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ABSTRACT OF THE DISSERTATION 

NETWORK CONSTRUCTION AND GRAPH THEORETICAL ANALYSIS OF 

FUNCTIONAL LANGUAGE NETWORKS IN PEDIATRIC EPILEPSY 

by 

Anas Salah Eddin 

Florida International University, 2013 

Miami, Florida 

Professor Malek Adjouadi, Major Professor 

This dissertation introduces a new approach for assessing the effects of pediatric epilepsy 

on the language connectome. Two novel data-driven network construction approaches are 

presented. These methods rely on connecting different brain regions using either extent or 

intensity of language related activations as identified by independent component analysis 

of fMRI data. An auditory description decision task (ADDT) paradigm was used to 

activate the language network for 29 patients and 30 controls recruited from three major 

pediatric hospitals. Empirical evaluations illustrated that pediatric epilepsy can cause, or 

is associated with, a network efficiency reduction. Patients showed a propensity to 

inefficiently employ the whole brain network to perform the ADDT language task; on the 

contrary, controls seemed to efficiently use smaller segregated network components to 

achieve the same task. To explain the causes of the decreased efficiency, graph 

theoretical analysis was carried out. The analysis revealed no substantial global network 

feature differences between the patient and control groups. It also showed that for both 

subject groups the language network exhibited small-world characteristics; however, the 

patient’s extent of activation network showed a tendency towards more random networks. 
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It was also shown that the intensity of activation network displayed ipsilateral hub 

reorganization on the local level. The left hemispheric hubs displayed greater centrality 

values for patients, whereas the right hemispheric hubs displayed greater centrality values 

for controls. This hub hemispheric disparity was not correlated with a right atypical 

language laterality found in six patients. Finally it was shown that a multi-level 

unsupervised clustering scheme based on self-organizing maps, a type of artificial neural 

network, and k-means was able to fairly and blindly separate the subjects into their 

respective patient or control groups. The clustering was initiated using the local nodal 

centrality measurements only. Compared to the extent of activation network, the intensity 

of activation network clustering demonstrated better precision.  This outcome supports 

the assertion that the local centrality differences presented by the intensity of activation 

network can be associated with focal epilepsy.  
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CHAPTER 1 

Introduction 

1.1 General Statement of Problem Area 

The human brain is a complex functional structure that has confounded scientists for 

centuries. Numerous studies have tried to unravel its underlying mechanisms in both its 

normal and pathological states. In particular, language functionality has taken a special 

interest because of its importance that sets humans apart from other species. Typical 

functional studies have tried to identify brain regions associated with specific language 

tasks, i.e. Broca’s (Brodmann Area 44 and Brodmann Area 45) and Wernicke’s 

(Brodmann Area 22) (Brodmann, 1909). The advent of recent imaging modalities i.e. 

Computed Tomography (CT), Positron Emission Tomography (PET), Single Photon 

Emission Computed Tomography (SPECT), Magneto Encephalography (MEG), and 

Magnetic Resonance Imaging (MRI) in the last few decades has spurred many relevant 

brain functional studies (Wu et al., 2013; Wang et al., 2013; You et al., 2012; 2011).  

Particularly, Functional Magnetic Resonance Imaging (fMRI) has been widely used 

because of its safety (no radioactive materials), its balanced spatial/temporal resolution, 

and its non-invasiveness. The fMRI recording modality relies on detecting Blood 

Oxygenation Level Dependent (BOLD) signal as an indirect hemodynamic measurement 

of neuronal activity. The accessibility of fMRI and its use in clinical practice has 

generated studies of brain functional changes and shifts associated with particular 
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neurological disorders, such as epilepsy. Moreover, recent studies (Kim et al., 2011) have 

confirmed that the brain is a highly integrated structure of functional units, as opposed to 

being composed of isolated compartments responsible for independent tasks. Therefore, it 

is crucial to investigate the brain as an intricate network of interwoven elements and to 

try to detect changes in this network caused by neurological disorders in a more 

meaningful way. 

1.2 Research Purpose 

The focus in this dissertation was on language networks in pediatric epilepsy and the goal 

of the research was threefold:  

1) Constructing a functional brain network by connecting different spatially 

independent units generated by Independent Components Analysis (ICA) 

(Comon, 1994).  

2) Investigating the functional network topology and characteristics using Graph 

Theory (Chartrand, 1985) by identifying and extracting relevant features for the 

task at hand. 

3) Studying the network changes induced by pediatric epilepsy while taking into 

account confounding factors such as individual differences, epilepsy type, date of 

first seizure, number of seizures, and normal/abnormal brain development, among 

other relevant clinical information. 
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1.3 Significance of the study 

Functional brain networks are traditionally constructed by correlating the temporal 

BOLD signal between several voxels in the gray matter (Zhang et al., 2011); 

alternatively, causal models can be used to investigate the connection between a limited 

number of predefined regions in the brain (Friston, 2011) to yield a partial depiction of 

the entire brain network. The functional network construction methods proposed in this 

dissertation are novel in that they define isolated individual brain units generated by a 

blind source separation method (ICA) (McKeown et al., 1998) and connect these 

independent units into an intricate network representing the entire functional brain 

network.  

More importantly, the identification of the independent units is completely data driven 

with no a priori assumptions. These units hypothetically perform different functions that 

are integrated to perform a given task. The resulting functional networks were used to 

provide a deeper understanding of the subtle changes in the language network that may 

have been caused by the neurological disorder, in this case epilepsy. Moreover, the 

network features and characteristics might provide a potential biomarker that can be used 

for early detection of epilepsy or for monitoring the effects of certain medication on the 

language network.  Clinical assessments can also be made post-surgery to evaluate how 

such functional networks shift or are rearranged to overcome the effect of surgery. 
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1.4 Research Questions and Hypotheses 

Question #1: Do language networks show a specific graph topology? If yes, is it 

completely regular, completely random, or have the structure of 

small-world networks? 

Question #2: Does pediatric epilepsy induce (or is it associated with) any 

changes in the language network features or topology? If yes, what 

types of changes do occur and is the small-world networks 

architecture still the same as for the healthy controls? 

Question #3: Is there any central language hubs reorganization associated with 

pediatric epilepsy, if yes is it ipsilateral or contralateral? 

Hypothesis #1: Functional language networks, as constructed from fMRI, show a 

small-world networks architecture conforming to prior studies of 

fMRI functional networks. 

Hypothesis #2: Pediatric epilepsy alters the language network features and 

topology while preserving its small-world networks architecture.  

Hypothesis #3: The major network hubs will shift ipsilateraly causing suboptimal 

information transfer in the network. 
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1.5 Structure of the Research 

This dissertation introduces novel methods for constructing functional brain networks and 

describes a methodology for their application to study the effects of pediatric epilepsy on 

language networks. The language networks were captured by functional magnetic 

resonance imaging (fMRI) while performing an auditory descriptive decision task. The 

dissertation is structured around six chapters starting with this chapter outlining the 

content of the dissertation. 

 Chapter 2 describes the necessary background, which lays the foundation for the 

technical and statistical methods used in the dissertation. It explains the fundamentals of 

the model and model-free fMRI analysis by introducing the general linear model, the 

independent components analysis, and the principal components analysis. Thereafter, it 

introduces basics of graph theory and the mathematical framework used in computing 

specific global and local graph measures such as the average clustering coefficient and 

the different centrality measures. 

Chapter 3 features the methods used in constructing the language networks. It describes 

the data collection procedure, the subjects’ demographics and how the data is arranged. 

Then, technical details are presented in carrying out the steps of preprocessing the fMRI 

datasets, and co-registering a brain atlas to the fMRI space of each subject. The two novel 

data-driven network construction methods are then presented along with  two traditional 

methods to which they were compared. The chapter, then, introduces an objective 

thresholding scheme proven to simplify further analyses. Finally, the chapter ends with a 
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description of a unique dual-level clustering system based on neural networks and the k-

means algorithm. 

Chapter 4 uses the methods described in chapter 3 to study the effects of pediatric 

epilepsy on the functional networks constructed. It begins with an analysis of the 

efficiency of the patients’ networks and comparing it to that of a control group. Then it 

ascertains the causes of the differences found using graph measures. Global network 

features are studied for all network construction methods, and then the topology of these 

networks is investigated and compared between the subjects’ groups. Furthermore, local 

network features as captured by different node centrality measures are studied for in-

depth analysis. The chapter finally ends by using the dual-level clustering scheme, which 

was introduced in chapter 3, to separate the subject groups using the local network 

features. The chapter also shows plots of the first two principal components in each 

construction method to justify the use of the dual-level clustering system. 

Chapter 5 highlights the main findings in this dissertation and compares them to other 

studies on the resulting effects of epilepsy on the different functional networks. It 

describes the effects of pediatric epilepsy on the language network efficiency. Thereafter, 

the chapter explores the causes for the differences found by looking at the global and 

local network features in addition to the network’s topology. The chapter includes a 

description of the reorganizational effects introduced by epilepsy and verifies them in 

terms of a clustering system.  
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Finally chapter 6 concludes the dissertation by providing an overview of the main 

findings and by assessing their clinical relevance. The chapter also suggests other 

potential uses of the proposed methodology. Lastly, the chapter provides suggestions on 

future extension of the work towards investigating network attacks and 

structural/functional network coupling in relation to such neurological disorders. 
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CHAPTER 2 

Literature Review and Background 

2.1 Literature Review 

Recent studies have focused on exploring the morphology as well the functional activities 

of the brain as intricate and often subtle networks of interconnected elements (Essen et 

al., 2013; Fornito et al., 2013; Hosseini and Kesler, 2013; Sporns, 2013; 2011a; 2011b; 

Varoquaux and Craddock, 2013). Such elements might be structural or functional 

depending on the study’s objectives. Graph theory (Chartrand, 1985) has played an 

essential role in offering a formal framework to study such networks. For example, 

language activation patterns, as captured by fMRI, have been studied extensively in 

healthy subjects (Gaillard, 2004; K. Wu et al., 2013). Yet, new insights are gained when 

looking at these activation patterns from a graph perspective. 

Additionally, other studies have highlighted the possible effects of different neurological 

disorders on different brain networks. For example, epilepsy (Liao et al., 2010a; 2010b; 

Z. Wang et al., 2012), Parkinson’s disease (T. Wu et al., 2009), aphasia (Sonty et al., 

2007), attention deficit hyperactivity disorder (Milham, 2013; Yu-Feng et al., 2007), 

Alzheimer’s disease (Greicius et al., 2004), and depression (Zeng et al., 2013; 2012). 

Epilepsy is a ‘network disease’ (Bonilha et al., 2012), and its effects have consequently 

been investigated by functional connectivity networks (Vlooswijk et al., 2010; Z. Zhang 



 9 

et al., 2009; Waites et al., 2006), morphological or structural networks (Bernhardt et al., 

2011), or a combination of them (Z. Zhang et al., 2011).  

