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ABSTRACT OF THE DISSERTATION 

NOVEL ANALYTICAL METHODOLOGIES FOR THE MONITORING OF 

TRADITIONAL AND NON-TRADITIONAL POLLUTANTS IN DIFFERENT 

ENVIRONMENTAL COMPARTMENTS OF SOUTH FLORIDA 

by 

Cesar E. Ramirez 

Florida International University, 2013 

Miami, Florida 

Professor Piero R. Gardinali, Major Professor 

Routine monitoring of environmental pollution demands simplicity and speed 

without sacrificing sensitivity or accuracy. The development and application of sensitive, 

fast and easy to implement analytical methodologies for detecting emerging and 

traditional water and airborne contaminants in South Florida is presented. A novel 

method was developed for quantification of the herbicide glyphosate based on 

lyophilization followed by derivatization and simultaneous detection by fluorescence and 

mass spectrometry. Samples were analyzed from water canals that will hydrate estuarine 

wetlands of Biscayne National Park, detecting inputs of glyphosate from both aquatic 

usage and agricultural runoff from farms. A second study describes a set of fast, 

automated LC-MS/MS protocols for the analysis of dioctyl sulfosuccinate (DOSS) and 2-

butoxyethanol, two components of Corexit®. Around 1.8 million gallons of those 

dispersant formulations were used in the response efforts for the Gulf of Mexico oil spill 

in 2010. The methods presented here allow the trace-level detection of these compounds 

in seawater, crude oil and commercial dispersants formulations.  
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In addition, two methodologies were developed for the analysis of well-known 

pollutants, namely Polycyclic Aromatic Hydrocarbons (PAHs) and airborne particulate 

matter (APM). PAHs are ubiquitous environmental contaminants and some are potent 

carcinogens. Traditional GC-MS analysis is labor-intensive and consumes large amounts 

of toxic solvents. My study provides an alternative automated SPE-LC-APPI-MS/MS 

analysis with minimal sample preparation and a lower solvent consumption. The system 

can inject, extract, clean, separate and detect 28 PAHs and 15 families of alkylated PAHs 

in 28 minutes. The methodology was tested with environmental samples from Miami.  

Airborne Particulate Matter is a mixture of particles of chemical and biological origin. 

Assessment of its elemental composition is critical for the protection of sensitive 

ecosystems and public health. The APM collected from Port Everglades between 2005 

and 2010 was analyzed by ICP-MS after acid digestion of filters. The most abundant 

elements were Fe and Al, followed by Cu, V and Zn. Enrichment factors show that 

hazardous elements (Cd, Pb, As, Co, Ni and Cr) are introduced by anthropogenic 

activities. Data suggest that the major sources of APM were an electricity plant, road 

dust, industrial emissions and marine vessels.     
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1. GENERAL INTRODUCTION 

South Florida is a globally recognized tourist destination and also a preferred 

retirement location for senior citizens of the United States. Thus, protection of the local 

environment to preserve the health of residents and to protect enjoyable natural resources 

that are part of the local attractions is of utmost economic importance. It is also a unique 

geographical unit in which an ever-growing urban population, large port and airport 

facilities, mining industries and agricultural areas are competing for natural resources 

such as water with two large national parks and several other protected lands. These 

ecosystems are in constant threat from pollution generated by the aforementioned local 

anthropogenic activities. On a more regional scale, the Gulf of Mexico coast also offers 

touristic destinations and seafood resources that are in constant threat from large scale oil 

extraction activities. These anthropogenic disturbances are responsible for the 

introduction of waterborne pollutants that can affect coastal ecosystems. Lastly, global 

scale phenomena also affect the environmental quality of South Florida. The region is a 

recipient of transatlantic transport of mineral dust from Northern Africa, volcanic ashes 

from the Caribbean Islands and mineral material from other regions of the United States 

such as loess from the Mississippi River valley (Muhs et al., 2007).  These factors have 

an impact on local air quality.       

The Environmental Analysis Research Laboratory at Florida International 

University (EARL-FIU) is part of the Southeast Environmental Research Center (SERC), 

and it has been active in the development of robust, sensitive, easy to implement and cost 

effective analytical methodologies, to monitor the occurrence, provenance and fate of 
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chemical pollutants by analyzing different compartments of the local environment such 

as soil, water and biological tissue. In that scope, the dissertation presents the results of 

four different research projects that contributed new sensitive and easy to implement 

analytical methodologies, which targeted both traditional and emerging environmental 

problems.  

The herbicide glyphosate is used for different maintenance activities in canals 

managed by the South Florida Water Management District. The construction of new 

infrastructure to divert these waters to hydrate coastal wetlands of Biscayne National 

Park is already under way. Large amounts of the herbicide could potentially be 

introduced in that delicate ecosystem. Thus, a novel methodology was developed to 

assess the occurrence and fate of the herbicide and its main metabolite in waters from 

these canals in South Miami-Dade County. 

On April 20th, 2010, the Deepwater Horizon Platform accident triggered a 

massive response effort in the Gulf of Mexico. Concerns about the environmental impact 

of both the accident and the remediation effort were widespread in the population of the 

Gulf States. An unprecedented quantity of oil dispersants was employed, specifically a 

formulation called Corexit®, and at the time there were no analytical methodologies 

available for the detection of its main components, which was a necessity to evaluate the 

fate of these compounds. The analytical challenge was addressed, which resulted in three 

protocols for the trace level determination of two compounds contained in Corexit®, 

namely dioctyl sulfosuccinate (DOSS) and 2-butoxyethanol, in different samples relevant 

for the monitoring of an oil spill monitoring effort. These results were published in 
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Analytical and Bioanalytical Chemistry, and although two other research groups were 

able to submit their methodologies before EARL-FIU, the contribution included in this 

work was the most sensitive, easy to implement, with the fastest sample throughput, and 

also addressed the problems related with DOSS sample stability. The developed 

analytical protocols are currently being used to analyze samples from collaborating 

laboratories and private clients, and also by group collaborators trying to understand the 

fate of DOSS in the environment.   

   Another analytical challenge triggered by the Gulf Oil Spill was the analysis of 

polycyclic aromatic hydrocarbons (PAHs) in surface waters. These analytes are 

ubiquitous in urban environments and many of them are well-known carcinogens, and 

can also find their way into surface waters from accidental releases of crude oil and 

derivates. Analysis of PAHs is usually performed after labor-intensive sample 

preparation techniques, which consume large quantities of toxic solvents and severely 

hinders the ability of laboratories to produce fast results. My work resulted in the 

development of a technique that challenges traditional approaches in terms of speed, 

environmental friendliness and operation costs. The developed methodology allows the 

determination of PAHs in surface waters in virtually real time, and is also being 

employed by EARL-FIU collaborators trying to understand the behavior of PAHs in 

seawater.  

Lastly, EARL-FIU is performing efforts to try to understand the amount of toxic 

elements in particulate matter suspended in the local air, its provenance and the 

contributions of far-traveled mineral dust to the local airborne pollution, producing a 
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record of filtered airborne particulate collections from a local coastal facility since 2005. 

During my investigation, the analysis of a large number of elements in those samples was 

performed, to establish provenance of airborne pollution using statistical analysis and 

also to identify periods of high concentrations of airborne particulate related to long-

range transport of African dust. 

In summary, my dissertation research attempted to answer the following 

questions: 

1. Is the herbicide glyphosate present in the canals that will be used to hydrate 

protected wetlands of the Biscayne National Park? If so, is it a threat to these 

ecosystems? 

2. Is it possible to perform ultra-trace, fast automated analysis of markers of the 

Corexit® dispersant formulations heavily used for the remediation efforts of 

the Gulf of Mexico Oil Spill? Can the analysis be performed on different 

samples relevant for an oil spill monitoring effort, such as seawater, crude oil, 

and also commercial formulations? What are the implications regarding 

sample handling and analyte stability? 

3. Is it possible to develop a fully automated methodology for fast analysis of 

PAHs in surface waters, producing results in almost in real time? How would 

such a methodology compare with the traditional technique in terms of speed 

and sensitivity? Can it be applied to samples relevant for the South Florida 

environment?  
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4. What are the sources of airborne particulate matter in a coastal site of the 

Miami Metropolitan area? What are the air concentrations of toxic metals? Is 

it possible to identify periods of high contributions of far-traveled dust? 

The dissertation is structured in four independent chapters, each of them with an 

introduction presenting a background on the analytical challenge and the relevance of the 

research. Materials, reagents, the instrumentation employed and the developed analytical 

protocols are also presented. A discussion on method development and analysis 

performance on the basis of figures of merit is given along with the practical applications 

to assess pollution levels on the local environment. Emphasis was made on analytical 

simplicity and robustness, with heavy use of automated or unattended preconcentration 

techniques. 
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2. OCCURRENCE OF THE HERBICIDE GLYPHOSATE AND ITS MAIN 

METABOLITE IN CANALS WITH INFLUENCE ON PROTECTED AREAS 

OF THE BISCAYNE NATIONAL PARK 

 

2.1. Introduction 

2.1.1. General background on glyphosate and its main metabolite  

Glyphosate (N-(phosphonomethyl)glycine, CAS number 1071-83-6, figure 2.1) is 

a broad-spectrum herbicide patented in 1974 under the brand “Roundup®” by the 

Monsanto Corporation in the United States. The development of genetically modified, 

glyphosate-resistant crops (GRCs) such as soybean, canola, cotton, maize and alfalfa 

made glyphosate the most used herbicide globally in agricultural activities (Duke & 

Powles, 2008). An approximate 83 million hectares worldwide are planted with GRCs 

and 42 million of them are in the United States (Gianessi, 2008). The ever-increasing 

consumption of glyphosate for agricultural purposes in the U.S. reached 8×107 kg of the 

herbicide in 2007 (active ingredient mass) (Coupe et al., 2012).  

 

Figure 2.1 Structures of glyphosate and its main metabolite, aminomethylphosphonic acid 
(AMPA). 
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Glyphosate interrupts the enzyme-catalyzed conversion of shikimic acid into 

aromatic amino acids (phenylalanine, tyrosine and tryptophan) in plant chloroplasts, a 

process known as the shikimate pathway. As a result, vegetation dies quickly after the 

herbicide application (Steinrucken & Amrhein, 1980). However, how the plant dies from 

the interruption of this process is still a matter of scientific debate (Duke & Powles, 2008; 

Pollegioni et al., 2011). 

Glyphosate absorption by plants is only effective when sprayed on foliage as the 

compound is quickly immobilized in soils thus it cannot reach plant roots (Glass, 1987; 

Rueppel et al., 1977).  Once in soils, glyphosate is quickly biodegraded. The factors 

affecting degradation rates have been summarized in an extensive review (Borggaard & 

Gimsing, 2008). Briefly, two possible pathways of degradation have been identified: one 

produces sarcosine and glycine, while the other produces aminomethylphosphonic acid 

(AMPA, CAS number 1066-51-9, figure 2.1). Because AMPA is usually detected in soils 

and waters where glyphosate has been applied, the AMPA pathway is usually accepted as 

the main degradation process of glyphosate. Degradation rates are highly dependent on 

localized soil composition and bacterial activity. The metabolite is also degraded and 

mineralized by bacterial activity, although field tests demonstrated that biodegradation 

rates are much slower than the parent herbicide (Giesy et al., 2000; Rueppel et al., 1977). 

The extent of the contribution of the sarcosine pathway to the environmental degradation 

of glyphosate is a matter of ongoing scientific debate and the contribution of other 

processes such as photodegradation, volatilization and hydrolysis are considered 

insignificant (Giesy et al., 2000).  
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In recent publications, researchers have shown that the strong adsorption of 

glyphosate to soils and its fast biodegradation does not entirely prevent the occurrence of 

the herbicide and its metabolite in agricultural runoff and their introduction into surface 

waters, especially when glyphosate is applied in porous soils and application is followed 

by heavy rain events (Borggaard & Gimsing, 2008; Imfeld et al., 2013). Coupe detected 

glyphosate and AMPA in almost 100% of samples in basins located in large agricultural 

areas of the United States and France, known to be planted with GRCs, concluding that 

around 1% of all glyphosate applied to GRCs fields reach surface waters, amount that 

varies depending on the local hydrology (Coupe et al., 2012).   

Glyphosate is also used to eradicate undesired terrestrial vegetation in the margins 

of waterways and also emerging aquatic plants in wetlands and estuaries. Thus, in areas 

where such activities are performed glyphosate can enter surface waters directly which 

results in much higher surface water concentrations that would result from agricultural 

runoff alone (Giesy et al., 2000; Solomon & Thompson, 2003). A special formulation of 

glyphosate called Rodeo® (now called Aquamaster®) was introduced for use over and/or 

near aquatic environments. Rodeo is free of the surfactants that are present in regular 

formulations and are intended to increase glyphosate absorption by reducing the surface 

tension between the sprayed droplets and the plant leaves. This is important as toxicities 

of surfactants in regular glyphosate formulations (such as polyethoxylated tallow amine, 

POEA, the surfactant contained in Roundup®) are known to be much higher to aquatic 

organism than glyphosate itself (Giesy et al., 2000; WHO, 1994).  
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Kolpin et al. (2006) pointed out that urban activities are an alternative source of 

glyphosate and AMPA that enter surface waters, albeit in a lower scale than agricultural 

usage and vegetation control. These authors analyzed 40 samples collected from 11 

wastewater treatment plants (WWTPs) discharged effluents and their influenced streams 

in the United States, finding glyphosate in 18% and AMPA in 67% of the collected 

samples with maximum concentrations of 2.2 and 3.9 µg/L, respectively. However, other 

studies have shown  that the presence of AMPA in effluents from WWTPs is attributed to 

degradation of household cleaning phosphonic detergents such as 1-hydroxyethylene-1,1-

diphosphonic acid, ethylendiaminetetra(methylenephosphonic acid) or 

diethylenetriaminepenta(methylenephosphonic acid) (HEDP, EDTMP and DTPMP) 

(Botta et al., 2009; Jaworska et al., 2002; Skark et al. 1998). Thus, the presence of 

WWTPs discharges in study areas should be considered as a possible source of AMPA 

not related to glyphosate usage. 

Glyphosate is highly soluble in water (10-15.7 g/L) (Battaglin et al. 2005). 

However, water mobility is limited as the herbicide is quickly removed from surface 

waters by biodegradation to AMPA (Rueppel et al., 1977) and by adsorption to 

suspended particulate matter and sediments (WHO, 1994). On the basis of a literature 

review of dissipation experiments, Giesy et al. (2000) estimated an average aquatic half-

life of 7-14 days for glyphosate.   

The World Health Organization released an extensive report on the known 

environmental hazards of glyphosate and of its commercial formulations. In that report, 

the most sensitive aquatic organisms to aqueous glyphosate (without surfactants) were 



10 
 
 

green algae and diatoms, with no-observed effect concentrations (NOEC) of 200 and 300 

µg/L, respectively. Acute toxic concentrations (EC50) were 2500 and 1300 µg/L for the 

same organisms (WHO, 1994). Toxic concentrations for other aquatic organisms 

considered in that report (fish, crustaceans) were in the high mg/L levels. 

Aminomethylphosphonic acid is less toxic than glyphosate to aquatic organisms and is 

considered to pose little or no threat to ecosystems. (Giesy et al., 2000). 

Given the toxicity of glyphosate to organisms that form the base of the food 

chain, the occurrence of the herbicide may constitute an important stressor in delicate 

ecosystems such as Biscayne National Park (BNP), which is under the direct influence of 

a large number of canals managed by the South Florida Water Management District 

(SFWMD) (Figure 2.2). The SFWMD canal system is over 1800 miles long and provides 

flood control, water supply, navigation and environmental management over 16 counties 

of the State of Florida. Canal maintenance activities are performed routinely throughout 

the year to allow maximum flow of water during storm events, and include ground, water 

and aerial application of glyphosate to combat the emergence of undesired vegetation. 

The herbicide applications also include larger water bodies of the system such as Lake 

Okeechobee and the Everglades Storm Treatment Areas (Ferriter et al., 2006; Galloway, 

2009; James & Zhang, 2011; SFWMD, 2010).  
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Figure 2.2 Location of the coastal canals in the vicinity of BNP, managed by the 
SFWMD in southern Miami-Dade County.1 

 

In addition, these canals go through agricultural areas in southern Miami-Dade 

County. Agricultural use of glyphosate for weed control is also an important source of 

this compound into the local environment, as glyphosate was the main herbicide for 

                                                
1 Satellite images throughout text were prepared using Google Earth®. 
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agricultural purposes in Florida between 2007 and 2009 (FDACS, 2010), and is used in 

weed management by tropical fruit farms in southern Miami-Dade County (Mossler & 

Nesheim, 2011).  

As part of the Biscayne Bay Coastal Wetlands (BBCW) project included in the 

Comprehensive Everglades Restoration Plan (CERP), these canals will be employed as a 

source of freshwater to restore historical freshwater flow to coastal wetlands that are 

currently stressed by alternating low salinity and hypersaline conditions (SFWMD & 

USACE, 2011). The construction of four new culverts in the L-31E canal levee was 

already completed in April, 2010 and freshwater discharge to wetlands north of the C-103 

canal has already started (Apple & Shaffer, 2010). Other projected works during the 

initial phase CERP include the construction of a canal to transfer water from the C-1 

canal into coastal wetlands east of the South District WWTP (see figure 2.3).  

As proposed by Schuler and Rand, the increased supply of freshwater into 

protected areas affected by CERP may also represent an increased input of herbicides 

from agriculture and urban activities, which may pose a threat to the primary producers 

that are the base of the food chain (Schuler & Rand, 2008). Given the extensive 

applications of glyphosate for system-wide vegetation eradication and the presence of 

agricultural areas in the vicinity of the canals, freshwater discharged into the protected 

areas of the BNP have the potential of introducing large amounts of glyphosate and its 

main metabolite into these fragile ecosystems.  
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Figure 2.3 Projected construction works during Phase 1 of the BBCW project to allow the 
use of freshwater to hydrate coastal wetlands in the Biscayne Bay. (LEFT) Hydration of 
wetlands between C-102 and North Canal. 1, 2, 5, 6, 7: Pump stations; 3: inverted siphon 
to isolate L-31E from the Military canal; 4: Flap gated culverts. (RIGHT) Projected 
spreader canal to hydrate wetlands in the vicinity of the South District WWTP. 1: Pump 
station; 2: new conveyance canal from C-1 to spreader canal; 3: box culvert at L-31E; 4: 
new spreader canal (13,160 linear feet); 5: Remnant mosquito ditches that will be 
plugged.  Image modified from Apple and Shaffer (2010). 

 

The SFWMD maintains a large pesticide monitoring program on these canals, and 

although glyphosate is the most used herbicide in Florida it is not included in that effort 

(Pfeuffer, 2011). Therefore, glyphosate and AMPA are potential candidates to be 

included in such monitoring programs, and a simple, sensitive analytical methodology 

would be a desirable tool to achieve this task in large regional efforts. 
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2.1.2. Background on the analysis of glyphosate and AMPA in 

environmental waters 

In aqueous solutions, glyphosate and AMPA are either ions or zwitterions 

regardless of pH (see figure 2.4). Therefore, these molecules are highly hydrophilic, non-

volatile and insoluble in most organic solvents. Nevertheless, a number of methodologies 

to analyze glyphosate and AMPA in environmental waters by gas chromatography (GC) 

after derivatization followed by liquid-liquid extraction, extract clean-up and 

concentration steps were developed right after the introduction of the herbicide, and 

reports until the end of the previous century have been summarized elsewhere (Stalikas & 

Konidari, 2001). Since glyphosate and AMPA have the phosphonate moiety in their 

structure, the main advantage of GC methodologies is the use of the selective 

nitrogen/phosphorus detector (NPD). However, low sample throughput and extraction 

efficiencies make GC methodologies unsuitable for routine analysis of glyphosate and 

AMPA in environmental waters.  

In contrast, liquid chromatography (LC) is compatible with aqueous injections 

and has been more favored in the literature for the analysis of these hydrophilic 

compounds. Still, the absence of fluorophore or chromophore moieties prompted the 

development of derivatization methodologies to enable the use of mainstream detection 

techniques such as fluorescence (FLD). A summary of references of previously reported 

methodologies to analyze glyphosate and AMPA in waters is presented in table 2.1.  
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Figure 2.4 Structures of the different protonation states of glyphosate and AMPA and pKa 
values. (Ramstedt et al, 2004; You & Koropchak, 2003). 

 

An ion exchange liquid chromatography method with post column derivatization 

using o-phtalaldehyde-2-mercaptoethanol (OPA-ME) was introduced by Moye for the 

analysis of vegetable extracts (Moye et al., 1983), and derived in a USEPA method for 

the analysis of drinking water (USEPA, 1990). However, post-column derivatization 

required specialized instrumentation and was later replaced by easier to implement 

techniques. The same research group introduced 9-fluorenylmethylchloroformate 

(FMOC-Cl, figure 2.5) as a pre-column, highly fluorescent derivatizing reagent for the 

analysis of glyphosate and AMPA in waters by LC-FLD (Miles et al., 1986; Moye & 

Boning, 1978).  
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Table 2.1 Summary of liquid chromatography methodologies available in the literature for the analysis of glyphosate and AMPA 
in waters.   

Reference Water 
typea 

Deriv. 
reagent PC SPE 

moded SPE Sorbent 
Sample 

size 
(mL) 

LC 
moded 

Stat. 
phase Det. GLYP 

MDLg 
AMPA 
MDLg 

Miles (1986)  S FMOC-Cl Rotoevap. - - 100 IE NH2 FLD 10 10 
USEPA (1990) D OPA-ME None - - 0.2 IE NH2 FLD 8.99 n.a. 
Oppenhuizen (1991) S OPA-ME Rotoevap. - - 250 IE NH2 FLD 1 1 
Sancho (1996) S FMOC-Cl None - - 2 RP+IE C18/NH2 FLD 1 1 
Mallat (1998) S OPA-ME SPE IE LiChrolut EN 50 IE NH2 FLD 2 4 
Vreeken (1998) S, D FMOC-Cl Online SPE IE PLRP-S 4 RP C18 MS 0.05 0.05 
Le Fur (2000) S FMOC-Cl None - - 0.05 IE NH2 FLD 0.1 0.1 
Patsias (2001) S, G OPA-ME Online SPE IE PRP-X100 100 IE Polymeric FLD 0.02 0.1 
Grey (2001) S, D, G FMOC-Cl Rotoevap. - - 50 RP C18 MS 0.06 0.3 
Le Bot (2002) S FMOC-Cl None - - 0.05 IE NH2 FLD 0.04 0.06 
Lee (2002) S, G FMOC-Cl Online SPE RPe Oasis HLB 5 RP C18 MS 0.084 0.078 
You (2003) S None None - - 0.1 IE NH2 CNLSh 41 53 
Hidalgo (2004) S FMOC-Cl None - - 0.30 RP+IE C18/NH2 FLD 0.1 0.1 
Nedelkoska (2004) S FMOC-Cl None - - n.a. IE NH2 FLD 0.16 0.16 
Guo (2005) D, G None None - - 0.5 IE QAe ICP-MS 0.7 0.7 
Ibanez (2005) S, G FMOC-Cl Online SPE RP Oasis HLB 4 RP C18 MS/MS 0.005 0.005 
Corbera (2006) S FMOC-Cl SPE IE Amberlite 100 IE NH2 FLD 0.1 0.3 
Coutinho (2008) S None None - - 0.02 IE QA EC 38 240 
Hanke (2008) S FMOC-Cl SPE RP Strata X 80 RP C18 MS/MS 0.0007 0.0008 
Qian (2009) S CNBFb None - - 0.02 RP C18 UV-VIS 9 n.a. 
Kusters (2010) D FMOC-Cl Rotoevap. - - 250 RP C18 FLD 0.012 0.014 
Sun (2010) S MOBS-Fc Rotoevap. - - 100 RP C18 UV-VIS 0.1 0.1 
Hao (2011) S, G, D None None - - 0.07 MMf R-NH2 MS/MS 1.5 3.9 

aWater type: S: surface waters; D: drinking water; G: groundwater. bCNBF: 4-chloro-3,5-dinitrobenzotrifluoride. cMOBS-F: -methoxybenzenesulfonyl fluoride. d IE: Ion-

exchange; RP: reverse phase. eQA: Quaternary ammonium. fMM: mixed mode (reverse phase + weak ion exchange). gReported MDL or LOD in µg/L. hCNLS: Condensation 

Nucleation Light scattering. 
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Figure 2.5 Derivatization with 9-fluorenylmethylchloroformate. 

