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ABSTRACT OF THE DISSERTATION 

GENETIC MARKERS, BIRTH CHARACTERISTICS, AND  

CHILDHOOD LEUKEMIA RISK 

by 

Amy Kennedy 

Florida International University, 2013 

Miami, Florida 

Professor Mehmet T. Dorak, Major Professor 

The cause for childhood acute lymphoblastic leukemia (ALL) remains unknown, 

but male gender is a risk factor, and among ethnicities, Hispanics have the highest risk. In 

this dissertation, we explored correlations among genetic polymorphisms, birth 

characteristics, and the risk of childhood ALL in a multi-ethnic sample in 161 cases and 

231 controls recruited contemporaneously (2007-2012) in Houston, TX. We first 

examined three lymphoma risk markers, since lymphoma and ALL both stem from 

lymphoid cells. Of these, rs2395185 showed a risk association in non-Hispanic White 

males (OR=2.8, P=0.02; Pinteraction=0.03 for gender), but not in Hispanics. We verified 

previously known risk associations to validate the case-control sample. Mutations of HFE 

(C282Y, H63D) were genotyped to test whether iron-regulatory gene (IRG) variants 

known to elevate iron levels increase childhood ALL risk. Being positive for either 

polymorphism yielded only a modestly elevated OR in males, which increased to 2.96 

(P=0.01) in the presence of a particular transferrin receptor (TFRC) genotype for 

rs3817672 (Pinteraction=0.04). SNP rs3817672 itself showed an ethnicity-specific 

association (Pinteraction=0.02 for ethnicity). We then examined additional IRG SNPs 
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(rs422982, rs855791, rs733655), which showed risk associations in males (ORs=1.52 to 

2.60). A polygenic model based on the number of polymorphic alleles in five IRG SNPs 

revealed a linear increase in risk (OR=2.00 per incremental change; P=0.002). Having 

three or more alleles compared with none was associated with increased risk in males 

(OR=4.12; P=0.004). Significant risk associations with childhood ALL was found with 

birth length (OR=1.18 per inch, P=0.04), high birth weight (>4,000g) (OR=1.93, 

P=0.01), and with gestational age (OR=1.10 per week, P=0.04). We observed a negative 

correlation between HFE SNP rs9366637 and gestational age (P=0.005), again, stronger 

in males (P=0.001) and interacting with TFRC (P<0.001; Pinteraction=0.05). Our results 

showed that (i) ALL risk markers do not show universal associations across ethnicities or 

between genders, (ii) IRG SNPs modify ALL risk presumably by their effects on iron 

levels, (iii) a negative correlation between an HFE SNP and gestational age exists, which 

implicates an iron-related mechanism. The results suggest that currently unregulated 

supplemental iron intake may have implications on childhood ALL development.  
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CHAPTER I 

INTRODUCTION  

Cancer is the second leading cause of death among children ages 1-14, surpassed 

only by accidents [1]. Despite making up only a small percentage of the total cancer cases 

in the United States, approximately 1 in 100 new cancers is a childhood cancer, and the 

number of childhood cancer cases has increased gradually over the past few decades. 

Acute lymphoblastic leukemia (ALL) is the most common leukemia among children 

[2,3]. There are approximately 30-45 children per 1,000,000 affected by this malignancy 

annually [4], making up 80% of all childhood leukemias [4,5], with a peak incidence 

occurring between the ages of 2 and 5 [6]. The racial/ethnic variation in the incidence of 

childhood ALL is well established [4,7]. The highest incidence rates are among Hispanic 

populations [8-10], followed by non-Hispanic Whites, Asians, and then Blacks [4].  

ALL is typically characterized by an excess amount of lymphoblasts. Instead of 

maturing into functional lymphocytes, an abundance of stem cells develop into 

lymphoblasts, which are immature, malignant white blood cells [11]. These non-

functional leukemia cells accumulate quickly in the blood and bone marrow, reducing the 

effectiveness of healthy bloods cells in fighting infection, and eventual spread to other 

organs [12]. The most common subtype of ALL is B-cell precursor (BCP) ALL, 

accounting for 70% of childhood ALL [3]. 

Great improvements have been made in the treatment of ALL. In the 1960s, the 5-

year survival rate was less than 10% [13]. This rate has continually increased from 77% 

in 1985-1994 [13] to 87.5% in 2000-2004, and is now estimated to be greater than 90% 

[14]. The increase in survival rates is due to the combination of better diagnostics through 
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molecular and microarray testing, and better treatments individualized to patients [15]. 

Despite the improving prognosis, the incident rate of ALL has increased annually over 

the past few decades, and the exact cause of the disease remains unknown in more than 

90% of the cases [15]. Survivors of childhood leukemia also have an increased risk for 

other malignancies later in life, and almost two thirds of all pediatric cancer survivors 

suffer from at least one permanent side effect from their treatment [16], which 

emphasizes the need for prevention methods. 

There are a few well established risk factors for childhood ALL, including race, 

sex, age peak, maternal age, and certain genetic disorders, including Down Syndrome, 

[17-22], but the exact cause is unknown in more than 90% of the cases [15,19]. Table I 

lists the established, suggestive, and controversial risk factors associated with childhood 

ALL. Birth weight has been recognized consistently as a risk factor for childhood ALL 

[23-36]. Less than 5% of diagnosed cases are associated solely with genetic defects [19], 

therefore many researchers are exploring environmental links to the disease. Ionizing 

radiation can increase the risk for ALL [28], although the relationship is more established 

with acute myeloid leukemia (AML). 

It is likely that increased risk for childhood ALL involves the combination of 

environmental insults and genetic predisposition [37].  There have been several genome 

wide association studies (GWAS) conducted to identify risk variants for childhood ALL 

[38-40].  Table II lists the polymorphisms found to be statistically significant with 

childhood ALL risk in GWAS. 

Candidate gene studies have also yielded many risk associations [38], although 

many have yet to be replicated. Variants located in the iron-related hemochromatosis 
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(HFE) gene, rs1800562 (C282Y) and rs1799945 (H63D), have been associated with an 

increase in birth weight and childhood ALL risk, in males only [35,41-44]. These two 

variants are the major contributors to hereditary hemochromatosis (HH), an inherited 

disorder causing iron overload, which may progress to cell and tissue damage [45].  

Excess iron can cause cell stress and oxidative damage, and has been shown to increase 

susceptibility to cancer [46-49]. Male carriers of the variants of the HFE gene in 

particular have been shown to have an increased risk for numerous neoplasms [50]. The 

biological plausibility behind excess iron being a risk factor for childhood ALL is one 

worth pursuing, for both population health benefits and for scientific advancements. 
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Table I. Risk factors for childhood acute lymphoblastic leukemia 

Established Suggestive Controversial 

Sex Maternal reproductive 
history Maternal drug use 

Age peak Maternal alcohol use Exposure to nonionizing 
radiation 

Race Maternal diet Parental chemical exposure 

Birth weight Miscarriage history Household exposure to 
pesticides 

Down syndrome Advanced maternal age Parental smoking: prior 
and during pregnancy 

Genetic disorders Being the first-born or only 
child 

 
Ionizing radiation Post-natal use of 

chloramphenicol 
Sibling with leukemia, 
brain tumor or Down 

syndrome  
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Table II. Genetic associations with childhood leukemia risk previously established in 
genome wide association studies*

 

 
SNP PMID** Sample population Chromosome 

nucleotide position Reported gene 

rs11978267 19684603 European ancestry chr7: 50466304 IKZF1, DDC 
rs11155133 19684603 European ancestry chr6: 141169825 Intergenic 
rs9290663 19684603 European ancestry chr3: 178429939 KCNMB2 

rs12621643 19684603 European ancestry chr2: 223917983 KCNE4 
rs2191566 19684603 European ancestry chr19: 44511389 ZNF230 
rs1879352 19684603 European ancestry chr18: 2498054 Intergenic 
rs2089222 19684603 European ancestry chr12: 117002658 KRTHB5 

rs10849033 19684603 European ancestry chr12: 4425122 C12orf5 
rs10821936 19684603 European ancestry chr10: 63723577 ARID5B 

rs563507 19684603 European ancestry chr10: 34817988 PARD3 
rs7554607 19684603 European ancestry chr1: 237266603 RYR2 

rs10873876 19684603 European ancestry chr1: 76772328 SIAT7C 
rs6428370 19684603 European ancestry chr1: 196844593 Intergenic 
rs1881797 19684603 European ancestry chr1: 247689532 OR2C3 
rs4132601 19684604 European ancestry chr7: 50470604 IKZF1 
rs2239633 19684604 European ancestry chr14: 23589057 CEBPE 
rs7089424 19684604 European ancestry chr10: 63752159 ARID5B 
rs6140264 20189245 Korean chr20: 7376354 HAO1 
rs9388856, 
rs9388857, 
rs1360756 

20189245 Korean chr6: 131148863 EPB41L2 

rs3776932 20189245 Korean chr5: 109185988 MAN2A1 
rs12105972 20189245 Korean chr2: 76648560 C2orf3 

rs920590 22076464 European ancestry chr8: 19651161 INTS10 
rs7738636 22076464 European ancestry chr6: 77789808 Intergenic 
rs282708 22076464 European ancestry chr4: 59503726 Intergenic 

rs17505102 22076464 European ancestry chr3: 189401776 TP63 
rs17505102 22076464 European ancestry chr3: 189401776 TP63 

rs207954 22076464 European ancestry chr15: 92657373 SLCO3A1 
rs7156960 22076464 European ancestry chr14: 76703351 C14orf118 
rs7156960 22076464 European ancestry chr14: 76703351 C14orf118 
rs1945213 22076464 European ancestry chr11: 56175671 OR8U8 
rs1945213 22076464 European ancestry chr11: 56175671 OR8U8 
rs3942852 22076464 European ancestry chr11: 48115089 PTPRJ 

rs17837497 23007406 Mixed chr7: 139702593 TBXAS1 
rs1496766 23007406 Mixed Cchr7: 78331465 MAGI2 

rs17079534 23007406 Mixed chr3: 39847072 MYRIP 



10 
 

Table II continued… 
 

 

*Hindorff LA, MacArthur J (European Bioinformatics Institute), Morales J (European Bioinformatics 
Institute), Junkins HA, Hall PN, Klemm AK, and Manolio TA. A Catalog of Published Genome-Wide 
Association Studies. Available at: www.genome.gov/gwastudies. Accessed September 10, 2013. 
  

**PubMed identifier number 

SNP PMID** Sample population Chromosome 
nucleotide position Reported gene 

rs10170236 23007406 Mixed chr2: 150457624 LOC642340 
rs9958208 23007406 Mixed chr18: 40591084 RIT2 
rs7578361 23007406 Mixed chr2: 150397218 Intergenic 
rs7142143 23007406 Mixed chr14: 51403531 PYGL 

rs41322152 23007406 Mixed chr10: 72040805 NPFFR1 
rs6683977 23007406 Mixed chr1: 66769100 PDE4B 
rs546784 23007406 Mixed chr1: 66762466 PDE4B 

rs6964969 23512250 European, African 
American,  Hispanic  chr7: 50473251 IKZF1,DDC, 

GRB10 

rs4982731 23512250 European, African 
American,  Hispanic  chr14: 23585333 CEBPE 

rs10821936 23512250 European, African 
American,  Hispanic  chr10: 63723577 ARID5B 



11 
 

CHAPTER II 
 
HYPOTHESIS AND SPECIFIC AIMS 

 The purpose of this dissertation project is to explore the correlations among 

genetic polymorphisms, birth characteristics, and the risk of childhood ALL. It is known 

that gender is a risk factor for childhood ALL, with males having greater risk, and 

Hispanics have the highest risk of all ethnicities. We hypothesize that risk markers may 

not be universal for both genders and across ethnicities. We aim to exploit this 

differential to obtain etiologic clues for the development of childhood ALL. Another 

focal point is to test the hypothesis that iron-regulatory gene (IRG) variants known to 

elevate iron levels increase childhood ALL risk. Iron, which is necessary for cell division 

and fetal growth, has been shown to increase birth weight and susceptibility to cancer 

when found in excess. This research will seek correlations between genotypes (IRG 

variants) and phenotypes (birth characteristics and leukemia) to determine whether 

genotypes and their combinations associated with birth characteristics also modify the 

risk for leukemia.  

In order to test these hypotheses, the following specific aims will be explored: 

Aim 1) to genotype previously reported childhood ALL risk markers to validate the case-

control sample used in this project for the first time; 

Aim 2) to genotype lymphoma risk markers, since lymphoma and ALL both stem from 

lymphoid cells, for their correlations with childhood ALL risk and birth characteristics; 

Aim 3) to genotype iron-regulatory gene polymorphisms, some known to increase iron 

levels, for their correlations with childhood ALL risk and birth characteristics 
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Aim 4) to examine effect modification by race/ethnicity and gender in childhood ALL by 

stratified statistical analysis 

 Findings of this study may indicate that genetic risk markers are not universal for 

both genders and across ethnicities, and may be an important consideration in future 

genetic association studies. It will also provide evidence for or against the idea that iron 

excess mediated by genetic variants contribute to childhood ALL risk. If our hypothesis 

is confirmed, educating the public on lifestyle modifications for preventive measures 

such as controlled iron supplementation during pregnancy and avoidance from excessive 

consumption of iron-rich food could reduce the risk of leukemia in children.   
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CHAPTER III 

HEREDITARY HEMOCHROMATOSIS GENE (HFE) POLYMORPHISMS AND 
ASSOCIATIONS WITH DISEASE SUSCEPTIBILITY 
 
Abstract 

The implication of excess iron in cancer and disease susceptibility has long been 

recognized. The increase in oxidative stress due to an overload of the transition metal is 

believed to be the reason for its harmful effects on the body. The hemochromatosis 

(HFE) gene is known to be involved in iron regulation, and mutations to the gene can 

have negative effects on certain health conditions. In this review, we discuss the role iron 

has in the body, and examine what impact HFE gene polymorphisms have on disease 

susceptibility, focusing on childhood leukemia. PubMed was searched using the 

following key words: HFE or hemochromatosis gene with disease susceptibility, 

polymorphisms, cancer, leukemia, variants, or disease association. The mechanisms 

behind the disease associations are also explored. 

