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ABSTRACT OF DISSERTATION 

TOWARDS THE PREDICTION OF MUTATIONS IN GENOMIC SEQUENCES 

by 

Juan Carlos Martinez 

Florida International University, 2013 

Professor Sundaraja Sitharama Iyengar, Major Professor 

Bio-systems are inherently complex information processing systems. Furthermore, 

physiological complexities of biological systems limit the formation of a hypothesis in 

terms of behavior and the ability to test hypothesis. More importantly the identification 

and classification of mutation in patients are centric topics in today’s cancer research. 

Many cancers have been traced to somatic mutations in different genes in the genome. 

Classification of cancer based on gene expression has provided insights into its complex 

landscape of multiple interactions between gene networks, as well as into possible 

treatment strategies. Next generation sequencing (NGS) technologies can provide 

genome-wide coverage at a single nucleotide resolution and at reasonable speed and cost. 

The unprecedented molecular characterization provided by NGS offers the potential for 

an individualized approach to treatment. These advances in cancer genomics have 

enabled scientists to interrogate cancer-specific genomic variants and compare them with 

the normal variants in the same patient. Analysis of this data provides a catalog of 

somatic variants, present in tumor genome but not in the normal tissue DNA. 

Determining the molecular signatures of genes mutated in cancer may help to predict the 

clinical outcome and carry out therapeutic modifications in treating the patients. 

However, predicting such signatures at the time of the tumor discovery is a major 
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challenge. Several groups have reported lists of predictive genes and reported good 

predictive performance in terms of prognosis and potential for malignancy based on 

them. However, the gene lists differed widely and had only very few genes in common. 

The search for reliable molecular signatures has provided a fertile field for computational 

approaches. In this dissertation, we present a new computational framework to the 

problem of predicting the number of mutations on a chromosome for a certain patient, 

which is a fundamental problem in clinical and research fields. We begin this dissertation 

with the development of a framework system that is capable of utilizing published data 

from a longitudinal study of patients with acute myeloid leukemia (AML), who’s DNA 

from both normal as well as malignant tissues was subjected to NGS analysis at various 

points in time. By processing the sequencing data at the time of cancer diagnosis using 

the components of our framework which includes training mutations data, mutation 

extractions, normalization, subspace-based instance filtering, etc., we tested our 

framework by predicting the regions of the genome to be mutated at the time of relapse 

and, later, by comparing our results with the actual regions that showed mutations 

(discovered by sequencing their genomes at the time of relapse). We demonstrate that this 

coupling of the algorithm pipeline can drastically improve the predictive abilities of 

searching a reliable molecular signature. Arguably, the most important result of our 

research is its superior performance to other methods like Radial Basis Function 

Network, Sequential Minimal Optimization, and Gaussian Process. In the final part of 

this dissertation, we present a detailed significance, stability and statistical analysis of our 

model. A comparison performance of the results are presented. This work clearly lays a 

good foundation for future research for other types of cancer.  
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CHAPTER 1 

INTRODUCTION 

 

In academia, as well as in industry, there have been a number of efforts in developing 

computer algorithms to aid the research in molecular biology. Due to the fact that both 

DNA and proteins can be directly represented as a sequence of characters (either bases or 

aminoacids, respectively), the bioinformatics field has come up with a large number of 

computer solutions with a strong emphasis on string algorithms. A significant number of 

studies has shown that cancer development brings about changes in DNA molecule at a 

nucleotide level (mutations) within the genome of an individual. 

Many cancers have been traced to somatic mutations in different genes in the genome. 

[1]. The classification of cancer based on gene expression has provided much insight into 

the complex landscape of multiple interactions between gene networks, as well as into 

possible treatment strategies. Advances in cancer genomics have been accelerated with 

the emergence of high-throughput sequencing strategies that enable scientists to 

interrogate cancer-specific genomic variants and compare them with the normal variants 

in the same patient [2][3]. Next generation  sequencing (NGS) technologies can provide 

genome-wide coverage at a single nucleotide resolution and at reasonable speed and cost. 

[4]. The unprecedented molecular characterization provided by NGS offers the potential 

for an individualized approach to treatment. 

One of the contributions of such strategies includes the definition of relatively 

characteristic gene expression profiles, or molecular signatures that may have prognostic 
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implications for targeted therapies. In cancer patients, the objective of NGS is to obtain 

and compare information about cancer and normal tissue DNAs. Analyses of the data 

provide a catalog of somatic variants present in tumor genome but not in the normal 

tissue DNA. The goal of the analysis is to reveal a putative drug target in the examined 

cancer which facilitates the selection of therapy, and improves the personalized risk 

assessment. Moreover, determining the molecular signatures of genes mutated in cancer 

may help to predict the clinical outcomes [5]. 

Predicting molecular signatures based on the initial events in cancer development may 

help researchers, as well as clinicians, to carry out therapeutic modifications in treating 

the patients. However, predicting such signatures at the time of the tumor diagnosis is a 

major challenge. Several groups have reported lists of predictive genes and reported good 

predictive performance in terms of prognosis and potential for malignancy based on 

them. However, the gene lists differed widely and had only very few genes in common. 

Furthermore, those types of predictions were based on computational approaches not 

involving NGS, such as microarray analysis, qPCR, and others [6][7][8] in various types 

of cancer such as colorectal [9], lung [10], prostate[11], breast cancer[12] and others. 

Additionally, the disadvantages of current predictive models in cancer are that they are 

focused on evaluating mutations that anticipate the risk of progression and its clinical 

impact on the length of patient’s survival. They are not intended to predict mutational 

events at molecular level, rather to detect and classify existing mutations, and utilize that 

information to make predictions in the behavior of the cancer disease.  

In our work, by having the full sequence of the genome from both normal and cancer 

tissue at various points in time, we are able to extract valuable information to validate the 
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predictions generated from the genome. Thus, we propose to search for longitudinal 

studies of cancer patients with such identified mutated genes by the use of NGS at 

different points in time. The mutation profile identified earlier in time will serve as the 

basis for the prediction later in time. Furthermore, we will compare the observed mutated 

locations at the time of relapse with the results of our own predictions. 

Our goal in this study was to test a computational framework utilizing published data 

from a longitudinal study [13] of patients with acute myeloid leukemia (AML) whose 

DNA from both normal as well as cancer tissues were subjected to next generation 

sequencing analysis at various points in time. First of all, we processed the longitudinal 

sequencing data from cancer tissue. Secondly, we tested our framework by predicting the 

regions of the genome to mutate at the time of relapse. Finally, we compared our results 

with the observed mutated regions, identified by sequencing their genomes at the time of 

relapse. The accuracy of the predicted number of mutations ranged from 75 to 84%; the 

accuracy of the locations of mutations ranged from 69% to 88% in the patients analyzed. 

Our predictions agree well with the reported data. Although our approach is purely 

computational and does not provide insights into the putative molecular mechanisms by 

which the mutations occur, we are confident that it may assist researchers in determining 

the importance of a particular mutation in cancer progression, thus providing another tool 

to select candidates to target in drug development for cancer treatment. 
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CHAPTER 2 

LITERATURE REVIEW 

 

2.1 Background 

Over time our knowledge of genomes has developed at the same rate as their sequencing. 

Furthermore, sequencing capacity has grown significantly recently. The characterization 

of the genome starts from its sequencing or reading step and assembling. However, it 

does not end by the time its sequence is obtained. Thus, at this point, we are just at the 

beginning of a much more complex study. We are constantly looking for better coverage 

of the sequence and better resolution and, as a result, the assembly of the human genome 

is a multistep always-evolving process. The Genome Reference Consortium frequently 

produces a new version of the human reference genome for scientists to have a unique set 

of gene coordinates when comparing their results. The latest release from GRC is the 37th 

[14].  With every new release, a large set of analysis is required to understand the works 

of the genome, its functionalities, and how we can detect any anomalies in it as well as 

how we can predict future ones. 

Nevertheless, before going into further details of how to understand the scope of our 

research of the genome, it is necessary to have a minimum background on how it works 

[111]. In the next pages, we will provide some basic concepts in the Biology field that 

will ease the understanding of the rest of the work. This dissertation was written for 

readers who do not necessarily have the biology background, and, as result, a minimal 

background is provided. 
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2.1.1 Bioinformatics 

Bioinformatics is a compound word that consists of two root words. The first word “bio” 

indicates we are dealing with problems that originate from biology. The second word 

“informatics” indicates that the problems are to be solved by the discipline that works on 

the management of information and the design of computational algorithms, namely, 

computer science. 

 

2.1.2 The DeoxyriboNucleic Acid  (DNA) 

The DeoxyriboNucleic Acid (DNA) [16][17] plays the role of the information archive for 

all organisms. DNA molecules present a double helix structure containing four-letter 

bases which stand for the 4 nucleotides. These four nucleotides are adenine (A), cytosine 

(C), guanine (G), and thymine (T). Nucleotides belong to two types: purines and 

pyrimidnes. Adenine and guanine fall into the first category while cytosine and thymine 

into the second one.  

DNA is not normally present as a single long molecule but as an associated pair of 

molecules. DNA strands present the shape of a double helix as can be seen in Figure 2.1. 

Alternating phosphate and sugar elements compose the backbone of a DNA strand. The 

direction of the nucleotides in one strand is always opposite to the direction from the 

other. As a result, we consider DNA strands as anti-parallel. These DNA strands are 

asymmetric and known as 5' and 3' and follow a direction from one to the other. All bases 

on one strand form a bond with specifically one type of base on the other strand. We call 

this behavior complementary base pairing. Thus, purines form hydrogen complement  

with pyrimidines: A with T (A=T or T=A), and C with G (C=G or G=C). When two 
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nucleotides are bound together across the DNA strands form base pair (bp).  

The DNA presents a double stranded helix with complimentary information on each 

strand. This characteristic is of the DNA is vital in the functionality of the DNA for all 

living beings [18]. DNA has mechanisms for self-replication and for translation of genes 

into proteins. Furthermore, replications are necessary for the stability of the inheritance. 

However, some imperfect replications are also necessary for evolution. Genetic 

information is implemented by the synthesis of mRNA (messenger RNA) into proteins. 

Proteins are molecules in charge of the structure and activities of living beings. 

Antibodies, produced by our own organisms, to fight disease, along with some enzymes 

and muscle tissue belong to the protein category.  Proteins can be composed of 200-400 

amino acids long, requiring 600-1200 DNA bases. Surprisingly, only a small percentage 

of the total sequence genome encodes for proteins. There are vast areas of the DNA 

sequence which account for control mechanisms, and others for which no functionality 

has been discovered yet, and, therefore, considered as “junk". However, it might not 

necessarily be junk as there have been discoveries of transposable elements that have a 

regulatory function in this area, leaving us with more to be discovered in these areas 

[19][20].  

 

Figure 2.1. Graphical representation of a DNA double helix. [111] 
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2.1.3 Genes 

Our main unit of heredity for all organisms is called a gene. Genes keep the necessary 

information to build and transfer genetic traits to descendants as well as to maintain cells. 

Simply speaking, a gene can be seen as a segment of nucleic acid that, when considered 

as a whole, specifies a trait. Genes can be mapped to multiple biological traits such as 

such as eye or hair color.  

Genes have coding sequences or exons and non-coding sequences or introns. If a gene is 

active, both exons and introns are copied though transcription, producing as an output an 

RNA copy of the information from the gene. The output allows for protein synthesis from 

genetic code. The molecules that are produced from gene expression are called gene 

products and are the ones that make it possible for organisms to develop proper 

functionality.. Gerstein et al. [21] provide a precise definition of a gene: “A gene is a 

union of genomic sequences encoding a coherent set of potentially overlapping functional 

products". Besides the regions that code for protein, genes also have regulatory regions as 

can be seen in Figure 2.2.  

Regulatory regions include enhancers that are responsible for compensating for a weak 

promoter [22]. Small RNAs consist of short sequences roughly between 18 and 25 bases. 

They act as regulators of stability or availability for translation of RNAs. 

 

2.1.4 Gene expression 

When a gene is expressed, the products obtained from it are often proteins. Gene 

expression is a widely used process for all organisms ranging from the most basic ones to 

the most complex and developed ones.  
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Gene regulation allows cell function and control over structure and, as a result, is the base 

for cellular differentiation and adaptability. Gene expression is the main level where the 

genotype gives rise to the phenotype. Thus, genetic code can be interpreted. 

 

 

Figure 2.2. Mechanism for gene expression. [15] 

 

Gene expression is divided into 5 steps: 

 

i. Transcription 

The gene acts as a blueprint for the production of RNA. We call transcription to the 

RNA's production copies of the DNA. It is done by RNA polymerase by adding one 

RNA nucleotide at a time to a growing RNA strand as can be observed in Figure 2.3. 

RNA complementarity to DNA is present here. For instance, a T in the DNA will 
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produce an A in the RNA. Nevertheless, in RNA the Uracil is obtained instead of 

Thymine in place of an Adenine in the DNA strand. For instance, the mRNA complement 

of a DNA strand piece "CAT" would be transcribed as "GUA". Figure 2.4 shows more on 

this. 

 

ii. RNA processing 

Even though, it is not the only, splicing to remove introns is the most common RNA 

processing.  

 

iii. RNA export 

In eukaryotes, mature RNA has to be exported out of the nucleus to the cytoplasm which 

is where proteins actually work [15]. 

 

iv. Translation 

Every RNA triplet has a corresponding binding site for amino acids which are chained 

together by the ribosome. The ribosome produces a structure-less protein out of the by 

taking the amino acid from each transfer RNA. The second step of the Figure 2.4 

illustrates this process. 

 

v. Folding 

Here, the recently formed unfolded polypeptide will proceed to fold into the functional 3-

dimensional structure. 
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After this process, the protein working into the cell or transported outside of it as it 

occurs in digestive enzymes. 

 

 

 

Figure 2.3. Transcription process carried out by DNA polymerase. Blue bases: RNA 

product.[15] 

 

 

Figure 2.4. Transcription from DNA to RNA example and translation to protein. [15] 

 

2.1.5 DNA Mutations 

We define DNA mutations as the sequences that appear within a genome that do not 
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comply with what is "expected" in that location. The human DNA is very similar from 

individual to individual with minor differences in the nucleotides that appear in the 

genome. Nevertheless, when these differences are not minor and become major 

differences, different implications may occur in the individual affecting his health and/or 

capabilities.  

Germinal mutations are the ones and individual is born with. Somatic mutations happen 

during one's lifetime and are studied by looking at tumor cells and normal cells from the 

same patient at different times. 

Figure 2.5 and Figure 2.6 show graphically how a mutation occurs within the DNA. This 

mutation can be of the form of a replacement, deletion or insertion of bases within the 

genome. 

 

 

Figure 2.5. DNA Mutation. [23] 
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Figure 2.6. Types of DNA mutations. [24] 

 

Many of these mutations are present since birth and many others are acquired during the 

development of a disease such as cancer.  

These mutations have different forms and appear in different locations within the DNA. 

These mutations act as repeat sequences following a specific pattern or not. The two 

major types of repeat sequences are tandem repeats (TRs) including micro-satellites, 

mini-satellites, and satellites, and transposable elements (TEs), which are dispersed 

within genomes with a moderate to high degree of repetitiveness. 

 

i. Tandem Repeats (TRs) 

A common feature for both eukaryotic and prokaryotic genomes [25][26][27] is the 
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repetition of both large and short sequences (2 to several hundred nucleotides long), 

known as tandem repeats. Many experts suggest that as much as 50% of the human 

genome is composed of repetitions [28]. 

An example of a tandem repeat is illustrated in Figure 2.7:  

 

 

Figure 2.7. Tandem repeat example. 

The biological role of repeated sequences has been researched by a number of scientists 

who have determined that they are linked to evolutionary mechanisms in prokaryotic 

organisms [29]. Tandem repeats [30][31] are common in eukariotyc organisms, as well. It 

has been reported that tandem repeats are responsible for over 30 inherited diseases in 

humans. Tri-nucleotide expansions have been associated with fragile X syndrome, 

myotonic dystrophy, Huntington’s disease, various spino-cerebellar ataxias, Friederich’s 

ataxia and others. Tandem repeats can exist in coding as well as in non-coding DNA. 

Expansion found in coding regions can affect the function of the genes involved by 

disrupting the normal synthesis of the proteins. When these repeats appear inside non-

coding regions, it has been shown to affect gene expression via alterations in the 

transcription levels of the gene  when the affected area correspond to either a promoter 

region, or a region containing factors that affect protein translation. Table 2.1 clearly 

illustrates genetic diseases related to Tandem Repeats. 

Unfortunately, individuals suffering from inherited diseases do not have many choices in 

terms of treatment. However, in some cases an early diagnosis may help to ameliorate the 

devastating effects of the disease. Current tools available in clinics, as well as in 

ACTACTACTACT 
 Tandem repeat of 3 bases and length 4 
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bioinformatics allow the medical community to carry out diagnostics as early as in the 

pre-implantation embryo, to determine whether the embryo carry the expansions 

associated with a given disease or not.  

Expansion of DNA repeats are not limited to inherited disorders only. Depending on the 

length of the repeat and the area it spans, tandem repeats are also known as “satellite, 

mini-satellite, and microsatellite” DNA. Blanes and Diaz-Cano [32], present a 

complementary analysis of microsatellite tumor profile in which they observe that 

changes in the number of repeats occur depending on the progression in the cancer cell, 

compared with the normal tissue. Multiple studies have shown micro- and mini-satellite 

instability during cancer progression in a wide variety of tumors, both familiar and 

sporadic. Breast and ovarian cancers show many more tandem duplications than other 

tumor types [33]. 
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Table 2.1. Examples of genetic diseases caused by expanding tri-nucleotide repeats. [34] 

ii. Transposable Elements (TEs) 

Transposable elements are mobile within the genome, and as such, they can be inserted 

anywhere, whether within the coding region of a gene, or within intronic regions. As a 

result of their insertion the expression of a gene is affected by changing the protein coded 

by the gene where insertion occurred, or by disrupting the natural context of the gene if 

the insertion occurred within an intronic region. The term "normal" context refers to the 

regions that surround the gene, meaning upstream and downstream regions that contain 

controlling elements, such as promoters, enhancers and inhibitors of gene expression. If 

the insertion occurred within any of those controlling elements, the gene expression 

would change. An example of a transposable element is illustrated in Figure 2.8. 

 

  

Figure 2.8. Transposable element example. 

 

We have to keep in mind that whether an insertion or modification of sub-sequence 

within a genome is considered a mutation event, whether one base or 300 bases, or more. 

 

Table 2.1 shows the result of repeats affecting coding regions. Additionally, there are also 

reports of inherited and non-inherited diseases, including various types of cancer, 

associated with repeats in non-coding regions. Table 2.2 illustrates such scenarios as well 

and shows reports regarding transposable repeats, or transposable elements repeats 

related to genome mutations. 

...ACTCCTTAAACTCGGTACTGGGGC... 
Transposable element: ACT 
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Table 2.2. Pathologic intronic insertions in humans. [35]
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2.1.6 Cancer Genomics Study 

The understanding of the genetic basis of disease in general, and of cancer in particular, 

has progressed dramatically in the past few decades. Several factors have been involved 

in that progress: some, purely of biological nature, and some at the intersection between 

biology and computational sciences. The science of genetics began in the 1860’s when 

Gregor Mendel studied inheritance in pea plants (Pisum sativum) [36]. In the 1940’s 

Oswald Avery, Colin MacLeod, and Maclyn McCarty showed DNA was the genetic 

material [37][38]. In 1953 James Watson and Francis Crick proposed the double-helix 

model for the structure of DNA [39]. The Human Genome Project (HGP) began in 1990 

and was completed in 2003 by the International Human Genome Sequencing Consortium 

[40][41][42]. The reference genome produced by the HGP came from a single 

anonymous male donor from Buffalo, New York [43]. Since then, a number of 

international projects have started to elucidate the genomic sequence of various 

individuals. For instance, the HapMap Project which used DNA samples from 270 

individuals, the 1000 Genomes Project, the Cancer Genome Atlas, the Cancer Genome 

Anatomy Project, and the Cancer Genome Characterization Initiative [36].  