 

The FMOC-Cl reaction is fast, compatible with water and is performed at room 

temperature without any special instrumentation prior to injection in the LC system. The 

addition of the large size, non-polar FMOC moiety to glyphosate and AMPA makes the 

retention of these compounds in reverse-phase columns possible, using stationary phases 

such as C8 and C18. These are more resistant to hydrolysis and therefore last much 

longer than columns with amino moieties traditionally used in ion-exchange 

chromatography (Ibanez et al., 2005; Le Fur et al., 2000). These advantages have made 

FMOC-Cl the most frequently used reagent for derivatization of glyphosate and AMPA, 

despite some drawbacks such as the very favorable side reaction with water to produce a 

large excess of FMOC-OH. The side product needs to be either removed before injection 

by cleanup steps or chromatographically resolved from the analytes before detection. 

Another drawback is that the FMOC-Cl reagent will react with any compound in the 

derivatization mixture that contains a primary or secondary amine, which can potentially 

introduce interferences that will also need to be chromatographically resolved for 

fluorescence detection. To overcome this challenge, the use of tandem mass spectrometry 

(MS/MS) as a selective tool to detect glyphosate-FMOC and AMPA-FMOC was 
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previously demonstrated (Hanke et al., 2008; Ibanez et al., 2005) and is an alternative for 

laboratories with such capabilities.  

As shown in table 2.1, preconcentration has been previously performed by solid-

phase extraction (SPE) operating either in ion-exchange (IE) mode or in reverse-phase 

(RP) mode after FMOC-Cl derivatization. Hanke et al. (2008) obtained the highest 

sensitivity in all reported methods to date by performing SPE in RP mode after 

derivatization with FMOC-Cl with a careful optimization of all parameters of 

derivatization, preconcentration and MS/MS detection. Ultra-trace SPE methodologies 

such as the latter suffer from a low sample throughput given the multiple steps involved, 

and can also require well trained analysts and expensive consumable materials.  

A considerable sample throughput increase can be obtained by using online-SPE 

methodologies. However, the instrumentation used can be expensive and difficult to 

operate, especially methodologies involving ion exchange online-SPE which require 

automated loading of disposable SPE cartridges with systems such as the 

Symbiosis/Prospekt™ used by Vreeken et al. (1998), Patsias et al. (2001) and Lee et al. 

(2002), the latter being the official U.S. Geological Survey (USGS) methodology for 

glyphosate and AMPA. Additionally, reported sensitivities were not as high as offline 

SPE methods. Some authors have also reported that retention of underivatized AMPA in 

ion-exchange SPE cartridges is overall much lower than glyphosate, resulting in a low 

sensitivity for this analyte (Corbera et al., 2006; Patsias et al., 2001).  

The use of less complicated techniques with a high sample throughput and lower 

operation costs may be more desirable for routine monitoring of these analytes. A simple 
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alternative preconcentration method previously reported is water removal by 

rotoevaporation, taking advantage of the very low vapor pressure of these analytes 

(4.3×10-10 mmHg at 25°C for glyphosate) (Battaglin et al., 2005). Since no special 

instrumentation or consumables such as SPE cartridges and organic solvents are needed, 

rotoevaporation is a low-cost technique, although not free of disadvantages. Sample 

throughput is low as the number of rotoevaporators available limits the amount of 

samples than can be treated simultaneously. In addition, it has been demonstrated that 

glyphosate has an elevated affinity for glass surfaces, and severe analyte losses will occur 

if the molecule is put into contact with glassware before any derivatization steps (Miles et 

al., 1986), making necessary the use of silanization agents to pretreat rotoevaporation 

glassware (Grey et al., 2001).  

Lyophilization is an alternative drying technique in which water is sublimated 

from frozen samples by placing them under very high vacuum, taking advantage of the 

thermodynamic properties of water. The concept of lyophilizing surface waters to 

preconcentrate pesticides with low volatility was first proposed by Wells as a method to 

allow distribution of standard reference materials for unstable organic pesticides in 

surface waters, such as atrazine, parathion and carbaryl (Wells, 1998). These compounds 

were stable up to 12 months in the lyophilized powder, proving the concept of water 

removal to isolate pesticide residues that can later be reconstituted for a specific purpose. 

However, only one report on the use of lyophilization as a preconcentration technique for 

pesticides was found in the literature. Sinha et al. (2011) preconcentrated pesticide 

residues from 5 mL of drinking water, performing reliable quantitation at concentrations 
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as low as 0.1 µg/L. Pesticides included in that study were monocrotophos, imidacloprid, 

triazofos, ethion, atrazine, propanil, quinalphos and metribuzin, all of them containing 

very polar moieties such as the organothiophosphate group. Thus, this principle should 

also allow preconcentration of the very non-volatile glyphosate and AMPA, and this 

possibility has not been explored before. 

The main drawback of lyophilization is the preconcentration of non-volatile 

matrix components, which is also the case for the previously tested rotoevaporation 

approach and therefore analytical performance should be similar. However lyophilization 

allows the use of low-cost disposable plastic containers reducing the risk of cross-

contamination and avoiding the use of glassware. With the use of large volume bulk tray 

lyophilizers this approach could also increase sample throughput as a large number of 

samples that can be simultaneously dried, with the added benefit that this is an 

unattended operation. 

2.2. Hypotheses 

- Lyophilization can be used for the preconcentration of glyphosate and AMPA 

from canal water, and the non-volatile matrix effects that could affect the 

FMOC-Cl derivatization can be controlled in order to establish a low cost, 

sensitive analytical protocol. 

- Glyphosate and AMPA are present in canal waters that will be used to hydrate 

protected wetlands from Biscayne National Park as part of the Comprehensive 

Everglades Restoration Plan (CERP), and could introduce the herbicide to this 

protected environment. 
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2.3. Research objectives 

The main objective of this work was to develop a simple analytical protocol for 

the routine determination of glyphosate and its main metabolite in canal waters by 

investigating for the first time the possibility of preconcentration of these compounds by 

lyophilization, in order to take advantage of the simplicity and lower cost of evaporation 

techniques relative to more sophisticated approaches such as SPE.   

Another objective was to perform a survey of levels of glyphosate and AMPA to 

assess the occurrence of the herbicide and its main metabolite in canal waters that will be 

used to hydrate coastal wetlands of the BNP as part of the Comprehensive Everglades 

Restoration Program, potentially introducing the herbicide in the protected environment 

of a National Park. 

2.4. Materials and reagents 

Acetonitrile (LC-MS grade), ammonium acetate (HPLC grade), sodium borate 

(certified ACS grade), ammonium hydroxide (trace metal grade) and EDTA (disodium, 

dihydrate, certified ACS grade) were purchased from Fisher Scientific (Fairlawn, NJ, 

USA). Solid FMOC-Cl (97% pure) was obtained from Sigma-Aldrich (St. Louis, MO, 

USA). A certified standard mixture of glyphosate and AMPA (100 µg/L in water) was 

obtained from Accustandard (New Haven, CT, USA) and used for calibration. 

Glyphosate (Pestanal® grade), obtained from Sigma-Aldrich, and neat AMPA (99% 

pure), obtained from MP Biomedicals (Santa Ana, CA, USA), were used as secondary 
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source standards for initial calibration verification (ICV) purposes. Glyphosate-FMOC 

and AMPA-FMOC were obtained from Dr. Ehrenstorfer (Augsburg, Germany).  

Canal samples were collected in 250 mL disposable polyethylene (PE) bottles, 

obtained from Fisher Scientific. Sample conductivity measurements were performed with 

a 556MPS Handheld Multiparameter Instrument (YSI Incorporated, Yellow Springs, OH, 

USA). Disposable polypropylene (PP) centrifuge tubes were used for lyophilization, also 

obtained from Fisher Scientific.  Samples were frozen and lyophilized using a Lyph-lock 

6 lyophilization system equipped with a 12 L stoppering tray, obtained from Labconco 

(Kansas City, MO, USA).  Derivatized residues were filtered using 17 mm, 0.45 µm 

polytetrafluoroethylene (PTFE) syringe filters (GE Water & Process Technologies, 

Feasterville-Trevose, PA, USA). Amber borosilicate LC vials and PTFE lined caps were 

also obtained from Fisher Scientific. Vials were cleaned by heating to 450 ºC for at least 

6 h before use. 

Chromatographic separations were performed by a Surveyor HPLC system 

(Thermo Scientific, Waltham, MA, USA) which integrates an autosampler with column 

temperature control and a quaternary HPLC pump. Injections were made using a 10 µL 

stainless steel sample loop. Separations were performed on a Gemini® C18 column (150 

× 4.6 mm, 5 µm) protected by a SecurityGuard™ Gemini® C18 guard column (4 × 3 mm, 

5 µm). Columns and guard columns were obtained from Phenomenex (Torrance, CA, 

USA). Polyetheretherketone (PEEK) tubing was used throughout the HPLC system. 

Detection was simultaneously performed by a Spectrasystem® FL3000 fluorescence 

detector and a LCQ Advantage Max™ ion trap mass spectrometer equipped with an 
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electrospray ionization (ESI) source. A Quicksplit™ device obtained from ASI 

(Richmond, CA, USA) was used to split the column effluent and allow dual detection. 

Instrument control, data acquisition and data processing were performed using Xcalibur 

2.0. All detectors and the processing software were obtained from Thermo Scientific. The 

fluorescence detector was connected to the acquisition computer by an SS420x analog-to-

digital converter (ADC), obtained from Agilent (Santa Clara, CA, USA).  

2.5. Environmental sampling 

The use of glassware was avoided during sample collection, storage and sample 

pre-treatment. All samples were collected in clean 250 mL PE bottles, rinsed once with 

sample water and then filled completely. Collected samples were placed in plastic bags 

and transported to the laboratory on ice. Upon arrival, conductivities were measured and 

samples were stored at 4ºC if analysis was to be performed no more than 14 days later. 

For longer term storage, samples were frozen and kept at or below -20ºC. 

Three different field sample collections were performed from the canals managed 

by the SFWMD with potential direct influence on BNP, in southern Miami-Dade County 

(see figure 2.2). The laboratory was notified of a glyphosate spraying even for 

maintenance activities in North Canal on February 5, 2008 (Bellmund, 2008). Samples 

were collected from North Canal and C-103 on that day between 3:00 PM and 4:30 PM, 

and the sampling was repeated 24 hours later. A wide-area field sample collection was 

performed on October 22, 2009 from all canals listed in figure 2.2, in order to assess 

background levels throughout the coastal canal system. A third and final field collection 

was performed on April 27, 2010, a day after a heavy rain event, in order to assess if 
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rainwater runoff is an important source of these compounds in local conditions. In this 

trip, samples were collected from canals C-1, Goulds, C-103 and North Canal.   

2.6. Analytical methodology 

2.6.1. Sample preconcentration and derivatization 

A graphical summary of the sample preparation process is presented in figure 2.6. 

A total of 20 mL of each raw canal water were added to disposable PP centrifuge tubes 

and fortified with aspartic acid as internal standard (fortification level: 40 µg/L). 

Calibration and quality control (QC) solutions (in deionized water) were prepared using 

the same procedure, adding glyphosate and AMPA from certified standard solutions in 

water. Calibration range was 0.1 to 50 µg/L. To avoid mechanical losses and cross-

contamination during lyophilization, the openings of the PP tubes containing the samples, 

calibrations and QCs were covered with aluminum foil and four small holes were opened 

using a needle to allow water removal. Covered samples were frozen to -50 ºC and then 

dried under high vacuum. Dry residues were suspended in 450 µL of 25 mM sodium 

borate (pH = 9) and 250 µL of a 500 mM EDTA basic solution (pH = 9, adjusted with 

sodium hydroxide). Using disposable polyethylene transfer pipettes, suspended residues 

were transferred to 2 mL amber LC vials containing 300 µL of a 3.75 mM FMOC-Cl 

solution in acetonitrile, for a total volume of 1 mL. Vials were capped, shaken and 

allowed to react for at least 3 hours. Derivatization mixtures were then filtered (0.45 µm, 

PTFE), collecting the filtrate in a new LC vial, and injected in the HPLC system without 

further treatment.   
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Figure 2.6 Sample preparation process for the analysis of glyphosate and AMPA by LC-
FLD+MS/MS. Lyophilization time relates to 72 samples, calibrations and QCs, the 
maximum capacity of the 12 L tray lyophylizer.  

 

2.6.1. Analysis by LC-FLD+MS/MS  

Injection volume was 10 µL and the autosampler washing steps used to avoid 

carryover are listed in table 2.2. Separation was performed in 25 min according to the 

binary mobile phase gradient presented in table 2.3, using acetonitrile and an 

ammonium/ammonia buffer (pH = 9.5) prepared with ammonium acetate (1 mM) and 

ammonium hydroxide (0.05% v/v). The column was kept at 25 °C. 
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Table 2.2 Washing program used to avoid carryover for the determination of glyphosate 
and AMPA in canal water by LC-FLD+MS/MS. 

Washing step Solvent Volume 
(µL) Solvent path 

1 Methanol 400 Needle rinse 
2 5% NH4OH v/v in water 400 Sample line à injector port à waste 
3 Methanol 800 Sample line à injector port à waste 

 

Table 2.3 Mobile phase delivery program for the determination of glyphosate and AMPA 
in canal water by LC-FLD+MS/MS. The rotary valve of the LCQ Mass Spectrometer 
was used to direct the column eluent.  

Time  
(min) 

Acetonitrile 
(%) 

Buffer 
(%) 

Flow rate 
(mL/ min) 

Segment 
description 

Eluent directed 
towards: 

0 1 99 1.0 Removal of 
inorganic 
species 

 
1.00 1 99 1.0 Waste 
4.99 10.4 89.6 1.0  
5.00 10.4 89.6 1.0 

Detection 
period Detectors 

10.0 24.5 75.5 1.0 
12.0 99 1 1.0 
13.9 99 1 1.0 
14.0 99 1 1.0 Removal of 

derivatization 
byproducts  Waste 

18.0 99 1 1.0 

20.0 1 99 1.0 
Column reset 

25.0 1 99 1.0 
 

 

A flow splitting device allowed simultaneous detection by diverting 20% of the 

flow towards the mass spectrometer and 80% towards the fluorescence detector. A 

diagram of the detection system is presented in figure 2.7. 
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Figure 2.7 Diagram of the FLD+MS/MS detection system for the analysis of glyphosate 
and AMPA in canal waters 

 

The fluorescence detector was operated at fixed wavelengths (excitation: 270 nm, 

emission: 315 nm) and was used for quantitative purposes, while the mass spectrometer 

was used only as a qualitative analysis tool. The ESI source was operated in the negative 

mode and the ion trap mass spectrometer was operated in the product ion scan mode, 

using two detection segments presented in table 2.4.  

Table 2.4 Product ion scan MS/MS detection parameters for detection of glyphosate-
FMOC and AMPA-FMOC using the ion trap mass spectrometer after electrospray 
ionization. 

Segment Time 
(min) Compound Parent 

ion (m/z) 
CIDa 
(%) 

Scan window 
(m/z) 

Product ion 
(m/z)b 

RT 
(min) 

1 0-9 GLYP-FMOC 390 25 145-175 168 7.0 

2 9-25 
ASP-FMOC 354 30 120-170 158 10.2 

AMPA-FMOC 332 30 109-111 110 10.5 
a Normalized collision-induced dissociation energy. b Product ion used for qualitative purposes, extracted from the total ion scan 
during data processing. 
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Detection parameters used by both segments: auxiliary gas (N2): 3 arbitrary units; 

sheath gas (N2): 30 arbitrary units; capillary temperature: 350 ºC; source current: 80 µA; 

trap DC voltage: 10 V; scan time: 200 ms. Source and ion transfer parameters for 

glyphosate-FMOC detection (segment 1): source voltage: 4.5 kV; capillary voltage: -10 

V; tube lens offset: -21 V; multipole RF amplifier: 520.0 V; multipole 1 offset: 3.4 V; 

multipole 2 offset: 7.0 V; intermultipole lens voltage: 18 V. Source and ion transfer 

parameters for AMPA-FMOC and ASP-FMOC detection (segment 2): source voltage: 

3.6 kV; capillary voltage: -41 V; tube lens offset: 16 V; multipole RF amplifier: 550.0 V; 

multipole 1 offset: 2.4 V; multipole 2 offset: 6.5 V; intermultipole lens voltage: 42 V. 

2.7. Results and discussion 

2.7.1. Optimization of the analytical methodology 

2.7.1.1. Preconcentration and derivatization procedures 

The preconcentration and derivatization procedure was developed with simplicity 

and sample throughput as priority in order to make the methodology amenable to 

monitoring programs. To prove the concept of lyophilization as a preconcentration tool 

for glyphosate, an initial recovery experiment was performed by lyophilizing 40 mL of 

deionized water fortified at 2.5 µg/L of each analyte. The dried residues were derivatized 

and analyzed by LC-FLD, and peak signals were compared with controls prepared by 

introducing glyphosate and AMPA directly into the derivatization mixture. Recoveries 

were (67±9) % for glyphosate and (63±4) % for AMPA (n=4).  
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The use of 40 mL of water samples in this early research stage took considerable 

drying time (approximately 8 days for a fully loaded lyophilizer), and aluminum foil 

covers were perforated with multiple holes as an attempt to enhance water removal 

efficiency. Mechanical loss of dried powder was the most probable cause of the 

approximate 35% analyte signal reduction, especially after such a long lyophilization 

period. In order to reduce lyophilization time, sample volume was later reduced to 20 

mL. Additionally, only four small holes in the aluminum cover, opened with a needle, 

were found to be sufficient to allow water removal from the frozen samples, minimizing 

mechanical losses. These actions significantly improved the recovery of the 

lyophilization preconcentration, however the recovery experiment was not repeated to 

verify the exact extent of the improvement. Nevertheless, even a 65% recovery for both 

analytes represents a good compromise given the simplicity of the technique which 

allows unattended operation, and may be considered a middle ground between recoveries 

obtained by ion exchange SPE preconcentration (83% glyphosate, 26% AMPA) (Patsias 

et al., 2001) and 100% recovery of derivatized analytes by reverse phase SPE reported by 

Hanke et al. (2008).   

Both the preconcentration and the derivatization steps have the potential to cause 

signal variations. In order to minimize the effects of lyophilization variables such as 

drying period, vacuum levels and ambient temperature, a set of calibrations and QCs 

were lyophilized along with every sample batch and an equal quantity of an internal 

standard was introduced in every lyophilized sample, calibration or QC. Aspartic acid 

(ASP) was selected as internal standard as this low-cost reagent has also a low vapor 
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pressure (2.6×10-7 mmHg at 25°C) (TOXNET, 2007) and also an ionic/zwitterionic 

behavior in aqueous solution similar to the analytes (figure 2.8). ASP-FMOC was also 

sufficiently resolved from the analytes with the developed chromatographic separation. 

 

Figure 2.8 Structure of aspartic acid and pKa values (Bastug et al., 2011). 

 

Regarding the derivatization step, both glyphosate and AMPA have strong 

chelating affinity for divalent cations such as Ca2+ , Fe2+, Cu2+ and Zn2+, and it has been 

demonstrated that coordinated glyphosate and AMPA molecules do not react with 

FMOC-Cl and therefore severe analyte losses occur if no corrective measures are taken. 

The problem was first recognized by Le Fur et al. (2000), who reported significant signal 

degradation upon analyzing drinking waters with conductivities above 0.580 mS/cm. In a 

round robin study, Ibanez et al. (2006) also reported that results were satisfactory except 

for laboratories dealing with groundwater analysis, where 15% was the best recovery 

reported, and attributed these results to impediment of the FMOC-Cl reaction caused by 

the formation of complexes with divalent cations. 
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 Freuze et al. (2007) released a detailed speciation study on the complexation 

behavior of glyphosate and AMPA in environmental waters, and on the basis of computer 

calculations using stability constants and expected ion concentrations, concluded that 

EDTA could displace glyphosate and AMPA from complexes at the basic pH required 

for FMOC-Cl derivatization. The approach was later put in practice by Hanke et al. 

(2008).  

In the present research, lyophilized powders containing glyphosate, AMPA and 

ASP were suspended in EDTA solutions containing a pH=9 borate buffer, and the 

FMOC-Cl reagent dissolved in acetonitrile was directly introduced without further 

treatment. In order to show the capacity of the internal standard to correct for both the 

lyophilization and derivatization steps, canal samples of different conductivity collected 

during October 2009 (see section 2.7.3) were fortified with 4.0 µg/L of each analyte, 

subjected to the lyophilization process, derivatized with increasing quantities of EDTA 

and analyzed by LC-FLD. Plots of peak areas versus EDTA concentrations, obtained 

after derivatization of lyophilized canal waters of different conductivities, fortified with 

glyphosate, ASP and AMPA are presented in figure 2.9. Glyphosate was not detected in 

any canal water without the addition of EDTA. These observations agree with the 

literature describing the impediment of the FMOC-Cl reaction by complexation and also 

with the use of EDTA to increase derivatization yields by releasing glyphosate from 

complexes.  

Similar variability was observed for in signal intensities of the three compounds 

in deionized water, suggesting that the lyophilization process affected the three 
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compounds similarly and thus ASP could be used as internal standard. In canal waters, 

signal intensities decreased with increasing water conductivity for both analytes and also 

for ASP, which suggests that the internal standard is also following a similar complex 

forming behavior and therefore is able to correct for the derivatization step.  

 

Figure 2.9 Signal intensities obtained from derivatization of fortified, lyophilized canal 
waters of different conductivities against the concentration of EDTA, showing similar 
trends between the analytes and aspartic acid used as internal standard. Fortification 
levels were 4 µg/L of glyphosate and AMPA and 40 µg/L of ASP.  

 

As shown in figure 2.10, the similar behavior between the analytes and ASP 

translated in accurate quantitation, as good recoveries are obtained when the same 

amount of EDTA is used in both the fortified samples and the calibration curve. 

However, recoveries were biased high for the sample with highest conductivity (6.2 

mS/cm), as severe signal degradation was observed at this conductivity level affecting the 

derivatization yield of ASP. As the EDTA solution was made basic with sodium 

hydroxide, attempts to further increase the concentration of EDTA from 120 mM resulted 

in precipitation of the FMOC-Cl reagent (the derivatization mixture contained 30% of 
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acetonitrile to allow solubility of this compound). Therefore, the 6.2 mS/cm sample could 

not be quantitated correctly and a threshold of 4.5 mS/cm was set as conductivity limit 

for the quantitation of both analytes using 120 mM of EDTA. As presented in section 

2.7.3, this threshold affected only two of all the samples collected from the coastal canals 

in the area of interest.    

 

Figure 2.10 Recoveries of laboratory fortified matrices (LFM) experiments performed on 
canal waters of different conductivity when using 120 mM of EDTA in both the samples 
and calibration solutions. Fortification level was 4.0 µg/L. A 20% deviation from 100% 
recovery is represented by dashed lines.  

 

A kinetic experiment was performed to assess the minimum reaction time and the 

stability of the formed FMOC derivates. As presented in figure 2.11, the reaction was 

completed in 30 min and derivates were stable up to 480 min (8 h). These results are in 

agreement with observations from a previous work which found that complete 
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derivatization occurred in 30 min and that the obtained derivates were stable for up to 2 

days (Le Bot et al., 2002; Le Fur et al., 2000). Samples were injected between 2 to 4 

hours after derivatization in the course of the present research.     

 

Figure 2.11 Kinetic experiment on the derivatization of glyphosate and AMPA under the 
conditions described in the developed methodology. Derivatization is complete after 20 
min at room temperature and products were stable up to 480 min (8 hours). 
Concentrations were 400 µg/L for both analytes in the derivatization mixture (equivalent 
to 20 µg/L before lyophilization) (n=2).    

 

2.7.1.2. Chromatographic separation 

In order to perform interference-free quantitation using the fluorescence detector, 

proper chromatographic separation of glyphosate-FMOC and AMPA-FMOC from any 

possible interference must be achieved.  

The use of reverse phase C18 columns with acetonitrile in combination with a 

variety of aqueous mobile phases has been preferred by previous reports for the 

separation of the FMOC derivates, as C18 columns are more durable than ion-exchange 
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amino columns.  However, the large quantity of the FMOC-OH reaction byproduct is 

retained by reverse phase columns and represents a potential source of interference for 

non-selective detectors such as the FLD. To resolve this challenge, some authors have 

used liquid-liquid extraction steps with diethyl ether to extract the byproduct before 

injection into the LC system (Le Bot et al., 2002; Le Fur et al., 2000). A more 

sophisticated approach was used by Hanke et al. (2008), who used a SPE cartridge that 

combines a high affinity for polar compounds and the ability to withstand cleanup steps 

with dichloromethane, selectively removing the non-polar FMOC-OH before eluting the 

derivatized analytes with methanol.  

