected in such a 

way that no triangle edges are intersected by other triangles. Each triangle would form a 

surface, which could be used to interpolate each empty grid. This method is also very 

effective on the data set distributed evenly, but the computation time would be much 

longer. 

2.2.2 Statistical Interpolation Methods 

Geostatistical interpolation techniques [25] are based on statistics and are used for 

more advanced prediction surface modeling. Kriging [25] is a very popular geostatistical 

interpolation method, which can produce visually engaging maps from irregularly spaced 

data. Kriging belongs to the family of linear least squares estimation algorithms, and it is 

a customizable method to achieve accurate or smoothing interpolation by specifying the 

appropriate variogram model.  
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2.2.3 Curve Fitting Interpolation Methods 

Minimum Curvature is a popular interpolation method in earth science. This 

method will generate a smoothest possible surface as a thin and linearly elastic plate 

passing through each of the data values with a minimum amount of bending [50]. 

The local polynomial method is another useful interpolation method, which 

interpolates empty grids by using weighted least squares fit within a certain search range. 

2.3  Filtering Methods 

Since LIDAR data includes tremendous information of ground and non-ground 

objects, how to automatically and efficiently acquire a high-quality DEM (Digital 

Elevation Model) according to the user’s requirement has been a hot topic in recent years. 

To achieve high-quality DEM, the filtering methods are the most critical component of 

the LIDAR processing. There are many methods which have been developed for different 

types of purposes. Based on these methods’ processing principles, they fall into the 

following categories, which are surface-based, region-based, segmentation-based, and 

slope-based filters. Each category has its own assumptions for the ground and non-

ground objects, which results in the advantage and disadvantage of each method. The 

data structure of all the methods would fall into three types, which are original data points, 

TIN (Triangulated Irregular Network) [2], and grid. 

2.3.1 Surface-based Filter 

Surface-based filter methods normally assume the terrain has a spatially 

continuous surface, accordingly least-squares surface fitting is commonly used in these 
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methods. Kraus and Pfeifer [21] proposed an interpolation and filter method, which 

belongs to this kind of filter. The disadvantage of this method is that it is more likely to 

filter out points at breaklines. Brugelmann [7] proposed an improved method, which 

detects the breaklines in the filtered data in order to identify the terrain characteristics. In 

Brovelli et al. [5], they used the Spline method to interpolate the original data, then the 

residual between the observations and interpolated surface were calculated, and finally 

the points were classified by comparing the residual with the threshold. 

2.3.2 Segmentation-based Filter 

Segmentation and clustering are widely used techniques for points’ classification, 

and many methods have been implemented based on them to separate discrete LIDAR 

point clouds. Some researchers defined multiple types of points to categorize the data set. 

For example, Filin [14] separated the ground features into four types of clustering 

classifications by using point position, elevation difference from neighboring points, and 

information of the point to its tangent plane. The clustering algorithm combines these 

attributes into a 7-tuple vector feature space. The approach proposes a surface class and 

identifies points associated with the class [14], and then group points according to the 

neighborhood system with the criteria of a predefined minimal number of points per 

cluster and accuracy threshold. This process is carried out repeatedly, until no meaningful 

surfaces can be proposed. Finally, it will extend each cluster until no more points can be 

added, and then merge clusters with similar attributes. Jacobsen and Lohmann [17] also 

used the segmentation method to classify data points into several classes to separate 

terrain points. 
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Tóvári and Pfeifer [45] proposed a segmentation-based ground filtering method, 

which has two major steps. A segmentation process is first initialized by a region-

growing method from a randomly picked seed point. Then, the method gradually adds 

neighboring points based on three criteria, which are similarity of normal vectors, 

distance of candidate point to the adjusting plane, and distance between current point and 

candidate point [45]. Finally, it separates data points into segments according to surface 

objects. The second step uses those segments as initial elements, and carries out a least-

squares linear interpolation involved with an adaptive weight function, which is used to 

minimize the weights for segments from non-ground objects. Experiments were done on 

a small and relatively flat area with two buildings. The results showed that this method 

overestimated the non-ground surface by showing an upward curve in the building area. 

This was partly caused by some non-ground objects that were not removed but were 

involved in the surface interpolation with a smaller weight. 

Since many segmentation and cluster-based filtering experiments were tested on 

relatively flat ground surfaces [14][17][37][45], further experiments on more complicated 

surfaces with rough terrain are necessary to evaluate the performance, because surfaces 

with less homogenous height texture could be challenging for these methods [29]. 

2.3.3 Region-based Filter 

Region-based filter methods normally assume the ground objects are relatively 

lower points while the non-ground objects are relatively higher points. 

In Masaharu and Ohtsubo [27], the lowest points of a small region were selected 

as the ground points, and the elevation difference was calculated between non-ground 
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points and the mean value of the surrounding selected ground points in a certain range. 

When the elevation difference was greater than one sigma, the point would be marked as 

non-ground point. 

The mathematical morphological method is a widely used technique in the region-

based filter. Mathematical morphology is a theory and technique for the analysis and 

processing of geometrical structures based on set theory. It is a commonly used method 

to process digital images, but it can be utilized on graphs, surface meshes and many other 

spatial structures as well. Mathematical morphology has two fundamental operations, 

which are dilation and erosion. These two operations are commonly used to dilate 

(dilation) and reduce (erosion) the size of features in binary images. They can also be 

combined to generate opening and closing operations. In the erosion and dilation 

operations, a predefined shape called a structural element is used to probe and be 

compared with the image or object. The conclusion can be achieved on how this shape 

fits or misses in the image or object. 

The key process of the dilation operation is to use the structural element to probe 

the image. When the structural element is positioned at a given point and it touches the 

object, then this point will appear in the results of the transformation. Otherwise, it will 

not. On the other hand, for the erosion operation, when the structural element is 

positioned at a given point, if it is included in the object, then this point will appear in the 

results of the transformation. Otherwise, it will not. The following figures show the 

dilation and erosion operations. 
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Figure 2-2 Dilation operation 
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Figure 2-3 Erosion operation 

Kilian et al. [18] first proposed to use mathematical morphology to filter non-

ground points. The disadvantage of this method is that ground points would be filtered 

out when the filtering window is too large. Petzold et al. [32] proposed a method which 

used the moving filter window from large scale to small scale to filter the points 
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iteratively. This method first created a rough terrain model by finding the lowest points in 

a relatively large moving window. The points with elevation difference greater than the 

threshold were filtered out, and a more precise terrain model was achieved. The process 

was repeatedly carried out along with reducing the window size, until a final terrain 

model was achieved. The results of this method are affected by the final window size and 

the final threshold, below which points are expected to be terrain points [32]. A small 

window size would not remove points on the large buildings and keep them as ground 

points. A relatively large window size would remove the small local discontinuities and 

smooth the terrain on a large scale. The elevation difference threshold would affect the 

results significantly. A high threshold in the final step would classify many vegetation 

points as ground points, while a small threshold would filter out more small terrain 

discontinuities. The selection of the parameters depends on the terrain types remarkably. 

For example, the parameters would be different on the flat and mountainous area. 

Morgan and Tempfli [31] utilize the morphological filter as a core part for 

separating terrain and non-terrain segments. In the proposed method, it first grids the data 

set with appropriate cell size according to the point density. Then the grid data set is 

interpolated by using Nearest Neighbor interpolation. After the interpolation, 

morphological filter was applied to separate terrain and non-terrain points under different 

sizes of moving windows. The filter used weight function to assign different points with 

various weights and then filter out non-ground points. The weight of each point depends 

on the filtering window size and the band width in the window. The band width of a 

window refers to a certain height range formed by the deepest point and some other 

points higher than it in the filtering window.  
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Pixel_weight =

_    _ _     
   _ _    _ _

. _ ( _ _ )  
_

  [31] 

In the equation, the window size can be determined by the building sizes in the 

data set. The minimum and maximum sizes of the windows are determined by the 

expected minimum and maximum building size, respectively. These two window sizes 

are varying for different data set. The band width represents the expected range of terrain 

elevation in the window. The band width is the expected range of terrain elevation in the 

window [31]. In order to separate terrain and buildings, the band width has to be smaller 

than the minimum building height. The weight threshold has to be defined for classifying 

terrain and non-terrain points. 

In Lohmann et al. [26], they used the linear prediction and dual rank filter, which 

is based on morphological filtering, to eliminate points above ground, and compare the 

filtering results with the least square surface at the non-ground objects and breaklines. 

Wack and Wimmer [47] assumed local lowest points are the ground points and 

use the Laplacian of Gaussian method to filter out non-ground points with abrupt change 

of elevation from a large grid to small grid. 

Zhang et al. [51] used a moving filter window from small scale to large scale to 

do the open operation of mathematical morphology. The elevation difference after open 

operation was compared with the predefined threshold for each filter window size. The 

point was filtered out if the elevation difference is over the threshold. 

There are several proposed methods [10][11][12] in our framework, which are 

based on the mathematical morphological method. 



25 
 

2.3.4 TIN-based Filter 

When using TIN as the data structure to process LIDAR data, it would have both 

surface-based and region-based filters’ advantages. In Axelsson [2], he assumed that the 

local lowest points are the ground points and used them as the seed points for the TIN 

model. By comparing the angle and distance made by each observation point and TIN 

facet with some thresholds, the point was classified. Furthermore, it introduced the mirror 

point criteria to check the points at the breaklines. Sohn and Dowman [44] used a similar 

method, but it took four ground points to form the TIN model. They classified the ground 

points by Minimum Description Length (MDL) iteratively. 

2.3.5 Slope-based Filter 

Slope-based filter normally assumes that there are some abrupt elevation 

difference between ground points and non-ground points, which means there would be a 

relatively greater slope at the non-ground points. Vosselman [46] utilized the 

mathematical morphological method and created a kernel function based on terrain slope 

to filter non-ground points. Sithole [40] improved Vosselman’s method by using gradient 

map to automatically adapt the change of terrain. 

2.4  Filtering Methods Comparison and Critical Issues 

LIDAR points normally consist of ground points, non-ground points and noise 

points. The ground points are normally from the bare-earth terrain surface, in which the 

points are usually the lowest points in a local area. Non-ground points are normally from 

the objects above the bare-earth terrain, such as vegetation, buildings, and constructions. 
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The noise points are normally some unexpected or error measurements, such as the noise 

from LIDAR devices or birds.  

2.4.1 Ground Measurement Physical Characteristics  

Ground points normally have general physical characteristics, which are 

commonly used as assumptions in many filtering methods. These general physical 

characteristics can be divided into the following categories [29]: 

1. Lowest Elevations [29]. Ground points usually have the lowest elevations among 

their neighboring points in a certain local area. Many filtering methods used this 

as an assumption to search the initial ground surface points for filtering. 

2. Ground Surface Steepness [29]. Surface slope between two neighboring ground 

points is normally smaller than between a ground and non-ground point. 

Therefore, many filtering methods use the surface slope threshold as the criteria to 

distinguish ground and non-ground points. However, the surface slope threshold 

values varied significantly on different terrain types. Relatively flat urban surfaces 

may have a lower threshold, while complex surfaces, such as mountain terrain or 

high-relief forest canopy surfaces, would have steeper slopes and need a greater 

threshold to separate ground and non-ground points. 

3. Ground Surface Elevation Difference [29]. Elevation difference between two 

neighboring ground points is normally smaller than between the ground and non-

ground point. Therefore, many filtering methods use the elevation difference 

threshold as the criteria to distinguish ground and non-ground points. 
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4. Ground Surface Homogeneity [29]. Ground surfaces are relatively continuous and 

smooth. Trees and buildings are the major non-ground features that should be 

removed from the measurements. However, trees are usually less smooth in 

texture than ground and building surfaces, and the morphological method can be 

utilized to remove them. 

2.4.2 Difficulties in LIDAR Ground Filtering  

LIDAR ground filtering methods rely on the different assumptions, which are 

based on the ground characteristics. However, when certain ground measurements are 

mixed with some specific non-ground objects, it would result in severe difficulties in the 

filtering. The following features are the major cause of the problems for some filtering 

methods: 

1. Low vegetation, such as shrubs. 

2. Complex constructions, such as bridges. 

3. Buildings with complex shapes and different sizes. 

4. Hill cut-off edges. 

5. Mixing of terrain types. 

6. Lack of reliable accuracy assessment. 

When the low vegetation measurements are mixed with ground surfaces, these 

low elevation measurements are prone to be identified as ground surfaces. It is difficult to 

distinguish these low vegetation measurements from variable terrain surface 

measurements, because the elevation change on the low vegetation measurements is very 

similar to the terrain variation. The distribution of these low elevation measurements 



28 
 

might help the filter to identify these low objects measurements by some methods, which 

are based on the physical and distribution characteristics, such as morphological methods. 

However, some artificial landscapes have vegetation mixed with terrain, which is more 

difficult for the filtering methods. 

Complex constructions, especially complex bridges, are also difficult for the 

filters. Because there are some ramps and parts of the bridges are connected with ground 

surfaces smoothly, it would make it very difficult for the filter to separate the objects 

from ground surfaces. 

Many filters are not able to handle hill cut-off edges well, because they normally 

have a sharp change on the slope or elevation, which is not normal on natural surfaces. In 

reality, there are some terrain types which have these physical characteristics, such as 

cliffs, shores and riverbanks [29]. They would make many slope-based filters mislabel 

the ground measurements as non-ground objects because their slopes are over the 

threshold. 

Large and variable sizes of buildings would be difficult for some filters, which are 

based on moving windows. This is because when the moving window size is too large, it 

would remove many ground surface points as well. 

2.5  Terrain Model Generation 

Traditional methods of LIDAR data visualization normally focus on two-and-a-

half-dimension visualization. There are several types of commercial software, which 

provide functionalities to build up 3-D models. The general idea is to combine LIDAR 

data with terrain photos, such as digital aerial photos, by geo-referencing those images 
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and picking up the texture of objects. Suddhasheel Ghosh and Bharat Lohani [15] 

proposed a framework to automatically generate 3-D models. It utilized some commercial 

and free software packages, such as Matlab, GCC, and SGI OpenInventor, to accomplish 

the whole task. It first used a utility FACET developed in MATLAB to generate plannar 

faces. Then, it used the utility TextureMap, which was developed using GCC, to pick up 

the texture from aerial photographs. Third, a utility FACET2IV developed in GCC was 

used to generate an inventor file with extension .iv based on the two previous steps’ 

results. Finally, the inventor file was displayed in the SGI OpenInventor. 

 
Figure 2-4 3-D model displayed in OpenInventor 
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Chapter 3   

OVERVIEW OF THE FRAMEWORK 

In this chapter, a general overview of our LIDAR processing framework will be 

shown. The LIDAR processing framework [9][54][55] proposed in this dissertation 

works like a sequential product line. Since the core research object is the LIDAR data, all 

the steps are involved with the data sequentially. From the processing order perspective, 

we can classify the framework into three major parts or steps. The first one is the data 

pre-processing step, which includes the data storage, data partition, data sparse, data 

removal and data interpolation. The second step is the data filtering step, which is the 

core procedure in the framework. It involves various kinds of filtering methods. The third 

step is the presentation step of the data, which includes generating 2-dimensional and 3-

dimensional images and models. We will overview each step in the following sections. 

3.1 Resampling Data 

The first step of our framework is a data preparation step for later processing 

according to its purposes. Due to the computer processing ability and the complexity of 

data sets, the original LIDAR data are too huge to store and process directly. We need 

some mechanism to organize the data in such a way that we can store them as relatively 

smaller pieces. In our framework, some data sparse and retrieval methods were dedicated 

for this purposes. Since there are erroneous and redundant data points in the original 

survey data, we have to remove these points for better filtering results in the later 

processing steps. The error data removal procedure is dedicated to this purpose. 
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Since there were huge amounts of data that contained both useful and non-useful 

information for the user’s requirement, one of the important works in the pre-processing 

step is to resample the data.  In other words, we have to shrink the data and get some 

representative points in a certain area, or retrieve a certain amount of data from a certain 

area. 

3.1.1 Sparse Data 

Since the average space of contiguous points in the survey area is very dense, we 

should select some points to represent a certain block of the area. The size of a certain 

block of area can be defined according to the application’s requirements. Normally, the 

block of area is in the shape of a rectangle, circle, triangle or polygon. The simplest shape 

is the rectangle or square grid. We can achieve a sparse data set after this operation. 

In order to acquire sparse data, we first have to acquire the boundary of the survey 

area from the data points’ file, and then split the original data into grids.  The size of the 

grid can be decided according to the terrain type of the survey area or the density the user 

needs.  If there is no significant difference of terrain type in the survey area, the size of 

the grid can be relatively large. Otherwise, it can be relatively small. 

More specifically, we can process the original data into sparse data by the 

following steps below (X, Y and Z are the three-dimensional value of the point): 

1) Scan all the data in the source file; acquire the number of the data points in 

the file. 

2) Get the boundary of the survey area by computing the minimum and 

maximum values of both X and Y among the data, and create a rectangular 
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boundary. We could also shift the boundary rectangle to some integer 

value, because it might make it easier and more uniform for the grid 

operation on the same data set in other processing. 

3) Split the whole area into grids with given width and length inside the 

boundary rectangle, while each point belongs to one grid. 

4) Scan each data point, and check which grid it belongs to; choose the one 

that satisfies certain criteria as the representative point of each grid. For 

example, we can choose the lowest elevation (Z value) point as the 

representative point of each grid. 

The sparse method is illustrated in Figure 3-1.  We can split the whole area into 

grids.  The coordinates of the left-bottom point is made by the minimum X, Y values or 

user-defined position; the coordinates of the right-top point is made by the maximum X, 

Y values or user-defined position.  The direction of X is horizontal in the figure, and the 

direction of Y is vertical.  We split the area into a number of columns along the X 

direction, and a number of rows along the Y direction.  Thus, each grid in the figure can 

be indexed according to its index of column and row.  The index of a grid can be counted 

as follows: 

Index of Grid = IndexY * Columns + IndexX 

IndexY refers to the index of Y’s direction, and IndexX refers to the index of X’s 

direction.  By using the index of the grid and the X and Y directions, we can scan all the 

data points, find the grid into which each point falls, and find the representative point 

among each grid. The points falling in the same grid have the same index of the grid, and 

the one with the lowest elevation in the grid can be the representative point of that grid. 
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We can also use other criteria to choose the representative point in a grid, such as the 

median point. The selection of the representative point relies on the application objective. 

 

 

Figure 3-1 Method for sparse data 

3.1.2 Data Retrieval 

From the users’ perspective, they may want to retrieve the data in a certain area to 

study; therefore effective data retrieval methods would be very helpful. In our framework, 

two data extraction methods are widely used. One is the grid-based method, and the other 

is the polygon-based method. The grid-based method is simple and fast, because it 

normally uses the existing partition grid to retrieve data. As we mentioned in the previous 
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section, the data set was partitioned into grids with given size of the grid. We can find 

each grid by its index, and can also extract a rectangle area by its bounding box, which 

can be decided by the index of the corner grid and the coverage along the X, Y directions. 

For some applications, it needs to retrieve a certain area of data with some buffer zone. It 

would be very easy to retrieve the buffer zone based on the indexed grids by collecting 

data from its neighboring girds. 

The other commonly used extraction method is the polygon-based method. A 

polygon boundary of the data is defined first, and then we can use some appropriate 

algorithm to retrieve the data in the polygon. There are many algorithms for testing 

whether or not a point is within a polygon. Many algorithms utilize area computations, 

and many others work only for convex polygons or polygons without concavities. 

 

 

Figure 3-2 Jordan Curve Theorem 
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The simplest algorithm for point-in-polygon testing is the Jordan Curve Theorem 

[16] (shown in Figure 3-2). This simply states that a line between a point known to be 

outside a polygon and the testing point will cross the polygon boundary an even number 

of times if the testing point is outside the polygon; and an odd number of times if the 

testing point is inside the polygon. 

This theorem provides solutions in all cases, except when the lines either touch a 

vertex or run parallel to an edge. The parallel problem is often significant. Because the 

outside points can simply be chosen as vertically above or below any given test point, 

many map lines run parallel to the axes. 

Thus, in these cases, we can process the polygon retrieval according to the 

following steps: 

1) Scan the vertex of the polygon, and acquire the number of vertexes. 

2) Scan the original data, and acquire the amount of the data. 

3) Get the boundary of the survey area by computing the minimum and 

maximum X, Y value among all the data. Create a reference point outside the 

boundary. 

4) Check each point in the data file, and state whether or not it is inside the 

polygon created by the vertex loaded in Step 1 by using the Jordan Curve 

Theorem. If it falls into the polygon, add it into the results. 