The Cancer Genome Atlas (TCGA) is a program supported by the National Institutes of 

Health (NIH). It will help to understand what turns a normal cell into a cancer cell. Its 

main approach as stated in its web site (cancergenome.nih.gov) is to compare DNA from 

normal and cancer tissue to find what are the differences. By utilizing such approach 

scientists working within the TCGA Project have learned that there are certain areas of 

the genome commonly affected in several types of cancers. Often these changes affect 

genes that control pathways in cells that cause cells to divide and survive when they 
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normally would die. Another finding is that specific changes –also called signatures- 

allow scientists to tell one type of cancer from another. These signatures help doctors 

identify specific “types of cancer” which may respond differently to various treatments or 

have different prognosis. In order to better understand these concept I would like to 

define some of the specialized terminology (see cancergenome.nih.gov) 

The genome is given by all the DNA that exists within a cell. For the majority of cells, 

the genome is wrapped into two sets of chromosomes inherited from both parents. These 

chromosomes consist of six billion DNA letters. The genetic alphabet consists of 4 

letters: A, C, G and T. The area of Genomics consists of studying how these letters 

appear in a sequence and how every string of letters passes the information to the 

proteins, the real building blocks in the organism. DNA stands for deoxyribonucleic acid 

and instructions encoded in the string of DNA are passed to the proteins. 

For cancer cells, changes in the bases (A,C,T, and G) can cause a modify the meaning of 

a genomic “word” or “sentence”. These changes in the bases can make the cell to produce 

a protein that does not allow the cell to work as expected. These proteins could make the 

cell grow faster than normal and affect neighboring cells. The accumulation of these 

changes, or mutations, within a cell leads to the development of cancer. Mutations are 

classified as germ line and somatic. Germ line mutations affect germinal cells (oocytes or 

spermatocytes) and are transmitted to the offspring. Somatic mutations, on the contrary, 

affect somatic cells and are not transmitted to the offspring. The study of the genome in a 

cancer cell is known as cancer genomics. The field of cancer genomics has had a 

profound impact in the understanding of cancer progression at a molecular level. The 

field itself has been dramatically impacted by the application of the so called next-
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generation sequencing, or NGS, technologies, which has accelerated the pace of 

discovery, while reducing the cost. NGS technologies greatly depend on computer power 

to acquire, process, and analyze the data coming from sequencing the genomes of 

healthy, as well as cancer cells [44]. The importance of studies made at the intersection of 

cancer biology and computer sciences can be never be understated. As data generated 

from multiple sequencing projects grows, the computer capabilities should keep up with 

the challenges of analyzing the terabyte amounts of data. The strongest contribution of 

NGS on cancer genomics has been the ability to re-sequence, analyze and compare the 

matched tumor and normal genome of a single patient [44].  

Finally, the sequence of the human genome and the discoveries brought about by it, or 

related to it, have allowed the faster integrations of genomics into the medical practice 

[45]. As cancer is defined as a genetic disorder due to the accumulation of mutations, 

tumor genome sequencing has been used to guide treatment in oncology, as well as to 

develop new therapeutic anti-cancer targets [45]. It is known, that cancer that look 

identical through the microscope may have very different underlying genetic changes and 

may respond differently to specific drugs. By identifying the mutational profile, or 

signatures, specific for a certain type of cancer, it would be possible to classify individual 

groups of patients who may have better responses to an specific treatment, and rule out 

patients that do not belong to such group, avoiding the secondary effects of an 

unnecessary therapy.  
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2.2 Related Work.  

We will analyze and compare our research from multiple perspectives since it involves 

work in different areas. We will start reviewing the different tools used for analyzing and 

comparing genomes and specific sequences and later we will do an extensive comparison 

of our research versus others which aimed at studying cancer and the genome 

relationships. 

Numerous methods have been developed for analyzing the repeat structure of genomic 

sequences [46][47][48][49], most of which scan for a specific type of repeat such as short 

sequence repeats, palindromic repeats [50], tandem repeats [51][52][53][54], or highly 

periodic short repeat elements [55][56]. In most cases, such methods are unable to detect 

repeats that do not match a predefined pattern and intra or inter-genomic analyses are 

usually very difficult. Other methods [57][58], however, such as the use of Fourier 

transforms for repeat identification, do not search for a specific repeat pattern but rather 

try to locate occurrences of highly correlated periodic repeats. Nevertheless, this 

approach typically only identifies very strong genome-wide correlations such as those 

due to the triplet nature of the genetic code.  

Among the tools we have in Bioinformatics, we identify the ones that look for sequences 

within another sequence or genome and the ones that look within established patterns 

(motifs). 

 

2.2.1 Fasta [59] 

First fast sequence searching algorithm for comparing a query sequence against a 

database. It is a tool that works for comparative analysis of DNA against DNA searches. 
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One of its limitations is that it can only find one gapped region of similarity and performs 

relatively slow. However, on the positive side, it does not require specially prepared, 

preformatted databases. 

 

2.2.2 Blast [60][61] 

The Basic Local Alignment Search Tool (BLAST) was developed at the National Center 

for Biotechnology Information (NCBI) [62]. It is not normally used for DNA against 

DNA searches without translation because of optimization issues. This tool pre-filters 

repeat and “low complexity” sequence regions and it is capable of finding more than one 

region of gapped similarity. BLAST’s implantation consists of a very fast heuristic and 

parallel algorithm with the restriction of precompiled, specially formatted databases. 

 

2.2.3 RepeatMasker [63][64] 

This program searches DNA sequences for repeats that present gaps between them. 

Sequence comparisons in RepeatMasker are handled by multiple search engines such as 

cross_match [65], ABBlast/WUBlast [66][67], RMBlast [68] and Decypher [69]. 

 

2.2.4 Masker Aid [70] 

When RepeatMasker was created, scientists started to find repeat sequences for large 

genome sequences; however, they also found that it took fairly huge amount of time to 

the tune of hours to get the process completed on the fastest machines with high end 

processors and memory. MaskerAid was henceforth proposed to take the added benefit of 

WU-BLAST along with cross_match programs. As a result, this patch was applied to the 
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RepeatMasker program in a 4 step process. The new proposed algorithm parses the 

outputs of BLAST programs and finds next the best alignments to find the repeats 

quickly. MaskerAid was run on all the existing conditions which cross_match satisfied 

and showed significant reduction in time taken across modes. Also the miss rate of repeat 

sequences was much reduced. The tool was also seen as lesser sensitive to user-

defined/external parameters than RepeatMasker. 

 

2.2.5 Tandem repeat finder [71] 

Scientific studies show that tandem repeats have something special about them and they 

can be connected to important biological consequences observed in living beings. Hence, 

it is very important to find all Tandem repeats in DNA sequence quickly and efficiently 

regardless of the size of the genome sequence. Before the Tandem Repeat Finder 

appeared, the existing algorithms worked fairly well even though they had various 

disparities. Moreover, many had unacceptable worst case running times for large 

sequences. Few considered large and small sequences alike and to predict a pattern took 

unreasonable time for smaller sequences. Others were bounded by the inclusion of 

approximate repeats and due to the concept of substitution by a fixed number, it made 

little sense to apply the same algorithm to small and large sequence at the same time. 

Tandem Repeat Finder takes all these factors into consideration and comes up with a 

solution which comprises of the following features and more: k-tuple matching and no 

size limit of repeats. This solution also finds hidden tandem repeats using a probabilistic 

model and, finally, aligns these repeats to obtain a consensus pattern. To end the process, 

these repeats are clustered together for further analysis. 



23 
 

2.2.6 Reputer [72] 

Exact repeat sequences are the ones that appear at least twice or more in the entire 

genome nucleotide sequence. Next, maximal repeats are basically exact repeats extended 

in both directions without loss of mismatch. These can be classified as Forward Repeats 

or Reverse Complement Repeats. A Reverse Complement of sequence AACCTTGG is 

CCAAGGTT. 

Repeats are stored in the suffix tree for finding the pattern efficiently. Storage wise this 

algorithm is far superior to existing ones. In order to enumerate all repeats existing in the 

parsed sequence, a Depth-First search of the entire tree is required. This enlists one by 

one all the repeats with their coordinates and lengths stored in the end nodes. The 

algorithm is highly optimal from space and time considerations and can be further 

optimized for space constraints. 

 

2.2.7 The Vmatch large scale sequence analysis software [73] 

This work uses suffix arrays [74][75] to pre-process genomes, creating indexes which 

allow quick searching of probes. This brings the limitation given by the size of RAM 

memory present in the executing environment. At this time Vmatch in 32 bit computers 

has a limitation of genomes of 400 million bases. 

 

2.2.8 Amadeus [76] 

Amadeus is a software platform for genome-scale identification of known and novel 

motifs (recurring patterns) in DNA sequences, applicable to a wide range of motif 

discovery tasks. Amadeus can be used to identify binding site motifs from Protein 
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Binding Microarray data. A dataset includes its measured binding intensities for each 

probe sequence covering together all possible 10-mers. In a number of competitions  

Amadeus ranked first (tied with one other group) in identifying the binding site motifs of 

66 TF datasets. Running time is a few seconds per dataset. 

 

2.2.9 Allegro [77] 

Allegro is a software tool for simultaneous discovery of cis-regulatory motifs and their 

associated expression profiles. Its inputs are DNA and genome-wide expression profiles. 

Its output is the set of motifs [78] found, and for each motif the set of genes it regulates 

(its transcriptional module). Allegro is highly efficient and can analyze expression 

profiles of thousands of genes, measured across dozens of experimental conditions, along 

with all regulatory sequences in the genome. Allegro has a user-friendly graphical user 

interface. 

 

2.2.10 Our work 

Our work works with mutations in general not necessarily following an exact or 

approximate  match to any known signature. All mutations that we want to predict are 

made at the molecular level, and cover not only one specific gene nor chromosome but 

the whole human genome. 

 

2.2.11 Comparative chart 

Finally a comparative chart of our approach is presented together with other methods 
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mentioned in related work in table 2.3.   We can observe that our framework works on 

any type of sequences just like other applications; however, our work is oriented towards 

the prediction of new mutations over time in the human genome.   

 
Table 2.3. Comparative chart of our work versus other approaches. 

 

 

 
 

2.2.12 Other studies on cancer genomics  

One out of eight deaths is caused by Cancer [79]. A more in-depth understanding of 

cancer is a must in order provide better treatment for patients. Nowadays, genome data 

Program Alignment Mismatch 
Exact 

Match 
Search against Prediction 

Fafsta YES YES YES Any Sequence NO 

BLAST YES YES YES Any Sequence NO 

Repeat 

Masker 
YES YES YES Any Sequence NO 

Masker Aid YES YES YES Any Sequence NO 

Tandem 

Repeat 

Finder 

NO YES YES Any Sequence NO 

Reputer NO NO YES Any sequence NO 

VMATCH NO NO YES Any sequence NO 

Amadeus NO YES YES 
Predetermined 

database 
NO 

Allegro NO YES YES 
Predetermined 

database 
NO 

Our work NO YES YES Any Sequence YES 
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increases exponentially, which leads to more opportunities to learn insights of this 

terrible disease. David von Hansemann and Theodor Boveri examined strange 

chromosomal aberrations of cancer cells by dividing them under a microscope [80]. 

These findings indicated that cancer might be related to abnormalities at the chromosome 

level [81][82]. 

 

The molecular level analysis can be dated back to the 1980s, Reddy et al. [83] first 

associated a single base substitution of G > T of the HRAS gene with the activation of 

that specific oncogene function in T24 human bladder carcinoma cells. That is the first 

study of identifying a certain mutation as being highly correlated to cancer. Currently, a 

generalizable concept of cancer states that malignancies result from accumulated 

mutations in genes that increase the “fitness” of a transformed cell over the cells 

surrounding it. The transformed cells sometimes acquire advantageous mutations which 

enable them to proliferate unlimitedly and sometimes allow them to spread to distant 

sites, leading to metastases. 

Application of Wavelets 

Wavelets transforms have become an integral part of mathematical analysis with an ever 

increasing range of applications, including genomic sequences. Prasad and Iyengar, 1997, 

in a publication titled Wavelet Analysis with Applications to Image Processing [84], 

describe several methods on the application of wavelets as a tool for feature extractions 

and other important methods in interdisciplinary applications. More recently, Meng, 

Chen, Iyengar and others [85], have published a paper on the applications of wavelets for 
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cancer related genome sequences.   

Wavelet Analysis 

In order to conquer cancer, there is a high demand to delve into these sequences and mine 

useful information. From the signal processing point of view, biological sequences such 

as DNA sequence can be viewed as one dimensional signal. Accordingly, signal 

processing approaches can be adopted. The classic approach of Fourier transform suffers 

from the loss of temporal information. It does not give access to the signals’ spectral 

variations during different time intervals. In other words, the time and frequency 

information cannot be seen at the same time, and thus a time-frequency representation of 

the signal is needed. 

Wavelet analysis which is capable of decomposing time series into time-frequency space 

gets increasing amount of attention as a potential tool to study cancer genomic data. 

Figure 2.9 illustrates the general framework of the analysis procedure. 

The origin of the wavelets theory dates back to the Fourier analysis developed by a 

French mathematician, Jean Baptiste Joseph Fourier (1768-1830) [86]. He came up with 

the idea of representing each signal as a weighted sum of cosine and sine functions, i.e., 

Fourier Trigonometric series. Most real-world signals’ characteristics are non-stationary 

signals and vary in both time and space. FT is trying to capture frequency content. The 

calculation for FT is in Equation (1) from [84]. 
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Figure 2.9. Sample procedure of applying wavelet transform in cancer genome analysis. 

The FT defines the global representation of the frequency content of a signal over a total 

period of time. However, it does not represent to the signal’s spectral variations during 

this interval of time. In other words, people cannot view the time and frequency 

information concurrently.  Nevertheless, it would be helpful if both pieces of information 

were available. 

To achieve this, Dennis Gabor proposed the Short-Time Fourier Transform (STFT) to 

study a small fraction of the signal at a time by segmenting the signal using windows

[87]. This obtains the specific contents of each of the analyzed sections separately. The 

segment of signals in each section is assumed stationary.  
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However, an important question is raised, which is how to determine the window size. As 

is shown in experiments, a narrow window results in a poor frequency resolution, 

whereas a wide window leads to poor time resolution. In addition, one cannot determine 

the time intervals where a certain frequency exists. Therefore, the wavelet transform was 

initially proposed as an alternative approach to STFT to overcome the resolution 

problem. All other windows are the dilated, compressed, and shifted versions based on 

the mother wavelet.  

In terms of history, Haar Wavelets family was developed by Alfred Haar in 1909 [88]. 

The simplicity of this wavelet transform gives it broader applications. It is generally used 

to analyze a given signal in terms of functions which are more finite in time than the 

harmonic functions used in the Fourier analysis. In 1980s, Jean Morlet replaced the 

Gabor window used in Short-Time Fourier Transform (STFT) [89] by stretching and 

compressing oscillating windows. Using this technique, he got more reliable and accurate 

results. This approach is later named as the Morlet Wavelets. In 1989, the idea of multi-

resolution was proposed [90]. This idea forms the base theory of versatile wavelets 

families. Based on this concept, the well-known and frequently used Daubechies 

wavelets family was invented [91]. 

To sum up, wavelet analysis techniques have the following advantages over the 

traditional FT [92]: (a) wavelets are capable of analyzing both stationary and non-

stationary signals, while FT gives less information in analyzing non-stationary signals; 

(b) wavelets have a god localization of frequency and time domains while the standard 

FT is only hgandled  in frequency domain; (c) the base functions of wavelets can both be 

scaled and shifted and therefore are more flexible, while the FT can only be scaled; and 
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(d) wavelets have a much wider range of applications than FT. For example,  they could 

be used in non-linear regression and compression. A brief summary of the comparison is 

shown in Table 2.4. 

 

Properties Fourier 

  

Wavelet 

 
Stationary signal Yes Yes 
Non-stationary signal No Yes 
Time domain No Yes 
Frequency domain Yes Yes 
Scale Yes Yes 
Shift No Yes 

 

Table 2.4.  Comparison of Wavelet Analysis and Fourier transform (FT). [85] 

 

Renato Dulbecco raised the point that the complete sequence of the human genome 

would be an essential tool for systematically discovering the genes that cause cancer [93]. 

The recent advance of next-generation sequencing technology makes the whole cell 

genome analysis possible for individual cancer case. In recent years, data about 

epigenome and transcriptome on a genome-wide scale of cancer grow exponentially [94], 

which offers great opportunity to unlock the mystery of cancer. The main streams of 

existing work of applying wavelet analysis in cancer genome research are summarized as 

follows.  

Cancer is caused by mutations, Generally speaking, there are four types of  

common mutations in the cancer genome, which are substitution, insertion or  

deletion (indel), copy number altercations, and translocations. They are  

illustrated in Figure 2.10.  
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Figure 2.10. The four types of mutations. [92] 

 

Wavelet Analysis in Insertion/Deletion Mutations in Cancer Genome 

As described in previous section, cancer  is  caused by different mutations in the cancer 

genome. Recent studies find that the form and rate of mutations depend on  the  context  

of  the  mutation point  [95]. Wavelet analysis finds its application in this scenario since it 

provides a multi-scale analysis on the sequence without pre-defined prioris. Therefore, it 

is suitable for detecting spatial patterns of the sequences around the mutation point 

without any prior knowledge. In a previous study [96], the authors targeted at identifying 

the spatial distributions of seven types of mutation related motifs, such as deletion 

hotspots, DNA pol pause/frameshift hotspots, etc, with respect to insertion/deletion break 

points. The authors first computed the motif frequency to generate the mo- tif frequency 

profile. Because of the computational simplicity, Haar wavelet analysis was applied to 

de- compose the frequency profile. The coefficients’ sec- ond raw moments on a multi-
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scale basis were computed and they were used to measure the size of the difference 

between motifs occurrence patterns in insertion/deletion flanks vs. control regions. Their 

study identified the significant spatial distribution patterns of mutation motifs. The 

identified motifs could be utilized as targets for some cancer medicine. In another study 

presented in [97], the authors collected  1625  spontaneous  base-pair  substitutions  in the  

MutL2  strain  of  Escherichiacoli  and  analyzed the spatial distribution of these 

mutations across the Ecoli  genome.  In  order  to  accommodate the  total number of 

mutations and describe the data clearly, the researchers generated 46 bins, each of which 

contains 100kb nucleotides, starting at the origin of replication. A histogram was 

generated to show the distribution of missense mutations. Next, the Fourth- order  

Daubechies wavelet transforms were  applied since it is able to remove jumpy appearance 

of the Haar averaged signals. The analysis found that these mutations are not distributed 

at random but, instead, fall into a wave-like spatial pattern that is repeated almost exactly 

in a mirror image in the two separately replicated halves of the bacterial chromosome. 

These findings give some insight on different mutations occurred in cancer genome. 

Wavelet Analysis in Copy Number Alterations 

Copy number alterations are a common pattern of structure variations in cancer genome. 

This sort of mutations is one hot research area in cancer genome research nowadays. 