 Because of its simplicity, the most widely used approach has been to 

chromatographically resolve the much more polar glyphosate-FMOC and AMPA-FMOC 

from the non-polar FMOC-OH (Grey et al., 2001; Ibanez et al., 2005; Kusters & 

Gerhartz, 2010; Lee et al., 2002). This approach is preferable as it minimizes analysis 

steps and avoids the generation of organic solvent waste.  

To maximize separation selectivity, a basic pH separation was selected to keep 

the derivatized analytes in the anionic form ensuring early elution, while causing longer 

retention times for neutral interferences such as FMOC-OH. As hydrolysis quickly 

degrades bonded stationary phases with regular, unprotected silica backbones, high pH 

separations require the use of highly endcapped stationary phases such as Phenomenex 

Gemini™, which is designed to withstand 100% aqueous mobile phases and a pH up to 

12. Using the Gemini stationary phase a gradient separation with acetonitrile and an 

ammonium/ammonia buffer at a pH of 9.5 was developed, and no peak shape degradation 
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or loss of retention were observed after approximately 700 chromatographic runs during 

the course of my research. 

A slow gradient between 1% and 25% acetonitrile in 10 minutes was used to elute 

the anionic glyphosate-FMOC, ASP-FMOC and AMPA-FMOC. Then, the column was 

quickly taken to 99% acetonitrile conditions in order to elute FMOC-OH and all other 

neutral interferences. A switching valve was used to divert the eluent towards waste 

during this step, as the highly fluorescent, highly abundant byproduct triggers the safety 

shutdown in the FLD used to protect the photomultiplier tube detector. To prevent the 

deposition of salts in the ESI source of the mass spectrometer, the switching valve must 

also be used during the first 5 minutes of analysis in order to flush all the non-volatile 

inorganic species injected along with the derivatization mixture.  

Figure 2.12 shows chromatograms obtained from a lyophilized, derivatized canal 

water and the correspondent laboratory fortified matrix (LFM) experiment. Very clean 

chromatograms were obtained using the fluorescence detector, which shows selective 

separation of the derivatized, anionic compounds. The other major peaks between 

glyphosate-FMOC (RT=6.8 min) and ASP-FMOC (RT=10.2 min) are impurities of the 

EDTA and did not cause any interference as they were chromatographically resolved.  

2.7.1.3. Detection optimization 

The excitation and emission wavelengths (270 nm and 315 nm, respectively) for 

the fluorescence of FMOC derivatives were first published by Miles in the original report 

that introduced the FMOC-Cl reagent (Miles et al., 1986). These wavelengths were used 
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without modification. Mass spectrometry detection parameters were optimized by 

infusing solutions of AMPA-FMOC and glyphosate-FMOC prepared in 15% 

acetonitrile/85% ammonium/ammonia buffer (pH=9.5) to simulate elution conditions. 

Pure FMOC derivates obtained commercially were used to prepare these optimization 

solutions. 

 

 

Figure 2.12 Chromatograms obtained from lyophilized canal water (sample site 1, C-1 
canal, April 2010 collection) with and without analyte fortification. Fortification levels 
were 12.5 µg/L for glyphosate (green) and AMPA (blue), and 40 µg/L for the ASP 
internal standard (black). 
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2.7.2. Method validation 

2.7.2.1. Calibration and quality control 

Calibration solutions were prepared in deionized water and lyophilized along with 

each sample batch. Curves were obtained by plotting the ratios of glyphosate-FMOC and 

AMPA-FMOC fluorescence peak areas to the peak area of ASP-FMOC internal standard, 

against the concentration in µg/L. Linearity was observed for both analytes in the range 

used (R2 > 0.995; 0.100 to 50.0 µg/L). Calibration accuracy was verified by injecting an 

initial calibration verification standard (ICVS, lyophilized deionized water fortified with 

glyphosate and AMPA to 12.5 µg/L, using a standard purchased from a different 

manufacturer than the one used for calibration). Calibration stability was evaluated every 

10 runs by injecting a calibration verification standard (CCV, lyophilized deionized water 

fortified to 12.5 µg/L with the calibration standard). The measured quantity in both the 

CCV and ICVS were required to have a maximum 10% deviation from the fortification 

level. A laboratory reagent blank (LRB, deionized water) and two laboratory fortified 

blanks (LFB, deionized water fortified to 12.5 µg/L) blanks were also lyophilized with 

every sample batch. Additionally, a minimum of one sample duplicate and one fortified 

matrix experiment was always analyzed per every 10 samples. The system was 

continuously tested for carryover by injecting the laboratory reagent blank after every 

CCV.  

Compound identification was considered positive when peaks with a signal to 

noise ratio above 3 were present in the fluorescence chromatogram. Additionally, a signal 

was required to be present in the mass spectrometry chromatogram for the main product 
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ion of each compound. A maximum retention time difference of 0.2 min relative to 

calibration standards or standard reference materials was allowed. Calculated 

concentrations below method detection limits (MDLs) were considered non-detections. A 

reporting limit (RL) of 3 times the MDLs was set in order to reduce the risk of false 

positives and ensure data quality.  

2.7.2.2. Method detection limits 

 Method detection limits were calculated by multiplying the standard deviation 

from seven measurements by the Student t value (t(7-1, 99) = 3.143), according to 

procedures outlined by the USEPA (2010e), using analyte-free canal water from canal C-

1 (site 1, April, 2010 sample collection, see section 2.7.3) fortified with glyphosate and 

AMPA to a concentration of 0.400 µg/L. Method detection limits (MDL) were 0.058 

µg/L for glyphosate and 0.108 µg/L for AMPA. A reporting limit of three times the 

MDLs (0.174 and 0.324 µg/L, respectively) was adopted to further reduce the possibility 

of false positives. When compared to the MDLs in the literature summarized in table 2.1, 

the obtained MDLs were in the same range as more complicated techniques such as the 

online SPE procedures reported others (Lee et al., 2002; Patsias et al., 2001; Vreeken et 

al., 1998). Only two techniques were found in the literature with significantly lower 

MDLs, the online SPE procedure described by Ibanez et al. (2005) and the offline SPE 

procedure described by Hanke et al. (2008), which had 10 and 80 times lower MDLs for 

glyphosate, respectively. Given the simplicity of this technique and the ability to 

preconcentrate a large number of samples in an unattended operation, the lower 

sensitivity may be an acceptable tradeoff for laboratories interested in monitoring 
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glyphosate in surface waters. As presented in section 2.7.3, the sensitivity obtained was 

enough to quantify background levels of glyphosate and AMPA in the area of interest.   

2.7.3. Survey of glyphosate and AMPA in canals with direct influence on the 

Biscayne National Park 

2.7.3.1. Glyphosate spraying event on February 2008 

Collections were made on February 5 and 6, 2008, from C-103 and North Canal, 

after a glyphosate application event was reported by BNP personnel. Results are 

presented in figure 2.13 and table 2.5. The gate structures located in these canals are 

constantly monitored, thus detailed records are available on conductivity, gate opening 

events, rainfall, head water and tail water stages during sampling periods. These records 

were accessed using the DBHYDRO database (SFWMD, 2013) and relevant parameters 

are listed in table 2.6. Although no conductivity measurements were performed in this set 

of samples, instant conductivity records are available from the S20F with a 3 min 

resolution. Water conductivities at the moment of sample collection at S20F (site 8) were 

4.1 mS/cm on February 5, 2010 and 1.6 mS/cm during the next day, which are both 

below the conductivity threshold set for this methodology as discussed before, and since 

conductivities in sites further away from the shoreline should be lower, the measurements 

were considered valid. No rainfall was recorded in the area up to 5 days before February 

5, and therefore rainwater runoff from nearby farms should not be an important source of 

glyphosate detected within this dataset. 
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Table 2.5 Measured concentrations and quality controls from samples collected during a 
glyphosate spraying event at the vicinity of the BNP in February 2008. (TOP) samples 
collected on February 5th, 2008. (BOTTOM) Samples collected on February 06th, 2008.  
Samples were collected between 2 pm and 4 pm in both dates.a  

Site Canal name Lat. 
North 

Long. 
West 

 Glyphosate  AMPA 

 Meas. 
LFMb 

or 
DUPc 

%rec 
or 

RPD 
 Meas. 

LFMb 
or 

DUPc 

%rec 
or 

RPD 
1 North 25.4631 80.3793  43.4    3.11   
2 North 25.4631 80.3750  47.2    5.86   
3 North 25.4631 80.3670  17.0 18.3 8  4.18 4.54 8 
4 North 25.4632 80.3592  12.4    5.65   
5 North 25.4632 80.3537  10.2 15.0 121  6.94 11.5 117 
6 North/L-31E 25.4632 80.3473  16.1    4.17   
7 L-31E 25.4667 80.3468  18.3    2.52   
8 C-103/L-31E 25.4700 80.3470  8.15    9.09   
9 L31-E 25.4722 80.3470  n.a.    n.a.   

10 C-103 25.4700 80.3636  0.440    1.15   
11 C-103 25.4711 80.3793  -    -   

 

Site Canal name Lat. 
North 

Long. 
West 

 Glyphosate  AMPA 

 Meas. 
LFMb 

or 
DUPc 

%rec 
or 

RPD 
 Meas. 

LFMb 
or 

DUPc 

%rec 
or 

RPD 
1 North 25.4631 80.3793  59.9    7.39   
2 North 25.4631 80.3750  36.9    6.04   
3 North 25.4631 80.3670  32.5    4.65   
4 North 25.4632 80.3592  14.5    6.41   
5 North 25.4632 80.3537  10.7    6.47   
6 North/L-31E 25.4632 80.3473  12.5 12.8 3  4.78 4.75 1 
7 L-31E 25.4667 80.3468  2.40    2.72   
8 C-103/L-31E 25.4700 80.3470  6.11 10.5 109  2.13 7.09 127 
9 L31-E 25.4722 80.3470  3.65    2.01   

10 C-103 25.4700 80.3636  n.a.    n.a.   
11 C-103 25.4711 80.3793  -    -   

aAll concentrations are listed in µg/L.; (-): Below MDL; (n.a.): data not available. bLaboratory Fortified 
Matrix experiment, results presented in percent recovery. Fortification level was 4.0 µg/L. cDuplicate 
measurements. Results presented in relative percent deviation (RPD).   
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Figure 2.13 Sampling sites and results for collections in February 2008 at C-103 and 
North Canal. (RL: 0.174 µg/L for GLYP; 0.324 µg/L for AMPA). 
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Table 2.6 Hydrological data from gate structures for the February, 2008 sample 
collection. Data obtained from DBHYDRO (SFWMD, 2013).    

Gate 
structure Canal 02/01/2008 to 02/06/2008 

 Total rainfalla (mm) 
Discharge flowb 

02/05/2008 (m3/s) 
Discharge flowb 

02/06/2008 (m3/s) 
S21 C-1 0 0 0.01 

S21A C-102 0 0 0 
S20G Military 0 0 0 
S20F C-103 0 0.08 1.54 

aPeriod total. bDay average. 

The DBHYDRO data also showed that S20F gates were opened between 8:51 

AM and 1:22 PM on February 6, before the second sample collection started (from 3:00 

to 4:00 PM). Discharge from the other three gate structures in the area was negligible 

during both sampling days. The estimated amount of water discharged during the gate 

opening event was (1.5±0.3) ×105 m3, calculated using the event duration and the average 

water discharge rate during the event. The latter was calculated using the discharge-rate 

coefficient of the S20F structure published by the U.S. Geological Survey (Swain et al., 

1997), the S20F structural dimensions obtained from the SFWMD (2010) and data on 

gate height and water stages during the discharge event. Therefore, the discharge event 

caused a considerable increase of water movement in the sampled canals near the gate 

between sample collections, and this needs to be considered for discussing the observed 

concentrations.  

No glyphosate or AMPA were detected in site 11 (C-103 upstream) before or 

after the water discharge event. Since this canal is the major contributor to the outflow in 

the S20F structure, the opening of the gate displaced a considerable amount of water 

from upstream. Therefore, these results suggest that this canal did not have a nearby 

source of glyphosate during the sampling period. The highest concentrations of 
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glyphosate were measured in North Canal, which suggests that this canal was a target for 

herbicide application. Site 1 in North Canal contained the highest amount of glyphosate 

in both sampling days. At this particular site a considerable amount of terrestrial 

vegetation was observed (see figure 2.14), which could have made it a target for a direct 

glyphosate application.     

 

 

Figure 2.14 Terrestrial vegetation observed on the shoreline of North Canal at sampling 
site 1, the most contaminated site with glyphosate in this study. (Picture taken at the 
moment of sample collection on February 6th, 2008, 2:15 PM) 
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As presented in figure 2.15, a decrease trend was observed with increasing canal 

distance from site 1. The decreasing trend and the concentrations observed were very 

similar during both days, thus the two-day average was used to create figure 2.15. The 

concentrations of AMPA were constant in all sites during both days, which suggest that 

biodegradation was a limited removal pathway.  

 

Figure 2.15 Two-day average concentrations measured in North Canal against distance 
from site 1, the point of highest concentrations of glyphosate detected, showing a fast 
decrease in concentration. 

 

The results show that the discharge event at S20F caused a mild increase on the 

concentrations measured in site 1 and site 2, which suggest that water flowing from 

upstream North Canal may have contained higher concentrations of glyphosate than site 1 

and therefore the canal was subjected to herbicide applications upstream from that point. 

However, the concentrations in site 4 and site 5 were almost the same as in the previous 

day. Therefore, the decreasing trend may be a combination of a dilution effect from more 

concentrated sites upstream with a glyphosate removal pathway, and since no significant 
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increases on the concentrations of AMPA were observed, adsorption to sediments and 

suspended particles may have played a dominant role in the concentration decrease.    

The concentrations measured in L-31E during the first day were similar to sites in 

downstream North Canal but significantly lower during the second day, which could 

indicate that an important dilution with northbound L-31E water may have occurred at 

the North Canal/L-31E intersection during the water discharge event at S20F. Therefore, 

given the removal by adsorption and dilution effects, is possible that glyphosate-

contaminated water from North Canal may have only contributed a small quantity of 

water to the total outflow in the discharge occurred at the S20F gate structure and 

quantities of glyphosate discharged with this event should have been negligible. 

The maximum concentration of glyphosate detected in the study (59.9 µg/L, site 

1) was lower than the chronic toxicity for green microalgae (NOEC = 200 µg/L), the 

aquatic organism most sensitive to glyphosate according to available data (Giesy et al., 

2000; WHO, 1994).  

In a literature review for aquatic application risk assessment, Solomon found that 

marine diatoms had the lowest acute toxicity with an EC50 of 770 µg/L, and considered 

that chronic toxicities of glyphosate have little value to establish risk to aquatic 

ecosystems  because expositions to the herbicide are much shorter in the field than in 

laboratory toxicity tests, especially in estuarine systems where turbulence induced by 12-

hour tidal cycles would cause a fast removal of glyphosate by adsorption onto sediments 

and suspended particles (Solomon & Thompson, 2003). Therefore, even if the maximum 

observed concentration of glyphosate would have been near one of the culverts present in 
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the L-31E levee for hydration of the coastal wetlands (for example, an herbicide 

application near site 9), dilution effects and removal by adsorption would have further 

reduced the environmental concentration of the herbicide upon discharge. Thus, the 

results obtained during the present investigation do not provide enough evidence that 

glyphosate used for canal maintenance may have been a significant threat to the protected 

areas in the vicinity of the sampled canals.    

2.7.3.2. Wide area collection on October 2009 

In order to assess background levels of glyphosate in all major canals in the area, 

a wide area sample collection trip was performed during October 22, 2009.  Results are 

shown in table 2.8 and figure 2.16. Glyphosate was detected only in North and Goulds 

canals. Concentrations were always below 1 µg/L, much lower than the concentrations 

observed in February 2008.  The metabolite AMPA was ubiquitous, and concentrations 

were very similar than the previous sample collection trips in February, 2008. No 

apparent trends were observed in the concentrations of AMPA. Also, no significant 

increases of AMPA were observed in C-1 or L-31E at the vicinity of the South District 

WWTP, which is consistent with the fact that this particular WWTP uses deep well 

injection disposal of effluents (FDEP, 2013) and therefore should not discharge AMPA 

generated from biodegradation of household detergents directly into canals.  

The presence of small quantities of glyphosate in two canals with adjacent 

agricultural farms suggests that these environments may represent an important source of 

the herbicide. The DBHYDRO data show that during the day previous to sampling, a 

mild rainfall event occurred in the area (see table 2.7). It is possible that runoff from 
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farms could have been the main source of the measured concentrations of glyphosate in 

these canals. 

It is also notable that glyphosate was found only in smaller canals that do not have 

a direct discharge gate. These canals are narrower, shallower and thus subjected to lower 

water flows than the larger C-103, North Canal, C-1 and Military Canal. The DBHYDRO 

data also show that three of the gate structures were opened during the sampling day, and 

therefore the considerable water movement could have contributed to the no detection of 

glyphosate in the major canals.   

Table 2.7 Hydrological data from gate structures for the October 22, 2009 sample 
collection. Data obtained from DBHYDRO (SFWMD, 2013).    

Gate structure Canal 10/21/2009  
 Rainfalla (mm) 

10/22/2009 
Rainfalla (mm) 

Discharge flowb 
10/22/2009 (m3/s) 

S21 C-1 15.0 0.3 1.50 
S21A C-102 3.6 0.3 3.12 
S20G Military 13.7 0 0 
S20F C-103 8.6 0 15.2 

aDay total. bDay average. 

Although very low background levels of glyphosate were detected in canals of the 

area of interest, these data along with the previous collections from 2008 show the 

capability of the developed methodology to discern between canals contaminated with 

direct applications of the herbicide and canals under the influence of minor local sources.  

Although AMPA is also biodegradable, the metabolite has a higher environmental 

persistence than glyphosate (Giesy et al., 2000) and its widespread presence is consistent 

with a constant introduction of glyphosate into this aquatic environment. 
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Figure 2.16 Sampling sites and results from the October 22nd, 2009 sample collection. 
Concentration color scale was reduced one order of magnitude from the 2008 sampling trips. 
(RL: 0.174 µg/L for glyphosate; 0.324 µg/L for AMPA). 
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Table 2.8 Measured conductivities, measurements and QCs of glyphosate and AMPA in 
samples collected on October 22, 2009 from all canals in the area of interest.a 

 

     Glyphosate  AMPA 

Site Canal name Lat. N Long. 
W 

Cond. 
(mS/cm) Meas. 

LFMb 
or 

DUPc 

%rec 
or 

RPD 

 
Meas. 

LFMb 
or 

DUPc 

%rec 
or 

RPD 
1 C-1 25.5486 80.3478 0.3 - 1.79 90  0.699 2.93 112 
2 C-1 25.5454 80.3427 0.3 -    0.659   
3 C-1 25.5437 80.3334 0.6 -    1.13   
4 Goulds 25.5370 80.3648 0.3 0.586 2.06 74  1.07 3.70 132 
5 Goulds 25.5370 80.3594 0.7 0.331    1.41   
6 C-102 25.5194 80.3635 0.4 -    0.362   
7 C-102 25.5193 80.3557 0.5 - - n.a.  0.643 0.616 4 
8 C-102 25.5192 80.3507 0.5 -    -   
9 Military 25.4893 80.3634 1.0 - - n.a.  1.89 1.899 0.3 

10 Military 25.4893 80.3577 1.4 -    1.67   
11 Military 25.4894 80.3511 1.2 -    2.15   
12 C-103 25.4714 80.3794 3.7 - 1.65 83  1.31 4.12 140 
13 C-103 25.4705 80.3713 1.9 - - n.a.  - - n.a. 
14 C-103 25.4705 80.3609 2.5 -    1.21   
15 C-103 25.4706 80.3497 3.4 -    1.73   
16 North 25.4629 80.3791 0.6 0.697 0.740 6  0.975 1.191 20 
17 North 25.4628 80.3734 0.6 0.598    1.25   
18 North 25.4629 80.3614 0.6 0.652    2.69   
19 North 25.4629 80.3478 2.7 0.424    3.21   
L1 C-1/L-31E 25.5441 80.3311 0.3 -    0.964   
L2 Goulds/L-31E 25.5371 80.3437 0.5 0.944    1.77   
L3 L-31E 25.5344 80.3435 0.7 0.601    2.85   
L4 L-31E 25.5299 80.3437 1.0 0.298 0.257 15  3.23 3.618 11 
L5 L-31E 25.5298 80.3469 0.6 -    2.59   
L6 L-31E 25.5251 80.3469 0.6 -    2.46   
L7 C-102/L-31E 25.5196 80.3469 0.5 -    1.77   
L8 L-31E 25.5118 80.3473 1.4 -    -   
L9 L-31E 25.5029 80.3473 1.4 -    2.81   

L10 L-31E 25.4948 80.3470 1.3 -    4.29   
L11 L-31E 25.4899 80.3471 2.7 -    5.63   
L12 L-31E 25.4890 80.3471 6.2* -* - n.a.  4.42* 4.568 3 
L13 L-31E 25.4833 80.3469 5.6* -*    -*   
L14 L-31E 25.4765 80.3469 3.6 -    -   
L15 L-31E 25.4709 80.3468 4.5 - 2.06 103  6.65 9.12 123 
L16 C-103/L-31E 25.4702 80.3468 2.4 -    1.74   
L17 L-31E 25.4660 80.3468 1.1 -    1.08   
L18 North/L-31E 25.4633 80.3469 2.0 -    0.965   
aAll concentrations are listed in µg/L. (-): Below MDL; (*): Above conductivity safety threshold (4.5 mS/cm); (n.a.): 
not available. bLaboratory Fortified Matrix experiment, results measured in percent recovery. Fortification level was 
2.0 µg/L. cDuplicate measurements. Results presented in relative percent deviation (RPD).    
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2.7.3.3. Samples collected after a heavy rain event on April 2010 

A relatively heavy rain event occurred in the sampling area on April 27, 2010, 

with an approximate rainfall of 60 mm (see table 2.9), which was six times higher than 

the rainfall recorded during the day previous to the sampling in October, 2009.  

Table 2.9 Hydrological data from gate structures for the April 28, 2010 sample collection. 
Data obtained from DBHYDRO (SFWMD, 2013).    

Gate structure Canal 04/27/2010  
 Rainfalla (mm) 

04/28/2010 
Rainfalla (mm) 

Discharge flowb 
04/28/2010(m3/s) 

S21 C-1 51.6 0 17.9 
S21A C-102 55.1 0 6.23 
S20G Military 61.5 0 2.32 
S20F C-103 67.1 0 9.14 

aDay total. bDay average. 

To assess if rainwater runoff was a source of glyphosate in the canal areas as the 

previous results suggested, a new sampling collection trip was organized on April 28, 

2010. Samples were collected from the Goulds canal, C-1, C-103, a small tributary of C-

103 that was adjacent to a palm tree farm, and also from North Canal. Results are 

presented in table 2.10 and figure 2.17. The highest concentrations of glyphosate were 

found in L-31E, north of the South District WWTP (sites 8 and 9), in an area adjacent to 

a large residential development, and L-31E may have had runoff input from maintenance 

activities in roads or other infrastructure. No glyphosate or AMPA were detected in site 

7, which may be the result of dilution with water from C-1 as the DBHYDRO data 

indicate that the S21 discharge gate was opened during all of the sampling day.   

Only small quantities of glyphosate were found in the intersection of the Goulds 

canal and L-31E, and also in C-103 and North Canal. The sample from C-103 that 
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contained glyphosate was collected directly from the opening of a culvert that connects 

that canal with a small canal under the influence of runoff from a palm tree farm, from 

which another sample was collected. As presented in figure 2.17, the small canal had a 

glyphosate concentration 10 times higher than C-103 in the other side of the culvert, and 

also an important concentration of AMPA, which was not detected in C-103. The 

DBHYDRO data show that the S20F discharge gate was also opened when the samples 

were collected. The observation suggests that agricultural runoff is an important source of 

glyphosate and AMPA in the coastal canals with influence on the BNP protected areas, 

and also that fast flowing canals will dilute glyphosate and move it downstream from the 

input point.  

Table 2.10 Measured conductivities and concentrations of glyphosate and AMPA in 
samples collected on April 27, 2010 from canals C-1, Goulds, C-103 and North Canal.a 

      Glyphosate  AMPA 

Site Canal name Lat. N Long. 
W 

Cond. 
(mS/cm) Meas. 

LFMb 
or 

DUPc 

%rec 
or 

RPD 

 
Meas. 