Most functional networks studies rely on resting state fMRI; however, in epilepsy, both 

resting state networks and language networks are disrupted. Therefore, the focus in this 

dissertation was put on language network connectivity in pediatric epilepsy, during task, 

from a graph theoretical perspective.  

Four functional brain networks were constructed for each subject, a traditional network, a 

modified traditional network and two independent components analysis (ICA)-based 

networks. The fMRI independent components were used to construct the two distinct 

ICA-based networks. These ICA-based networks were constructed to capture both extent 

and intensity of language related activation separately. All of the large-scale whole brain 

networks were used to study the effects of epilepsy on the network hemispheric 

reorganization and topology. Afterwards, certain network features were used to blindly 

cluster the subjects into two groups representing the patients and controls. The 

unsupervised clustering was performed to ascertain if the disease did indeed induce, or is 

associated with, the changes observed in the network features. 

2.2 The General Linear Model (GLM) 

fMRI statistical data analysis translates the BOLD temporal signal into statistically 

meaningful activation maps. Typical data analysis is carried out as several steps in a 

pipeline. The main components of this pipeline are:  
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1) Preprocessing the data to remove noise and artifacts (Jezzard et al., 2002; Penny 

et al., 2006).  

2) Setting up a statistical model employing a priori knowledge about the activation 

pattern while taking into account other confounding factors, i.e. head motion 

artifacts and other vital signals that might appear as noise (Jezzard et al., 2002; 

Penny et al., 2006). 

3) Finding the best fit between the model and the preprocessed BOLD signal using 

the GLM.  

4) Executing a post-statistical analysis while correcting for the multiple comparison 

problem using Gaussian Random Field Theory (Worsley and Friston, 1995).  

Moreover, most fMRI studies include several subjects or groups of subjects (Calhoun & 

Adali, 2012) that oftentimes make it necessary to register each subject to a brain template 

(Fonov et al., 2011) in order to compare the groups or subjects. The order of these steps 

can slightly differ depending on the research protocol or the software used; yet, the 

outcome of any of the pipelines is a single statistical map representing the activation 

associated with the used task paradigm. Figure 1 illustrates an example of such an 

activation statistical map as generated by GLM. This method is highly constrained by the 

statistical model used, which in turn depends on the task paradigm and the hemodynamic 

response function selected. 
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2.3 Independent Components Analysis (ICA) 

ICA is a blind source separation algorithm that splits a set of signals into their associated 

latent sources; Figure 2 shows an example of source and mixture signals. ICA does not 

assume any a priori knowledge of these sources. The only constraint imposed on these

sources is that they are statistically independent and at most one of them is Gaussian. 

Figure 3 illustrates a normal distribution and a uniform distribution histograms. Figure 4

shows an example of the geometry of unmixing a uniformly distributed set of mixtures 

and compares it to that of unmixing a set of normally distributed signals, clearly the 

normally distributed signals are not easily unmixed.  

Figure 1: GLM’s statistical activation map of a control subject while performing an 
auditory descriptive decision task.  
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Figure 2: Example of source signals and a set of corresponding mixture signals. ICA is a 
blind source separation algorithm that solves the problem of extracting the sources from 
their mixtures. 
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ICA appeared in 1991 (Jutten and Herault, 1991); yet, the term was first coined by 

(Comon, 1994). After its inception, most research groups used the Maximum Likelihood 

Estimation algorithm (MLE) (Pham et al., 1992) to perform ICA. (Bell and Sejnowski, 

1995) used a more complex iterative algorithm based on maximizing mutual information

(infomax). Subsequently (Cardoso, 1997) proved that MLE and infomax are congruent 

algorithms. In 1999 (Hyvarinen, 1999) introduced an elegant fixed-point algorithm 

(FastICA) where he used negentropy, a normalized differential entropy or a measure of 

non-gaussianity, as a cost function. He also proved that non-gaussianity is equivalent to 

independence.  
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ICA in fMRI appeared in 1998 as the first model-free method to extract activation maps 

as opposed to the GLM analysis explained in section 2.2, which heavily depends on an a 

priori model. The results of this first fMRI ICA study, which are astounding, were several 

spatially independent maps associated with unconstrained temporal signals. Indeed 

(McKeown et al., 1998) showed that one of the maps highly correlates with the output of 

the GLM. Nevertheless, there were many other maps that were harder to interpret. Figure 

5 illustrates an example of an independent component that is highly correlated with the 

performed task as highlighted in Figure 1. 

In 2004 (Beckmann and Smith, 2004) introduced Probabilistic ICA (PICA). This 

particular ICA approach used FastICA as its backend algorithm and included a noise term 

in the model. This noise model resulted in statistically valid ICA maps as opposed to the 

arbitrary maps in (McKeown et al., 1998). Additionally, PICA had a model order 

estimation step (Roberts and Everson, 2001) that estimated the optimal number of 

independent components. The output of PICA is optimal in that each spatial map is 

optimally integrated and represents one activation unit as opposed to being separated into 

several maps that are harder to interpret. Figure 6 illustrates a set of independent 

components for a control subject while performing the ADDT language task. 
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Figure 5: An independent component of a control subject, which is highly 
correlated with the task paradigm, along with its temporal profile. The control 
subject is the same one used to generate the activation map in Figure 1. 
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Figure 6: Example of several independent components. 
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2.4 Principal Components Analysis (PCA) 

Principal components analysis is generally used as a reliable and fast dimensionality 

reduction algorithm. PCA works by separating a set of mixture signals into a set of 

orthogonal and uncorrelated signals. The set of orthogonal signals can be used to reduce 

the dimensions of the original mixture signals by keeping signals with high variance (or 

Eigenvalues). Unlike ICA, PCA is not a blind source separation algorithm because it uses 

correlation as opposed to independence as a cost function. PCA is the core algorithm 

used in constructing the modified traditional networks introduced later in section 3.7.4.  

Figure 6 (continued): Example of several independent components for a control subject 
while performing a language task. The components were randomly selected from a set of 
32 independent components. 
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2.5 Graph Measures 

Graph theoretical analysis was carried out on the functional networks. Graph theory 

provides many global and local quantitative measures to analyze the brain network 

dynamics. The following succinctly summarizes the measures used in this dissertation. 

Most of these measures were implemented using functions from the Python NetworkX 

library (Hagberg et al., 2008). 

2.5.1 Clustering Coefficient 

The clustering coefficient ci of a node ni captures the cliquishness within its 

neighborhood ki. The clustering coefficient of a node in a binary undirected graph is 

alculated as the fraction of the number of edges Ei to the total number of possible edges 

within the node’s neighborhood (Watts and Strogatz, 1998).  This coefficient is 

formulated as follows: 

𝑐𝑐 =        (1) 

Thereafter, the clustering coefficient of the whole network was calculated as the average 

clustering coefficient of all its constituent nodes n: 

𝐶𝐶 = 𝑐𝑐        (2) 
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2.5.2 Characteristic Path Length 

The shortest path length d(ni, nj) between all ni and nj where i ≠ j was calculated. 

Thereafter, these path lengths were averaged to get the characteristic path length as 

expressed in equation 3: 

𝐿𝐿 =
( )

𝑑𝑑(𝑛𝑛 ,𝑛𝑛 )     (3) 

2.5.3 Small-World Index 

Large-scale brain networks are typically studied using Graph Theory (Sporns, 2011a). In 

(Watts and Strogatz, 1998), different possible network topologies were discussed and 

regular networks were defined as having a high clustering factor and relatively longer 

path lengths, whereas, random networks have a low clustering factor with very short path 

lengths (Bollabas, 1985). They also demonstrated that small-world networks are the 

middle ground between the two extremes with high clustering factor and short 

characteristic path length. Small-world networks topology has higher information transfer 

efficiency, better synchronization, and is usually associated with sparse graphs, which 

have more vertices than edges. Several studies have showed that typical and atypical 

brain networks have a small-world architecture and that neurological disorders introduce 

changes to the network topology while maintaining the overall small-world networks 

architecture (Bernhardt et al., 2011; Zhang et al., 2011, Sporns, 2011b).  
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Each subjects’ functional brain network was compared to 100 Erdős Rényi random 

graphs (Erdős and Rényi, 1959); these random graphs were generated with a connection 

probability that equals the brain graph density. The averages of the 100 clustering 

coefficients Crandom and the characteristic path lengths Lrandom were compared to the 

subject’s brain clustering coefficient Cnet and characteristic path length Lnet. Compared to 

random networks, a small-world network has greater clustering coefficient 𝛾𝛾 =

𝐶𝐶 𝐶𝐶 > 1 and similar characteristic path length 𝜆𝜆 = 𝐿𝐿 𝐿𝐿 ≈ 1 (Watts 

and Strogatz, 1998). The two small-world features can be combined into a single scalar 

index 𝜎𝜎 = 𝛾𝛾 𝜆𝜆 which is typically greater than 1 for small-world networks. 

2.5.4 Degree Centrality 

The normalized degree centrality CD of a node ni in a graph with n nodes is simply the 

fraction of the number of connection ki the node has over the total number of possible 

connections (n-1): 

𝐶𝐶 (𝑛𝑛 ) =
( )

      (4) 

This degree centrality measure provides an indication of a nodes importance in a network 

in terms of the number of nodes it connects to. The measure was used in this dissertation 

to study the local network characteristics and as a feature vector for an unsupervised 

clustering system. 
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2.5.5 Betweenness Centrality 

The betweenness centrality CB of a node ni in a graph measures its participation in the 

formation of the graph’s shortest paths. It can be calculated by the ratio of the number of 

shortest path lengths which ni is part of 𝛿𝛿 𝑛𝑛 ,𝑛𝑛𝑛𝑛 𝑛𝑛 ),∀  𝑘𝑘 ≠ 𝑗𝑗, to the total number of 

shortest path lengths in the graph 𝛿𝛿(𝑛𝑛 ,𝑛𝑛 ),∀  𝑘𝑘 ≠ 𝑗𝑗 (Brandes, 2001): 

𝐶𝐶 (𝑛𝑛 ) = , )
( , )

     (5) 

This measure was also used to aid in exploring the local network characteristics and as 

one of the input feature vectors for a data-driven clustering system. 

2.5.6 Eigenvector Centrality 

Eigenvector centrality measures the importance of a node in a graph; it is a referential 

measure that gives higher values to nodes that connect to higher value nodes. In other 

words, it assigns high values to nodes communicating with central nodes in the network 

(Bonacich, 1987). 
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CHAPTER 3 

Functional Network Construction 

3.1 Participants and Data Collection 

The data used in this dissertation was collected by a multisite consortium and repository 

for pediatric epilepsy. This repository is established by the Center for Advanced 

Technology and Education (CATE), which host the repository at (mri-cate.fiu.edu). The 

repository, which was funded by the American Epilepsy Society in collaboration with the 

Children’s National Medical Center in Washington D.C., includes 13 leading pediatric 

hospitals here in the US and overseas.  The consortium was formed with the intent to 

study the effects of pediatric epilepsy on the brain structure and function (Lahlou et al., 

2006; You et al., 2013; 2011; Wang et al., 2013a; Sun et al., 2013).  