Role of iron 

Iron is a necessary element required for oxygen transport, DNA synthesis, and is 

involved in cell proliferation and fetal growth [1-4]. Iron is capable of donating and 

accepting an electron, converting from ferrous (Fe2+) to ferric (Fe3+), which makes it 

useful in metabolic reactions, but also potentially harmful to the body. Iron generates free 

radicals when abundant and not tightly bound, which can lead to cell damage. 

In humans, iron is found in heme proteins and in ferritin, an iron storage protein 

[5]. Iron is most commonly stored in the liver, spleen, and in bone marrow [6]. 

Circulating plasma iron is typically bound to one of the two binding sites on the protein 
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transferrin (TF) in healthy individuals. Cellular uptake of iron is dependent on the 

number of transferrin receptors (TFRCs) [5]. When cells are in need of iron, there is an 

increase in transcription of TFRC, and it is found greater numbers, therefore more 

receptors available for the TF-iron complex to bind and become internalized [5]. The 

opposite occurs when intracellular iron levels are high, in that transcription of TFRC 

mRNA is decreased, and therefore there are a reduced number of receptors available [5]. 

Intracellular iron is used for both ferritin and hemoglobin production, the protein found in 

red blood cells responsible for carrying oxygen throughout the body. 

Health issues may arise when either too little or too much iron is stored and 

absorbed in the body. Iron deficiency, commonly referred to as iron anemia, has been 

extensively researched and is a common condition. In individuals with iron anemia, 

TFRC production is typically increased, while ferritin production is decreased. The lack 

of iron can lead to a wide range of adverse health outcomes [7]. Iron overload has not 

been studied as extensively until recently, and is underestimated and underdiagnosed by 

physicians. The primary reasons behind iron overload include: 1) excessive intake of iron 

through intestinal absorption, 2) parenteral iron (intravenously or intramuscular), 3) 

inhaled iron, 4) release of stored iron into blood plasma, 5) the reduction of normal 

menstrual excretion of iron in premenopausal women, and 6) the lack of transferrin or 

lactoferrin protein [8]. When found in excess, iron can induce cell stress and oxidative 

damage due to the increase in free radicals [3,9]. With the depletion of antioxidants, 

DNA damage can progress cancer development or worsen symptoms of an inherited 

disease [10]. The role of iron in cancer and disease progression has been widely studied 

[9], yet the genetics behind iron overload is still not fully understood. The 
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hemochromatosis gene (HFE) encodes for a protein involved in iron regulation, and its 

mutations may increase the risk of developing numerous cancers.   

HFE gene 

The HFE (high iron FE) gene is located at 6p21.3, the short arm of chromosome 6 

at position 21.3, and is surrounded by histone genes at both ends. The gene is 

approximately 10kb in size, and has at least eleven alternative transcripts consisting of 

four to seven exons, all which encode a distinct domain of the protein [11]. The gene 

encodes for a 321 amino acid mature transmembrane protein product that is similar in 

structure to HLA Class I molecules, with two alpha and beta chains, although it is not 

involved in antigen presentation [11,12]. It was originally named HLA-H because of the 

similarities with other HLA genes.  

The HFE protein is expressed on cell surfaces in most tissues, but found most in 

the liver and small intestine [11], where iron absorption, transport, and storage takes 

place. HFE is also expressed on the apical plasma membrane of the syncytiotrophoblasts, 

which suggests it is the protein which regulates iron transport from the mother to the 

fetus [9]. Genome-wide association studies (GWAS) looking at hematological parameters 

such as serum markers of iron status have found significant associations with SNPs in the 

HFE gene. A list of the traits showing statistical significance with variants in the HFE 

gene is found in Table I. 

Although not clearly understood, the HFE protein is involved in iron homeostasis 

regulation, controlling iron uptake by interacting with transferrin receptor (TFRC) and 

hepcidin (HAMP) [13]. The main function of HFE is to regulate mucosal iron transfer in 

interaction with TFRC, mainly in the intestinal mucosa (iron absorption) and in the 
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placenta (materno-fetal iron transfer). Animal studies first discovered high levels of 

saturated serum transferrin and excessive iron buildup in the liver in HFE-deficient mice 

[14]. The high iron levels in the hepatocytes of HFE-deficient mice are similar in 

histopathology to humans with hereditary hemochromatosis, suggesting that HFE is in 

control of iron homeostasis [9]. Transferrin receptors allow iron intake into the cell when 

iron concentrations are low by binding with iron-bound transferrin molecules. When iron 

levels are adequate and pH conditions are neutral, the HFE protein binds to the TFRC 

complex, reducing cellular iron uptake [12]. The hormone hepcidin is a negative 

regulator of iron absorption that determines how much iron will be stored and released 

[15]. HFE is speculated to regulate hepcidin by keeping production levels high when 

there is enough iron inside the cell, ensuring that the body will not absorb or store too 

much iron [15,16].  

The interactions between HFE and TFRC have been observed previously in both 

adult cancers [17] and in childhood acute lymphoblastic leukemia [18]. In the study 

conducted by Beckman et al., variants of HFE and TFRC genes on their own were not 

associated with breast, colorectal, or multiple myeloma, but their genotype combinations 

were significantly different between controls and cases [17]. It is speculated that the 

carcinogenic effect may somehow be amplified with the combination of both gene 

variants, and be dependent on increased iron uptake [17]. Normal, wild-type HFE protein 

is able to bind to transferrin receptors, reducing the affinity of TF, therefore controlling 

iron homeostasis. When HFE is mutated with the C282Y mutation, this binding is unable 

to occur, therefore allowing TF to bind to the receptors, and iron absorption to be 

uncontrolled. Mutations to the HFE gene disrupt iron homeostasis by causing increased 
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iron levels, which can lead to many negative health conditions, including hereditary 

hemochromatosis (HH). 

HFE variants 

 Since the discovery of the HFE gene in 1996, many single nucleotide 

polymorphisms (SNPs) have been identified [19,20]. Information describing the most 

popular SNPs can be found in Table II. The two originally discovered missense 

mutations, rs1800562 (C282Y) and rs1799945 (H63D), account for most of the disease 

associations with HFE.  

C282Y is the result of a point mutation in the coding sequence (exon 4) of the 

gene, with a guanine-to-adenine transition at nucleotide 845. This alters the production of 

the amino acid in position 282, changing it from cysteine to tyrosine [21]. This mutation 

is the most deleterious, as the cysteine residue is highly conserved, and the protein is no 

longer able to bind properly to TFRC when altered. The transferrin molecule is then able 

to bind to the TFRC with high affinity, and iron is released [22]. The frequency of C282Y 

in the United States is estimated to be around 6% in non-Hispanic Whites [23]. The 

C282Y mutation appeared more than 2000 years ago and is now associated with a 

particular haplotype in European populations, and is not found or found in low allele 

frequencies in other populations [24]. Two copies of the C282Y mutation is found in 

approximately 90% of patients with hereditary hemochromatosis (HH), an autosomal 

recessive disorder causing iron overload [25]. 

The second most common HH associated variant is the H63D mutation, which is 

a result of guanine replacing cytosine at nucleotide 187, causing the amino acid in 

position 63 to change from aspartate to histidine. This mutation only shows symptoms of 
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iron overload when the individual also has a copy of the C282Y mutation on the other 

chromosome, and symptoms are typically mild [25]. The variant protein is still able to 

bind to TFRC, although it is unable to reduce the affinity of transferrin binding to the 

receptors [26]. H63D mutations are more frequent than C282Y, with approximately 15% 

of non-Hispanic Whites being carriers of the mutation in the US, and 3% having two 

copies [23]. The penetrance of H63D is low, and the variant needs to be coupled with the 

C282Y variant in order to have an effect on iron levels. However, C282Y and H63D can 

never exist on the same chromosome. 

A third mutation, rs1800730 (S65C), consists of an adenine to thymine 

substitution at position 193, causing the amino acid serine to change to cysteine at 

position 65 [27]. Studies have shown that this variant is associated with a mild form of 

hemochromatosis [28], having a greater effect when found in the presence of other HFE 

variants [29]. S65C is less common than C282Y and H63D, found in less than 5% of the 

non-Hispanic White population [28]. 

The SNP rs807212 was identified as tagging for the most common HFE region 

haplotype [30]. This intergenic SNP appears to tag for the wild-type alleles for all HFE 

variants, meaning the haplotype lacked all disease-associated variants [30]. There was a 

strong gender effect noticed with this SNP. Males had strong protective association 

against childhood leukemia, which made biological sense as male carriers of the variant 

rs807212 were therefore absent of the C282Y mutation, which had previously been 

associated with childhood leukemia risk [30-32]. 

 The transition substitution in intron 1 creates the HFE SNP rs9366637. This SNP 

has been identified as a tagging SNP as well, but has not been studied extensively. It has 
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not yet been implicated in iron regulation, however, the haplotype tagged by rs9366637 

lacks C282Y and H63D. The minor allele frequency for this SNP varies greatly 

depending on the race/ethnicity of the population, with the CEU (Western European 

ancestry) T-allele frequency being 0.06 and the HCB (Han Chinese in Beijing, China) 

having a MAF of 0.49. The variant (T) allele has been shown to be a marker of increased 

birth weight in European childhood ALL patients [18]. In a case-control study in a Han 

Chinese population, the C allele was found to be a significant risk marker for coronary 

heart disease (CHD) [33]. In a meta-analyses study looking at HFE gene variants and 

CHD in Han Chinese, only an association with rs1799945 variant allele increased risk for 

CHD, and the association with rs9366637 did not reach overall statistical significance 

[34]. The SNP was also found to be a marker for height in a GWAS [35]. 

Disease associations with HFE mutations 

Hereditary hemochromatosis 

Hemochromatosis describes any disorder caused by iron excess and tissue injury 

[25]. Hereditary hemochromatosis (HH) is the most commonly inherited form of iron 

overload. This autosomal recessive disorder may lead to severe organ dysfunction over 

time because of high iron absorption [25]. It is estimated that 90% of those with HH who 

are of northern European descent are homozygous for the C282Y mutation [36]. It is very 

common in that particular population, affecting 1 in every 200-300 individuals [37]. The 

condition is expressed more severely in males rather than females, as women are able to 

reduce their iron levels through the loss of blood during menstruation and childbirth [38].  

Homozygosity for the C282Y variant or heterozygosity of C282Y and H63D on 

separate chromosomes are the two primary genetic combinations that cause HH [37]. 
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When the C282Y mutations are present, the mutated HFE protein is no longer able to 

interact with transferrin receptors and hepcidin on at the cell surface [37]. Low hepcidin 

production is a result of the mutation, causing the cells to think iron levels are low and 

absorption is necessary. The excessive storage occurs primary in the liver, heart, joints, 

pancreas, skin, and testes [39]. Homozygosity of H63D on its own will not cause HH, but 

with a C282Y mutation may [40]. Determining the penetrance of the disorder is difficult 

to assess [41], as many patients do not show any signs or symptoms, particularly those 

who are heterozygotes [37]. Even with those that do show symptoms, they take a long 

time to develop, and clinical indicators are not apparent until at least middle age [31].  

The horizontal bar chart depicted in Figure I represents the probability of developing HH 

based on HFE genotype. The highest risk is among C282Y homozygotes, with risk 

decreasing gradually for C282Y/H63D heterozygotes, H63D homozygotes, and C282Y 

heterozygotes. Homozygosity for H63D has the same risk as individuals who are not 

carriers of any HFE variants. 

Once symptoms of iron excess develop, they can range from mild iron elevation 

to severe heart and liver disease [37]. Early symptoms include weight loss, lethargy, and 

stomach pain [39]. The liver is the first organ to typically show signs of HH, with 

hepatomegaly developing frequently [38]. Approximately 10-15% of patients with 

hepatocellular carcinoma have HH [38,42]. Other disorders that may stem from HH 

include diabetes, cardiomyopathy, and hyperpigmentation [38]. 

Hereditary hemochromatosis can be diagnosed by checking transferrin-iron 

saturation (TS) and serum ferritin concentrations. Serum transferrin-iron saturation 

greater than 50% in women and 60% in men is common in individuals with HH [38]. It is 
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not feasible to do prenatal testing for HH, since the disorder is treatable. The only way to 

treat HH is by removing iron from the body. The easiest way to do this is through 

phlebotomy. Individuals with HH should also monitor their iron intake, from both 

mineral supplements and with food choices [5].  

Disease associations 

 Iron excess has been implicated in many different cancers and diseases, described 

in Table II. Studies have shown that iron can affect carcinogenesis by either suppressing 

the hosts’ defense cells, acting as a nutrient for growing tumor cells, or by increasing 

oxidative stress with an increase in free radicals [17].  Free radical generation leads to 

inflammation and mutagenesis within the body [43]. Hereditary hemochromatosis is a 

well-established model of iron-induced carcinogenesis [10].  

Many HH patients develop cirrhosis of the liver, and are at an increased risk for 

liver cancer. Primary hepatocellular carcinoma, in particular, is 200 times more common 

in these patients [42]. The liver is the major site of iron storage, therefore liver disorders 

are not surprising in HH patients. Increased risk for liver cancer has been seen not only in 

HH patients, but also in non-HH individuals with iron overload [44,45]. HH patients are 

also at an increased risk for diabetes [42]. The mechanism is not clearly understood, but it 

is hypothesized that iron accumulation damages pancreatic beta cells and insulin 

resistance [46]. Heart conditions such as cardiomyopathy and arrhythmias have been 

observed in in high numbers of HH patients as well [38]. Studies have shown that 

reducing iron stores through blood donation reduces the risk for heart disease [43]. 

Whether or not the C282Y mutation is a risk factor for developing heart disease is still 
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debated. Factors including smoking and hypertension status in women with heart disease 

may confound the association [47]. 