LFMb 
or 

DUPc 

%rec 
or 

RPD 
1 C-1 25.5663 80.3619 0.7 -    -   
2 C-1 25.5594 80.3590 0.8 - 10.9 86  - 12.8 103 
3 C-1 25.5484 80.3474 0.7 - - n.a.  - - n.a. 
4 L-31E 25.5372 80.3478 2.0 <RL    -   
5 C-101/L-31E 25.5375 80.3441 2.0 0.310    <RL   
6 L-31E 25.5376 80.3337 2.0 -    4.69   
7 C-1/L-31E 25.5434 80.3314 1.1 -    -   
8 L-31E 25.5516 80.3314 0.7 2.01    1.36   
9 L-31E 25.5550 80.3313 1.2 2.02 13.3 89  1.25 14.1 103 

10 C-103 25.4715 80.3794 1.6 -    1.34   
11 C-103 25.4705 80.3715 1.0 0.859 12.6 93  <RL 14.5 114 

11A C-103 
tributary 25.4706 80.3716 1.3 7.40 6.73 10  4.37 3.96 10 

12 North 25.4628 80.3789 0.8 -    0.384   
13 North 25.4628 80.3711 0.9 -    1.22   
14 North 25.4629 80.3568 1.1 0.179 11.9 92  0.356 14.4 113 
15 North/L-31E 25.4633 80.3468 0.6 - - n.a.  - - n.a. 

aAll concentrations are listed in µg/L; (-): Below MDL; (<RL): Below reporting limit; (n.a.): not available. bLaboratory 
Fortified Matrix experiment, results measured in percent recovery. Fortification level was 12.5 µg/L. cDuplicate 
measurements. Results presented in relative percent deviation (RPD).   
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During the April, 2010 trip, the frequency of detection and the measured 

concentrations of AMPA were significantly lower than on the previous collections, 

probably caused by dilution from the heavy rain event and the constant discharge flows at 

the gate structures throughout the sampling day and the day before. 

The results from the April, 2010 and previous sampling collections suggest that 

glyphosate may have agricultural, urban and direct input sources in the coastal canal 

system. Although measured concentrations were always below the known chronic effect 

toxicity levels for the most sensitive organisms, glyphosate used in terrestrial applications 

contains surfactants that are more toxic to aquatic organisms than the herbicide itself 

(Relyea, 2005; Solomon & Thompson, 2003). Thus, the occurrence of agriculture-related 

glyphosate may indicate that such surfactants may also be present in the canals, and the 

extent of the threat to the protected areas subjected to hydration with canal water should 

be investigated. Some surfactants used within glyphosate formulations are known to have 

a high toxicity to aquatic organisms, especially amphibians (such as polyethoxylated 

tallow amine (POEA) contained in Roundup®) (Relyea, 2005). Other formulations that 

remain trade-mark secrets have proven to have the same high toxicity to aquatic 

organisms that POEA has (Relyea, 2012), and the identity and concentration of the 

surfactant in the formulation are unknown. Therefore, analyzing for unknown glyphosate-

related surfactants in these waters may be a challenging task, and detecting the 

biodegradable glyphosate and its main metabolite may be the simplest approach to assess 

this threat.  
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Figure 2.17 Sampling sites and results for the April 27, 2010 sample collection after a 
heavy rain event, from canals C-1, Goulds, C-103 and North Canal. (RL: 0.174 µg/L for 
glyphosate; 0.324 µg/L for AMPA). 
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2.8. Conclusions 

A simple, robust, inexpensive and sensitive method for the analysis of glyphosate 

and its main metabolites in surface waters has been developed. The methodology allows 

for preconcentration of 72 samples, calibrations and quality control samples in three to 

four days of unattended lyophilization. Simplicity is maintained throughout the analysis, 

as the only steps required are fortification with aspartic acid internal standard previous to 

water removal, and afterwards suspension of dried samples in borate buffer and EDTA, 

syringe filtration, introduction of the FMOC-Cl reagent and injection into an LC system 

at least 30 min later. 

 Despite the simplicity of the developed methodology, method detection limits of 

0.058 and 0.108 µg/L were obtained for glyphosate and AMPA using 20 mL of water 

samples. The most sensitive technique in the literature (Hanke et al., 2008) has a 

glyphosate MDL of 0.0007 µg/L for 80 mL samples, which is roughly 20 times more 

sensitive than this work when corrected for sample size. However, both the sample 

treatment steps and the instrumentation required in that technique are much more 

complicated and potentially expensive to implement, and the information gain on 

determining the herbicide in concentrations that are many orders of magnitude below any 

significant environmental effect may be of low utility for most routine monitoring efforts.   

The method was developed with a dual FLD and MS/MS detection which allowed 

high sensitivity detection with unequivocal identification of glyphosate in contaminated 

sites. However, fluorescence chromatograms produced clean, interference-free peaks 

thanks to a high pH chromatographic separation using a specialized column for such 
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application, which ensured selective elution of the anionic, derivatized analytes while 

neutral interferences were retained. The clean chromatograms obtained using the FLD 

could allow its standalone use, and therefore the minimum requirements to implement 

this method are a tray loading lyophilizer and a binary liquid chromatography pump with 

a fluorescence detector. These that can be easily met by many laboratories interested in 

monitoring glyphosate and its main metabolite in surface waters.   

The method had a high dynamic range which allowed quantitation of background 

levels of the herbicide and also high amounts introduced by direct applications of the 

herbicide for canal maintenance. Environmental data collected using this method suggest 

that glyphosate has direct and indirect sources into the investigated coastal canal system, 

including agricultural runoff from local farms. Since waters from these canals will be 

used to hydrate coastal wetlands inside the protected area of the Biscayne National Park, 

a constant monitoring of glyphosate and its main metabolite may be needed to ensure that 

the herbicide is not a threat to these ecosystems. The occurrence of agricultural 

glyphosate in this canal system raises concerns that it may be associated with the 

introduction of large quantities of surfactants that are known to be more toxic to aquatic 

organisms that the herbicide itself.  

Therefore, glyphosate and AMPA should be included in monitoring programs that 

will evaluate the quality of the water discharged into protected wetlands, and the 

methodology developed and successfully tested with field work during the course of this 

research may provide with a simple and robust tool to accomplish this goal.  
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3. ANALYTICAL METHODS FOR THE ANALYSIS OF COREXIT® 

DISPERSANTS IN DIFFERENT STAGES OF AN OIL SPILL MONITORING 

EFFORT 

(Cesar E. Ramirez, Sudha Rani Batchu and Piero R. Gardinali. Analytical and 

Bioanalytical Chemistry, 2013, 405:4167-4175)  

(Cesar E. Ramirez, Sudha Rani Batchu and Piero R. Gardinali. Thermo Scientific 

Application Note Number 586. 2013) 

3.1. Introduction 

On April 20th, 2010 the “Deepwater Horizon” (DWH) oil platform caught fire 

and sank in the Gulf of Mexico, creating a large release of oil and gas from the riser pipe 

and the uncapped well head. Efforts to contain and clean up the spill included the use of 

oil dispersants both above and below the surface.  The dispersants Corexit® EC9500A 

and EC9527A (formerly Corexit® 9500 and 9527) were authorized by the U.S. 

Environmental Protection Agency (USEPA) to be used in the Gulf of Mexico Oil Spill 

(USEPA, 2010c), and at least 1.8 million gallons were applied ("Official federal portal 

for the Deepwater BP oil spill response and recovery," 2010). Dispersants are a mixture 

of solvents and surfactants that reduce the interfacial tension between the water and oil, 

facilitating the breakup of the oil into small droplets that are easily dispersed by wind and 

wave action (Chapman et al., 2007). According to available MSDS, the components of 

Corexit® EC9500A include a proprietary blend of an organic sulfonic acid salt (10-30% 

w/w), hydrotreated light petroleum distillates (10-30% w/w) and propylene glycol (1-5% 
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w/w) (NALCO, 2012a), whereas Corexit® EC9527A contains mainly 2-butoxyethanol 

(30-60% w/w) and the same proprietary organic sulfonic acid salt (10-30% w/w) 

(NALCO, 2012b). Other known components include surfactant mixtures like Span 80, 

Tween 80 and Tween 85 (USEPA, 2010b).  

The identity of the sulfonic salt common to both Corexit® formulations was 

released by the USEPA (2010b) as the anionic surfactant dioctyl sulfosuccinate (DOSS, 

CAS number 577-11-7, figure 3.1). Kujawinski et al. (2011) reported that DOSS 

persisted up to 300 km from the well and remained in the water column up to 64 days 

after its application ceased, at concentrations ranging from 5 to 2100 ng/L, implying that 

DOSS is not biodegradable or degrades at a very slow rate. Corexit® formulations were 

never applied in such a large scale before the DWH spill, hence its environmental fate 

after application is partially unknown. In absence of any other available criteria, the 

USEPA has listed an aquatic life benchmark 40000 ng/L for DOSS and suggested 

reporting limits for environmental analysis of 20000 ng/L (USEPA, 2010a).   

 

 

Figure 3.1 Structure of the dioctyl sulfosuccinate (DOSS) anion. 
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In light of the above facts and given the large quantities of Corexit® that were 

applied into the Gulf of Mexico waters during the response efforts, there is a need for 

analytical methods capable of detecting its components in seawater, even when large 

dilution factors were expected to occur. DOSS was proposed as a marker to monitor the 

fate of dispersant based on its persistence in the environment (Kujawinski et al., 2011). 

Place et al. (2010) confirmed the presence of DOSS in both Corexit® formulations 

and proved that it can be easily detected by ESI-MS/MS in the negative mode. Mathew et 

al. (2012) reported a direct injection method for DOSS in seawater amended with 50% 

acetonitrile, with a reporting limit of 20000 ng/L. They noticed a 20-fold increase in the 

sensitivity of DOSS for samples amended with acetonitrile. Kujawinski et al. (2011) first 

reported the use of Solid Phase Extraction (SPE) to preconcentrate DOSS from high 

volumes of seawater, followed by LC-MS/MS, reporting a limit of quantification of 3 

ng/L using up to 7 L samples collected from the incident area. Their sample extraction 

includes separation of acidic components, basic and neutral components, water soluble 

components, treatment with resin and finally eluting the analyte from the resin with 

methanol. This procedure should be time consuming and requires a minimum of 1 L of 

sample. Therefore, a faster method with less sample consumption, such as online SPE, 

could represent a viable alternative that has not been investigated before. 

This study presents two analytical methodologies for the analysis of DOSS in 

seawater. A simplified online SPE-LC-MS/MS method for ultra-trace determination of 

DOSS in seawater a  complementary LC-MS/MS method as an alternative for samples 
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that do not require such preconcentration, for example, in samples where Corexit® has 

been recently applied.  

Additionally, a third methodology was developed for the simultaneous analysis of 

DOSS and another Corexit® component in commercial formulations of dispersants and 

crude oil. The neutral dispersant 2-butoxyethanol (CAS number 111-76-2, figure 3.2) is 

the main component of Corexit® EC9527A accounting for 30-60% w/w (NALCO, 

2012b). It is also a common industrial product which can find its way into environmental 

samples from many other sources (Dartsch et al., 1999). 

 

Figure 3.2  Structure of 2-butoxyethanol 
 

Environmental concentrations of 2-butoxyethanol in seawater are expected to be 

low because of its fast biodegradation rate (half-life of 1 to 4 weeks) (Harris, 1998). 

Because of its multiple sources and biodegradability, 2-butoxyethanol may not be a 

suitable marker for Corexit® EC9527A in open ocean waters. However, applications of 

Corexit® EC9527A in an oil spill response could potentially yield localized high 

concentrations of both 2-butoxyethanol and DOSS in floating crude oil and dispersed oil-

water mixtures. A LC-MS/MS method capable to simultaneously detect and quantify the 

two main components of Corexit® EC9527A in dispersant formulations and crude oil 

from oil release sites could be extremely useful in identifying the Corexit® formulations 

employed and assessing the fate of its components.  
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3.2. Hypotheses 

- LC-MS/MS and online SPE-LC-MS/MS can be used to analyze DOSS at a 

wide dynamic range. The analyte can be stabilized in glass containers using 

acetonitrile. 

- LC-MS/MS can be used to simultaneously detect DOSS and 2-butoxyethanol 

to identify Corexit® formulations before application.  

- Crude oil from an accident site can be analyzed for Corexit® markers by LC-

MS/MS after Liquid-Liquid Extraction.  

 

3.3. Research Objectives 

The objectives of this project were as follows: 

- To develop an ultra-sensitive, automated online SPE-LC-MS/MS method for 

the determination of DOSS in seawaters at low ng/L levels.  

- To develop a complementary LC-MS/MS method for the very fast 

determination of DOSS in seawaters at low µg/L levels. 

- To address the sampling and sample storage techniques to minimize DOSS 

losses caused by adsorption to container surfaces. 

- To develop an LLE+LC-MS/MS method for the simultaneous analysis of 

DOSS and 2-butoxyethanol in crude oil and commercial formulations. 
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3.4. Materials and reagents 

Certified DOSS and DOSS-13C4 standards were purchased from Cambridge 

Isotopes Laboratories (Andover, MA., USA). Neat DOSS sodium salt was purchased 

from Acros Organics (Geel, Belgium) and used for initial calibration verification (ICV) 

purposes. 2-butoxyethanol was also purchased from Acros Organics. Deuterated 

standards sodium dodecyl-D25 sulfate (SDS-D25) and 2-butoxyethanol-D4 were purchased 

from CDN Isotope Laboratories (Quebec, Canada). Stock and working solutions of all 

compounds were prepared in acetonitrile. Artificial seawater (3.5% w/v) was prepared 

using commercially available Instant Ocean® salt. LC/MS grade acetonitrile, water, 

formic acid and ammonium formate were purchased from Fisher Scientific (Fairlawn, 

NJ., USA). Glass vials were cleaned by baking at 450 ºC for at least 6 h before use. Fresh 

mobile phases were prepared every analysis day.  

The online preconcentration was performed using an EQuan online SPE system 

(Thermo Scientific, Waltham, MA., USA), consisting of an HTC-PAL™ autosampler 

equipped with a 5 mL glass syringe and a 5 mL and a 0.030 in ID PEEK sample loop 

(model 1822) purchased from IDEX Health and Science (Oak Harbor, WA., USA); an 

Accela™ 1000 as analytical HPLC pump and an Accela™ 600 as SPE loading pump. 

The online SPE column was a Hypersil Gold aQ® (20 mm × 2.1 mm, 12 µm). All 

analytical separations were carried out using a Hypersil Gold aQ® column (50 mm × 2.1 

mm, 3 µm) protected by a Hypersil Gold aQ® pre-column (10 mm x 2.1 mm x 3 µm). All 

columns were also obtained from Thermo Scientific. 
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For the direct injection methods, the autosampler was equipped with a 100 µL 

glass syringe and a 100 µL stainless steel sample loop. Direct injection analytical 

separations were performed by using only the Accela™ 1000 HPLC pump. Detection 

was performed by a TSQ Quantum Access™ QqQ Mass Spectrometer equipped with a 

Heated Electrospray Ionization (HESI) source. All devices were controlled using the 

Xcalibur 2.1 data acquisition software. The instrument and software were also obtained 

from Thermo Scientific. 

3.5. Seawater samples preservation procedure 

DOSS tends to bind to surfaces (Kujawinski et al., 2011; Mathew et al., 2012). 

Therefore, seawater analyzed in this study was preserved as soon as possible by placing 

10.00 mL aliquots in 20 mL glass vials containing 5.000 mL of acetonitrile and storing 

the amended sample at or below 4 ºC until analysis. The resulting acetonitrile 

concentration was 33% v/v. All samples were processed and analyzed within 14 days of 

collection. 

3.6. DOSS MS/MS detection 

The HESI source was operated in negative mode and the mass spectrometer 

operated under the selective reaction monitoring (SRM) scan mode. The following 

optimized MS parameters were obtained by infusion of DOSS and DOSS-13C4 

acetonitrile solutions: quantitative SRM transition: m/z 421à81, collision-induced 

dissociation (CID) energy: 27 eV; confirmation SRM transition: m/z 421à227, CID: 24 

eV; DOSS-13C4 SRM transition: m/z 425à81, CID: 27 eV; capillary voltage 4.0 kV; 



65 
 
 

tube lens: 90 V; skimmer offset: 8 V; sheath gas (N2): 10 arbitrary units; auxiliary gas 

(N2): 25 arbitrary units; capillary temperature: 300 ºC; HESI heater temperature: 340 ºC; 

CID gas (Ar) pressure: 1.7 mTorr.  

3.7. Trace level determination of DOSS seawater by online SPE-LC-MS/MS 

3.7.1. Sample preparation 

5.600 mL of preserved seawater sample were transferred to a 10 mL LC vial and 

fortified with DOSS-13C4 internal standard (to 400 ng/L), and a final volume of 6 mL was 

obtained using 33% v/v of acetonitrile in artificial seawater. The samples were 

thoroughly mixed and injected directly into the online SPE-LC-MS/MS system. 

Calibration solutions (0-500 ng/L) were prepared with artificial seawater, also 

maintaining the 33% acetonitrile/artificial seawater ratio. A 7-point set of calibration 

solutions was freshly prepared for each analysis batch.  

3.7.2. Online SPE-LC-MS/MS instrumental procedure 

A graphical representation of the online SPE system is shown in figure 3.3. 5 mL 

of samples, quality control samples or calibration solutions were loaded into the sample 

loop. The SPE column was placed in a rotary valve, allowing connection with either the 

loading pump (loading position) or the analytical pump (analysis position). The SPE 

column was maintained at the loading position for 8 min (5 min sample loading and 3 

min washing), for 4 min at the analysis position and returned to the loading position for 2 

min, for a total of 14 min run time. The mobile phase gradient programs for the loading 
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and analytical pumps are shown in table 3.1, and the autosampler washing steps used to 

avoid carryover are listed in table 3.2.  

Table 3.1 Mobile phase delivery programs for pumps during the online SPE 
determination of DOSS in seawater.a 

            
SPE LC pump Analytical LC pump 

t 
(min) A B C Flow 

(mL/min) 
Segment 

description 
t 

(min) A B C Flow 
(mL/min) 

Segment 
description 

0   100 1.0 

Solid phase 
extraction 

0  98 2 0.325 

Analysis 
column 

reset 

2.0   100 1.0      
3.0  20 80 1.0      

     3.2  98 2  
3.5  95 5 1.0 3.5  20 80 0.325 
4.9  95 5 1.0      
5.0  95 5 1.0 Salt 

removal 

     
          

7.9  95 5 1.0 7.9  20 80 0.325 
8.0  95 5 1.0 

Sample 
loop water 

flush 

8.0  20 80 0.325 

Gradient 
separation 

8.5 100   1.0      
     10.8  98 2 0.325 

11.9 100   1.0      
12.0 100   1.0       

     
SPE 

column 
reset 

     

14.0 100   1.0  14.0  98 2 0.325 
a Mobile phases are A: water; B: acetonitrile; C: 10 mM ammonium formate. 

 
 
 
 

Table 3.2 Washing program used to avoid carryover during the online SPE determination 
of DOSS in seawater.a 

Washing step Solvent Solvent path 
1 Water syringe à waste 
2 1:1 acetonitrile/methanol syringe à waste 
3 Water syringe à injector port à waste 
4 1:1 acetonitrile/methanol syringe à injector port à waste 

aVolume for each step: 5 mL (syringe size). 
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Figure 3.3 Online SPE system for the determination of DOSS in seawater. (TOP, loading 
position) 5 mL of sample are passed through the loading column followed with a washing 
program to remove inorganic species. (BOTTOM, analysis position) Analyte is 
backflushed into the analytical column for detection. 
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3.8. Fast determination of DOSS in seawater by direct injection LC-MS/MS  

This complementary method allows the determination of DOSS in seawater in the 

low µg/L range within 7 minutes and with almost no sample manipulation. It can be 

readily adopted by laboratories without online SPE capabilities. 

3.8.1. Sample preparation 

1.250 mL of the preserved samples were transferred to a 2 mL LC amber vial, 

fortified with DOSS-13C4 internal standard (to 20 µg/L) and a final volume of 1.500 mL 

was made with 33% v/v of acetonitrile in artificial seawater. Samples were thoroughly 

mixed and analyzed directly by LC-MS/MS. Calibration solutions (0-20.0 µg/L) were 

prepared with artificial seawater, also maintaining the 33% acetonitrile/artificial seawater 

ratio. A 7-point set of calibration solutions was freshly prepared for each analysis batch. 

3.8.2. LC-MS/MS instrumental procedure 

Samples, quality control samples and calibration solutions were injected using a 

100 µL stainless steel sample loop. The analysis was performed in 7 minutes according to 

the binary mobile phase program shown in table 3.3. In order to reduce peak broadening, 

the analytical run was started at 33% acetonitrile to match the proportion of that solvent 

in the injected solutions. This process focused the analyte in the column head providing 

good peak shape (typical chromatograms are shown in figure 3.10). 

To prevent the transfer of non-volatile seawater salts into the ionization source, 

salts were flushed out of the column by increasing the aqueous mobile phase proportion 
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to 98% while the column eluent was diverted to waste using a rotary valve. The 

autosampler washing steps used to avoid carryover are listed in table 3.4.  

 

Table 3.3 Mobile phase delivery program for the fast determination of DOSS in seawater 
by LC-MS/MS. Column eluent is diverted to waste during the first 3 min and again from 
5.5 min to the end of the analytical run. 

Time  (min) Acetonitrile (%) 10 mM NH4COO (%) Flow (mL/ min) Segment description 
0 33 67 0.325 

Analyte focusing 
0.1 33 67 0.325 
0.2 2 98 0.325 

Salt removal 
0.6 2 98 0.325 
0.9 33 67 0.325 

Analyte elution 
1.0 33 67 0.325 
3.7 98 2 0.325 
5.6 98 2 0.325 
5.9 33 67 0.325 

Column reset 
7.0 33 67 0.325 

  
 
 
 
 

Table 3.4 Washing program used to avoid carryover for the fast determination of DOSS 
in seawater by direct injection LC-MS/MS.a 

Washing step Solvent Solvent path 
1 Water syringe à waste 
2 Water syringe à waste 
3 1:1 acetonitrile/methanol syringe à waste 
4 1:1 acetonitrile/methanol syringe à waste 
5 Water syringe à injector port à waste 
6 1:1 acetonitrile/methanol syringe à injector port à waste 

aVolume for each step: 100 µL (syringe size).  
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3.9. Simultaneous analysis of DOSS and 2-butoxyethanol in dispersant 

formulations and crude oil 

3.9.1. Crude oil sample preparation 

Approximately 5 µL of crude oil samples were added to 2 mL amber LC vials, 

weighed and fortified with a mixture of 2-butoxyethanol-D4 and DOSS-13C4 surrogates. 

Liquid-liquid extraction of each surrogate-fortified oil sample was performed by 

adding 1260 µL of acetonitrile and mixing using a vortex for 2 min, resulting in a two-

phase system with undissolved oil on the vial walls. An aliquot of the acetonitrile phase 

was transferred to a second 2 mL amber LC vial containing 1000 µL of artificial 

seawater, and was fortified with SDS-D25 internal standard. A final volume of 1.500 mL 

was made up with acetonitrile. To ensure method uniformity, the injected sample was 

prepared to match the 66% seawater and 33% acetonitrile matrix used for seawater 

samples and commercial formulation. The method was tested with light crude oil from 

Wilcox Formation in Texas, USA and a crude oil sample collected during the DWH 

response effort (Enterprise sampling cruise on 5/22/2010, sample # SOB-20100622-084). 

3.9.2. Commercial formulation sample preparation 

Corexit® EC9500A and Corexit® EC9527A commercial formulations were 

weighed and serially diluted up to 107 times, with the last dilution step made in artificial 

seawater. The resulting solutions were preserved with acetonitrile and prepared for 

analysis according to the procedure for the direct injection LC-MS/MS analysis of DOSS 

in seawater described before.  
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3.9.3. Preparation of calibration solutions 

The preparation of samples for the DOSS direct injection method for seawater 

analysis was modified to include 2-butoxyethanol-D4, 2-butoxyethanol and SDS-D25. 

Calibration ranges in this method varied from 0.5-20 µg/L for DOSS and 2.50-30.0 µg/L 

for 2-butoxyethanol in the injected solution. Calibration solutions contained 100 µg/L of 

2-butoxyethanol-D4 and 20 µg/L of DOSS-13C4 used as surrogates, plus 100 µg/L of 

SDS-D25 internal standard. 

3.9.4. LC-MS/MS instrumental procedure 

Direct infusion analysis suggested that 2-butoxyethanol could only be ionized in 

the presence of a proton donor modifier, thus 10 mM ammonium formate was substituted 

by 0.1% formic acid in both the aqueous and organic mobile phases.  