The datasets selected for this dissertation came from three leading pediatric hospitals 

within the consortium: British Columbia Children’s Hospital (BCCH), Children’s 

Healthcare of Atlanta (CHOA), and Children’s National Medical Center (CNMC). All 

three locations used a 3 Tesla Siemens Trio MRI scanner, and were selected mainly in 

seeking high resolution MRIs, as we have demonstrated in earlier studies that statistical 

analysis proved independence of scanner, whether a 1.5T or 3T was used. IRB 

requirements were followed where the parents gave written informed consent and 

children gave assent. The datasets were de-identified to insure confidentiality. 
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All subjects underwent fMRI data acquisition while performing an Auditory Descriptive 

Decision Task (ADDT) devised to stimulate the temporal and the inferior frontal cortex 

as described in (Berl et al., 2012; Gaillard et al., 2007). The subjects were shown an 

object and then were subjected to an auditory stimulus describing the object. If the 

description matched the object the subjects were instructed to press the ‘True’ button, 

otherwise they were instructed to press the ‘False’ button. The description was repeated 

every three-second period where a ‘True’ pair appeared pseudo-randomly with a 70% 

chance. At rest the subjects listened to description in reverse speech and were coached to 

press a button on beeps generated following the audio. Furthermore, the difficulty of the 

paradigm was adjusted appropriately to match the subject’s age group.  

A total of 29 pediatric epilepsy patients and 30 age and sex matched control subjects 

were recruited. The patients were between 9.5 and 18.5 years with an average age of 

13.5±2.45 years, 14 females, 21 right handed, 17 with a remote symptomatic seizure 

etiology, 5.5±4.70 years average age of first seizure, 24 left hemispheric focus, 4 right 

hemispheric focus, 1 bilateral focus; all patients went through pre-surgical evaluation, 

and 13 patients underwent epilepsy surgery. The controls were between 10 and 20 years 

of age with an average of 13.5±2.98 years, 14 females, 18 right handed, and 12 with 

unknown handedness. All controls were native English speakers free of any current or 

past neurological or psychiatric disease. Furthermore, there were six patients with right 

language laterality whereas all controls had left language laterality. The appendices list 

the detailed clinical and demographical information of each subject and Table 1 

summarizes the demographics.  
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Table 1: Summary of the Demographics for Patients and Controls 

 

Age (years) Females Handedness 
Language 
Laterality 

Min Max Average STD Right Left Unknown Left Right 
Patients 
(29) 9.5 18.5 13.5 2.45 14 21 6 2 23 6 
Controls 
(30) 10 20 13.5 2.98 14 18 0 12 30 0 

 

In addition, a high resolution isotropic structural T1 MRI scan was acquired for each 

subject. These T1 scans aid in registering each subject’s fMRI space to a common 

stereotaxic space, which is defined by a brain template. The T1 scan parameters were: 

BCCH= (211x288x288) voxels, (1x1x1) mm; CHOA= (176x240x256) voxels, (1x1x1) 

mm; and CNMC= (256x256x30) voxels, (0.8x0.8x4) mm. The fMRI scan parameters 

were: BCCH= (128x128x36) voxels, (1.87x1.87x3.97) mm, TR=2 sec, 150 time points; 

CHOA= (72x72x49) voxels, (3x3x3.3) mm, TR=3 sec, 100 time points; and CNMC= 

(64x64x30) voxels, (3.44x3.44x4) mm, TR=2 sec, 150 time points. Table 2 summarizes 

each hospital’s contribution to the datasets used in this dissertation. 

Table 2: Subjects distribution across hospitals 

Institution Scanner 

Number 
of 

Subjects 

Number 
of 

Controls 
fMRI Field of View 

[mm] 
T1 Field of View 

[mm] 

BCCH 
Siemens 
Trio 3T 24 0 239.36x239.36x142.92 211x288x288 

CHOA 
Siemens 
Trio 3T 12 12 216x216x161.7 176x240x256 

CNMC 
Siemens 
Trio 3T 23 18 220.16x220.16x120 204.8x204.8x120 
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3.2 Language Laterality in Patients and Controls 

The language laterality index was calculated by combining a bootstrap procedure with a 

histogram analysis (Wang et al., 2013a; Wilke and Schmithorst, 2006). The masked areas 

were thresholded, and then data was obtained for the left and right sides. The data was 

converted into a vector whose elements were used in a bootstrapped resampling method 

to compute the lateralization index as given in equation (6): 

𝐿𝐿𝐿𝐿 = ∑ ∑
∑ ∑

      (6) 

All the possible LI values were plotted in a histogram, from which the mean of the 50% 

central values was used as the selected LI value. The threshold was obtained by the mean 

intensity of the voxels in the image. The toolbox used for these calculations is described 

in (Wilke and Lidzba, 2007). 

In this work, the laterality index was computed for Broca’s and Wernicke’s areas. If the 

index was greater than or equal to 0.2 the area’s laterality was considered left dominant, 

if the index was less than or equal to -0.2 the area’s laterality was considered right 

dominant, otherwise the dominance was considered bilateral. Finally, the general 

language laterality was considered right dominant if both areas showed right dominance 

or one was right dominant and the other was bilateral. Similarly, the general language 

laterality was considered left dominant if both areas demonstrated left dominance or one 

was bilateral and the other was left dominant. If both areas were bilaterally dominant or 
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one was left and the other was right dominant the general language laterality was 

considered bilaterally dominant. Table 3 lists the detailed results for each subject. 

Table 3: Detailed laterality index results for each subject. 

  

Broca’s 
Laterality 
Index 

Wernicke’s 
Laterality 
Index 

Broca’s 
Laterality 

Wernicke’s 
Laterality 

Language 
Laterality 

BCCH_11 -0.0015 -0.45 Bilateral Right Right 
BCCH_12 0.37 0.018 Left Bilateral Left 
BCCH_13 0.55 0.72 Left Left Left 
BCCH_14 0.68 0.77 Left Left Left 
BCCH_20 0.26 0.48 Left Left Left 
BCCH_22 0.83 0.77 Left Left Left 
BCCH_23 0.81 0.58 Left Left Left 
BCCH_29 0.62 0.65 Left Left Left 
BCCH_30 0.65 0.43 Left Left Left 
BCCH_31 0.5 0.64 Left Left Left 
BCCH_33 0.68 0.57 Left Left Left 
BCCH_34 -0.36 0.1 Right Bilateral Right 
BCCH_35 -0.52 -0.54 Right Right Right 
BCCH_36 -0.71 -0.71 Right Right Right 
BCCH_37 0.34 0.31 Left Left Left 
BCCH_38 -0.57 -0.13 Right Bilateral Right 
BCCH_39 0.71 0.79 Left Left Left 
BCCH_40 0.53 0.66 Left Left Left 
BCCH_41 0.64 0.73 Left Left Left 
BCCH_43 0.41 0.53 Left Left Left 
BCCH_44 0.29 -0.054 Left Bilateral Left 
BCCH_45 -0.83 -0.81 Right Right Right 
BCCH_6 0.75 0.56 Left Left Left 
BCCH_8 0.34 0.51 Left Left Left 
CNMC_320 0.58 0.74 Left Left Left 
CNMC_331 0.57 0.6 Left Left Left 
CNMC_333 0.19 0.67 Bilateral Left Left 
CNMC_82 0.32 0.59 Left Left Left 
CNMC_84 0.5 0.69 Left Left Left 
CNMC_105 0.51 0.14 Left Bilateral Left 
CNMC_106 0.74 0.61 Left Left Left 
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Broca’s 
Laterality 
Index 

Wernicke’s 
Laterality 
Index 

Broca’s 
Laterality 

Wernicke’s 
Laterality 

Language 
Laterality 

CNMC_108 0.46 0.74 Left Left Left 
CNMC_111 0.19 0.27 Bilateral Left Left 
CNMC_113 0.21 0.54 Left Left Left 
CNMC_120 0.26 0.66 Left Left Left 
CNMC_121 0.65 0.65 Left Left Left 
CNMC_127 0.42 0.46 Left Left Left 
CNMC_139 0.52 0.39 Left Left Left 
CNMC_140 0.52 0.53 Left Left Left 
CNMC_141 0.71 0.7 Left Left Left 
CNMC_147 0.33 0.53 Left Left Left 
CNMC_151 0.73 0.69 Left Left Left 
CNMC_166 -0.043 0.27 Bilateral Left Left 
CNMC_170 0.68 0.71 Left Left Left 
CNMC_171 0.57 0.58 Left Left Left 
CNMC_172 0.12 0.67 Bilateral Left Left 
CNMC_175 0.57 0.57 Left Left Left 
CHOA_1 0.51 0.35 Left Left Left 
CHOA_10 0.54 0.81 Left Left Left 
CHOA_11 0.76 0.63 Left Left Left 
CHOA_12 0.78 0.77 Left Left Left 
CHOA_2 0.62 0.71 Left Left Left 
CHOA_3 0.5 0.65 Left Left Left 
CHOA_4 0.67 0.73 Left Left Left 
CHOA_5 0.7 0.72 Left Left Left 
CHOA_6 0.69 0.74 Left Left Left 
CHOA_7 0.41 0.62 Left Left Left 
CHOA_8 0.53 0.49 Left Left Left 
CHOA_9 0.72 0.86 Left Left Left 

 

3.3 Data Arrangement 

As the data is collected from several institutions, the data was not uniform and needed 

manual intervention to prepare it for the next processing steps. First each dataset was 
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thoroughly inspected to insure image quality; datasets with low resolution, high artifact, 

or high motion errors were excluded from the study. Thereafter, all datasets were 

renamed to match a predetermined string pattern. The pattern consisted of the 

institution’s acronym followed by an underscore then a unique subject identifier provided 

by the hospital, for example subject 12 from British Columbia Children’s Hospital was 

coded as BCCH_12. This renaming arrangement was necessary for later bulk processing 

of the data. All datasets were then converted to the Neuroimaging Informatics 

Technology Initiative (NIFTI) format. Finally, each dataset was reoriented to a 

neurological coordinate system matching that of the Montreal Neurological Institute 152 

(MNI152) brain atlas. The MNI152 neurological convention assumes that the x axis is 

perpendicular to the sagittal plane of the brain with the positive side going to the right 

side of the brain, the y axis is perpendicular to the coronal plane with the positive side 

going to the anterior side of the brain, and the z axis perpendicular to the axial plane with 

the positive side going to the superior side of the brain. It is noted that only subjects with 

high resolution fMRI and T1 datasets were selected for this dissertation, such high 

resolution helps reduce image registration errors as explained in section 3.5. 