 Many studies have explored the association between neurodegenerative disorders 

association and iron accumulation in the brain [48].  Iron accumulation is consistently 

observed in Alzheimer disease (AD) and its involvement in neuritic plaques has been 

well documented [49]. AD is enhanced by oxidative stress, and excess free iron would 

lead to oxidative stress through generation of free radicals in the neurons. Both C282Y 

and H63D have been associated with an increased risk for Alzheimer [26,50-52]. 

HFE variants and childhood leukemia risk 
 

Previous studies have examined the risk association between HFE mutations and 

childhood acute lymphoblastic leukemia (ALL) risk [18,31,32,53,54]. The C282Y 

mutation was reported to be a risk factor for male children in a case-control study of 

Welsh and Scottish populations [53]. The minor allele frequencies for C282Y in males 

was 23.4% in cases and 12.3% in controls for the Wales population, and 34.7% in cases 

compared to 15.1% in controls in the Scotland group [53]. These populations are quite 

homogenous; therefore the generalization of the findings is unknown. H63D did not show 

any association with childhood ALL risk.  

A Finnish study [55] is the only other published study that looked at HFE variants 

in childhood leukemia. The study population only included 32 childhood ALL patients, 

of which 14 were male, and did not find any significant results. Other hematologic 

malignancies studies on acute myeloid leukemia [56] and Hodgkin disease [32] have 

found no risk associations with HFE variants, and a myelodysplastic syndrome study [57]  
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revealed a positive association, which was not been replicated in a different population 

sample [58]. 

Mechanism 

 It is speculated that most cancer risk associated with increased iron levels is due 

to iron accumulation over years, resulting in chronic oxidative stress. The association 

with childhood leukemia cannot therefore be explained by this same reasoning. 

Chitambar et al. have suggested that increased intracellular iron levels in lymphoid cells 

during development may explain the risk [59]. Cell studies have shown that B-lymphoid 

cell lines that are homozygous for the C282Y variant demonstrate greater iron uptake and 

increased cell sensitivity to oxidative stress [59]. The increase in oxidative stress due to 

the high iron levels may increase radiation sensitivity, which has been shown to increase 

cancer susceptibility [60,61].  Lymphocytes can be radiation sensitized by iron, and 

Stevens et al. have identified C282Y heterozygotes as risk factors for radiation sensitivity 

[62,63]. Growing fetuses are sensitive to environmental insults, and those who are 

carriers of the C282Y variant may be exposed to higher intracellular levels of iron, 

especially if their mother is a carrier [31]. This hypothesis, of course, must be carried out 

in functional studies to determine its validity. 

 Another idea is that the HFE gene may play a role with immune function [53]. 

Mutations in HFE causing iron overload may interfere with the immune function of 

lymphoid cells, and be an underlying reason for the association with childhood leukemia 

risk. The role of HFE with the histone proteins may also be important [30]. The HFE 

gene is flanked by histone coding genes on both sides, and histones are known to be 



24 
 

important in genome biology and potentially with tumor suppression [30]. There may be 

similarities between the two or interactions between the genes that are unknown.  

 

Conclusion 

 With well-known biology of its effects, iron excess is likely to have more impact 

on cancer and neurodegenerative diseases in the Western world. Iron supplementation is 

currently unregulated and non-personalized, with every male and female given the same 

suggested amount to intake. Educating the public on lifestyle modifications for those with 

iron overload such as controlled iron supplementation and avoidance from the 

unnecessary consumption of iron-rich food, could reduce ill side effects from the 

disorder. After decades of serological work trying to determine the effects of iron 

accumulation in the body, genetic epidemiology has made more of an impact in a shorter 

period of time. 
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Table I. GWAS findings for HFE polymorphisms* 

PMID** Trait SNP 
19820699 

Iron status biomarkers 

rs1800562 

19084217 
21483845 
23446634 Red blood cell traits 20927387 
20858683 Glycated hemoglobin levels 
19820697 Hematological parameters 
21785125 Hepcidin levels 
21943158 Cardiovascular disease risk factors 

19862010 
Hematocrit 
Hemoglobin 
Mean corpuscular volume 

23263863 Hematology traits 
Mean corpuscular hemoglobin 

20686565 Cholesterol, total 
LDL cholesterol 

21909115 
Diastolic blood pressure 

rs1799945 Hypertension 
Systolic blood pressure 

21208937 Iron levels 
19820698 Hemoglobin 

rs198846 20139978 Mean corpuscular volume 
21909110 Blood pressure 
19853236 Hematology traits rs1408272 21149283 Iron status biomarkers 
21149283 Iron status biomarkers rs17342717 

 

*Hindorff LA, MacArthur J (European Bioinformatics Institute), Morales J (European Bioinformatics 
Institute), Junkins HA, Hall PN, Klemm AK, and Manolio TA. A Catalog of Published Genome-Wide 
Association Studies. Available at: www.genome.gov/gwastudies.  Accessed September 10, 2013. 
 

**PubMed identifier number 
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Table II. Characteristics of most studied SNPs in the HFE gene 
 
 Minor allele and frequency** 

SNP Nucleotide 
position* 

Polymorphism type and 
location Sequence CEU YRI JPT HCB 

rs1800562 26093141 

Coding; nonsynonymous; 
substitution of cysteine (C) 
by tyrosine (Y) at amino 
acid position 282 (C282Y) 

ATATACGT(A):(G)CCAGGTGG (A) 0.053 NA NA NA 

rs1799945 26091179 

Coding; nonsynonymous; 
substitution of histidine 
(H) by aspartate (D) at 
amino acid position 63 
(H63D) 

TCTATGAT(C):(G)ATGAGAGT (G) 0.179 (G) 0.00 (G) 0.042 (G) 0.125 

rs1800730 26091185 Transversion substitution 
(S65C) ATCATGAG(A):(T)GTCGCCGT (T) 0.033 NA NA NA 

rs807212 26065621 Transition substitution, 
intergenic TTTTACCC(A):(G)GGAGTGGA (A) 0.358 (A) 0.042 (A) 0.091 (A) 0.089 

rs9366637 26089098 Intronic, transition 
substitution (IVS1) TTTGCATT(C):(T)TAGTGGGA (T) 0.066  (T) 0.075  C 0.385  (T) 0.493  

rs2794719 26088890 Intron, transversion 
substitution, intragenic CAAAGCCC(C):(A)GTGTACCA (C) 0.397 (C) 0.155 (A) 0.302 (A) 0.256 

rs2858996 26094026 Transversion substitution, 
intron/intragenic GAGTTTGC(T):(G)TAGCTATC (T) 0.208  (T) 0.089  (T) 0.066 (T) 0.179  

rs2071303 26091336 Transition substitution, 
intron, intragenic  CTCTCCAC(A):(G)TACCCTTG (G) 0.341 (G) 0.401 (A) 0.221 (A) 0.367 

rs1800708 26093303 Transition substitution, 
intron, intragenic GGGTGGGC(C):(T)GAGGGTGG (C) 0.080 (C) 0.088 (T) 0.319  (T) 0.456  

rs1572982 26094367 Intron, transition 
substitution, intragenic GCAAGATG(A):(G)TGCCTAGG (A) 0.456 (G) 0.312  (G) 0.159 (G) 0.296  

 

*Genome Reference Consortium Human Build 37 patch release 10 (GRCh37.p10) used for nucleotide position (http://www.ncbi.nlm.nih.gov/SNP/) 
**Population descriptors: 

CEU (C): Utah residents with Northern and Western European ancestry from the CEPH collection 
YRI (Y): Yoruban in Ibadan, Nigeria 
JPT (J): Japanese in Tokyo, Japan 
HCB (H): Han Chinese in Beijing, China



32 
 

 

 
 
Figure I. Likelihood of developing adverse health effects from hereditary 
hemochromatosis based on HFE genotype 
 
Adapted from: Khoury MJ, Burke W, Thomas EJ, editors. Genetics and Public Health in the 21st Cen  
Using Genetic Information to Improve Health and Prevent Disease. New York: Oxford Press; 2000. 
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Table III. Conditions showing increased risk associations with HFE variants 

Condition PMID* 

Alzheimer disease 12707938, 15060098, 11445256, 
10861683, 20029940, 17119292 

Amyotrophic lateral sclerosis 17828789 

Arthritis 12401309, 17284543, 16468045, 
16583477, 16638105 

Breast cancer 10383894, 14973098, 20099304, 
16216474, 16503999, 23681799  

Cardiovascular disease 12401309, 21696736, 20640879, 
17389307 

Cervical cancer 16414021 

Childhood acute lymphoblastic leukemia 19806355, 10627122 

Colon Cancer 
10383894, 12529348, 20099304, 
19291797, 15941956, 23553028, 
23281741 

Diabetes 8613000, 9654270, 9726605, 9885759, 
22908207 

Gastric cancer 23389292 

Glioma 11591868, 19386095 

Hepatic veno-occlusive disease 15834437 

Liver cancer 

10845668, 10989544, 11500061, 
12003382, 15929796, 15017669, 
18164971, 23281741, 10918159, 
12591066, 1312985, 4058506, 8613000 

Neurodegenerative diseases 12401309, 23813494, 22526559, 
21349849, 21346098 

Ovarian cancer 20669231, 21879820 
Prostate cancer 16003728 

 
*PubMed identifier number 
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CHAPTER IV 
 
GENETIC MARKERS IN A MULTI-ETHNIC SAMPLE FOR CHILDHOOD 
ACUTE LYMPHOBLASTIC LEUKEMIA RISK 
 
Abstract 

Genome-wide association studies (GWAS) have identified multiple risk loci for 

childhood acute lymphoblastic leukemia (ALL), but mostly in European/White 

populations, even though Hispanics have a greater risk compared to the European/White 

population. We re-examined selected SNPs of known associations with childhood ALL 

and known HLA region lymphoma risk markers in a multi-ethnic population sample from 

Houston, Texas consisting of 161 incident childhood ALL cases and 231 controls. 

Significant associations were found in two ARID5B variants (rs7089424, ORallele=1.69, 

P<0.001; and rs10821936, ORallele=1.48, P=0.005), as previously shown in GWAS. 

Marker rs2395185, which is a protective marker for lymphoma, replicated the previously 

found strong risk association with childhood ALL in non-Hispanic White males 

(ORallele=2.79, P= 0.02), but no association was noted in Hispanics. Another HLA region 

marker rs2647012 showed a statistically significant risk association among Hispanics, but 

not in non-Hispanics (Pinteraction = 0.003 for ethnicity). A strong statistically significant 

protective association was found with rs1048456, a risk marker in follicular lymphoma 

(ORrec=0.19, P=0.009). Our study validated this new case-control sample by confirming 

some of the previously discovered genetic markers associated to childhood ALL, and 

yielded new associations with known lymphoma markers. The association of lymphoma 

markers were in opposite direction in childhood ALL. Despite positive results, our study 

did not provide any clues to why Hispanics have a higher susceptibility to childhood 
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leukemia, suggesting that environmental factors may have a stronger contribution to this 

differential. 

Introduction 

 Over a third of cancers in children are leukemias [1], with acute lymphoblastic 

leukemia (ALL) being the most common [2-4]. Approximately 3.8 individuals (less than 

14 years of age) per 1,000,000 are diagnosed with childhood ALL per year in the United 

States [5].  The racial disparity in the incidence of childhood ALL has been well 

established [6,7]. In the United States, incidence of ALL is greatest in Hispanic children, 

followed by non-Hispanic Whites, Asians, and then Blacks [7-9]. 

Research continually tries to determine the etiology of childhood leukemias. 

While there are a few known risk factors associated with childhood ALL [10-15], more 

than 90% are of unknown etiology [11]. Increased birth weight is an established risk 

factor shown to increase risk of childhood ALL [16-33]. Environmental factors are also 

involved, and may work in conjunction with genetic factors to cause many cancers [10]. 

Genome-wide association studies (GWAS) [34-37] have identified multiple risk 

loci showing significant associations with childhood ALL. Most significantly, variants 

located within the ARID5B, IKZF1, and CEBPE genes have robust risk associations. 

Most of these studies, however, have only evaluated risk among those of European 

ancestry. Two multiethnic studies conducted by Xu et al. looked at various risk loci in 

both African American and Hispanic American populations [8,37], discovering that some 

markers are universal across races/ethnicities, while others are race/ethnic-specific.  

We re-examined five previously discovered single nucleotide polymorphisms 

(SNPs) of known associations to leukemia (rs7089424, rs10821936, rs10994982, 
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rs4132601, and rs2239633), along with three HLA region susceptibility markers for 

lymphomas, since lymphoma and ALL both stem from lymphoid cells. These included 

rs2395185, a marker of HLA DRB4 lineage [38] which has previously shown risk 

associations with major leukemias including childhood ALL and other diseases [39-49]; 

rs10484561, which has been shown to be a strong risk marker in follicular lymphoma 

(FL) [50]; and rs2647012, which is a protective marker for FL [51]. These SNPs were 

examined in a multi-ethnic sample (non-Hispanic Whites, Hispanic Whites, and Blacks) 

from Houston, Texas to assess their association with ALL. We hypothesized that the 

variation in ethnic/racial susceptibility to childhood ALL has a genetic basis. 

Subjects and Methods 

Study population 

Institutional Review Board (IRB) approval was received at both the Baylor 

College of Medicine (BCM) and Florida International University prior to the start of the 

study. The case-control study comprised of 161 incident childhood ALL cases and 231 

healthy age-matched controls contemporaneously recruited at the Texas Children’s 

Cancer Center, at BCM in Houston, TX from 2007 to 2012. The children were less than 

18 years of age at diagnosis, and exclusion criteria for both cases and controls were 

refusal to participate in the study and the diagnosis of any other disease or cancer. 

Subjects or their parents provided informed consent for provision of epidemiological data 

with a questionnaire and a biological sample. The DNA samples were extracted from 

saliva or peripheral blood samples at BCM. Race/ethnicity was determined by the 

responses provided on the questionnaire. Parents were requested to state the race (White, 

Black/African American, Asian, American Indian/Alaska Native, or Native 
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Hawaiian/Other Pacific Islander) and ethnicity (Hispanic/Latino or non-Hispanic/Latino) 

of the child. The questionnaire also collected the race/ethnicity of the parents, which was 

used to verify the response. Information on clinical subtype of ALL was collected from 

medical records.  