3.9.4.1. Liquid chromatography 

Injection volume was 20 µL. Separation was performed in 10 min according to 

the binary gradient program between 0.1% formic acid in water (A) and 0.1% formic 

acid, 0.9% water and 99% acetonitrile (B) shown in table 3.5. 

Similarly to the direct injection method for the determination of DOSS in 

seawater, column effluent was also diverted to waste for the first 3 minutes with a rotary 

valve to prevent the transfer of seawater salts into the ionization source. The same 

autosampler washing steps were also used (listed in table 3.4). 
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Table 3.5 Mobile phase delivery program for the simultaneous analysis of DOSS and 2-
butoxyethanol in dispersant formulations and crude oil by LC-MS/MS.a 

Time  (min) A (%) B (%) Flow (mL/ min) 
0 98 2 0.325 

0.9 98 2 0.325 
3.7 2 98 0.325 
5.6 2 98 0.325 
5.9 98 2 0.325 
10.0 98 2 0.325 

a Mobile phase A: 0.1% v/v formic acid in water; B: 0.1% formic acid, 0.9 % water, 99% v/v acetonitrile.  

 

3.9.4.2. Mass spectrometry detection 

For this method the HESI source was operated as regular ESI (heater turned off) 

as the 2-butoxyethanol signal was observed to decrease rapidly with increasing heater 

temperature. The ionization source was operated in positive mode for the first 4 min of 

the chromatographic separation, detecting 2-butoxyethanol and 2-butoxyethanol-D4, and 

then switched to negative mode to detect DOSS, DOSS-13C4 and SDS-D25. The SRM 

scan mode was also used with this method. Optimized MS parameters for the positive 

mode segment were: 2-butoxyethanol quantitative SRM transition: m/z 119à63, CID: 5 

eV; confirmation SRM transition: m/z 119à45, CID: 9 eV; 2-butoxyethanol-D4 

transition: m/z 123à67, CID: 6 eV; capillary voltage: 4.5 kV; tube lens: 50V; auxiliary 

gas (N2): 15 arbitrary units; capillary temperature: 325 ºC; sheath gas (N2): 60 arbitrary 

units; CID gas (Ar) pressure: 1.0 mTorr.  

Negative mode SRM detection parameters remained unchanged from the DOSS 

methods described before, except for the absence of HESI heating. This lower 
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temperature causes a slight decrease in DOSS sensitivity but allows the simultaneous 

analysis of 2-butoxyethanol. SDS-D25 SRM transition: m/z 290à98, CID: 42 eV.  

3.10. Results and discussion 

3.10.1. Optimization of DOSS analytical signal and seawater sample 

preservation 

Direct infusion of DOSS acetonitrile solutions into the MS confirmed previous 

observations (Place et al., 2010) that showed a straightforward ionization of this analyte 

using electrospray ionization operating in the negative mode. This is expected as the 

DOSS anion is the conjugate base of the very strong dioctyl sulfosuccinic acid (pKa = 

0.08±0.5)2 thus has a weak basic character and does not protonate upon desolvation in the 

ESI interface. As shown in figure 3.4, DOSS produces two clear fragments upon 

collision-induced dissociation (CID), and these were used in this work as analytical and 

confirmation SRM transitions.  

Previous publications have noted that DOSS tends to bind to many surfaces, 

resulting in decreased analytical signal (Kujawinski et al., 2011; Mathew et al., 2012). 

Initial observations during this work were in agreement with those results, as early 

attempts to analyze DOSS in fortified deionized water and seawater samples resulted in 

low, non-reproducible signals and recoveries. 

 

                                                
2 From Scifinder®. (Substance search: dioctyl sulfosuccinic acid, CAS number 10041-19-7), 

(Calculated using Advanced Chemistry Development (ACD/Labs) Software V11.02 (© 1994-2012 
ACD/Labs)) 
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Figure 3.4 Product ion scan spectrum of DOSS obtained using negative mode 
electrospray ionization, showing the main and secondary collision-induced dissociation 
products and their probable structure. (Q1: m/z 421.2; Q3: 75-500 m/z, CID: 25 eV, scan 
time: 120 ms) 

  

Mathew et al. (2012) proposed that 50% dilution of seawater samples with 

acetonitrile produces good analytical signals. Two experiments were designed in order to 

verify the amount of acetonitrile required. In a first experiment, acetonitrile was 

compared to deionized water as dilution solvent. A 10 µg/L DOSS fortified seawater 

sample was diluted to 50%, with the dilution solvent being progressively changed from 

deionized water to acetonitrile, keeping the dilution factor constant (figure 3.5). During 

this process, the DOSS peak area increased to a maximum as the percentage of 

acetonitrile increased, showing that acetonitrile is in fact responsible for the signal 

enhancement rather than a pure dilution effect. This enhancement or desorption effect 

was maximized around 25% acetonitrile.  
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Figure 3.5 DOSS chromatographic signals are greater when acetonitrile is used as 
diluting solvent instead of deionized water at a fixed dilution factor. 

In a second experiment, a fixed volume of seawater sample fortified with 5 µg/L 

of DOSS was sequentially diluted with acetonitrile, to obtain the optimal dilution factor. 

If a simple dilution was occurring a constantly decreasing signal would have been 

obtained. Instead, as shown in figure 3.6, DOSS signal increased to a maximum around 

20% v/v acetonitrile and the expected dilution trend was observed after that.
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Figure 3.6 Determination of the optimum dilution factor using a seawater sample fortified 
with 5 µg/L DOSS. DOSS peak area increased until a 1.3 dilution factor was obtained (20 
%v/v acetonitrile), and then decreased with further dilution. 

 

These losses of DOSS from samples without acetonitrile preservation raised 

questions about the effectiveness of containers typically used to collect, transport and 

store seawater samples until analysis. In order to investigate storage effects, two sets of 

seawater samples were fortified with 5 µg/L of DOSS and immediately stored in three 

common types of bottles used for sample storage (glass, polytetrafluoroethylene (PTFE) 

and polyethylene (PE)) at or below 4ºC. One set was stored without acetonitrile 

preservation and the second set was preserved by adding acetonitrile to 33%. Subsamples 

were taken at 0, 1 and 3 and 25 hours and analyzed by direct injection LC-MS/MS. The 

results are shown in figure 3.7. In the absence of acetonitrile, the recoveries of DOSS 

were quickly reduced from the start of the experiment, whereas the samples preserved 
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with 33% v/v acetonitrile produced stable DOSS signals with over 80% recovery up to 25 

h storage time.  

In order to test the stability of an acetonitrile-preserved sample over a longer 

period of time, 10.0 mL of artificial seawater were fortified with DOSS at a 4.70 µg/L 

level and placed in a 20 mL glass vial, diluted with 5.00 mL of acetonitrile (33% v/v) and 

stored at or below 4ºC. This sample was regularly analyzed for DOSS with the direct 

injection method for up to 250 days. As shown in figure 3.8, DOSS concentration was 

within two standard deviations from the mean during the entire study. Additionally, the 

measured DOSS concentration was within ±20% of the assigned value for up to 150 

days.  

These results suggest that the proposed preservation method maintains DOSS in 

solution well beyond a typical laboratory holding time of 14 days. In addition, the two 

methods described by Kujawinski et al. (2011) and Mathew et al. (2012) require the 

rinsing of the container with acetonitrile, which in turn causes the sample to be totally 

depleted during analysis. The method described here provides a simpler approach, 

producing fast and reproducible results at low concentrations by preventing DOSS from 

interacting with vial walls at the moment of sample collection. The use of 33% 

acetonitrile (10:5 seawater: acetonitrile) is recommended for simplicity, allowing the use 

of volumetric material to deliver 10.0 mL seawater into glass sample vials containing 5.0 

mL of acetonitrile, producing a 15.0 mL preserved sample that allows for different 

quality controls samples such as duplicates and matrix fortified samples to be created 

from the same container. 
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Figure 3.7 Effect of the sample preservation procedure observed in seawater samples 
fortified with 5 µg/L DOSS and stored in glass, polytetrafluoroethylene (PTFE), and 
polyethylene (PE) containers, measured in analyte recovery. 
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Figure 3.8 Validation of DOSS storage conditions. An artificial seawater sample was 
repeatedly analyzed for 250 days (fortification level 4.67 µg/L, mean 5.17 µg/L).  

 

3.10.2. Optimization of the online-SPE procedure 

SPE column loading, washing and reconditioning parameters were optimized for 

sensitivity and system stability under a repetitive cycle. The changes of acetonitrile 

concentration in the SPE column during the analysis cycle are graphically represented in 

figure 3.9. During step 1, 3 mL of deionized water are passed while the autosampler 

operates to inject the 5 mL of sample, bringing the SPE column to highly aqueous 

conditions. At the start of the run (0 min) the injection port closes and 5 mL of the 

preserved seawater sample (33% in acetonitrile) are passed through the column to 

perform SPE (step 2).  
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After extraction, the SPE column is washed with 2 mL of 10 mM ammonium 

formate to remove inorganic species that could produce signal suppression and introduce 

salt build-up in the API source (step 3). DOSS chromatographic peak shape improved 

when the composition of the mobile phase in the SPE column matched the one in the 

analytical stream at the time of switching. Therefore, step 3 includes a 1 mL gradient to 

condition the SPE column to 20% acetonitrile before connection with the analytical 

pump.  At 8 min, the SPE and analytical columns are connected and the analyte is eluted 

(step 4). After a 4 min detection period, the SPE column is reconnected with the loading 

pump (step 5) and cleaned with 0.5 mL 95% acetonitrile. During this step column 

conditioning to highly aqueous conditions is initiated, resuming during step 1 of the 

following run in the queue.  

 

Figure 3.9 Evolution of the acetonitrile concentration in the SPE column during the SPE-
LC-MS/MS analysis of DOSS in seawater showing the different analysis steps.   
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In order to test the recovery of the developed online SPE procedure, the same 

amount (2 ng) of DOSS-13C4 was injected using both the online SPE and direct injection 

methods. The SPE-LC-MS/MS recovery relative to direct injection was (113±14)%, 

calculated by using the DOSS-13C4 peak area from chromatograms obtained the same day 

using both methods (n=6). This result indicates that there is no analyte loss by 

breakthrough during the online SPE step, suggesting that DOSS is efficiently extracted 

by the SPE column in spite of the presence of 33% acetonitrile in the injected sample.  

3.10.3. Method validation – Online SPE & Direct injection of DOSS in 

seawater 

3.10.3.1. Calibration 

Calibration curves were obtained by plotting the peak area ratio of DOSS to its 

internal standard (DOSS/DOSS-13C4) against the DOSS concentration in ng/L, from the 

injection of seven calibration solutions. Linearity was observed in the range used (R2 > 

0.995) for both the SPE-LC-MS/MS and LC-MS/MS methods. Calibrations were verified 

using an ICV standard from a second source and the acceptable criteria was within ±20% 

of known concentration. 

3.10.3.2. Blanks and carryover control 

A blank sample was prepared with every sample batch, by adding 10.0 mL of 

artificial seawater to 5.0 mL acetonitrile, using 20 mL glass vial from the same batch 

used for sample storage. Aliquots of these solutions were treated as seawater samples and 

analyzed with every sample batch. 
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As discussed before, DOSS is a challenging analyte as it tends to bind to glass and 

other surfaces, raising concerns about carryover in the LC injection system. The 

combination of the sample preparation procedure (33% acetonitrile in seawater) and 

using 50% acetonitrile/methanol as the organic washing solvent ensured a carryover-free 

operation in both the direct injection and the online SPE methods, verified by a carryover 

evaluation experiment. The later was carried out by consecutive injections of a blank and 

the calibration standard of highest concentration (direct injection method, 20,000 ng/L in 

33% acetonitrile/seawater). As shown in table 3.6, the observed DOSS peak areas in the 

blanks represented less than 1% of the DOSS-13C4 peak areas, before and after the 

injection of the concentrated standard. These results are in agreement with an isotopic 

purity of 99% listed by the manufacturer of the certified DOSS-13C4 internal standard, 

and demonstrate that the developed washing cycle is capable of removing the analyte 

from the injection system up to 20000 ng/L, the highest concentration of DOSS that was 

injected. 

3.10.3.3. Fortified blanks (FB) and fortified matrix (FM) experiments 

Two fortified blanks and one fortified matrix sample were prepared with every 

analytical batch. DOSS fortification levels were 200 ng/L (online SPE) and 3,660 ng/L 

(direct injection). Excellent recoveries were obtained upon analysis of laboratory fortified 

blanks (100±9%, n=54) and fortified matrix (101±12% , n=32) experiments, suggesting 

that matrix effects are  under control by combining the use of DOSS-13C4 as internal 

standard with the use of seawater in matrix matched calibrations. 
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Table 3.6 Results for the carryover evaluation experiment using the direct injection LC-
MS/MS method for DOSS in seawater.  

 

LC-MS/MS 
FILE NAME DOSS 

AREA 
DOSS-13C4 

AREA Ratio DOSS/ DOSS-13C4 

% in blanks 
Assigned 

(µg/L) 
Measured 
C (µg/L) 

        12793 Blank 1.59E+05 2.39E+07 6.63E-03 0.7 0 -0.1 
12794 Blank 1.60E+05 2.35E+07 6.82E-03 0.7 0 -0.1 
12795 CS6 1.93E+07 2.19E+07 8.83E-01 

 
20.5 20.8 

12796 Blank 1.52E+05 2.27E+07 6.72E-03 0.7 0 -0.1 
12797 Blank 1.59E+05 2.21E+07 7.18E-03 0.7 0 -0.1 
12798 CS6 1.77E+07 2.24E+07 7.91E-01 

 
20.5 18.7 

12799 Blank 1.76E+05 2.19E+07 8.04E-03 0.8 0 -0.1 
12800 Blank 1.80E+05 2.35E+07 7.65E-03 0.8 0 -0.1 
12801 CS6 1.80E+07 2.14E+07 8.43E-01 

 
20.5 19.9 

12802 Blank 1.75E+05 2.43E+07 7.21E-03 0.7 0 -0.1 
12803 Blank 1.80E+05 2.35E+07 7.65E-03 0.8 0 -0.1 
12804 CS6 1.64E+07 1.95E+07 8.39E-01 

 
20.5 19.8 

12805 Blank 1.81E+05 2.30E+07 7.85E-03 0.8 0 -0.1 
12806 Blank 1.70E+05 2.26E+07 7.50E-03 0.8 0 -0.1 
12807 CS6 1.82E+07 2.19E+07 8.33E-01 

 
20.5 19.7 

12808 Blank 1.72E+05 2.19E+07 7.86E-03 0.8 0 -0.1 
12809 Blank 1.79E+05 2.16E+07 8.29E-03 0.8 0 0.0 
12810 CS6 1.77E+07 2.08E+07 8.51E-01 

 
20.5 20.1 

12811 Blank 1.93E+05 2.39E+07 8.06E-03 0.8 0 -0.1 
12812 Blank 1.85E+05 2.11E+07 8.77E-03 0.9 0 0.0 
12813 CS6 1.79E+07 2.19E+07 8.18E-01 

 
20.5 19.3 

12814 Blank 1.70E+05 2.37E+07 7.16E-03 0.7 0 -0.1 
12815 Blank 1.72E+05 2.22E+07 7.72E-03 0.8 0 -0.1 

        Calibration Data 
              12816 CS0 1.78E+05 2.28E+07 7.78E-03 

 
0 -0.1 

12817 CS1 3.37E+05 2.27E+07 1.48E-02 
 

0.19 0.11 
12818 CS2 5.81E+05 2.18E+07 2.67E-02 

 
0.50 0.39 

12819 CS3 1.38E+06 2.34E+07 5.91E-02 
 

1.25 1.17 
12820 CS4 4.96E+06 2.22E+07 2.24E-01 

 
4.98 5.10 

12821 CS5 9.27E+06 2.08E+07 4.45E-01 
 

9.96 10.4 
12822 CS6 1.77E+07 2.06E+07 8.60E-01 

 
20.5 20.3 

        Y = 0.0103284+0.0418357*X   R^2 = 0.9992 
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3.10.3.4. Qualitative analysis 

Samples were considered to contain DOSS when peaks were present in both the 

DOSS main (421à81) and secondary (421à227) SRM transitions. Both signals were 

required to have a signal-to-noise ratio of 10 and a retention time within 2% of that of the 

DOSS-13C4 signal. Typical chromatograms for both methods are observed in figure 3.10. 

 

Figure 3.10 Typical DOSS chromatograms obtained by online SPE-LC-MS/MS (left) and 
direct injection (right) methods to quantify DOSS in seawater. From top to bottom: 
DOSS quantitative signal, DOSS qualitative signal, and DOSS-13C4 internal standard. 
The concentrations for online SPE were: 237 ng/L DOSS and 400 ng/L DOSS-13C4. The 
concentrations for direct injection were as follows: 2,729 ng/L DOSS and 20,000 ng/L 
DOSS-13C4. 
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3.10.3.5. Detection limits 

Method detection limits (MDLs) were calculated by multiplying the standard 

deviation from seven measurements by the Student t value (t(7-1, 99) = 3.143), according to 

procedures outlined by the USEPA (2010e), using aliquots of Biscayne Bay natural 

seawater. Fortification levels were 20 ng/L for online SPE and 1,000 ng/L for direct 

injection, obtaining MDLs of 7.0 ng/L and 440 ng/L, respectively.   

In comparison, Kujawinsky et al. (2011) reported the presence of DOSS in 

environmental samples to concentrations as low as 3 ng/L, for 7 liters of sample using 

offline SPE and LC-MS. Although higher sensitivity is possible with that method, its 

complexity and the logistics required to collect large sample quantities makes it 

impractical for environmental monitoring.  

Mathew et al. (2012) established a reporting limit of 20,000 ng/L for their direct 

injection method and therefore its ability to analyze open water samples is limited to 

areas of recent dispersant applications.    

The USEPA has listed an aquatic life benchmark 40,000 ng/L for DOSS and 

suggested reporting limits for environmental analysis of 20,000 ng/L (USEPA, 2010a). 

The DOSS detection limits for both methods reported in this work (7.0 and 440 ng/L) are 

well under the required reporting limits.  
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3.10.4. Analysis of DOSS and 2-butoxyethanol in crude oil and commercial 

formulations 

3.10.4.1. Calibration 

Calibration plots for the crude oil analysis were produced by plotting the ratio of 

the peak areas of each analyte with the peak area of the internal standard (SDS-D25) 

against the standard concentration in the injected solutions. Linearity was observed for 

both analytes in the range used (R2 > 0.995). Using these calibration curves the 

concentration of each analyte in the liquid extract was obtained. This concentration was 

corrected for the liquid-liquid extraction step using the percent recovery of the 

isotopically labeled surrogates, calculated with the relative response factors (adapted 

from (Denoux, Gardinali, & Wade, 1998), see appendix 1 for details). The weight 

concentration was then back calculated using the corrected concentration and the weight 

of the crude oil sample.  

As no extraction step is performed for the analysis of serially diluted commercial 

formulations, calibrations were performed similarly to the DOSS in seawater analyses 

described before. The weight percentage of DOSS and 2-butoxyethanol in commercial 

formulations were back calculated using the measured concentration and the total dilution 

factor applied. 

3.10.4.2. Analysis of crude oil samples 

The method was tested using two different oils: a sweet-light oil from Wilcox 

formation in Texas, USA and crude oil sample from the MC-252 well, collected on May 



87 
 
 

22nd 2010. None of the analytes were detected in the Wilcox formation oil whereas the oil 

originated at the MC-252 raiser contained (4.0±0.2) mg/Kg of DOSS. However, 2-

butoxyethanol was not detected in the sample, which could indicate that Corexit® 

EC9527A was not employed during the response effort. Chromatograms from crude oil 

and commercial formulation analyses are presented in figure 3.11. 

 

Figure 3.11 Chromatograms obtained using the direct injection LC-MS/MS method for 
serially diluted commercial formulations (dilution factor: 107) and crude oil after liquid-
liquid extraction. The ESI source operated in positive mode from 0 to 4 min, and then 
switched to negative mode. The main SRM transition is shown for each compound, and 
chromatograms of both Corexit formulations are normalized to the same scale for 
comparison purposes.  

 

 



88 
 
 

3.10.4.3. Oil MDLs 

Because the MC-252 sample did contain DOSS, MDLs for crude oil analysis 

were determined by analyzing 7 replicates of the Wilcox formation crude oil, fortified to 

2 mg/Kg of DOSS and 20 mg/Kg of 2-butoxyethanol. The calculated MDLs were 0.723 

and 4.46 mg/Kg, respectively, with recoveries of (92±9) % for DOSS and (104±8) % for 

2-butoxyethanol (n=7). 

3.10.5. Analysis of DOSS and 2-butoxyethanol in commercial dispersant 

formulations 

Corexit® EC9500A was found to contain (21±2) % w/w of DOSS. As expected, 

2-butoxyethanol was not detected in that formulation. Corexit® EC9527A contained 

(22±5) % w/w of DOSS and (37±2) % w/w of 2-butoxyethanol. The obtained results 

were in good agreement with the numbers described in the MSDS of the commercial 

formulations (NALCO, 2012a, 2012b).  

3.11. Conclusions 

This report describes two robust analytical methods for the quantification of 

DOSS in seawater, that could be applied to monitor the fate and transport of the 

surfactant after Corexit® has been used in response efforts to counter oil spills. The 

combination of these two methods offers a rather large dynamic range with demonstrated 

high sensitivity and low matrix effects. Concerns about carryover and sample stability 

upon storage have also been addressed by means of acetonitrile preservation. The direct 

injection method can be quickly adopted by many laboratories with existing LC/MS 
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capabilities. With a run time of 7 minutes, high quality data for a large number of 

samples can be quickly obtained. The direct injection MDL of 440 ng/L is lower than any 

previously available direct injection method for DOSS in seawater. However, the online 

SPE method also included in this study offers a 50-fold sensitivity increase (7.0 ng/L 

MDL), with a modest increase in analysis time of 10 minutes. The method sensitivity 

allows for routine monitoring of dispersant long after application. Additionally, a direct 

injection method for the simultaneous detection of two major components of Corexit® 

formulations (DOSS and 2-butoxyethanol) was developed and tested with a crude oil 

sample from the DHW accident site. Since DOSS was detected in this sample but 2-

butoxyethanol was not, results suggests that Corexit® EC9527A probably was not 

employed during the response effort. The method was also successfully applied to 

analyze commercial dispersant formulations, quantifying their main components and 

clearly differentiating EC9500A from EC9527A.   

All listed methods are fast, simple and require minimum sample preparation steps 

and sample quantities, allowing a variety of quality controls such as duplicates and matrix 

fortification experiments without the need of extensive sample volume collection. 
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4. FULLY AUTOMATED TRACE LEVEL DETERMINATION OF 

POLYCYCLIC AROMATIC HYDROCARBONS IN ENVIRONMENTAL 

WATERS BY ONLINE SPE-LC-APPI-MS/MS 

(Cesar E. Ramirez, Chengtao Wang and Piero R. Gardinali. Analytical and Bioanalytical 

Chemistry, 2013, in press)  

4.1. Introduction 

Polycyclic aromatic hydrocarbons (PAHs) are persistent organic pollutants 

produced by both human activities and natural phenomena. Polycyclic aromatic 

hydrocarbons enter surface waters mainly by atmospheric fallout, urban runoff, municipal 

and industrial effluents and the spill or leakage of petroleum and its derivates (Manoli & 

Samara, 1999; Wolska et al., 2012). Petroleum-derived mixtures contain large amounts of 

PAHs (Wang et al., 2006) and these compounds are often used as markers to determine 

the source, fate and potential effects on natural resources after such substances are 

released to the environment (Boehm et al., 1997; Boehm et al., 2007).  

Many PAHs have been found to have toxic, carcinogenic and mutagenic 

properties (ATSDR, 1990; Manzetti, 2012), which have prompted the imposition of strict 

regulations on their concentrations in effluents, environmental waters and drinking water 

supplies. The United States Environmental Protection Agency (USEPA) has considered 

16 parent PAHs as priority pollutants for environmental monitoring purposes (Lerda, 

2011). These priority PAHs and their structures are presented in table 4.1. 
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Table 4.1 Polycyclic aromatic hydrocarbons listed as priority pollutants by the United 
States Environmental Protection Agency. 