3.4 fMRI Preprocessing 

Each subject’s fMRI dataset was preprocessed using the FMRIB Software Library (FSL) 

(Jenkinson et al., 2012; S. Smith et al., 2004) as follows: temporally high pass filtered 

with a cutoff frequency of 0.01 Hz to remove the MRI scanner’s baseline wandering 

effect, head motion corrected using MCFLIRT (Jenkinson et al., 2002), slice time 

corrected, deskulled to remove non-brain tissues using Brain Extraction Tool (BET) (S. 
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M. Smith, 2002), and spatially smoothed with a 5 mm full width at half maximum 

(FWHM) to increase the signal to noise ratio. Datasets were inspected to ensure that head 

motion did not exceed 1 mm in any of the major axes directions. Afterwards, each of the 

preprocessed datasets was passed to the probabilistic independent component analysis 

(PICA) algorithm to get its spatially independent latent sources as implemented in 

MELODIC (Beckmann and S. Smith, 2004; Beckmann, 2012). The PICA algorithm 

provides spatially independent maps with their corresponding temporal profiles as 

explained earlier in 2.3. 

3.5 Co-registering the AAL90 atlas to the fMRI Space 

The Automated Anatomical Labeling (AAL90) atlas (Tzourio-Mazoyer et al., 2002) 

includes 90 cortical and sub-cortical regions in the MNI152 space; these regions are 

symmetrically distributed on each hemisphere (45 regions on each hemisphere). The 

regions were manually drawn every 2 mm on the axial planes using the single subject T1 

atlas provided by the MNI (Collins et al., 1998). Figure 7 show the AAL90 atlas overlaid 

on top of the MNI152 atlas. The AAL90 atlas was registered to each subject’s fMRI 

space; afterwards, it was superimposed over each of the subject’s spatially independent 

components.  



30

For each subject the registration was performed as follows: deskulling of the fMRI 

dataset, deskulling of its corresponding T1 both using the Brain Extraction Tool (BET) 

(S. M. Smith, 2002), registering the deskulled fMRI to the deskulled T1 using an affine 

transformation (12 degrees of freedom), registering the deskulled T1 to the MNI152 brain 

also using an affine transformation. The two aforementioned registration steps were 

concatenated into a single transformation matrix. This single matrix was then inverted 

and applied to register the AAL90 atlas to the subject’s fMRI space. Each registration 

step was performed using the FMRIB's Linear Image Registration Tool (FLIRT) 

(Jenkinson et al., 2002). 

Figure 7: The Automated Anatomical Labeling (AAL90) atlas overlaid on the MNI152 
atlas. 
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3.6 The Processing Environment 

All data processing in this dissertation was performed on a computing environment that 

consisted of three computers connected in a grid. The grid was setup using the Grid 

Engine environment also known as Sun Grid Engine (Gentzsch, 2001). This grid 

contained two iMac computers running Mac OS X version 10.7.5 each has 4GB of 

memory and a 3.06 GHz Intel Core 2 Duo, the grid also had a Mac Server running Mac 

OS X version 10.7.5 server with 8 GB of memory and 2.26 GHz Intel Xeon Quad-Core. 

This computing environment was optimized to process all datasets in a parallel fashion, 

for example all subjects were processed simultaneously using FSL optimized commands. 

3.7 Functional Network Construction 

Networks or graphs consist of a group of nodes connected by edges. The goal in this 

implementation step was to determine a functional brain network, which is essentially 

defining the nodes and connecting them by valid edges. The nodes were defined as the 

different 90 regions of the AAL90 atlas. Thus, these nodes will be comparable across 

subjects. Figure 8 illustrates an example of such a brain network. In this dissertation, two 

novel methods to connect these nodes based on the extent and intensity of the language 

related activation were proposed; thereafter, these two novel methods were compared and 

contrasted against a traditional method and a modified version of it.  
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3.7.1 Extent of Activation Network 

After co-registering the AAL90 atlas to the subject’s fMRI space, the atlas is 

superimposed over each spatial independent component (IC). Hence, each of the 90 atlas 

regions will have several accompanying independent components. For each of these 

regions the number of activated voxels is counted at each IC. The temporal profile of the 

IC with the highest activated voxel count is associated with the particular atlas region. 

Eventually, every region in the atlas will be associated with a single temporal signal. A 

Figure 8: Example of a functional brain network where the nodes are based on the 
AAL90 atlas. 
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90x90 correlation matrix is thus constructed using Pearson’s correlation between the 

temporal signals for each subject. The resulting matrix is a graph adjacency matrix 

representing the functional brain network of the subject at hand while capturing its extent 

of activation. Figure 9 illustrates examples of such matrices for a control subject and a 

patient along with their associated binary undirected versions. 

Extent of Activation Network

Control

Patient

Binary Undirected

(b)

Weighted Undirected

(a)

(d)(c)

Binary UndirectedWeighted Undirected

Figure 9: Example of an adjacency matrix of an extent of activation network for a control 
subject and a patient: (a) and (c) Raw correlation values representing a weighted 
undirected graph, (b) and (d) Thresholded correlation values representing a binary 
undirected graph.  
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3.7.2 Intensity of Activation Network 

Similarly, an adjacency matrix capturing the intensity of activation can be constructed by 

repeating the same steps as in section 3.7.1, but instead of counting the number of 

activated voxel, the average absolute z values of the activated voxels is computed within 

each region at each IC. The resulting graph adjacency matrix represents the functional 

brain network of the subject at hand while capturing its intensity of activation. Figure 10

Weighted Undirected

(a)

Binary Undirected

(b)

Intensity of Activation Network

Control

Patient

(d)(c)

Binary UndirectedWeighted Undirected

Figure 10: Example of an adjacency matrix of an intensity of activation network for a 
control subject and a patient: (a) and (c) Raw correlation values representing a weighted 
undirected graph, (b) and (d) Thresholded correlation values representing a binary 
undirected graph.



35

illustrates an adjacency matrix example of an intensity of activation network for a control 

subject and a patient along with their binary undirected matrix. 

3.7.3 Traditional Network 

For each subject the AAL90 atlas is registered to the fMRI space and then superimposed 

over the preprocessed fMRI as described in section 3.5. Then, for each of the 90 regions 

Binary Undirected

(b)

Weighted Undirected

(a)

Traditional Network

Control

Patient

(d)(c)

Binary UndirectedWeighted Undirected

Figure 11: Example of an adjacency matrix of an traditional network for a control subject 
and a patient: (a) and (c) Raw correlation values representing a weighted undirected 
graph, (b) and (d) Thresholded correlation values representing a binary undirected graph. 
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the average of all BOLD signals is computed within that region; the averaged signal 

represents that region. A 90x90 correlation matrix is constructed using Pearson’s 

correlation. The resulting adjacency matrix represents a traditional functional brain 

network. Figure 11 illustrates an example adjacency matrix of this traditional network for 

a control subject and a patient along with their binary undirected matrix. 

3.7.4 Modified Traditional Network 

Likewise, instead of averaging the BOLD signals within each region in the traditional 

method as explained in section 3.7.3, the first principal component of the BOLD signals 

within a region, which captures the largest variance, can instead be used to represent that 

region. The resulting adjacency matrix represents a modified traditional functional brain 

network. Figure 12 illustrates an example of the adjacency matrix of a modified 

traditional network for a control subject and a patient along with their binary undirected 

matrix.  

3.8 Thresholding the Adjacency Matrix 

All graphs constructed using either one of the connectivity methods, including the ICA-

based methods, are undirected weighted graphs. In this dissertation the focus was placed 

on connectivity whether two nodes were connected or not; therefore, the absolute value 

of the adjacency matrix was thresholded to an unweighted form. In this section, a 

thresholding scheme based on graph density was established to facilitate the selection of 

an objective threshold comparable across all subjects.   
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A graph density can be defined as: 

𝐷𝐷 =      
           

   (7)

For a fully connected graph, where all nodes are connected directly to all other nodes, 

𝐷𝐷 = 1. On the other extreme, a disconnected graph will yield 𝐷𝐷 = 0. Density is thus a 

Binary Undirected

(b)

Weighted Undirected

(a)

Control

Patient

(d)(c)

Binary UndirectedWeighted Undirected

Modi�ed Traditional Network

Figure 12: Example of an adjacency matrix of a modified traditional network for a 
control subject and a patient: (a) and (c) Raw correlation values representing a weighted 
undirected graph, (b) and (d) Thresholded correlation values representing a binary 
undirected graph.
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measure of a network’s wiring cost. Therefore, thresholding using this measure would 

facilitate comparison across networks. For example, two brain networks with the same 

density will evidently have the same number of nodes and the same number of edges 

(same wiring cost). However, the edges are shifted reflecting the state of the subject’s 

network.  

Figure 13 shows the relation between thresholding using Pearson’s correlation coefficient 

and the graph density (for a control subject and for a patient). Clearly, higher correlation 

threshold values lead to lower density graphs. A bidisectional algorithm is thus used to 

determine the corresponding correlation threshold value given a selected density. For 

example, to determine the Pearson’s correlation threshold value 𝑃𝑃𝑃𝑃 that is associated 

with a certain density value 𝐷𝐷, a Pearson’s correlation value range is defined by a low 

limit 𝐿𝐿 , which is initially 0, and a high limit 𝐿𝐿 , which is initially 1. Thereafter, the mid 

range value is computed as 𝐿𝐿 = (𝐿𝐿 + 𝐿𝐿 ) 2  and the corresponding density 𝐷𝐷  is 

Control Patient

(a) (b)

Figure 13: The thresholding relationship between the absolute value of Pearson’s 
correlation coefficient and its corresponding graph density applied to: (a) a control 
subject’s adjacency matrix, (b) a patient’s adjacency matrix. The figure clearly shows that 
higher correlation thresholds lead to a less dense graph. 



39

calculated. If  𝐷𝐷  is less than 𝐷𝐷  then 𝐿𝐿  is set to 𝐿𝐿  otherwise 𝐿𝐿  is set to 𝐿𝐿 . This 

process is then iteratively repeated till 𝐷𝐷  approaches the selected density 𝐷𝐷 with an 

infinitesimal error 𝜀𝜀 at which point 𝐿𝐿  will be the Pearson’s correlation threshold 𝑃𝑃𝑃𝑃 that 

corresponds to 𝐷𝐷. 

To justify using the graph density as opposed to the correlation values for thresholding, 

raw histogram correlation values of the patients and the controls are used to gauge both 

the extent and intensity of activation distributions in terms of Pearson’s correlation versus 

the number of edges. Figure 14 shows these histograms for the ICA-based methods in 

contrast to the traditional network construction method, which uses the BOLD average 

within each region of the atlas as the representative temporal profile.  