With the polygon extraction method, we can easily retrieve the data points in a 

certain boundary the user would like to study. 
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3.1.3 Error Points Removal 

During LIDAR data collection, there might be some abnormal points collected. 

For example, if the laser is shooting on a bird’s body, there would be a very high point 

collected. Sometimes, the laser would penetrate the window on the top of the roof and 

reach the floor in the building. Accordingly, it would have a very low point at the roof 

position. These abnormal points are normally outliers and have side effects on the later 

data processing, because they would introduce error terrain or non-terrain information 

and make mistakes in the results for most of the methods. Therefore, we have to use some 

methods to remove these points. In our framework, the mathematical morphology is used 

to filter out these outliers, and the detail of the method is discussed in the later chapters. 

3.1.4 Data Interpolation 

In our framework, the data set is normally split into rectangular tiles for further 

processing. By this way, we can partition a large survey area into smaller pieces to 

process, and they can be processed simultaneously. There might be some empty areas at 

the boundary or inside of each tile of data. We have to interpolate these empty areas in 

order to get a complete terrain surface to process. There are many interpolation methods 

available. From the effectiveness and efficiency perspectives, we would normally use the 

nearest neighbor method for grid-based data, because it is the simplest and fastest method 

for evenly distributed data. The Kriging method [25] is another good choice in our 

framework for generating surface or shade relief maps. Also, a priority interpolation was 

proposed in this dissertation, and the details of the method will be discussed in the later 
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chapters. Some commercial software, such as Surfer and ArcGIS, also offer good 

interpolation tools, which are used in our framework. 

Among all the tools, the gridding tool in Surfer was frequently used for the 

interpolation purpose. It offers many interpolation options and parameters, from which 

users can choose. Figure 3-3 shows the interface of the Surfer 9 gridding tool. There are 

many gridding methods from which to choose. The gridding results can further generate 

2-D or 3-D maps. 

 

 

Figure 3-3 Surfer grid tool 

3.2  Filtering Methods 

After the first-step processing, the original data set is partitioned into tiles with 

proper size. Outliers are removed, and the empty regions are interpolated according to 
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further processing needs. Then, we can start the core processing of our framework, which 

involves all kinds of filtering methods. 

There are so many filters that have been developed and studied in recent years. 

They are normally within the following categories: 

 Segmentation- and Cluster-based Filters 

 Morphological Filters 

 Directional Scanning Filters 

 Contour-Based Filters 

 TIN-Based Filters 

Every filter in each category has its pros and cons. We will discuss them in the 

later chapters. In this dissertation, we focused on morphological filters, and developed 

more algorithms on them. 

3.2.1 Progressive Mathematical Morphological Filter 

Zhang et al. [51] proposed a method to remove non-ground objects using a 

progressive morphological filter. This method is based on mathematical morphological 

filtering. In their method, the input LIDAR data set was gridded into mesh for 1-D or 2-D 

morphological filtering. An increasing window size was used during each morphological 

filtering step. The threshold of elevation difference in each filtering step was a variable, 

which is suitable for removing different sizes of non-ground objects. It is a very efficient 

and effective method. As long as the window size is greater than the non-ground objects, 

and there are enough ground objects with the window size as the reference points, those 

non-ground objects would be filtered out with the rational elevation difference threshold. 
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The algorithm was implemented in our LIDAR processing software [9] as one of the 

filtering tools. 

3.2.2 Cluster-based Progressive Morphological Filter 

Although the progressive morphological filter proposed by Zhang et al. [51] was a 

very efficient and effective filtering method, and it has very good performance on the flat 

terrain with all kinds of non-ground objects, it would make significant errors along with 

an increasing filtering window size on undulating terrain, such as mountains and sand 

dunes. In order to solve these problems, a cluster-based morphological filter was 

proposed in this dissertation, which would use a cluster mechanism to check filtered 

points and improve the progressive morphological filter when dealing with such terrain 

type mentioned above. The details of this method will be discussed in the later chapters. 

3.2.3 Trend-based Adaptive Morphological Filter 

In the progressive morphological filtering method proposed by Zhang et al. [51], 

input LIDAR data set was gridded into mesh for 1-D or 2-D morphological filtering. An 

increasing windows size was used during each morphological filtering step. The 

threshold of elevation difference in each filtering step was variable, which is suitable for 

removing different sizes of non-ground objects. It is a very efficient and effective method. 

As long as the window size is greater than the non-ground objects, and there are enough 

ground objects with the window size as reference points, those non-ground objects would 

be filtered out with a rational elevation difference threshold. However, the parameters of 

the filtering method are fixed under each filtering window size. This would work without 
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significant error when the terrain is relatively flat, but it would not work very well in an 

undulating terrain type, such as a mountainous area or on sand dunes. Therefore, we need 

some method to adaptively select the filtering parameters, such as filtering thresholds.  

A new mechanism of selecting morphological thresholds is proposed in this 

dissertation, which would make the filter more adaptive and automatic. This mechanism, 

called the trend analysis method, was introduced in the filtering procedure. Combined 

with the cluster analysis method, this method will help the filtering procedure 

automatically choose the threshold based on the analysis of local terrain characteristics 

during the progressive morphological filtering and make the filtering adaptive to different 

kinds of terrain types.  

The essentials of this adaptive filtering method include two major analysis 

methods for estimating the filtering threshold for each point. One is the cluster analysis 

method, and the other is the trend analysis method. The cluster analysis method is used to 

build up some collections of point clusters for each row or column of the grid data; while 

the trend analysis method is used to analyze the local surface trend for each row or 

column. If combining these two analysis methods, a threshold for each point under a 

certain window size can be calculated. Therefore, it would fulfill the adaptive filtering, 

which means it is not required for the filter users to have much experience and 

knowledge on the filtering method. Also, users do not need a lot of familiarity with the 

surveyed area. 
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3.3 Terrain Model Generation 

Terrain model generation is the processing step after filtering. This processing 

step is application oriented, because the model which would be created is based on the 

different application requirements. All the processing methods generally belong to the 

categories of object footprint detection, object separation, object recognition, contour 

map generation, and three-dimensional model generation. 

3.3.1 Object Footprint Detection 

After the filtering process, we can acquire two sets of data: one is ground point 

data, and the other is non-ground point data. In terms of different applications, we can 

either retrieve the bare-earth ground points to generate a terrain model, or extract the non-

ground objects to generate a 2-D or 3-D objects’ model.  
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Figure 3-4 Non-ground object points acquired from filtering process 

Figure 3-4 shows the non-ground object points acquired from the filtering process. 

To study the non-ground objects for many applications, the shape of the objects is the 

fundamental information for research. In terms of 2-D shape, we have to find the 

boundary of the object, which is called the object’s footprint. In our framework, data is 

partitioned into grids, and most of methods are normally grid based. Grid-based data is 

much easier for the footprint detection of objects. The general idea of grid-based object 
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footprint detection is illustrated in the following procedure: First, we start collecting an 

object’s points from any object point grid, and then expand the object’s points set by 

checking the connectivity of its neighbor girds. This procedure is to check whether the 

object point has any connecting neighbor points. If it has some neighbor grid points, they 

are collected into the current object’s points set. By expanding the object’s points set in 

this way, we can finally reach all the point grids of this individual object. For different 

terrain and object types, we can use a different neighbor grid strategy for expanding the 

grids, which can be eight neighbor grids or four neighbor grids. Eight neighbor girds 

means the eight surrounding grids, and four neighbor grids means only the top, bottom, 

left and right neighboring grids. After expanding the connecting grids, we can get every 

individual object’s points set. Then, we can detect the boundary of each individual object 

by continuing to search along its boundary. Finally, we can acquire the footprints of all 

the objects which are shown in Figure 3-5. 
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Figure 3-5 Footprints of non-ground objects 

After we get the footprints of non-ground objects, this information can be stored 

and displayed in multiple ways. One useful way is to store the footprints in an ArcGIS 

shape file. In our framework, we implemented the conversion of the footprints’ flat text 

file to an ArcGIS shape file. The polygon shape file in ArcGIS has several advantages.  

First, it not only stores the geometry shapes and point values, but also generates the index 
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file for quick searching. Second, it can be easily displayed and overlapped with other 

shape files, and images for better analysis. Third, it would be very easy to carry out geo-

spatial queries and operations. Figure 3-6 shows how the polygon shape file was 

displayed in ArcMap. 

 

 

Figure 3-6 Polygon shape file displayed in ArcGIS 
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3.3.2 Object Separation 

Since we can only separate ground and non-ground objects during the filtering 

process, the non-ground objects data set is a combination of all kind of objects filtered 

out. Different applications would need different kinds of objects, according to their 

research target; thus object separation is essential to many applications. Non-ground 

objects can normally be separated by their physical shapes. In terms of two-dimensional 

grid representations of LIDAR data, they can be separated by the coverage area and 

distribution. For example, to separate construction and vegetation, we can detect the 

objects’ coverage area and distribution of their covered grids. Because constructions are 

normally larger than individual vegetation, and have more regular coverage shape, we 

can separate them by these two aspects. However, in the urban area, the buildings are 

usually mixed with vegetation. It would be more difficult to separate them with 

expanding size of the objects, because the buildings and vegetation grids would be 

connected and mixed together. To solve this problem, Zhang et al. [53] proposed a 

solution, which uses the region-growing algorithm based on a plane-fitting technique. 

The general idea of this method is as follows. After the connected region formed by the 

building and vegetation objects were identified, and then the region-growing procedure 

starts from an inside point. A best-fitting plane for this inside point and its eight neighbor 

grids is calculated by using the least squares method. A plane in a three-dimensional 

space is defined by z = ax + by + c. The parameters (a, b, c) of the best-fitting plane can 

be calculated by minimizing the sum of squares according to deviations (SSD) as the 

following equation [53]: 
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min SSD = min (z − h )
( )∈

 

where M is a set for the current point and its neighbors, and zk  and hk are 

observed and plane-fitted surface elevations, respectively. The region-growing 

segmentation method would be carried out in such a way that it starts from the seed point 

of connected non-ground objects. The connected non-ground object points would be 

sorted in ascending order according to the SSD. The first seed point is the point with the 

minimum SSD. The neighbors of a seed point is judged by whether it can be collected 

into the region-growing set based on the plane-fitting technique and predefined threshold 

hT. If the elevation from the candidate point to this plane is less than the predefined 

threshold, it would be collected into the current region-growing set. This process is 

continued until no more points can be collected into the current region-growing set. Then 

we can start this procedure from those unchecked points in ascending order of their SSDs 

and repeat the region-growing procedure until all points are segmented. 

3.3.3 Object Recognition 

After the non-ground objects are segmented, individual objects need to be 

separated in the following steps. First, patches with a small area are compared with the 

predefined threshold to separate small coverage objects, such as patches of vegetation. 

Then, the small patches, such as chimneys, water tanks, and pipelines of buildings 

removed in the previous step, would be recovered based on whether they are completely 

surrounded by large patches. Third, isolated boundary points, which refer to points 
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without any inside neighboring points, would be removed. Finally, the remaining patches 

would be merged in terms of their connectivity.  

After the building objects are identified, a raw footprint can be derived by 

connecting the boundary points. Since there would be too many details and too much 

zigzag noise along the boundary of the object, we need some way to reduce the noise of 

the footprint and make its shape more regular. There are several methods that have been 

developed to reduce the vertices of a noisy raw building footprint. Among them, the 

Douglas-Peucker algorithm [13] is a simple and effective one. The general idea of this 

algorithm is that it generalizes lines by forming a line connecting start and end points, 

and then recursively selects a left point with a largest distance to the line until a 

predefined distance threshold is reached. The Douglas-Peucker algorithm was 

implemented in our framework. 

3.3.4 2-D/3-D Map Generation 

For various analysis and visualization purposes, the LIDAR data can be shown in 

different 2-dimensional or 3-dimensional maps, such as contour maps, shade relief maps, 

surface maps, etc. There are many commercial software packages that support contour 

map generation. ArcGIS and Surfer are very powerful software for that. We can use them 

to draw colorful 2-D or 3-D maps with many customized styles, which would be very 

helpful for application users to analyze and visualize the data. Figure 3-7 shows a 3-D 

surface map of original data. 
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Figure 3-7 3-D surface map 

After the LIDAR data was filtered according to different application requirements, 

variant style maps can be generated with the bare-earth or non-ground objects data. 

Figure 3-8 shows a shade relief map of the filtered data set. 
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Figure 3-8 Shade relief map 

3.4 Summary 

In this chapter, the common components and methods of LIDAR filtering in our 

framework have been discussed and reviewed. It involves the data pre-processing, 

filtering and model-generation steps, which gives a general picture of LIDAR processing. 

In the later chapters, we will focus on some detailed issues of LIDAR filtering, such as 

interpolation methods, filtering methods, and parameters’ selection of the methods. 
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Chapter 4   

OUTLIER REMOVAL AND DATA INTERPOLATION 

In our LIDAR processing framework, the error point removal and data 

interpolation step is very critical to the filtering step, because it is a preparation of data 

for different kinds of filters. This processing step would affect filtering results 

significantly. In this chapter, several outlier removal and interpolation methods used in 

our framework are discussed in detail. 

4.1 Outlier Removal 

During LIDAR data collection, there are some abnormal points collected, such as 

extremely high points caused by the laser shooting at power lines, or a bird’s body, as 

well as extremely low points caused by the laser penetrating the building’s window and 

reaching the floor in the building. These points are all error points for our processing, and 

are normally treated as outliers. Since these outliers would bring more noise and errors in 

our filtering processing, we have to remove them for a certain purpose. 

4.1.1 Morphological Outlier Removal 

The outliers are normally extremely high or low elevation points and sparsely 

distributed in the collected data. Since these unwanted points would affect the filtering 

results, we had better remove them first. Mathematical morphology is a good choice to 

remove these points. Since these outliers have significant elevation difference with 

nearby points, we can use a small window size (e.g. 1 to 3 unit grid sizes) to filter out 

these outliers. When filtering out extremely high outliers, we can use open operation, 



52 
 

which refers to erosion and then dilation operations, and when filtering out extremely 

low outliers, we can use close operation, which refers to dilation and then erosion 

operations. Experiments show that the outliers can be effectively removed by using these 

methods. 

4.2  Interpolation Methods 

Since many filter methods are grid-based methods, the data has to be partitioned 

and stored in the grid structure. The grids that covered the whole data set could have 

some empty ones that no data points fall into. For many grid-based filtering methods, 

these empty grids need to be interpolated. There are several interpolation methods that 

are widely used in our framework. They will be discussed in the following sections. 

4.2.1 Grid-Based Nearest Neighbor Interpolation 

The Nearest Neighbor Interpolation method is one of the simplest interpolation 

methods. It just uses the closest point’s elevation value to interpolate the empty grid, and 

has relatively less computation time. In our framework, most of the methods are grid 

based. It would make most of the methods easier to implement and faster to execute. 

When using a square grid in the nearest neighbor interpolation, we can save tremendous 

computation time on calculating distance, while searching for the nearest neighbor 

according to the grid. The algorithm of this interpolation is simple and straightforward, 

because we just need to search for the nearest neighbor along each surrounding layer’s 

grids from the inside to outside. If multiple points are found in the same surrounding 

layer, we could add some other criteria to choose one for the interpolation. Figure 4-1 
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shows the searching procedure of this interpolation. A search for the nearest neighbor 

point will be carried out along the grids in each layer from the inside to outside. If the 

nearest neighbor point in one layer was found, we need to check one more outer layer, 

because there might be a nearest neighbor point existing in the adjacent outer layer, but it 

would not exist outside of this outer layer. 

 

Figure 4-1 Grid-based nearest neighbor interpolation 

4.2.2 TIN-Based Interpolation 

TIN (Triangulated Irregular Network)-based interpolation is a widely used 

interpolation method, which is normally based on Delauney Triangulation [4]. Delauney 

Triangulation is a kind of triangulation of the convex hull of points in the diagram, in 

which every circumcircle of a triangle is an empty circle. Delauney Triangulation can be 
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used to generate the TIN model, which represents a surface by contiguous, non-

overlapping triangles (shown in Figure 4-2). Delaunay Triangulation has several 

advantages over other triangulation methods, as shown below: 

 A convex equilateral formed by two adjacent triangles has a greater 

minimum internal angle, thus reducing potential numerical precision 

problems created by long, skinny triangles. 

 It ensures that any point on the surface is as close as possible to a node. 

 The triangulation is unique and independent of the order in which the 

points are processed. 

 

Figure 4-2 Delaunay triangulation 

By adding each data point, the triangulation procedure would generate a set of 

triangles, which are satisfied with the geometry properties of Delauney Triangulation. A 

TIN model is formed by these triangles’ facets. Any point can be added later into the TIN 

model and form a new TIN. The triangulation procedure will check which of the triangles’ 

circumcircle the new added point would fall into, and those triangles would be destroyed 
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and new triangles would be formed with the new point and those triangles’ edges. The 

triangulation facets made the TIN model a good way to estimate the elevation of any 

points on a terrain surface, which can be used to interpolate points as well. 

4.2.3 Kriging Interpolation 

Kriging interpolation [25] is a group of geostatistical methods used to interpolate 

the value of a random field. kriging is mathematically closely related to regression 

analysis; it uses variogram to express the spatial variation, and it minimizes the error of 

predicted values, which are estimated by spatial distribution of the predicted values. 

There are many kriging methods that are used nowadays. Many of them are commonly 

used in a variety of disciplines, such as environmental science, remote sensing, 

hydrogeology, mining, and natural resources. The Classical methods of kriging are 

simple kriging, ordinary kriging, and universal kriging. They all have their own 

assumption as follows: 

 Simple kriging assumes a known constant trend: . 

 Ordinary kriging assumes an unknown constant trend: . 

 Universal kriging assumes a general polynomial trend model, such as the 

linear trend model. 

 

Kriging interpolation is commonly used in our framework for generating 2-D/3-D 

models. For example, many types of 2-D/3-D map model generation need the data to be 

interpolated first. Kriging interpolation often offers very good results for map generation. 
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4.2.4 Grid-Based Priority Interpolation 

In our framework, many filter methods are grid-based methods. Some special 

interpolation methods would help the filtering methods and benefit from their advantages. 

A grid-based interpolation method, called priority boundary interpolation [11], was 

proposed to interpolate empty grids, which would help improve the morphological filters. 

Since the morphological filters use nearby grid points within the filtering window to 

carry out the filtering operations (e.g. open and close operations), the interpolation of 

empty grids closed to the non-ground objects would affect the results significantly. If 

these empty grids were interpolated by the nearby ground points rather than objects 

points, it would make the filter easier to remove the non-ground objects. Otherwise, if 

these empty grids were interpolated by the non-ground points, it would make the non-

ground points’ area bigger and require a larger filtering window size to filter out these 

non-ground points. Especially when we use the morphological filter repeatedly on the 

results generated by it, it would create more empty grids around non-ground points. 

Therefore, how to interpolate them to serve the next round filtering would be critical to 

the filter results. Due to this reason, we need to find a solution to interpolate these empty 

grids with some specific purpose. A prioritized interpolation method was introduced for 

this purpose. Figure 4-3 shows why we need the prioritized interpolation method to filter 

out the high elevation objects in the red rectangle box. The red dots in the box represent 

the high elevation objects from previous filtering results. When doing the interpolation of 

the empty grids around the high elevation objects, we had better use low elevation points, 

which are in blue dots, to interpolate the empty grids toward high elevation objects. In 
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this way, we can make the interpolation from low boundary points toward the objects, 

which would benefit from filtering out the high elevation objects. 

 

Figure 4-3 Priority boundary interpolation sample data 

The essential idea of this priority boundary interpolation method is as follows. 

First, the empty grids would be identified as separate grid sets by expanding connected 

empty grids. Second, after these connecting empty grid sets are found, each of these 

empty grid sets will be interpolated, one after another. For each empty grid set, all 

boundary grids can be detected. The boundary grids can be separated as outside boundary 

grids and inside boundary grids, according to the spatial relationship with their 

connecting empty grids. Then, the empty grid set can be interpolated according to the 

defined priority rule. The priority rule defines in what order the interpolation will be 
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carried out. The priority rule reflects the purposes of the interpolation for the specific 

filtering methods. For example, if the goal is to interpolate empty grids as low as possible, 

which is close to the elevation of nearby ground points, the boundary points can be stored 

in an ordered queue according to the ascending elevation, and the empty grids can be 

interpolated along this order. The newly interpolated empty grids are treated as the new 

boundary points, because they form the new boundary of the empty grids. Each 

interpolated point is assigned a priority value based on its elevation, and inserted into the 

priority queue. The used boundary points are removed from the priority queue, and are 

not used in the future interpolation. By this means, the boundary points of current empty 

grid sets can be maintained in the priority queue until all the empty grids are interpolated. 