Genotyping 

The main features for the SNPs genotyped are shown in Table I. Pre-developed 

TaqMan® SNP Genotyping Assays (LifeTech, Foster City, CA) were used for all of the 

SNPs we examined. Genotyping was achieved using the Bio-Rad CFX96 real-time PCR 

machine (Hercules, CA). The TaqMan assays consist of singleplex reactions carried out 

in ninety-six well plates. Each plate contained two no template controls (NTCs), a 

positive control, and random replicate samples. Bio-Rad SsoFast™ Probes Supermix, a 

2x reaction buffer which contains the necessary components for running the PCR; Sso7d-

fusion polymerase, dNTPs, MgCI2, and stabilizers, was used with the TaqMan Assay.  

PCR amplifications were performed using the manufacturer’s suggestion of 20 µL total 

volume and with the following PCR thermal cycling conditions: enzyme activation at 

95oC for two minutes, and 49 cycles of denaturation at 95oC for 5 seconds followed by 

annealing and extension at 61oC for 5 seconds. Bio-Rad CFX Manager software (version 

3.0) was used for data acquisition and genotype assignment. 

Statistical analysis 

 Statistical analyses were performed using Stata v.11 (StataCorp, College Station, 

TX).  Pearson’s Χ2, Student's t-test (for means) or median test (for medians) were used to 

compare characteristics between the cases and controls. Logistic regression methods were 

used to calculate crude and adjusted odds ratios (OR) and 95% confidence intervals (CIs). 
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All statistical tests were two-tailed, and the threshold for statistical significance was set at 

P≤0.05. The ORs, with 95% CIs, were used as a measure of effect size. Genotype counts 

were tested for Hardy–Weinberg equilibrium (HWE) in controls for each SNP. By 

default, we used the additive genetic model to assess associations by Cochrane-Armitage 

trend test. Due to its previous association being in the recessive model, rs2395185 was 

analyzed also for the recessive model association. Ethnic- and gender-specific 

associations were calculated through stratified analyses. None of the SNPs were located 

in coding regions, therefore we used RegulomeDB (Stanford University, Palo Alto, CA) 

to calculate a score for regulatory function. To adjust for heterogeneity in our sample, 

especially in Hispanics, we used two ancestry-informative markers, AIMs, to control for 

confounding caused by population stratification and to avoid spurious associations [52]. 

The two AIMs we used, rs285 and rs2891, have been previously used in Hispanic 

populations to account for the differences in genetic ancestry [53,54]. The risk 

associations were adjusted by each of the AIMS.  

Results 

 All cases and controls were genotyped for the eight candidate SNPs and two 

ancestry-informative markers (AIMs). Genotype call rates were greater than 95% for both 

cases and controls.  Table II shows characteristics of the case-control sample. The case 

samples included 86 males (53%) and 75 females (47%). Out of these cases, 66 identified 

themselves as non-Hispanic White, 72 as Hispanic White, 17 as Black, and 6 as “other.” 

The group labeled “other” included those identifying themselves as Asian, Native 

American, or other. The healthy controls included 130 males (56%) and 101 females 

(44%), who had visited the pediatric clinic at BCM for a non-disease related reason. 
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Forty-nine were classified as non-Hispanic White, 98 as Hispanic White, and 78 as 

Black. The distribution of ethnic background was different between cases and controls 

mainly due to the infrequency of childhood ALL. Because of this difference, results were 

adjusted for ethnic background or stratified analyses were performed when necessary. 

There was no significant difference in the means between the case/control groups in 

regards to birth weight. Birth length and gestational age did not differ between cases and 

controls, except in specific subgroups. There was a significant difference in gestational 

age between cases and controls, only in the Hispanic female subgroup. The difference in 

birth length means was significant, but only in the non-Hispanic White subgroup. Eighty-

eight percent of the cases were diagnosed with early precursor B (early pre-B) ALL 

subtype, and associations did not change in effect size depending on the molecular 

subtype. There were no significant genotype associations found within the Black 

subpopulation, possibly due to the small number of cases in the population sample.  

GWAS risk markers 

Results including genotype frequencies and odds ratios are described in Tables 

III-V. Analyses yielded significant associations with some of the genetic markers similar 

to previous reports. In total, three ARID5B SNPs were examined for associations. Two of 

the ARID5B SNPs, rs7089424 and rs10821936, showed expected risk associations, while 

rs10994982 did not show an association (Table III). The SNP rs7089424 had an overall 

odds ratio per allele (ORallele) of 1.69 (P>0.001). The association showed a somewhat 

stronger risk in the non-Hispanic subgroup (ORallele=2.11, P=0.01), compared with 

Hispanics (ORallele=1.61, P=0.02). Similarly, rs10821936 had an overall ORallele=1.48 
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(P=0.05). Adjustments of the analyses for race/ethnicity did not change the observed 

results. Adjustment for AIMs did not appreciably alter the results either. 

There were no significant associations found for IKZF1 rs4132601 or for CEBPE 

rs2239633. Hardy-Weinberg equilibrium was violated in controls for rs4132601, which 

could lead to spurious results, and was therefore excluded. 

HLA region lymphoma risk markers 

 The SNP located in the HLA-DR region, rs2395185, showed a weak, non-

significant risk overall (Table IV). This SNP is an exclusive marker for the HLA-DRB4 

(DR53) lineage [38]. Since this lineage was shown to be a risk marker for childhood 

ALL, but only in males [46], we examined rs2395185 association in males. The non-

Hispanic White male group had an ORallele of 2.79 (P=0.016). Figure I depicts the 

childhood ALL risk in rs2395185 subgroup analysis, focusing on males and non-Hispanic 

White males, specifically. The OR reached 6.21 (95% CI=0.70-54.96) for homoyzgosity 

for the variant allele, which corresponds to the original association [46]. The known 

protective marker for follicular lymphoma, rs2647012, showed a statistically significant 

association in Hispanics ORallele =2.21 (P=0.007), but not in non-Hispanics (Pinteraction = 

0.003 for ethnicity), as shown in Figure II. The significance remained after adjusting for 

both rs23951885 and rs10484561. The variant rs10484561 was shown to be a strong 

protective marker in this study, opposite of what was found in follicular lymphoma [50]. 

Using the recessive model, the variant allele showed a strong association, ORrec=0.19 

(P=0.009). The two AIMs used, rs285 and rs2891, did not show any association as 

expected (Table V). 
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Discussion 

 Despite being well established, the racial disparity in the incidence of childhood 

ALL is not always addressed in genetic association studies. Most GWAS, until recently, 

have identified risk loci using only European-origin populations. Variant polymorphisms 

located within the ARID5B, IKZF1, and CEBPE genes have reported strong risk 

associations in multiple GWAS [34-37,55-57]. Our study provides some confirmation of 

previously discovered genetic markers associated with childhood ALL, which also 

validated our case-control set for further exploration. 

Of the three ARID5B SNPs, rs7089424 and rs10821936 showed significant risk 

associations, and rs10994982 did not show any associations. The ARID5B gene is 

involved in transcriptional regulation with embryonic development [55]. Overexpression 

of the gene in particular acute leukemias have led some to speculate that variations within 

the gene may affect B-lineage development, and increase susceptibility to B-lineage 

leukemia [35]. The marker rs7089424 was associated with a stronger risk of leukemia in 

the non-Hispanic subgroup compared with Hispanics, replicating recent findings from 

case-control studies using Hispanic populations [8,37]. 

In the recent multi-ethnic GWAS by Xu et al., rs10821936 was found to be a 

significant risk marker across all ethnicities. Xu et al. noted that the risk allele 

frequencies for rs10821936 increased in order by race incident rates: Black/African 

Americans, non-Hispanic/European American, and Hispanic Americans [37].  Our results 

showed a similar trend with an increasing risk allele frequency (RAF) in cases of Blacks, 

non-Hispanic Whites and Hispanics. The multi-ethnic GWAS reported that rs10821936 

was highly correlated with Native American genetic ancestry [37], substantiating their 
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previous observations that Native American ancestry correlates with higher risk of 

relapse in Hispanics, and leading to speculation that this may be a factor with the 

increased risk for Hispanic children who have a high proportion of Native American 

ancestry [58]. 

The SNP rs4132601, located in the Ikaros family zinc finger 1 (IKZF1) gene, is 

associated with increased risk of childhood ALL in multiple studies [34,36,56,57,59]. 

The Ikaros proteins are known to be involved with lymphocyte development and 

differentiation [34], and deletions are frequent and associated with unfavorable prognosis 

in B-cell precursor ALL [34, 60]. One study found this variant to be a significant risk 

marker amongst non-Hispanic Whites, but not in Hispanics, despite similar allele 

frequencies [57]. Chokkalingam et al. hypothesized that that this marker’s association 

may be due to linkage disequilibrium with a functional variant, and because of admixture 

in Hispanic populations the linkage disequilibrium may vary [57]. Our study was unable 

to examine this SNP, due to Hardy-Weinberg disequilibrium found in controls, even after 

stratification for race/ethnicity.  

The present study confirmed some, but not all previous findings of GWAS. With 

the ARID5B risk SNPs, there was heterogeneity even between the first two GWAS 

reports [34,35]. The modest sample size we had also reduced the statistical power of our 

study. Nevertheless, confirmed results validated the present case-control sample for 

further genetic association studies. 

The relevance of lymphoma-associated polymorphisms in childhood ALL was 

assessed by genotyping rs2395185, rs10484561, and rs2647012. The SNP near the HLA-

DRA gene, rs2395185, is a marker for the HLA-DRB4 (DR53) lineage [38].  The HLA-
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DRB4 lineage or its marker SNP have been previously shown as a risk marker in lung 

cancer [39], asthma [40], rheumatoid arthritis [49], type I diabetes [48], adult acute 

myeloblastic leukemia [61], chronic myeloid leukemia [62], chronic lymphoid leukemia 

[63-65] and in childhood ALL (males only) [46,66,67], and as a protective marker for 

non-Hodgkin lymphoma [41], and ulcerative colitis [42-44,47]. The DRB4/DR53 lineage 

has been shown previously to have a risk association with childhood ALL, with male 

specificity, within a European sample via HLA typing [46]. The first GWAS association 

of rs2395185 was with ulcerative colitis [42,47]. The variant allele, T, was later found to 

be a protective marker in a GWAS examining risk factors for classical Hodgkin 

lymphoma [41], and most recently a risk marker factor in Asian females for lung cancer 

[39]. Our results replicated the strong male specificity of the risk for childhood ALL, 

specifically in non-Hispanic White males, with no association in Hispanics. The DRB4 

lineage has unique features, such as lower expression levels of HLA-DR molecules, poor 

interaction with CD4, disrupted intracellular transport, and possibly contains extra 

amount of DNA in the DR/DQ region which may contribute to this risk association in 

childhood ALL [45]. One important finding of the present study is that the risk modifiers 

of lymphoma showed opposite associations in childhood ALL. 

 The variant rs2647012, a marker for DRB3/DRB5 lineages and a protective 

marker for lymphoma, showed a statistically significant risk association among 

Hispanics, but not in non-Hispanics (Pinteraction = 0.003 for ethnicity). Our study appears to 

be the first looking at a Hispanic population with this SNP, and further studies are 

warranted to determine if this inverse relationship of risk exists in non-Hispanic and 
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Hispanic Whites. Variant rs10484561 showed signs of being a protective marker for 

childhood ALL, opposite to the follicular lymphoma findings [50].  

It is now customary that the additive model is used to assess statistical 

associations of SNPs. While the additive model has sufficient power to detect 

associations in most situations, there are certain scenarios that it may not show statistical 

significance when in fact, there is an association. An association conforming to the 

strictly recessive model when allele frequency is low is one example [68-70]. For this 

reason, and also because the original rs2395185 association was a recessive model 

association, we also assessed this genetic model in HLA region associations. This 

approach consistently yielded larger effect sizes for HLA region SNPs, especially for 

rs2395185 as in previous studies. We are in favor of routine use of the recessive model 

analysis in exploration of associations in the HLA region. 

There are limitations of our study. With childhood ALL being a rare disease, the 

sample size for our study was small, resulting in limited statistical power. The issue of 

self-reported ethnicity may also be of concern. This method is common with population-

based association studies, and residual confounding is often suspected. Even though it has 

been described that self-reported ethnicity may be reliable [71], the heterogeneity within 

the Hispanic population is still a concern. A recent study conducted in a Spanish 

population was unable to replicate original risk associations found in Hispanic 

Americans, demonstrating the large heterogeneity in this high risk group [37,72].  

To adjust for heterogeneity in our sample, especially in Hispanics, we used two 

ancestry-informative markers, AIMs, to control for confounding caused by population 

stratification and to avoid spurious associations [52]. The AIMs have widely different 
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allele frequencies in major human continental groups. The two AIMs we used, rs285 and 

rs2891, have been previously used in Hispanic populations to account for the differences 

in genetic ancestry [53,54]. Adjusting the risk associations by AIMs did not alter the 

results.  

 Our study did have a well-defined phenotype, with molecular ALL types 

determined. The use of a multi-ethnic sample population was a strength, especially for 

the ethnic disparity that persists with childhood ALL. Another strength is the use of 

multiple genetic models, where appropriate, to determine associations that may remain 

undetectable by the exclusive use of the additive model association. The replication of 

known leukemia markers validated our sample set for further studies. This pilot study is 

part of an ongoing effort at BCM. Recruitment for the second phase is continuing 

together with clinical follow-up.  