Generally speaking, the main methods of detecting this sort of mutations, fall into two 

categories, which are the microarray-based gene expression analysis approach and the 

next generation sequencing-based approach. There have been studies utilizing wavelet 

analysis in both approaches. In terms of the first approach, the study [98] is an exemplar. 
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In this paper, the expression level values of each gene are on the vertical dimension and 

locations of genes on the chromosome are the on the horizontal dimension. The problem 

of detecting copy number variations was modeled as extracting salient information on the 

transformed curve, such as sharp peaks and drops of the signal under the high noisy 

situation. As mentioned previously, although Fourier transform is helpful in signal 

processing to transform the time series to frequency domain, it loses information 

regarding position of signal changes, which is important information gain from this study. 

Therefore, wavelet transforms which capture information in both the frequency and time 

domains, are suitable for discovering sharp discontinuities on the genome locations. 

Specifically, the signal profile is first decomposed into a family of multi-resolution 

subbands using Haar wavelet. For each subband, p-values are assigned to Haar 

coefficients based on a null-distribution estimated from normal reference samples. 

Following that, significant coefficients are selected by assigning thresholds for false 

discovery rate. The selected coefficients are used to identify copy number alterations. The 

reason to select the Haar wavelet transform is that it is good for analyzing piecewise 

constant copy number signals [99]. Other similar studies following this direction include 

[100] and [101]. 

The  next  generation sequencing-based methods  provide  a novel and effective solution  

for  analyzing the copy number alterations in a relatively high resolution. Nevertheless, it 

suffers from the relatively high noise issue [102]. One benefit that the wavelet analysis 

provides is its capability of decomposing the signal into a spectrum of different 

frequencies, where many high frequency components are corresponding to noise. 

Therefore, one direct application of the wavelet decomposition is to do the noise 
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reduction. In [103], a CNAseg algorithm is proposed to identify copy number alterations 

from the second-generation sequencing data. In this study, the counts of copy number 

along the chromosome coordinates were converted to the discrete signals and an 

undecimated discrete wavelet transform was utilized to smooth the counting data. The 

number of decomposition levels was adapted to the length of the window counts for each 

chromosome. The reconstructed signal then went through the Hidden Markov Model 

(HMM) for segmentation and the Chi-square statistics based segment merging step. 

Experimental results demonstrated that those proposed approaches decrease the number 

of non-copy number alteration induced HMM segments and reduce the unevenness in 

read depth. Such reduction helps improve the performance of the system. The wavelet 

decomposition-based noise reduction is commonly used in studies in this research 

direction, such as in [100] and [102]. 

Wavelet in Machine Learning Research Frame- work of Cancer Genome 

Nowadays, cancer genomics and proteomics data increase faster and faster. Meanwhile, 

more and more machine learning based approaches are applied by researchers for cancer 

genome analysis. We assume here that mathematical models could be built to learn 

patterns and could make predictions for unseen data by mining the patterns from the 

existing data. Firstly, the raw data are to be converted into a related compact and 

meaningful representations for this propose. We usually call this process as feature 

extraction. It could be utilized to extract features from a series because wavelet analysis 

could capture the global and local characteristics of sequence data. My applications used 

wavelet analysis as feature extraction approach. As an example, in [104], researches 
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utilize wavelet analysis to extract features from DNA microarray data in order to extract 

important features for classification. Another example is that Liu et al. [105] proposed a 

framework which utilizes wavelet to extract features from thousands of protein markers 

in survival analysis in the field of colorectal cancer. Daubechies wavelet db7 is utilized 

by Liu to perform the continuous wavelet transform to extract the coefficients from the 

protein marker expression data. These coefficients contain information at different scales 

of the original biomarker signal. Afterwards, they are been used as features for cancer 

classification. 

Cancer is a very terrible disease which caused by mutations and one of the most problem 

human faced in this generation. It is viewed as a genetic disease. In conclusion, a good 

understanding of the mechanism of mutations is mandatory to combating this disease. 

Wavelet analysis has found its application in many areas of cancer genome research, such 

as mutation identifications and cancer bio-marker identifications. It can perform multi-

scale analysis and capture the local and global information of a time series. 

Similar to the Wavelet technique previously discussed, our work also utilizes a machine-

learning approach in the analysis of the cancer genome. Specifically, speaking, our 

objective of using such approach is being able to make predictions of mutations within 

the genome of a patient. 

2.2.13 Clinical perspective 

From the medical point of view, our analysis focuses mainly on cancer, a disease that is 

caused by mutations and affects the genome leading to instability and the generation of 

more mutations. Through numerous studies, scientists have been able to relate certain 
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cancers somatic mutations in different genes in the genome. As a result, classifying 

cancer based on gene expression has provided much insight into the complex landscape 

of multiple interactions between gene networks, as well as into possible treatment 

strategies. Furthermore, the constant appearance of more sophisticated sequencing 

strategies have helped in the advance of the study in cancer genomics. This has allowed 

scientists to interrogate cancer-specific genomic variants and compare them with the 

normal variants in the same patient. Next generation sequencing (NGS) technologies can 

provide genome-wide coverage at a single nucleotide resolution and at reasonable speed 

and cost. By having the unprecedented molecular characterization provided by NGS 

offers the potential for an individualized approach to treatment. These strategies aim to 

provide the definition of relatively characteristic gene expression profiles, or molecular 

signatures that may have prognostic implications for targeted therapies. 

Consequently, in cancer patients, the objective of NGS is to obtain and compare 

information about cancer and normal tissue DNAs.  By analyzing this, scientists can 

develop a catalog of somatic variants that exist in tumor genome but not in the normal 

tissue DNA. The objective of the analysis is to reveal a drug target in the examined 

cancer which facilitates the selection of therapy, and improves the personalized risk 

assessment. As a result, determining the molecular signatures of genes mutated in cancer 

may help to predict the clinical outcome. 

Researchers and clinicians can benefit from being able to predict molecular signatures 

based on the initial events in cancer development in order to, develop therapeutic 

modifications in treating the patients. Nevertheless, predicting such signatures at the time 

of the tumor diagnosis is a major challenge. Numerous research groups have reported 
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lists of predictive genes and reported good predictive performance in terms of prognosis 

and potential for malignancy based on them. However, the gene lists differed widely and 

had only very few genes in common.  

Additionally, those types of prediction were based on computational approaches not 

involving NGS, such as microarray analysis, qPCR,  and others in various types of cancer 

such as colorectal, lung, prostate, breast cancer and others.  

After searching PubMed we found very few articles reporting predictions in cancer gene 

signatures by utilizing the NGS approach [106][107]. Furthermore, these reports have 

dealt with predictions from data obtained at one point in time from paired normal and 

cancer tissues. To the best of our knowledge, there have been no reports on predictions of 

cancer gene signatures during cancer progression in the same individual. 

Thus, the disadvantages of current predictive models in cancer are that they are focused 

on evaluating mutations that anticipate the risk of progression and its clinical impact on 

the length of patient’s survival. They are not intended to predict mutational events at 

molecular level, only to detect and classify existing mutations. Thus, they are not suitable 

for making predictions in terms of the molecular behavior of the cancer genome. 

In our hypothesis, by having the full sequence of the genome from both normal and 

cancer tissue at different points in time, we are able to extract valuable information to 

validate the predictions generated from genome data before relapse time. After an 

exhaustive search of the available scientific resources (PubMed, Google Scholar), we 

could not find reports utilizing such strategies.  

In order to fill this gap, in our study, we proposed to search for studies of cancer patients 

with such identified mutated genes by the use of NGS various points in time. The 
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mutation profile identified earlier in time will serve as the basis for the prediction at later 

in time. Furthermore, in order to evaluate our prediction results, we compared the 

observed mutated locations at the time of relapse with the results of our own predictions.  

 

Our main objective in this study was to test a computational framework utilizing 

published data from a longitudinal study of patients with acute myeloid leukemia (AML) 

whose DNA from both normal as well as cancer tissues were subjected to next generation 

sequencing analysis at various points in time. First of all, we processed the sequencing 

data at the time of cancer discovery. Secondly, we tested our framework by predicting the 

regions of the genome to mutate at the time of relapse. Finally, we compared our results 

with the observed mutated regions, identified by sequencing their genomes at the time of 

relapse and determined that our predictions are in good agreement with the reported data. 
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CHAPTER 3 

 

RESEARCH PROBLEM AND SPECIFIC AIMS 

 

 

In this chapter we motivate the problem to be investigated and present a detailed problem 

statement. Our research focus is in the area of Bioinformatics. In the next section we 

provide the motivation for this research by emphasizing the need for a prediction 

framework for longitudinal DNA mutations within the human genome  and highlighting 

the benefits to be gained from conducting the study. In Section 3.2 we concisely describe 

the problem to be investigated. 

 

3.1 Motivation 

 

Over time, the scientific and industry community have made tremendous efforts on 

developing computational solutions to aid the research in molecular biology. These 

computational solutions focus mainly on String algorithms since the DNA can be 

represented as a sequence of a combination of four characters (ACTG). These characters 

are basically what we call the bases in the DNA. Nevertheless, when these sequences 

suffer from alterations in their structures (changes in one or more bases at different 

locations within the whole sequence), implications in the health of the individual may 

appear.  Many diseases are associated with causing these changes (mutations) within the 

genome of an individual. In our case, we are concerned specifically with cancer. 

 

In achieving this goal, we built a computational framework that will perform in three 

main stages. Firstly, the framework will pre-process the files containing the patient’s data 

for feeding the information needed by the prediction stage. Secondly, given the 

information provided by the previous stage, the framework will perform the prediction of 

the number of mutations to occur as well as the locations where these will happen 

through a statistical analysis. Finally, after the framework finishes with the predictions, 
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the predicted number of mutations as well as their locations will be presented in more 

than one format to the physicians to provide treatment and/or make further discoveries as 

many predicted locations could occur at areas where no known functionality exists. 

Additionally our framework has been implemented in Java and also utilizes statistical 

libraries and tools for accuracy and performance. Thus, our software follows the Object 

Oriented (OO) paradigm and has been developed on the Eclipse Integrated Software 

Environment (IDE) with the currently latest Java Development Kit (JDK 7).  

 

3.2 Problem definition 

 

These changes or mutations in the genome can cause various disorders in the individual 

depending on their number and locations. As a result, knowing how many mutations will 

occur as well as where they will occur become very important matters. 

 

The effort is divided into the following three sub-problems: 

  

1. Being able to perform statistical analysis on a given patient's genomic data. 

 

2. Making reliable predictions for the mutating behavior of the given sequence. 

 

3. Identifying mutations in regions in the genome that have not been considered 

functionally important or relevant. 

 

In order to target the solution of these problems we target three specific aims. Each of 

these provides a solution to every sub-problem previously respectively. 
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3.3 Specific Aims 

 

3.3.1 Aim # 1: To build a tool for statistical analysis on genomic data sets. 

 

In order to carry out our first contribution, we built a framework which is capable of 

extracting statistical information from the genomic data from a patient. It is very 

important to mention that our framework works with the whole genome data from a 

patient and not just with one chromosome or a couple of them. Thus, given the genomic 

data from a patient, we proceed with an analysis at the chromosome level of the whole 

genome. This analysis involves producing statistical data from the mutations present in 

each chromosome. The input for this first stage is the genomic data from a sick patient 

who already presents mutations in his genome.  

 

The statistical analysis involves building a series of variables based on the actual 

genomic data from the patient that later will be used to perform the predictions. 

 

3.3.2 Aim # 2: To utilize this data set and formulate a prediction model. 

 

Our second goal is our primary contribution as it deals with the prediction itself. Our 

prediction works at two levels. First, we will predict the number of mutations to occur 

within one chromosome and, second, the locations where these mutations will happen. 

For this contribution, our framework will make usage of the data obtained at the 

completion from the previous stage to build a prediction model to determine the number 

of mutations to occur. Later, the framework will use another algorithm (Section 7, Fig. 

7.4) to predict the respective locations for these mutations. 

 

3.3.3 Aim # 3: To facilitate the discovery of new functionalities in areas of the 

genome that had not been previously implicated in cancer. 

 

Finally, our third goal consists on providing information to the physicians and scientists 
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that would lead to the discovery or redefinition of new genes and or functionality of 

certain areas of the genome. This happens because when determining the locations of the 

newly predicted locations, scientists will be able to find out that some of the areas in the 

genome where these mutations are predicted to appear do not belong to any known gene 

or known functionality but that they still have repercussions on the patient’s health and, 

as a result, it can be the case that a new gene can be identified or redefined (e.g. the range 

of the gene should be extended) or that perhaps a new functionality from this area has 

been discovered. This information can be provided to the experts in the area of genetics 

since they can perform further analysis in the laboratory to determine what is there or 

what functionality might be hidden. Additionally, a specialized and personalized 

treatment will be possible to obtain due to the fact that we genomic data used was 

specific to the patient. 

 

The importance of our work resides on being able to predict mutations in a patient’s 

genome ahead of time in order to provide information that will potentially assist 

physicians on the selection of personalized therapies they can give and/or the 

development of new specialized drugs.  

 

This prediction is done at the gene and chromosome levels. It provides physicians with 

information to make a reliable estimation of the effects of a mutation. Moreover, it may 

lead to the discovery of unknown functionality within the human genome 
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3.4 Significance and impact of our work 

 

Cancer progression is a complex, multistep process, leading to genomic instability and 

loss of growth control. Scientists are trying to identify the so-called driver mutations and 

differentiate them from the “passenger” mutations that passively follow the driver 

mutations. Without knowledge of the biological functions of the genes this process is 

very difficult to accomplish. Furthermore, a great deal of genes has no known function, 

which make it almost impossible to analyze by this approach.  

 

Based on the mutational profile of the cancer cells before relapse time, we utilized the 

framework to make predictions of new mutations at a later time. The most interesting 

aspect of this work is the possibility of comparing the predictions with real experimental 

data obtained from the same patients at the time of cancer relapse. Those comparisons 

allowed us to generate accuracy values (between 80% and 92% accuracy) which are 

remarkable. To the best of our knowledge, there are no reported studies directed toward 

the prediction of changes at molecular level. Numerous studies dealing with predictions 

based on the mutational signatures in cancer cells are limited to the predictions in clinical 

outcomes, rather than in the changes at the genome level in the cells of a patient.  

 

One of the contributions of our research is the possibility of validating the predicted 

mutational profile with the experimental data. This situation has been possible as a result 

of the revolutionary advances in genome sequencing and data analysis. The second 

contribution of our research is the purely computational approach to make predictions 

with no need to include data on the underlying biological processes. This is by far the 

most exciting possibility. Scientist working on the molecular biology and genetics of 

cancer experience great difficulty in characterizing the function of an unknown gene 

which is the first step toward its identification whether is critical or not in cancer 

progression.  
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By utilizing our approach, there are no requirements to ascertain the function of genes for 

the prediction to take place. The third contribution is about providing a target for cancer 

therapy. As a result of the prediction, scientist will obtain putative target genes to 

identify, characterize, and possibly utilize as targets of pharmacological agents for cancer 

treatment.  
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CHAPTER 4 

DATA MINING AND STATISTICAL ANALYSIS 

 

4.1 Background 

Our framework is implemented in Java and uses internal and external libraries. The 

external library we employed for the statistical analysis and processing of our data is 

Weka.  

After our framework processes the input genomic data and obtains the initial statistical 

information for the DNA mutations for the patients at the chromosome level (explained 

in further detail in Chapter 6), Weka is employed for creating a model at the chromosome 

level. This external library builds a model to predict the number of mutations to occur per 

chromosome. 

We chose Weka since it is one of the most widely adopted tools in academia for the 

purposes of machine-learning and statistical analysis. 

 

4.2 Weka [108] 

Weka is acronym name that means Waikato Environment for Knowledge Analysis. It is a 

software library and tool that consists of  various machine-learning algorithms written in 

Java.. Weka complies under the GNU General Public License. Weka provides features 

for data mining targeting classification, data preprocessing , clustering, regression, , 

among others. Essentially, the purpose is to have an application that can be trained for 

machine learning capabilities and obtain meaningful information through trends and 
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patterns. Weka is open source and is written in Java. Consequently, it is cross-platform. 

Weka brings a user-friendly and graphical interface that allows for quick set up and 

operation as well as a programmable API. The data we use to feed Weka is given in the 

form of as a flat file or relation, meaning that every data object has to be described by a 

specific number of attributes of a specific type which can be either alpha-numeric or 

numeric values. In essence, this tool allows users to discover  information that is 

normally hidden from database and files in general. Classification is the core of Weka's 

functionality. All of the newest and older machine-learning (ML) algorithms follow an 

object-oriented (OO) Java class hierarchy. Additionally, regression, association rules and 

clustering algorithms are also part of Weka's implementation.  

All the following definitions and examples regarding Weka were obtained from [109]. 

 

Weka basic concepts 

For a better understanding of Weka, certain concepts are to be clarified. 

 

4.2.1 Dataset 

A dataset is an essential concept for machine-learning and it can easily be thought of as a 

two-dimensional array or table. A dataset represents a collection of samples which are of 

class Instance. Attributes from an instance are nominal, numeric or strings. Externally 

speaking, the representation of an Instance class is a file in ARFF format. This file 

contains a header with the attribute types and the data as comma-separated list. 
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4.2.2 Classifier 

Every learning algorithm is a sub-class from the abstract Classifier [110]. The 

requirements for a classifier are: a routine for the classifier model from a training dataset 

and another one for evaluating the generated model.  

 

4.2.3 Weka from Java – API 

WEKA functionality can be called from Java sub-routines by the utilization of its API. It 

runs similar to when calling classifiers with -p 0. Nevertheless, unlike Evaluation, it 

produces the full class probability for any classifier. The java API comes in the form of a 

jar file and can be incorporated into any Java project. The functionality can be invoked at 

any time from any pat from the source code of the program. 

 

4.3 Statistical Analysis 

Numerous statistical analysis have been developed through time in order to model 

complex systems or problems [111][112][113][114]. Iyengar and Rao present a great 

analysis on statistical techniques for modeling complex systems [115]. Here they present 

single and multi-response models that are representative of modeling complex systems. 

Their work starts with various concepts related to linear and nonlinear models and then 

examines four representative techniques of model discrimination that utilize non-intrinsic 

and intrinsic parameters, Bayesian methods, and likelihood discrimination. Additionally, 

the authors also evaluate multi-response models which deal with issues from design of 

experiments for parameter estimation and model discrimination. 

Similarly, as mentioned in the previous section, Weka allows for a selection of a variety 
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of models and machine-learning algorithms. Depending on the size and type data we are 

dealing with, one model will adjust better for prediction analysis than another. Thus, in 

our scenario, linear regression was the model that best fit to our predicting and gave more 

accurate results. However, we are open to the inclusion of other models in the future as 

our data size increases and therefore, the usage of the Weka API in our framework in 

order to achieve future adaptability and scalability. 

 

Linear Regression 

The approach of Regression is applied in statistics to model a relationship between one 

dependent variable and a set of one or more explanatory/independent variables [116]. If 

the explanatory variable were just one, then we call it simple linear regression. In any 

other case, it is called multiple linear regression.  

Linear regression is used mainly in two types of applications: 

1. For prediction. Here we build a predictive model for a given set of observed data. 

With this model, we can perform predictions for a future point in time based on a 

set of previous points in time (training data). 

2. For measuring the intensity of the relationship among the dependent variable and 

the explanatory variables. This allows to know which explanatory variables have 

higher impact on the value of the dependent one and which ones don't. 

The least squares approach is the most widely used method to calculate the coefficients 

from a linear regression model. 
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The model has the following form: 

 

where all betas are the coefficients and all the Xi are the features. Finally, epsilon is the 

error or noise to adjust the model. 
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CHAPTER 5 

MODELING CANCER RELATED GENOME SEQUENCES OF PATIENT DATA 

 

This chapter is directly related to our second contribution which is the creation of a 

model to predict the DNA mutations. Here, we discuss the reasoning behind the selection 

of our model, that is, the linear regression model. 