Since the proposed filter is based on the progressive morphological filter [51], the 

input data has to be gridded with a certain grid size and interpolated for the empty grids 

with some interpolation method. Each grid chooses a representative point from the points 

within the grid, and the filter treats each grid as one point. The filtering status of all the 

grids can be represented by a mark matrix. Each unfiltered point grid’s status will be 

initialized with unfiltered point’s mark (“0” or “-7777”) and stored in the mark matrix. “0” 

means real, unfiltered points from the data set, while “-7777” refers to the interpolated 

unfiltered points [11]. 

Nearest neighbor interpolation was used in the first pass morphological filtering. 

The proposed priority boundary interpolation will be used after the first pass filtering. 

The second pass of morphological filtering is also based on the progressive 

morphological filter. During each step of progressive morphological filtering, a moving 

window will be used to filter non-ground objects. The point will be classified as a non-
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ground point and marked with the current filtering window size value. A mark matrix is 

used to record the filtering status for data grids. Each grid point’s filtering label will be 

updated and stored in the mark matrix during filtering. 

The initial mark matrix contains only two kinds of values, which are either “0” or 

NULL mark value (“-9999”), which represent the empty grid. After interpolation, the 

empty grids are interpolated by a certain method, and the mark values are set as the 

interpolation value (“-7777”). If the initial mark is not changed until the end of the 

filtering process, the point with “0” or interpolation mark value indicates the point was 

classified as a ground point. 

The algorithm description of this proposed priority boundary interpolation is as 

follows: 

Algorithm description: PQBoundInterp 
INPUT:  

1.An array of input data points: pts 
2.Minimum x, y coordinates: min_x, min_y 
3.Grid size: cellsize 
4.Minimum connected empty girds: minConn 

OUTPUT:  
An interpolated array of points: interpPts 

1. grdPts ß GridPts(pts, min_x, min_y, cellsize) // Grid data set 
2. Initialize mark matrix with “0” or “-9999” marks 
3. connMark ß findEmpConn(mark); 
4. for i = 1 à size(connMark) 
5. [row col] ß find (connMark == i); // Find the index of all the empty grids in set i 
6. If size([row col]) < minConn, then continue; 
7. edgeIndex ß findBoundGrid(mark, [row col]);   
8. pq ß CreatePQ(edgeIndex); // Insert each edge grid into a priority queue based on 

the z value, lower z value has higher priority 
9. while the pq is not empty 

10. edge ß PopPQ(pq); // Pop the first element in the priority queue 
11. NBGrids ß interpolateNB(edge); // Interpolate its neighboring empty grids 

with connecting boundary grids points 
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12. PushPQ(NBGrids, pq); // Insert interpolated empty grids into the boundary 
grids priority queue 

13. end while 
14. end of for loop of all steps 

 

Algorithm description: findEmpConn 

INPUT: 
Mark matrix: mark 

OUTPUT: 
Mark matrix for empty grids sets: connMark 

1. Initialize connMark matrix with Non_Empty marks “0” // connMark matrix has the 
same size as mark matrix. 

2. setID = 0; // Initialize the empty grids set ID 
3. (rows, cols) ß size(mark); 
4. for i = 1 à rows 
5. for j = 1 à cols 
6. if (mark(i,j) == -9999 && connMark(i,j) == 0) 
7. setID ß setID+1; 
8. ptsQueue ß enque(pts(i,j)); 
9. while (ptsQueue is not empty) 

10. pts(i,j)ß deque(ptsQueue); 
11. connMark(i,j) = setID; 
12. for pts(m,n) in 8 neighboring grids of pts(i,j)  
13. if (mark(m,n) == -9999 && connMark(m,n) == 0) 
14. ptsQueue ß enque(pts(m,n)); 
15. end if 
16. end for 
17. end while 
18. end if 
19. end for j 
20. end for i 

 

As in the algorithm description of PQBoundInterp, the input data will be gridded 

first with a predefined minimum x, y coordinates and cell size (Line 1). The mark matrix 

is initialized with “0” or “-9999” marks. “0” represents the real data point, while “-9999” 

refers to the empty grids. In Line 3, findEmpConn procedure will find all the empty grids 

and separate them into a set of non-overlapping connected grid sets. As long as one 

empty grid has at least one empty neighbor (either in a four or an eight neighborhood 
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area), the current empty grid set will be expanded until no more connecting empty grids 

can be found. When checking connecting grids, four or eight neighboring grids can be 

searched. The searching directions are shown in Figure 4-4. In our own experience, 

searching four neighboring grids could sometimes avoid the inclusion of some unrelated 

empty grids in the expanding process. The findEmpConn procedure uses a connMark 

matrix to label each grid’s property. The connMark matrix has the same dimensions as 

that of mark matrix. All the grids are initially labeled as “0” (meaning unprocessed grids) 

in connMark matrix, while each empty grid will later be labeled with its set ID. 

 

Figure 4-4 Four neighboring grids vs eight neighboring grids 

All the connected empty grids will be collected into the same set and assigned a 

unique ID number. After this empty grid set searching step, each empty grid will be 

assigned a positive group ID number and stored in the mark matrix connMark. Grids with 

the same ID number form an empty grid set. The non-empty grids in the connMark will 

still have their initial value “0”. Each empty grid set can be easily extracted by its set ID 

number. In Line 6, the total number of empty grids in each set is compared with a 

predefined threshold minConn to determine whether this empty grids set needs to be 

interpolated. User can use this threshold to eliminate those empty grid sets that are too 

small. If the minConn is 0, it will interpolate all the empty grid sets. Only the sets in 

which the number of connected empty grids is great than the minimum threshold will be 
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interpolated. This would save computing time for interpolating small empty grid sets 

which are formed by filtering small non-ground objects in the first pass. These areas are 

not the targets for filtering in the second pass. 

In Line 11, interpolateNB is the interpolation procedure, which can use a different 

formula to calculate the interpolation value. The average elevation of neighboring edge 

points is a good choice for the interpolation value. 

The procedure of the interpolation is illustrated in Figure 4-5. The orange grids 

are the initial outside-boundary grids, while the white grids are empty grids. The blue 

grid is the lowest point grid in the initial boundary grids. The red grids are the non-

ground object remains with high elevation, which are surrounded by the empty grids. The 

green grids are the empty grids adjacent to the lowest grid, which is blue. Starting from 

the blue grid, the two adjacent empty grids in green can be interpolated; then, the blue 

grid will be removed from the priority queue and the two interpolated grids will be 

inserted into the priority queue as the new boundary grids. The lowest grid will be 

continuously used and removed from the priority queue and the above procedure will be 

repeated until there is no boundary grid left in the priority queue. By this means, the 

empty grids are interpolated from the lowest grids to the highest, and the non-ground 

objects that remains (red grids in the Figure 4-5) surrounded by the empty grids might 

only affect the interpolation values of its adjacent grids. If the empty grids near where the 

non-ground object remains were interpolated by the lower neighboring grids in the 

priority queue, the non-ground object remains would not be used for interpolation. This is 

very useful to filter out non-ground object remains with a small filtering window size in 

multiple passes. 
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Figure 4-5 Empty grids interpolation from the lowest to the highest 

The priority queue data structure is used in this algorithm, which lowers the time 

complexity and increases the processing speed. Since the time complexity of generating a 

priority queue initially is O(N), and the time complexity of insertion and removal are 

O(logN), and the time complexity of searching for the connecting empty grids’ group is 

O(N), the time complexity of this algorithm is O(N). The space complexity of this 

algorithm is O(N), because the space complexity the of mark matrix and priority queue 

are O(N).  

The computing time of this method is much greater than the average elevation 

method, because we have to process interpolation in an order of reference points. In order 

to make this method more efficient, we can use a priority queue data structure to store the 

boundary and reference points. First, we need to insert all the boundary grids into the 

priority queue, and this priority queue is ordered by ascending elevation. We pop up the 

first element from the priority queue to interpolate its adjacent grids, and push 
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interpolated adjacent grids into the priority queue. By this means, we can keep the lowest 

elevation grid at the top of the priority queue, which is the key to making sure the empty 

grids are interpolated from the lowest to the highest. Also, a priority queue is a very 

efficient data structure to store and access the ordered data, because its time complexity is 

O(logN) in insertion and deletion operation. 

4.2.5 Multi-Pass Morphological Filtering 

The grid-based priority interpolation method is a special and dedicated 

interpolation method to interpolate the empty grids formed by some intermediate filtering 

result. This interpolation method can be used for a multi-pass filtering strategy. In our 

processing framework, a multi-pass morphological filter was proposed to process the data 

set in multiple rounds. 

The mathematical morphological filtering method is one of the most widely used 

techniques in many filters. Among these filters, the progressive morphological filtering 

[51] is a very effective and efficient method to separate ground and non-ground objects 

from LIDAR data. More specifically, it can successfully filter and extract non-ground 

objects from relatively small to intermediate sizes, including trees, vegetation, and small 

size buildings. The progressive morphological filter can achieve ideal results on many 

terrain types, especially urban area with relatively small non-ground features. However, it 

is not working very well in the complex urban areas with large non-ground objects, such 

as large buildings and constructions. This could cause problems to some urban planning 

applications (e.g. flood zone planning, transportation planning) and location services, in 

that the filtering results cannot provide accurate boundary and elevation information for 
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large non-ground objects. The cause of this problem is that it would remove ground 

terrain objects along with filtering large size non-ground objects when using a large 

filtering window size. Especially in terrains with untypically low ground features such as 

channels, it could cause the cut-off problem. This problem could also be observed in the 

relatively flat terrain with complex non-ground features, if the data set contains large 

buildings or constructions. This is a common problem for morphological filters when the 

filtering window size is increased to a certain level. 

Zhang et al. [51] use a moving filter window from small scale to large scale to 

filter out non-ground features. The main operation in this progressive morphological filter 

is the open operation. The elevation difference between the surface generated before and 

after the open operation would be compared with a predefined threshold for each filter 

window size. A point would be removed if its elevation difference is over the threshold. 

One of the common problems for morphological filters is the cut-off problem when the 

filtering window size is increased to a certain level. This is an intrinsic problem from the 

morphological filtering methodology. The morphological filter is a very effective 

filtering method on many terrain types, especially on flat terrains. However, it could 

cause the cut off problem on some flat terrains with large non-ground features or 

relatively low ground features. In order to avoid the cut-off problem on this kind of 

terrain, the window size used must be kept sufficiently small. However, this could cause 

incomplete filtering of large non-ground objects. To balance between over-filtering and 

under-filtering, a multi-pass filter is proposed to remove non-ground features in multiple 

rounds under relatively small window sizes so as to prevent the ground points being 

removed after the filtering window size is increased to a certain level. The priority 
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boundary interpolation method will be used to interpolate the intermediate result for 

further filtering of the remains of large non-ground features. The experiments show that 

the proposed method can achieve promising results, while morphological filter itself has 

difficulty on these complex terrain data sets [24][29]. 

In order to avoid the cut-off problem on some complex terrains, only relatively 

small filtering window sizes can be used. Because when the filtering window size is 

increased to a certain level, the cut-off problem is almost inevitable. Even with some 

local spatial smoothness justification [10], the morphological filter could still cause the 

cut-off problem on some complex terrains. In this case, a smaller filtering window size 

has to be used. However, it could cause incomplete filtering of some large non-ground 

features. Therefore, a multi-pass morphological filtering strategy is proposed to utilize 

relatively small window sizes to filter the data in multiple rounds so as to avoid the cut-

off problem. And the proposed priority interpolation method will be used to interpolate 

the intermediate filtering result for a second pass of filtering in order to remove the 

remaining large non-ground features that cannot be removed with small window sizes. 

The general idea of this filtering process is as follows. First, the progressive 

morphological filter is used to filter the data set in the first pass with relatively small 

filtering window sizes, which could prevent some ground terrain points from being 

removed under large filter window size. Second, the priority boundary interpolation is 

performed to interpolate the empty grids that represent the filtered non-ground areas 

surrounding the remaining areas of large non-ground objects. Then, the second pass of 

morphological filtering will use a series of filtering windows from large to small sizes for 

removing the remaining large non-ground objects. If there are still non-ground features 
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from large non-ground objects, this second pass filtering might be carried out until the 

remaining ground features are completely removed. 

Since the proposed multi-pass filter utilizes the progressive morphological 

filtering [51] in each filtering pass which is based on grid data set, the input data set need 

to be gridded before processing. A representative point is chosen from the points within 

each grid, and the filter treats each grid as one data point. The filtering status of all the 

grids can be represented by a mark matrix. Each unfiltered point grid’s status will be 

initialized as either a real unfiltered point from the data set, or an interpolated unfiltered 

point. 

The general procedure of the proposed multi-pass filter is as follows. 

1. outputData ß MorphFilter(inputData, window_size_set1, threshold_set1); 

2. interpData ß PQBoundInterp(outputData); 

3. outputData ß MorphFilter(interpData , window_size_set2, threshold2); 

In Step 1, the procedure MorphFilter will carry out the progressive morphological 

filtering [51] on the input data with a series of window sizes and thresholds. The filtering 

windows are from small to large sizes, in ascending order. The elevation difference 

threshold series is pre-defined by the user. In this step, it is the same operation as the 

progressive morphological filtering. One critical parameter is the maximum filtering 

window size. In order to prevent large ground features from being removed, the 

maximum filtering window has to be limited to a certain level, which is determined by 

the ground terrain characteristics. A half window size is used as each step’s filtering 

window size parameter. The half window size is the number of grids extending to the left 

or right from the current grid. Commonly used maximum half filtering window sizes for 
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1 meter cell sized grid data set are usually less than 20, and thus the full window sizes are 

less than 41. The maximum filtering window size is determined by the resolution of the 

grid data set and terrain features. Figure 4-6 shows the original complex data set with 

varying sizes of non-ground features (red areas). Since there are several large size 

buildings in the data set, only the use of a sufficiently large filtering window can 

completely remove them. However, a large filtering window could remove some ground 

surface points as well in areas not so flat or in cases of low elevation artificial 

constructions (e.g., channels). In order to avoid the cut-off problem when using the 

morphological filter, the filtering window sizes have to be limited under a certain level. 

Figure 4-7 shows the filtering result when using the maximum filtering window size 20 

on a 1-meter cell size grid data. The result shows that there are a substantial amount of 

non-ground points from large buildings failed to be removed after Step 1, shown as the 

red areas in the green rectangles. Figure 4-8 shows the filtering result when using the 

maximum filtering window size 80 on a 1-meter cell size grid data. The result shows that 

it has significant cut-off problem in red rectangle area caused by large filtering window 

size. To avoid the cut-off problem under large filtering window, relatively small filtering 

window need to be used. However, the filtering remaining from large non-ground objects 

need to be handled. 
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Figure 4-6 The original data set 

 
Figure 4-7 The first pass filtering result 
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Figure 4-8 Filtering result with cut-off problem caused by large filtering window 

 
Figure 4-9 The result of applying the nearest neighbor interpolation 
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In order to further remove the remaining non-ground features, a second pass 

filtering has to be carried out. However, the empty grids resulted from the removed areas 

from Step 1 have to be interpolated, before the second pass filtering can be carried out. 

Since the goal of the second pass filtering is mainly to remove those large non-ground 

features, a good interpolation method is critical to the filtering. In the first pass filtering, a 

regular progressive morphological filtering is used in which the nearest neighbor 

interpolation method is used before filtering is applied. However, using the brute force 

nearest neighbor interpolation is likely to enlarge the remaining non-ground object area 

significantly and unnecessarily, forcing the use of a larger window size which would 

defeat the whole purpose. Figure 4-9 shows the result of directly applying the nearest 

neighbor interpolation without any constraint. As can be gleaned from this figure, the 

high elevation points from the boundary of remaining non-ground objects are undesirably 

involved in the interpolation. Consequently, in the interpolation result, the sizes of almost 

all the non-ground objects are unnecessarily enlarged in a significant way, causing 

potential cut-off problems to the second pass filter. Therefore, we must minimize the 

participation of high points in the interpolation, and use as many low elevation points in 

vicinity to interpolate empty grids as possible. A more sophisticated and dedicated 

interpolation method (in Step 2) is necessary for the second pass filtering (in Step 3). This 

interpolation and second pass filtering can be carried out repeatedly until all the non-

ground features were successfully removed. 

The second pass filtering in the proposed filtering strategy is also based on the 

progressive morphological filter. The filtering window sizes and thresholds are different 

from that of the first pass morphological filter. Since the targets of the second pass 
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filtering are the remaining points from the large non-ground objects, the filtering window 

sizes are applied in the descending order. The starting filtering window size is normally 

the same as the last filtering window size in the first pass, which is also the largest 

filtering window size in the first pass. Then, the window size is reduced and another 

round of filtering is performed. The elevation difference threshold for each window size 

would be relatively large, because it is used for filtering out the remaining large non-

ground objects. The elevation thresholds for this purpose are normally much higher than 

that of each window size in the first pass. 

The second pass filtering result is shown in Figure 4-11. The result shows that 

almost all the remaining large non-ground objects have been successfully removed from 

the interpolation result shown in Figure 4-10. The filter window sizes series is 20, 16, 8, 4, 

2, and 1. The elevation difference threshold used in all rounds is 2.0 meters. 
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Figure 4-10 Priority boundary interpolation result 

 

Figure 4-11 The second pass filtering result 
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4.3 Summary 

In this chapter, some common outlier removal and LIDAR data interpolation 

methods have been discussed. These methods provide good solutions for the pre-

processing of the data filtering and model generation.  

A special and dedicated interpolation method, called Grid-based Priority 

Interpolation method, was proposed to interpolate the intermediate result for further 

removing the filtering remains of large non-ground features. This interpolation method 

was used in the proposed multi-pass morphological filter to process some terrain with 

large non-ground features. The experiments show that the proposed method can achieve 

promising results, while the morphological filter itself has difficulty on these complex 

terrain data sets. 

In the later chapters, we will mainly focus on the filtering methods and their 

parameters’ selections, which are the most critical issues of LIDAR processing. 
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Chapter 5   

CLUSTER-BASED MORPHOLOGICAL FILTER 

In this chapter, a proposed analysis and filtering method called Cluster-Based 

Morphological Filter is discussed in detail [10]. LIDAR is a widely used technology to 

measure terrain properties and topographic mapping nowadays. Many filtering methods 

have been developed to process the LIDAR data to generate a bare earth digital terrain 

model. Among these methods, mathematical morphological filtering is a very effective 

and efficient method to separate ground and non-ground objects from LIDAR data. It can 

achieve ideal results in the flat terrain and undulating terrain with small non-ground 

objects, while it does not work very well in the undulating terrain with large non-ground 

objects, because it would remove ground terrain objects along with filtering large size 

non-ground objects when using a large filtering window size. In this chapter, a cluster 

analysis and post-processing method is proposed to improve the morphological filtering 

and make it work better on more terrain types. Since there are still some non-ground 

object remains left after this cluster-based morphological filtering, some post-processing 

needs to be carried out to achieve ideal results. A dedicated interpolation method was 

combined with the post-processing of cluster-based progressive morphological filtering. 

The filtering results demonstrate that the proposed method is able to reserve terrain 

ground objects and remove large non-ground objects when the morphological filtering 

window size increases to a certain level. This process makes this method more effective 

on more terrain types, which cannot be handled well by other filtering methods. 
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5.1 Progressive Morphological Filter Review 

Zhang et al. [51] proposed a method to remove non-ground objects by using a 

progressive morphological filter. In their method, an input LIDAR data set was gridded 

into mesh for 1-D or 2-D morphological filtering. An increasing filtering window size 

was used during each morphological filtering step. The threshold of elevation difference 

in each filtering step was variable, which is suitable for removing different sizes of non-

ground objects. It proved to be a very effective and efficient method under certain sizes 

of filtering window on different terrain types, especially on the flat terrain type. As long 

as the window size is greater than the non-ground objects, and there are enough ground 

objects as the reference points within the window, those non-ground objects are filtered 

out with the rational elevation difference threshold. However, this method could make 

significant errors, along with increasing filtering window size on undulating terrains, 

such as mountains and sand dunes. This is the case because in the progressive 

morphological filtering process, the only criterion of identifying non-ground objects is 

based on the elevation difference between the original elevation value and the processed 

value returned by open operation, which includes erosion and dilation operations. This 

would not result in significant errors when the window size is small, because there are not 

many terrain variations in a small area. However, when the window size increases to a 

certain level which covers a large area that has significant variations on the terrain, the 

filtering process will result in categorizing some ground points as non-ground objects, 

because the elevation difference is above the threshold after open operation. As shown in 

Figure 5-1, some non-ground objects are on the mountainous surface, which has large 

variations on the terrain. The terrain surface points are shown in Figure 5-2; however, the 
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progressive morphological filtering will remove some ground points when the filtering 

window size increases to a certain level, which is shown in Figure 5-3 and Figure 5-4. 