PAH CAS  
number Structure M.W. (gmol-1) 

Naphthalene 91-20-3  128.2 

Acenaphtylene 208-96-8  152.2 

Acenaphthene 83-32-9  154.2 

Fluorene 86-73-7  166.2 

Anthracene 120-12-7  178.2 

Phenanthrene 85-01-8  178.2 

Fluoranthene 206-44-0  202.3 

Pyrene 129-00-0  202.3 

Benz[a]anthracene 56-55-3  228.3 

Chrysene 218-01-9  228.3 

Benzo[a]pyrene 50-32-8  252.3 

Benzo[b]fluoranthene 205-99-2  252.3 

Benzo[k]fluoranthene 207-08-9  252.3 

Benzo[g,h,i]perylene 191-24-2  276.3 

Indeno[1,2,3-cd]pyrene 193-39-5  276.3 

Dibenz[a,h]anthracene 53-70-3  278.3 
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Well-established methodologies are available for the analysis of volatile and 

semi-volatile organic compounds in waste and surface waters, usually involving liquid-

liquid extraction (LLE) with methylene chloride followed by clean-up steps before 

analysis by gas chromatography coupled with mass spectrometry (GC-MS) (Denoux et 

al., 1998; Poster et al., 2006; USEPA, 1996b, 1996c, 2010d). These methodologies 

provide excellent chromatographic resolution because of the use of capillary GC 

columns, which allows the separation of isobaric PAHs that cannot be selectively 

detected by mass spectrometers. However, LLE requires a high volume of sample, is 

labor-intensive and also time consuming, thus sample throughput is severely limited. In 

addition, each sample analyzed by LLE+GC-MS uses a large amount of methylene 

chloride, which is then evaporated and released into the atmosphere.  

A faster methodology than LLE+GC-MS with comparable sensitivity and 

chromatographic resolution, which also reduces the production of halogenated solvent 

waste, could be highly desirable to laboratories monitoring concentrations of PAHs in 

environmental waters and discharged effluents. 

  The use of solid phase extraction (SPE) has been reported as an alternative 

sample preparation procedure for PAH analysis. Sorbents, extraction and elution 

conditions have been previously documented (Marce & Borrull, 2000). Although 

examples of offline SPE used as sample preparation step for LC analysis of PAHs are 

available in the literature, only three studies of online SPE analysis of PAHs from 

environmental waters have been reported. Renner et al. (1997) first reported the use of 

online SPE coupled with LC and fluorescence detection (SPE-LC-FLD) to analyze 16 
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PAHs in 50 mL of freshwater samples, while Li et al. (2012) used the same SPE-LC-FLD 

technique for the analysis of 15 PAHs in 100 mL of seawater from the Japan Sea. These 

two studies were limited by the interferences caused by coeluting analytes and the non-

selective nature of the FLD. 

 A third online SPE study for the detection of PAHs was published by Gimeno et 

al. (2002). The group analyzed 10 PAHs in 25 mL of seawater using online SPE with a 

single-quadrupole mass spectrometer (SPE-LC-MS) equipped with atmospheric pressure 

chemical ionization (APCI). Since PAHs have a planar structure formed by two or more 

fused aromatic rings (see table 4.1), the absence of any chemical groups capable of ionic 

exchange or electron capture causes low ionization efficiencies when traditional LC-MS 

interfaces such as APCI or electrospray ionization (ESI) are used.  

The sensitivity of LC-MS detection of PAHs significantly increased with the 

introduction of atmospheric pressure photoionization (APPI), released independently by 

Robb et al. (2000) and Syage et al. (2000). In the APPI source, an electron is removed 

from molecules with lower ionization energies (IE) than that of a vacuum ultraviolet 

(VUV) radiation to which they are subjected to, obtaining single-charged, odd-electron 

molecular cations (Marchi et al., 2009; Robb et al., 2000), a process that is summarized in 

equation 1.  

M + hν à M  + e-     (if IEM < hν)  (Equation 1, (Robb & Blades, 2008)) 

However, direct APPI has been shown as an inefficient way to generate ions from 

non-polar analytes (Robb & Blades, 2008). Robb et al. (2000) proved the concept of 
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dopant-assisted APPI, in which an intermediary compound is introduced at high 

concentrations into the APPI source producing large amounts of cations which in turn 

undergo a charge transfer with the eluting analytes (equation 2). With dopant-assisted 

APPI, a substantial sensitivity gain relative to direct, dopant-free photoionization of 

PAHs has been previously reported (Itoh et al., 2006).  

D + hν à D  + e- (if IED < hν) 

D  + M  à M  + D (if EAD  > IEM)  (Equation 2, (Marchi et al., 2009)) 

Although dopant-assisted APPI has been used before for the analysis of the 

USEPA 16 priority parent PAHs by direct injection LC-MS/MS (Cai, et al., 2009; Robb 

& Blades, 2008), no previous reports are available on its use as detection for online SPE-

LC applications to quantify a larger number of parent PAHs or alkylated PAHs. 

The three previously published online SPE methods for the analysis of PAHs in 

waters shared the same approach: passing a large volume of water through a reverse 

phase column used for SPE purposes by means of a LC pump connected between the 

column and the sample. Such process requires sample filtration to avoid pump failure and 

large volumes of solvent for rinsing the pump mechanism in order to avoid carryover, is 

not amenable to automation and does not completely eliminate the time consumption 

disadvantage of the traditional LLE+GC-MS technique, with the added caveat of 

detecting fewer number of PAHs due to the lower chromatographic resolution offered by 

the employed LC separations.  
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Passing samples through the SPE pump mechanism can be avoided by performing 

injections into large volume sample loops connected between the pump and the SPE 

column, an approach that is now well established for online SPE applications and allows 

for sample handling by robotic autosamplers (Busetti et al., 2012; Garcia-Ac et al., 2009; 

Wang & Gardinali, 2012).  

4.2. Hypotheses 

- An online SPE-LC-MS/MS methodology can be developed for the automated 

analysis of PAHs in surface waters, avoiding lengthy sample preparation 

steps. 

- A similar method performance to the traditional GC-MS methodology, in 

terms of chromatographic resolution and also in sensitivity, can be achieved 

by means of a liquid chromatography separation. 

- Such methodology could be used to monitor the occurrence of PAHs in waters 

from the local urban environment of South Florida. 

4.3. Research objectives 

The objectives of the study were as follows: 

- To optimize conditions for online SPE extraction, LC separation and dopant-

assisted atmospheric pressure photoionization tandem mass spectrometry 

(SPE-LC-APPI-MS/MS) detection, in order to develop a fully automated 

protocol for the determination of large numbers of both parents and alkylated 

PAHs in environmental waters.  
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- To compare the performance of the developed methodology the traditional 

methodology for the analysis of a large number of PAHs in environmental 

waters (Liquid-liquid extraction followed by gas chromatography coupled 

with mass spectrometry (GC-MS). 

- To analyze waters from different origins of the Miami Metropolitan Area in 

order to assess the applicability of the developed methodology for the 

monitoring of this type of pollution in urban environments.  

4.4. Materials and reagents 

Certified PAH and isotopically labeled PAH standard mixtures were purchased 

from Accustandard (New Haven, CT, USA). Additional single PAH certified standards or 

neat compounds were also obtained from Accustandard and from Sigma-Aldrich (St. 

Louis, MO, USA). Standard reference materials (2260a and 1491a) were obtained from 

NIST (Gaithersburg, MD, USA). Stock solutions were stored at -20 °C. Acetonitrile, 

water and methanol (LC-MS grade) were purchased from Fisher Scientific (Fairlawn, NJ, 

USA). Chlorobenzene dopant (extra dry, 99.8% pure) was purchased from Acros 

Organics (Geel, Belgium) and used as received. Artificial seawater (3.5% w/v) was 

prepared using the commercially available Instant Ocean® salt.  

Online preconcentration was performed using an EQuan online SPE system 

(Thermo Scientific, Waltham, MA, USA), consisting of an HTC-PAL™ autosampler 

(equipped with a 5 mL glass syringe), an Accela™ 1000 as analytical HPLC pump and 

an Accela™ 600 as SPE loading pump. Stainless steel sample loops (models CSL5K and 

CSL10K, 5 and 10 mL respectively) were obtained from Valco Instruments (Houston, 
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TX., USA). The online SPE column was a Hypersil Gold aQ® (20 mm × 2.1 mm, 12 

µm). Analytical separations were carried out using a Hypersil Green PAH® column (150 

× 2.1 mm, 3 µm), protected by a Hypersil Green PAH® guard column (10 × 2.1 mm, 3 

µm).  All columns were also obtained from Thermo Scientific. Stainless steel tubing was 

used throughout the SPE-LC-MS/MS system.  

Detection was performed on a TSQ Quantum Access™ triple-quadrupole mass 

spectrometer, equipped with an APPI source consisting in a Ion Max API source housing 

with a vaporizer probe (Thermo Scientific) and a Photomate® krypton lamp (Syagen, 

Santa Ana, CA, USA). The necessary parts to build the dopant sprayer described in this 

work were purchased from IDEX Health and Science (Oak Harbor, WA., USA). The 

EQuan system was controlled using the Xcalibur 2.1 data acquisition software (Thermo 

Scientific). Dopant was delivered using the combined output of two Fusion 200 

programmable syringe pumps (Chemyx, Stafford, TX., USA), each equipped with two 10 

mL Gastight® syringes (Hamilton, Reno, NV., USA).  

Comparative GC-MS studies were performed using a TSQ Quantum XLS™ 

triple-quadrupole mass spectrometer (Thermo Scientific), using 70 eV EI ionization and 

single ion monitoring (SIM) scan mode. GC separation was made by a Trace GC Ultra™ 

gas chromatograph, equipped with a Triplus™ autosampler (Thermo Scientific) and an 

Rtx®-5MS (30 m, 0.025 mm ID) capillary GC column (Restek, Bellefonte, PA, USA).  
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4.5. Environmental sampling 

All glassware used to collect and store samples was cleaned by heating to 450 ºC 

for at least 6 h before use. Field samples were collected using 60 mL amber glass vials 

rinsed once with surface water, filled and capped with PTFE lined plastic caps without 

leaving air inside. Vials were then placed in plastic bags and transported to the laboratory 

on ice. A sampling blank, consisting of a 60 mL vial filled with artificial seawater, was 

placed on ice and transported during sampling and analyzed with the collected samples as 

negative blank.  

Seawater samples were collected in a single trip during August 2012 around 

Northern Biscayne Bay, adjacent to the Miami metropolitan area. Two reclaimed water 

samples were collected from the North District Wastewater Treatment Plant in the 

Miami-Dade County during August and September 2012.  

Rainwater and runoff samples were collected during a heavy rain event (tropical 

storm “Andrea”, June 6 and 7, 2013; see figure 4.1) from the drainage openings at two 

parking lots from the Florida International University Biscayne Bay campus, and from 

the parking lot of a nearby residential complex. A reference rainwater sample was 

collected during the same event using a 1 L amber glass bottle and a glass funnel. All 

samples were stored at 4°C and analyzed no more than 14 days after collection. 
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Figure 4.1 Rainwater and runoff sampling during tropical storm “Andrea”. A: Glassware 
used for collection of reference rainwater. B: Sampling site at the drain of a parking lot at 
Florida International University, Biscayne Bay Campus. C: Sampling site at a flooded 
parking lot at a nearby apartment complex.    

  



100 
 

4.6. Analytical methodology 

4.6.1. Sample preparation 

Working solutions of all PAHs were prepared each analysis day in methanol from 

stock solutions of certified standards. Refrigerated samples and standards were allowed to 

reach room temperature before preparation. Aliquots (10 mL) of waters were transferred 

directly from the sampling containers into a 10 mL LC vials containing 0.55 mL of a 

methanol solution of isotopically labeled PAHs and 0.45 mL of water. The resulting 

solutions contained 5% methanol and 95% water with 100 ng/L of each isotopically 

labeled PAH. Solutions were capped, thoroughly mixed and loaded to the online SPE 

system without further treatment. Matrix matched calibration solutions (5-500 ng/L) were 

prepared using the same procedure, using artificial seawater and working solutions 

containing analytes and internal standards in methanol. A 7-point set of calibration 

solutions was freshly prepared for each analysis batch.  

4.6.2. Online SPE-LC-MS/MS 

The samples, quality controls and calibration solutions were loaded onto the 10 

mL stainless steel loop (rotary valve A, figure 4.2). The SPE column was placed in a 

second rotary valve (valve B, figure 4.2), allowing connection with either the loading 

pump or the analytical pump.  

The steps of the analysis program, determined by valve turning events, are 

graphically presented in figure 4.2. During step 1, valve A turns and connects the filled 

sample loop with the SPE column, and a 5 mV, 1000 ms electronic start signal is sent to 
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all devices including the programmable dopant syringe pumps. 10 mL of sample are 

passed through the SPE column within 5 min, followed by 2 mL of 1% methanol in water 

to remove inorganic species. Then, 0.5 mL of a short gradient to 60% methanol and 0.5 

mL of 60% methanol are passed to prepare the SPE column for connection with the 

organic rich analytical stream. Additionally, during this step the analytical column is 

taken to initial gradient conditions.  

Valve B turns at 8 min and step 2 begins. The SPE column is connected with the 

analytical column and gradient separation is started, while the sample loop is completely 

filled with methanol from the SPE LC pump. At 15 min, valve A turns (step 3) and the 

methanol filled sample loop is connected with the injection port. The autosampler 

sequentially injects 5 mL of methanol, 5 mL of water and two 5 mL portions of the next 

sample in the queue, while the chromatographic separation continues. Finally, at 24 min 

valve B turns again (step 4) and connects the SPE LC pump with the SPE column, which 

is then cleaned with 1 mL of acetonitrile and progressively taken to the highly aqueous 

initial conditions. The system is now ready to start the cycle for the next sample that is 

already pre-loaded in the sample loop.  

These steps add to a total run time of 28 min per sample. The programs for all 

pumps are shown in table 4.2 and the complete autosampler settings and operation 

program is presented in appendix 2. 
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Figure 4.2 Online SPE system and automated analysis steps. Active flows are shown by 
arrows and thicker lines. Red: sample and PAHs. Blue: mobile phases. 

 

4.6.3. Dopant-assisted APPI-MS/MS detection 

The mass spectrometer was operated under APPI in the positive mode. The 

following parameters were used for all analytes: skimmer offset: -10 V; sheath gas (N2): 

40 arbitrary units; auxiliary gas (N2): 20 arbitrary units; capillary temperature: 250 ºC; 

vaporizer temperature: 250 ºC; collision-induced dissociation (CID) gas (Ar) pressure: 

2.1 mTorr; scan time: 0.020 s; scan width: 0.020 m/z. In order to reduce unnecessary 
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instrument scans, two detection segments were used (segment 1: 8-18 minutes and 

segment 2: 18-28 min). Chlorobenzene dopant was introduced to the APPI source only 

during the detection period (8-28 min) through the nitrogen auxiliary gas line, delivered 

by two programmable syringe pumps operating simultaneously for total flow rate of 10% 

of that of the column eluent (see table 4.2). Selective reaction monitoring (SRM) scan 

events were obtained by direct infusion of individual PAHs solutions and are listed in 

table 4.3. 

Table 4.2 Solvent delivery programs for all pumps used in the online SPE-LC-MS/MS 
analysis of PAHs.a  

 

SPE LC pump Analytical LC pump Dopant 
pumps 

t 
(min) A B C Flow Segment 

description 
t 

(min) A B C Flow Segment 
description Flow 

0 99 1  2.0 

Solid phase 
extraction 

0   100 0.9 

Analysis 
column 

reset 

0 
1.0 99 1  2.0       
1.4 40 60  2.0       

     2.0  100  0.9 0 
4.9 40 60  2.0       
5.0  100  1.0 Salt 

removal 

      
     6.0 30 70  0.4 0 

8.0  100  1.0 8.0 30 70  0.4 0 
8.5  100  1.0 Sample 

loop 
MeOH 
flush 

8.5 30 70  0.4 

Gradient 
separation 

0.04 
     13.5 15 85  0.6 0.06 

15.0  100  1.0       

15.1  100  0.1        
     Idle 18.5  100  0.9 0.09 

24.0  100  0.1        
24.1   100 1.0 SPE 

column 
MeCN 
wash 

      

25.0   100 1.0       

26.0  100  1.0 SPE 
column 

reset 

26.0   100 0.9 0.09 
27.0 99 1  1.0       
28.0 99 1  1.0 28.0   100 0.9 0.09 

aMobile phases are A: water; B: methanol; C: acetonitrile. Units: time (min); mobile phases (%); flow rate (mL/min). 
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Table 4.3 Summary of SRM scan events for PAHs tested with this method (Bold: 16 USEPA priority PAHs; italic: isotopic 
labeled PAHs used as internal standards). 

PAH CAS  
number 

M  
ion 

(m/z) 

Quant. 
product  

(m/z) 

CEa 
(eV) 

Confirm. 
product 

(m/z) 

CEa 
(eV) 

Confirm. 
product 
int. (%)b 

Tube 
lens 
(V) 

RT 
(min) 

Scan 
seg.c 

Acenaphthene 83-32-9 154 153 16 152 29 72 82 13.1 1 
Acenaphthene-D10 15067-26-2 164 162 23 160 35 70 72 12.9 1 
Acenaphtylene 208-96-8 152 151 16 150 23 50 69 12.1 1 
Anthanthrene 191-26-4 276 274 43 272 69 99 108 24.2 2 
Anthracene 120-12-7 178 176 29 152 22 54 82 14.9 1 
Benz[a]anthracene 56-55-3 228 226 35 225 52 22 92 17.6 1+2 
Benzo[a]fluoranthene 203-33-8 252 250 73 248 41 38 120 18.5 1+2 
Benzo[a]pyrene 50-32-8 252 250 73 248 41 42 120 20.3 1+2 
Benzo[a]pyrene-D12 63466-71-7 264 260 51 236 47 15 82 20.0 2 
Benzo[b]fluoranthene, perylened 205-99-2, 198-55-0 252 250 73 248 41 38 120 19.1 1+2 
Benzo[b]fluorene 243-17-4 216 215 14 213 38 50 53 17.4 1+2 
Benzo[c]phenanthrene 195-19-7 228 226 35 225 52 24 92 16.3 1+2 
Benzo[e]pyrene, benzo[j]fluoranthened 192-97-2, 205-82-3 252 250 73 248 41 37 120 18.8 1+2 
Benzo[g,h,i]perylene 191-24-2 276 274 43 272 69 60 108 22.0 2 
Benzo[k]fluoranthene 207-08-9 252 250 73 248 41 35 120 19.9 1+2 
Biphenyl 92-52-4 154 152 29 153 16 90 82 12.4 1 
C1-chrysenes - 242 239 42 241 22 65 80 18-20 1+2 
C1-dibenzothiophenes - 198 197 10 165 25 49 68 14-16 1+2 
C1-fluoranthenes/pyrenes - 216 215 14 213 38 50 53 15-17 1+2 
C1-fluorenes - 180 165 19 164 35 21 53 14-16 1 
C1-naphthalenes - 142 141 21 115 32 71 57 12.5 1 
C1-phenanthrenes/anthracenes - 192 191 22 189 40 90 67 15-18 1+2 
C2-dibenzothiophenes - 212 211 20 152 39 30 83 15-19 1+2 
C2-naphthalenes - 156 141 19 115 33 60 55 13-15 1 
C2-phenanthrenes/anthracenes - 206 189 39 191 22 58 137 17-19 1+2 
C3-naphthalenes - 170 155 18 153 30 34 75 14-16 1 
C4-phenanthrenes/anthracenes - 234 219 11 204 22 75 10 17-19 1+2 
Carbazole 86-74-8 167 166 40 165 40 13 80 10.9 1 

a CID collision energy. bRelative to quantification product  ion.   cSegment 1: 8-18 min, segment 2: 18-28 min. dCoelutions observed in Standard Reference 
Material 2260a. 
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Table 4.3 (continued) Summary of SRM scan events for PAHs tested with this method (Bold: 16 USEPA priority PAHs; italic: 
isotopic labeled PAHs used as internal standards). 

PAH CAS  
number 

M  ion 
(m/z) 

Quant. 
product  

(m/z) 

CEa 
(eV) 

Confirm. 
product 

(m/z) 

CEa 
(eV) 

Confirm. 
product 
int. (%)b 

Tube 
lens 
(V) 

RT 
(min) 

Scan 
seg.c 

Chrysene 218-01-9 228 226 35 225 52 22 92 18.0 1+2 
Chrysene-D12 1719-03-5 240 236 37 212 34 14 108 17.8 1+2 
Dibenz[a,h]anthracene 53-70-3 278 276 42 274 65 62 105 21.9 2 
Dibenzothiophene 132-65-0 184 152 30 139 39 90 85 14.0 1 
Fluoranthene 206-44-0 202 200 40 199 57 16 73 15.6 1 
Fluorene 86-73-7 166 165 21 164 33 23 101 13.6 1 
Fluorene-D10 81103-79-9 176 174 28 172 38 21 65 13.5 1 
Indeno[1,2,3-cd]pyrene 193-39-5 276 274 43 272 69 48 108 22.7 2 
Naphthalene 91-20-3 128 127 25 102 20 90 48 11.5 1 
Naphthalene-D8 1146-65-2 136 134 30 108 30 59 80 11.4 1 
Naphthobenzothiophene 239-35-0 234 202 25 189 33 90 100 18.2 1+2 
Perylene-D12 1520-96-3 264 260 51 236 47 9 82 18.9 2 
Phenanthrene 85-01-8 178 176 29 152 22 75 82 14.2 1 
Phenanthrene-D10 1517-22-2 188 184 40 160 32 98 82 14.0 1 
Pyrene 129-00-0 202 200 40 199 57 20 73 16.0 1 
Triphenylene 217-59-4 228 226 35 225 52 23 92 16.8 1+2 

a CID collision energy. bRelative to quantification product  ion.   cSegment 1: 8-18 min, segment 2: 18-28 min. dCoelutions observed in Standard Reference 
Material 2260a. 
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4.7. Results and discussion 

4.7.1. Optimization of dopant-assisted APPI detection  

The Photomate APPI source (figure 4.3) used in this study is supplied with a 

krypton VUV lamp. Krypton is selected because, as shown in table 4.4, the emission lines 

of this rare gas have enough energy to ionize all PAHs and the chlorobenzene dopant but 

not air components or common solvents used in reverse-phase LC, which translates into a 

low noise, selective ionization of compounds with lower ionization energy than that of 

the electron affinity of the ionized dopant molecule. 

 Smith et al. (2009) compared the performance of different dopants and dopant 

mixtures for PAH detection by APPI, concluding that pure chlorobenzene provides 

efficient charge transfer ionization for all PAHs in the presence of water, methanol and 

acetonitrile, thus commercially available high purity chlorobenzene was used as dopant in 

this study without any treatment. Under these conditions a strong positive molecular ion 

(M ) for each analyte was always observed and isolated as the precursor ion for the SRM 

scan events, which is consistent with observations by other authors that have used 

chlorobenzene as dopant for APPI-LC-MS analysis of PAHs (Cai et al., 2009). 

There are two types of commercially available APPI sources, the linear 

Photospray® (available only for AB SCIEX instruments) and the orthogonal Photomate® 

source used in this study (figure 4.3). Dopant delivery in almost every APPI application 

using the Photomate source has been performed by post column mixing of the dopant 

with the LC eluent, as this system is not equipped with an independent dopant delivery 
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line which is standard for the Photospray source (Robb & Blades, 2008). However, high 

backpressure and low miscibility of the dopant with reverse phase mobile phases can 

introduce background noise that affects source stability and can also cause peak shape 

degradation (Ehrenhauser et al., 2010; Robb & Blades, 2008).     

Table 4.4 Comparison of the first ionization energies of relevant chemical species present 
in the APPI source and selected PAHs with the energy of the VUV radiation produced by 
the krypton APPI lamp.a  

Compound hν (eV) IE (eV) 
Nitrogen  15.6 
Water  12.6 
Acetonitrile  12.2 
Oxygen  12.1 
Methanol 

	
  
10.8 

Kr secondary emission line 10.6  
Kr primary emission line 10.0  

Chlorobenzene (dopant)  9.07 
Naphthalene 

	
  
8.14 

Acenaphtylene 
	
  

8.12 
Anthracene  8.10 
Fluorene 

	
  
7.91 

Phenanthrene  7.89 
Fluoranthene  7.90 
Acenaphthene  7.75 
Chrysene 

	
  
7.60 

Anthracene  7.44 
Pyrene  7.43 
Dibenz[a,h]anthracene  7.39 
Benzo[g,h,i]perylene  7.17 
Benzo[a]pyrene 

	
  
7.12 

aData from Marchi et al. (2009), Robb & Blades (2008) and Smith et al. (2009). 