 

5.1 Introduction 

The importance of modeling of cancer related genomic data has generated much attention 

from researchers from various interests, primarily from pharmaceutical design 

companies. The most common means of finding correlation of genomic data is by 

structuring a statistical model for the system through which we can predict, control and 

optimize the variables. A detailed exposition of statistical techniques in modeling of 

complex systems (single and multi-response models) can be seen in a well-known 

publication [115]. This chapter examines a representative technique for designing 

experiments and providing a mathematical structure for the analysis of the data that we 

have collected in our study.  

 

5.2 Statistical analysis for our model 

In this study, the prediction values are numerical. From the perspective of data mining, 

this problem can be modeled as a regression problem. In our research problem, one 

challenge is that the training data instances are limited since it is costly to gain patient 
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data.  As is known in data mining field, fitting a high order model would require learning 

more parameters, which needs a large number of samples.  

If we tried to use a higher order model such as non-linear models, then we would be 

facing the problem of over fitting. The results in such case would be totally off as we 

could observe when switching Weka to other algorithms. When using a higher order 

model, the number of instances has to be considerably larger compared to the number of 

features in the model; however, in our case, the number of features and the number of 

instances have a ratio of almost 1 to 1 which obviously would bring the problem of over 

fitting. 

Given this observation, the linear regression model which fits a linear equation to features 

and the target variable is utilized. Specifically, three selected numerical features 

(explained in Section 7.3) are normalized and fit to the linear regression model. The 

general form of the model is represented as Y a= + bX , where Y is the predicted value 

and X  is the normalized feature vector. b  is the weights and a is the error term. In 

addition, our prediction task has a temporal dimension. Assuming there are N observation 

time points, which are T1,  T2, …, TN, , suppose we want to predict the mutation number at 

time point TN  utilizing the features from T1  to TN-1.  A natural assumption is that the 

mutation number is highly correlated with features at time point which are close to TN.  

However, it is very difficult to measure this numerically. The linear regression model 

provides a nice way of quantifying the contribution of each feature. The significance of 

the features are represented by the corresponding weights trained in the model under the 

condition that all features are normalized. For example, if the learned parameter for 

feature F1 is 100, and the other parameter for feature F2  is 0.01. We can conclude that 
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F1 is more important. This property can give us more insight in our study as we want to 

know which features are important.  

 

5.3 Mechanisms and Models 

In order to fit the linear regression model, the mathematical approach of learning the 

parameters needs to be defined. In this dissertation, we model the learning of parameters 

as an optimization problem, in which the object function is the mean square error. 

Formally, assume for the predicted value iy  for data instance i (1 ≤i≤M), M  is the total  

number of chromosomes in one patient. Three features are represented using 1
iF , 2

iF , 

and 3
iF . Let the corresponding parameters be β0 , β1,  β2,  β3 . The cost function, which 

corresponds to the half mean square error can be summarized as follows: 
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In order to minimize this function, the gradient descent algorithm can be utilized. The 

partial derivative of the function with respect to β0 , β1,  β2,  β3  are as follows: 
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In each iteration of updating the parameters, β0 , β1,  β2,  β3  are updated as follows: 
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Using the matrix annotation, assuming matrix F, which is shown as follows: 
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And the parameter β and the response vector y, which is defined as follows: 
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So the model could be written as:  

' =y Fββ  

 

The cost function can be written as: (M  is the total  number of chromosomes in one 

patient): 

1 ( ') ( ')TJ
M

= − −y y y y  
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If we minimize this function, we can get the solution for  β  as:  

1( ) ( )T T−= F F F yββ  
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CHAPTER 6 

MATERIALS AND METHODS 

 

We searched for reports that included whole-genome sequencing strategies in their 

methodology. In order to select suitable studies, we defined a number of requirements, 

namely studies which were longitudinal, had reported findings on more than one patient, 

had data which was completely anonymous and publicly available and downloadable in a 

suitable format. The studies we reviewed had enrolled several patients. The reported 

results were publicly available and included multiple data on patient’s genome during 

diagnosis from both healthy and cancer tissues, as well as whole-genome sequencing data 

from affected tissues during disease relapse. Although genome-wide sequencing 

strategies have been available for more than a decade, there are still a relatively small 

number of published studies where patients’ genome was sequenced after relapse. Most 

of the published scientific literature on whole-genome sequencing encompasses data 

comparing the genome changes at nucleotide level from both healthy and affected tissues 

at one point in time most likely when diagnostic procedures are carried out. As the 

technologies become less expensive and more widely available, various research groups 

have started to carry out longitudinal studies where patients’ genome is sequenced several 

times during the disease’s progression.  
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6.1 Framework 

We built a framework which is capable of extracting statistical information from the 

patient’s genomic data. Our framework works with the whole patient's genomic data from 

one patient and not with just one chromosome. Thus, given the genomic data from a 

patient, we proceed with an analysis at the chromosome level of the whole genome. This 

analysis involves producing statistical data from the mutations present in each 

chromosome. The input for this first stage is the longitudinal sequencing data from a 

patient’s tumor where mutations have been identified and characterized.  

All data to be used needs to be normalized into a standard format as will be presented in 

the next sections. As more data is obtained from the patients, more training will be 

provided for our model. Figure 6.1 below shows this in a graphical manner. 

 

6.2 Patient data 

Whole genome sequencing data from eight patients with acute myeloid leukemia (AML) 

served as a basis to test our framework. The data was available as supplementary material 

to an article published in 2012 by Li Ding et al. in the journal Nature [13]. These patients 

were from five different French-American-British hematologic subtypes, with elapsed 

times of 235 to 961 days between samples (see Table 6.1 for each individual’s 

information). The goal of the study was to investigate the mutational profiles of primary 

tumors and determine whether the clonal evolution of mutations contributes to relapse. 

We provided our framework with longitudinal data for the mutational profiles observed 

in the genomes of patients in order to generate a prediction of nucleotide changes 

(mutations), followed by a comparison of those predictions with the actual mutations 
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detected by whole-genome sequencing of the tumors after relapse, thus allowing us to 

measure accuracy and significance of our approach. 

 

 
Figure 6.1. Dependency flow graph for our prediction framework. 
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Due to different sources of data, and in order to work in a consistent manner, we decided 

to format all data in a specific manner as explained below. For sequencing data 

comparisons and evaluations, we aligned the coordinates of input data as well as the 

coordinates of the resulting predictions to NCBI build 36.3 of human genome assembly.  

Information corresponding to each patient was labeled with the letters ‘A’ through ‘H’. 

Data was downloaded as plain text files. Files, called “shared.txt”, contain the locations 

of mutations identified. Files, called “relapse.txt”, contain the locations of mutations 

reported after relapse.  

 

 

 

 

 

 

 

 

 

 

Table 6.1. Patient designation, gender and age. 

 

 

 

 

UPN 933124 Caucasian female late 50s 

UPN 400220 Caucasian female, 34 year old 

UPN 426980 Caucasian male, 69 year old 

UPN 452198 Caucasian male, 55 year old 

UPN 573988 Caucasian female, 67 year old 

UPN 869586 Caucasian male, 23 year old 

UPN 758168 Caucasian female, 25 year old 

UPN 804168 Caucasian male, 53 year old 
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In Figure 6.2, we show a partial view of the files previously mentioned in order to get an 

understanding of the way we have been working with them. 

In order to map the coordinates of mutations to genes or genetic regions, we downloaded 

a file from NCBI build 36.3 of the human genome assembly that contains gene names 

and location ranges per chromosome in a text format and saved it as geneMap.txt. The 

file is used to determine which genes will be involved depending on the locations of the 

predicted mutations. 

 

Limitations of Data 

Obtaining patients data is extremely difficult especially because of HIPAA limitations. In 

our case, we even required data in a longitudinal manner which increased made it even 

harder. We attended several seminars given by the University of Miami at Jackson's 

Hospital. During these seminars, medical doctors and other scientists presented their 

work on cancer research.  

Throughout these events we kept asking them for possible sources of these data but their 

answer was always that the data in a longitudinal manner was very hard to get. 

Nevertheless, on May 17th, 2013, Dr. James Downing [117], gave a talk titled "The 

pediatric cancer genome project". Dr. Downing is the Scientific Director for Saint Jude 

Children's Research Hospital and his talk covered cancer research that was being done by 

analyzing tumor tissue genomes. After his talk, I asked Dr. Downing for possible sources 

of longitudinal data based on these genomes, and he suggested me to look for patients 

with leukemia since it is in this type of disease where most studies had been done in this 

manner.  
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He indicated it would still be hard to access the data but that it was the best route to take. 

Following his advice, we continued our research and found the article previously 

mentioned were the data was finally available. 

Simulating data was never an option, since in the medical domain this practice is strictly 

forbidden since the conclusions derived from here could be misleading and as a result 

lead to serious medical conclusions. 

When we discussed later our work with a domain expert from the UT Southwestern 

Medical Center, he indicated that our data was very significant since even high quality 

journals published in top journals use les or comparable amount of data. More on this can 

be observed in the conclusion of this dissertation. 

Our studies are based in the molecular level, as a result, the demographics of the data 

(e.g. separation by genders) does not apply. Furthermore, if we were to split the 

demographic aspects such as genders or ages, it would make our data samples even 

smaller since we would require grouping. Finally these demographic aspects are nominal 

features and cannot be fit into a regression model directly. 

Figure 6.2 shows the format to be used for the geneMap.txt file previously mentioned. 
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Ashared.txt   

Figure 6.2. Sample data files for patient UPN 933124. 

 

 

 

 

 

 

 

 

Figure 6.3. Overview of geneMap.txt. 

 

6.3 Variables to consider 

Having identified mutations and their locations, our framework will analyze how spaced 

these mutations are from each other within each chromosome. After obtaining a vector of 

distances between one mutation and the next, our framework computes statistical analysis 

Chr Location 
1 108346944 
1 147392656 
1 230352346 
2 25310746 
2 77165972 
2 140418446 
3 182087434 
3 191103363 
3 192532267 
3 196997137 
4 7394775 
4 72616906 
4 119477364 
…. 
22      26004684 
X      25476033 
X    105826475 

Chr Location 
1 107357719 
1 179307551 
1 218018901 
1 224145610 
2 184186967 
2 213886052 
3 21310708 
3 43135962 
3 135449546 
…. 
22       26004684 
X       25476033 
X    105826475 

chromosome chr_start chr_stop feature_name 
1  815  19919  LOC653635 
1  42215  43358  OR4G4P 
1  52778  53847  OR4G11P 
1  58954  59871  OR4F5 
1  77385  80096  LOC100132632 
….. 
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such as the mean and standard deviation of these distances to identify how these 

mutations behave. For example, if the standard deviation is very small compared to the 

mean, this signifies that mutations occur with a similar distance from one another. If that 

is not the case, then we can see that some mutations are located very much far apart from 

each other while others are much closer. Thus, the ratio between the mean and the 

standard deviation (RatioStdMean) of the distances is a critical variable to consider by 

our framework. A second statistical variable computed by the framework is also the ratio 

of how many mutations occur within one chromosome when compared to the total 

number of mutations in the whole genome for a given patient (RatioGivenChr). A third 

variable, we called GenRatioPerChr, is a standard variable that has also been computed 

for all experiments. This variable corresponds to the ratio of the chromosome size in 

nucleotides to the length of the whole human genome assembly also in nucleotides. This 

is a standard value as it has been obtained from the reference human genome assembly 

data and it is not specific to a particular patient. Due to the fact that chromosomes are of 

different sizes, there is a possibility of finding more mutation in larger chromosomes than 

in shorter ones. 

 

6.4 Prediction model 

The next step in the framework is about prediction.  Our prediction works at two levels. 

First, we will predict the number of mutations to occur within one chromosome, and then 

the locations where these mutations will happen. For this contribution, our framework 

will make usage of the statistical data obtained at the completion of previous stage to 
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build a prediction model to determine the number of mutations likely to occur. This 

prediction model is obtained by utilizing Weka[118] as explained in chapter 4. 

Weka uses an ARFF file (Attribute Relationship File Format) as an input, and then by 

processing this file, creates the models according to the content of the data and variables 

involved. The weka ARFF file will have the format indicated in Figure 6.4. 

 

@RELATION ChromosomeModelling6 

@ATTRIBUTE RatioStdMean NUMERIC 

@ATTRIBUTE RatioGivenChr NUMERIC 

@ATTRIBUTE GenRatioPerChr NUMERIC 

@ATTRIBUTE NumMutations NUMERIC 

 

@DATA 

….. 

Figure 6.4. Weka input file. 

 

For our purposes, the framework creates an ARFF file per chromosome containing the 

data for it along with the associated computed variables previously mentioned.  

                                                     

Since the prediction model works at the chromosome level, there will be 24 files 

corresponding to 22 somatic chromosomes (1 through 22), and one “X” as well as one 

“Y” chromosome.  

We decided to build a model per chromosome instead of just one model for the whole 

genome. We carried out a preliminary analysis in which we tried to build a model for the 

whole genome, but the results were inconclusive. In addition, existing public data is 
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available in a per chromosome basis. Furthermore, a generic model did not fit well for all 

scenarios due to both the intrinsic varying nature and behavior of each chromosome.  

 

For a given chromosome ‘i’ (1-22, and X as well as Y), our model is of the form: 

iy  = 𝛽𝛽1 * 1
iF + 𝛽𝛽2 * 2

iF + 𝛽𝛽3 * 3
iF + 𝛽𝛽0 

iy  represents the number of mutations we want to predict and 1
iF , 2

iF , and 

3
iF represent the RatioStdMean, RatioGivenChr and GenRatioPerChr respectively. 

Finally, 𝛽𝛽1, 𝛽𝛽2 and 𝛽𝛽3 are the coefficients of the model and 𝛽𝛽0 is the error. Their values 

are provided by Weka. 

These models are obtained by Weka as a String expression and then we parse it and 

execute each model by inserting the variables of each chromosome for each patient to 

predict the number of mutations to occur at relapse time. 

After generating a model per chromosome, we fit the information obtained from Weka 

back into the framework. The framework takes this model to execute the prediction of the 

number of mutations to occur for each chromosome. Once all predicted number of 

mutations have been computed for each chromosome, the framework takes each 

individual chromosome and executes the predictions of the locations of the mutations. At 

this point, since we know the predicted number ‘n’ of mutations likely to occur at each 

chromosome, we perform the algorithm shown in Figure 6.5. 
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Figure 6.5 Algorithm for finding mutations locations. 

 

We deal with data from mutations in each chromosome at different points in time. In our 

algorithm, for instance, we utilize existent longitudinal data on mutations during 

diagnosis and/or treatment to generate a prediction of mutations at a later relapse time. 

Thus, each location 'l' represents the location of an existent mutation before relapse time. 

Next, our algorithm checks whether the distance between mutations is greater than the 

average distance (meanDist), and if that is the case, a mutation will happen within this 

distance at approximate position of the location 'l' + meanDist. Having identified a 

predicted location for a mutation, we proceed to determine whether it belongs to either an 

annotated gene or an intergenic region.  

Due to the fact that we have the actual number of mutations for all chromosomes, as well 

as their individual locations identified at relapse time, we are able to compare our 

predicted results with the experimental data. The results of these comparisons serve as 

our main criteria to estimate the accuracy of the predictions made by the framework. 

 

For i=1 to ‘n’ 

{    for (each existingLocation ‘l’ in chromosome ‘c’) 

 if distance from ‘l’ to ‘l+1’ is greater than meanDist 

 { predict finding here at location ‘l’+meanDist; 

  findAssociatedGene; 

 } 

} 
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CHAPTER 7 

RESULTS 

 

7.1 Prediction of number of mutations per chromosome. 

In order to present, as well as to discuss the results, we selected the data from one of the 

patients as representative of all (UPN 933124, see Table 7.1 for information on the 

patient). Data on other patients and their respective predictions are available on the 

Appendices section. Table 7.1 presents the results for the predictions made by our 

framework with regards to the number of mutations likely to occur for this given patient. 

The first column indicates the chromosome analyzed, and the second column indicates 

the number of mutations observed at the time of relapse (actual number of mutations 

observed). The third column indicates the predicted number of mutations. 

As we can distinguish from Table 7.1, the predicted number of mutations is very close to 

the observed number of mutations that occurred at the time of relapse in all 

chromosomes. In order to calculate the accuracy of the prediction, we consider the 

number of observed mutations versus the number of predicted mutations.  We obtained a 

percent value of the ratio of predicted number of mutations to the total number of 

observed mutations: 83% (35/42). 
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Chromosome Observed 
Mutations 

Predicted 
Mutations 

1 4 3 
2 2 2 
3 3 2 
4 1 1 
5 2 2 
6 2 2 
7 3 2 
8 5 4 
9 2 2 
11 3 2 
12 3 2 
13 2 2 
14 2 2 
16 3 2 
17 1 1 
20 2 2 
21 1 1 
X 1 1 
Total 42 35 
Accuracy 83% 

 
Table 7.1. Number of mutations per chromosome in patient UPN 933124. 

 

 

7.1.1 Significance of our experimental data 

The following figures show the error distribution of different patients for the predicted 

number of mutations at the chromosome level.  The x-axis is the predicted value minus 

ground truth. The y-axis is the counts. It can be seen that the proposed approach gives 

underestimation of number of mutations on each chromosome of each patient.  

In addition, it also can be observed that our miss-predictions focus on negative one, 

which indicates that the proposed framework is very promising.  
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Figure 7.1 Histogram of absolute error for patient A. 

 

 
Figure 7.2 Histogram of absolute error for patient B. 
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Figure 7.3 Histogram of absolute error for patient C. 

 
 

 
Figure 7.4 Histogram of absolute error for patient D. 
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Figure 7.5 Histogram of absolute error for patient E. 

 
 

 
Figure 7.6 Histogram of absolute error for patient F. 
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Figure 7.7 Histogram of absolute error for patient G. 

 
 

  
Figure 7.8 Histogram of absolute error for patient H. 
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The following figures show the histogram of relative errors. The relative error is defined 

as the error divided by ground truth number.  

 
Figure 7.9 Histogram of relative error for patient A. 

 
 

 
Figure 7.10 Histogram of relative error for patient B. 
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Figure 7.11 Histogram of relative error for patient C. 

 
 

 
Figure 7.12 Histogram of relative error for patient D. 
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Figure 7.13 Histogram of relative error for patient E. 

 
 

 
Figure 7.14 Histogram of relative error for patient F. 
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Figure 7.15 Histogram of relative error for patient G. 
 
 

 
 

 Figure 7.16 Histogram of relative error for patient H. 
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After a thorough review of our experimental data on the error distribution, we have the 

following results:  

Observation (1): The x-axis is predicted value minus ground truth. The y-axis is the 

counts. It can be seen that the proposed approach gives underestimation of number of 

mutations on each chromosome of each patient. 

Observation (2): It also can be observed that our mis-predictions focuses on negative one, 

which indicates that the proposed computational framework is very promising. 

 

7.1.2 Analysis of performance measures to evaluate the success of our prediction 

The state of the art evaluation criteria for classification models include accuracy, 

sensitivity, specificity, precision, true positive value, and true negative values. These 

metrics are suitable for binary classification problems; however, in our case our research 

problem is a regression problem and, as a result, the previously mentioned criteria cannot 

be applied. Consequently, our analysis for accuracy was different as can be observed in 

the paragraphs below. Detailed statistical analysis of the errors is also provided in Section 

7.1.3. 

We obtained performance measures to evaluate the success of our prediction. For this, we 

defined p1, p2, p3, …, pn as the numeric value of the prediction at the ith instance and we 

define a1, a2, a3,…, an as the actual values at the ith instance. 