Ground objects in the red rectangle box of Figure 5-3 would be filtered out as a flat 

surface, which is shown in Figure 5-4. 

Since the elevation difference threshold in a large window size which covers a 

large area is not able to completely distinguish ground and non-ground objects, some 

other criteria have to be introduced to keep those ground points that represent the terrain 

surface not filtered along with non-ground objects. In this chapter, we therefore proposed 

a cluster-based method to help progressive morphological filtering make better results on 

the undulating terrain area. 

 

Figure 5-1 Undulating terrain 
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Figure 5-2 Terrain ground surface 

 

Figure 5-3 Ground surface points 
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Figure 5-4 Ground surface after filtering 

5.2 Cluster-Based Morphological Filter 

A new mechanism of justifying ground and non-ground points is proposed to 

improve the morphological filter in this chapter. This mechanism, called the cluster 

analysis method [10], is introduced in the filtering procedure. Combined with the 

progressive morphological filter [51], this method will help the filtering procedure justify 

the ground and non-ground points identified from the progressive morphological filter 

and make the filtering results more accurate on a greater variety of terrain types. Since 

the progressive morphological filter would generate more errors in some undulating 

terrain such as mountainous areas, especially if there are some relatively large size non-

ground objects in the terrain, such as large buildings or constructions, the progressive 

morphological filter would remove more ground points along with filtering large size 
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non-ground objects. The key to reducing the errors is to distinguish what kind of point 

removed during the filtering process is from large non-ground objects and what kind of 

point is from the ground surface.  

The essential aspect of the cluster analysis method is to build up some collections 

of ground object point clusters for each row or column of the grid data before each 

filtering step. These collections of clusters will be used to justify the filtering results of 

the corresponding row or column after each filtering step. The clusters of each row or 

column are actually the candidate ground surface before each filtering step, some of 

which could be identified as non-ground objects in the following filtering steps, but they 

are not known until the final filtering step. If they are indeed ground objects, they would 

be preserved at the end of the filtering. Otherwise, they would be filtered out as non-

ground objects eventually. After each filtering step, some non-ground objects could be 

identified and labeled with the filtering window size of the current filtering step. These 

identified non-ground objects will be justified by the clusters generated at the beginning 

of each filtering loop. If certain criteria are met, these identified non-ground objects will 

be labeled back to ground objects. That is how the cluster analysis method collaborates 

with the filtering procedure. 

5.2.1 Cluster Generation 

Since the proposed cluster analysis method and the morphological filter are both 

based on grid data set, the input data set need to be gridded before processing. Each grid 

chooses a representative point from the points within the grid, and the filter treats each 

grid as one point. The filtering status of all the grids can be represented by a mark matrix. 



81 
 

Each unfiltered point grid’s status will be initialized with unfiltered point’s mark (“0” or 

“-7777”) and stored in the mark matrix. “0” means real, unfiltered points from the data 

set, while “-7777” refers to the interpolated unfiltered points. 

To generate clusters for each row or column of the data grid, the data points will 

be scanned from the first to the last in each row or column, and unfiltered points with “0” 

or “-7777” marks will be collected into different clusters based on the elevation 

difference between consecutive unfiltered points. The method for collecting unfiltered 

points into the same cluster will be demonstrated on the row direction as follows. It 

would be working for the column in the same way. From the first unfiltered point of a 

row, the next unfiltered point is continuously searched and collected into clusters. There 

could be two scenarios for the next unfiltered point in terms of the spatial relationship. 

One is that the next unfiltered point is adjacent to the previous unfiltered point; the other 

is that the next unfiltered point is separated by some filtered points identified in the 

previous filtering steps. If the two unfiltered points are next to each other, the elevation 

difference between these two points will be compared with the predefined cluster 

threshold to determine whether they should be separated into different clusters. If the 

elevation difference of these two points is less than a predefined threshold for separating 

clusters, they will be collected into the same cluster; otherwise a new cluster will be 

created and the following unfiltered point will be collected into the new cluster. However, 

in the second scenario, the next unfiltered point is separated by some filtered points, and 

the criteria of separating clusters would be different. The slope of the two unfiltered 

points’ elevation will be compared with a predefined threshold. To simplify these two 

cases, the same cluster threshold value is used. Thus, the cluster threshold would be a 
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slope threshold for both scenarios, which is shown in Line 8 of the algorithm description. 

Different thresholds could be given for the two scenarios if needed. By this means, a 

collection of clusters that represents the unfiltered points in each row or column of the 

grid will be generated. 

Figure 5-5 shows the results of cluster generation in a row. Points within the same 

cluster are connected by red lines. There is no line connecting different clusters. 

For each row or column of data, there could be some unfiltered points during each 

filtering step. The cluster analysis method will generate a collection of clusters based on 

those unfiltered points in each row or column. These clusters are treated as candidate 

ground point clusters, because some of them are on the ground surfaces, while others are 

on the non-ground objects’ surfaces. The algorithm of cluster generation is described as 

follows: 

 

Figure 5-5 Clusters of data points 
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The algorithm of making clusters for each row or column is as follows:  

Algorithm description: MakeCluster 
INPUT:  

1.An array of z value for a row or column: rz 
2.Threshold to separate different clusters: clusterThreshold 

OUTPUT:  
An array of cluster struct: clusters 

1. Scan array to find the first unfiltered or interpolated unfiltered point and save the 
index in prevGrd 

2. If prevGrd is NULL then return empty clusters array 
3. jß1;  // Initial cluster index 
4. clusters(1) = CreateTrendCluster(prevGrd); 
5. for i=(prevGrd+1)à n // n is the size of a row or column 
6. if rz(i) is a ground or interpolated ground point then  
7. preDiff = rz(i)-rz(prevGrd); 
8. if(abs(preDiff/(i-prevGrd))>clusterThreshold) then 
9. clusters(j).last = i-1; // New cluster is found, record the ending index for the 

previous cluster 
10. clusters(j).postDiff = -preDiff; // Store elevation difference between the last 

point of the current cluster and the first point of the next cluster 
11. j = j+1; // Increase the cluster index 
12. clusters(j) = CreateTrendCluster(i); // Create a new cluster starting from rz(i) 
13. end if  
14. end if 
15. prevGrd ß i; 
16. end for 

 

The MakeCluster algorithm shows that all the points in a row or column will be 

scanned one after another, and checked whether they can be collected into the same 

cluster. The prevGrd is used to store the index of the latest found unfiltered point. If no 

unfiltered or interpolated unfiltered points were found, it would return an empty cluster 

array in Line 2. Otherwise, at least one cluster would be generated. CreateTrendCluster 

procedure is for generating and initializing a cluster struct. The first unfiltered point’s 

index was stored when the cluster was created in Line 4. The algorithm will continually 

scan the input row or column data for the next unfiltered point. If the slope formed by the 
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elevation difference between the two unfiltered points is greater than the cluster threshold, 

a new cluster will be identified and created. All the unfiltered points that meet the cluster 

criteria will be collected into the same cluster until a new cluster is found. The index of 

the last unfiltered point in the same cluster will be recorded in Line 9. The elevation 

difference between the last point of the current cluster and the first point of the next 

cluster will be recorded in the current cluster’s struct. 

After scanning the whole row or column data, one or multiple clusters would be 

created if the row or column contains unfiltered points. Each cluster stores the indexes of 

all the unfiltered points that belong to it, and some other information, such as elevation 

difference between neighboring clusters. This information will be used in the cluster 

analysis procedure. 

5.2.2 Cluster-based Progressive Morphological Filtering Algorithm 

In this chapter, a cluster-based morphological filter is proposed by combining the 

cluster analysis method with the progressive morphological filter. This new filter can 

effectively prevent the terrain surface points from being removed when the filtering 

window size is increased to a certain level. 

The structure of this cluster-based morphological filter is based on the progressive 

morphological filter [51]. The input data has to be gridded with a certain grid size and 

interpolated for the empty grids with some interpolation method, such as the nearest 

neighbor interpolation. During each step of progressive morphological filtering, a moving 

window will be used in the open operation, which includes erosion and dilation 

operations. After the open operation, the elevation difference of each corresponding pair 
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of grids will be calculated between the two surfaces, which are formed before and after 

the open operation. The elevation difference of each grid pair will be compared with the 

predefined threshold of the current filtering step to determine whether the point is a non-

ground point. If the elevation difference is greater than the threshold, the point would be 

classified as a non-ground point and marked with the current filtering window size value. 

In the proposed method, after the filtering window size is increased to a certain level, a 

collection of clusters for each row or column will be generated before open operation. 

The cluster analysis will be carried out to justify the mark matrix results at the end of the 

filtering loop. The unfiltered point clusters are used to represent the candidate terrain 

surface based on the unfiltered points prior to the current filtering step. A mark matrix is 

used to record the filtering status for data grids. The algorithm description of this cluster-

based morphological filter is as follows: 

Algorithm description 

MorphClusterFilterFile  

INPUT: LIDAR Data File 

OUTPUT: Ground Points File 

1. Grid Input file 

2. Interpolate empty grid 

3. Use MorphClusterFilter to process grid data 

4. Output ground points to file 
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MorphClusterFilter 

INPUT: 

1. Gridded and interpolated LIDAR data: Z 

2. Progressive morphological filtering Steps: steps 

3. Initial cluster windows size to start cluster analysis: cluster_window_size 

4. Threshold to separate different clusters: clusterThreshold 

5. Morphological filtering threshold array: threshold 

6. Morphological filtering window size array: window_size 

OUTPUT:  

Mark Matrix which represents the filtering results: mark 

1. Initialize mark matrix with “0”  or “-7777” marks 
2. for k = 1 to steps 
3. for each direction (by row and by column) 
4.   for each row/column in grid 
5.     zcurr ß Zi; // extract the ith row/column’s z values 
6.     if window_size(k)>= cluster_window_size then 
7.         clusters ß MakeCluster(zcurr, clusterThreshold); 
8.     end if 
9.     zopen ß Morphopen(zcurr, window_size(k));// Open operation 
10.     zdiff ß zcurr – zopen; 
11.     if zdiff(i, j) > threshold(k) then  
12.        mark(i, j) ß window_size(k); // Update mark  
13.     end if 
14.     if window_size(k)>= cluster_window_size then 
15.        UpdateMark(mark, clusters); // Update mark 
16.     end if 
17.     Zi ß zopen; // Set the ith row/column’s z values 
18.   end of each row/column 
19. end of for loop of each direction 
20. end of for loop of all steps 
 

At the beginning of the algorithm in Line 1, the mark matrix is initialized with all 

“0” or “-7777” marks, which means that all the points are treated as unfiltered points at 
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first. “0” means real points in the input data, while “-7777” represents interpolated points.  

Both marks represent unfiltered data points. The points’ marks could be changed in 

multiple steps of filtering. The steps of the filter, the filtering window size of each step, 

and the threshold associated with each window size are predefined by the user. Users can 

also control when the cluster analysis will be activated in the filter by defining 

cluster_window_size. In Line 6 of the algorithm, after the filtering window size is greater 

than the predefined cluster_window_size, the cluster analysis will be activated in the filter. 

MakeCluster procedure will generate the clusters of unfiltered points for each row or 

column. Morphopen will carry out the open operation, which includes erosion and 

dilation operations. The elevation difference between the two surfaces that are acquired 

before and after open operation will be compared with a predefined threshold and used to 

update the mark matrix accordingly for the filtered points. The UpdateMark procedure 

will perform cluster analysis to find whether there is any point that is filtered out in the 

current step that can be reset to unfiltered points. 

In the filtering procedure, the mark matrix represents each grid’s filtering status. 

If the point in the grid is identified as a ground point, it will be set as the ground point’s 

mark value (“0”); if the point is identified as a non-ground point, it will be marked with 

the current filtering step’s windows size, which is a positive value. Therefore, a point can 

be identified as a non-ground point by the mark that reflects the filtering window size. It 

also shows the point in which filtering step it was filtered out. An interpolation mark with 

a negative value is used to represent the interpolated points for the empty grids. If the 

interpolated point is identified as a non-ground point, it will be marked as the negative 
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value of the current filtering window size, which is always greater than -7777. The real 

data points and interpolated points can be easily distinguished in this way.  

The initial mark matrix contains only two kinds of values, which are either “0” or 

interpolation mark value (“-7777”). If the initial mark is not changed until the end of the 

filtering process, the point with “0” or interpolation mark value indicates the point was 

classified as a ground point. In each morphological filtering loop, the mark matrix may 

contain up to four kinds of values, as summarized in Table 5-1. 

Table 5-1 Mark values of real and interpolated data point 

Mark value Meaning 

0 Before filtering: Real data point 

After filtering: Real ground point 

-7777 Before filtering: Interpolated data point 

After filtering: Interpolated ground point 

Positive window size Real filtered point (non-ground point) 

Negative window size Interpolated filtered point (interpolated non-

ground point) 

 

Since the proposed method is based on progressive morphological filtering, an 

increasing window size is used in each filtering step [51]. Therefore, points filtered in 

each step will be marked with the window size. Real filtered points and interpolated 

filtered points will be marked with the positive and negative window size values, 

respectively. This labeling strategy makes it easy to track in which step the points were 

filtered out, which reveals at what scale the points were removed (as non-ground points). 

It provides more information for the cluster analysis. Furthermore, this labeling strategy 



89 
 

is also very helpful for outputting the filtering results, because real ground points and 

interpolated ground points can be easily separated in this way. 

Before each morphological filtering step, there could be some unfiltered points in 

each row or column. The proposed method will generate a collection of unfiltered point 

clusters based on each row or column’s mark values and their elevation differences. 

These clusters will help justify the marks of points filtered out in this filtering step. 

5.2.3 Cluster Analysis 

As the progressive morphological filter, which is based on the grid of data with a 

given cell size, the cluster analysis is also based on a grid. The analysis executes along 

each row and column of the data set. At the initial filtering step, all the points will be 

marked as ground points. Even the empty grids will be interpolated with some values and 

marked as ground points. While non-ground points will be identified and marked in each 

filtering step of the progressive morphological filter. Therefore, at the beginning of the 

first filter step, all the points are actually candidate ground points; they might be 

identified and marked as non-ground points after each filtering step. The detailed 

marking strategy will be discussed later. The main idea of the cluster analysis method is 

to use the cluster information to check whether there are ground points or candidate 

ground points, which could be mistakenly identified as non-ground points. If that is the 

case, we can reset the marks of those mistakenly identified non-ground points to ground 

points’ marks. By this means, we can leave these candidate ground points to be filtered in 

the later steps. If they would be filtered out in the rest of the steps, we can also correct the 

errors of mistakenly identified non-ground points in those steps. 
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The cluster analysis method can be introduced in any step of the filtering. Due to 

the problem of distinguishing large non-ground objects (such as buildings or 

constructions) and ground objects in undulating terrain, we can start involving the cluster 

analysis after the filtering window reaches a certain size, because it would not result in 

significant errors under small filtering window size. 

Before we do the cluster analysis in the filtering steps, we have to create the 

cluster collection for each row or column. For each row or column of the grid data, we 

can scan from the first point to the end, and collect those ground points with mark “0” 

into different clusters. The interpolated points will be treated as ground points too, but 

they have a different mark (e.g. “-7777”), which would be used to distinguish between 

real ground points and interpolated points. The way to collect ground points into the same 

cluster is as follows. From the first ground point of a row or column, keep searching for 

the next ground point, which can be adjacent to the previous ground point or separated by 

some non-ground points identified in the previous filtering steps. After the next ground 

point is found, we can calculate the slope of the line connected by these two ground 

points or the elevation difference between these two ground points. We can then compare 

the slope or the elevation difference with the predefined threshold. If it satisfies the 

criteria, we can collect this ground point into the current cluster and keep searching the 

next ground point; otherwise, we start creating a new cluster and use the same method to 

collect new ground points into this cluster until no ground points can be found. By this 

means, we can generate a collection of clusters, which represents the candidate ground 

points of each row or column. Then, we can continue running the filtering process and 

get the filtered result as in the progressive morphological filtering method. The elevation 
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difference between the original value and the open operation value will be compared with 

the threshold, and then those qualified points will be marked as non-ground points with 

the mark value of the current window size (e.g. 8, 16, and etc.). If the non-ground points 

are interpolated points, they would be marked as negative window size (e.g. -8, -16 and 

etc.) in order to distinguish real points from interpolated points. 

After each filtering step, the collection of clusters generated before filtering will 

be involved to check whether these non-ground points identified in this filtering step 

should be classified as non-ground points. The identified non-ground points will be 

scanned and checked in a certain procedure. If some criteria were satisfied, these 

identified non-ground points’ marks would be reset to the ground objects’ mark (“0”) for 

the filtering later. The way to scan and check the identified non-ground points is as 

follows. 

Each row or column’s marks will be scanned in order to find one or more 

collections of continuing non-ground marks with the value of previous filtering window 

size, which means they are filtered out during previous filtering step. Only the previous 

step’s mark will be checked. That would prevent identified non-ground points in prior 

steps from being involved in this recovery procedure. Accordingly, we can use the 

clusters generated before each filtering step to check whether they are completely falling 

into any ground points’ cluster. The collection of the continuing marks is represented by 

the starting and ending index of these marks, which represents a range of a mark array. 

The ground objects’ cluster created before each filtering step is also represented in the 

same way. Therefore, we can compare the range of the continuing marks with the range 

of the ground objects’ cluster. It would show whether these marks are completely falling 
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into any ground objects’ clusters. If the collection of continuing marks falls into any 

ground objects’ cluster, we can reset these marks with the ground point’s mark value 

(“0”), which means they will be treated as ground points in the following filtering step or 

in the final results. In this way, we can prevent those ground points from being removed 

by progressive morphological filtering, while utilizing progressive morphological 

filtering to filter out large size non-ground objects. Because it uses the ground points’ 

cluster to gather similar terrain points together in a cluster, this will help avoid omission 

error from morphological filtering. 

A sample cluster collection is shown in Figure 5-6. These clusters represent all the 

candidate ground points, which include points that could be identified as non-ground 

objects. The points of each cluster were connected by red lines. There is no line 

connected between each cluster; accordingly, we can distinguish the clusters by this 

means. As shown in Figure 5-6, if the points in the rectangle were identified as the non-

ground objects’ points in the morphological filtering procedure, we would check whether 

these points are completely falling into a cluster. As in the figure, they are completely 

located in a cluster; therefore they would be reset to ground objects for the next filtering 

step. In this way, we can reserve those candidate ground points on a ground surface 

effectively. If these reserved candidate ground points were on the non-ground objects’ 

surface, they would be removed as the non-ground objects along with all the non-ground 

objects’ points in the later filtering steps. 
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Figure 5-6 Clusters of points 

After creating clusters for each row or column, we can use the progressive 

morphological filtering to filter the row or column, and set identified non-ground points’ 

marks with the current window size. Once we complete the filtering, we can use the 

clusters created before the filtering to justify the identified non-ground objects and update 

their marks. If the consecutive non-ground points marked with the value of current 

filtering window size, which means they were identified in the current filtering step, are 

falling in any cluster of current row or column, their marks would be reset to ground 

objects’ marks. By this means, we can prevent ground terrain objects from being 

mistakenly filtered out under large window size. As the tradeoff, this method would 

restore some identified non-ground points to ground points. Since we normally use the 

cluster analysis under a large window size, the error would happen to those large size 

non-ground objects, such as large buildings or constructions. However, the error would 
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not happen to every non-ground objects, it would happen on some of the large size 

objects. Therefore, after the cluster-based progressive morphological filtering, large non-

ground object would be split into smaller pieces. We would use the second round 

progressive morphological filtering to remove those non-ground objects left in the first 

time filtering. In this second round filtering, a special interpolation method would be used. 

A special interpolation method discussed in the previous chapter, called Grid-

based Priority Interpolation [11], has to be used to interpolate the result from the previous 

cluster-based progressive morphological filtering. Since the previous filtering has 

removed a certain number of the non-ground objects, most non-ground objects’ remains 

are from large size objects, such as buildings or constructions. These remains are 

normally surrounded by many empty grids, which were made by filtering large size non-

ground objects. In order to successfully remove these remains and not remove terrain 

ground objects, we use a smaller window size, which would not be likely to remove 

terrain objects. Due to this reason, we have to interpolate these empty grids with as many 

surrounding ground points as possible. By this means, if the empty grids were 

interpolated by more ground points’ values, the non-ground object remains would be 

more easily removed under small window size. The interpolation would be carried out 

briefly as follows: 

1. We first use the expanding grid method to identify all the connected empty 

grid sets.  