In summary, we validated a new multi-ethnic case-control set and also examined 

some new markers with their association with childhood ALL. The examination of 

lymphoma risk markers yielded associations in opposite directions for childhood ALL, 

but also confirmed a previously identified childhood ALL risk marker. Two HLA region 

associations were ethnicity-specific. Still, our study did not provide clues as to why 

Hispanics have a higher susceptibility to childhood ALL, suggesting that environmental 

factors may play a stronger role in this differential. Studies with information on 

environmental exposures may help explain how gene-environment interactions contribute 

to childhood ALL susceptibility and its variation among different populations. 
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Table I.  Main features of SNPs analyzed 
 

Gene SNP Chromosome 
nucleotide position* Inclusion criteria PMID** Minor allele 

and frequency† Location RegulomeDB 
score†† 

ARID5B rs7089424 chr10: 63752159 GWAS identified risk 
loci for childhood ALL 

19684604, 22660188, 
20042726 (G) 0.314 Intronic 3a 

ARID5B rs10821936 chr10: 63723577 GWAS identified risk 
loci for childhood ALL 

19684603, 20054350, 
22660188, 23512250, 
22291082 

(C) 0.318 Intronic 5 

ARID5B rs10994982 chr10: 63710104 GWAS identified risk 
loci for childhood ALL 19684603, 22660188 (A) 0.457 Intronic NA 

IKZF1 rs4132601 chr7: 50470604 GWAS identified risk 
loci for childhood ALL 

19684604, 22660188, 
20054350 (G) 0.306 3'-UTR 5 

CEBPE rs2239633 chr14: 23589057 GWAS identified risk 
loci for childhood ALL 19684604, 22660188 (A) 0.466 5'-

upstream 4 

HLA-DR 
region rs2395185 chr6: 32433167 

HLA-DRB4/DR53 
lineage; ALL risk 
marker (in European 
males); Hodgkin 
lymphoma risk marker 

10397736, 12008082, 
22286212, 7909466  (T) 0.423 Intronic 6 

HLA-DQB1 
region rs2647012 chr6: 32664458 

HLA-DRB3/DRB5 
lineage, protective 
marker for non-Hodgkin 
(follicular) lymphoma 

21533074, 22911334, 
23455380 (T) 0.381 Intergenic 6 

HLA-DQA1 
region rs10484561 chr6: 32665420 

HLA-DR1/DR10 
lineage, risk marker in 
follicular lymphoma 

20639881, 21533074, 
23025665 (G) 0.084 Intergenic 6 

 

*Genome Reference Consortium Human Build 37 patch release 10 (GRCh37.p10) used for nucleotide position (http://www.ncbi.nlm.nih.gov/SNP/) 
**PubMed identifier number 
†Minor allele frequencies are from a reference Caucasian population (U.S. residents of northern and western European ancestry) genotyped in HapMap 
project 
††RegulomeDB scores range from 1 (most functional) to 5 (least functional) (6=other). Not all SNPs have a RegulomeDB score 
(http://regulome.stanford.edu/) 
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Table II. Characteristics of cases and controls 
 

  
Cases  

n=161 

Controls 

n=231 
P value 

Ethnic background  

  Non-Hispanic White 

  Hispanic White 

  Black 

  Other* 

 

66 

72 

17 

6 

 

49 

98 

78 

6 

<0.001 

Gender 

  Male 

  Female 

  Ratio 

 

86 

75 

1.15 

 

130 

101 

1.29 

0.58 

Birth weight (grams) 

  Mean (SD) 

  Median (IQR) 

 

3349.3 (584) 

3400 (760) 

 

3263.3 (684) 

3311.5 (850) 

 

0.23 

0.48 

Gestational age (weeks) (SD) 38.8 (2.2) 38.2 (2.8) 0.04 

Birth length (cm) (SD) 51.4 (3.4) 50.1 (5.05) 0.024 
 

*Other includes Asian, Native American, or other 
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Table III. SNP associations previously shown as ALL risk markers in GWAS (overall*) 
 

  Case Subjects Control Subjects Minor Allele Frequency   

Gene SNP Minor 
Allele A/A A/B B/B A/A A/B B/B Case Control ORallele

**(95% CI) P value 

ARID5B rs7089424 G 37 80 43 113 68 46 0.52 0.35 1.69 (1.28-2.24) <0.001 

ARID5B rs10821936 C 39 72 44 104 69 50 0.52 0.38 1.48 (1.12-1.95) 0.005 

ARID5B rs10994982 A 55 78 25 90 78 43 0.41 0.39 1.00 (0.75-1.34) 0.992 

 IKZF1 rs4132601 G 76 68 16 141 56 29 0.31 0.25 1.19 (0.88-1.60) 0.269† 

CEBPE rs2239633 A 68 68 23 118 74 36 0.36 0.32 1.02 (0.76-1.36) 0.881 
 
*ORs adjusted for self-reported ethnicity and race 
**OR per allele (ORallele) for the additive model 
†Hardy-Weinberg disequilibrium in controls (overall and after stratification) for race/ethnicity 

 

 

 



56 
 

Table IV. Association of HLA region lymphoma susceptibility markers (overall*) 
 

  Case Subjects Control Subjects Minor allele 
frequency 

 

SNP Gene Minor 
allele A/A A/B B/B A/A A/B B/B Case Control 

ORallele
** 

(95% CI) 
P value 

ORrec
†  

(95% CI) 
P value 

rs2395185 HLA-DR 
region T 69 68 22 120 72 25 0.35 0.28 

1.27 

(0.94-1.71) 
0.127 

 1.1  

(0.65-2.26)†† 
0.553 

rs2647012 HLA-DQB1 
region A 78 64 16 116 47 30 0.3 0.28 

1.09  

(0.80-1.47) 
0.595 

0.57  

(0.30-1.12) 
0.103 

rs10484561 HLA-DQA1 
region G 128 23 3 149 21 18 0.09 0.15 

0.70  

(0.46-1.06) 
0.094 

0.19  

(0.05-0.66) 
0.009 

 
*ORs adjusted for self-reported ethnicity and race           
**OR per allele (ORallele) for the additive model;  
†OR recessive (ORrec) for the variant homozygous genotype  

††ORallele=1.88 (P=0.003) in males; ORallele=2.79 (P=0.016) in non-Hispanic White males  
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Table V. Ancestry-informative marker SNPs* 

 

  Case Subjects Control Subjects Minor allele 
frequency   

SNP Gene 
Chromosome 

nucleotide 
position** 

Minor 
allele A/A A/B B/B A/A A/B B/B Case Control ORallele (95% CI) P value 

rs285 LPL chr8: 
19815189 C 43 68 48 92 61 53 0.52 0.41   1.26 (0.95-1.65) 0.103 

rs2891 ITGAE chr17: 
3705526 C 56 66 37 114 72 42 0.44 0.34   1.14 (0.86-1.52) 0.362 

 

*ORs adjusted for self-reported ethnicity and race 
**Genome Reference Consortium Human Build 37 patch release 10 (GRCh37.p10) used for nucleotide position (http://www.ncbi.nlm.nih.gov/SNP/) 
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Figure I: Childhood ALL risk in rs2395185 subgroup analysis 
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Figure II: Childhood ALL risk in rs2647012 subgroup analysis 
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CHAPTER V 

EXAMINATION OF HFE ASSOCIATIONS WITH CHILDHOOD LEUKEMIA 
RISK AND EXTENSION TO OTHER IRON REGULATORY GENES 
 
Abstract 
 

Hereditary hemochromatosis (HFE) variants that correlate with body iron levels 

also show associations with cancer risk, including childhood acute lymphoblastic 

leukemia (ALL). Two previous studies reported HFE associations with different gender 

effects, but this association has not been evaluated in a US-based population. Using a 

multi-ethnic sample of cases (n=161) and controls (n=231) from Houston, TX, we 

examined two HFE variants (rs1800562/C282Y and rs1799945/H63D), one transferrin 

receptor gene (TFRC) variant (rs3817672/S142G) and three additional iron-regulatory 

gene (IRG) variants (SLC11A2 rs422982; TMPRSS6 rs855791 and rs733655) for their 

associations with childhood ALL.  Being positive for either of the two HFE variants 

(C282Y or H63D) yielded only a modestly elevated odds ratio (OR) for childhood ALL 

risk in males (1.40, 95% CI = 0.83 to 2.35), which increased to 2.96 (95% CI = 1.29 to 

6.80; P = 0.01) in the presence of a particular TFRC genotype for rs3817672 (Pinteraction= 

0.04). These findings were similar to the results reported in previous childhood ALL 

studies. The TFRC genotype also showed an ethnicity-specific association, with increased 

risk observed in non-Hispanic Whites (OR = 2.54, 95% CI = 1.05 to 6.12; P = 0.04; 

Pinteraction with ethnicity = 0.02). Further support to the hypothesis that elevated iron levels 

contribute to leukemia risk came from the three additional IRG SNPs. They all showed 

individual risk associations with childhood ALL in males (OR = 1.52 to 2.60). A 

polygenic model based on the number of variant alleles in these five IRG SNPs revealed 
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a linear increase in risk among males with the increasing number of variants possessed 

(OR = 2.00 per incremental change, 95% CI = 1.29 to 3.12; P = 0.002). Having three or 

more variants in five IRGs was associated with increased risk (OR = 4.12; P = 0.004) 

compared with having none, while corresponding OR in females was 1.22 (P = 0.71). 

Our results replicated previous HFE risk associations with childhood ALL in a US 

population and also demonstrated novel associations for IRG SNPs, thereby 

strengthening the hypothesis that iron excess mediated by genetic variants contribute to 

childhood ALL risk. 

Introduction 

The hereditary hemochromatosis gene, HFE, has shown multiple associations 

with cancer susceptibility [1-7], including risk childhood acute lymphoblastic leukemia 

(ALL) [8], which has been replicated in one other study [9]. In multiple cancers [1], 

including childhood ALL [9], the association of HFE variants with cancer risk gets 

stronger in interaction with a polymorphism in the transferrin receptor gene (TFRC). 

Since HFE and TFRC proteins biologically interact in iron transfer across membranes 

such as intestinal mucosa and placenta, this interaction supports the notion that the 

involvement of HFE variants in cancer risk modification is mediated via their effect on 

body iron levels [10]. Body iron levels have long been known to be positively correlated 

with cancer risk as several cohort studies have shown [11-14], and iron’s carcinogenic 

effect has been well documented [15]. Thus, HFE associations with cancer have strong 

biological plausibility.   

 Recent genome-wide association studies (GWAS) have identified the HFE variant 

C282Y as a major determinant of body iron levels [10]. The mediation of iron 
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homeostasis by genetic variants extends beyond the HFE gene, with the strongest 

association being TMPRSS6 rs855791 [16]. We reasoned that if HFE associations are due 

to their effect on iron levels, other iron regulatory gene (IRG) polymorphisms should 

show similar associations with childhood ALL risk. We therefore aimed to extend our 

study beyond HFE variants to other IRG polymorphisms. To further test our hypothesis 

that HFE variants modify the risk for childhood ALL via their effects on iron levels, we 

also included the TFRC polymorphism that is known to interact with HFE variants in the 

genotyping scheme to test whether this interaction raises the risk of childhood ALL. The 

other IRG do not interact with TFRC biologically, so we did not predict any other 

interaction. To test our hypothesis, we used a new case-control set, which was first 

validated by replicating known childhood ALL associations.  

Subjects & Methods 

Subjects 

Institutional Review Boards of Baylor College of Medicine and Florida 

International University approved the study protocol. The case-control sample was from 

Houston, TX, consisting of 161 incident cases with childhood ALL diagnosed at Texas 

Children’s Hospital from 2007 to 2012, and 231 age-matched healthy controls 

contemporaneously recruited. The children were less than 18 years of age at diagnosis, 

and exclusion criteria for both cases and controls were refusal to participate in the study 

and the diagnosis of any other disease or cancer. Subjects and their parents were 

approached to obtain informed consent for provision of epidemiological data with a 

questionnaire and a biological sample. The DNA samples were extracted from saliva or 

peripheral blood samples at BCM. The sample was multiethnic to allow us to examine 



63 
 

effect modification of childhood ALL risk by race and ethnicity (Table I). Race/ethnicity 

was determined by the responses provided on the questionnaire by the children’s parents. 

Our main interest was the contrast between non-Hispanic Whites (NHW) and Hispanic 

Whites (HW), since childhood ALL is very rare in Blacks, and we had a very small 

number of Blacks in the case group.   

SNP selection 

We included two HFE variants known to influence body iron levels commonly 

known as C282Y (rs1800562) and H63D (rs1799945), as well as the TFRC variant 

S142G (rs3817672), which is known to interact with HFE variants in previously reported 

cancer associations. As other IRG variants, we included the GWAS-identified iron-

related SNP TMPRSS6 rs855791 [16], as well as two additional SNPs we selected also 

from the TMPRSS6 gene (rs733655) and the SLC11A2 gene (rs422982) involved in the 

non-transferrin receptor-related iron transfer across membranes. These two SNPs were 

selected as the promoter region haplotype tagging SNPs for these two genes. The selected 

SNP from TMPRSS6 is 32kb away and not in linkage disequilibrium with the GWAS-

identified marker in the same gene according to the HapMap project European population 

data (r2 = 0.286). Two more SNPs were included as ancestry-informative markers (AIMs) 

to adjust for the racial/ethnic heterogeneity in the multiethnic sample to supplement the 

self-reported race/ethnicity data. The two SNPs were rs285 and rs2891, which were 

identified as AIMs in previous studies due to their largely different allele frequencies in 

major ancestral human populations [17,18]. Characteristics of each SNP are given in 

Table II. 
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Genotyping 

TaqMan allelic discrimination assay was the choice of method for genotyping. All 

SNPs were genotyped by TaqMan assays purchased from Life Technologies (Foster City, 

CA) on the Bio-Rad CFX96 real-time PCR instrument (Bio-Rad, Hercules, CA). The 

assay ID of each assay is given in Table II. 