The correlation coefficient measures the statistical correlation between a’s and p’s. The 

closer we get to 1 for this value, the better correlated results.  
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Correlation Coefficient = SPA/  where SPA =  

   SP =      and    SA =  

We obtained the mean absolute error which represents the average of the individual 

errors without considering their signs.  

Mean Absolute Error =  

The root mean squared error (most widely used measure). It represents the square root of 

the mean squared error and presents the same dimensions as the predicted value itself. 

Root mean squared error =  

“Simple predictor” is the average of all actual values given by the training data. 

The relative absolute error computes the total absolute error with the same kind of 

normalization. Relative errors are normalized by the error of the simple predictor that 

predicts average values. 

Relative absolute error =  

Finally, the relative squared error represents the scenario where a simple predictor had 

been used.  It is given by total squared error normalized by dividing it by the total 

squared error of the default predictor. 

Relative squared error =  

Finally, all these values are shown in table 7.2 for Patient A.  The respective tables for 

other patients can be found at the Appendices. 
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Table 7.2. Table for performance measures for our prediction model. 

7.1.3 Significance, stability and statistical analysis of model  

In this study, we achieved promising results.  The correlation coefficient, which indicates 

the degree of matching of the proposed framework with real data, is 0.9816  0.009 with 

95% confidence interval. For mean absolute error, we achieved 0.2958 0.087 with 95% 

confidence interval. 

Here we also provide a statistical analysis for all errors across all chromosomes for 

Chromosome Correlation 
coefficient 

Mean 
absolute 

error 

Root 
mean 

squared 
error 

Relative 
absolute 

error 

Root  
relative 
squared  

error 
1 0.9412 0.6797 0.9251 27.19% 33.78% 
2 0.9999 0.015 0.0181 1.20% 1.22% 
3 0.9994 0.1137 0.1144 3.79% 3.41% 
4 0.9769 0.4618 0.6322 18.47% 21.37% 
5 0.9475 0.6512 0.8757 26.05% 31.98% 
6 0.9998 0.0702 0.0752 2.16% 2.15% 
7 0.9826 0.2975 0.3562 18.31% 18.55% 
8 0.9972 0.1895 0.2338 6.89% 7.51% 
9 0.9403 0.5651 0.7798 28.26% 34.03% 
10 0.9896 0.5765 0.5954 15.37% 14.36% 
11 0.9565 0.4473 0.5969 25.56% 29.17% 
12 0.9946 0.2674 0.3315 8.91% 10.36% 
13 0.9999 0.0314 0.0314 2.09% 1.48% 
14 1 0.0014 0.0016 0.16% 0.15% 
15 0.9995 0.122 0.1225 3.49% 3.22% 
16 0.9609 0.2272 0.3094 22.72% 27.68% 
17 0.9987 0.155 0.1554 5.64% 5.13% 
18 0.9914 0.3529 0.3854 12.83% 13.08% 
19 0.9885 0.3556 0.3766 15.80% 15.14% 
20 0.9702 0.4256 0.5547 21.28% 24.21% 
21 0.9959 0.3202 0.376 8.54% 9.07% 
22 0.9786 0.4876 0.5916 19.50% 20.60% 
X 0.9922 0.2044 0.2841 10.90% 12.47% 
Y 0.9992 0.082 0.1047 3.64% 3.91%
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Patient A. The specific algorithm is given as follows. Because the data collected are 

limited in our case and the population standard deviation is unknown, we use the 

Student’s t-distribution to estimate the confidence interval. For one variable a such as the 

correlation coefficient, n is the number of observations (n=24 in our case). The algorithm 

to compute the confidence interval cf  is as follows.   

ALGORITHM 

Begin 

Step 1: Compute the average value of  a, which is   ; 

Step 2: Compute the standard deviation of  a, which is s; 

Step 3: Set a confidence interval, here we used 95%, which is a golden standard in  

        statistics community. 

Step 4: Compute a T_multiplier, which is the inverse of  Students’ t cumulative    

         distribution function using the confidence interval and the freedom of   

         n-1  

Step 5: Compute a cf  value 

cf  = T_multiplier * s/ n  

Step 6: The confidence interval is [ -cf, +cf] 

End 

The table of the statistics of the first patient is in the below table. As mentioned earlier 

and as it can be observed in Table 7.3, for patient A, we have correlation coefficient as 

0.9834 0.0084 with 95% confidence interval. Additionally, for mean absolute error, we 
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achieved 0.2958 0.087 with 95% confidence interval. Tables 7.3 through 7.10 show 

these measures as well for all other patients. Finally, table 7.11 shows the statistical

analysis for all patients. 

 
mean std cf lower bound upper bound 

Correlation coefficient 0.9834 0.0200 0.0084 0.9749 0.9918 

Mean absolute error 0.2958 0.2061 0.0870 0.2088 0.3829 

Root mean squared error 0.3678 0.2736 0.1155 0.2523 0.4834 

Relative absolute error 0.1286 0.0927 0.0391 0.0895 0.1678 

Root relative squared error 0.1433 0.1123 0.0474 0.0959 0.1907 

Table 7.3. Statistical analysis of errors for patient A. 

 
mean std cf lower bound upper bound 

Correlation coefficient 0.9807 0.0193 0.0081 0.9726 0.9888 

Mean absolute error 0.3000 0.2065 0.0872 0.2128 0.3872

Root mean squared error 0.3730 0.2731 0.1153 0.2577 0.4884 

Relative absolute error 0.1336 0.0922 0.0390 0.0947 0.1726 

Root relative squared error 0.1484 0.1126 0.0475 0.1009 0.1960 

Table 7.4. Statistical analysis of errors for patient B. 
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       mean std cf lower bound upper bound 

Correlation coefficient 0.9821 0.0178 0.0075 0.9746 0.9897 

Mean absolute error 0.3009 0.2056 0.0868 0.2141 0.3877 

Root mean squared error 0.3739 0.2737 0.1156 0.2583 0.4895 

Relative absolute error 0.1329 0.0934 0.0394 0.0935 0.1724 

Root relative squared error 0.1477 0.1123 0.0474 0.1003 0.1951 

 
Table 7.5. Statistical analysis of errors for patient C. 

 

 

 

 
mean std cf lower bound upper bound 

Correlation coefficient 0.9826 0.0168 0.0071 0.9755 0.9897 

Mean absolute error 0.3005 0.2061 0.0870 0.2135 0.3876 

Root mean squared error 0.3732 0.2735 0.1155 0.2578 0.4887 

Relative absolute error 0.1345 0.0923 0.0390 0.0955 0.1735 

Root relative squared error 0.1468 0.1129 0.0477 0.0991 0.1944 

 
Table 7.6. Statistical analysis of errors for patient D. 
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Table 7.7. Statistical analysis of errors for patient E. 

 
 
 
 

 mean std cf lower bound 

upper 

bound 

Correlation coefficient 0.9807 0.0197 0.0083 0.9724 0.9891 

Mean absolute error 0.3012 0.2065 0.0872 0.2140 0.3884 

Root mean squared error 0.3719 0.2740 0.1157 0.2562 0.4876 

Relative absolute error 0.1324 0.0919 0.0388 0.0936 0.1712 

Root relative squared 

error 0.1487 0.1125 0.0475 0.1012 0.1962 

 
Table 7.8. Statistical analysis of errors for patient F. 

 
 
 
 
 
 

 
mean std cf lower bound upper bound 

Correlation coefficient 0.9802 0.0195 0.0082 0.9720 0.9885 

Mean absolute error 0.2997 0.2050 0.0866 0.2132 0.3863 

Root mean squared error 0.3725 0.2749 0.1161 0.2564 0.4886 

Relative absolute error 0.1336 0.0924 0.0390 0.0946 0.1726 

Root relative squared error 0.1476 0.1121 0.0473 0.1003 0.1949 
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Table 7.9 Statistical analysis of errors for patient G. 

 
 
 
 
 

Table 7.10. Statistical analysis of errors for patient H. 

 

 

 

 
mean std cf lower bound upper bound 

Correlation coefficient 0.9814 0.0191 0.0081 0.9734 0.9895 

Mean absolute error 0.2997 0.2062 0.0871 0.2126 0.3868 

Root mean squared error 0.3722 0.2732 0.1154 0.2568 0.4876 

Relative absolute error 0.1337 0.0930 0.0393 0.0944 0.1730 

Root relative squared error 0.1481 0.1120 0.0473 0.1008 0.1954 

 
mean std cf lower bound upper bound 

Correlation coefficient 0.9818 0.0190 0.0080 0.9738 0.9899 

Mean absolute error 0.3019 0.2067 0.0873 0.2146 0.3892 

Root mean squared error 0.3721 0.2733 0.1154 0.2567 0.4875 

Relative absolute error 0.1343 0.0922 0.0389 0.0953 0.1732 

Root relative squared error 0.1479 0.1131 0.0477 0.1001 0.1956 
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Table 7.11. Statistical analysis of all patients. 

8.1.3.1 Observations

Table 7.11 gives a summary of all eight patients. As indicated in the table, our method is 

relatively stable across different patients. For example, for the eight patients, the 

confidence interval with 95% for the correlation coefficient is 0.9816  0.009. Since the 

eight patients are chosen randomly, these experimental results indicate that our model 

fitting could give around 0.9816 of correlation coefficient measurement. As we know that 

1 indicates the perfect performance. This measurement indicates that our model fits the 

data relatively well.  

Below, we can also see the coefficients obtained for the models at each chromosome per 

patient. We tried to find some patterns among across different chromosomes within the 

same patient and then also tried to find patterns across patients and we could not identify 

any significant patterns.  

 
mean std cf lower bound upper bound 

Correlation coefficient 0.9816 0.0011 0.0009 0.9808 0.9825 

Mean absolute error 0.3000 0.0018 0.0015 0.2984 0.3015 

Root mean squared error 0.3721 0.0018 0.0015 0.3705 0.3736 

Relative absolute error 0.1330 0.0019 0.0016 0.1314 0.1345 

Root relative squared error 0.1473 0.0017 0.0014 0.1459 0.1487 
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For the purpose of showing how the models look like, we show all tables that contain the 

coefficients for the chromosome models for each patient.  

From the model iy  = 𝛽𝛽1 * 1
iF + 𝛽𝛽2 * 2

iF + 𝛽𝛽3 * 3
iF + 𝛽𝛽0,    

𝛽𝛽1, 𝛽𝛽2, and 𝛽𝛽3 are the coefficients for RatioStdMean, RatioGIvenChr and 

ChrToGenomRatio respectively. 𝛽𝛽0 is the error used to adjust the model. 

 

chr 𝛽𝛽𝛽𝛽1 𝛽𝛽𝛽𝛽2 𝛽𝛽𝛽𝛽3 
1 -0.0058 -0.9408 0.00000012 
2 0.0044 -1.1347 -0.00000002 
3 0.0045 4.3818 0.00000015 
4 0.0048 5.3997 0.00000032 
5 -0.0124 -6.074 0.00000017 
6 0.006 4.4676 0.00000009 
7 0.0125 3.0178 0.00000008 
8 0.0084 7.6347 0.00000013 
9 0.0127 -6.1969 -0.00000014 

10 -0.0051 6.0138 -0.00000016 
11 0.0095 2.5017 0.00000027 
12 -0.0061 4.3137 0.00000006 
13 -0.014 -1.5312 0.00000014 
14 0.0051 -0.6632 0.00000018 
15 -0.0102 1.6083 0.00000032 
16 -0.0023 -1.5139 0.00000031 
17 -0.0066 6.0243 -0.00000011 
18 -0.0037 5.1447 0.00000011 
19 -0.014 1.4385 0.00000041 
20 -0.0032 4.1677 0.00000021 
21 0.0061 4.6595 0.00000012 
22 -0.0127 6.8996 0.00000022 
X 0.0068 4.4555 -0.00000053 
Y -0.004 4.9267 0.00000061 

Table 7.12. Coefficients for chromosome models for patient A. 
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chr 𝛽𝛽𝛽𝛽1 𝛽𝛽𝛽𝛽2 𝛽𝛽𝛽𝛽3 
1 -0.0029 -0.7871 -0.00000014 
2 0.0081 -2.3130 0.00000051 
3 0.0108 5.0479 0.00000038 
4 0.0115 5.2580 -0.00000048 
5 -0.0128 -5.3196 0.00000018 
6 0.0042 3.9586 0.00000096 
7 0.0150 2.7207 -0.00000069 
8 0.0083 7.9148 0.00000024 
9 0.0143 -7.0051 0.00000015 

10 0.0009 5.6727 -0.00000033 
11 0.0168 3.8659 -0.00000001 
12 0.0031 3.1030 0.00000029 
13 -0.0228 -2.5005 0.00000088 
14 0.0056 0.5399 0.00000067 
15 -0.0089 2.9604 0.00000046 
16 0.0018 -0.4690 0.00000035 
17 -0.0136 6.4899 -0.00000038 
18 0.0059 6.4388 0.00000000 
19 -0.0180 1.6259 -0.00000027 
20 -0.0051 3.3770 0.00000029 
21 0.0040 5.0753 -0.00000072 
22 -0.0105 6.8326 0.00000019 
X 0.0163 4.8320 0.00000026 
Y 0.0053 4.8783 0.00000132 

Table 7.13. Coefficients for chromosome models for patient B. 
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chr 𝛽𝛽𝛽𝛽1 𝛽𝛽𝛽𝛽2 𝛽𝛽𝛽𝛽3 

1 -0.0072 -0.2514 0.00000071 
2 0.0110 -1.1303 -0.00000086 
3 0.0065 4.7241 0.00000039 
4 0.0077 4.2140 -0.00000051 
5 -0.0145 -7.4037 0.00000050 
6 0.0047 4.9642 -0.00000016 
7 0.0101 2.7127 0.00000057 
8 0.0136 7.7381 0.00000018 
9 0.0122 -5.4405 -0.00000064 

10 -0.0046 7.0865 0.00000008 
11 0.0186 3.1069 -0.00000016 
12 -0.0078 4.4835 0.00000026 
13 -0.0146 -2.2882 0.00000107 
14 0.0047 -0.2342 0.00000085 
15 -0.0132 1.0773 -0.00000027 
16 -0.0039 -0.9811 0.00000116 
17 0.0025 6.0216 -0.00000056 
18 0.0048 6.2068 -0.00000063 
19 -0.0237 0.0305 0.00000055 
20 0.0041 4.9333 -0.00000006 
21 0.0017 5.8057 -0.00000013 
22 -0.0162 6.9951 -0.00000029 
X 0.0050 5.2612 -0.00000036 
Y -0.0020 6.1814 0.00000152 

Table 7.14. Coefficients for chromosome models for patient C. 
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chr 𝛽𝛽𝛽𝛽1 𝛽𝛽𝛽𝛽2 𝛽𝛽𝛽𝛽3 
1 -0.0076 -0.7604 -0.00000076 
2 0.0067 -0.7116 0.00000096 
3 0.0097 5.7364 -0.00000048 
4 0.0139 4.0246 0.00000114 
5 -0.0202 -4.9885 -0.00000002 
6 0.0147 4.4609 -0.00000022 
7 0.0042 2.6177 0.00000107 
8 0.0128 8.7581 0.00000091 
9 0.0192 -5.4743 0.00000070 

10 0.0022 6.3766 0.00000037 
11 0.0194 1.7699 0.00000021 
12 0.0033 3.6173 0.00000102 
13 -0.0120 -2.0102 0.00000015 
14 0.0064 0.7180 0.00000026 
15 -0.0081 2.5469 -0.00000058 
16 0.0023 -2.9014 0.00000071 
17 -0.0021 5.4218 0.00000084 
18 -0.0080 4.2675 0.00000001 
19 -0.0200 2.3603 0.00000068 
20 -0.0035 3.4451 -0.00000044 
21 0.0142 4.8766 -0.00000044 
22 -0.0171 7.1129 0.00000082 
X 0.0148 4.2595 -0.00000152 
Y -0.0040 5.3937 0.00000005 

Table 7.15. Coefficients for chromosome models for patient D. 
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chr 𝛽𝛽𝛽𝛽1 𝛽𝛽𝛽𝛽2 𝛽𝛽𝛽𝛽3 
1 0.0019 0.4059 0.00000012 
2 0.0140 -2.2165 0.00000066 
3 0.0023 3.8831 0.00000013 
4 0.0081 6.7147 0.00000009 
5 -0.0197 -5.9144 0.00000043 
6 0.0138 4.0495 0.00000075 
7 0.0187 2.9437 -0.00000072 
8 0.0127 8.1505 0.00000027 
9 0.0087 -5.4002 0.00000033 

10 0.0033 6.2483 0.00000059 
11 0.0191 1.8344 0.00000074 
12 -0.0079 3.8368 0.00000102 
13 -0.0147 -1.0476 0.00000054 
14 0.0080 -0.7254 -0.00000023 
15 -0.0154 2.5250 -0.00000002 
16 0.0073 -0.6750 0.00000067 
17 -0.0016 6.0702 0.00000011 
18 -0.0014 6.4145 -0.00000033 
19 -0.0041 0.9393 0.00000135 
20 -0.0042 3.8852 0.00000075 
21 0.0148 5.5249 0.00000020 
22 -0.0178 7.6082 -0.00000075 
X 0.0144 5.5756 -0.00000133 
Y 0.0007 4.0187 0.00000059 

Table 7.16. Coefficients for chromosome models for patient E. 
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chr 𝛽𝛽𝛽𝛽1 𝛽𝛽𝛽𝛽2 𝛽𝛽𝛽𝛽3 
1 0.0013 -1.8080 -0.00000024 
2 0.0140 -0.8890 -0.00000031 
3 0.0025 3.7933 -0.00000064 
4 0.0101 6.0363 0.00000093 
5 -0.0157 -5.1467 0.00000096 
6 0.0131 5.4381 0.00000094 
7 0.0067 3.8777 0.00000093 
8 0.0183 6.8689 -0.00000070 
9 0.0219 -5.3636 0.00000030 

10 -0.0082 6.2296 0.00000044 
11 0.0021 3.8518 0.00000038 
12 -0.0123 3.1948 0.00000086 
13 -0.0161 -0.6092 -0.00000002 
14 0.0145 -0.4893 0.00000091 
15 -0.0103 2.5162 -0.00000055 
16 0.0036 -2.8785 -0.00000054 
17 -0.0074 6.0751 0.00000016 
18 0.0011 4.9096 0.00000031 
19 -0.0068 1.4684 0.00000077 
20 0.0053 2.9407 0.00000085 
21 0.0109 5.0740 -0.00000079 
22 -0.0151 7.9485 -0.00000032 
X 0.0130 3.6375 0.00000014 
Y 0.0007 3.9946 -0.00000030 

Table 7.17. Coefficients for chromosome models for patient F. 
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chr 𝛽𝛽𝛽𝛽1 𝛽𝛽𝛽𝛽2 𝛽𝛽𝛽𝛽3 
1 -0.0013 -0.0143 0.00000090 
2 0.0104 -2.0696 -0.00000036 
3 0.0096 3.3256 0.00000011 
4 0.0070 6.3824 0.00000013 
5 -0.0026 -5.3594 -0.00000045 
6 0.0137 5.4012 0.00000101 
7 0.0051 2.8205 0.00000025 
8 0.0151 8.2805 -0.00000058 
9 0.0165 -5.7032 0.00000071 

10 0.0032 6.6396 0.00000035 
11 0.0055 3.3530 0.00000095 
12 0.0035 5.5225 -0.00000042 
13 -0.0128 -0.8615 0.00000077 
14 0.0095 -1.3463 -0.00000080 
15 -0.0031 0.7591 0.00000131 
16 0.0049 -0.7272 0.00000082 
17 0.0031 5.9467 0.00000026 
18 0.0026 4.4366 0.00000110 
19 -0.0190 2.3530 -0.00000035 
20 0.0047 4.5874 -0.00000040 
21 0.0160 4.3033 -0.00000043 
22 -0.0190 7.7892 0.00000057 
X 0.0126 3.1060 -0.00000125 
Y 0.0007 5.4127 0.00000069 

Table 7.18. Coefficients for chromosome models for patient G 
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chr 𝛽𝛽𝛽𝛽1 𝛽𝛽𝛽𝛽2 𝛽𝛽𝛽𝛽3 
1 0.0032 -0.3078 -0.00000059 
2 0.0012 -0.1699 -0.00000048 
3 0.0069 5.6587 0.00000034 
4 0.0071 5.6634 -0.00000021 
5 -0.0095 -5.7618 -0.00000061 
6 0.0096 5.0768 0.00000005 
7 0.0091 4.3699 0.00000022 
8 0.0166 7.2473 0.00000020 
9 0.0219 -6.1187 0.00000011 

10 0.0018 6.7467 0.00000037 
11 0.0184 2.8218 -0.00000042 
12 0.0037 4.5330 0.00000079 
13 -0.0176 -1.8377 0.00000106 
14 0.0113 0.1349 -0.00000049 
15 -0.0192 1.6409 0.00000095 
16 -0.0046 -0.7617 -0.00000046 
17 0.0013 6.2843 0.00000011 
18 -0.0074 4.9845 0.00000013 
19 -0.0075 0.7691 0.00000034 
20 -0.0062 3.9471 0.00000032 
21 0.0034 4.7239 -0.00000039 
22 -0.0194 6.4096 0.00000041 
X 0.0141 3.5085 -0.00000091 
Y 0.0013 5.1003 0.00000093 

Table 7.19. Coefficients for chromosome models for patient H 
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7.1.4 Comparison of performance of our model versus other algorithms 

In order to evaluate our framework better, we compared our proposed framework with 

three state-of-the-art algorithms which are Support Vector Machines using Sequential 

Minimal Optimization, Gaussian Process regression model and Radial Basis Function 

Network. The following paragraphs briefly explain them in more detail. 