Figure 14 illustrates a slight distinction between the patients and controls for the 

traditional method, which agrees with (Fornito et al., 2013) in schizophrenia; whereas, 

the ICA-based methods produced correlation values that are comparable between the two 

subject groups. This makes the density threshold selection more neutral towards the 
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Figure 14: Histograms of the combined correlation values for the patients and controls 
groups. Controls: Solid Blue, Patients: Dashed Red. (a) Extent of Activation Network, (b) 
Intensity of Activation Network, (c) Traditional Network. 
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correlation value. In other words, selecting a specific density threshold for all subjects 

will produce correlation thresholds that are similar between the groups. Whereas, the 

traditional method produces different correlation values for the same density value in 

each subject group. Consequently, by using the proposed approach, the ambiguity as to 

which threshold is to be selected (Pearson’s correlation or density) is resolved. The 

binary undirected graphs in Figure 9, Figure 10, Figure 11, and Figure 12 show examples 

of such thresholded adjacency matrices. 

It is important to note that a density threshold that guarantees a connected graph with the 

cheapest wiring cost was the one adopted in this dissertation. A connected graph is 

henceforth a network where every node will have a path to any other node in the network, 

directly or indirectly. The normalized size of the largest connected component was used 

to measure a graph connectedness. A connected component in a graph is a group of nodes 

that can reach each other within the component; i.e. in a connected graph all nodes can 

reach each other and the largest connected component contains all nodes, and hence it’s 

normalized size is 1. Similarly, if there are several connected components within the 

network, which do not have any connecting links, then the size of the largest connected 

component will be less than 1. 

For each network construction method, the normalized size of the largest connected 

component was computed for every subject across a density range (from 10% to 70%) 

assumed on the basis of the results observed in Figure 15 and Figure 16, which show that 

after 65% all the subjects had a connected graph (normalized size of the largest connected 
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component = 1), at which point the area under the resulting curve was determined. Figure 

15 and Figure 16 illustrate these typical curves. The figures also show that density 

thresholds of 65%, 55%, 65%, and 70% guarantee a connected graph for all subjects in 

the extent of activation network, intensity of activation network, traditional network, and 

the modified traditional network, respectively.  Additionally, these thresholds are all in 

the range suggested in (Reus and van den Heuvel, 2013) for structural networks and are 

very close to the 60% recommended value. In this dissertation, all subjects’ networks 

were thresholded using these values and the resulting binary graphs were used for all 

further analyses. 
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Figure 15: The normalized size of the largest connected component across a range of 
graph densities (10% - 70%) for each subject. Controls: Solid Blue, Patients: Dashed 
Red. The insets show box plots of the areas under the curve for the patients and the 
controls. (a) Extent of Activation Network, (b) Intensity of Activation Network. 
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Figure 16: The normalized size of the largest connected component across a range of 
graph densities (10% - 70%) for each subject. Controls: Solid Blue, Patients: Dashed 
Red. The insets show box plots of the areas under the curve for the patients and the 
controls. (c) Traditional Network, (d) Modified Traditional Network. 
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3.9 Unsupervised Clustering 

This step aims at classifying the subjects into distinct groups in an unsupervised and data-

driven approach. A dual-level clustering scheme was used, the first level consisted of 

three self-organizing map (SOM) classifiers; whereas, the second level, which aggregates 

and clusters the outputs of the first level, consisted of a single k-means classifier with k = 

2. Figure 17 describes the structure of this classification system. Three feature vectors 

were computed for each subject based on the degree, betweenness, and eigenvector 

centrality; each of these feature vectors were set up as 1x90-dimentional vector on the 

basis of the AAL90 atlas. Next, each feature vector was used as an input for one of the 

SOM classifiers. SOM is a type of artificial neural network.  

SOM

SOM

SOM

k-means

Degree 
Centrality

Betweenness 
Centrality

Eigenvector 
Centrality

Classification 
Output

Figure 17: Schematic diagram of the dual-level classification system. The system consists 
of three self-organizing map classifiers followed by a single k-means classifier. The input 
feature vectors of each patient were: degree centrality, betweenness centrality, and 
eigenvector centrality. 
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In this dissertation, 500 training steps were used and an initial neighborhood size of 3 was 

assumed. The performance of this classification system was then evaluated by computing 

its precision, sensitivity, specificity, and accuracy. Formulae (8) through (11) define these 

metrics in terms of the:  

1) True Positive (TP): A patient is clustered as a patient. 

2) False Positive (FP): A control is clustered as a patient. 

3) True Negative (TN): A control is clustered as a control. 

4) False Negative (FN): A patient is clustered as a control. 

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 =         (8) 

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 =         (9) 

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 =         (10) 

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 =         (11) 
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CHAPTER 4 

The Effects of Pediatric Epilepsy on the Language Networks 

4.1 Density and Thresholding Analyses 

Figure 15 and Figure 16 shown earlier provided the normalized size of the largest 

connected component as a function of graph density. Figure 15 demonstrated that both 

the extent of activation networks and the intensity of activation networks were able to 

partially delineate the patients from the controls. Whereas, Figure 16 has clearly proven 

that the traditional networks and the modified traditional networks were not able to 

delineate the patients from the controls.  

Furthermore, for the ICA-based networks, most patients had a very large connected 

component with relatively small density values. This observation implies that patients’ 

brain tend to employ more regions to perform the language task; whereas, the controls 

tend to compartmentalize the brain into separate smaller connected components when 

performing the ADDT task. This is especially apparent in the extent of activation 

networks. To confirm these observations statistically, the area under the curve was 

calculated for each subject then the patient population was compared to the control 

population using a boxplot and a t-test.  

The t-test confirmed that both of the ICA-based networks could separate the patients and 

controls groups with a p = 0.001, whereas the other two traditional methods were not able 
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to separate the groups p = 0.295 for the traditional method and p = 0.14 for the modified 

traditional method. The boxplots provided as insets in Figure 15 show that patients have a 

greater area as compared to controls; however, the boxplots in Figure 16 did not display 

such a distinction.  The differences observed using the ICA-based methods might help 

explain the effects of pediatric epilepsy on the language networks; therefore, for the rest 

of the dissertation the focus is set on analyzing the data-driven ICA-based networks and 

the traditional methods’ results are provided as reference for comparative purposes. 

4.2 Global Network Features 

In order to study the brain language network general dynamics and topology, the global 

network features were assessed, and the average clustering coefficients were calculated 

for all networks. The extent of activation network showed a significant clustering 

difference between the patient and control groups p = 0.001; whereas, the intensity of 

activation network did not yield a significant clustering difference p = 0.728.  

Furthermore, the characteristic path lengths were calculated for both networks. Neither of 

the networks showed a significant characteristic path length difference between the 

patients and controls, p = 0.962 for the extent of activation network and p = 0.066 for the 

intensity of activation network, respectively. Although the two networks did not show 

any significant characteristic path length difference, they had different path lengths with 

an average of 1.35±0.03 for the extent of activation network, and an average of 1.46±0.04 

for the intensity of activation network. Figure 18 summarizes these findings using box 

plots. 
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Similarly, the traditional and modified traditional methods did not show any significant 

average clustering coefficient difference between the patients and controls with p = 0.038 

for the traditional method and p = 0.310 for the modified traditional method. Moreover, 

there was no significant characteristic path length difference between the subject groups 

with p = 0.262 for the traditional method and p = 0.044 for the modified traditional. 

Figure 19 illustrates these observations in the form of box plots. 

The functional network topology of each subject was investigated by comparing it to 100 

Erdős Rényi random networks as explained earlier in section 2.5.3. The average 
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Figure 18: Global network features box plots. (a) Average clustering coefficient of 
the extent of activation network, (b) Average clustering coefficient of the intensity of 
activation network, (c) Characteristic path length of the extent of activation network, 
(d) Characteristic Path Length of the intensity of activation network. 
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𝛾𝛾 = 𝐶𝐶 𝐶𝐶  for all subjects was 1.17±0.06 for the extent of activation networks,

1.27±0.01 for the intensity of activation networks, 1.18±0.07 for the traditional networks, 

and 1.13±0.06 for the modified traditional networks.  Similarly, the average 𝜆𝜆 =

𝐿𝐿 𝐿𝐿  of all subjects was 1±0.002 for the extent of activation networks, 1±0.01

for the intensity of activation networks, 1±0.003 for the traditional networks, and 1±0.006 

for the modified traditional networks. Subsequently, each network method thresholded 

with the optimal wiring cost resulted in small-world indices 𝜎𝜎 = 𝛾𝛾 𝜆𝜆 greater than 1 with 

p = 1.0E-13 and averaged 1.16±0.06, 1.28±0.08, 1.181±0.07, and 1.131±0.06 for the 
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Figure 19: Global network features box plots. (a) Average clustering coefficient of the 
traditional network, (b) Average clustering coefficient of the modified traditional 
network, (c) Characteristic path length of the traditional network, (d) Characteristic 
Path Length of the modified traditional network. 
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extent of activation, intensity of activation, traditional, and modified traditional networks, 

respectively.  

Results have also shown that each of the ICA-based network construction methods 

generated small-world networks. To distinguish the topology differences between the 

subject groups, the small-world network parameters were compared between the groups 

using the Mann-Whitney U nonparametric test. For the extent of activation network the 

clustering parameter 𝛾𝛾 was higher for controls as compared to patients with p = 0.008; 

whereas, the path length parameter 𝜆𝜆 was not different between the subject groups with p 

= 0.739. Consequently, the small-world index 𝜎𝜎 was higher for controls compared to 

patients p = 0.012. Similarly, there was no difference between the groups for any of the 

small-world parameters in the intensity of activation network p = 0.524 for 𝛾𝛾, p = 0.832 

for 𝜆𝜆, and p = 0.524 for 𝜎𝜎. Recall that 𝜎𝜎 = 𝛾𝛾 𝜆𝜆. 

4.3 Local Network Features 

After investigating the global network features, the focus was shifted to the individual 

node features and the effect of epilepsy on such features. Three local network features 

were used: degree centrality, betweenness centrality, and eigenvector centrality all of 

which were explained earlier in sections 2.5.4, 2.5.5, and 2.5.6, respectively. Each feature 

was calculated for every node, and then the subjects were separated into patients and 

controls groups. A t-test was used to highlight nodes that are different between the 

groups. To control for the multiple testing error rate (90 t -tests), the Benjamini-Hochberg 
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method (Benjamini and Hochberg, 1995) was used with three different false discovery 

rates (FDR) for each network, which are 10%, 25%, and 50%. 

Figure 20 together with Table 4 provide the results for the extent of activation network. 

Figure 21 together with Table 5 provide the results for the intensity of activation network. 

Similarly, Figure 22 and Table 6 provide the results for the traditional network. Note that 

Figures 19 through 21 were generated using BrainNet Viewer (Xia et al., 2013). It should 

be noted that no significant node difference was found at 10% FDR for either ICA-based 

networks or at any FDR rate for the modified traditional network; therefore, the 

corresponding figures and tables do not display such results. Figure 20 shows no 

overlapping significant nodes across the centrality measures within the same FDR rate. 

On the other hand, Figure 21 and Figure 22 both show several shared significant nodes 

across the centrality measures at the 50% FDR rate for the intensity of activation 

networks and at all FDR rates for the traditional networks.  