Statistical analysis 

Genetic associations (both crude and adjusted) were evaluated by logistic 

regression using Stata v.11 (StataCorp, College Station, TX). Statistical interactions were 

also analyzed by logistic regression. All statistical tests were two-tailed and threshold for 

statistical significance was set at P≤0.05. All genetic associations, except the TFRC locus, 

were assessed by using the dominant genetic model which corresponds to variant allele 

positivity and coded as 1 for heterozygote and variant allele homozygote genotypes, and 

0 for the common allele homozygosity (referent). Due to the low frequency of their 

variant alleles, the two HFE SNPs were pooled together by creating a new variable for 

the number of cumulative variant alleles at both SNPs (0 for no variant allele, 1 for 

variant allele at either SNP, 2 for heterozygosity at both SNPs or variant allele 

homozygosity at either SNP (compound heterozygosity)). To be consistent with the 

previous studies, TFRC SNP was analyzed in recessive model (by coding variant allele 

homozygosity as 1 and the other genotypes as 0). A similar approach was used for a 

polygenic risk model using the total number of variant alleles at all five IRGs (0 for no 

variant allele at any SNP, 1 for one or two variant alleles at any SNP, 2 for three or more 

variant alleles at any of the five SNPs). All statistical associations in the overall group 

were adjusted for the race/ethnicity variable which had four categories (NHW, HW, 
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Blacks, and others). The efficiency of adjustment for race/ethnicity was double-checked 

by adjustment for each of the AIMs separately. Before proceeding to the statistical 

analysis of genetic associations, Hardy-Weinberg disequilibrium was ruled out in 

controls as a test for genotyping error. 

Results 

HFE C282Y and H63D frequencies in the sample population 

As expected, the HFE C282Y mutation was more common in the NHW subjects: 

variant allele frequencies were 0.113, 0.030 and 0.011 in NHWs, HWs, and Blacks, 

respectively. The H63D variant positivity also had similar variation across race groups 

with frequencies of 0.254, 0.151 and 0.032 in NHWs, HWs, and Blacks, respectively. 

Only two cases and two controls (all NHWs) were compound heterozygotes for HFE 

variants C282Y and H63D.  

Univariable genetic markers analyses 

Genotype frequencies for each SNP were in Hardy-Weinberg equilibrium in the 

control group when analyzed for each race/ethnicity group. All associations reported 

below for the whole group were adjusted for self-reported race/ethnicity. Replacing the 

race/ethnicity variable by either AIM did not appreciably alter the results. As shown in 

Table III, neither C282Y nor H63D showed an overall association with childhood ALL 

risk. The TFRC SNP, which was included in the study to assess its interaction with HFE 

SNPs did not show any individual association in the overall group. The two IRG variants 

selected as haplotype tagging SNPs for the respective promoter regions showed 

statistically significant associations in the overall analysis, but the association by the 

GWAS-identified marker for the iron levels did not reach statistical significance in the 
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overall analysis (Table III). This SNP only showed an association in males, as described 

below. 

Gender- and race/ethnicity-specific analyses and statistical interactions 

The differences in risk between genders were not significantly different, as judged 

by the statistical interaction test, but for the two TMPRSS6 SNPs, males had statistically 

significant risk associations (Table IV). Despite yielding greater ORs for males, the male-

specific HFE associations did not reach statistical significance in individual analysis. 

Results from pooling of the two HFE variants in one variable (as described in the 

methods) are shown in Figure I. The bars depict the risk genotype frequencies in the case 

and control groups, and ORs for childhood ALL risk are provided. The risk did not yield 

a statistically significant association in the overall group (OR = 1.46, P=0.17)(Graph A 

in Figure I), but the pooled variable was associated with a significant risk in males (OR = 

2.09, P = 0.04)(Graph B in Figure I), and even stronger when interacting with the TFRC 

variant (OR = 4.92, P = 0.002)(Graph D in Figure I). Graph C depicts the frequencies 

and OR for females cases/controls, and Graph E shows the frequencies and OR for males 

with the wild type allele for TFRC.  

There was no ethnicity-specific association of HFE variants. Ethnicity/race-

specific analyses revealed a strong risk association (OR = 2.54, CI: 1.05-6.12, P value = 

0.04) of the TFRC rs3817672 allele A homozygote genotype in NHWs, while the OR was 

less than 1.0 (non-significant) in Hispanics. The interaction of ethnicity and this TFRC 

genotype was statistically significant (Pinteraction = 0.02 for ethnicity). Thus, the only truly 

ethnicity-specific association with childhood ALL was the NHW-specific association of 
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TFRC. The strong association of the TMPRSS6 promoter region tagging SNP rs733655 

was equally strong in both major ethnicities examined in this study. 

We examined the TFRC and HFE gene-gene interactions previously observed in 

multiple cancers [1], including childhood ALL. In the overall sample, there was no 

interaction (data not shown). Our main group of interest was males because of the 

previous findings in childhood ALL, and also because of generally higher ORs in males 

in univariable analysis of HFE variants. Since the small sample size would not allow a 

reliable assessment of interactions for rare HFE variants, especially C282Y, we used the 

HFE pooled variant variable for this analysis. In the two groups of males with and 

without the TFRC homozygous genotypes, the ORs were 0.59 (CI = 0.24 to 1.45) and 

2.96 (CI = 1.29 to 6.80), yielding a statistically significant interaction (Pinteraction = 0.04). 

We also examined interactions of non-HFE SNPs with TFRC. This analysis did not 

reveal any interaction (P = 0.33, 0.46, and 0.96).  

Polygenic risk model 

We constructed a polygenic risk variable consisting of five IRG SNPs as 

described in the Methods section. Analysis using this variable showed that for stepwise 

increase in the number of variant alleles, there was a linear increase in childhood ALL 

risk in the overall group (OR = 1.63, 95% CI = 1.18 to 2.26, P = 0.003)(Figure II), and in 

males (OR = 2.00, 95% CI = 1.29 to 3.12, P = 0.002)(Figure II), but not in females (OR = 

1.26, 95% CI = 0.77 to 2.08, P = 0.36) in stratified analyses. In ethnicity-specific 

analysis, the association remained statistically significant in NHW (OR = 2.19, 95% CI = 

1.18 to 4.06, P = 0.01), but not in Hispanics (OR = 1.42, 95% CI = 0.89 to 2.27, P = 

0.14). 
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Discussion 

We examined previously reported HFE associations and interactions with TFRC 

with the risk of childhood ALL. In this multi-ethnic sample, we observed associations 

similar to previously reported ones with the same gender effect, and extended the 

observations to other iron regulatory gene polymorphisms to provide further support for 

our hypothesis that HFE and TFRC association in childhood ALL is due to their effect on 

iron homeostasis. The only statistically significant gender-specific associations with IRG 

variants and childhood ALL risk were in males, and we also noted a novel ethnicity-

specific association with the TFRC variant.  

Due to the limited sample size, we pooled the two HFE variants to increase 

statistical power to detect their associations with childhood ALL. The ORs for the pooled 

variables were always in the risk direction for individual SNPs, and were statistically 

significant in males. When the interaction with the TFRC genotype and the gender effect 

was considered, a more robust statistically significant association was found, as in a 

previous study [9]. The same interaction was also observed in multiple cancers without a 

gender effect [1,2]. While interaction analysis is usually seen as a challenge in terms of 

statistical power, as happened in the present study, the increase in the effect size may 

compensate for the loss of statistical power due to comparison of smaller subsets of the 

sample. Like any statistical association, our results should be considered cautiously. 

However, similarities with previous observations provide sufficient credibility to the 

cumulative results, which now strongly suggest that iron excess, whether 

environmentally- or genetically-induced increases the risk for cancer in general, and in 

particular childhood ALL. As previously postulated [9,19], the mechanism of the 
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childhood ALL risk association with HFE variants known to elevate body iron levels 

may include increased materno-fetal iron transport through placenta. This process is 

mediated by HFE and TFRC [20,21], and these genetically-mediated alterations in fetal 

iron homeostasis may also have implications on the developmental origins of health and 

disease [22].  

 Another novel finding of the present study was the risk associations of previously 

unexamined IRG SNPs (rs422982 and rs733655) with childhood ALL. Together with the 

association of rs855791, a GWAS identified marker for iron levels, which reached 

statistical significance only in males, these new findings lend support to our hypothesis 

that iron homeostasis related risk modification in childhood ALL extend beyond 

HFE/TFRC polymorphisms. We do not yet know whether the SNPs selected by us and 

used in any association study for the first time have any correlation with body iron levels. 

Their locations in crucial IRGs suggest that they will be somewhat involved in some 

aspect of gene function and subsequently in iron homeostasis, but only functional studies 

can confirm their roles. The lack of statistical interaction between these additional SNPs 

and the TFRC SNP suggested the specificity of the HFE and TFRC interaction. We were 

not surprised by the lack of interaction between SLC11A2 / TMPRSS6 and TFRC since 

they do not interact biologically. 

The present study highlights the benefits of explorations of effect modification by 

gender or ethnicity. Although such explorations are usually reserved for well powered 

studies, when backed up by previous observations or strong biological hypotheses, 

stratified analyses complemented by statistical interaction analyses are powerful 

approaches to unravel otherwise masked associations. It is only natural that in a 
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multigenic disorder like cancer, effect modification, which can be seen as multicausality, 

will be operational. Researchers usually shy away from analysis of effect modification or 

statistical interaction to avoid performing multiple comparisons and subsequent chance 

findings, but there are ways to rule out chance findings by additional replication studies.  

Besides the limitations already mentioned such as sample size and statistical 

power, our study has another limitation, which has stemmed from one of its strengths. 

Examination of these associations in a multi-ethnic cohort has benefits, but also brings 

about heterogeneity, which should be accounted for during analysis. We had self-reported 

race/ethnicity data, but adjustment of the results by these data may still leave some 

residual confounding. We also used two AIMs to make sure that the heterogeneity in the 

population will not result in spurious findings. The current practice in well-resourced 

GWAS studies is to use thousands of AIMs to adjust genetic ancestry, which is 

particularly crucial when the sample includes recently admixed populations such as 

African Americans or Hispanics. We could not do that, but could include a couple of 

AIMs to control for population heterogeneity. Another limitation of using a multi-ethnic 

sample was the constraints it adds on checking genotyping error. We followed the usual 

safeguards of genotyping error avoidance at the experimental phase, and checked for 

errors at the analysis phase by using Hardy-Weinberg equilibrium testing. This test, 

however, has to be done in each race/ethnicity subgroup separately. This practice further 

reduces the statistical power of this test and may have caused inefficiency of genotyping 

error checking. Genotyping errors have the potential to cause both false positives and 

false negatives. Our results basically replicated previously observed associations, and 
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there is no overwhelming reason to consider genotyping errors as an alternative 

explanation.  

By replicating the HFE and TFRC interaction in childhood ALL risk association 

and revealing new associations with IRGs, our study provided further evidence for the 

hypothesis on the iron connection in childhood ALL susceptibility. These findings have 

far reaching implications beyond childhood leukemia in the cancer field. We hope that 

our results will stimulate interest in secondary analyses of existing GWAS data on 

multiple cancers to explore the pathways involved in iron homeostasis. We also report 

novel associations with gender or ethnicity specificity. These associations can also be 

replicated using already existing datasets. Since no childhood ALL GWAS dataset is 

currently available through public databases, we could not try replication, but we hope to 

be able to do so in the future as databases become available for additional analysis. 
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Table I. Characteristics of cases and controls  
 

  Cases  
n=161 

Controls 
n=231 P value 

Ethnic background  
  Non-Hispanic White 
  Hispanic White 
  Black 
  Other* 

 
66 
72 
17 
6 

 
49 
98 
78 
6 

<0.001 

Gender 
  Male 
  Female 
  Ratio 

 
86 
75 

1.15 

 
130 
101 
1.29 

0.58 

 
*Asian, Native American, or other 
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Table II. Main features of SNPs analyzed 

 
*Genome Reference Consortium Human Build 37 patch release 10 (GRCh37.p10) used for nucleotide position (http://www.ncbi.nlm.nih.gov/SNP/) 
†Minor allele frequencies are from a reference Caucasian population (U.S. residents of northern and western European ancestry) genotyped in HapMap 

project 

Gene SNP Chromosome nucleotide 
position* 

Minor allele and 
frequency† SNP Type Assay ID 

HFE rs1800562 chr6: 26093141 (A) 0.053  Transition substitution, 
missense mutation C___1085595_10 

HFE rs1799945 chr6: 26091179 (G) 0.179  Missense mutation, transversion 
substitution C___1085600_10 

TFRC rs3817672 chr3: 195800811 (G) 0.383  Transition substitution, missense 
mutation C___3259537_10 

SLC11A1 rs422982 chr12: 51406354 (A) 0.246  Transversion substitution, 
intragenic C____570333_10 

TMPRSS6 rs733655 chr22: 37495051 (C) 0.221  Transition substitution, intragenic C___3289858_1_ 

TMPRSS6 rs855791 chr22: 37462936 (T) 0.412  Transition substitution, missense 
mutation C___3289902_10 

LPL rs285 chr8: 19815189 (T) 0.500  Transition substitution, intragenic C__12104266_10 

ITGAE rs2891 chr17: 3705526 (G) 0.496  Transition substitution, intragenic C___3211308_20 
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Table III. Univariable analyses of associations with childhood ALL risk* 
 

SNP OR 
(95% CI) P value 

HFE rs1800562 
1.37 

(0.52 to 3.60) 
0.52 

HFE rs1799945 
1.33 

(0.74 to 2.38) 
0.35 

TFRC rs3817672 
0.8 

(0.52 to 1.23) 
0.31 

SLC11A2 rs422982 
1.55 

(1.01 to 2.37) 
0.04 

TMPRSS6 rs733655 
2.06 

(1.33 to 3.20) 
0.001 

TMPRSS6 rs855791 
1.41 

(0.91 to 2.18) 
0.12 

 
*Adjusted for self-reported ethnicity and race (non-Hispanic White, Hispanic White, Blacks and others) 
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Table IV. HFE and non-HFE associations with childhood ALL in gender and 
race/ethnicity groups (ORs and 95% CIs) 
 

  Females Males Non-Hispanic 
Whites Hispanic Whites 

HFE rs1800562 0.4 3.41 1.78 0.91 

  Pinteraction = 0.09 Pinteraction = 0.55 

HFE rs1799945 1.01 1.51 1.26 0.87 

  Pinteraction = 0.78 Pinteraction = 0.56 

TFRC rs3817672 1.66 0.7 
2.54 

(1.05 to 6.12) 
P = 0.04 

0.69 

  Pinteraction = 0.21 Pinteraction = 0.02 

SLC11A2 rs422982 1.58 1.52 1.47 1.91 
(0.99 to 3.68) 

  Pinteraction = 1.00 Pinteraction = 0.61 

TMPRSS6 rs733655 1.56 
2.6 

(1.44 to 4.70) 
P = 0.002 

2.35 
(1.07 to 5.16) 

P = 0.03 

2.52 
(1.26 to 5.04) 

P = 0.009 

  Pinteraction = 0.19 Pinteraction = 0.90 

TMPRSS6 rs855791 1.12 
1.91 

(1.04 to 3.51) 
P = 0.04 

1.71 1.22 

  Pinteraction = 0.40 Pinteraction = 0.52 
 
*Adjusted for self-reported ethnicity and race (non-Hispanic White, Hispanic White, Blacks and others).  
 P values for individual analyses are only shown when <0.05
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Figure I. Risk genotype frequencies with pooled HFE association in childhood ALL in case and control groups, by 
gender and TFRC genotype group



80 
 

 
 
0 = no variants, 1 = one or two variants, 2 = three+ variants 
 
Figure II. Polygenic risk variable consisting of five IRG SNPs and childhood ALL risk
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CHAPTER VI 
 
BIRTH CHARACTERISTICS AND CHILDHOOD LEUKEMIA RISK: 
CORRELATIONS WITH GENETIC MARKERS 
 
Abstract  

Birth characteristics such as birth order, birth weight, birth defects, and Down 

syndrome showed some of the first risk associations with childhood leukemia. Besides 

these non-genetic factors, recent genetic association studies have also identified markers 

for susceptibility. Examinations of correlations between birth characteristics and 

leukemia risk markers have been limited to birth weight-related genetic polymorphisms. 