The only report of gas-phase dopant delivery for the Photomate source was made 

by Ehrenhauser et al. (2010). These authors used an in-house made evaporation system 

located in line with the nitrogen supply, with a large dopant reservoir that enabled long 

term operation but requires custom made parts and is therefore difficult to implement. In 

the original Photospray publication, Robb et al. (2000) delivered the dopant directly into 

the vaporizer probe from a syringe pump by means of a fused silica capillary introduced 
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with a tee connection at the nebulizer gas supply line. In the present study the latter 

approach was slightly modified by using two programmable syringe pumps and a 

spraying device placed in the auxiliary nitrogen gas stream (figure 4.3), which can be 

easily constructed from commercially available parts. With this system, little or no 

backpressure is applied to the syringe pumps which translate into stable dopant delivery. 

Also, since analytical signals maximized at a dopant flow rate of approximately 10% of 

the eluent flow rate, using a programmable dopant system has the advantage of 

maintaining this optimum ratio as the eluent flow rate changes during the 

chromatographic separation.  

The spraying system was tested with two syringe pumps equipped with four 10 

mL syringes (40 mL total), providing 26 runs (approx. 12 hours of continuous operation) 

before a syringe refill is required, which translates into a consumption of about 1.5 mL of 

chlorobenzene per sample. In comparison, the traditional LLE+GC-MS approach that 

may require up to 150 mL (3×50 mL extractions) of methylene chloride, which possesses 

an atmospheric half-life of approx. 150 days and is considered a human carcinogen 

(ATSDR, 2000; USEPA, 2011). In contrast, chlorobenzene has a much shorter 

atmospheric persistence (half-life of 20-40 hours) and is not considered a carcinogen 

(ATSDR, 1990). Thus, both the lower quantity and the nature of the halogenated waste 

produced suggest that the online SPE-LC-MS/MS is a greener methodology than 

LLE+GC-MS.  
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Figure 4.3 (Top) Graphical representation of the Photomate APPI source with the gas-
phase dopant delivery system used in this study (Modified from Ehrenhauser et al, 2010). 
(Bottom) Detail on the dopant sprayer device built from commercially available parts 
(Modification of the dopant introduction design from Robb et al., 2000).  
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4.8. Optimization of chromatographic separation 

During compound optimization for SRM detection, it was observed that PAHs 

with the same parent masses have similar behavior upon collision induced dissociation 

(same product ions, same collision energy, see table 4.3), eliminating the possibility of 

selective detection of isobaric PAHs. Because comprehensive PAH analysis requires 

quantitation beyond the 16 priority PAHs, a carefully controlled LC separation is 

required to solve most of these isobaric interferences. Since PAHs molecules have fixed 

planar conformations, chromatographic selectivity is governed solely by their molecular 

dimensions (Sander et al, 1999). Several authors have shown that polymeric C18 columns 

offer the highest shape selectivity for PAHs (Horak et al., 2004; Rimmer et al., 2005; 

Sander et al., 1999). Furthermore, complete chromatographic resolution of the 16 PAHs 

listed as priority by the EPA using the polymeric C18 Hypersil Green PAH stationary 

phase has been previously reported (Horak & Lindner, 2008; Rimmer et al., 2005). 

Hypersil Green PAH was selected to explore the possibility of a liquid chromatography 

separation of most alkylated PAHs as these compounds are often used as markers to 

identify pollution sources and environmental transformations (Boehm et al., 1997; Wang 

et al., 1999).   

Light PAHs (i.e., alkylnaphthalenes) could only be efficiently separated using a 

methanol/water gradient system, as the use of acetonitrile/water caused fast elution with 

no resolution control. On the other hand, methanol proved to be a weak solvent for heavy 

PAHs (m/z 228 and above), causing excessively high retention times and peak shape 

broadening even at 100% methanol isocratic elution. A second gradient between 
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methanol and acetonitrile was then used after the water/methanol system. Still, retention 

times for heavier PAHs (m/z 252 and above) were also very high even at 100% 

acetonitrile conditions. In order to perform an efficient, wide mass range separation, a 

flow rate gradient was also used in combination with solvent strength control, taking 

advantage of the steep backpressure drop observed as water is removed from the 

analytical column during the gradient.  

Figure 4.4 compares the obtained resolution of alkylated PAHs contained in the 

standard reference material 1491a to that obtained by traditional GC-MS analysis. 

Although resolution for C1-naphthalenes was lower than GC, two marginally resolved 

peaks are observed in the SPE-LC-MS/MS separation of these compounds that differ 

only in the position of a single methyl group between adjacent carbon atoms, and since 

C1-naphthalenes are detected as a group the limited resolution does not affect 

quantitation. As analyte mass increased the observed resolution behavior tended to be 

similar than the obtained by GC-MS. Both techniques had the same difficulty separating 

C1-fluoranthenes and C1-pyrenes (4 peaks should be observed in the m/z 216 

chromatogram), while complete resolution was observed for 3-methylchrysene and 6-

methylchrysene in both methods. All four methylphenanthrenes are visible and well 

separated from the 2-methylanthracene signal, in contrast to the GC-MS separation where 

a coelution of the two groups is observed.  

These results indicate that isobaric alkylated PAHs can be partially resolved using 

single-column liquid chromatography separation, and the present study represents the 

first report of such finding.  
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Figure 4.4 Comparison of peaks of PAHs contained in the Standard Reference Material 
1491a, obtained by GC-MS analysis (1/10 dilution in hexane, top) and by SPE-LC-
MS/MS analysis (1/27500 serial dilution in seawater, bottom). A list of compounds 
contained in 1491a can be observed in table 4.5. 

 

Although the observed resolution of alkylated PAHs may be not enough to 

replace capillary GC for PAH fingerprinting applications, the obtained resolution could 

be enough to be used as an screening tool to decide if a given sample should be analyzed 

using those time consuming techniques, taking advantage of the low sample consumption 

and the speed of this methodology. Additionally, the absence of sample preparation could 

provide the ability to track in almost real time the extent of a contamination by 

monitoring for the alkylated PAHs specific concentration patterns observed at the 

pollution source.  

 With the developed gradient separation, baseline resolution of the 16 priority 

PAHs from their isobaric interferences present in Standard Reference Material 2260a was 
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obtained except for benzo[b]fluoranthene which coeluted with perylene. Attempts to 

separate these compounds without a significant increase of run time were unsuccessful 

and since method speed was a priority these two compounds were quantified together. 

Previously published LC methodologies reporting separation of the 16 priority PAHs by 

LC-MS/MS (Cai et al, 2012; Cai et al., 2009) did not evaluate chromatographic 

resolution of isobaric interferences with standards that contained a larger number of 

PAHs such as the Standard Reference Material 2260a used in this study. These results 

suggest that the occurrence of these types of interferences in LC-MS/MS methodologies 

should be evaluated in order to ensure a proper quantification of the priority PAHs.  

4.9. Optimization of the online SPE procedure 

The SPE sorbents and conditions for PAHs have been reviewed elsewhere (Marce 

& Borrull, 2000). Regular C18 has been identified a good sorbent for PAH extraction. A 

highly-endcapped, commercially available C18 column especially designed for SPE was 

selected on the basis of its high stability towards aqueous samples.  

The SPE column loading, washing and reconditioning parameters were optimized 

for extraction recovery, seawater salt elimination and prevention of carryover using 

isotopically labeled PAHs as testing compounds.  

Same-day 10 mL injections of 100 ng/L (online SPE) and 100 µL direct injections 

of 10,000 ng/L solutions in 70% methanol/water were made, accounting for 1.0 ng on 

column for each compound (the 5 mL injection mode was tested against 50 µL direct 

injection, 0.5 ng on column). Percent recoveries were obtained using averaged peak 
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areas, using at least 3 direct injection runs and 2 online SPE runs. The direct injection 

method had the same analytical gradient that the online SPE method, and the observed 

retention times were in agreement with an 8 min offset associated with the online SPE 

time, ensuring similar APPI source conditions at elution in both injection modes which 

enables the direct comparison of peak areas.  

Passing at least 2 mL of aqueous mobile phase through the loading column after 

the SPE step was enough to prevent the transfer of salt residues to the APPI source. Peak 

shape degradation also occurred if the loading column was not conditioned with methanol 

before connecting with the organic-rich analytical stream at the start of the analytical 

gradient (70% methanol). Therefore, 1 mL of mobile phase was employed to increase the 

percentage of methanol before the columns were connected (0.5 mL gradient increase 

and 0.5 mL hold). Recoveries of chrysene-D12, perylene-D12  and benzo[a]pyrene-D12 

increased with the methanol proportion, and  the SPE column could be washed with up to 

60% methanol without significant losses of the light PAHs (figure 4.5). Additionally, 

online SPE signals for heavy PAHs proved erratic if the sample itself was not amended 

with organic solvents. A total of 5% v/v of methanol was required in the sample to obtain 

good signal reproducibility and recovery of naphthalene-D8, the only isotopically labeled 

PAH that showed significant recovery losses as a result of the addition of large amounts 

of methanol.  
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Figure 4.5 Effect of methanol on online SPE recovery of PAHs. (Left) Effect of the 
percentage of methanol dissolved in the sample. (Right)  Effect of the percentage of 
methanol in the mobile phase used to wash the SPE column. 

 

Analyte breakthrough was evaluated by performing injections using 5 mL and 10 

mL stainless steel loops. Both sample loops used had the same specifications (stainless 

steel, 0.06 in ID with 0.03 in terminals), and the method program was adjusted to account 

for the lower injection volume. No significant difference in SPE recovery was observed, 

and 10 mL injections were adopted for enhanced sensitivity.  

The sample loading flow rate during the SPE step was also evaluated at 1, 2 and 3 

mL/min (SPE column backpressure increases steeply with flow rate, triggering the SPE 

pump high-pressure protection at 4 mL/min). As shown in figure 4.6, no significant 

difference was observed at different flow rates and 2 mL/min was chosen as a 

compromise between stable pump operation and minimized run time. Since samples were 

analyzed without filtration, SPE column backpressure slightly increased after every 

sequence (usually 40-50 injections). Flushing with acetonitrile at a flow rate of 5 mL/min 
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between sequences, in the opposite direction to sample loading, removed clogging 

particles and restored column performance.  

 

Figure 4.6 Effect of sample loading flow rate upon online SPE recovery of labeled PAHs. 

  

4.10. Method validation 

4.10.1. Calibration and quality control 

Calibration curves were obtained by plotting the peak area ratio of each PAH to 

an isotopically labeled PAH internal standard against concentration in ng/L. Linearity 

was observed for all analytes in the range used (R2 > 0.99; 5 to 500 ng/L). Calibration 

stability was evaluated every 10 runs by injecting seawater fortified to 100 ng/L. 

Calibration and method accuracy was verified by injecting artificial seawater fortified 

with serially diluted standard reference materials 1491a and 2260a (pooled recoveries are 

presented in table 4.5).  
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Table 4.5 Pooled measurements of serially diluted Standard Reference Materials 2260a 
and 1491a in seawater. Total dilution factors used were 1/55000 for SRM 2260a and 
1/18333 for 1491a. Three measurements were performed on different analysis days. 

 

PAH (listed compound) SRM Certified 
concentrationa 

Measured 
(n=3) % REC 

Acenaphtene 2260a 4.80 ±	
   0.11 4.5 ±	
   1.0 94 ±	
   21 
Acenaphtylene 2260a 5.41 ±	
   0.17 4.8 ±	
   0.9 89 ±	
   17 
Anthanthrene 2260a 1.91 ±	
   0.03 1.7 ±	
   0.3 89 ±	
   16 
Anthracene 2260a 3.23 ±	
   0.05 3.0 ±	
   0.2 94 ±	
   6 
Benz[a]anthracene 2260a 3.82 ±	
   0.07 4.0 ±	
   0.4 106 ±	
   11 
Benzo[a]fluoranthene 2260a 1.97 ±	
   0.06 2.0 ±	
   0.3 100 ±	
   14 
Benzo[a]pyrene 2260a 4.07 ±	
   0.02 4.6 ±	
   0.2 113 ±	
   6 
Benzo[b]fluoranthene, perylene 2260a 10.6 ±	
   0.1 9.8 ±	
   0.6 92 ±	
   6 
Benzo[c]phenanthrene 2260a 3.99 ±	
   0.03 4.3 ±	
   1.4 109 ±	
   34 
Benzo[e]pyrene, benzo[j]fluoranthene 2260a 10.6 ±	
   0.1 8.0 ±	
   0.4 76 ±	
   4 
Benzo[g,h,i]perylene 2260a 4.90 ±	
   0.06 5.3 ±	
   0.7 107 ±	
   13 
Benzo[k]fluoranthene 2260a 2.98 ±	
   0.03 3.0 ±	
   0.3 101 ±	
   11 
Biphenyl 2260a 4.85 ±	
   0.12 4.3 ±	
   0.2 90 ±	
   5 
C1-anthracenes (2-methyl) 1491a 1.17 ±	
   0.01 0.7 ±	
   0.2 62 ±	
   14 
C1-chrysenes (3- and 6-methyl) 1491a 2.02 ±	
   0.03 1.8 ±	
   0.1 88 ±	
   6 
C1-fluoranthenes/pyrenes (1- and 3-methylfluoranthene); 
 (1- and 4-methylpyrene) 1491a 3.82 ±	
   0.13 3.3 ±	
   0.9 86 ±	
   23 

C1-naphthalenes (1- and 2-methyl) 1491a 3.28 ±	
   0.12 3.3 ±	
   0.5 102 ±	
   14 
C1-phenanthrenes (1-, 2-, 3- and 9-methyl) 1491a 7.84 ±	
   0.07 8.5 ±	
   0.4 108 ±	
   6 
C2-naphthalenes (1,2-, 1,6- and 2,6-dimethyl) 1491a 4.46 ±	
   0.14 4.2 ±	
   1.8 94 ±	
   41 
C4-phenanthrenes/anthracenes (retene) 1491a 1.80 ±	
   0.03 1.0 ±	
   0.2 58 ±	
   12 
Chrysene 2260a 4.00 ±	
   0.10 3.8 ±	
   0.4 95 ±	
   10 
Dibenz[a,h]anthracene 2260a 3.94 ±	
   0.05 4.4 ±	
   0.2 113 ±	
   5 
Dibenzothiophene 2260a 3.80 ±	
   0.15 3.5 ±	
   0.7 93 ±	
   18 
Fluoranthene 2260a 7.20 ±	
   0.08 6.4 ±	
   1.2 89 ±	
   17 
Fluorene 2260a 4.07 ±	
   0.10 3.5 ±	
   0.3 85 ±	
   8 
Indeno[1,2,3-cd]pyrene 2260a 3.83 ±	
   0.03 4.1 ±	
   0.4 106 ±	
   11 
Naphthalene 2260a 9.89 ±	
   0.26 9.5 ±	
   0.5 96 ±	
   5 
Phenanthrene 2260a 10.0 ±	
   0.1 9.3 ±	
   1.5 92 ±	
   15 
Pyrene 2260a 7.74 ±	
   0.07 7.0 ±	
   0.9 91 ±	
   12 
Triphenylene 2260a 3.56 ±	
   0.14 4.5 ±	
   0.3 126 ±	
   11 

           aFrom certificate of analysis. (all concentrations are listed in mg/L) 

With every analysis batch, negative (reagent and sampling) and a positive 

(fortified to 100 ng/L) blanks were also used. Additionally, one sample duplicate and one 

fortified matrix experiment was always analyzed per every 5 samples. The system was 

continuously tested for carryover by injecting a reagent blank after the highest calibration 

standard and after every calibration verification standard.  
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Compound identification was considered positive when signals with a S/N ratio 

above 3 were present in both the quantification and confirmation SRM transitions, with a 

maximum retention time difference of 0.2 min relative to calibration standards or 

standard reference materials. Calculated concentrations below method detection limits 

(MDLs) were considered non-detections. A reporting limit (RL) of 3 times the MDLs 

was set in order to reduce the risk of false positives and ensure data quality.  

4.10.2. Determination of method detection limits 

 Method detection limits were calculated by multiplying the standard deviation 

from seven measurements by the Student t value (t(7-1, 99) = 3.143), according to 

procedures outlined by the USEPA (2010e), using  natural seawater (from the FIU 

Campus beach, see table 4.7), fortified to 50 ng/L. For sensitivity comparison, MDLs for 

the traditional LLE+GC-MS methodology were determined using 1000 mL of the same 

seawater sample also fortified to 50 ng/L and extracted three times with 50 mL portions 

of methylene chloride. The extract was obtained, evaporated and cleaned according to 

established methods (EPA 3510C and 3630C) (USEPA, 1996b, 1996c) and analyzed by a 

GC-MS method available elsewhere (Denoux et al., 1998).  

Results shown in table 4.6 shows that the average MDLs corrected for sample size 

obtained by LLE+GC-MS analysis are an order of magnitude higher than those obtained 

by SPE-LC-MS/MS. Although in practice lower MDL values can be obtained with LLE 

as a result of the possibility of using larger sample volumes, the higher per-volume 

sensitivity of the online SPE approach is more useful when limited amounts of sample are 

available. Also, the low sample volume required and high sample throughput of this 
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method facilitates the analysis of multiple quality controls such as duplicates and fortified 

matrix experiments.   

Table 4.6 Comparisons of MDL values obtained by SPE-LC-MS/MS and by LLE+GC-
MS. Fortification level were 50 ng/L in both experiments. (Concentrations are in ng/L). 

 

PAH (testing compound) 
SPE-LC-
MS/MS  
10 mL 

LLE+ 
GC-MS 
1000 mL  

LLE+ 
GC-MS 
10 mL*  

Acenaphthene 15 1.5 150 
Acenaphtylene 16 1.2 120 
Anthracene 29 1.7 170 
Benzo[a]anthracene 12 2.5 250 
Benzo[a]pyrene 23 1.7 170 
Benzo[b]fluoranthene 34 3.1 310 
Benzo[b]fluorene  7.5 3.4 340 
Benzo[e]pyrene 16 1.2 120 
Benzo[g,h,i]perylene 19 1.5 150 
Benzo[k]fluoranthene 21 1.2 120 
Biphenyl 24 1.2 120 
C1-anthracenes (2-methyl) 8.7 2.2 220 
C1-chrysenes, (6-methyl) 23 1.5 150 
C1-dibenzothiophenes (4-methyl) 13 1.7 170 
C1-fluorenes (1-methyl) 12 1.5 150 
C1-naphthalenes (2-methyl) 13 1.8 180 
C1-phenanthrenes (1-methyl) 10 1.5 150 
C2-dibenzothiophenes (4,6-dimethyl) 12 1.5 150 
C2-naphthalenes (2,6-dimethyl) 15 1.7 170 
C3-naphthalenes (2,3,5-trimethyl) 17 1.5 150 
C4-phenanthrenes (retene) 18 2.6 260 
Carbazole 26 1.7 170 
Chrysene 12 2.4 240 
Dibenzo[a,h]anthracene 16 3.4 340 
Dibenzothiophene 11 1.7 170 
Fluoranthene 12 1.2 120 
Fluorene 7.9 1.5 150 
Indeno[1,2,3-cd]pyrene 26 4.8 480 
Naphthalene 20 1.2 120 
Naphthobenzothiophene 21 2.2 220 
Phenanthrene 19 2.2 220 
Pyrene 17 1.2 120 
Average 17 1.9 191 

* MDLs corrected for sample size  
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4.11. Environmental applications: Analysis of PAHs in environmentally relevant 

samples in the Miami-Dade County 

 The developed methodology was tested by analyzing a group of multi-origin 

environmentally relevant water samples. Seawater collections were made from 7 sites in 

northern Biscayne Bay. Naphthalene and alkylnaphthalenes were detected in two of the 

sites in which activity of small vessels was observed (see table 4.7 for results). 

The occurrence of alkylnaphthalenes in emissions by two stroke gas outboard 

engines and light-duty diesel vessels has been reported before (Chiang et al. 2012; Kelly 

et al., 2005). Additionally, the elevated water solubility of alkylnaphthalenes relative to 

other PAHs (Manoli & Samara, 1999) may increase their permanence in the water long 

enough to be detected by the grab sampling performed. Although the method sensitivity 

was not enough to detect background concentrations in samples where no active boating 

was observed, a capability of fast detection of focalized emission of petroleum-derived 

products was demonstrated.  

Suspended particles in rainwater runoff resulting from the erosion of impervious 

surfaces have been documented as an important source of PAHs into the environment 

(Mahler et al., 2012; Watts et al., 2010). To assess the performance of the developed 

methodology for the monitoring of PAHs in rainwater and runoff, samples from the 

drainage openings at three parking lots were collected during a heavy rain event in June 

2013.  
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Table 4.7 Results from the determination of PAHs in seawater from Northern Biscayne 
Bay by Online SPE-LC-MS/MSa. (in bold, USEPA priority PAHs). 

 

Site name Haulover 
Boat Ramp 

Haulover 
Marina Dinner Key Marina Bayfront 

Park 
Latitude N 25.91684 25.90613 25.72720 25.77274 

Longitude W 80.12383 80.12396 80.23767 80.18491 

PAH MDL RL C C C DUP RPDd C 

Acenaphthene 15 45 - - - -   - 
Acenaphtylene 16 49 - - - -   - 
Anthanthrene 26 78 - - - -   - 
Anthracene 29 86 - - - -   - 
Benz[a]anthracene 12 36 - - - -   - 
Benzo[a]fluoranthene 16 48 - - - -   - 
Benzo[a]pyrene 23 69 - - - -   - 
Benzo[b]fluoranthene, perylene 34 102 - - - -   - 
Benzo[b]fluorene 7.5 23 - - - -   - 
Benzo[c]phenanthrene 12 36 - - - -   - 
Benzo[e]pyrene, benzo[j]fluoranthene 16 48 - - - -   - 
Benzo[g,h,i]perylene 19 57 - - - -   - 
Benzo[k]fluoranthene 21 63 - - - -   - 
Biphenyl 24 72 - - - -   - 
C1-anthracenes 8.7 26 - - - -   - 
C1-chrysenes 23 69 - - - -   - 
C1-dibenzothiophenes 13 39 - - - -   - 
C1-fluor/pyrenes 7.5 23 - - - -   - 
C1-fluorenes 12 35 - - - -   - 
C1-naphthalenes 13 40 129 - 74 76 3 - 
C1-phenanthrenes 10 30 - - - -   - 
C2-dibenzothiophenes 12 36 - - - -   - 
C2-naphthalenes 15 44 <RL - 47 45 6 - 
C2-phen/anthracenes 18 54 - - - -  - 
C3-naphthalenes 17 51 - - - -   - 
C4-phen/anthracenes 18 54 - - - -   - 
Carbazole 26 77 - - - -   - 
Chrysene 11 33 - - - -   - 
Dibenz[a,h]anthracene 16 48 - - - -   - 
Dibenzothiophene 11 34 - - - -   - 
Fluoranthene 12 36 - - - -   - 
Fluorene 7.9 24 - - - -   - 
Indeno[1,2,3-cd]pyrene 26 78 - - - -   - 
Naphthalene 20 60 101 - 104 100 5 - 
Naphthobenzothiophene 21 63 - - - -   - 
Phenanthrene 19 57 - - - -   - 
Pyrene 17 50 - - - -   - 
Triphenylene 12 36 - - - -   - 

TOTAL PAH 230 0 226     0 
RPD and % REC AVERAGE         5±1   

a C: Measured concentration (-): Below MDL. (<RL): Detection below reporting limit (RL=3×MDL). (n.a.): not available.  bMeasured 
concentration in fortified matrix experiment. cFortification level. dRelative percent difference between duplicates. All concentrations 
are listed in ng/L. 
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Table 4.7. (continued) Results from the determination of PAHs in seawater from 
Northern Biscayne Bay by Online SPE-LC-MS/MSa. (in bold, USEPA priority PAHs). 