Table 4: The significant nodes of the extent of activation network at different FDRs. Red 
indicates patients have a greater value, blue indicates controls have a greater value (not 
applicable in this case). 

 
Degree 

Centrality Betweenness Centrality Eigenvector Centrality 

25% FDR   
Right middle frontal gyrus, 
orbital part 

  Right angular gyrus 

50% FDR 
 Right fusiform gyrus  

  
Right middle frontal gyrus, 
orbital part 

  Right angular gyrus 
 



 

 

Figure 20: Extent of activation local network features at different False Discovery Rates (FDR). Red nodes indicate patients have a 
greater value, blue nodes indicate controls have a greater value, and gray nodes indicate no significant difference between the 
patients and controls groups. The 10% FDR showed no significant nodes.  
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Figure 21: Intensity of activation local network features at different False Discovery Rates (FDR). Red nodes indicate patients 
have a greater value, blue nodes indicate controls have a greater value, and gray nodes indicate no significant difference between 
the patients and controls groups. The 10% FDR showed no significant nodes.  
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Figure 22: Traditional local network features at different False Discovery Rates (FDR). Red nodes indicate patients have a greater 
value, blue nodes indicate controls have a greater value, and gray nodes indicate no significant difference between the patients 
and controls groups.  
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At the 50% FDR rate for the intensity of activation network, the right inferior f  

gyrus (opercular and the triangularis parts) were significant in terms of both degre   

eigenvector centrality measures. Similarly, the right cuneus and the right precuneus  

both significant in terms of degree and eigenvector centrality measures. Figure 2   

shows that the left anterior cingulate gyrus was significant in terms of all three cen  

measures.  

Moreover, Figure 21 shows that except for the left lingual gyrus in the degree cen  

measures, all the left hemispheric significant nodes had greater values for pa  

whereas, all right hemispheric significant nodes had greater values for controls. O   

other hand, Figure 22 shows that the traditional network displays no struc  

reorganizational pattern and the hub shifts are sporadic, especially at 50% FDR. 

To examine if the local nodal differences or the hemispheric disparity, observed   

ICA-based networks, can be explained by atypical language laterality, the effect   

laterality index, as defined in equation (6), on the three centrality measures was test   

all fourteen ICA-based significant nodes. The results indicate that no effect was fou   

either of the networks at 10% FDR using the Benjamini-Hochberg method (Benj  

and Hochberg, 1995). In other word, atypical language laterality does not seem to  

caused local hub shifts. It should be noted however, that only six patients had  

language laterality as indicated in Table 3, whereas the rest of the patients and all co  

had typical left language laterality. Additionally, the epileptogenic focus wa   

hemispheric for 24 patients, right hemispheric for 4 patients, and bilateral for 1 patie  
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Table 5: The significant nodes of the intensity of activation network at different FDRs. 
Red indicates patients have a greater value, blue indicates that controls have a greater 
value.  

 Degree Centrality Betweenness 
Centrality 

Eigenvector 
Centrality 

25% 
FDR Right Precuneus   

50% 
FDR 

Right Inferior frontal 
gyrus, opercular part  

Right Inferior frontal 
gyrus, opercular part 

Right Inferior frontal 
gyrus, triangular part  

Right Inferior frontal 
gyrus, triangular part 

  Left insula 
Left anterior cingulate 

gyrus 
Left anterior cingulate 

gyrus 
Left anterior cingulate 

gyrus 
Right hippocampus   

Right cuneus  Right cuneus 
Left lingual gyrus   

Right superior 
occipital gyrus   

  Left fusiform gyrus 
Right Precuneus  Right Precuneus 

 
Left lenticular nucleus, 

putamen  
 

Table 6: The significant nodes of the traditional network at different FDRs. Red indicates 
patients have a greater value, blue indicates that controls have a greater value.  

 Degree Centrality Betweenness 
Centrality 

Eigenvector 
Centrality 

10% 
FDR 

    Right Frontal Superior 
Orbital Gyrus 

    Right Frontal Mid 
Orbital Gyrus 

  Left Rectus   

Right Rectus Right Rectus  
Right Rectus 
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 Degree Centrality Betweenness 
Centrality 

Eigenvector 
Centrality 

    Right Precuneus 

    Right Paracentral 
Lobule 

25% 
FDR 

Right Frontal Superior 
Gyrus   Right Frontal Superior 

Gyrus 
Left Frontal Superior 

Orbital Gyrus   Left Frontal Superior 
Orbital Gyrus 

Right Frontal Superior 
Orbital Gyrus   Right Frontal Superior 

Orbital Gyrus 
Left Frontal Mid Gyrus     

Right Frontal Mid 
Gyrus   Right Frontal Mid 

Gyrus 
Left Frontal Mid 

Orbital Gyrus   Left Frontal Mid 
Orbital Gyrus 

Right Frontal Mid 
Orbital Gyrus   Right Frontal Mid 

Orbital Gyrus 
Right Frontal Inferior 

Orbital Gyrus   Right Frontal Inferior 
Orbital Gyrus 

Left Frontal Superior 
Medial Gyrus   Left Frontal Superior 

Medial Gyrus 
Right Frontal Medial 

Orbital Gyrus     

Left Rectus Left Rectus Left Rectus 
Right Rectus Right Rectus Right Rectus 

  Left Cingulum Ant   
Right Cingulum Ant   Right Cingulum Ant 
Right Cingulum Mid   Right Cingulum Mid 
Left Hippocampus   Left Hippocampus 
Left Lingual Gyrus   Left Lingual Gyrus 

Right Lingual Gyrus Right Lingual Gyrus Right Lingual Gyrus 
Right Inferior Occipital   Right Inferior Occipital 

Right Fusiform Right Fusiform Right Fusiform 
Right Postcentral   Right Postcentral 

Left SupraMarginal   Left SupraMarginal 
Right Precuneus   Right Precuneus 
Right Paracentral 

Lobule   
Right Paracentral 

Lobule 
Right Pallidum   Right Pallidum 
Right Thalamus   Right Thalamus 
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 Degree Centrality Betweenness 
Centrality 

Eigenvector 
Centrality 

    
Left Temporal Mid 

Gyrus 

50% 
FDR 

Right Precentral Gyrus   Right Precentral Gyrus 
Left Frontal Superior 

Gyrus     

Right Frontal Superior 
Gyrus   Right Frontal Superior 

Gyrus 
Left Frontal Superior 

Orbital Gyrus   Left Frontal Superior 
Orbital Gyrus 

Right Frontal Superior 
Orbital Gyrus 

Right Frontal Superior 
Orbital Gyrus 

Right Frontal Superior 
Orbital Gyrus 

Left Frontal Mid Gyrus Left Frontal Mid Gyrus Left Frontal Mid Gyrus 
Right Frontal Mid 

Gyrus   Right Frontal Mid 
Gyrus 

Left Frontal Mid 
Orbital Gyrus   Left Frontal Mid 

Orbital Gyrus 
Right Frontal Mid 

Orbital Gyrus 
Right Frontal Mid 

Orbital Gyrus 
Right Frontal Mid 

Orbital Gyrus 
Left Frontal Inferior 

Opercularis 
Left Frontal Inferior 

Opercularis 
Left Frontal Inferior 

Opercularis 
Right Frontal Inferior 

Opercularis 
Right Frontal Inferior 

Opercularis 
Right Frontal Inferior 

Opercularis 
Right Frontal Inferior 

Triangularis   
Right Frontal Inferior 

Triangularis 
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  Left Olfactory   

Right Olfactory Right Olfactory Right Olfactory 
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Medial Gyrus   
Left Frontal Superior 
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 Degree Centrality Betweenness 
Centrality 

Eigenvector 
Centrality 

Left Cingulum Ant Left Cingulum Ant Left Cingulum Ant 
Right Cingulum Ant Right Cingulum Ant Right Cingulum Ant 
Right Cingulum Mid    Right Cingulum Mid  
Left Post Cingulum    Left Post Cingulum  

Right Post Cingulum   Right Post Cingulum 
Left Hippocampus Left Hippocampus Left Hippocampus 

Right Hippocampus    Right Hippocampus  
Left Amygdala   Left Amygdala 

Left Lingual Gyrus Left Lingual Gyrus Left Lingual Gyrus 
Right Lingual Gyrus Right Lingual Gyrus Right Lingual Gyrus 

  Left Mid Occipital    
Right Inferior Occipital   Right Inferior Occipital 

Right Fusiform Right Fusiform Right Fusiform 
Right Postcentral Gyrus   Right Postcentral Gyrus 
Right Superior Parietal 

Gyrus   
Right Superior Parietal 

Gyrus 
Left SupraMarginal Left SupraMarginal Left SupraMarginal 

Right Precuneus   Right Precuneus 
Left Paracentral Lobule    Left Paracentral Lobule  

Right Paracentral 
Lobule  

Right Paracentral 
Lobule  

Right Paracentral 
Lobule  

    Left Caudate  
Left Pallidum   Left Pallidum 

Right Pallidum    Right Pallidum  
Left Thalamus       

Right Thalamus    Right Thalamus  
Right Superior 

Temporal Gyrus   
Rgith Superior 

Temporal Gyrus 
Right Superior 
Temporal Pole    

Right Superior 
Temporal Pole  

Left Mid Temporal 
Gyrus   

Left Mid Temporal 
Gyrus 
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4.4 Clustering Results 

Several studies showed that epilepsy affects brain language networks (Campo et al., 

2013; Vlooswijk et al., 2010; 2011; J. Wang et al., 2013a; You et al., 2011; 2013). In this 

dissertation three graph measures were used as feature vectors in a dual-level clustering 

scheme. Figure 23 part (a) and part (b) illustrate the results of the unsupervised clustering 

for the intensity of activation network and extent of activation network, respectively. 

These results show that the intensity of activation network produced better clustering 

outcomes compared to those produced from the extent of activation network. Table 7

enumerates the confusion matrices of both networks and confirms this observation. The 

table shows that the intensity of activation network clustering has 70% precision, 72.41% 

sensitivity, 70% specificity, and 71.19% accuracy. On the other hand, the extent of 

activation network clustering has 51.52% precision, 58.62% sensitivity, 46.67% 

specificity, and 52.54% accuracy.  

(a)

(b)

Degree Centrality

Betweeness Centrality
Eigenvector Centrality

Final Clustering

Clustered as a Patient

Clustered as a Control

Degree Centrality

Betweeness Centrality
Eigenvector Centrality

Final Clustering

Patients Controls

Patients Controls

Figure 23: Clustering results for (a) intensity of activation network and (b) extent of 
activation network. The first three lines of each subfigure illustrate the results of the self-
organizing maps for the: degree centrality, betweenness centrality, and eigenvector 
centrality feature vectors in order. The last line shows the final and second level k-means 
clustering results. The subjects on the left side are patients and the subjects on the right 
side are controls. A red square represents a subject clustered as a patient; whereas, a blue 
square represents a subject clustered as a control. 
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Figure 24: The first two principal components of the different centrality measures. (a) 
The degree centrality of the extent of activation network. (b) The degree centrality of 
the intensity of activation network. (c) The betweenness centrality of the extent of 
activation network. (d) The betweenness centrality of the intensity of activation 
network. (e) The eigenvector centrality of the extent of activation network. (f) The 
eigenvector centrality of the intensity of activation network.
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Table 7: Clustering confusion matrix for the intensity of activation and extent of 
activation networks. 