2. Second, we can identify the boundary of each empty grid set.  

3. Finally, we can use these boundary grids to interpolate the empty grids. 
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In the first step, each empty grid’s 4 or 8 neighbor grids will be checked. If the 

neighbor grids are empty grids, they would be collected into the same connecting set. The 

empty grids will be searched until no more connected empty grids are found. Finally, all 

the collected empty grids will form a set of connected empty grids. A unique 

identification number will be assigned to each connected empty grid set. After searching 

each of the whole data grids, one or more connected empty grid sets with a unique 

identification can be found. We can interpolate each connected empty grid set with some 

algorithms for different purposes. 

From each collected empty grid set, we can easily achieve the boundary points of 

the set. The simplest interpolation method is to use the average elevation of all the 

boundary points of the set. For the post-processing of the cluster-based progressive 

morphological filtering, we can use this algorithm in order to filter high non-ground 

object remains. However, the average elevation of all the boundary points of the set does 

not represent the local terrain feature. There are two major reasons for this. One reason is 

that if the outside boundary grids cover an area with a large elevation difference, the 

average elevation value would not reflect the terrain variation very well. The other reason 

is that the non-ground object remains would normally be surrounded by the empty grid 

set. That would make these non-ground object remains be the inside boundary grids of 

the empty grid set, and thus they would be involved in calculating the average difference, 

which would make the average value contain more errors. Since the purpose of the 

interpolation on the empty grids is to filter out the non-ground object remains in the post-

processing procedure, this simplest interpolation will do its job in many cases, because if 
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the non-ground object remains are high elevation points, they would be easily filtered out 

by the surrounding interpolated empty grids with low average values. 

Despite the fact that the nearest neighbor interpolation can work well on many 

cases, some undulating terrains still need better interpolation for the post-processing. A 

more sophisticated method can be used to interpolate the empty grids. Since the elevation 

of the boundary points could vary greatly, we should interpolate the empty grids from the 

lowest elevation boundary points to the highest. We first start interpolation from the 

lowest boundary point, and then its adjacent empty grids would be found. These empty 

grids are interpolated first with the average elevation of adjacent neighbor grids. Then, 

they are used as the boundary points to interpolate their neighbor empty grids. The lowest 

elevation boundary point would be removed from the boundary after it is used to 

interpolate all its neighbor empty points, because the interpolated empty grids connected 

to it would replace it to form a new boundary. The procedure of the interpolation is 

illustrated in Chapter 4.2.4. 

5.2.4 Filter Results and Analysis 

Filtering experiments have been carried out on the sample data set in California. 

The testing data set is an undulating terrain with different sizes of non-ground objects, 

such as trees, vegetation, and buildings, etc. The data set covers a 200 x 200 square meter 

area. We used 1 meter as the cell size to grid the data set, which gives a 200 x 200 grid 

mesh. The original data set’s 3-D mesh diagram is shown in Figure 5-7. 
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Figure 5-7 Original data set 3-D mesh 

First, we used the progressive morphological filtering to filter the data set. The 

total filtering step is 7. We used a half window size as each step’s window-size parameter, 

which is grid size extending to the left or right from the current point grid; thus, the real 

full window coverage would be twice of half the window size plus one. Figure 5-8 shows 

how to calculate the full window size by the half window size. The full window size is 

used in the filtering procedure. 
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Figure 5-8 Half window size vs full window size 

The half window size series of 7 filtering steps is 1, 2, 4, 8, 16, 20, and 32, and the 

full window size series is 3, 5, 9, 17, 33, 41, and 65, respectively. The results of the two 

filters are shown in 2-D figures. Figure 5-9 shows the results of the progressive 

morphological filter and the cluster-based progressive morphological filter. Without the 

cluster analysis procedure, the progressive morphological filter will remove some terrain 

objects, which are illustrated in the green rectangles when the filter window size 

increases to a certain size. Compared with two figures, it demonstrates that the proposed 

cluster analysis method can effectively improve the filtering results of the progressive 

morphological filter. This method would be very helpful to process a large area or 

undulating terrain data set, because it would be very sensitive for the filter to remove 

terrain objects when the filtering window size increases to a certain level. 
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Progressive morphological filtering result Cluster-based progressive morphological 

filtering result 
Figure 5-9 PM filtering result vs cluster-based PM filtering result 

The filtering results show that the progressive morphological filter will remove 

the ground surface points in several areas significantly. Those areas are shown in the 

green rectangles. The progressive morphological filter’s results demonstrate the common 

problem of many morphological filters. When the filtering window size reaches a certain 

level, the ground points were inevitably removed by the filter. That is the intrinsic 

problem from the morphological filter itself. This problem would be enlarged on the 

undulating and complex terrain, such as a mountainous area. As in this testing data set, 

there are several buildings located on the mountain slope. It would be very easy to cause 

the cut-off problem after the filtering window reaches a certain level. However, if only 

smaller filtering window sizes were used in the filter, it would cause some buildings to 

not be removed. This would be a trade-off on the omission and commission errors of the 

filter. To avoid this kind of problem, some other mechanism, which can detect the 

connectivity of ground surface, has to be introduced. The proposed cluster analysis 
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method would assist in lowering the omission and commission errors at the same time. 

As shown in the filtering results, the cluster-based morphological filter can reserve the 

ground surface effectively. It can prevent the cut-off problem remarkably when the 

filtering window size reaches a certain level. The green rectangles indicate that the 

ground points on the mountain slope were well reserved, and the buildings were 

successfully filtered out as well. 

Based on the algorithm description of the proposed cluster-based morphological 

filter, the time complexity of the algorithm should be the same as the progressive 

morphological filter. Since the proposed filter is based on the progressive morphological 

filter, the major computation time for the progressive morphology filter is the erosion and 

dilation operation. In addition to the interpolation, the time complexity for the open 

operation is O(wN), where w is the window size of the morphological filter and N is the 

number of grids, which is the product of the number of rows and columns. For M 

windows, the time complexity is equal to [51] 

𝑂𝑂( 𝑤𝑤 𝑁𝑁) 

Since in the cluster generation procedure MakeCluster, the whole data set just 

needs to be scanned once to generate all the clusters, and the time complexity of cluster 

generation is O(N). In the cluster-analysis procedure, the time complexity of the cluster 

search for each reset range is O(logN). Based on a binary search, the overall time 

complexity of the cluster-based morphological filter stays the same as the progressive 

filter. The space complexity of the proposed algorithm is O(N), because the space 
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complexity of mark matrix and clusters are both O(N), which turns out the same space 

complexity. 

5.3 Conclusion and future work 

Experiments results show that the proposed cluster-based morphological filter 

turns out to improve the progressive morphological filter on undulating and complex 

terrain significantly. Especially when the filtering window size increases to a relatively 

large size, it would prevent the ground terrain from being removed while it is still able to 

filter out large size non-ground objects. 

The cluster analysis method can be extended to two-dimensional directions. The 

cluster recovery mechanism needs to be further refined to suit 2-D analysis.  

The selections of the filtering window size and threshold parameters are very 

critical and sensitive to different terrain types. It would be very helpful to analyze the 

study area’s terrain types and non-ground features for choosing all the appropriate 

parameters. Therefore, this method still needs some human interactive procedures to 

involve. Some adaptive parameter selection methods might be developed to automatically 

choose the appropriate parameters for different terrain types, which would make this 

method more efficient and automatic. 
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Chapter 6   

ADAPTIVE TREND ANALYSIS MORPHOLOGICAL FILTER 

In this chapter, a proposed terrain analysis and filtering method called Adaptive 

Trend Analysis Morphological Filter is discussed in detail [12]. As LIDAR has become a 

widely used technology in surveying and industrial measurement applications in recent 

years, many filtering methods have been developed. However, all the methods have their 

pros and cons, and all of them work well on certain types of terrain. To achieve good 

filtering results, experienced people are needed to process the data with appropriate 

methods and parameters. One of the major reasons why some methods are not working 

very well is there is no way to detect the terrain variation in the big survey area, which 

would make it very difficult to select the parameters for the filtering method. For 

example, the progressive morphological filter works very well on the flat terrain, but it 

does not work very well on undulating and mixed terrains. Since the filtering parameters 

on different terrains are variable, it would be very difficult to choose a general value for 

filtering on different terrain types. Therefore, effective and efficient methods to analyze 

the survey data and automatically calculate the parameters are very important to many 

filtering methods. In this chapter, a trend-based adaptive method is proposed to make the 

filtering process more automatic with fewer human interactions. We will demonstrate 

how it would be used to automatically estimate the filtering parameters for morphological 

filtering. This method can be utilized in any filtering methods which need the terrain 

information for estimating filtering parameters. 

Since most morphological filtering methods need experienced user to select 

filtering parameters for different kinds of terrain types, there is no general way to choose 
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parameters based on the terrain types. This trend-based adaptive method provides a 

mechanism to adaptively select filtering parameters according to the terrain variations, 

because it can automatically analyze and detect the variations of the terrain. By this 

means, it would reduce a lot of human efforts of selecting filter parameters, and make the 

filter method more automatic and less dependent on human interactions, thereby making 

it much easier for inexperienced users. 

6.1 Morphological Filter Review 

Since the morphological filter normally uses different sizes of filtering windows 

to filter the data, for each window size, different threshold values have to be selected as 

the criteria for separating ground and non-ground objects. Most of the morphological 

filtering methods use the constant value for each window size, which would make the 

filter not suitable for complex terrain types. Because the constant threshold value for the 

same morphological filter window implies uniform ground slope in the data set, it would 

work well in the simple terrain area, such as flat ground surface, while it would not work 

very well in the complex terrain area, especially undulating terrain, such as mountainous 

areas. 

Zhang et al. [51] proposed a method to remove non-ground objects using a 

progressive morphological filter. In their method, an input LIDAR data set was gridded 

into mesh for 1-dimension or 2-dimension morphological filtering. An increasing 

window size was used during each morphological filtering step. The threshold of 

elevation difference in each filtering step was variable, which is suitable for removing 

different sizes of non-ground objects. It is a very effective and efficient method. As long 
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as the window size is greater than the non-ground objects, and there are enough ground 

objects within the filtering window as the reference points, those non-ground objects will 

be filtered out with appropriate elevation difference threshold. Therefore, the selection of 

elevation difference threshold is very critical and sensitive for the morphological filter 

under certain window sizes. A constant value was normally selected as the threshold 

under each filtering window size. This would be the same threshold for all the points 

during the filtering at a certain window size. This has some intrinsic defects when 

filtering complex terrains, because different parts of a large survey area could have 

different terrain types: the ground surface would have different slopes; therefore it would 

not be ideal to have the same threshold to filter terrains with variant slopes. Furthermore, 

any surveyed area could have arbitrary non-ground objects with different sizes. It would 

not make sense to use the same threshold for different surveyed areas with various terrain 

types under the same window size. These problems would require the user to have more 

experience and knowledge on how to choose the filtering threshold under various 

window sizes. In order to solve these problems and make the filtering process rely less on 

human interactions, an adaptive trend analysis method was proposed in this chapter, 

which was combined with cluster method proposed in the previous chapter, to make the 

filter automatically select the filtering threshold under each filtering window according to 

the local terrain variations. 

6.2  Algorithm and Implementation 

A new mechanism of estimating local terrain variations is proposed to help 

filtering methods select parameters in this chapter. This mechanism, called the trend 
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analysis method, was introduced in the filtering procedure. We will demonstrate this 

method by combining it with the progressive morphological filter. It can also be 

embedded in any filter methods which need terrain slope information. By working 

together with the cluster analysis method, this method will help the filtering procedure 

automatically choose the filtering parameters based on the analysis of local terrain 

characteristics during the progressive morphological filtering and make the filtering 

adaptive to different kinds of terrain types.  

The essential aspects of this adaptive filtering method include two major analysis 

means to estimate the filtering threshold for each point. One is the cluster analysis 

method, and the other is the trend analysis method. The cluster analysis method is used to 

build up some collections of point clusters for each row or column of the grid data; the 

trend analysis method is used to analyze the local surface trend for the data set. If  these 

two analysis methods are combined, some important filtering parameters can be 

estimated automatically. For the progressive morphological filter, one of the important 

filtering parameters, the filtering threshold, is normally given by the user. It is a constant 

value under each filtering window. The selection of this parameter would affect the 

results significantly, and it relies on the users’ processing experience and knowledge of 

the surveyed area. Through this estimation process, the filter method would be more 

adaptive and have fewer human interactions involved, which means it is not required for 

users to have much experience on the filtering method or much familiarity to the 

surveyed area. 
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6.2.1 Cluster Analysis Method 

As we discussed in the previous chapter, the cluster analysis is based on a grid 

data set, therefore the data set needs to be gridded before processing. After that, it can be 

carried out on the rows or columns of the grid data. For each row or column of the grid 

data, the data points are scanned from the first to the last, and unfiltered points with zero 

marks are collected into different clusters. The method for collecting unfiltered points 

into the same cluster is as follows. We will show how it works on the row direction. It 

would work for the column in the same way.  From the first unfiltered points of a row, we 

will keep searching for the next unfiltered point and collect it into clusters. There are two 

scenarios for the next unfiltered point in terms of the position relationship. One is that the 

next unfiltered point is adjacent to the previous unfiltered point, and the other is that the 

next unfiltered point is separated by some filtered points identified in the previous 

filtering steps. If the two unfiltered points are next to each other, we can use the 

predefined cluster threshold to check whether they should be separated into different 

clusters. If the elevation difference of these two points is less than the predefined 

threshold for separating clusters, they are collected into the same cluster, otherwise a new 

cluster is created and the following unfiltered point is collected into the new cluster. 

While in the second scenario, the next unfiltered point is separated by some filtered 

points, the criteria of separating clusters would be different. The slope of the two 

unfiltered points’ elevation would be compared with the threshold. By this means, we can 

generate a collection of clusters, which represents the unfiltered points of each row. 

Figure 6-1 shows the result of the clusters of a row. Points within the same cluster were 

connected by the red lines. There is no connecting line between different clusters. 
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Figure 6-1 Clusters of data points 

For each row or column data, there are some unfiltered points. The cluster 

analysis method will generate a collection of clusters based on those unfiltered points in 

each row or column. These clusters are treated as candidate ground point clusters, 

because some of them represent the ground surfaces, while others represent non-ground 

objects surfaces. These clusters will help the trend analysis method estimate filtering 

parameters, which will be discussed later. The algorithm of identifying clusters 

(MakeCluster) was described in Chapter 5.2.3. 

The MakeCluster algorithm shows that all the points in a row or column are 

scanned one after another, and checked as to whether they can be collected in the same 

cluster. If the elevation difference between two unfiltered points is greater than the cluster 

threshold, a new cluster is separated and created. All the unfiltered points that satisfied 

the criterion are collected in this cluster until a new cluster is found. After scanning the 
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whole row or column data, one or multiple clusters are found. Each cluster stores all the 

unfiltered points that belong to it, and some other cluster information, such as elevation 

difference between neighboring clusters. Each grid point’s filtering status is represented 

and stored in a matrix with the same dimension of the partitioned grid. 

6.2.2 Trend Analysis Method 

The trend analysis method is also based on the rows or columns of the grid data. 

For each row or column of the grid data, the data points are scanned from the first to the 

last, and the local minima and maxima of the unfiltered points with zero marks are 

identified and collected into minima and maxima arrays. So-called local minimum is the 

point that has a lower elevation than its neighboring points, while local maximum is the 

point that has a higher elevation than its neighboring points. The way to identify local 

minima and maxima points is to compare each unfiltered point’s elevation with the 

elevations of its left and right unfiltered neighboring points. If the point’s elevation is less 

than its neighboring points, it would be identified as a minimum; if the point’s elevation 

is greater than its neighboring points, it would be identified as a maximum. In our 

analysis method, we used a loose criterion to check the minima and maxima. If the 

point’s elevation is less than one neighboring point and less than or equal to the other 

neighboring point, it would be identified as a minimum; if the point’s elevation is greater 

than one neighboring point and greater than or equal to the other neighboring point, it 

would be identified as a maximum. The criteria of minima and maxima are not strictly 

less than or greater than both neighboring points. In other words, the minima and maxima 

points’ elevation can be equal to one of the neighbor points’ elevation but not both. These 
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criteria would prevent the points with the same elevation as its two neighboring points 

from being identified as minima or maxima points, while keeping points which have 

equal elevation with one side neighboring point and different elevation on the other side 

as minima or maxima. This would be very useful to reveal the terrain shape for analysis. 

By this means, we can identify all the minima and maxima points in a row or column of 

the grid data. We can further draw the maxima and minima trend lines by connecting 

maxima and minima points correspondingly. 

Figure 6-2 shows the trend lines made by the local minima and maxima. Each 

point was shown as a blue circle in the figure, and they were connected by red lines. The 

minima were marked with a black dot inside the circle and connect by black lines, while 

the maxima were marked with a green cross inside the circle and connected by green 

lines. From the figure, it was shown that the connected lines made by maxima and 

minima form two trend lines, which roughly reflect the terrain and non-terrain variations. 

On the terrain without an abrupt elevation change, it was shown that the maxima trend 

lines and minima trend lines make a narrow strip, which can describe the slope of the 

local terrain variation. This is a very useful result achieved from the trend analysis 

method, because it reveals the terrain characteristics. By combining the trend analysis 

results with the cluster analysis results, more information can be further concluded for the 

filtering method. One of the utilizations of this method is to estimate the filtering 

threshold under a certain window size. 
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Figure 6-2 Minima and maxima trend lines 

6.2.3 Filtering Threshold Estimation 

The combination of the cluster and trend analysis methods provides a mechanism 

to estimate the morphological filtering threshold under a certain window size. By 

introducing this estimation method into the morphological filter, we can fulfill the 

adaptive filtering, which means the filtering parameters would be automatically selected 

according to the local terrain variation. This would not only significantly help the 

inexperienced filter users process the LIDAR data, but make it easy to process large 

volumes of data for all users as well. In the experiments, this estimation method was 

combined with the progressive morphological filter. The cluster and trend analysis 

procedure is embedded into the progressive morphological filtering loop. Since each 

morphological filtering loop has its filtering window size, the threshold estimation 
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procedure is based on the filtering window size and the result of cluster and trend 

analysis. 

In each step of progressive morphological filtering, a certain filtering window will 

be used to filter each point. Window size is normally represented by the number of grids 

it can cover. Figure 6-3 shows the full filtering window size and the half window size. 

The full window size consists of two half-window size and one grid size. If the half-

window size is k grids, the full window size would be 2k+1 grids. When executing 

morphological filtering, each point is filtered by erosion and dilation operation in the full 

window size coverage. As the input parameter, the filtering window size normally uses 

half window size, because it is easier to calculate the full window size value with any half 

window size value. The full windows size cannot use arbitrary value because it would 

cause the left and right half window size to be not equal if the window size provided is 

not appropriate. Therefore, the terrain variation in the full window coverage would 

determine the filtering parameters such as threshold. Our adaptive filtering method is 

based on analyzing the cluster and trend properties of each point and its coverage window, 

so that it can automatically estimate the filtering threshold. 
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Figure 6-3 Half window size vs full window size 

There are two scenarios when estimating the filtering threshold of a point under a 

certain filtering window size. The half window will extend the coverage from the current 

point to both the left and right directions. Accordingly, each direction will reach a grid 

point, which can be called the left and right bounding grid points. The left and right 

bounding grid points’ cluster and trend properties are involved in the threshold estimation. 

The current filtering point and left/right bounding grid points’ cluster properties make 

two special scenarios. One is that these three points are in the same cluster, and the other 

is that they are in the different clusters. When estimating the filtering threshold, these two 

scenarios are handled differently. 

The first scenario is that these three points are not in the same cluster. If the 

current point’s cluster is below its two neighboring clusters, the current point would be 

more likely on a lower surface, which would probably not be filtered out during this 

filtering loop. If the current point and the bounding points are in different clusters, and its 

cluster is above one or two bounding points’ cluster, the current point would be more 

likely to be a non-ground point that needs to be filtered. This scenario was illustrated in 
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Figure 6-4. The data points are in three different clusters, which were separated by the 

dash lines. When estimating the threshold of the point shown in the figure, its left and 

right half window size coverage have to be considered. From the current point, the 

filtering window’s leftmost and rightmost grids can be found by extending the half 

window size from the current point to the left and right directions. These two points can 

be called left and right window bounding points. Further, these two bounding points’ 

cluster and trend properties can be found by searching their corresponding cluster and 

trend. From the cluster’s coverage property, it reveals which cluster the current point 

belongs to, and the elevation difference between that cluster and its neighboring clusters. 