We aimed to revisit associations of birth characteristics with childhood acute 

lymphoblastic leukemia (ALL) as well as their correlations with selected ALL risk 

markers to integrate information on non-genetic and genetic markers.  The study sample 

was multi-ethnic/racial consisting of cases with childhood (≤18yr) ALL (n=161) and 

healthy controls (n=261) recruited contemporaneously between 2007 and 2012. Non-

genetic data on birth weight, birth length, and gestational age were collected through 

administration of questionnaires, and genetic markers were genotyped using TaqMan 

allelic discrimination assays. We observed risk associations for having a birth weight of 

over 4,000 grams compared with being less than 4,000 grams (OR = 1.93, 95% CI = 1.16 

to 3.19, P = 0.01), birth length (OR = 1.18 per inch, 95% CI = 1.01 to 1.38, P = 0.04), 

and with gestational age (OR = 1.10 per week, 95% CI = 1.00 to 1.21, P = 0.04). None of 

the associations interacted with gender or ethnicity. When we examined correlations 

between these birth characteristics and genetic markers, only the HFE tagging SNP 

rs9366637 showed an inverse correlation with gestational age with a gene-dosage effect 
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(P = 0.005) and in interaction with a transferrin receptor (TFRC) rs3817672 genotype 

(Pinteraction =  0.05). This correlation was translated into a strong association for this SNP 

with preterm birth (gestational age ≤ 37 weeks) with five of ten subjects born preterm 

being positive for the variant allele of rs9366637 (OR = 5.0, 95% CI = 1.19 to 20.9, P = 

0.03). The strong interaction with TFRC suggests that rs9366637 may be involved in the 

modification of HFE-mediated placental iron transfer. Our study provides evidence for 

the involvement of prenatal events in the development of childhood ALL. The inverse 

correlation of HFE rs9366637 with gestational age has implications on the design of HFE 

association studies in birth weight and childhood conditions using full-term newborns as 

controls. If this statistical association is confirmed and its biological mechanisms include 

iron homeostasis changes, as suggested by our findings, the use of iron supplementation 

during pregnancy may need to be more targeted. 

Introduction  

Birth order, birth weight, birth defects, and Down syndrome were among the first 

risk factors shown to be associated with childhood leukemia risk [1-3]. Subsequent 

studies have established Down syndrome, increased birth weight, and several congenital 

disorders as consistent risk factors for childhood acute lymphoblastic leukemia (ALL) 

[4,5]. More limited data are available on the suggestive associations of being first-born, 

maternal age and miscarriages in maternal reproductive history with childhood ALL [5]. 

Of these, only the molecular mechanism of Down syndrome association has been 

established [6]. Birth weight shows a consistent positive association with childhood ALL 

that has been confirmed by meta-analyses [7-9]. Several biological mechanisms for the 
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birth weight association have been speculated [10-12], but none have been established 

firmly. 

Although a number of studies have examined the associations of birth 

characteristics with childhood ALL [10,13-20] and adult cancer risk [21], few examined 

the correlations between genetic risk markers and birth characteristics, mainly birth 

weight [22]. Those studies that did examine genetic risk factors used polymorphisms 

previously identified in genome-wide association studies (GWAS) and mostly yielded 

negative results. The importance of the examination of birth characteristics in childhood 

ALL research stems from recent evidence suggesting a prenatal origin for childhood ALL 

development [23-26], and more broadly the concept of developmental origins of health 

and disease [27-29].  

Our aim was to examine associations of birth characteristics with childhood ALL 

as well as their correlations with selected risk markers for childhood ALL to integrate 

information on non-genetic and genetic markers. We had data on birth weight, birth 

length, and gestational age, and we included a representative set of risk markers 

previously identified in GWAS, HLA region markers due to the association of HLA 

region polymorphisms with birth weight [30-33], iron regulatory gene HFE 

polymorphisms previously shown to correlate with birth weight [11] and additional iron-

regulatory genes for their potential associations with birth characteristics. Since our 

sample was multi-ethnic/racial, we also explored heterogeneity among non-Hispanic 

Whites and Hispanics in any association observed. 
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Subjects & Methods  

Subjects 

Institutional Review Board (IRB) approval was received at the Baylor College of 

Medicine (BCM) and Florida International University prior to the start of the research 

project. Subjects were recruited at Texas Children’s Hospital in Houston, TX. The study 

was originally designed as a leukemia association study. The case-control group 

consisted of 161 incident childhood ALL cases and 231 healthy age-matched controls 

contemporaneously recruited at Texas Children’s Hospital general pediatrics clinics. The 

children were less than 18 years of age at diagnosis, and exclusion criteria for both 

groups included refusal to participate in the study and the diagnosis of any other disease 

or cancer. Subjects and their parents were approached to acquire informed consent and 

epidemiological data with a questionnaire and a biological sample, thus the gestational 

age data was not record-based. DNA samples were obtained from either saliva or 

peripheral blood samples at Texas Children’s Hospital. Parents were asked to provide 

race (White, Black/African American, Asian, American Indian/Alaska Native, or Native 

Hawaiian/Other Pacific Islander) and ethnicity (Hispanic/Latino or non-Hispanic/Latino) 

of the child.  

Genotyping 

Genotyping was completed on the Bio-Rad CFX96 real-time PCR machine 

(Hercules, CA) using Life Technologies TaqMan® single nucleotide polymorphism 

(SNP) genotyping assays (LifeTech, Foster City, CA). The singleplex reactions were 

carried out in 96-well plates and used Bio-Rad’s SsoFast™ Probes Supermix as the 

reaction buffer. PCR amplifications were performed using the manufacturer’s suggestion 
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of total volume/well and PCR thermal cycling conditions. SNPs of interest are listed in 

Table I together with their features. SNPs included were: established ALL risk markers in 

previous GWAS, HFE SNPs known to correlate with body iron levels, another IRG SNP 

that shows a very high correlation with serum iron parameters in GWAS, and two 

additional IRG SNPs selected by us as haplotype tagging SNPs for the promoter regions 

of two IRGs. We also included three HLA region SNPs known to modify lymphoma risk, 

one being the marker for the HLA-DRB4 lineage [34], which is also associated with risk 

for major leukemia types, as previously shown in candidate gene studies [35-39]. Two 

additional SNPs (rs285 and rs2891) were included as ancestry informative markers 

(AIMs) for statistical adjustment of ethnicity and race as has been used in Hispanic 

populations to account for the differences in genetic ancestry [40,41]. Bio-Rad CFX 

Manager software (version 3.0) was used for data acquisition and genotype assignment. 

Statistical analysis 

Statistical analyses were performed using Stata v.11 (StataCorp, College Station, 

TX, USA). Logistic regression was used to explore the associations of birth 

characteristics (birth weight, birth length, gestational age) with childhood ALL risk. 

Linear regression was used to assess correlation of genetic markers with continuous birth 

characteristic variables. The threshold for statistical significance was set at P ≤ 0.05, and 

95% confidence intervals (CI) of odds ratios (OR) were computed. Pearson’s Χ2, 

Student's t-test (for means) or median test (for medians) were used to compare 

characteristics between the case and control groups. Genotype counts were tested for 

Hardy–Weinberg equilibrium (HWE) in controls for each SNP. Correlations with genetic 

markers were assessed using the dominant model in which polymorphic allele carrying 
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genotypes are coded as 1 and the wildtype (common allele homozygote) genotype is 

coded as 0. When a SNP association was found, gene-dosage effect was explored by 

using the additive genetic model which uses all three genotypes coded as 0, 1 and 2 

reflecting the number of polymorphic alleles present in the genotype. For most analyses, 

cases and controls were pooled to increase statistical power, but only after ruling out 

heterogeneity. As the sample was heterogeneous in its ethnic/racial composition, and 

genetic markers show variation in these groups, all results are adjusted for self-declared 

ethnic/racial groups (coded as non-Hispanic Whites, Hispanic Whites, Blacks and 

others). To rule out residual confounding, two SNPs were also used for adjustments, 

individually, to check whether the results were changed after adjustment for genetic 

ancestry.  

Results  

Characteristics of the case-control sample are shown in Table II. The case 

samples included 86 males (53%) and 75 females (47%). Out of the cases, 66 identified 

themselves as non-Hispanic White (NHW), 72 as Hispanic White (HW), 17 as Black, and 

6 as “other.” The “other” group included those identifying themselves as Asian, Native 

American, or other. The controls included 130 males (56%) and 101 females (44%), who 

had visited the pediatric clinic for a non-disease related reason. Forty-nine were classified 

as NHW, 98 as HW, and 78 as Black. The distribution of race and ethnic background was 

different between cases and controls, mainly due to the infrequency of childhood ALL in 

Blacks. Because of this difference, results were adjusted for racial/ethnic background or 

stratified analyses were performed when necessary. The differences in birth 

characteristics between cases and controls are detailed below.  
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Birth weight  

There was no association between childhood ALL and birth weight when the birth 

weight variable was retained as a continuous variable. Since most studies reported a risk 

association with birth weight of 4,000 grams or higher, we categorized the variable as 

high birth weight (≥4,000g) - others (<4,000g), and re-examined the association. There 

was a statistically significant association with high birth weight in the overall group (OR 

= 1.93, 95% CI = 1.16 to 3.19, P = 0.01, adjusted for self-declared ethnicity/race). 

Although there was no statistical interaction with gender or ethnicity, among the 

subgroups, the association reached statistical significance in males and in Hispanics. The 

OR was as high as 3.18 (95% CI = 1.16 to 8.73, P = 0.02) in Hispanic males. The overall 

association with high birth weight did not change when adjusted for each AIM instead of 

self-declared ethnicity/race. The association with birth weight could not be attributed to 

gestational age heterogeneity, and adjustment for gestational age or restriction of the 

analysis to subjects born at or later than 38 weeks of gestational age did not result in a 

substantial change in the OR of the association. By categorizing the birth weight variable 

into three groups (<2500g; 2500-3999g; ≥4000g), the overall association and association 

in males remained statistically significant (data not shown).  

Birth length  

As a continuous variable, birth length showed an overall association with 

childhood ALL risk (OR = 1.18 per inch, 95% CI = 1.01 to 1.38, P = 0.04). Among the 

subgroups, this association was statistically significant in females and in non-Hispanic 

Whites, but there was no statistical interaction with gender or ethnicity. In non-Hispanic 

White females, the OR was 1.81 (95% CI = 1.03 to 3.18, P = 0.04). Restricting the 
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analysis to subjects born at gestational age 39 week or later (full-term) did not weaken 

the results. On the contrary, the OR in the whole group became 1.25, and 3.03 in non-

Hispanic females, both remaining statistically significant.   

Gestational age  

In the overall group, there was a risk association with gestational age (OR = 1.10 

per week, 95% CI = 1.00 to 1.21, P = 0.04, adjusted for ethnicity/race). This association 

did not interact with gender or ethnicity/race although it was stronger in females and in 

Hispanics with the OR reaching 1.43 (95% CI = 1.09 to 1.87, P = 0.009). Categorization 

of the gestational age variable into three groups (<38 wk; 38wk; >38wk) resulted in the 

loss of statistical significance for the association.   

Correlation of birth characteristics with genetic markers  

Having found associations between birth characteristics and childhood ALL risk, 

we sought correlations between the birth characteristics and SNPs included in this study. 

For these analyses, the birth weight variable was used as high birth weight (≥4,000g) 

versus others; and birth length and gestational age variables were used as continuous 

variables. Correlations were sought in the whole group as well as in the subgroup that 

showed the strongest leukemia association. We were able to show a correlation for only 

one genetic marker and gestational age. HFE tagging SNP rs9366637 showed a 

significant negative correlation with a gene-dosage effect (P=0.005) with gestational age. 

Males had a stronger negative correlation (P=0.001) with this variant. There was no 

association in females (P=0.98), and the interaction with gender reached statistical 

significance (Pinteraction=0.02 for gender). No heterogeneity was found when analyzing the 

case and control groups separately. In fact, the regression coefficients were larger in the 
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control group. Replacing the self-declared ethnicity/race variable with either AIM for 

adjustment did not alter the results. The average gestational age showed a stepwise 

change with increasing number of rs9366637 variant alleles, with the mean gestational 

age decreasing from 38.6 weeks (homozygous wild-type) to 36.7 weeks (homozygous 

variant) (Figure I, Graph A). 

Because of the known biological relationship between HFE and TFRC, rs3817672 

was genotyped, and the interaction between rs3817672 and rs9366637 variant alleles was 

assessed. There was a significant statistical interaction between them (Pinteraction=0.02). 