SVMs (Support Vector Machines) is a well known technique widely used for 

classification and regression.  It is one of the most popular state-of-the-art algorithms 

which can be utilized to provide a model for linear and non-linear problems. 

Mathematically speaking, the SVM model can be interpreted as solving the optimization 

problem below: 
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Where ix  : training vectors.  

 w   : weight vectors.  

 ( )ixφ : kernel function 

 b: the bias.  

 ξ : parameter to handle over-fitting. 

Here we utilized one major implementation of SVM, which is the sequential minimal 

optimization (SMO) implementation to compare to the proposed framework. The 
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performance is given in figure 7.17. It shows that it performs worse than the proposed 

algorithm. In addition, there is a lot of variance in the performance of the SVM-based 

solution. The possible reason is the over fitting problem. More details can be found in 

[119].  

Gaussian Processes for Regression 

The Gaussian process for regression is well known model for machine-learning. It is a 

generalized form of the Gaussian probability distribution. Similar to the correspondent 

distribution, the Gaussian process for regression is determined by the covariance and 

mean function. The function here f(x) comes from just one sample from the actual 

distribution. More details on this method can be found in [120].  

Radial Basis Function  

It follows an artificial neural network approach which employs functions that are based 

on  a radial basis. Radial basis functions based on neuron arguments are the output of this 

network. For a given input x,  ,  the algorithm produces a scalar function, 

, given by: 
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Where 

N : number of neurons  (hidden layer) 

ic  : center vector of neuron i,  

ia : weight of neuron i  

For more details on this algorithm, we can refer to [121]. 

 

The comparison results are shown in Table 7.20 and Figure 7.17. For this, we compared 

the correlation coefficients achieved by each different algorithm and verified that our 

selected model had a better performance and stability across all chromosomes. We can 

observe that the Radial Basis Function Network shows the highest variance. This is very 

dangerous in the medical domain as the predicted values show high variability. The other 

two algorithms have a better performance when compared to the Radial Basis Function 

Network; however, they also still lower performance than our selected model and higher 

variance. Our model, on the other hand, is stable across all chromosomes showing more 

accurate predictions. 
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Chr 
Linear 
Regression 

Radial Basis 
Function 
Network 

Sequential 
Minimal 
Optimization GaussianProcess 

1 0.9412 0.4533 0.9389 0.9356 
2 0.9999 0.8452 0.9253 0.9235 
3 0.9994 0.3159 0.9993 0.9235 
4 0.9769 0.8627 0.9718 0.9741 
5 0.9475 0.4144 0.9448 0.9373 
6 0.9998 0.0806 0.9985 0.9909 
7 0.9826 0.5022 0.9383 0.9956 
8 0.9972 0.0616 0.9972 0.9235 
9 0.9403 0.0112 0.8055 0.9307 
10 0.9896 0.1312 0.9819 0.9827 
11 0.9565 0.4605 0.9192 0.9436 
12 0.9946 0.9368 0.9946 0.7254 
13 0.9999 0.4473 0.8715 0.9657 
14 1 0.1127 1 0.9973 
15 0.9995 0.957 0.9993 0.9762 
16 0.9609 0.0206 0.9609 0.8614 
17 0.9987 0.8142 0.9982 0.9142 
18 0.9914 0.969 0.9875 0.9654 
19 0.9885 0.9045 0.9829 0.9773 
20 0.9702 0.2325 0.9625 0.9611 
21 0.9959 0.3255 0.9958 0.9992 
22 0.9786 0.1466 0.7901 0.9334 
X 0.9922 0.0569 0.9892 0.9728 
Y 0.9992 0.8394 0.9986 0.9728 

Table 7.20. Comparison table for correlation coefficients for our model versus others. 
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Figure 7.17 Comparison of performance of our model versus others. 

7.1.5 Concluding Remarks 

The identification and classification of mutations in patients are centric topics in today’s 

cancer research. In this study, we first defined the problem of predicting the number of 

mutations on a chromosome for a certain patient, which is a fundamental problem in both 

research and clinical fields. Next, this problem is modeled mathematically as a linear 

regression problem. After applying a thorough analysis on each chromosome of each 

patient, we have the following observations: 

1. As shown in the detailed statistical analysis in terms of error, the 95% confidence 

interval of each of the error measurement metrics are computed. For example, the 

correlation coefficient, which indicates the degree of matching of the proposed 
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framework with real data, is 0.9816 0.009 with 95% confidence interval. In addition, 

our collaborator from medical domain thinks that the proposed framework achieves very 

good performance and opens new research opportunities for bioinformatics researchers 

and clinical doctors.  

2. The proposed framework is relatively stable across patients. By analyzing errors of 

each patient, it can be seen that the errors are close to each other across different patients. 

Since patients are selected randomly, this observation gives us the confidence that the 

proposed framework is relatively stable and robust. It can be applied on new data 

collected from new patients.  

3. In terms of the coefficients learned from different chromosomes on different 

patients, no significant global patterns are identified. This indicates that each individual 

patient has unique characteristic and it is hard to generalize a simple rule based strategy 

for all patients. On the other hand, the proposed framework which trains the linear 

regression model can adapt to each patient relatively well by representing the different 

characteristics of patients in the numerical weights gained from the model. This explains 

the reason why our framework achieves relatively stable performance across different 

patients. In addition, an observation is that the coefficient for the ChrToGenomeRatio 

feature is relatively small in all models, which indicate its’ contribution is limited. More 

features are going to be added to enhance the model further in the future.  

As we train the model with more longitudinal data, the estimation error should decrease. 

An example graph shown in the next Figure illustrates this statement. Additionally, as we 

collect more data points, in the future, we open the possibility to experiment other 

machine-learning algorithms as well. 



100

 

Figure 7.18 Potential estimation error graph as more data is obtained. 

7.2 Prediction of location of mutations. 

Table 7.2 refers to the locations of mutations, both observed and predicted, for all 

chromosomes in patient UPN 933124.  Column two and three show the nucleotide 

positions of the mutations. Column four shows the name of the gene, if present in the 

region, in the case of observed mutations. Similarly, column five shows the name of the 

gene if present in the region corresponding to the predicted mutations. Not surprisingly, 

most of the areas containing the mutations (both observed and predicted) lie in the so-

called intergenic regions of the genome. It is worth noting that the areas of the genome 

transcriptionally active are reported to be just 1% of the whole genome [122]. Close to 

99% of the human genome does not code for proteins, and correspond to areas with either 

other known functionalities as regulation of gene expression (enhancers, promoters, 

inhibitors) or that do not have a defined function yet.  
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Chr 

Observed 

Location 

Location of the 

predicted mutation 

Gene or genetic 

region observed 

Gene or genetic  

region predicted 

1 107357719 107358018 INTERGENIC INTERGENIC 

1 179307551 179309065 INTERGENIC INTERGENIC 

1 218018901 218020628 INTERGENIC INTERGENIC 

2 184186967 184186891 INTERGENIC INTERGENIC 

2 213886052 213884438 SPAG16 SPAG16 

3 21310708 21307866 INTERGENIC INTERGENIC 

3 43135962 43138381 INTERGENIC INTERGENIC 

4 26362673 26362567 TBC1D19 TBC1D19 

5 22595465 22595335 CDH12 CDH12 

5 93857376 93859895 INTERGENIC INTERGENIC 

6 40467367 40464779 LRFN2 INTERGENIC 

6 95631430 95629374 INTERGENIC INTERGENIC 

7 85476859 85474442 INTERGENIC INTERGENIC 

7 120917535 120914752 LOC392979 LOC392979 

8 25022615 25022103 INTERGENIC INTERGENIC 

8 34167561 34165529 INTERGENIC INTERGENIC 

8 35476742 35478696 INTERGENIC INTERGENIC 

8 51256369 51253560 SNTG1 SNTG1 

9 36887024 36889733 PAX5 PAX5 

9 137816463 137818783 KCNT1 KCNT1 

11 23583427 23584671 INTERGENIC INTERGENIC 

11 40183906 40182763 LRRC4C LRRC4C 

12 9702101 9703657 LOC374443 INTERGENIC 

12 22283439 22281122 ST8SIA1 ST8SIA1 

13 60889651 60891444 INTERGENIC INTERGENIC 

13 92466026 92467721 INTERGENIC INTERGENIC 

14 47961450 47963585 INTERGENIC INTERGENIC 
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14 82608644 82607776 INTERGENIC INTERGENIC 

16 7941529 7943725 INTERGENIC INTERGENIC 

16 58050635 58052689 INTERGENIC INTERGENIC 

17 67861248 67859454 INTERGENIC INTERGENIC 

20 17261178 17262629 PCSK2 PCSK2 

20 58861532 58863711 INTERGENIC INTERGENIC 

21 23370033 23372348 INTERGENIC LOC100130310 

X 86570002 86570879 INTERGENIC INTERGENIC 

Table 7.21. Location of mutations, both observed and predicted, for patient UPN 933124. 

 

7.3 Accuracy discussion 

Table 7.3 shows the results of the analysis for the patient UPN 933124. It presents the 

total number of mutations per genome, number of matches, mismatches, and accuracy of 

the prediction. When the prediction lies within the same region of an observed mutation, 

it constitutes a match. Conversely, if the location for the prediction does not correspond 

to the location of an observed mutation, or if the area of the observed mutation is not 

predicted at all, it is considered a mismatch.  

We emphasize that the location of the prediction does not have to match the precise 

location of the observed mutation. Falling within the same gene boundaries is sufficient 

to classify it as a match. When the location of the mutation falls in an intergenic region 

(or a region devoid of a known functional activity) one criterion we use to classify it as a 

match, is that the prediction lies within less than 3000 nucleotides of the observed one on 

both directions. Although the distance of 3000 nucleotides may look arbitrary, to the best 

of our knowledge it is a reasonable assumption when there is no knowledge as to the 

functional features determined in such an intergenic region. 
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Matches 32 

Mismatches 3 

Total Mutations 35 

Relative Accuracy 91% 

Absolute Accuracy 76% 

Table 7.22. Summary of results for patient UPN 933124. 

 

With these criteria in mind, we came up with two accuracies. The first one is the 

"Relative Accuracy" which measures how many matches we had out of the predicted 

mutations we accounted for. For instance, in the case of the patient UPN 933124, we 

found out that even though the number of mutations at time of relapse was 42, we only 

predicted 35 mutations with 32 of them classified as matches. As a result, the accuracy 

was 91% (32/35). This accuracy is called "Relative Accuracy" because we are not 

considering the initial error given by the fact that the number of predicted mutations (35) 

was lower than the actual ones (42). 

The "Absolute Accuracy" incorporates this initial prediction error. Thus, its value is less 

than the "Relative Accuracy". For instance, for this patient, the initial accuracy for the 

number of predicted mutations was 83% and the "Relative Accuracy" was 91%, meaning 

that we really could only predict for this patient 83% (91%) of the total number of 

mutations correctly, giving us an accuracy of 76%. 

We carried out similar analysis for the seven remaining individuals. The accuracies are 

given as ranges with lower and upper values. This is explained by the fact that 

chromosomes models behave differently within the same individual, as well as, across 

patients. The verification of the predicted number of mutations versus the actual number 
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of mutations gave us an accuracy value within a range of 75 to 84%. Likewise, the 

verification of predicted locations of mutations versus actual locations of mutations 

resulted in an accuracy value within the range of 69 to 88%.  



105 
 

CHAPTER 8 

CONCLUSION 

 

8.1 Research summary 

The efforts and techniques used in this thesis represent the best methods we know to date 

in identifying meaningful mutational changes in leukemias that can help predict the 

following:  1.) responses to therapy, 2.) patients at increased risk of developing 

recurrences or progression of disease before and after treatment, 3.) driver mutations, 4.) 

passenger mutations, 5.) and evaluation of new potential druggable targets. 

The n (# of patients) of 8 used in this study is actually a fundamental strength of the 

proposed study for the following reasons.  Most research examining mutational spectra 

within cancers rely solely on snapshots, i.e. the presence or absence of mutations in 

tumors at one discrete time point.  Though this information is valuable, it tells us nothing 

regarding the evolution of the disease.  In particular, several high profile papers in the last 

2-3 years have taken advantage of the TCGA database to mine solid tumors for mutations 

in these snapshots – work out of robust genome sequencing groups including from 

Washington University, St Louis (Science, 2012) and Harvard.  All of these papers 

appear in very high end journals but use data from only one time point.  A recent paper in 

Nature (2013) offered similar comparisons of such samples.  It is more straightforward to 

have n’s approaching 100-200+ patients for these less complex situations. 

The gold standard really should be to get genomic mutational data for tumors from 

patients across their disease course over multiple time points.  This longitudinal 
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information represents the most valuable and relevant data in truly determining how to 

cure patients of disease.  A paper in the very important journal Cell from early 2013 

evaluated CLL patient tumor mutational spectra [123].  This work came out of a 

collaboration between the BROAD Institute of MIT and Harvard and Dana Farber Cancer 

Center, highly renowned for their leukemia patient volume.  They had only snapshots of 

140 or so patients for which they were able to identify mutation frequency.  However, as 

the reviewers and authors acknowledge, they had a more valuable data set – 18 patients 

for which they had longitudinal mutational spectra from 2 time points – before and after 

chemotherapy.  Only sequencing of coding areas were used in this effort.  With 18 

patients, they were able to make conclusions regarding the evolution of the CLL disease 

course, helping oncologists further understand the disease process to improve the lives of 

the patients.  All agreed that this 18 patient data set was in many ways more valuable than 

the 140 patient snapshot mutational database.  Additionally, NCI has recently made it a 

priority to better understand unique findings in smaller data series if the samples are 

difficult to come by.  Longitudinal mutational data is very difficult to come by and 

perhaps offers the most important clues to disease processes. 

In our work, we have been able to collect 8 valuable longitudinal mutational data from 

leukemia patients before and after multiple therapies.  This collection may represent one 

of the largest series compiled in a robust manner.  Our sequencing data is of the entire 

genome, unlike the coding only analysis from the Cell paper. Finally, our data 

approximates locations of mutational hot spots, which is very important because many 

changes in leukemia tumor DNA represent large frame shift alterations, deletions, 

insertions, or translocations.   
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8.2 Final statistical remarks 

We analyze the mutations in the longitudinal dimension at the chromosome level. From 

this perspective, one patient actually provides  24 samples. Therefore, instead of 8 

samples, we actually test our algorithm using 24x8 = 192 samples. This amount of data is 

significant in terms of regular statistical and data  mining tasks. Compared with peer 

studies in the cancer research domain as mentioned by our collaborator in biomedical 

field, our number of patients as well as the measurements of mutations at multiple time 

shots for each patient are more significant than the recent published papers in Nature and 

Science. Even though the data samples are actually enough for significance, we still draw 

the conclusion prudently. In our statistical analysis of errors, the routing approach of 

estimating the confidence interval is using the normal distribution assumption. If that 

assumption is used here, the variation of our estimation is even smaller. However, given 

the current sample size, we still use the student-T distribution assumption to estimate 

errors. By using this, we draw a conservative conclusion. Given this observation, we 

would expect the performance of our algorithm on new data sets would be better.  

As the cost of performing the whole genome sequencing is relatively expensive 

nowadays, it is infeasible to carry out the whole genome sequencing for the cancer 

patient routinely. On the other hand, the information of mutations in chromosomes at the 

molecular level gives precious information about patients and can guide clinical doctors 

in practice. The gap exists here should be addressed in order to improve the quality of 

treatments for patients. In addition, each patient has his/her individual characteristics 

which need to be considered. The proposed work provides a study from a relatively novel 

angle. First and foremost, a linear regression model is fit using three input features, which 
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are “RatioStdMean”, “RatioGivenChr” and “ChrToGenomRation”. Since the number of 

patients’ visitings to hospitals is limited, the number of samples from each patient is 

sparse. Our model can take care of this issue since the model can be fit using features 

from as few as two time points. In addition, a model is built on each chromosome for 

each patient, this model adapts to each patient’s specialty and therefore is relatively 

robust. From the clinical point of view, the predictions of mutations can be meaningful 

for clinical doctors from the following two perspectives. First, the mutation frequency 

and patterns of the chromosomes of patients are useful information for medical doctors to 

make decision on the effectiveness of treatment and adjust treating strategy. Second, the 

mutation information can be further utilized as a factor to associate to classifying 

different types of cancer. A recent study in Nature actually shows that the mutation 

frequency has correlations with the different types of breast cancer. From this point of 

view, the mutation frequency predicted of each chromosome and the profile of mutation 

frequency predicted for each patient will offer the information for doctors to classify the 

cancer types and adjust treatment strategy accordingly. All these clinical significance 

motivates us for this research. Based on the success of applying the linear regression 

model in this study, we will extend the current work to a more broad problem, that is, we 

will try to fit a model across patients. Using this model, we can make predictions for the 

possibilities of mutations on a chromosome of a new patient based on the data collected 

from patients in our database. We believe this model, if successfully constructed, will 

provide more significant tools for medical practitioners. 
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8.3 Foundation for further discoveries.  

Our concepts may have tremendous impact on a number of important areas relevant to 

future cancer care of patients.  Specifically, our ideas may:  

 

1. Increase our ability to predict which leukemia patients will develop relapses thru 

treatment. 

2. Help predict which high risk patients (those having received chemotherapy for other 

cancers, patients on immunosuppressive therapy for organ transplantation, etc.) may 

develop leukemia down the road. 

3. Help distinguish driver versus passenger mutations in leukemia.  

4. Help identify mutations that may develop during leukemogenesis that are druggable 

targets. 