Intensity of Activation 
 

Extent of Activation 

  
Clustered as 

   
Clustered as 

A
ct

ua
l   Patients Controls 

 

A
ct

ua
l   Patients Controls 

Patients 21 8 
 

Patients 17 12 
Controls 9 21 

 
Controls 16 14 

 
Precision 70.00% 

   
Precision 51.52% 

 
 

Sensitivity 72.41% 
   

Sensitivity 58.62% 
 

 
Specificity 70.00% 

   
Specificity 46.67% 

 
 

Accuracy 71.19% 
   

Accuracy 52.54% 
  

The first two principal components of each centrality measure were computed and plotted 

to justify the use of the dual-level clustering system. Figure 24 shows that the first two 

principal components capture between 16% and 18% of the total variance in the data; yet, 

none of the centrality measures in either of the ICA-based networks show separable 

clusters for the patients and controls groups. In other words, the subject groups cannot be 

easily separated by a linear clustering algorithm or even a nonlinear one. Nevertheless, 

the dual-level clustering scheme, which was used instead, was able to achieve decent 

precision values of 70% for the intensity of activation network and 51.52% for the extent 

of activation network. 
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CHAPTER 5 

Discussion 

In this dissertation two novel data-driven network construction methods were introduced, 

and were compared to a traditional method and a modified version of it. These proposed 

methods were used to study the effects of epilepsy on the whole brain language network 

during task. The results showed that epilepsy is associated with network changes where 

the patients showed less efficient networks as compared to controls. These network 

changes did not manifest on the global level but rather on the topological and local nodal 

levels. Topologically, all networks were shown to have small-world network architecture 

with subtle differences between the subject groups. On the local level, the intensity of 

activation based networks showed ipsilateral nodal centrality reorganization. An 

unsupervised clustering system was able to objectively separate the patients and controls 

validating the correlation of epilepsy with the nodal hub reorganization. 

The thresholding scheme used in this dissertation showed a difference between the 

patient and control groups in the ICA-based networks but not in the traditional and 

modified traditional networks. In the ICA-based networks patients had greater area under 

the curve for both construction methods. The greater area under the curve for the patients 

implies that they can achieve the language task with less dense graphs. In other words, 

the patients reach a connected graph with smaller densities than controls. Hence, the 

whole brain language network is less efficient in patients compared to controls. Controls 

tend to compartmentalize the brain into several smaller connected components as 
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opposed to employing the whole brain to achieve a single language task. This decrease in 

efficiency agrees with other studies that demonstrated effects of epilepsy on memory 

networks (Campo et al., 2013; Vlooswijk et al., 2011; Voets et al., 2009), on resting state 

networks (Bettus et al., 2010; 2009; Doucet et al., 2012; Liao et al., 2010a; Mankinen et 

al., 2012; Morgan et al., 2010; Waites et al., 2006; Z. Zhang et al., 2010), and on 

language networks (Karunanayaka et al., 2011; Vlooswijk et al., 2010).  

Karunanayaka et al., (2011) used a semantic/tone decision fMRI task (Binder et al., 1997) 

to study the different semantic networks, detected by ICA, and their correlation with the 

performed task. They concluded that epilepsy negatively affects the left hemispheric 

language network in patients with left focused temporal lobe epilepsy; furthermore, they 

showed that epilepsy also altered other nodes in the network in both left and right 

temporal lobe epilepsy. Likewise, Vlooswijk et al., 2010 used a covert word-generation 

and text reading paradigms to study the effect of epilepsy on language networks. They 

constructed their networks by connecting highly active regions identified by the model-

dependent GLM analysis. Similar to this dissertation, they reported a decrease in 

functional connectivity in the language areas, and general reduction in language 

performance for patients.  

Unlike these aforementioned studies, the findings presented here are based on whole 

brain functional networks constructed using an auditory decision descriptive task. The 

ICA-based networks were data-driven and proved to be useful at detecting brain 

dynamics while preserving its temporal characteristics throughout task performance. 
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In order to explain the difference that was observed between the patients and controls in 

the ICA-based networks, global network features were assessed for understanding the 

network dynamics and defining its topology; additionally, these global features were 

computed for the traditional and modified traditional methods for comparative purposes. 

For both ICA-based network methods, there was no difference between the subject 

groups except the average clustering coefficient of the extent of activation network. Even 

though the global features of both networks did not explain the patients/controls 

difference observed before, the two networks showed variances. These variances were 

especially obvious in the characteristic path length as the two networks demonstrated 

different path lengths. Similarly, the traditional and modified traditional methods did not 

show any significant difference on the global level. Consequently, the ICA-based 

networks express different information because they were constructed on different bases, 

namely the extent of activation and intensity of activation. 

Moreover, for all network construction methods, the patient and control networks showed 

a small-world network topology. Nonetheless, the extent of activation network showed a 

lower small-world clustering parameter compared to controls indicating the tendency of 

the patients’ network towards a more random network. On the other hand, the intensity of 

activation network did not show any difference between the subject groups. The small-

world network topology has higher information transfer efficiency and better 

synchronization when compared to random networks; hence, the extent of activation 

network showed that patients have reduced information transfer efficiency matching the 

inefficiency that was observed through thresholding. These findings match other studies 
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that find typical and atypical brain networks have a small-world architecture and that 

neurological disorders introduce changes to the network while maintaining the overall 

small-world network architecture (Bernhardt et al., 2011; Hosseini and Kesler, 2013; Z. 

Zhang et al., 2011). 

Regardless of the graph global features and topology, it is unrealistic to assume that 

neurons are optimally and intricately connected knowing the whole brain network 

topology and structure. It is fair, however, to assume that neurons act on a local 

information optimization to achieve a certain task as explained in (Fornito et al., 2013). 

Therefore, three centrality measures were studied to identify the local differences in 

language networks between children with epilepsy and normal controls. 

A node centrality emphasizes its importance as a hub in the brain information highway. 

The different centrality measures used in this dissertation convey certain common, yet 

non-redundant information (Zuo et al., 2012). In this dissertation, the extent of activation 

networks did not reveal shared significant nodes between the centrality measures even at 

the 50% false discovery rate. On the other hand, the intensity of activation networks 

highlighted several shared significant nodes. Similarly, the traditional networks showed 

several shared nodes between the centrality measures across different FDR rates as 

opposed to the modified traditional method that showed no significant local difference 

even at high FDR rates. 
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In the intensity of activation network the shared significant nodes showed an interesting 

phenomenon where the left hemispheric nodes had greater centrality values for the 

patients while the right hemispheric nodes displayed greater centrality values for the 

controls. This observation might be attributed to the effect of pediatric epilepsy on the 

reorganization of the language network (You et al., 2013; 2011). On the other hand, the 

significant nodes exhibited by the traditional method seemed to be randomly organized 

with no regulated pattern. It was also shown that language laterality was not correlated 

with this nodal reorganization in the intensity of activation network; however, the small 

number of subjects with atypical right language laterality might have biased the 

observation. 

To verify that the local centrality differences were associated with focal epilepsy, the 

three centrality measures were used as input vectors to an unsupervised clustering 

system. The data-driven clustering system was not able to correctly group the subjects 

into patients and controls for the extent of activation network as demonstrated in Figure 

23. These results matched the lack of significant hub difference. On the other hand, the 

intensity of activation network yielded clusters with fair precision, which is close to other 

studies that reported precision values around 75% in: epilepsy (J. Zhang et al., 2012), 

attention-deficit hyperactivity disorder (Colby, 2012; Dai et al., 2012), autism (Anderson 

et al., 2011), Alzheimer’s disease (Chen et al., 2011; J. Wang et al., 2013b), 

schizophrenia (Bassett et al., 2012), and unipolar or severe depression (Lord et al., 2012; 

Zeng et al., 2012).  
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It was shown that neither of the centrality measures could achieve acceptable clustering 

results alone; in addition, the first principal components of these centrality measures did 

not show any separable or grouped subject clusters. Therefore, the dual-level clustering 

system that was based on the SOM neural networks and the k-means algorithm was 

necessary to achieve the fair precision values noted above. 

Consequently, as in previous studies (You et al., 2013; 2011), it can be concurred that 

pediatric epilepsy can cause, or is associated with, local hub shifts in the language 

network, similar to the shifts shown in the intensity of activation network. 
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CHAPTER 6 

Conclusion and Future Work 

In retrospect to the research aims of this dissertation, new functional brain network 

construction methods were introduced. The networks were then analyzed using graph 

theory to investigate the posed research questions. Pediatric epilepsy was shown to be 

associated with language network inefficiency. The source of this inefficiency was not a 

change on the global level of the network but rather on the local level. The local level 

changes were shown to be as ipsilateral hub reorganization. Furthermore, pediatric 

epilepsy did not affect the language networks topology and it was shown to have small-

world network characteristics similar to those of normal controls.  

The data-driven network construction methods were novel in that they assumed a brain 

network with independent compartments communicating with each other in a network 

mode. The communication patterns, or edges, were based on different aspects associated 

with achieving a certain task. The identification of the communication patterns was 

performed without any a priori assumptions or models. Furthermore, the methods 

allowed network construction on the individual level. In other words, each individual 

subject had individual networks in accordance with the methods used. This individual 

granularity is clinically important because it can help in early detection of the disease or 

even in studying the effects of certain medications on the overall brain function for 

individual subjects. 
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Pediatric epilepsy is a progressive network disease. The main findings of the dissertation 

concurred that the disease induces local network shifts while preserving the global and 

topological features. This global feature preservation masks the local shifts and makes it 

harder to understand the causes of the disease; hence, graph theoretical analysis was 

proven to be a valuable framework for studying such latent changes. 

Future investigations on this research endeavor should not be limited to language 

networks. For example, the methodology used to construct the networks can be utilized 

with memory networks or even resting state networks, which are perceived by the 

scientific community as major research initiatives. In addition, the procedure can be used 

to explore the effects of other neurological syndromes on different functional networks. 

For instance, the functional networks can be used to study the effects of Alzheimer’s 

disease on the different memory networks, or the effects of autism on certain cognitive 

networks and functions. 

The analyses performed in this dissertation can be also extended to study pediatric 

epilepsy as an attack on the functional network. For example, if the major network hubs 

in controls subjects can be removed, then the overall network performance can be 

compared to that of patients to determine any similarities or differences. This approach 

might help in identifying epileptogenic zones in focal epilepsy. Such network attacks can 

be also performed on structural networks to study the functional/structural network 

coupling. For instance, identifying key structural hubs then removing these hubs from the 
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functional networks can help in predicting the functional/structural network linkage in 

direct relation to the neurological disorder.  
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Appendices 

Appendix I 

Table 8: Detailed demographics information for patients and controls. 