Overall, the negative association between rs9366637 and decreasing gestational age 

increased in statistical significance (P=0.001), and the male subgroup again showed the 

strongest negative correlation (P<0.001) in subjects with the particular TFRC genotype. 

Figure I depicts the mean gestational age by HFE rs9366637 and TFRC rs3817672 

genotypes. Bar graph A in Figure I shows the gestational age means for just the HFE 

variant on its own, in the overall group. Graphs B and C depict the gestational age means 

for the HFE variant depending on the TFRC genotype (AA in Graph B and AG/GG 

combined in Graph C). Lastly, bar graphs D and E show the mean gestational age for 

males (D) and females (E) who had the HFE and TRFC genotypes that jointly showed the 

strongest correlation with gestational age (Pinteraction = 0.001).  

We also examined the association of the HFE SNP rs9366637 with preterm birth 

defined as gestational age less than 37 weeks. Despite very small number of preterm 

births in the overall sample (n=65), there was an association between this SNP and 

preterm birth in non-Hispanic White males (P = 0.03), which was due to five of ten 

preterm males being positive for the variant allele of rs9366637.  
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Discussion  

This study observed a birth weight association with childhood ALL risk [7-9], and 

novel associations with birth length and gestational age. While birth length association 

may be due to similar mechanisms as the birth weight association, the gestational age 

association is novel. The birth weight association is well known in childhood ALL, and 

fetal growth rate is probably even more crucial [9], but we were not able to assess fetal 

growth rate due to sample size limitations. Another novel finding was the inverse 

correlation between an HFE SNP and gestational age. This association showed gender-

specificity, gene-dosage effect and a statistical interaction with another genotype that has 

biological basis. This is a novel finding worth pursuing in future research, as it may lead 

to development of a marker with some clinical utility.  

The HFE SNP rs9366637 (IVS1) has not been studied as extensively as the other 

HFE variants rs1800562 (C282Y) or rs1799945 (H63D), and has not been directly 

implicated in iron regulation. It has shown a weak correlation with birth weight [11] and 

a strong association with adult height [42]. In a case-control study in a Han Chinese 

sample, the variant allele for rs9366637 was also found to be a significant risk marker for 

coronary heart disease (CHD) [43]. The haplotype tagged by this SNP is always devoid 

of the two variants C282Y and H63D that are associated with increased iron levels and 

presumably increased iron placental transfer. Since rs9366637 is a tagging SNP, we 

explored polymorphisms tagged by rs9366637 to see if any were functional and/or 

previously assessed (Table III). We were not able to attribute any functionality to any of 

the tagged SNPs for which rs9366637 is a proxy, nor was there any published disease 

associations with any of these SNPs.  
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The inverse correlation found between rs9366637 and gestational age, and its 

interaction with TFRC brings speculation on whether this SNP is also involved in iron 

homeostasis. There is no known effect with this SNP on HFE function, but being positive 

for this SNP would assure the lack of H63D or C282Y on the same chromosome 

negatively affecting placental iron transfer. Thus, if the association of rs9366637 is due to 

its modification of HFE function, it is more likely to be not facilitating iron transfer into 

the developing fetus.  

The risk association of rs9366627 and CHD in a Han Chinese population where 

the minor allele frequency is much higher than in European populations may be 

consistent with its association with preterm birth [43]. Babies born before term are also 

low birth weight and at high risk for cardiovascular diseases later in life [27]. This issue 

has been recently revisited and nutrition of preterm babies with special formula and 

accelerated growth in very early life have been considered in the pathogenesis of later 

development of disease in preterm babies [44]. It is important to note that rs9366637 is 

also associated with body height in adults [42], and may predispose babies to accelerated 

growth. Although our findings are purely statistical correlations, future studies should 

explore potential implications of these findings. 

 We included the interaction analysis of the TFRC variant rs3817672 with HFE 

variant rs9366637 to see if a gene-gene interaction existed. The presence of the TFRC 

“A” allele was associated with increased risk for preterm birth in rs9366637 variant-

positive individuals, specifically males. Interactions between HFE and TFRC allele “G” 

have also been noticed in various cancers, including multiple myeloma, breast, and 

colorectal cancer [45] as well as childhood ALL [11]. Since the HFE interaction with 
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TFRC allele G is believed to increase iron transport leading to increased birth weight [11] 

and cancer risk [46], it is important to note that the interaction of rs9366637 was with 

TFRC allele A in its association with shorter gestational age. This contrast suggests that 

the inverse correlation with gestational age, if causal, is likely to be due to insufficient 

iron transfer to the fetus. Iron deficiency is indeed a known risk factor for preterm birth 

[47]. 

 There were important limitations with our study, including sample size. We were 

able to pool the cases and controls (n=392) to gain statistical power, since cases and 

controls did not show statistical heterogeneity for the correlation with the HFE SNP. 

Gestational age was provided by the mother of the child enrolled in the study through a 

questionnaire. Previous studies, however, have shown a high correlation between birth 

weight, gestational ages, and other birth characteristics provided by the mother of a 

patient and medical chart recordings [17, 48]. Non-differential measurement error may 

have occurred, causing towards-the-null bias, if not all gestational ages were correctly 

recalled. Missing data was another limitation in our study, with 88% of the total group 

having gestational age data.  

Results from this study raise an important issue in study designs for future 

childhood studies. Most studies of a childhood disease consist of a control group 

comprised of full term babies and include as many cases as possible, regardless of their 

birth term. By doing this, the control group could be missing a whole group of children 

who may be carriers of certain variant genetic markers. Variants that may be associated 

with non-term births would be eliminated from the control group. The outcome of this 

mistake could lead to spurious results. 
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 In conclusion, the HFE variant rs9366637 has shown a statistically significant 

negative correlation with gestational age. The SNP rs9366637, which is not known to be 

involved with iron homeostasis, showed a positive interaction with a TRFC genotype and 

yielded a stronger association with shorter gestational age, specifically in males. This 

correlation may reveal a connection between altered placental iron transfer and the risk of 

preterm birth. Since our study did not observe other correlations between a number of 

genetic markers and birth characteristics investigated, this may be another area that needs 

to be addressed in larger and more comprehensive studies, ideally using a GWAS design. 

If our results are validated in different populations, the findings will have implications on 

iron supplementation strategies during pregnancy.  
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Table I. Main features of SNPs analyzed 

Gene SNP Chromosome nucleotide 
position* 

Minor allele and 
frequency** SNP Type 

HFE rs1800562 chr6: 26093141 (A) 0.053  Transition substitution, mis-sense mutation 

HFE rs1799945 chr6: 26091179 (G) 0.179  Mis-sense mutation, transversion substitution 

HFE rs9366637 chr6: 26089098 (T) 0.064 Intronic; transition substitution 
TFRC rs3817672 chr3: 195800811 (G) 0.383  Transition substitution, mis-sense mutation 
SLC11A1 rs422982 chr12: 51406354 (A) 0.246  Transversion substitution, intragenic 
TMPRSS6 rs733655 chr22: 37495051 (C) 0.221  Transition substitution, intragenic 
TMPRSS6 rs855791 chr22: 37462936 (T) 0.412  Transition substitution, mis-sense mutation 
ARID5B rs7089424 chr10: 63752159 (G) 0.314 Intronic 
ARID5B rs10821936 chr10: 63723577 (C) 0.318 Intronic 
ARID5B rs10994982 chr10: 63710104 (A) 0.457 Intronic 
IKZF1 rs4132601 chr7: 50470604 (G) 0.306 3'-UTR 
CEBPE rs2239633 chr14: 23589057 (A) 0.466 5'-upstream 
HLA-DR region rs2395185 chr6: 32433167 (T) 0.423 Intronic 
HLA-DQB1 region rs2647012 chr6: 32664458 (T) 0.381 Intergenic 
HLA-DQA1 region rs10484561 chr6: 32665420 (G) 0.084 Intergenic 
LPL rs285 chr8: 19815189 (T) 0.500  Transition substitution, intragenic 
ITGAE rs2891 chr17: 3705526 (G) 0.496  Transition substitution, intragenic 

 

*Genome Reference Consortium Human Build 37 patch release 10 (GRCh37.p10) used for nucleotide position (http://www.ncbi.nlm.nih.gov/SNP/) 
 

**Minor allele frequencies are from a reference Caucasian population (U.S. residents of northern and western European ancestry) genotyped in HapMap 
project 
†† IVS1: intervening sequence 1 SNP 
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Table II. Characteristics of cases and controls 

  Cases  
n=161 

Controls 
n=231 P value 

Ethnic background  
  Non-Hispanic White 
  Hispanic White 
  Black 
  Other* 

 
66 
72 
17 
6 

 
49 
98 
78 
6 

<0.001 

Gender 
  Male 
  Female 
       Ratio 

 
86 
75 

1.15 

 
130 
101 
1.29 

0.58 

Birth weight (grams) 
  Mean (SD) 
  Median (IQR) 

 
3349.3 (584) 
3400 (760) 

 
3263.3 (684) 
3311.5 (850) 

 
0.23 
0.48 

Gestational age (weeks) (SD) 38.8 (2.2) 38.2 (2.8) 0.04 

Birth length (cm) (SD) 51.4 (3.4) 50.1 (5.05) 0.024 
 

*Asian, Native American, or other 
 



100 
 

Table III. HFE rs9366637 and its tagging SNPs 
 

Proxy Distance r2* Chr. Nucleotide 
number SNP Location 

rs9366637 0 1.000 6 26089098 Intronic 

rs2050947 19019   1.000 6 26070079 Intergenic 

rs9295682 19604   1.000 6 26069494 Intronic 

rs9379826 23058   0.892 6 26112156 Intergenic 

rs9393682 32048   0.892 6 26165029 Intergenic 
 

*An indication of the correlation with rs9366637; scale of 0-1 with 1 denoting maximum correlation 
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Figure I. Gene-gene and gene-gene-gender interactions in gestational age association of HFE rs9366637
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CHAPTER VII 
CONCLUSIONS AND FUTURE RESEARCH 

Conclusions 

This dissertation research was conducted to explore the correlations among 

genetic polymorphisms, birth characteristics, and the risk of childhood ALL. The 

replication of GWAS childhood leukemia markers [1,2] validated our case-control group 

and added credibility to the results of our present project. The genotyping of HLA region 

lymphoma risk markers not only confirmed a previous male-only strong risk association 

from rs2395185 [3], but also identified new risk markers for childhood ALL. All 

significant associations with lymphoma risk markers were in opposite risk direction 

compared to the lymphoma association studies. HLA region marker rs2647012 was found 

to be a significant risk only in Hispanics, and rs1048456, a risk marker in follicular 

lymphoma showed a statistically significant protective association.   

 Our hypothesis that iron-regulatory gene (IRG) variants known to elevate iron 

levels increase childhood ALL risk was driven by previous research, which showed a 

male-specific childhood ALL risk [4-6], and the biological implications showing iron 

excess associated with other cancers [7-11]. We examined the effect modification by 

gender and race/ethnicity in childhood ALL susceptibility, and also looked into gene-

gene interactions to test our hypotheses. 

  The main objective of re-examining the association with HFE variants and 

childhood ALL susceptibility was accomplished. Our results not only replicated previous 

HFE risk associations with childhood ALL [4,5], but by extending similar findings to 

other IRG SNPs, strengthened the hypothesis that iron excess mediated by genetic 
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variants contributes to childhood ALL risk. It was previously known that HFE variants 

that correlate with body iron levels show associations with cancer risk, including 

childhood ALL [4,5], and also show a correlation with birth weight. Our results 

confirmed this leukemia risk, with replication of the male-only association [4,5].  

Birth characteristics such as birth weight, height, and gestational age were 

examined to see if correlations with childhood ALL existed. Birth length showed an 

overall risk association with childhood ALL, with females and non-Hispanic Whites 

showing significance among the subgroups. There was no statistical interaction with 

gender or ethnicity, however. The correlation between birth weight and childhood ALL 

[12,13]  was evident when comparing those having a birth weight of over 4,000 grams 

with those less than 4,000 grams.  No individual SNP showed a correlation with birth 

length or birth weight.  A novel significant risk association with gestational age overall 

did not interact with gender or ethnicity/race, although it was stronger in females and in 

Hispanics. 

Correlations between HFE SNPs and gestational age were also examined. A 

significant negative correlation was found with the HFE variant rs9366637, more 

robustly among males. The inverse correlation of rs9366637 with gestational age has 

implications on the design of HFE association studies in birth weight and childhood 

conditions using newborns as controls.  
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Future Research 

 As with any epidemiological study, and especially important with genetic 

association studies, there is a need for replication and follow up studies to ensure the 

findings are valid [14-16]. Our conclusions are based on statistical correlations, therefore 

properly executed genetic and functional replication studies are necessary. Proper study 

design addressing the sample size issue for a rare disease like childhood ALL is crucial in 

follow up studies. 

 Our conclusions require independent replications done properly; meaning the 

methods of analysis should be consistent. A recent publication failed to replicate the HFE 

variant risk association with childhood ALL [17]. The researchers did not take into 

account gender effect and gene-gene interactions that are stated in the parent study, 

therefore the results are not a true replication failure of the original study. 

 The only way to confirm our hypotheses would be to examine pre-diagnostic iron 

levels, making cohort studies a necessity. Even as unrealistic and unfeasible as it may 

seem because childhood ALL is such a rare disease, ideally a cohort study would be best 

for this research. Any replication should be done in an international collaboration format 

as well, so that the sample size is increased, therefore statistical power for more robust 

and credible results would also increase. Both of these criteria are achievable because of 

the Childhood Leukemia International Consortium (CLIC), a giant international 

consortium that pools data from independent studies from 12 countries across the world 

[18].  

 Our research is significant in terms of both population health and in scientific 

advancements. Results may indicate a possible biological mechanism of the role iron 
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plays in the cancer association, leading to an impact on both child and maternal health. 

Educating the public on lifestyle modifications for preventive measures, such as 

controlled iron supplementation during pregnancy, unregulated access to iron-containing 

multivitamins, and avoidance from the unnecessary consumption of iron-rich food, could 

reduce the risk of leukemia in children.  
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