The elevation difference of the neighboring clusters is the elevation difference between 

the two adjacent ending points in the two consecutive clusters. 
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Figure 6-4 Threshold estimation of different clusters coverage 
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From the trend property, it shows which minima or maxima range the point falls 

into, because all the minima and maxima points were collected in the trend analysis. The 

highest and lowest minima points are used to estimate the filter threshold under a certain 

window size. The reasons to choose the highest and lowest minima points are as follows. 

First, minima points are more likely representing ground points than are maxima points. 

Second, the lowest minima point in a certain range is more likely representing the start of 

a trend. Two scenarios of the minima points’ spatial relationship are shown in Figure 6-5. 

One scenario (1) shows that the minimum point is lower than its neighboring minima 

points, which means it is the minimum of three minima points. These kinds of points 

show a trend reverse. It is a pivot point of a surface. The second scenario (2) is that the 

lowest minima point in a certain range is only lower than one of its neighboring minima. 

This implies this minimum point is on an uptrend or downtrend surface. The third 

scenario is that the three consecutive minima points have the same elevation, which 

might imply this range of terrain has no significant trend change. Since the criteria of 

identifying minima in the proposed method exclude the minima points with the same 

elevation as that of its neighboring minima, this scenario does not need to be considered. 

All of these properties will be used to estimate the surface slope variation under different 

filtering window sizes. 
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Figure 6-5 Different minima and slope of terrain surface 

From the current point’s cluster, two elevation difference values can be acquired; 

one is the elevation difference over the previous cluster, which was represented by 

preDiff, and the other is the elevation difference over the next cluster, which was 

represented by postDiff. The threshold estimation procedure is as follows: 

1. Set the cluster difference value clusterDiff as the smaller absolute value of preDiff 

and postDiff of the current point’s cluster. If the cluster is the first or the last cluster in 

the collection, there would be only one side cluster elevation difference with a non-
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zero value. The other one is defined as zero. For example, the first cluster’s preDiff 

would be zero, because there is no cluster before it, and the last cluster’s postDiff 

would be zero, because there is no cluster after it. 

2. Find the tight minima ranges between the left window bounding point and right 

window bounding point (shown in Figure 6-6). The tight minima range of a point 

refers to the range made by two consecutive minima points that covers the point. If the 

point resides between one minima point and one ending point (the first or last point) of 

the row or column, the range would be made by one ending point (the first or last 

point) of the row or column, and one minima point. The minima ranges are shown in 

Figure 6-6. 

3. By finding left and right bounding points’ tight minima range, the full window 

minima range can be detected, which is formed by the left minima of the left bounding 

point tight minima range and the right minima of the right bounding point tight 

minima range. 

4. After finding the full window minima range, the lowest and highest minima points 

in the full coverage range can be found. Further, the elevation difference of these two 

points can be calculated, and so can the slope of between these two points. By 

multiplying the half window size with this slope, a trend elevation increase value 

trendLift can be calculated. 

5. By comparing trendLift and clusterDiff, the smaller value can be used as the 

filtering threshold value thresh. 

6. If the filtering threshold thresh calculated in step 5 is less than clusterThresh, 

which is the threshold for separating clusters, let the threshold value be clusterThresh. 
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Figure 6-6 Tight minima range and full window minima range 

The second scenario of the current point and bounding points is that they are in 

the same cluster. The threshold estimation procedure is similar to steps 2 and 3 in the 

previous scenario: 

1. Find the tight minima range between the left window bounding point and right 

window bounding point. 

2. By finding left and right bounding points’ minima range, the full window minima 

range can be determined. 

3. After finding the full window minima range, the lowest and highest minima points 

in the full coverage range can be found. Further, the elevation difference minimaDiff 

of these two points can be calculated. 

4. If the minimaDiff is less than clusterThresh, which is the threshold for separating 

clusters, let the filtering threshold value thresh be clusterThresh. 
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In the two scenarios, the minima points were both used to estimate the terrain 

slope, because minima points more likely represent the terrain surface than the maxima 

points; and most of the local minima points are from the ground surface or the lower 

surface of non-ground objects. If using minima to estimate slope of a certain range of 

data, it would be more accurate to reflect the terrain surface characteristics than to use 

maxima points. In the threshold estimation, the lowest and highest minima points in a 

certain range were used to calculate the slope. This slope value reflects the local terrain 

characteristics and can be used for the filtering threshold estimation. 

Based on the algorithm description of the proposed filter, the time complexity of 

the algorithm should be the same as that of the progressive morphological filter. Since the 

proposed filter is based on the progressive morphological filter, the major computation 

time for the progressive morphological filter is the erosion and dilation operations, in 

addition to the interpolation. The time complexity for the open operation is O(wN), where 

w is the window size of the morphological filter and N is the number of grids, which is 

the product of the number of rows and columns. For M windows, the time complexity is 

equal to [51]. 

𝑂𝑂( 𝑤𝑤 𝑁𝑁) 

Since in the cluster generation procedure MakeCluster, the whole data set just 

needs to be scanned once to generate all the clusters, the time complexity of cluster 

generation is O(N) [10]. In the cluster analysis procedure, the time complexity of the 

cluster search for each point is O(logN), based on a binary search. The threshold 

estimation has the same time complexity O(wN) as that of the open operation. Therefore, 
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the overall time complexity of the proposed filter is the same as that of the progressive 

morphological filter. 

The space complexity of the proposed filter is O(N). Because the space 

complexities of the mark matrix for the filtering status, the threshold matrix and the 

clusters are all O(N). 

6.2.4 Adaptive Morphological Filtering Algorithm 

In this section, we will demonstrate how the cluster and trend analysis works for 

automatically and adaptively estimating filtering parameters by combining this method 

with the progressive morphological filter. It can also be embedded into any other filters 

that need to estimate parameters based on the local terrain characteristics. The proposed 

adaptive morphological filtering method consists of three major components. One is the 

cluster analysis method, the second is the trend analysis method, and the third is the 

progressive morphological filtering method. Each of these three components has its own 

functionality. By combining them, it would make this method a more automatic and 

adaptive way to filter LIDAR data. From the functionality perspective, each method 

would help the adaptive filtering from its own feature. The cluster analysis method 

provides a mechanism to separate points into different groups with a discrete elevation 

level. Normally non-ground object points must have some elevation jump from their 

nearby ground surface points, thus the clusters identified by a certain elevation difference 

provide not only a potential separation between ground points and non-ground points, but 

a potential separation between different non-ground point groups as well. The non-

ground object points would normally fall into different clusters from the nearby ground 
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surface point clusters. This feature of a cluster would help the threshold estimation by 

providing the trend analysis method an appropriate range to estimate the slope of the 

terrain. 

The trend analysis method offers a way to detect the local terrain variations. By 

identifying the local minima and maxima, we can know the terrain trend in a certain 

range. We can gain much more useful information from the collections of minima and 

maxima, such as the slope in a certain range. By combining this with clusters information, 

we can obtain the non-ground object surface trend lines, because the trend lines made by 

the maxima and minima in the non-ground object surface clusters would form a tight 

boundary range, which would be very helpful to estimate the surface trend. This is a very 

important result from the trend analysis. This feature can be extended for multiple 

applications. 

Finally, the progressive morphological filter is the filtering method we selected to 

work together with cluster and trend analysis components. It can be replaced by any other 

filters that also need the estimation of parameters based on the terrain surface trend. The 

reason why we choose the progressive morphological filter is that it uses increasing 

window sizes to filter the non-ground objects, and it will retain the terrain shape for 

larger objects until the filtering window size reaches the same level of these objects in 

size. This feature collaborates with cluster and trend analysis methods to make the 

clusters and trends obtained in each filtering step reflect the terrain characteristics under 

different filtering window sizes.  

The structure of the adaptive morphological filtering algorithm is based on the 

progressive morphological filtering. The input data has to be gridded with a certain grid 



122 
 

size, and the empty grids has to be interpolated with some interpolation method, such as 

the nearest neighboring point. During each step of progressive morphological filtering, a 

moving window with a certain size will be used in the open operation, which includes 

erosion and dilation operations. After that operation, the elevation difference will be 

calculated between the elevation of pre-operation and post-operation. In the proposed 

method, the filter embedded the cluster and trend analysis mechanism, which will help 

estimate the window filtering threshold adaptively in each filtering step.  

 

Algorithm description 

AdaptiveMorphFilterFile Procedure 

INPUT:  

Original LIDAR data file. 

OUTPUT: 

Ground points file. 

1. Grid Input file 
2. Interpolate empty grid 
3. Use AdaptiveMorphFilter procedure to process grid data 
4. Output ground points to file 

 

AdaptiveMorphFilter Procedure 

INPUT:  

1. Gridded and interpolated LIDAR data: Z 
2. Filtering steps: steps 
3. Initial window size to start Adaptive Morphological Filtering: initThreshBin 
4. Cluster Threshold for separating different clusters: clusterThresh 

OUTPUT: 

Mark Matrix for Ground points: mark. 
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1. Create and initialize mark matrix for each grid of point 
2. for k = 1 to steps 
3. for each direction (by row and by column) 
4.   for each ith row/column in the grid 
5.     zcurr ß Zi; // extract the ith row/column’s z values 
6.     if window_size(k) >= initThreshBin then 
7.         clusters ß MakeCluster(zcurr, clusterThreshold); // Create  

                                          cluster array for current row/column 
8.         trendArr ß MakeTrendArray(zcurr); // Create trend array for 

                                                                       current row/column 
9.         thresholdArr ß CalThreshArray(clusters, window_size(k), trendArr);  

                  // Calculate the filtering threshold for each point in the row/column 
10.     end if 
11.     zopen ß Morphopen(zcurr, window_size(k)); // Open operation 
12.     zdiff ß zcurr – zopen; 
13.     if window_size(k) < initThreshBin then 
14.        thresholdArr ß threshold(k); // Set each threshold value in  

                                                          thresholdArr as threshold(k) 
15.     else 
16.     if zdiff(i, j) > thresholdArr(j) then  
17.        mark(i, j) ß window_size(k); // Update mark  
18.     end if 
19.     Zi ß zopen; // Set the ith row/column’s z values 
20.   end of each row/column 
21. end of for loop of each direction 
22. end of for loop of all steps 
 

In each filtering loop, when the filtering window size is greater than or equal to 

the predefined initial adaptive filtering window size initThreshBin (in Line 6), the cluster 

and trend analysis methods is involved in the filtering loop. The adaptive threshold 

estimation results are used in the classification of points (in Line 16). While if the 

filtering window size is less than initThreshBin (in Line 13), the constant filtering 

threshold would be used. This is good for the smaller window size, such as 1 or 2, which 

is not necessary to carry out the adaptive threshold estimation, while users can still 

involve the adaptive threshold estimation in for all the window sizes by simply set 

initThreshBin as 0. 
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The MakeClusters procedure (in Line 7) described in [10] creates a cluster array 

for each row or column based on the predefined cluster threshold clusterThresh. In this 

way, the data points in a row or column can be separated into a collection of clusters. 

The MakeTrendArray procedure (in Line 8) is used to collect all the minima and 

maxima points from the unfiltered points in a row or column, which reflects the local 

trend variation information. This trend information is combined with clusters information 

and helps the CalThreshArray procedure estimate the filtering threshold. Therefore, in 

the MakeTrendArray procedure, the entire row or column would be scanned to find the 

minima and maxima points from all the unfiltered points. 

After getting clusters and minima information (in Line 7 and Line 8), the 

CalThreshArray procedure was called to estimate the filtering threshold for each point in 

a row or column. The essential idea of filtering threshold estimation is by checking the 

relationship between the clusters of the current point and the clusters of its bounding 

points in the filtering window, and analyzing their local trend information from local 

minima, to estimate the local slope of the terrain surface where the current point is 

located. The local terrain slope of the current point would be used to estimate the filtering 

threshold. 

 

CalThreshArray Procedure 

INPUT: 

1. A row or column data points: Z 
2. Half filtering windows size: binSize 
3. Cluster threshold for current filtering window size: clusterThresh 
4. Current row or column clusters collection: clusters 
5. Current row or column minima collection: trendArray 
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OUTPUT:  

An array of the filtering threshold for each unfiltered point in the row or column: 

thresholdArr 

 

1. foreach unfiltered point Zi in current row or column 
2. binLeft ß i – binSize; 
3. if binLeft < 1 then binLeft ß 1; 
4. binRight ß i + binSize; 
5. if binRight > n then binRight ß n; // n is the number of grids in current row or 

column 
6. clusterNum ß findCluster(i, clusters); // Find current point cluster number in 

clusters 
7. binLeftCluster ß findCluster(binLeft, clusters); // Find the cluster number of left 

bounding point within filtering window size 
8. binRightCluster ß findCluster(binRight, clusters); // Find the cluster number of 

right bounding point within filtering window size 
9. (binLMiniLeft, binRMiniRight) ß findTrendRange(trendArray, i, n); // Find the 

left and right bounding points minima range (binLMiniLeft, binRMiniRight) 
10. (lowMinima, highMinima) ß findLowHighPt(Z, trendArray, binLMiniLeft, 

binRMiniRight); // Find the lowest and highest minima points values lowMinima 
and highMinima in the range (binLMiniLeft, binRMiniRight) 

11. if clusterNum, binLeftCluster, binRightCluster are the same cluster number then 
12. thresholdArr(i) ß highMinima – lowMinima; // Set current point’s 

threshold 
13. else 
14. thresholdArr(i) ß Slope(highMinima, lowMinima)*binSize; 
15. end if 
16. if thresholdArr(i)< clusterThresh 
17. thresholdArr(i) ß clusterThresh; 
18. end if 
19. if thresholdArr(i) > maxThreshold // Compare with maximum threshold, e.g. 

clusterThresh*binSize/4 
20. thresholdArr(i) ß maxThreshold; 
21. end if 
22. end of for loop of current row or column 
23. Output thresh array for current row or column 

 

The CalThreshArray Procedure is the core part of estimating the filtering 

threshold. After determining the current point’s bounding points (in Line 2~5), the 
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clusters of the current and its bounding points can be found (in Line 6~8). The 

corresponding minima range, which covers the left and right bounding points, can be 

detected (in Line 9). In Line 10, the lowest and highest minima points in the minima 

range are found. In Line 11, the cluster numbers of the current point and its bounding 

points were compared. If they are in the same cluster, the estimated threshold is set as the 

elevation difference between the highest and lowest minima points (in Line 12). 

Otherwise, the estimated threshold would be set as in Line 14. If the estimated threshold 

is less than the clusterThresh, which is used to separate the cluster, the estimated 

threshold is set as clusterThresh in Line 17. If the estimated threshold is greater than the 

maximum threshold, which can be calculated by the clusterThresh, the estimated 

threshold is set as the maximum threshold in Line 20. The idea of determining the 

maximum threshold is based on how many times clusterThresh elevation increases in a 

half filtering window size. In Line 19, an example value was given as 

clusterThresh*binSize/4, which means in a half window size binSize, there is a 

clusterThresh elevation increase every 4 grids. The total elevation increases would be 

clusterThresh*binSize/4, which can be treated as a maximum threshold. If the number of 

grids uses 2 or 3, it will give the maximum threshold as clusterThresh*binSize/2 or 

clusterThresh*binSize/3 accordingly. 

The key of this adaptive filtering method is the filtering threshold estimation. The 

more accurately the threshold is estimated, the more accurate the filtering results will be. 

Although there could be many ways to calculate the threshold, it would be very 

challenging to find a generalized way to estimate perfectly in all the parts of a complex 

data set. More experiments on different kinds of terrains would help achieve a more 
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general rule of adaptive threshold estimation for all the terrain types, which can further 

improve the correctness of this method. 

6.2.5 Discussion of Filtering Parameters 

Since all the filtering methods have one or more parameters that are given by the 

user, the selection of parameters is very important to any filtering method. Some 

parameters might be very sensitive for some methods and get remarkably different results. 

The parameters related to our adaptive filtering method focus on the following 

parameters: 

 Grid size,  

 Filtering window sizes,  

 Cluster threshold,  

 Filtering directions.  

These parameters are related to each other. Therefore, their selection might need 

to consider other parameters. We will discuss their relationships and how to choose the 

values under different circumstances in detail. 

From the essentials of our adaptive filtering method, the cluster thresholds under 

various filtering window sizes provide the mechanism that can help our adaptive filter 

estimate the critical filtering thresholds according to the local terrain. However, the 

selection of cluster thresholds is not necessary to be as accurate as that of filtering 

thresholds in many filtering methods. Since the cluster threshold, which is for the cluster 

separation procedure, only assists the filtering threshold estimation, it would not be very 

sensitive as the filtering threshold on different terrain types. It might have some minor 
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influences to the filtering results, but it would not alter the results significantly. Also, we 

can find some general rule to select cluster threshold on certain terrain types, which 

would make our method more general. We will discuss the details of how to choose 

cluster threshold in the later paragraphs. 

The grid size is a basic parameter among all the parameters because it shows the 

resolution of the data set, and how precisely the user would like to filter the data set as 

well. The grid size is often chosen as the resolution of the data set, because the data set 

information would be utilized completely in this way. For example, we can choose the 

appropriate grid size to let each grid contain one or two points. Sometimes, the grid size 

is chosen with a larger value because of computation time and computer hardware 

limitations. However, when processing a very large data set, the data set is normally split 

into an appropriate smaller size for processing, so that the smallest grid size can be 

chosen to fully use the data. In our experiment data, we normally used 1 meter as the grid 

size according to the data set resolution. 

After the grid size was decided, the filtering window sizes can be determined by 

the terrain types and various non-ground objects. In our filtering method, we used 

increasing window sizes to remove non-ground objects iteratively. The reasons why we 

need to choose increasing window sizes are as follows. First, we have to remove different 

sizes of non-ground objects under various sizes of filtering windows. Second, the best 

way to remove non-ground objects is from small non-ground objects to large ones. Based 

on these two reasons, we can select an appropriate window sizes’ series for removing 

various non-ground object features. In the real window size parameter, we used the 

number of grids to represent window size; therefore the real window size would be the 
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number of grids multiplied by the grid size. Also, the window size we used is actually a 

half window size, which represents the number of grids extended from the current grid to 

either the left or right sides of current grid. Therefore, the full window coverage of the 

current grid would be 2N+1, where N is the window size value. These values are very 

important to be considered on different terrain types and for various sizes of non-ground 

features. For example, if we choose 1 meter as the grid size, and 1 for the half filtering 

window size, the full coverage of filtering window would be 3 grids in size. Accordingly, 

the real size of the full window coverage is equal to 3 meters. This is very important for 

different sizes of non-ground features to select window size. For example, if we have a 

10x10 square meters non-ground object, if the grid size is 1 meter, we need to choose 5 

grids as the half window size to cover the whole object, because the full coverage of the 

filtering window size would be 11 grids, which is equal to 11 meters in this case. At the 

same time, if the grid size is 0.5 meters, we need to choose 10 grids as the half window 

size to cover the whole object, because the full coverage of the filtering window size 

would be 21 grids, which is 10.5 meters. Since we used the half window size as a mark 

value to identify when the non-ground objects were removed in each filtering step, these 

values are very useful and important to reflect when the non-ground objects were 

removed. We can further analyze these marks to acquire better filtering results. The 

typical window size series we used in the experiment data sets is 1, 2, 4, 8, 16, 32, and 40. 

The grid size of our experiment data set is normally 1 meter. The full coverage of 

window sizes for this series is 3, 5, 9, 17, 33, 64, and 81 meters. This window series 

works for various dimensions of non-ground objects. The half window size with 1, 2, and 

4 (full window coverage with 3, 5, and 9 meters) focuses on the small non-ground objects, 
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such as small vegetation, cars, and small constructions. The half window size with 8 and 

16 (full window coverage with 17, and 33 meters) deals with mid-size buildings, and 

parts of complex constructions, such as parts of bridges. The half window size with 40 

grids (full window coverage with 81 meters) works for large buildings and complex 

constructions. 

The filtering window series is tightly related to the sizes of non-ground object 

features in a data set. Small window size, such as 1, 2, and 4, is very common for any 

data sets. This is the case because it is necessary for small, non-ground objects, such as 

trees, cars, and small-size noise points. These small-size features normally exist in most 

of the data sets. Therefore, the small windows normally have the values of 1, 2 and 4.  