5. Ultimately help leukemia patients have longer survival. 

 

None of these results are trivial, especially in the setting of leukemias.  There is a 

significant advantage to our work.  Our models appear to be quite robust and relevant to 

leukemia disease states.  We have employed longitudinal data sets from actual leukemia 

patients that we have used to build our models and validate them.  The rationale behind 

our efforts is also convincing.  Identification of approximate areas of deletion, insertion, 

and other mutations will be quite valuable as we begin to realize that most mutations in 

malignancy may not just be driven by single nucleotide polymorphisms. 
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8.4 Application of our framework in the treatment of patients by clinical oncologists 

It is quite clear that our work will provide high impact understanding of the natural 

evolution of basal leukemia mutation rates and development before chemotherapy use 

and more importantly the state of mutations at the time of leukemia relapse. A vital 

question is how this data will be beneficial or relevant to a medical oncologist's practice 

on a day to day basis.  From the initial applications of the predictive modeling of future 

mutation rates, we expect physician's to develop key information when they first 

diagnose a patient's leukemia, i.e. will there be an increase in mutation rate in the specific 

patient's leukemia at the time of relapse, will there be hotspots in the genome for this 

greater mutation rate that is associated with druggable targets, will there be at the time of 

relapse a completely different set of mutations (explaining why the patient's tumor 

relapses), etc.  At the time of relapse, a medical oncologist has several decisions to make: 

keep the patient  on the same leukemia drug but add a second drug, increase the levels of 

the drug in circulation, or change the drug completely.  With the predictive mutation 

modeling, the medical oncologist can know in advance to potentially be prepared to take 

one of the above courses based on where the mutations may appear and in what 

frequency at the time of relapse. This knowledge, in the form of an algorithm of 

chemotherapy use, would be of great necessity in allowing medical oncologist's to 

optimize timing and response to patient leukemia relapses. 

Finally, the greatest utility that the predictive model from this work may provide in the 

long run to medical oncologists and cancer specialists is a novel unbiased approach to 

genomically organize leukemias based on their natural evolution of mutation 

development.  Historically, for many decades, leukemias were characterized (ALL, 
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AML, CLL, CML) purely by histopathologic and cytopathologic analyses.  This data was 

the only information used by physicians to decide how to treat patients with leukemias.  

This was a limited data set, however.  With the identification of mutations associated 

with each type of leukemia, we are now incorporating this latter information into medical 

management practices.  The use of targeted therapies including Gleevec was predicated 

on knowing if a leukemia possessed a bcr-abl mutation. 

Despite the advances, we are still only making treatment decisions on a static evaluation 

of mutations at the time of diagnosis.  The predictive algorithm provided in this work 

may open a totally new avenue by which cancer specialists can organize similar behaving 

leukemias into independent groups based on functional outcomes.  Potentially, we would 

be able to characterize a leukemia as highly aggressive, aggressive, or minimally 

aggressive based on the prediction of mutation frequency/location at the time of relapse.  

Highly aggressive leukemias would be predicted to have greater mutation rates and sites 

at relapse, suggesting an earlier time to relapse.  Minimally aggressive lesions would 

potentially have predicted lower rates of mutation and relapse at later time points.  The 

power of this effort is that we would be taking into account all mutational changes (which 

may have distinct interactions), not just hypothesized driver mutations, to describe the 

ultimate output behavior of  leukemias, before and after chemotherapy.  A medical 

oncologist would be able to accurately predict how a patient with leukemia will do if he 

knows from the onset the likelihood of high or low mutation rates, predicting for highly 

or minimally aggressive disease.  At the very least, with the creation of these "clades" or 

new ways to group leukemias based on functional outcomes, we will get a better sense of 

how many distinct subgroups or entities of leukemias are seen in the public.  At the most, 
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medical oncologists will be prepared to be more or less aggressive with changing 

chemotherapy regimens based on how the specific patient's leukemia is categorized.  

Staying ahead of the relapse conditions that promote increased mutational frequency by 

combining chemotherapies or changing the time of chemotherapy usage may ultimately 

improve progression free and overall survival, the gold standard for any cancer patient 

outcome. 

 

8.5 Some potential enhancements. 

Our framework has been built using Java technology and utilizes an external library 

called Weka for its prediction model. At the present time, we are using a linear regression 

algorithm provided by Weka. As we collect more patients’ data, we will be able to 

perform more sophisticated prediction algorithms such as neural networks. Similarly as 

Weka evolves and more algorithms are included in this library, our framework will be 

able to extend its functionality by invoking these new features from the API. Thus, our 

architecture is flexible for future changes and/or enhancements. 
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APPENDICES 

 

Patients Data before prediction  

HIPAA limitations are not involved here as a problem since, as mentioned earlier, we are 

using the published data from Ding et al publication [13]. 

 

Prediction results for predicting number of mutations at each chromosome for 

every patient. 

On the following pages, we can see the results of our framework when predicting the 

number of mutations to occur at each chromosome for each patient.  
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Data for Patient: A  

 

Chromosome Observed 
Mutations 

Predicted 
Mutations 

1 1 1 
2 2 1 
5 1 1 
6 2 2 
7 2 2 
8 1 1 
10 1 1 
11 1 0 
12 2 1 
13 2 1 
15 2 2 
18 1 1 
19 1 1 
22 1 1 
X 2 2 

Total 22 18 
Accuracy: 81.82% 
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Data for Patient: B  

 

Chromosome Observed 
Mutations 

Predicted 
Mutations 

1 7 5 
2 10 7 
3 4 3 
4 8 6 
5 5 4 
6 7 5 
7 6 5 
8 2 2 
9 2 2 
10 7 5 
11 4 3 
12 4 3 
13 4 3 
14 3 2 
15 2 2 
16 6 5 
17 6 4 
18 3 2 
19 3 2 
20 2 2 
21 3 2 
22 2 1 
X 3 2 
Y 2 2 

Total 105 79 
Accuracy 75.24% 
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Data for Patient: C  

 

Chromosome Observed 
Mutations 

Predicted 
Mutations 

1 4 3 
2 2 2 
3 3 2 
4 1 1 
5 2 2 
6 2 2 
7 3 2 
8 5 4 
9 2 2 
11 3 2 
12 3 2 
13 2 2 
14 2 2 
16 3 2 
17 1 1 
20 2 2 
21 1 1 
X 1 1 

Total 42 35 
Accuracy 83.73% 
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 Data for Patient: D  

 

Chromosome Observed 
Mutations 

Predicted 
Mutations 

2 1 1 
3 1 1 
4 1 1 
5 1 1 
6 1 1 
8 2 1 
10 3 1 
16 2 2 
17 1 1 
18 1 1 
X 1 1 

Total 15 12 
Accuracy 80.00% 
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Data for Patient: E  

 

Chromosome Observed 
Mutations 

Predicted 
Mutations 

1 9 7 
2 15 11 
3 2 2 
4 12 9 
5 7 5 
6 7 5 
7 5 4 
8 3 2 
9 3 2 
10 4 3 
11 3 2 
12 3 2 
13 3 2 
14 2 2 
15 1 1 
16 2 1 
17 4 3 
18 4 3 
20 2 1 
21 2 2 
22 1 1 
X 5 4 

Total 99 74 
Accuracy 74.75% 
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Data for Patient: F  

 

Chromosome Observed 
Mutations 

Predicted 
Mutations 

1 5 4 
2 14 11 
3 6 5 
4 6 4 
5 3 2 
6 10 8 
7 5 4 
8 4 3 
9 6 5 
10 3 2 
11 5 4 
12 4 3 
13 4 3 
14 4 3 
15 2 2 
17 3 2 
18 5 4 
19 2 2 
20 2 1 
21 1 1 
22 1 1 
X 4 3 
Y 1 1 

Total 100 78 
Accuracy 78.00% 
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Data for Patient: G  

 

Chromosome Observed 
Mutations 

Predicted 
Mutations 

1 1 1 
2 1 1 
4 1 1 
7 1 1 
9 1 1 
12 1 0 
13 1 1 
14 1 1 
16 1 0 
18 1 1 
19 1 1 
21 1 1 

Total 12 10 
Accuracy 83.33% 
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 Data for Patient: H  

 

Chromosome Observed 
Mutations 

Predicted 
Mutations 

1 5 4 
2 7 5 
3 3 2 
4 5 4 
5 5 4 
6 6 4 
7 1 1 
8 3 2 
9 3 2 
10 3 2 
11 3 2 
12 5 4 
14 2 2 
15 1 1 
16 2 2 
17 1 1 
18 1 1 
20 1 1 
22 1 1 
X 7 6 

Total 65 51 
Accuracy 78.46% 
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Prediction results with summarized data including actual and predicted locations 

Below we have the results for our prediction indicating the actual location of the mutation 

and the predicted one. Similarly, we show the actual gene involved and the predicted 

gene involved. We also have a column called "difference" to indicate the error of our 

estimations. 
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PATIENT A 

 
 

Chr RelapseLocation PredictedLocation  Difference RelapseGene   PredictedGene 

 

1 105905196  105903822   -1374  INTERGENIC-REGION  INTERGENIC-REGION 

2 103478832  103478707   -125  LOC728815   LOC728815 

5 117968777  117966963   -1814  INTERGENIC-REGION  INTERGENIC-REGION 

6 117330941  117333649   2708  RFXDC1   RFXDC1 

6 148467197  148465214   -1983  INTERGENIC-REGION  INTERGENIC-REGION 

7 120243306  120241310   -1996  TSPAN12   TSPAN12 

7 141400429  141399010   -1419  MGAM    MGAM 

8 6610082   6611300   1218  INTERGENIC-REGION  INTERGENIC-REGION 

10 36300363  36297857   -2506  INTERGENIC-REGION  INTERGENIC-REGION 

12 36181843  36180237   -1606  INTERGENIC-REGION  INTERGENIC-REGION 

13 77038729  77037998   -731  SCEL    SCEL 

15 35693981  35696254   2273  INTERGENIC-REGION  INTERGENIC-REGION 

15 96495601  96496583   982  INTERGENIC-REGION  INTERGENIC-REGION 

18 67016988  67019842   2854  INTERGENIC-REGION  INTERGENIC-REGION 

19 15919303  15919555   252  INTERGENIC-REGION  INTERGENIC-REGION 

22 46504211  46505232   1021  INTERGENIC-REGION  INTERGENIC-REGION 

X 7449501   7449885   384  INTERGENIC-REGION  INTERGENIC-REGION 

X 89181903  89179381   -2522  LOC100130134   INTERGENIC-REGION 
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PATIENT B 

 
 

Chr RelapseLocation PredictedLocation  Difference RelapseGene   PredictedGene 

 

1 18730737  18731528   791  INTERGENIC-REGION  INTERGENIC-REGION 

1 22831628  22830967   -661  INTERGENIC-REGION  INTERGENIC-REGION 

1 89433568  89435914   2346  GBP4    GBP4 

1 119892131  119890585   -1546  INTERGENIC-REGION  INTERGENIC-REGION 

1 164527242  164529039   1797  INTERGENIC-REGION  INTERGENIC-REGION 

2 4951026   4948442   -2584  INTERGENIC-REGION  INTERGENIC-REGION 

2 18760057  18760752   695  INTERGENIC-REGION  INTERGENIC-REGION 

2 41983085  41981902   -1183  INTERGENIC-REGION  INTERGENIC-REGION 

2 52337923  52337545   -378  INTERGENIC-REGION  INTERGENIC-REGION 

2 53366757  53368759   2002  INTERGENIC-REGION  INTERGENIC-REGION 

2 114769762  114770766   1004  INTERGENIC-REGION  INTERGENIC-REGION 

2 137663285  137664050   765  THSD7B   THSD7B 

3 97423737  97422285   -1452  INTERGENIC-REGION  INTERGENIC-REGION 

3 148730059  148727347   -2712  INTERGENIC-REGION  INTERGENIC-REGION 

3 174114325  174114486   161  SPATA16   SPATA16 

4 17783989  17783525   -464  INTERGENIC-REGION  INTERGENIC-REGION 

4 18912208  18913676   1468  INTERGENIC-REGION  INTERGENIC-REGION 

4 22759171  22761274   2103  LOC643751   LOC643751 

4 31779477  31778159   -1318  INTERGENIC-REGION  INTERGENIC-REGION 
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4 103369618  103367568   -2050  INTERGENIC-REGION  INTERGENIC-REGION 

4 132134033  132136548   2515  INTERGENIC-REGION  INTERGENIC-REGION 

5 27542961  27545241   2280  INTERGENIC-REGION  INTERGENIC-REGION 

5 73771482  73772512   1030  INTERGENIC-REGION  INTERGENIC-REGION 

5 95272060  95274071   2011  ELL2    ELL2 

5 154221315  154224153   2838  CNOT8    CNOT8 

6 11556067  11553580   -2487  INTERGENIC-REGION  INTERGENIC-REGION 

6 55539300  55536902   -2398  HMGCLL1   HMGCLL1 

6 89788729  89786090   -2639  INTERGENIC-REGION  INTERGENIC-REGION 

6 94679810  94677079   -2731  INTERGENIC-REGION  INTERGENIC-REGION 

6 98935123  98933684   -1439  INTERGENIC-REGION  INTERGENIC-REGION 

7 13405534  13402864   -2670  INTERGENIC-REGION  INTERGENIC-REGION 

7 25018068  25018936   868  INTERGENIC-REGION  INTERGENIC-REGION 

7 101609893  101612118   2225  CUX1    CUX1 

7 101701575  101703838   2263  CUX1    CUX1 

7 116559358  116559716   358  ST7    ST7 

8 73514564  73511684   -2880  INTERGENIC-REGION  INTERGENIC-REGION 

8 76476615  76478306   1691  INTERGENIC-REGION  INTERGENIC-REGION 

9 7987216   7987623   407  INTERGENIC-REGION  INTERGENIC-REGION 

9 11413168  11415994   2826  INTERGENIC-REGION  INTERGENIC-REGION 

10 21774153  21775175   1022  INTERGENIC-REGION  INTERGENIC-REGION 

10 24053538  24052997   -541  KIAA1217   KIAA1217 

10 37158144  37159499   1355  INTERGENIC-REGION  INTERGENIC-REGION 

10 52992328  52992927   599  PRKG1    PRKG1 

10 100679446  100679728   282  HPSE2    HPSE2 
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11 26915201  26913996   -1205  INTERGENIC-REGION  INTERGENIC-REGION 

11 27181250  27184040   2790  INTERGENIC-REGION  INTERGENIC-REGION 

11 29982645  29982170   -475  INTERGENIC-REGION  INTERGENIC-REGION 

12 61776966  61778798   1832  INTERGENIC-REGION  INTERGENIC-REGION 

12 72620513  72623219   2706  INTERGENIC-REGION  INTERGENIC-REGION 

12 82288736  82290376   1640  INTERGENIC-REGION  INTERGENIC-REGION 

13 35326695  35328951   2256  DCLK1    DCLK1 

13 53087241  53089305   2064  INTERGENIC-REGION  INTERGENIC-REGION 

13 56856089  56856249   160  INTERGENIC-REGION  INTERGENIC-REGION 

14 28018404  28019485   1081  INTERGENIC-REGION  INTERGENIC-REGION 

14 69464698  69464658   -40  SMOC1    SMOC1 

15 39166414  39169210   2796  INOC1    INOC1 

15 88432939  88433205   266  IDH2    IDH2 

16 26547638  26546235   -1403  INTERGENIC-REGION  INTERGENIC-REGION 

16 30758901  30759255   354  LOC100129191  LOC100129191 

16 70613693  70614741   1048  DHODH    DHODH 

16 76093122  76094288   1166  INTERGENIC-REGION  INTERGENIC-REGION 

16 80961258  80960904   -354  INTERGENIC-REGION  INTERGENIC-REGION 

17 7334949   7337664   2715  POLR2A   POLR2A 

17 10874727  10875744   1017  INTERGENIC-REGION  INTERGENIC-REGION 

17 27701282  27698390   -2892  MIRN632   INTERGENIC-REGION 

17 34007774  34005119   -2655  SNIP    SNIP 

18 23266563  23267169   606  FLJ45994   FLJ45994 

18 36665237  36665827   590  INTERGENIC-REGION  INTERGENIC-REGION 

19 32989705  32990040   335  LOC642290   LOC642290 
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19 41696897  41697985   1088  ZNF260   ZNF260 

20 17900146  17902446   2300  C20orf72   C20orf72 

20 49730834  49729040   -1794  ATP9A    ATP9A 

21 26930860  26928939   -1921  INTERGENIC-REGION  INTERGENIC-REGION 

21 27215461  27214843   -618  ADAMTS5   ADAMTS5 

22 18266604  18269168   2564  TXNRD2   TXNRD2 

X 24850996  24849917   -1079  POLA1    POLA1 

X 33727134  33727059   -75  INTERGENIC-REGION  INTERGENIC-REGION 

Y 8487910   8485327   -2583  INTERGENIC-REGION  INTERGENIC-REGION 

Y 16302321  16300318   -2003  INTERGENIC-REGION  INTERGENIC-REGION 
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PATIENT C 

 
 

Chr RelapseLocation PredictedLocation  Difference RelapseGene   PredictedGene 

 

 

1 107357719  107358018   299  INTERGENIC-REGION  INTERGENIC-REGION 

1 179307551  179309065   1514  INTERGENIC-REGION  INTERGENIC-REGION 

1 218018901  218020628   1727  INTERGENIC-REGION  INTERGENIC-REGION 

2 184186967  184186891   -76  INTERGENIC-REGION  INTERGENIC-REGION 

2 213886052  213884438   -1614  SPAG16   SPAG16 

3 21310708  21307866   -2842  INTERGENIC-REGION  INTERGENIC-REGION 

3 43135962  43138381   2419  INTERGENIC-REGION  INTERGENIC-REGION 

4 26362673  26362567   -106  TBC1D19   TBC1D19 

5 22595465  22595335   -130  CDH12    CDH12 

5 93857376  93859895   2519  INTERGENIC-REGION  INTERGENIC-REGION 

6 40467367  40464779   -2588  LRFN2    INTERGENIC-REGION 

6 95631430  95629374   -2056  INTERGENIC-REGION  INTERGENIC-REGION 

7 85476859  85474442   -2417  INTERGENIC-REGION  INTERGENIC-REGION 

7 120917535  120914752   -2783  LOC392979   LOC392979 

8 25022615  25022103   -512  INTERGENIC-REGION  INTERGENIC-REGION 

8 34167561  34165529   -2032  INTERGENIC-REGION  INTERGENIC-REGION 

8 35476742  35478696   1954  INTERGENIC-REGION  INTERGENIC-REGION 

8 51256369  51253560   -2809  SNTG1    SNTG1 
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9 36887024  36889733   2709  PAX5    PAX5 

9 137816463  137818783   2320  KCNT1    KCNT1 

11 23583427  23584671   1244  INTERGENIC-REGION  INTERGENIC-REGION 

11 40183906  40182763   -1143  LRRC4C   LRRC4C 

12 9702101   9703657   1556  LOC374443   INTERGENIC-REGION 

12 22283439  22281122   -2317  ST8SIA1   ST8SIA1 

13 60889651  60891444   1793  INTERGENIC-REGION  INTERGENIC-REGION 

13 92466026  92467721   1695  INTERGENIC-REGION  INTERGENIC-REGION 

14 47961450  47963585   2135  INTERGENIC-REGION  INTERGENIC-REGION 

14 82608644  82607776   -868  INTERGENIC-REGION  INTERGENIC-REGION 

16 7941529   7943725   2196  INTERGENIC-REGION  INTERGENIC-REGION 

16 58050635  58052689   2054  INTERGENIC-REGION  INTERGENIC-REGION 

17 67861248  67859454   -1794  INTERGENIC-REGION  INTERGENIC-REGION 

20 17261178  17262629   1451  PCSK2    PCSK2 

20 58861532  58863711   2179  INTERGENIC-REGION  INTERGENIC-REGION 

21 23370033  23372348   2315  INTERGENIC-REGION  LOC100130310 

X 86570002  86570879   877  INTERGENIC-REGION  INTERGENIC-REGION 
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PATIENT D 