Hospital Subject ID Subject 
Type 

Age at study 
Gender Handedness 

Years Months 

BCCH BCCH_11 Patient 13 8 Female Right 
BCCH BCCH_12 Patient 12 7 Male Left 
BCCH BCCH_13 Patient 15 9 Male Right 
BCCH BCCH_14 Patient 11 3 Male Left 
BCCH BCCH_20 Patient 9 8 Male Right 
BCCH BCCH_22 Patient 11 8 Male Unknown 
BCCH BCCH_23 Patient 15 3 Female Right 
BCCH BCCH_29 Patient 12 3 Male Right 
BCCH BCCH_30 Patient 13 7 Male Right 
BCCH BCCH_31 Patient 16 3 Female Right 
BCCH BCCH_33 Patient 12 8 Female Right 
BCCH BCCH_34 Patient 14 2 Female Right 
BCCH BCCH_35 Patient 16 10 Female Unknown 
BCCH BCCH_36 Patient 13 2 Male Left 
BCCH BCCH_37 Patient 13 0 Female Right 
BCCH BCCH_38 Patient 16 6 Male Left 
BCCH BCCH_39 Patient 15 8 Female Right 
BCCH BCCH_40 Patient 10 11 Female Right 
BCCH BCCH_41 Patient 18 0 Male Right 
BCCH BCCH_43 Patient 10 3 Male Right 
BCCH BCCH_44 Patient 18 0 Male Left 
BCCH BCCH_45 Patient 16 4 Female Left 
BCCH BCCH_6 Patient 13 2 Female Right 
BCCH BCCH_8 Patient 13 2 Male Right 
CNMC CNMC_320 Patient 12 3 Female Right 
CNMC CNMC_331 Patient 11 5 Female Right 
CNMC CNMC_333 Patient 11 5 Female Right 
CNMC CNMC_82 Patient 18 9 Male Right 
CNMC CNMC_84 Patient 13 5 Male Right 
CNMC CNMC_105 Control 15 5 Female Right 
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Hospital Subject ID Subject 
Type 

Age at study 
Gender Handedness 

Years Months 

CNMC CNMC_106 Control 10 0 Male Right 
CNMC CNMC_108 Control 10 6 Male Right 
CNMC CNMC_111 Control 10 8 Male Right 
CNMC CNMC_113 Control 11 0 Female Right 
CNMC CNMC_120 Control 11 7 Male Right 
CNMC CNMC_121 Control 10 3 Male Right 
CNMC CNMC_127 Control 11 4 Male Right 
CNMC CNMC_139 Control 11 2 Male Right 
CNMC CNMC_140 Control 12 6 Female Right 
CNMC CNMC_141 Control 12 0 Female Right 
CNMC CNMC_147 Control 10 5 Female Right 
CNMC CNMC_151 Control 12 5 Female Right 
CNMC CNMC_166 Control 11 2 Female Right 
CNMC CNMC_170 Control 10 8 Female Right 
CNMC CNMC_171 Control 12 0 Male Right 
CNMC CNMC_172 Control 11 8 Male Right 
CNMC CNMC_175 Control 10 4 Male Right 
CHOA CHOA_1 Control 18 1 Female Unknown 
CHOA CHOA_10 Control 15 9 Female Unknown 
CHOA CHOA_11 Control 12 10 Male Unknown 
CHOA CHOA_12 Control 16 3 Female Unknown 
CHOA CHOA_2 Control 17 3 Male Unknown 
CHOA CHOA_3 Control 15 1 Male Unknown 
CHOA CHOA_4 Control 18 7 Female Unknown 
CHOA CHOA_5 Control 20 1 Female Unknown 
CHOA CHOA_6 Control 16 5 Male Unknown 
CHOA CHOA_7 Control 16 5 Male Unknown 
CHOA CHOA_8 Control 15 10 Male Unknown 
CHOA CHOA_9 Control 16 4 Female Unknown 

 

BCCH: British Columbia’s Children’s Hospital  

CNMC: Children’s National Medical Center 

CHOA: Children’s Healthcare of Atlanta 
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Appendix II 

Table 9: Detailed seizure information 

Patient ID 

Epilepsy 

Seizure Type 

Seizure 
Etiology 

Seizure History 
Seizure focus (based on 

clinical, semiology, 
imaging, EEG, vEEG) 

Localization 
Related 

Primary 
Generalized 

Age at 
provoked 

seizure 

Age at 
first 

seizure 

Age at 
habitual 
seizure 
onset 

Hemisphere Lobe 

BCCH_11 

Simple + 
Complex 
partial seizure 

None Cryptogenic 0.75 0.75 0.75 R Hemi Frontal-
Parietal 

BCCH_12 
Simple partial 
seizure None Remote 

Symptomatic 10 10 10 L Hemi Frontal 

BCCH_13 

Secondary 
generalized 
seizure 

None Remote 
Symptomatic Unknown Unknown 7 L Hemi Parietal 

BCCH_14 
Complex 
partial seizure None Remote 

Symptomatic 4 4 7 L Hemi Temporal-
Parietal 

BCCH_20 
Complex 
partial seizure None Remote 

Symptomatic 4 4 4 L Hemi Frontal 

BCCH_22 
Complex 
partial seizure None Cryptogenic Unknown 1.5 1.5 L Hemi Frontal-

Parietal 

BCCH_23 
Complex 
partial seizure None Remote 

Symptomatic Unknown 11.75 11.75 L Hemi Temporal 

BCCH_29 
Simple partial 
seizure Tonic-clonic Cryptogenic Unknown 3 9 L Hemi Insular 
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Patient ID 

Epilepsy 

Seizure Type 

Seizure 
Etiology 

Seizure History 
Seizure focus (based on 

clinical, semiology, 
imaging, EEG, vEEG) 

Localization 
Related 

Primary 
Generalized 

Age at 
provoked 

seizure 

Age at 
first 

seizure 

Age at 
habitual 
seizure 
onset 

Hemisphere Lobe 

BCCH_30 
Complex 
partial seizure Tonic-clonic Remote 

Symptomatic Unknown 9 9 L Hemi Temporal 

BCCH_31 
Complex 
partial seizure None Remote 

Symptomatic Unknown 6.6 6.6 L Hemi Parietal-
Occipital 

BCCH_33 

Simple + 
Complex 
partial seizure 

Tonic-clonic Remote 
Symptomatic Unknown 12 12 L Hemi Temporal 

BCCH_34 

Simple + 
Complex 
partial seizure 

None Cryptogenic Unknown 12.4 13 R Hemi Frontal 

BCCH_35 
Complex 
partial seizure 

Generalized 
Motor Cryptogenic Unknown 1 15 L Hemi Frontal-

Parietal 

BCCH_36 
Complex 
partial seizure None Remote 

Symptomatic Unknown 0.6 7.5 L Hemi Temporal 

BCCH_37 
Simple partial 
seizure None Remote 

Symptomatic 4 4 7 L Hemi Frontal 

BCCH_38 
Complex 
partial seizure None Remote 

Symptomatic Unknown 1 15 L Hemi Frontal 

BCCH_39 

Simple + 
Complex 
partial seizure 

None Remote 
Symptomatic Unknown 13 14 L Hemi Temporal 

BCCH_40 Complex None Remote Unknown 0.003 10 L Hemi Temporal 
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Patient ID 

Epilepsy 

Seizure Type 

Seizure 
Etiology 

Seizure History 
Seizure focus (based on 

clinical, semiology, 
imaging, EEG, vEEG) 

Localization 
Related 

Primary 
Generalized 

Age at 
provoked 

seizure 

Age at 
first 

seizure 

Age at 
habitual 
seizure 
onset 

Hemisphere Lobe 

partial seizure Symptomatic 

BCCH_41 
Simple partial 
seizure None Cryptogenic Unknown 1.5 14 R Hemi Frontal 

BCCH_43 
Simple partial 
seizure None Remote 

Symptomatic Unknown 9 10 L Hemi Temporal 

BCCH_44 
Simple partial 
seizure None Cryptogenic Unknown 13.5 15 Bilateral Frontal 

BCCH_45 

Simple + 
Complex 
partial seizure 

None Cryptogenic Unknown 6 7 L Hemi Parietal 

BCCH_6 
Complex 
partial seizure None Cryptogenic 0.25 0.25 8 L Hemi Parietal 

BCCH_8 
Complex 
partial seizure None Cryptogenic 8 8 8 L Hemi Parietal 

CNMC_320 
Complex 
partial seizure Unknown Cryptogenic Unknown 8 8 L Hemi Parietal 

CNMC_331 Unknown Unknown Remote 
Symptomatic Unknown 1 1 L Hemi Neocortical 

Temporal 

CNMC_333 
Complex 
partial seizure Unknown Remote 

Symptomatic Unknown 6 6 L Hemi Parietal 

CNMC_82 
Complex 
partial seizure Unknown Remote 

Symptomatic Unknown 14 14 L Hemi Temporal 
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Patient ID 

Epilepsy 

Seizure Type 

Seizure 
Etiology 

Seizure History 
Seizure focus (based on 

clinical, semiology, 
imaging, EEG, vEEG) 

Localization 
Related 

Primary 
Generalized 

Age at 
provoked 

seizure 

Age at 
first 

seizure 

Age at 
habitual 
seizure 
onset 

Hemisphere Lobe 

CNMC_84 
Simple partial 
seizure Unknown Unknown Unknown 6 6 R Hemi Unknown 

 

 



 86 

Appendix III 

Table 10: Detailed surgery information 

Patient ID 
Surgery 

Had 
Surgery? Surgery Type Surgery Location 

[Left/Right] 

BCCH_11 No   
BCCH_12 Yes Left frontal resection x 2 Left 
BCCH_13 No   
BCCH_14 No   
BCCH_20 No   
BCCH_22 Yes Vagus nerve stimulation  
BCCH_23 Yes Left temporal resection + part 

hippocampus Left 

BCCH_29 No   
BCCH_30 No   
BCCH_31 Yes Left parieto-occipital resection Left 
BCCH_33 No   
BCCH_34 Yes Right frontal resection Right 
BCCH_35 Yes Ant 2/3 callosotomy  
BCCH_36 No   
BCCH_37 Yes Left frontal resection Left 
BCCH_38 Yes Corpus callosotomy  
BCCH_39 No   
BCCH_40 Yes Left temporal resection x 2 Left 
BCCH_41 No   
BCCH_43 No   
BCCH_44 No   
BCCH_45 No   
BCCH_6 Yes Left parietal, temporal, occipital 

resection Left 

BCCH_8 Yes Vagus nerve stimulation  
CNMC_320 No   
CNMC_331 No   
CNMC_333 Yes Extra-temporal Resection Left 

CNMC_82 Yes Resection of Left Occipital 
Lesion Left 

CNMC_84 No   
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