The selection of the mid-size and large filtering windows is slightly tricky, 

because they need to comply with the sizes of non-ground features, which might be 

significantly different in size and elevation on various terrains. For example, the 

buildings on mountainous areas are relatively smaller and lower than on flat terrains. In 

the flat urban areas, there exist many large and high buildings, while the buildings on the 

mountainous areas are rarely such sizes. This influences the selection of mid-size to large 

filtering window size significantly. If the sizes of non-ground object features in a data set 

can be categorized in certain levels, it would be very helpful to choose the filtering 

window size under each level. For example, if the sizes of buildings in a data set are in 

the levels of 10, 20, and 30 meters long, we can select 5, 10 and 15 as half filtering 

window size if the grid size is 1 meter. Because the coverage of full window size would 

be 11, 21 and 31 meters in length, which can filter out these three levels of buildings, 

correspondingly. In addition, if we know the limit of the largest non-ground object 
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feature’s size, it would help the filter set the maximum window size, which would reduce 

the filtering errors and computation time. For example, if we know the maximum non-

ground object feature’s size in a data set is less than 40 meters in length, we can select 20 

as the maximum half filtering window size if the grid size is 1 meter. Because the 

coverage of full window size would be 41 meters in length, it can filter out the largest 

non-ground object features, and stop the filtering process. 

According to the window size series, we can define the cluster threshold based on 

the non-ground features of any sizes in the data sets. The major purpose of the cluster 

threshold is to separate potential non-ground object features from local ground features 

based on the elevation difference under certain window sizes. Therefore, the cluster 

threshold is not necessarily very accurate. As long as the cluster threshold value can 

separate different levels of data points, it would help the filtering threshold estimation 

procedure to calculate the filtering threshold more precisely according to the local terrain 

variations. The selection of cluster threshold should comply with the elevation difference 

of each window size level. For example, if the data set contains relatively small and low 

vegetation, we should choose a relatively smaller cluster threshold, which can separate 

low elevation non-ground features from terrain surfaces into more clusters. It would help 

filter out more non-ground features. If the data set contains relatively high constructions 

in a large size, we can adjust the cluster threshold higher for large filtering window sizes, 

because it would more effectively separate non-ground objects from terrain surfaces. 

The Table 6-1 shows two typical sets of window size and cluster threshold 

parameter series. In the second row of parameter series, the cluster thresholds under large 

window sizes (16, 32, and 40) are greater than the first series. This is better parameters 
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setting for the terrain, which has large non-ground features with a greater elevation gap. 

Additionally, the cluster threshold under a small window size (e.g. 1) is smaller than the 

first series. This is good for filtering terrain that has small non-ground objects with 

relatively low elevation. 

Table 6-1 Filtering half window size series and cluster threshold series 

Half Window Size Series 1 2 4 8 16 32 40 

Cluster Threshold Series 1 0.5 0.5 1.0 1.0 1.0 2.0 2.0 

Cluster Threshold Series 2 0.3 0.5 1.0 1.0 1.0 3.0 4.0 

 

Another parameter which would affect the filtering results is the filtering direction. 

Our filtering method is based on grids of the data, which are stored in a matrix-like 

structure. The filtering directions refer to the moving direction of the filtering windows. 

The typical directions are row and column directions. When choosing different filtering 

directions, it would make the selections of other parameters slightly different. A simple 

example is to filter a rectangular building. If we choose the filtering window moving 

along the shorter edge direction, we can use a smaller filtering window size to filter out 

the object, while if we filter it along the longer edge direction, we need a larger filtering 

window size. This is the major reason for us to choose the appropriate directions. Figure 

6-7 shows the basic idea of how the filtering direction would influence the selection of 

the filtering window size. 
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Figure 6-7 Filtering directions of rectangular shape objects 

 

Figure 6-8 Non-orthogonal object shape filtering window size 
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However, if the rectangular shape object is not orthogonal with the grid matrix, 

which means the shape has some angle with the grid matrix’s row or column, it would 

influence the selection of filtering window sizes as well. The maximum filtering window 

size to filter out the rectangular shape object relies on the projection size on the row and 

column directions. Figure 6-8 illustrates how the non-ground object’s position influences 

the selection of filtering window sizes on the row and column directions. Small and mid-

size non-ground object features would not bring so much trouble to the selection of 

filtering window sizes, while large size non-ground object features might bring trouble to 

it. The complex bridge is an example of this scenario. Because it normally has very large 

extension on a certain direction, also it is connecting with the terrain surface and rising 

smoothly. Therefore, the selection of filtering direction is determined by the purposes of 

filtering jobs, or the requirements of the filtering results. For instance, when we process a 

complex bridge, we have to make decision on what we need to filter out based on the 

purposes. Because the middle part of a complex bridge is normally above the ground and 

the ends of it are normally connected to ground surfaces and rise smoothly, if we need to 

remove the middle parts of the bridge, which are over the ground surface, but not the 

ending parts, which are connected to the ground surfaces, we had better choose the 

filtering direction with the shorter extent. However, if we need to keep the whole bridge 

intact as much as possible, we should choose a filtering direction with the longer extent. 

As long as the filtering window size is large enough to filter out the whole bridge, it 

would be possible to keep more points on the bridge. 

For some complex non-ground object features, we might need more than one 

direction of filtering. The results from different filtering directions would provide more 
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information to help decide what should be filtered out according to different purposes. 

One solution is that we can process the whole data in row direction and then in column 

direction, or vice versa. Since we used a mark matrix to represent the filtering statuses of 

all the grids, we would get two separate mark matrices for two directions’ filtering results. 

We can further analyze these two matrices to achieve final results. By filtering a data set 

from row or column direction, we can choose different sets of parameters, such as 

window series. The filtering window sizes’ series are determined by the position and 

shape of non-ground features. The major factor is the projection sizes of the objects on 

the horizontal (row) and vertical (column) directions. There are many cases that the major 

terrain or non-ground features are not orthogonal with the row or column direction, which 

means the major directions of the terrain or non-ground features have some angle with 

the horizontal and vertical directions. This would affect the accuracy of filtering results in 

some cases. Normally, if the terrain or non-ground features are very large and there are 

many objects on them, it might affect the filtering results.  

To utilize the advantage of multiple directions filtering, we can carry out the 

filtering on each direction and analyze the mark matrix of each filtering direction to get 

the final result. We can combine the results on two directions. The typical way to 

combine the results is to compare the mark matrices on different directions and set those 

unfiltered grids in one matrix as filtered grids according to other directions filtering 

results’ matrices. For example, we can filter the row direction with the maximum window 

size of 40 and then the column direction with the maximum window size of 16. Finally, 

we can set those unfiltered grids in the row direction but filtered in the column direction 



136 
 

as filtered grids. We can also reset some filtered grids in one direction but unfiltered in 

other directions back to the unfiltered status according to our filtering needs. 

6.2.6 Result Analysis 

Filtering experiments have been carried out in many data sets from different 

terrain types. The first data set is from California. The testing data set is on a 

mountainous area, which has undulating terrain with different sizes of non-ground objects, 

such as trees, vegetation, and buildings, etc. The data set covers a 200 x 200 square meter 

area. One meter was used as the cell size to grid the data set, which would give a 200 x 

200 grid mesh. 

 

 

Figure 6-9 3-D mesh of original data set 01 
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Figure 6-10 PM filter results of different threshold parameters for data set 1 

The original data set’s 3-D mesh diagram was shown in Figure 6-9. Figure 6-10 

shows two results of progressive morphological filter with different filtering threshold 

parameters. The same series of half filtering window size was used for these two results. 

The series of half window size is 1, 2, 4, 8, 16, and 32. The thresholds of each window 

size for the two results are listed in Table 6-2. 

Table 6-2 Thresholds of filtering results of data set 01 

Window Size 1 2 4 8 16 32 

Threshold of Result 01 0.60 0.64 0.68 0.76 0.92 1.24 

Threshold of Result 02 0.40 0.48 0.56 1.00 1.60 2.00 

 

From the filtering results, it was known that the selection of threshold would 

affect the filtering results significantly. The rectangle areas marked with A, B, and C in 
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the two results show remarkable difference because of the filtering threshold. Since the 

constant filtering threshold was used under each window size in the progressive 

morphological filter, it would not suit all the parts of the data set. Better selection of 

filtering threshold would achieve more ideal results. The constant threshold value under 

each window size is the intrinsic cause of poor filtering results. The proposed adaptive 

method’s goal is to prevent this problem and reduce the human efforts of choosing the 

critical threshold parameters. Figure 6-11 shows the adaptive morphological filter results. 

The rectangle areas marked with A, B and C demonstrate that the adaptive filtering 

method performs better than progressive morphological filter, because it would 

adaptively select the filtering threshold for each point according to the local terrain 

variation. The cluster thresholds used in the adaptive morphological filter were a more 

generalized set of values under each window size for all the terrain types. Since the 

cluster threshold is just used to distinguish potential continuous surface, it does not need 

to be very accurate, as long as it can separate terrain surfaces into different layers. 

Furthermore, the critical filtering threshold is calculated more accurately during filtering, 

which makes the cluster threshold series general for many data sets with different terrain 

types. The selection of a cluster threshold is generally based on the filtering window sizes 

and non-ground features’ sizes. Under small half window sizes, such as 1, 2, 4 grids, the 

full window size is less than 10 grids. A smaller cluster threshold can be used. As 

window size gets larger, a greater cluster threshold is used to separate large-scale surfaces. 

The commonly used rule of cluster threshold selection in our experiments is to choose a 

slope between the cluster threshold and full window size less than 0.15. The local terrain 

trend is not very clear under small half window size, such as 1 and 2 grids, because there 
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are few grid points to form the trend. Therefore, it is not very critical to use adaptive 

threshold estimation under small filtering window sizes. Constant value is good enough 

for small window sizes. In our experiments, adaptive threshold estimation is normally 

involved when the half window size is greater than 2. When the half window size is 1 or 

2, constant filtering threshold values are normally used. As in Table 6-3, when the half 

window sizes are 1 and 2 meters based on 1 meter grid size, constant filtering threshold 

values are 0.3 and 0.5 meters respectively, which means the adaptive filtering threshold 

estimation is involved after the half window size increases to 4 meters. These constant 

threshold values can be used in other experiments as well. 

Table 6-3 Adaptive filtering threshold of data set 01 

Window Size 1 2 4 8 16 32 

Filtering Threshold 0.3 0.5     

Cluster Threshold   1 1 2 2 

 
The second data set is from Florida International University’s campus, in Miami, 

Florida. The testing data set is a flat terrain with different size non-ground objects, such 

as trees, vegetation, buildings, etc. The data set covers a 540 x 540 square meter area. We 

used 1 meter as the cell size to grid the data set, which would give a 540 x 540 grid mesh. 
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Figure 6-11 Adaptive morphological filter result of data set 1 

The original data set’s 3-D mesh diagram was shown in Figure 6-12. Figure 6-13 

shows two results of progressive morphological filter with different filtering threshold 

parameters. We used the same series of filtering half window size for these two results. 

The series of half window size are 1, 2, 4, 8, 16, 32 and 64. The thresholds of each 

window size for the two results are listed in Table 6-4. 
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Figure 6-12 3-D mesh of original data set 02 

 

Table 6-4 Thresholds of filtering results of data set 02 

Window Size 1 2 4 8 16 32 64 

Threshold of Result 01 0.40 0.48 0.56 0.72 1.04 1.68 2.96 

Threshold of Result 02 0.40 0.48 0.56 1.00 2.00 4.00 8.00 
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Figure 6-13 PM filter results of different threshold parameters for data set 2 

From the filtering results, we learned that the selection of thresholds would affect 

the filtering results moderately. Only the rectangle marked with A in the two results 

shows a remarkable difference because of the filtering threshold. Since the progressive 

morphological filter was very effective in the flat terrain, it would not make a significant 

difference on filtering major non-ground objects. The only scenario in which the filter 

would make ambiguous results is when the non-ground object’s height is very close to 

the ground surface and its size is relatively large. In that case, it would be more difficult 

for the filter to separate them. This kind of result difference was caused by the intrinsic 

terrain shape. Therefore, it would be very hard for users to use any filtering methods 

without additional information, except three-dimensional data. Figure 6-14 shows the 

adaptive morphological filter results; the rectangle areas marked with A, B show the 

difference from the progressive morphological filter. In the area A, the result was 

between the two progressive morphological filtering results. In area B, the adaptive 
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method removed more points than the two progressive morphological filtering results. In 

the other area, the three results have no significant difference. This testing results show 

our adaptive filter works effectively as the progressive morphological filter in the flat 

terrain. 

 

Figure 6-14 Adaptive morphological filter result of data set 2 
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6.3 Experiments on ISPRS Testing Data Set 

Since many ground filters nowadays are developed for particular terrain types, 

and are tested on relatively small study sites, it is very difficult to compare all the 

methods on various terrain types. Among many study data sets, the International Society 

for Photogrammetry and Remote Sensing (ISPRS) provided a collection of standardized 

LIDAR and ground reference data sets. These LIDAR data sets include many different 

terrain types and various non-ground object features. Seven testing sites and their 

reference ground data sets are commonly used for filtering methods to test their 

performances by comparing the filtering results with reference data.  

Sithole and Vosselman [41] did a complete test with eight ground filtering 

algorithms on twelve ISPRS datasets. The results showed that most filters performed well 

on relatively flat and smooth terrains, but that all have noticeable errors in certain terrain 

types. These results demonstrated that it is very difficult to find a method with a single 

means to filter all the terrain types. To make a method have good performance on all the 

terrains, the filter has to utilize the advantage of some methods and combine them to 

achieve ultimate results. To test the proposed algorithm thoroughly, complete processing 

experiments on the ISPRS data sets have been accomplished. 

The shade relief maps of seven testing sites are listed below [41]: 
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Table 6-5 ISPRS site 1-7 shade relief map 

Site 1  

 

Site 2  
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Site 3  

 

Site 4  
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Site 5  

 

 

Site 6  
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Site 7  
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From the seven data sets, 15 representative samples where extracted. The reason 

for the choice of the samples is given in the table below [41]: 

Table 6-6 ISPRS site 1-7 reference sample data set terrain features 

Site 1 Sample 11 Vegetation and buildings on steep slopes 

Sample 12 Small objects (cars) 

Site 2 Sample 21 Narrow bridge 

Sample 22 Bridge (South west)/ Gangway (North East) 

Sample 23 Complex buildings, Large buildings, Disconnected terrain 

Sample 24 Ramp 

Site 3 Sample 31 Disconnected terrain, Low point, Low point influence 

Site 4 Sample 41 Clump of low points (Multi-path error) 

Sample 42 Elongated objects, Low (objects) and high-frequency 

variation in the landscape 

Site 5 Sample 51 Vegetation on slope 

Sample 52 Low vegetation, Discontinuity – sharp ridge 

Sample 53 Discontinuity preservation 

Sample 54 Low resolution buildings 

Site 6 Sample 61 Discontinuity – sharp ridge, ditches 

Site 7 Sample 71 Bridge, Discontinuity – preservation 

 

The complete processing experiments have been carried out on the fifteen data 

sets, and the error analysis has been done in terms of type I (commission error), type II 

(omission error) and total errors as in Sithole and Vosselman [41]. The filtering process 

results would separate bare-earth points and non-ground object points. The error analysis 
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focuses on the accuracy of classification of these two types of points. The error types 

were categorized into type I, type II and total errors. Type I error is also called omission 

error, which is caused by the bare earth points that have been incorrectly identified as 

non-ground object points. If we use a to represent the number of bare earth points that 

have been correctly identified, and use b to represent the number of bare earth points that 

have been incorrectly identified as non-ground object points, the type I error can be 

calculated as follows: 

Type I error = b / (a + b) 

Type II error is also called commission error, which is caused by the non-ground 

object points that have been incorrectly identified as bare earth points. If we use c to 

represent the number of non-ground object points that have been incorrectly identified as 

bare earth points, and use d to represent the number of non-ground object points that have 

been correctly identified, the type II error can be calculated as follows: 

Type II error = c / (c + d) 

The total error can be calculated as follows: 

The total error = (b + c) / (a + b + c + d) 

Mongus and Žalik [30] proposed a parameter-free filtering algorithm and 

processed the fifteen data sets. The results show it can achieve less average error when 

compared with TerraScan’s processing results.  
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Table 6-7 Accuracy comparison between the parameter-free algorithm and TerraScan® on ISPRS 
benchmark datasets 

Dataset TerraScan® 

 

The Parameter-free method 

 

Total error 

(%) 

Type I 

error (%) 

Type II 

error (%) 

Total error 

(%) 

Type I 

error (%) 

Type II 

error 

(%) 

samp11 16.14 26.66 2.00 11.01 7.32 15.98 

samp12 11.55 21.49 1.12 5.17 4.23 6.15 

samp21 11.56 14.30 1.95 1.98 0.01 8.87 

samp22 10.78 14.51 2.56 6.56 4.97 10.09 

samp23 8.01 12.92 2.54 5.83 4.38 7.45 

samp24 12.97 16.38 3.98 7.98 5.69 14.04 

samp31 4.85 8.36 8.97 3.34 0.21 7.00 

samp41 13.15 25.10 0.74 3.71 3.39 4.03 

samp42 2.55 8.00 1.39 5.72 0.06 8.06 

samp51 1.31 0.41 0.29 2.59 0.35 10.60 

samp52 5.38 4.72 4.52 7.11 6.61 11.43 

samp53 4.02 3.62 11.01 8.52 8.39 11.59 

samp54 2.30 2.49 13.68 6.73 1.18 11.50 

samp61 1.71 1.60 4.81 4.85 3.23 4.85 

samp71 1.90 1.69 3.56 3.14 2.37 9.15 

Avg. 7.20 10.82 3.75 5.62 3.49 9.39 
 

We used the proposed algorithm to process the fifteen data sets with multiple sets 

of parameters. The results show the algorithm can achieve less overall average error than 

TerraScan’s and parameter-free algorithm’s results. 

The first set of filtering parameters is shown in the following table: 
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Table 6-8 Adaptive filtering parameter set 01 

Window Size 1 2 4 8 12 16 20 

Cluster Threshold  0.3 0.5 1 1 1 2 2 

Row Direction x x x x x x x 

Column Direction x x x x x x  

 

Table 6-9 The comparison of terrain filtering accuracy between the parameter-free algorithm and 
the proposed algorithm on ISPRS benchmark datasets. 

Dataset The Parameter-free method 

 

The proposed method 

 

Total error 

(%) 

Type I 

error (%) 

Type II 

error (%) 

Total error 

(%) 

Type I 

error (%) 

Type II 

error (%) 

samp11 11.01 7.32 15.98 9.98 11.03 8.47 

samp12 5.17 4.23 6.15 3.28 2.65 4.01 

samp21 1.98 0.01 8.87 1.96 1.17 4.84 

samp22 6.56 4.97 10.09 6.7 4.14 13.37 

samp23 5.83 4.38 7.45 7.41 7.52 7.27 

samp24 7.98 5.69 14.04 5.41 4.71 7.21 

samp31 3.34 0.21 7.00 2.31 0.21 5.52 

samp41 3.71 3.39 4.03 6.46 5.39 7.47 

samp42 5.72 0.06 8.06 5.61 0.86 7.93 

samp51 2.59 0.35 10.60 2.7 0.89 9.26 

samp52 7.11 6.61 11.43 7.63 7.27 10.75 

samp53 8.52 8.39 11.59 8.73 8.81 6.92 

samp54 6.73 1.18 11.50 4.04 1.13 6.55 

samp61 4.85 3.23 4.85 3.26 3.25 3.63 

samp71 3.14 2.37 9.15 4.71 4.15 9.17 

Avg. 5.62 3.49 9.39 5.35 4.21 7.49 
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In the parameter set 01, the adaptive threshold estimation procedure starts from 

window size 4. We used row and column directions filtering. The maximum window size 

on row and column direction was 20 and 16 meters. The unfiltered point in the row 

direction filtering result would be removed if it was filtered in the column direction. 

The second set of filtering parameters is shown in the following table: 

Table 6-10 Adaptive filtering parameter set 02 

Window Size 1 2 4 8 16 20 30 

Cluster Threshold  0.3 0.5 1 1 1 2 2 

Row Direction x x x x x x x 

Column Direction x x x x x   

 

In the parameter set 02, we increased the windows size on the row direction 

filtering. The maximum window size on row and column direction was 30 and 16 meters. 