 
 

Chr RelapseLocation PredictedLocation  Difference RelapseGene   PredictedGene 

 

 

2 1119223   1118090   -1133  SNTG2    SNTG2 

3 183065520  183064291   -1229  INTERGENIC-REGION  INTERGENIC-REGION 

4 185168709  185166707   -2002  STOX2    STOX2 

5 162177435  162174604   -2831  INTERGENIC-REGION  INTERGENIC-REGION 

6 93462438  93461387   -1051  INTERGENIC-REGION  INTERGENIC-REGION 

8 3293986   3295797   1811  CSMD1    CSMD1 

10 84453341  84452336   -1005  NRG3    NRG3 

16 61747374  61747530   156  INTERGENIC-REGION  INTERGENIC-REGION 

16 62989048  62988198   -850  INTERGENIC-REGION  INTERGENIC-REGION 

17 22045352  22042405   -2947  INTERGENIC-REGION  INTERGENIC-REGION 

18 42887822  42889970   2148  HDHD2   HDHD2 

X 121434334  121431398   -2936  INTERGENIC-REGION  INTERGENIC-REGION 
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PATIENT E 

 
 

Chr RelapseLocation PredictedLocation  Difference RelapseGene   PredictedGene 

 

 

1 44944905  44945092   187  MGC33556   MGC33556 

1 56758799  56755847   -2952  PPAP2B   PPAP2B 

1 62329867  62328205   -1662  INADL    INADL 

1 80186452  80184770   -1682  INTERGENIC-REGION  INTERGENIC-REGION 

1 162652104  162653254   1150  INTERGENIC-REGION  INTERGENIC-REGION 

1 193708003  193707136   -867  INTERGENIC-REGION  INTERGENIC-REGION 

1 193987679  193985578   -2101  INTERGENIC-REGION  INTERGENIC-REGION 

2 16261487  16259478   -2009  INTERGENIC-REGION  INTERGENIC-REGION 

2 79424915  79425833   918  INTERGENIC-REGION  INTERGENIC-REGION 

2 81008756  81008969   213  INTERGENIC-REGION  INTERGENIC-REGION 

2 83365574  83367876   2302  INTERGENIC-REGION  INTERGENIC-REGION 

2 121062191  121062952   761  INTERGENIC-REGION  INTERGENIC-REGION 

2 121512897  121514104   1207  INTERGENIC-REGION  INTERGENIC-REGION 

2 125156383  125157880   1497  CNTNAP5   CNTNAP5 

2 125314902  125317068   2166  CNTNAP5   CNTNAP5 

2 132126629  132126964   335  INTERGENIC-REGION  INTERGENIC-REGION 

2 136723675  136726085   2410  INTERGENIC-REGION  INTERGENIC-REGION 

2 151445176  151443514   -1662  INTERGENIC-REGION  INTERGENIC-REGION 
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3 1887762   1887661   -101  INTERGENIC-REGION  INTERGENIC-REGION 

3 175001625  175001097   -528  NLGN1    NLGN1 

4 20084861  20083013   -1848  SLIT2    SLIT2 

4 30772025  30773500   1475  INTERGENIC-REGION  INTERGENIC-REGION 

4 31398117  31399931   1814  INTERGENIC-REGION  INTERGENIC-REGION 

4 93687647  93687017   -630  GRID2    GRID2 

4 96814327  96813949   -378  INTERGENIC-REGION  INTERGENIC-REGION 

4 105371233  105370352   -881  INTERGENIC-REGION  INTERGENIC-REGION 

4 111770497  111769372   -1125  PITX2    PITX2 

4 137387938  137387568   -370  INTERGENIC-REGION  INTERGENIC-REGION 

4 137620857  137618498   -2359  INTERGENIC-REGION  INTERGENIC-REGION 

5 21248739  21250383   1644  INTERGENIC-REGION  INTERGENIC-REGION 

5 22482248  22483703   1455  CDH12    CDH12 

5 22495984  22494710   -1274  CDH12    CDH12 

5 22744459  22743789   -670  CDH12    CDH12 

5 45004983  45004149   -834  INTERGENIC-REGION  INTERGENIC-REGION 

6 20902367  20899506   -2861  CDKAL1   CDKAL1 

6 50040060  50040552   492  INTERGENIC-REGION  INTERGENIC-REGION 

6 66897241  66900208   2967  INTERGENIC-REGION  INTERGENIC-REGION 

6 87126465  87126336   -129  INTERGENIC-REGION  INTERGENIC-REGION 

6 94961835  94961835   0  INTERGENIC-REGION  INTERGENIC-REGION 

7 13598141  13595372   -2769  INTERGENIC-REGION  INTERGENIC-REGION 

7 47290289  47289020   -1269  TNS3    TNS3 

7 68773299  68774264   965  AUTS2    AUTS2 

7 147006720  147009358   2638  CNTNAP2   CNTNAP2 
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8 4788849   4787918   -931  CSMD1    CSMD1 

8 23806889  23805931   -958  INTERGENIC-REGION  INTERGENIC-REGION 

9 12110080  12111967   1887  INTERGENIC-REGION  INTERGENIC-REGION 

9 28701959  28704866   2907  LINGO2   LINGO2 

10 52502567  52503933   1366  PRKG1    PRKG1 

10 55997651  55997740   89  PCDH15   PCDH15 

10 56392820  56391742   -1078  INTERGENIC-REGION  INTERGENIC-REGION 

11 61267618  61269091   1473  DAGLA   DAGLA 

11 64146939  64144929   -2010  NRXN2    NRXN2 

12 83033586  83033124   -462  INTERGENIC-REGION  INTERGENIC-REGION 

12 93956009  93955103   -906  NR2C1    NR2C1 

13 57139096  57136968   -2128  PCDH17   PCDH17 

13 62444093  62442127   -1966  INTERGENIC-REGION  INTERGENIC-REGION 

14 46290472  46290215   -257  INTERGENIC-REGION  INTERGENIC-REGION 

14 105609184  105611251   2067  INTERGENIC-REGION  INTERGENIC-REGION 

15 76418530  76417893   -637  INTERGENIC-REGION  INTERGENIC-REGION 

16 26981824  26984046   2222  INTERGENIC-REGION  INTERGENIC-REGION 

17 3004064   3003465   -599  OR1P1P   INTERGENIC-REGION 

17 13501009  13499899   -1110  INTERGENIC-REGION  INTERGENIC-REGION 

17 31379333  31379326   -7  INTERGENIC-REGION  INTERGENIC-REGION 

18 5846231   5846301   70  INTERGENIC-REGION  INTERGENIC-REGION 

18 29678931  29677804   -1127  INTERGENIC-REGION  INTERGENIC-REGION 

18 37355263  37356895   1632  INTERGENIC-REGION  INTERGENIC-REGION 

20 12364137  12361276   -2861  INTERGENIC-REGION  INTERGENIC-REGION 

21 21114306  21113277   -1029  INTERGENIC-REGION  INTERGENIC-REGION 
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21 27426278  27427344   1066  INTERGENIC-REGION  INTERGENIC-REGION 

22 49192948  49194052   1104  SAPS2    SAPS2 

X 23373203  23375572   2369  INTERGENIC-REGION  INTERGENIC-REGION 

X 88250191  88250874   683  INTERGENIC-REGION  INTERGENIC-REGION 

X 97368810  97370397   1587  INTERGENIC-REGION  INTERGENIC-REGION 

X 116745872  116748160   2288  INTERGENIC-REGION  INTERGENIC-REGION 

 

PATIENT F 

 
 

Chr RelapseLocation PredictedLocation  Difference RelapseGene   PredictedGene 

 

 

1 92405867  92406858   991  INTERGENIC-REGION  INTERGENIC-REGION 

1 92814472  92813494   -978  EVI5    EVI5 

1 96583536  96582384   -1152  LOC100132258   LOC100132258 

1 111864509  111865538   1029  ADORA3   ADORA3 

2 18769914  18768780   -1134  INTERGENIC-REGION  INTERGENIC-REGION 

2 22359545  22361976   2431  INTERGENIC-REGION  INTERGENIC-REGION 

2 50857536  50855234   -2302  NRXN1    NRXN1 

2 66491986  66494804   2818  INTERGENIC-REGION  INTERGENIC-REGION 

2 83614631  83612098   -2533  INTERGENIC-REGION  INTERGENIC-REGION 

2 84115889  84116667   778  INTERGENIC-REGION  INTERGENIC-REGION 

2 126135788  126137404   1616  INTERGENIC-REGION  INTERGENIC-REGION 
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2 167238182  167237566   -616  INTERGENIC-REGION  INTERGENIC-REGION 

2 172352355  172354666   2311  SLC25A12   SLC25A12 

2 173346781  173345732   -1049  RAPGEF4   RAPGEF4 

2 184179988  184177573   -2415  INTERGENIC-REGION  INTERGENIC-REGION 

3 43881260  43883533   2273  INTERGENIC-REGION  INTERGENIC-REGION 

3 46659901  46659510   -391  INTERGENIC-REGION  INTERGENIC-REGION 

3 96394238  96395455   1217  INTERGENIC-REGION  INTERGENIC-REGION 

3 139135471  139135228   -243  INTERGENIC-REGION  INTERGENIC-REGION 

3 180628899  180631315   2416  GNB4    GNB4 

4 27863801  27863829   28  INTERGENIC-REGION  INTERGENIC-REGION 

4 65007608  65008077   469  INTERGENIC-REGION  INTERGENIC-REGION 

4 123096911  123098079   1168  INTERGENIC-REGION  INTERGENIC-REGION 

4 132093722  132093932   210  INTERGENIC-REGION  INTERGENIC-REGION 

5 23368167  23369740   1573  INTERGENIC-REGION  INTERGENIC-REGION 

5 56807873  56807941   68  INTERGENIC-REGION  INTERGENIC-REGION 

6 126353   129210    2857  INTERGENIC-REGION  INTERGENIC-REGION 

6 9844264   9845543   1279  INTERGENIC-REGION  INTERGENIC-REGION 

6 68090304  68090598   294  INTERGENIC-REGION  INTERGENIC-REGION 

6 77430774  77430160   -614  INTERGENIC-REGION  INTERGENIC-REGION 

6 86029763  86029106   -657  INTERGENIC-REGION  INTERGENIC-REGION 

6 94768681  94769618   937  INTERGENIC-REGION  INTERGENIC-REGION 

6 109550234  109548825   -1409  C6orf182   C6orf182 

6 112245364  112244333   -1031  FYN    FYN 

7 13880370  13882510   2140  INTERGENIC-REGION  INTERGENIC-REGION 

7 39559272  39559474   202  INTERGENIC-REGION  INTERGENIC-REGION 
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7 55323684  55322359   -1325  INTERGENIC-REGION  INTERGENIC-REGION 

7 104147320  104147939   619  LHFPL3   LHFPL3 

8 63596628  63594602   -2026  NKAIN3   NKAIN3 

8 72857393  72854439   -2954  INTERGENIC-REGION  INTERGENIC-REGION 

8 118381845  118381895   50  INTERGENIC-REGION  INTERGENIC-REGION 

9 454456   453609    -847  DOCK8    DOCK8 

9 80165699  80166263   564  INTERGENIC-REGION  INTERGENIC-REGION 

9 110146992  110149359   2367  INTERGENIC-REGION  INTERGENIC-REGION 

9 118884413  118884831   418  ASTN2    ASTN2 

9 126126705  126128087   1382  NEK6    NEK6 

10 2683387   2682198   -1189  INTERGENIC-REGION  INTERGENIC-REGION 

10 6584079   6585226   1147  PRKCQ    PRKCQ 

11 10203546  10200736   -2810  SBF2    SBF2 

11 40438832  40440545   1713  INTERGENIC-REGION  INTERGENIC-REGION 

11 55428174  55430431   2257  OR5W1P   INTERGENIC-REGION 

11 87891301  87893310   2009  GRM5    GRM5 

12 38297190  38294864   -2326  ABCD2    ABCD2 

12 44240246  44239417   -829  INTERGENIC-REGION  INTERGENIC-REGION 

12 79813281  79812561   -720  LIN7A    LIN7A 

13 55417148  55419652   2504  INTERGENIC-REGION  INTERGENIC-REGION 

13 70427767  70426376   -1391  INTERGENIC-REGION  INTERGENIC-REGION 

13 81090538  81090305   -233  INTERGENIC-REGION  INTERGENIC-REGION 

14 31667574  31668810   1236  ARHGAP5   ARHGAP5 

14 33154434  33153004   -1430  NPAS3    NPAS3 

14 56091064  56089536   -1528  INTERGENIC-REGION  INTERGENIC-REGION 
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15 40851227  40850495   -732  TTBK2    TTBK2 

15 79991574  79992556   982  INTERGENIC-REGION  INTERGENIC-REGION 

17 39843379  39841478   -1901  GPATCH8   GPATCH8 

17 45343100  45344560   1460  INTERGENIC-REGION  INTERGENIC-REGION 

18 5053185   5051558   -1627  INTERGENIC-REGION  INTERGENIC-REGION 

18 5938070   5938026   -44  INTERGENIC-REGION  INTERGENIC-REGION 

18 11401121  11401673   552  INTERGENIC-REGION  INTERGENIC-REGION 

18 39337589  39338647   1058  INTERGENIC-REGION  INTERGENIC-REGION 

19 5893322   5895546   2224  RANBP3   RANBP3 

19 43341487  43339217   -2270  SIPA1L3   SIPA1L3 

20 13210300  13213050   2750  C20orf82   C20orf82 

21 42042422  42039541   -2881  RIPK4    RIPK4 

22 47687788  47685465   -2323  INTERGENIC-REGION  INTERGENIC-REGION 

X 93658417  93660653   2236  INTERGENIC-REGION  INTERGENIC-REGION 

X 104960175  104962733   2558  NRK    NRK 

X 111343447  111345610   2163  ZCCHC16   ZCCHC16 

Y 7721445   7723250   1805  INTERGENIC-REGION  INTERGENIC-REGION 
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PATIENT G 

 
 

Chr RelapseLocation PredictedLocation  Difference RelapseGene   PredictedGene 

 

 

1 79586157  79587862   1705  INTERGENIC-REGION  INTERGENIC-REGION 

2 147777631  147775238   -2393  INTERGENIC-REGION  INTERGENIC-REGION 

4 142853353  142851908   -1445  IL15    IL15 

7 19896920  19895976   -944  INTERGENIC-REGION  INTERGENIC-REGION 

9 25271855  25270748   -1107  INTERGENIC-REGION  INTERGENIC-REGION 

13 91834507  91836278   1771  GPC5    GPC5 

14 25426007  25427524   1517  INTERGENIC-REGION  INTERGENIC-REGION 

18 6593666   6595162   1496  INTERGENIC-REGION  INTERGENIC-REGION 

19 1339089   1339688   599  NDUFS7   NDUFS7 

21 30692169  30694843   2674  INTERGENIC-REGION  INTERGENIC-REGION 
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PATIENT H 

 
 

Chr RelapseLocation PredictedLocation  Difference RelapseGene   PredictedGene 

 

 

1 28395117  28396128   1011  INTERGENIC-REGION  INTERGENIC-REGION 

1 55348624  55345772   -2852  USP24    USP24 

1 80466160  80466553   393  INTERGENIC-REGION  INTERGENIC-REGION 

1 104112500  104114609   2109  INTERGENIC-REGION  INTERGENIC-REGION 

2 4358173   4355389   -2784  INTERGENIC-REGION  INTERGENIC-REGION 

2 14285436  14284784   -652  INTERGENIC-REGION  INTERGENIC-REGION 

2 106766704  106769370   2666  INTERGENIC-REGION  INTERGENIC-REGION 

2 119250670  119251555   885  INTERGENIC-REGION  INTERGENIC-REGION 

2 155081458  155083587   2129  INTERGENIC-REGION  INTERGENIC-REGION 

3 1799169   1800181   1012  INTERGENIC-REGION  INTERGENIC-REGION 

3 20956204  20956611   407  INTERGENIC-REGION  INTERGENIC-REGION 

4 46955181  46952231   -2950  GABRB1   GABRB1 

4 149316450  149317894   1444  NR3C2    NR3C2 

4 150025553  150024817   -736  INTERGENIC-REGION  INTERGENIC-REGION 

4 158256256  158253511   -2745  GLRB    GLRB 

5 15823239  15821488   -1751  FBXL7    FBXL7 

5 29515287  29512926   -2361  INTERGENIC-REGION  INTERGENIC-REGION 
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5 104466311  104465825   -486  INTERGENIC-REGION  INTERGENIC-REGION 

5 113840798  113840471   -327  KCNN2    KCNN2 

6 9855937   9853948   -1989  INTERGENIC-REGION  INTERGENIC-REGION 

6 38352606  38355567   2961  BTBD9    BTBD9 

6 96112105  96114311   2206  INTERGENIC-REGION  INTERGENIC-REGION 

6 98495373  98496129   756  INTERGENIC-REGION  INTERGENIC-REGION 

7 141689176  141686364   -2812  TRB@    TRB@ 

8 2568547   2567553   -994  INTERGENIC-REGION  INTERGENIC-REGION 

8 31261001  31259469   -1532  INTERGENIC-REGION  INTERGENIC-REGION 

9 75985332  75984229   -1103  INTERGENIC-REGION  INTERGENIC-REGION 

9 82308637  82311378   2741  INTERGENIC-REGION  INTERGENIC-REGION 

10 22510615  22508285   -2330  INTERGENIC-REGION  INTERGENIC-REGION 

10 23382721  23380837   -1884  INTERGENIC-REGION  INTERGENIC-REGION 

11 26651719  26654173   2454  SLC5A12   SLC5A12 

11 82054955  82055363   408  INTERGENIC-REGION  INTERGENIC-REGION 

12 3464622   3467549   2927  INTERGENIC-REGION  INTERGENIC-REGION 

12 11883491  11884936   1445  ETV6    ETV6 

12 43022207  43021782   -425  TMEM117   TMEM117 

12 72136658  72138814   2156  INTERGENIC-REGION  INTERGENIC-REGION 

14 20830373  20828361   -2012  RPGRIP1   RPGRIP1 

14 43499979  43498964   -1015  INTERGENIC-REGION  INTERGENIC-REGION 

15 76806819  76809320   2501  LOC646934   LOC646934 

16 59519213  59518116   -1097  INTERGENIC-REGION  INTERGENIC-REGION 

16 84039293  84040691   1398  INTERGENIC-REGION  INTERGENIC-REGION 

17 22057902  22059434   1532  INTERGENIC-REGION  INTERGENIC-REGION 
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18 13846987  13844333   -2654  INTERGENIC-REGION  INTERGENIC-REGION 

20 43469052  43469585   533  SYS1-DBNDD2   SYS1-DBNDD2 

22 24752889  24753260   371  MYO18B   MYO18B 

X 6998334   6996308   -2026  HDHD1A   HDHD1A 

X 104572042  104570775   -1267  IL1RAPL2   IL1RAPL2 

X 114186799  114188858   2059  INTERGENIC-REGION  INTERGENIC-REGION 

X 121017574  121014781   -2793  INTERGENIC-REGION  INTERGENIC-REGION 

X 127355500  127356514   1014  INTERGENIC-REGION  INTERGENIC-REGION 

X 127868848  127869973   1125  INTERGENIC-REGION  INTERGENIC-REGION 
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