The unfiltered point in the row direction filtering results was removed if it was filtered in 

the column direction. 
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Table 6-11 Filtering results accuracy comparison between parameter sets 01 and 02 

Dataset The Parameter Set 01 

 

The Parameter Set 02 

 

Total error 

(%) 

Type I 

error (%) 

Type II 

error (%) 

Total error 

(%) 

Type I 

error (%) 

Type II 

error (%) 

samp11 9.98 11.03 8.47 9.94 10.93 8.50 

samp12 3.28 2.65 4.01 3.27 2.66 3.99 

samp21 1.96 1.17 4.84 1.96 1.17 4.84 

samp22 6.7 4.14 13.37 5.02 4.31 6.88 

samp23 7.41 7.52 7.27 6.38 7.53 4.94 

samp24 5.41 4.71 7.21 8.56 9.22 6.86 

samp31 2.31 0.21 5.52 2.05 0.21 4.86 

samp41 6.46 5.39 7.47 4.70 6.02 3.47 

samp42 5.61 0.86 7.93 4.74 0.86 6.63 

samp51 2.7 0.89 9.26 2.85 1.05 9.37 

samp52 7.63 7.27 10.75 8.51 8.29 10.41 

samp53 8.73 8.81 6.92 9.59 9.69 7.00 

samp54 4.04 1.13 6.55 4.21 1.11 6.90 

samp61 3.26 3.25 3.63 3.63 3.62 3.80 

samp71 4.71 4.15 9.17 6.63 6.29 9.29 

Avg. 5.35 4.21 7.49 5.47 4.86 6.52 
 

The accuracy comparison of filtering results between parameter sets 01 and 02 is 

shown in Table 6-11. The results show that when the maximum filtering window size 

approaches the maximum size of non-ground object features, more accurate results can 

be achieved. The results on samp41 and samp42 are the typical cases. The omission 

errors (Type I error) have little difference, while the commission errors (Type II error) 

are much different. Because in the samp41 and samp42 data sets, there are some non-
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ground object features with relatively large size, the maximum filtering window size in 

parameter set 01 is 20 meters, which is not good enough to filter out large size non-

ground features. The parameter set 02’s results show the maximum window size (30 

meters) is more appropriate for samp41 and samp42, because it can lower the 

commission error and keep the omission error unchanged as well. Therefore, it is very 

important for the processing accuracy to choose the appropriate maximum filtering 

window size. If we have the knowledge on the maximum size of non-ground object 

features in the data set, it would be very helpful to select the appropriate maximum 

filtering window size. However, in reality, it is difficult to know the exact maximum size 

of non-ground object features; therefore, we have to choose a rough maximum filtering 

window size based on the terrain types of a data set or some other map tools, such as 

Google Map. Normally, we can decide the maximum size of non-ground objects by the 

terrain types. For example, there are rarely huge buildings in the mountainous areas. Thus, 

we can choose a relatively smaller maximum window size. Since the huge buildings with 

large coverage on the ground are normally located in the relatively flat terrain, we can 

select relatively larger maximum window size accordingly. Based on this observation, we 

can use a relatively larger maximum window size (30 meters) to process site 01, 03 and 

04, and use a relatively smaller maximum window size (20 meters) to process site 02, 05, 

06 and 07. In Table 6-12, we can achieve better overall accuracy of site 01, 03, and 04 

under larger maximum window size (30 meters) in parameter set 02, and better overall 

accuracy of site 02, 05, 06, and 07 under smaller maximum window size (20 meters) in 

parameter set 01. By combining the two parameter sets’ best results, we improve the 

overall accuracy, which is shown in Table 6-12.  
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Table 6-12 Accuracy comparison between parameter set 01 and the best results of parameter set 
01 & 02 

Dataset The Parameter Set 01 

 

The Best result from Set 01 & 02 

 

Total error 

(%) 

Type I 

error (%) 

Type II 

error (%) 

Total error 

(%) 

Type I 

error (%) 

Type II 

error (%) 

samp11 9.98 11.03 8.47 9.94 10.93 8.50 

samp12 3.28 2.65 4.01 3.27 2.66 3.99 

samp21 1.96 1.17 4.84 1.96 1.17 4.84 

samp22 6.7 4.14 13.37 6.7 4.14 13.37 

samp23 7.41 7.52 7.27 7.41 7.52 7.27 

samp24 5.41 4.71 7.21 5.41 4.71 7.21 

samp31 2.31 0.21 5.52 2.05 0.21 4.86 

samp41 6.46 5.39 7.47 4.70 6.02 3.47 

samp42 5.61 0.86 7.93 4.74 0.86 6.63 

samp51 2.7 0.89 9.26 2.7 0.89 9.26 

samp52 7.63 7.27 10.75 7.63 7.27 10.75 

samp53 8.73 8.81 6.92 8.73 8.81 6.92 

samp54 4.04 1.13 6.55 4.04 1.13 6.55 

samp61 3.26 3.25 3.63 3.26 3.25 3.63 

samp71 4.71 4.15 9.17 4.71 4.15 9.17 

Avg. 5.35 4.21 7.49 5.15 4.25 7.09 

If we select the maximum window size to be greater than the necessary size which 

covers the maximum non-ground objects, the overall accuracy would get worse. We 

processed the fifteen data sets with parameter set 03 (shown in Table 6-13), which has a 

larger maximum filtering window size, 40 meters. The results (Table 6-14) show the 

overall accuracy is getting worse. 
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Table 6-13 Adaptive filtering parameter set 03 

Window Size 1 2 4 8 16 32 40 

Cluster Threshold  0.3 0.5 1 1 1 2 2 

Row Direction x x x x x x x 

Column Direction x x x x x   

 

Table 6-14 Accuracy comparison between parameter sets 01 and 03 

Dataset The Parameter Set 01 

 

The Parameter Set 03 

 

Total 

error (%) 

Type I 

error (%) 

Type II 

error (%) 

Total 

error (%) 

Type I 

error (%) 

Type II 

error (%) 

samp11 9.98 11.03 8.47 9.97 10.90 8.64 

samp12 3.28 2.65 4.01 3.33 2.80 3.96 

samp21 1.96 1.17 4.84 1.98 1.17 4.95 

samp22 6.7 4.14 13.37 5.45 4.64 7.57 

samp23 7.41 7.52 7.27 6.93 7.85 5.77 

samp24 5.41 4.71 7.21 13.19 15.80 6.38 

samp31 2.31 0.21 5.52 2.26 0.21 5.38 

samp41 6.46 5.39 7.47 4.57 5.45 3.74 

samp42 5.61 0.86 7.93 4.78 0.86 6.70 

samp51 2.7 0.89 9.26 2.84 1.05 9.34 

samp52 7.63 7.27 10.75 8.91 8.76 10.20 

samp53 8.73 8.81 6.92 9.98 10.10 7.00 

samp54 4.04 1.13 6.55 4.18 1.06 6.88 

samp61 3.26 3.25 3.63 4.21 4.23 3.71 

samp71 4.71 4.15 9.17 6.88 6.59 9.17 

Avg. 5.35 4.21 7.49 5.96 5.43 6.63 
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6.4 Conclusion and Future Work 

Experiments results show that the proposed adaptive morphological filtering 

provides a very effective and efficient way to adaptively filter the LIDAR data. Since the 

selection of the filter parameters is very critical and sensitive to different terrain types, it 

would be very helpful to filter the study area without too many human interactions. Since 

this method can automatically analyze the terrain shape and obtain plenty of useful 

terrain information, it also offers a framework to dynamically select different filtering 

methods for different parts of the data set. Based on the cluster and trend analysis results, 

the filter can automatically choose a filtering method according to the terrain type. Also, 

we can acquire more terrain shape information by analyzing the cluster and trend 

information, which can be used for different kinds of filters. 
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Chapter 7   

GUI-BASED LIDAR DATA PROCESSING SYSTEM FOR MODEL 

GENERATION AND MAPPING  

Several LIDAR processing methods have been proposed in this dissertation, 

which can benefit model generation and mapping. High-quality digital elevation model 

(DEM) and mapping can be generated from good processing results according to 

different applications. These DEMs and mapping results are indispensable for many 

applications, such as urban management, emergency event planning, and mapping tools. 

Since LIDAR data contains a huge volume of data points even in a small surveyed area, it 

is necessary to have a practical GUI system for the users to process the data according to 

their application requirements. 

Developing the tools to process LIDAR data is a challenging task because of the 

unique characteristics of LIDAR data [9][54][55]. A huge volume of irregularly spaced 

points in the LIDAR data is difficult to display, edit and analyze in many commercial 

GIS and remote sensing software types, which are designed to handle vector and raster 

images. Therefore, the dedicated LIDAR data processing system for varied application 

needs is necessary. The high-quality processing results would provide the commercial 

software with appropriate input for viewing, editing and analyzing. In this chapter, a 

GUI-based LIDAR data processing system is proposed and discussed in detail. 

7.1 System Architecture 

The proposed GUI system provides a whole workflow to process the LIDAR data. 

The general processing of LIDAR data consists of several major components, which 
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include interpolation of data, filtering of data, classification of objects, and generation of 

object models. The proposed GUI system offers a generalized batch processing interface 

for users to select different methods to process input data files. In the meantime, it offers 

a GUI to let users display, edit and process the data on the fly interactively. 

 
Figure 7-1 Schematic procedures for LIDAR data processing 

The schematic procedure for LIDAR data processing is shown in Figure 7-1. 

High-volume LIDAR data in a surveyed area is partitioned into tiles with a predefined 

size. Some project data needs to be split into strips in the Strip Boundary & Merge 

procedure before being partitioned into tiles. This Data Partition procedure would split a 

huge data set into small pieces for better storage and processing. In the Data 

Preprocessing procedure, the outlier points, such as extremely low points, would be 

removed. Also, the interpolation of empty parts in the data set could be carried out in this 

procedure. The Filtering procedure will separate the ground and non-ground features 

according to the application needs. Multiple filtering methods have been implemented in 

the Filtering module. The separated ground and non-ground points will be processed in 

the Features Classification procedure to further extract the desired terrain or non-terrain 

features according to the application purposes. Finally, the extracted features would be 

used to generate a digital terrain model (DTM) or digital elevation model (DEM). These 

processing modules have been implemented in a generalized multi-task batch processing 
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GUI. Users can use the same interface to select the processing input/output files, methods, 

and parameters. 

The proposed system offers GUI for users to interactively view the three-

dimensional LIDAR data, which is displayed in different colors according to their 

elevations. The legend can be modified to satisfy different display purposes. The data 

set’s information, such as 3-D boundary information, is shown in the GUI. Users can also 

retrieve a single LIDAR point’s location information by pointing the cursor to it. The 

view can be zoomed in and out. Multiple views of display and processing results are 

cached for undo and redo operations. Users can switch the data views back and forth 

easily in this way. These viewing functionalities are very helpful for users to study the 

spatial detail of the data set and compare the processing results. 

The GUI offers the editing and processing operations through polygon shape 

selection in the data view. These functionalities are necessary for users to edit and 

process a complex data set, especially when the users need to visually select various areas 

of interest in a big data set to carry out different operations. These operations include 

exporting data, removing data, filtering data, objects detection, and objects classification 

in the selected regions. By using these functionalities, users can visually choose the study 

area in the data set and carry out their processing methods repeatedly. The processing 

results will be displayed on the fly and can be retrieved from cache by undo/redo 

operations. 

These features of the system are very useful for processing and analyzing large 

complex data sets, which is difficult for a single filtering method to separate ground and 

non-ground features. With the interactive features, users are able to select any part of the 
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data set by using a polygon, and process it with different methods and parameters 

according to the applications. It offers users much flexibility to handle different kinds of 

terrain with various configurations. 

7.2 System Demonstration 

The proposed system is demonstrated by a personal computer program on the 

Windows platform. A sample LIDAR data set is used for the viewing, editing and 

processing functionalities. The functionalities presented to the users are described as 

follows [9]. 

 
Figure 7-2 GUI view of LIDAR data 
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The main GUI is shown in Figure 7-2, which uses Document/View architecture 

for the Visual C++ project. The data points can be shown in the view with different 

colors defined in the legend bar. The legend bar’s settings dialog is shown in Figure 7-3. 

Multiple parameters can be modified by users. The elevation display settings use relative 

elevation values to the benchmark value. Users can set the benchmark value to define the 

origin of vertical axis. All the elevation levels can be defined relative to the benchmark 

value in a list. Different elevation ranges are displayed by user-defined colors. Users can 

change the color as they need, and the interval between each elevation level can be 

modified by setting Interval value. The legend settings offer users a good way to display 

the data. Users can use mouse to select any rectangle region to zoom in on the selected 

area. Multiple views are cached for users to retrieve. 

 

Figure 7-3 Legend bar settings 
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The interactive processing interface is shown in Figure 7-4. The figure shows that 

users can select any polygon-shaped area to carry out related processing operations, such 

as export, deletion, and other filtering-related operations. The polygon shape is adjustable; 

users can resize the polygon shape by dragging its vertices. After the polygon region is 

selected, users can do all the related operations by right-clicking the polygon. The 

operation menu will be prompted for users to choose the operations. For example, if the 

user chooses a filtering operation such as Morph Filter, a parameters form will pop up. 

The user can fill in the parameters of the method shown in Figure 7-5, and then the 

processing will start after the user clicks the OK button. The operation result is shown in 

Figure 7-6. To process the same polygon size of data in a different area of the data set, 

the user can drag the polygon shape to a different part of the data set and choose the 

appropriate operation for that area. Figure 7-7 shows the results of another operation on a 

different part of data set with the same polygon shape. This operation extracts the non-

ground features of the data set, while the non-ground features were removed in the 

previous polygon-shaped area. Users can select different operation methods to satisfy 

their own data retrieval needs. The processing results in each polygon shape can be 

exported into file for further analysis and processing. This GUI-based interface provides 

a framework for testing and comparing different methods. All the related LIDAR 

processing methods can be embedded into this GUI interface. It would benefit 

researchers to test and compare various methods on different areas of each data set, 

because users can easily switch between different processing results’ view through Undo 

and Redo buttons. Another operation result is shown in Figure 7-8. It extracts the points 

of buildings in the data set. This can be further used to retrieve the boundaries of these 
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buildings. Figure 7-9 shows the results of the boundaries identified from the extracted 

buildings. With this information, the buildings’ boundaries can be easily displayed in 

commercial software, such as ArcGIS, and overlapped on the web map services, such as 

Google Map. The results of the boundaries also provide important information for 3-D 

model generation. 

 

Figure 7-4 Operations on selected polygon region 
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Figure 7-5 Parameters form of the operation 
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Figure 7-6 GUI operation result 

 
Figure 7-7 Another operation result with the same polygon shape 
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Figure 7-8 Building extraction 

 

 
Figure 7-9 Non-ground objects’ boundaries detection 
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The batch processing interface is shown in Figure 7-10. Users can choose from a 

list of implemented methods, set the parameters for each method, and add it into the 

processing task list. The processing input and output file can be selected and set through 

the general batch processing form. The processing method can be selected from the 

methods list. Before the processing job is added to the task list, a parameters form will 

pop up for users to fill in all the parameters of the method. Multiple jobs can be added 

into the task list; they will be processed sequentially. The processing time and job status 

will be displayed for each job. Users can stop the processing job anytime. These features 

are very helpful for comparing methods’ performance, especially for large data sets, 

which require long processing time. The detailed batch processing features are explained 

in [55]: 

 

Figure 7-10 Batch processing interface 
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Figure 7-11 Parameter form of the selected method 

 
Figure 7-12 Processing jobs' status are shown in task list pane 
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Chapter 8   

CONCLUSIONS AND FUTURE WORK 

The major motivation behind the research presented in this dissertation is to 

develop a LIDAR data processing framework, which would provide an effective and 

efficient way to process LIDAR data on varied terrain types. Due to the characters of 

LIDAR data, it normally contains a huge number of data points. It is a tremendous 

challenge for the storage and processing. An effective LIDAR processing framework 

should include all the necessary components, such as data storage, pre-processing, 

filtering and model generation. All the methods for each component should be able to 

work effectively and efficiently, so that it can satisfy the practical processing purpose, 

rather than ideas and theories. Thus, the performance of the method is critical for 

practical use, because the practical data sets are much larger than the testing set for 

research purposes. Among all the components, the filtering component is the most critical 

part for the LIDAR data processing. Therefore, it is the most important part in this 

research. 

This dissertation focuses on the development of a generalized adaptive LIDAR 

filter, which can work on varied terrain types. A cluster-based morphological filter was 

proposed to solve the cut-off problem for the morphological filter. An adaptive trend 

analysis morphological filter was proposed to achieve a generalized filter on varied 

terrain. Since so many filtering methods have been developed, and have different 

performance on various terrain types, it creates a hassle for practical use, because it is 

very difficult for an inexperienced user to choose the appropriate filtering methods to 

process a large and complex terrain. Almost all the filters that have been developed can 
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be categorized into the following types: surface-based filters, segmentation-based filters, 

region-based filters, TIN-based filters and slope-based filters. They all have their own 

advantages and disadvantages, which cause them to perform differently on varied terrains. 

In practical use, a large data set normally contains complex and multiple terrain types, 

which makes it difficult for a single method to achieve ideal results. Current filtering 

research shows a trend to combine multiple filter methods’ features to suit complex and 

various terrain types. In this dissertation, mathematical morphological filtering, cluster, 

trend analysis and slope filtering are included in our proposed methods that can make the 

filter more generalized and adaptive to varied terrains for practical use. Also, the related 

interpolation method has been discussed in this dissertation, and a grid-based priority 

interpolation method was proposed to interpolate empty holes around filtering residuals, 

and to assist the filter in removing them. 

8.1 Conclusions 

The results and conclusions from the work described above are summarized as 

follows: 

1. Literature review 

A comprehensive literature search and review was performed to investigate the 

LIDAR processing components and methods. Also, the advantages and disadvantages of 

different methods have been compared. The challenges of methods have been presented. 

The literature review demonstrates all of the LIDAR processing procedures and the role 

of each component. The difficulties and challenges of varied LIDAR filtering methods 
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have been discussed. The advantages and disadvantages of each method have been shown 

as well in the literature review. 

2. Data interpolation 

Common interpolation methods in our framework have been discussed. A grid-

based priority interpolation method was proposed to interpolate empty grids. This 

interpolation method can be combined with a multi-pass morphological filter to remove 

large non-ground objects’ filtering remains for some complex terrains. 

3. Filtering methods development 

A cluster-based morphological filter was proposed to solve the cut-off problem 

for the morphological filter. The cut-off problem is a common problem for morphological 

filters, because there is no mechanism involved in most of the morphological filters to 

detect the terrain shapes and the spatial connectivity of points. Especially in the 

undulating terrain and steep terrain, morphological filters turn out more errors. The 

cluster-based method proposed provides an iterative way to check the connectivity of a 

complete spatial terrain feature, which can recover the cut-off features during 

morphological filtering. 

An adaptive trend analysis morphological filter was proposed to achieve adaptive 

filtering threshold estimation according to the terrain changes. One of the most 

challenging problems for morphological filters is how to provide the filtering thresholds 

adaptively based on the terrain shape. Some morphological filters use the filtering 

thresholds from users’ input according to their experience, and some use simple formula 

to estimate the thresholds. These methods result in either a constant threshold under each 

filtering window or the same threshold on different terrain types. They would not work 
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very well on complex terrains, and on a large data set for practical processing as well. 

Thus, a generalized adaptive method is necessary for practical processing. The adaptive 

trend analysis morphological filter proposed in this dissertation combines the features of 

cluster analysis, adaptive trend analysis and progressive morphological filter. It can 

achieve the goal of a generalized LIDAR filtering method for practical use. 

4. GUI-based LIDAR data processing system 

A GUI-based LIDAR data processing system was proposed to aim for the LIDAR 

processing related methods design and development. It implemented many LIDAR 

processing related methods in our research work, which makes it a useful LIDAR data 

processing tool for practical use. 

8.2 Future Work 

The proposed LIDAR filtering methods can be improved in the following 

directions to make them more generalized for practical use. 

More generalized adaptive filtering methods can be studied in the following 

issues: 

1. Optimization of trend line analysis 

The trend line analysis method can be studied and tested on more data sets to 

optimize the threshold estimation. The trend estimation method can be studied on more 

sophisticated geometry analysis to improve the estimation algorithm. 

2. Three-Dimensional trend surface analysis 

The trend line analysis method proposed in this dissertation is based on two-

dimensional data (x or y coordinates with an elevation dimension). It can be extended to 
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three dimensions, so that the trend surface can be analyzed for threshold estimation. It 

would be more sufficient for the analysis of terrain or objects’ spatial shapes. 

3. Adaptive selection of filtering methods 

Since different filtering methods have their own advantages on varied terrain 

types, it would be very helpful to use each method’s advantages to filter each part of a 

large data set with different terrain types. Thus, an adaptive filter selection mechanism 

would improve the filtering results on a data set which contains complex terrains. This 

method relies on the terrain type analysis and partition. First, the data set has to be 

analyzed to find varied terrain types. Then, the data set needs to be partitioned according 

to the terrain types. Thus, how to partition the data set according to the terrain types 

would be the critical part of this study. After the data set is successfully partitioned 

according to the terrain types, the appropriate filtering method can be automatically 

selected. 
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