 

Site name Pelican 
Harbor Park 

FIU Campus 
Beach Miami Beach Marina 

Latitude N 25.84713 25.90994 25.77194 
Longitude W 80.16782 80.13640 80.14027 

PAH MDL RL C C C FMb FLc %  REC 

Acenaphthene 15 45 - - - 184 176 104 
Acenaphtylene 16 49 - - - 179 176 102 
Anthanthrene 26 78 - - - - 0 n.a. 
Anthracene 29 86 - - - 179 176 101 
Benz[a]anthracene 12 36 - - - 160 176 91 
Benzo[a]fluoranthene 16 48 - - - - 0 n.a. 
Benzo[a]pyrene 23 69 - - - 171 176 97 
Benzo[b]fluoranthene, perylene 34 102 - - - 370 373 99 
Benzo[b]fluorene 7.5 23 - - - 154 176 88 
Benzo[c]phenanthrene 12 36 - - - - 0 n.a. 
Benzo[e]pyrene, benzo[j]fluoranthene 16 48 - - - 175 176 99 
Benzo[g,h,i]perylene 19 57 - - - 185 176 105 
Benzo[k]fluoranthene 21 63 - - - 189 176 108 
Biphenyl 24 72 - - - 208 176 118 
C1-anthracenes 8.7 26 - - - 168 176 95 
C1-chrysenes 23 69 - - - 172 176 97 
C1-dibenzothiophenes 13 39 - - - 171 176 97 
C1-fluor/pyrenes 7.5 23 - - - - 0 n.a. 
C1-fluorenes 12 35 - - - 180 176 102 
C1-naphthalenes 13 40 - - - 419 353 119 
C1-phenanthrenes 10 30 - - - 182 176 103 
C2-dibenzothiophenes 12 36 - - - 166 176 94 
C2-naphthalenes 15 44 - - - 177 176 101 
C2-phen/anthracenes 18 54 - - - - 0 n.a. 
C3-naphthalenes 17 51 - - - 163 176 93 
C4-phen/anthracenes 18 54 - - - 147 176 83 
Carbazole 26 77 - - - 176 176 100 
Chrysene 11 33 - - - 173 176 98 
Dibenz[a,h]anthracene 16 48 - - - 188 176 107 
Dibenzothiophene 11 34 - - - 178 176 101 
Fluoranthene 12 36 - - - 180 176 101 
Fluorene 7.9 24 - - - 187 176 106 
Indeno[1,2,3-cd]pyrene 26 78 - - - 197 176 112 
Naphthalene 20 60 - - - 189 176 107 
Naphthobenzothiophene 21 63 - - - 158 176 90 
Phenanthrene 19 57 - - - 167 176 94 
Pyrene 17 50 - - - 166 176 94 
Triphenylene 12 36 - - - - 0 n.a. 

TOTAL PAH 0 0 0       
RPD and % REC AVERAGE           100±8 

a C: Measured concentration (-): Below MDL. (<RL): Detection below reporting limit (RL=3×MDL). (n.a.): not available.  bMeasured 
concentration in fortified matrix experiment. cFortification level. dRelative percent difference between duplicates. All concentrations 
are listed in ng/L. 

 

As shown in table 4.8, PAHs were detected in runoff from only one of the three 

parking lots located in a residential complex. Chromatograms for the priority PAHs 
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detected in that sample are compared with reference rainwater in figure 4.7, showing that 

an interference-free detection and positive identification was obtained for these analytes 

except for benzo[b]fluoranthene, which is not resolved from perylene by this 

methodology as discussed before. Also, since no PAHs were observed in the reference 

rainwater, this data set strongly suggests that the parking lot was the source of the 

contamination. The high number of parent PAHs detected, the predominance of heavy 

PAHs such as fluoranthene and pyrene and their relative concentrations are in agreement 

with previous reports of PAHs in rainwater runoff from coated parking lots (Mahler et al., 

2005), suggesting that the presented methodology is applicable for this type of studies. 

Although not enough data are available to explain the non-occurrence of PAHs in 

runoff from the campus parking lots, the residential parking lot had a much slower 

drainage capability and thus the sample was collected under moderate flooding 

conditions (see figure 4.1). The lower drainage rate may have enhanced the possibility of 

detections as PAH-containing suspended particles could not be washed out by the rain as 

fast as in the campus parking lots. It is also possible that the nature of the coatings are 

different, as it has been shown that asphalt-based coatings contain much less PAHs that 

coal-based coatings (Mahler et al., 2012).  
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Table 4.8 Results from analysis of PAHs in rainwater and rainwater runoff from parking 
lots at the FIU Biscayne Bay Campus and a nearby apartment complex.a (in bold, USEPA 
priority PAHs). 

 

Sample source 	
  	
   	
  	
   Direct 
collection 

Apartment             
complex FIU Biscayne Bay Campus 

Sample description 	
  	
   	
  	
   Ref. 
rainwater 

Partially flooded         
parking lot 

Parking 
lot A Parking lot B 

PAH MDL RL C C DUP RPDd C C FMb FLc %  
REC 

Acenaphthene 15 45 - - -   - - 105 110 95 
Acenaphtylene 16 49 - - -   - - 119 110 109 
Anthanthrene 26 78 - - -   - - - 0 n.a. 
Anthracene 29 86 - - -   - - 118 110 107 
Benz[a]anthracene 12 36 - 190 202 6 - - 105 110 96 
Benzo[a]fluoranthene 16 48 - - -   - - 111 0 101 
Benzo[a]pyrene 23 69 - <RL <RL   - - 100 110 91 
Benzo[b]fluoranthene, perylene 34 102 - 112 108 4 - - 216 220 98 
Benzo[b]fluorene 7.5 23 - <RL <RL   - - 116 110 105 
Benzo[c]phenanthrene 12 36 - <RL <RL   - - 127 0 n.a. 
Benzo[e]pyrene, 
benzo[j]fluoranthene 16 48 - 117 116 1 - - 111 110 101 

Benzo[g,h,i]perylene 19 57 - 60 61 2 - - 124 110 113 
Benzo[k]fluoranthene 21 63 - <RL <RL   - - 105 110 96 
Biphenyl 24 72 - - -   - - 110 110 100 
C1-anthracenes 8.7 26 - - -   - - 99 110 90 
C1-chrysenes 23 69 - <RL <RL   - - - 0 n.a. 
C1-dibenzothiophenes 13 39 - - -   - - 122 110 111 
C1-fluor/pyrenes 7.5 23 - <RL <RL   - - - 0 n.a. 
C1-fluorenes 12 35 - - -   - - 109 110 99 
C1-naphthalenes 13 40 - - -   - - 209 220 95 
C1-phenanthrenes 10 30 - 48 51 6 - - 358 330 108 
C2-dibenzothiophenes 12 36 - - -   - - 104 110 95 
C2-naphthalenes 15 44 - - -   - - 111 110 101 
C2-phen/anthracenes 18 54 - - -   - - - 0 n.a. 
C3-naphthalenes 17 51 - - -   - - 105 110 95 
C4-phen/anthracenes 18 54 - - -   - - 112 110 102 
Carbazole 26 77 - 162 161 0.3 - - 111 110 101 
Chrysene 11 33 - 153 169 10 - - 112 110 101 
Dibenz[a,h]anthracene 16 48 - - -   - - 137 110 124 
Dibenzothiophene 11 34 - - -   - - 106 110 97 
Fluoranthene 12 36 - 410 387 6 - - 104 110 95 
Fluorene 7.9 24 - <RL <RL   - - 100 110 91 
Indeno[1,2,3-cd]pyrene 26 78 - <RL <RL   - - 130 110 118 
Naphthalene 20 60 - - -   - - 91 110 83 
Naphthobenzothiophene 21 63 - <RL <RL   - - 86 110 78 
Phenanthrene 19 57 - 183 186 2 - - 116 110 105 
Pyrene 17 50 - 293 315 7 - - 117 110 107 
Triphenylene 12 36 - 48 45 6 - - 117 110 106 

TOTAL PAH	
   0 1777 1801   0 0      
RPD and % REC AVERAGE	
       4±3         100±9 

a C: Measured concentration. (-): Below MDL. (<RL): Detection below reporting limit (RL=3×MDL). (n.a.): not 
available.  bMeasured concentration in fortified matrix experiment. cFortification level. dRelative percent difference 
between duplicates. All concentrations are listed in ng/L. 
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Figure 4.7 Chromatograms obtained upon analysis of a rainwater runoff sample from a 
residential parking lot showing the resolution obtained for priority PAHs. Blue trace: 
main (quantitative) SRM transition in runoff sample; green trace: secondary 
(confirmation) SRM transition in runoff sample; red trace: main SRM transition from 
injection of reference rainwater. The three traces of each chromatogram are normalized to 
the same scale.  
 
 

The occurrence of PAHs in wastewater has been previously documented, and 

their removal by wastewater treatment plants (WWTPs) depends on the treatments 

applied. Vogelsang et al. (2006) observed that 2-3 ring PAHs accounted for 70% of the 

PAHs detected in the influents of 5 Norwegian WWTPs, with complete removal 

observed only in plants equipped with biodegradation steps. Bergqvist et al. (2006) 

observed that alkylnaphthalenes were the predominant PAHs in WWTPs influents in 

Sweden and Lithuania, observing incomplete removal with concentrations as high as 10-

35 ng/L of C3-naphthalenes in the discharged effluents.  

Therefore, WWTPs effluents are a potential source of light PAHs into the 

environment. Samples of reclaimed water used for irrigation at FIU Biscayne Bay 

campus were collected in two different dates and analyzed in order to assess the 

performance of the developed methodology to detect PAHs in discharged WWTP 

effluents. Alkylnaphthalenes were detected in one on the samples (table 4.9) but 

concentrations were lower than the reporting limit. Good recoveries were obtained in the 
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fortified matrix experiment for reclaimed water, suggesting that method sensitivity rather 

than matrix effects prevented a positive quantification in these samples. 

 

Table 4.9 Results from analysis of PAHs in reclaimed water obtained from the Miami-
Dade North District Wastewater Treatment plant.a (in bold, USEPA priority PAHs). 

 

Collection Date 	
  	
   	
  	
    09/11/2012 8/16/2012 

PAH MDL RL C C FMb FLc %  
REC 

Acenaphthene 15 45 - - 203 176 115 
Acenaphtylene 16 49 - - 162 176 92 
Anthanthrene 26 78 - - - 0 n.a. 
Anthracene 29 86 - - 185 176 105 
Benz[a]anthracene 12 36 - - 164 176 93 
Benzo[a]fluoranthene 16 48 - - - 0 n.a. 
Benzo[a]pyrene 23 69 - - 207 176 117 
Benzo[b]fluoranthene, perylene 34 102 - - 363 373 97 
Benzo[b]fluorene 7.5 23 - - 179 176 102 
Benzo[c]phenanthrene 12 36 - - - 0 n.a. 
Benzo[e]pyrene, benzo[j]fluoranthene 16 48 - - 215 176 122 
Benzo[g,h,i]perylene 19 57 - - 150 176 85 
Benzo[k]fluoranthene 21 63 - - 219 176 124 
Biphenyl 24 72 - - 163 176 93 
C1-anthracenes 8.7 26 - - 175 176 99 
C1-chrysenes 23 69 - - 167 176 95 
C1-dibenzothiophenes 13 39 - - 195 176 111 
C1-fluor/pyrenes 7.5 23 - - - 0 n.a. 
C1-fluorenes 12 35 - - 206 176 117 
C1-naphthalenes 13 40 - - 364 353 103 
C1-phenanthrenes 10 30 - - 180 176 102 
C2-dibenzothiophenes 12 36 - - 153 176 81 
C2-naphthalenes 15 44 - <RL 228 176 118 
C2-phen/anthracenes 18 54 - - - 0 n.a. 
C3-naphthalenes 17 51 - <RL 197 176 97 
C4-phen/anthracenes 18 54 - - 135 176 77 
Carbazole 26 77 - - 157 176 89 
Chrysene 11 33 - - 210 176 119 
Dibenz[a,h]anthracene 16 48 - - 156 176 88 
Dibenzothiophene 11 34 - - 188 176 106 
Fluoranthene 12 36 - - 209 176 116 
Fluorene 7.9 24 - - 168 176 95 
Indeno[1,2,3-cd]pyrene 26 78 - - 174 176 99 
Naphthalene 20 60 - - 161 176 91 
Naphthobenzothiophene 21 63 - - 179 176 102 
Phenanthrene 19 57 - - 175 176 99 
Pyrene 17 50 - - 200 176 111 
Triphenylene 12 36 - - - 0 n.a.  

TOTAL PAH 	
  	
   	
  	
   0 0    %REC AVERAGE 	
  	
   	
  	
           102±12 
a C: Measured concentration. (-): Below MDL. (<RL): Detection below reporting limit (RL=3×MDL). (n.a.): not available.  
bMeasured concentration in fortified matrix experiment. cFortification level. All concentrations are listed in ng/L. 
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Excellent recoveries were also obtained in fortified matrices experiments with the 

other two types of environmental waters tested with this method, which may suggest that 

the use of a wide range of molecular sizes of isotopically labeled PAHs normalize analyte 

behavior during the automated preconcentration and analysis, keeping matrices effects 

under control in spite of the absence of sample clean up steps. In addition, method 

reproducibility was also demonstrated as low relative percent deviation (RPD) values 

were obtained from analysis of duplicates of seawater and runoff samples contained 

PAHs.  

 

4.12. Conclusions 

An automated protocol for the comprehensive analysis of 28 parent PAHs and 

their extended alkylated homologues by online SPE-LC-APPI-MS/MS has been 

successfully developed, with optimized parameters for extraction, separation and 

detection using dopant-assisted APPI. To date, this represents the largest number of 

PAHs analyzed simultaneously by liquid chromatography and the first report of a LC 

separation of alkylated PAHs.  

A polymeric C18 column was used to develop a liquid chromatography separation 

of isobaric alkylated PAHs that resembles that of traditional capillary GC-MS for some 

compounds. The developed method is environmentally friendlier than the traditional 

approach, as only 1.5 mL of the chlorobenzene dopant is required versus the 150 mL of 

the carcinogen methylene chloride used for traditional GC-MS analysis.  
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Factoring the costs of solvents, consumable materials, analyst time and the high 

sample throughput, the SPE-LC-MS/MS approach may also constitute a more 

economical alternative to analyze PAHs than GC-MS. Method performance and the 

control of matrix effects were demonstrated by obtaining good recoveries upon analysis 

of seawater, reclaimed water and rainwater runoff fortified with certified standards, 

showing the utility of this method to survey the occurrence of PAHs in different waters 

from the urban environment.  

A survey of PAHs concentration in marinas located in the Miami area was 

conducted, and although background concentrations were below MDLs, localized PAH 

input events from boating activities were detected. Furthermore, the utility of the method 

to monitor PAHs inputs in WWTPs effluent and from parking lot rainwater runoff 

samples was proven. With lower run times, very simple sample preparation, lower 

generation of toxic solvent waste and higher sensitivity per volume of sample used, this 

method could represent a viable alternative to LLE+GC-MS for routine PAH monitoring, 

providing laboratories with a much higher sample throughput while reducing overall 

operation costs and the environmental impact of PAHs analysis. 
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5. IDENTIFICATION OF SOURCES OF AIRBORNE PARTICULATE 

MATTER COLLECTED AT A COASTAL SITE OF THE MIAMI 

METROPOLITAN AREA 

5.1. Introduction 

Good air quality is a requirement for human health. Clean air is 99% O2 and N2, 

with a 1% of other gases such as carbon dioxide, water vapor, argon and helium, and any 

substance that alters this natural composition causing measurable deleterious effects on 

living organisms, hindering normal human activities or degrading property and/or 

infrastructure is considered an air pollutant (Michulec et al., 2005; Seinfeld & Pandis, 

1998). Air pollutants exists in the form of gases (such as nitrogen oxides and sulfur 

dioxide) or in airborne particulate matter (APM, also called “aerosols”), defined as any 

liquid or solid suspended substance (other than water) formed by aggregation of two or 

more molecules (Brook et al., 2004). 

APM contains both primary particles, which are suspended directly from an 

emission source, and secondary particles formed in the atmosphere from chemical 

reactions involving gaseous pollutants, i.e., the oxidation of SO2 to H2SO4 followed by 

nucleation of H2SO4 vapor (Seinfeld & Pandis, 1998). Primary particles in the urban 

environment have a large number of anthropogenic sources such as emissions from 

internal combustion engines and fossil fuel-fired electricity plants; road, tire, and brake 

residues from vehicular traffic; industrial activities such as mining or metallurgy; 

agriculture activities; construction and demolition activities, etc. There are also natural 
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sources of APM such as volcanic emissions, windblown mineral dust, pollen, mold, 

wildfires and marine spray (Brook et al., 2004).  

It is known that airborne particles with a size below 10 µm (PM10) are able to 

enter the lower respiratory track (termed “thoracic particles”), and are more likely than 

larger particles to become hazardous to humans. Furthermore, particles with sizes <2.5 

µm (PM2.5, “breathable particles”) have a considerable higher residence time in lungs and 

can reach alveoli (Brunekreef & Holgate, 2002). Extensive epidemiological data 

compiled by the USEPA and other authors has shown that both short and long term 

exposure to PM2.5 causes increased hospital admissions and mortality from 

cardiovascular and respiratory problems (Brook et al., 2004; Brook et al., 2010; 

Brunekreef & Holgate, 2002; USEPA, 2009). These facts have prompted the 

establishment of National Ambient Air Quality Standard (NAAQS) for airborne 

particulate matter by the USEPA, with maximum exposure concentrations of 12.0 µg/m3 

(annual average) and 35 µg/m3 (24-h average) of PM2.5 in air and 150 µg/m3 (24-h 

average) for PM10-2.5 (USEPA, 2012).  

Bioaccessible metals (soluble in relevant bodily fluids) are believed to share 

responsibility for the toxicity of APM. Most of PM2.5-10 particles are deposited in the 

pharyngeal and tracheal regions from where they are transported by mucociliary 

clearance towards the mouth and are swallowed, coming into contact with gastric juice 

where a fraction may dissolve and become bioaccessible (Hamel et al., 1998). The 

smaller PM2.5 are able to reach alveoli from where, depending on particle solubility, 

elements can be absorbed into the bloodstream (Kappos, 2011). Anthropogenic activities 



131 
 

are responsible for the ubiquitous occurrence of toxic metals such as Cr, Cu, Mn, Ni, Pb, 

V, As and Zn in urban APM, and their speciation and concentrations are highly 

dependent on the APM sources and local environmental conditions (Mukhtar & Limbeck, 

2013).  

Because of their toxic effects, the European Union has set limits for the annual 

average concentration of Pb in PM10 (500 ng/m3) and target values for As (6 ng/m3), Ni 

(20 ng/m3) and Cd (5 ng/m3) (EU, 2012). Lead is the only element individually listed by 

the USEPA in the NAAQS, with a three-month average exposure threshold of 150 ng/m3 

in total suspended particles (TSP) (USEPA, 2012). 

The tri-county metropolitan area in South Florida is home to 5.5 million residents 

(USDOC, 2010) and thus emissions of anthropogenic APM are expected. Based on inputs 

provided by State, Local and Tribal air agencies, the USEPA releases the National 

Emissions Inventory (NEI), with estimates on the extent of pollutant releases at national, 

regional or local levels (USEPA, 2013a). According to the 2008 NEI, construction dust, 

road dust, mining operations, industrial fuel combustion, internal combustion engines and 

prescribed fires are the main source of APM to the local air in South Florida (see table 

5.1).  

Since the atmosphere is a highly dynamic system capable of long range 

transportation of suspended particles, detailed chemical composition of APM not only 

depends on local sources, but also on long range transportation of APM by global-scale 

atmospheric movements. As has been documented in several reports by Prospero and 

coworkers at the University of Miami, mineral dust from the Saharan and Sahel deserts in 
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Northern Africa is transported across the Atlantic by the trade winds, depositing large 

amounts of geological material on the Caribbean islands and the continental United States 

during the northern hemisphere summer, and on South America in the winter (Prospero, 

1999) (see figure 5.1).   

Table 5.1 Combined estimates of APM emissions (PM10) from Miami-Dade, Broward 
and Palm Beach counties, according to the 2008 National Emissions Inventory (USEPA, 
2013a).    

Source Emission (tons) % Emission 
Construction dust 15208 26 
Paved road dust 10285 17 
Unpaved road dust 5162 9 
Diesel engines 4845 9 
Mining (cement) 4330 7 
Industrial fuel combustion 4045 7 
Gasoline engines 2482 5 
Prescribed fires 2234 4 
Agricultural field burning 2213 4 
Commercial marine vessels 1295 2 
Commercial cooking 1064 2 
Natural gas-fired power plants 993 2 
Crops and livestock dust 632 1 
Wildfires 542 1 
Oil-fired power plants 404 1 
Other sources combined 3358 6 
TOTAL 59090 100 

 

It has been estimated that between 130 and 1600 Tg/yr of mineral dust from 

Northern Africa is suspended by winds, making this region the main global source of 

airborne mineral dust (Engelstaedter et al., 2006). This long range transport is so 

significant that it is believed to play a major role in the formation of soil in the Caribbean 

islands and in the insertion of micronutrients such as iron, phosphate and nitrate for the 
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fertilization of tropical rainforests (Muhs et al., 2007). However it also increases 

concentrations of APM in Florida and the Caribbean countries, where dust events have 

not only been correlated with public health problems such as surges in pediatric asthma 

(Prospero et al., 2008) but also with damage to local ecosystems. For example, coral reef 

death seems to correlate with periods of high concentration of mineral APM in air, with 

damage attributed to coral disease caused by viable mold spores in the African dust 

(Shinn et al., 2000). 

With advancing desertification, the total arid land area in the planet is likely to 

increase along with mineral dust transportation to far away areas (Schlesinger et al., 

1990), increasing awareness in the medical community on the health problems associated 

with far-traveled mineral APM (Kuehn, 2006). Adding to this, it is known that only the 

smallest fraction of particles (PM10 and below) are able to remain airborne during long 

range atmospheric transportation, as deposition rates increase with particle weight (Muhs 

et al., 2007; Seinfeld & Pandis, 1998). Thus the mineral dust reaching South Florida from 

Africa is most likely comprised of breathable particles, raising concerns of possible 

impacts on public health.  
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Figure 5.1 Seasonal averages of the Total Ozone Mapping Spectrometer absorbing 
Aerosol Index (TOMS AI) satellite product, between 1980 and 1992, showing the global 
movement of mineral dust in November-January (top) and May-July (bottom) 
(Engelstaedter et al., 2006). 
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Because of these facts, there is a pressing need for the constant monitoring of 

APM pollution in the Miami Metropolitan area from both local and foreign origin. Such 

monitoring could potentially yield useful information on the trends of APM amounts in 

air and its provenance, to help governments in implementing policies aimed to mitigate 

risks associated with this threat.  

The study of elemental composition of APM in urban air can yield information 

about the origin of airborne particles, the atmospheric processes involved in APM 

transportation and about the occurrence of elements known to have a high chronic and 

acute human toxicity (Ragosta et al., 2008).  

The research group of Prospero and coworkers has collected APM samples from 

the late 1970s until at least 2010, performing elemental analysis along with other assays 

(Prospero, 1999; Trapp et al., 2010). That monitoring effort was focused on 

understanding the atmospheric phenomena involved in the long range transportation of 

mineral dust from Northern Africa and its implications on global climate and 

geochemical processes. In that sense, the air sampler located in Virginia Key was 

equipped with a wind direction sensor which activated the device only if the wind is 

blowing from the open sea, in order to eliminate APM inputs from local anthropogenic 

sources on their measurements. Thus, there are no studies available on the elemental 

composition and provenance of anthropogenic APM pollution in the Miami Metropolitan 

Area other than those involved with occurrence of mineral dust from Northern Africa. 

Efforts to use elemental analysis to characterize APM from the Miami Area were 

initiated by our laboratory under the work of Arroyo-Mora, who collected APM samples 
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regularly between the summer of 2005 and the winter of 2006 from a high volume 

sampler located in the vicinity of Port Everglades. The sampling site was in the middle of 

the Tri-county metropolitan area, and located near pollution emitters such as the Port 

Everglades Power Plant (oil-fired), the Fort Lauderdale International Airport and the 

shipping facilities at Port Everglades, which is the main port of Florida and ranks 32 in 

the United States in terms of annual tonnage (USDOT, 2013). Thus, APM collected at 

that site is potentially under the influence of anthropogenic sources and from airborne 

mineral dust arriving from the sea. 

Arroyo-Mora performed a comparison between Laser Ablation Inductively 

Coupled Plasma Mass Spectrometry (LA-ICP-MS) with a direct ICP-MS analysis after 

acid digestion. The second technique was found to be more suitable for the analysis of 

APM in the collected filters since difficulties in obtaining a proper calibration hindered 

quantitation with LA-ICP-MS. Arroyo-Mora also demonstrated the occurrence of mineral 

dust in the summer months was by measuring signal increases of crustal elements such as 

Fe, Mn and Al (Arroyo-Mora, 2009). However, in that initial work no attempt was made 

on discussing the sources of the APM collected or applying statistical models that could 

help to interpret the observed elemental concentrations. 

Multivariate receptor models (MRMs) are usually employed to help interpret air 

pollution data, including Enrichment Factors (EFs), Principal Component analysis (PCA), 

Positive Matrix Factorization (PMF), Chemical Mass Balance (CMB), UNMIX, among 

others. These have been reviewed extensively (Henry & Christensen, 2010; Viana et al., 

2008; Watson et al., 2002). PCA is very popular as it can be performed with widely 
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available statistical software, is less complicated to use than others such as PMF and also 

does not require quantitative knowledge of the composition of emission sources which is 

the main limitation of CMB (Song et al., 2006). For example, Celo used principal PCA to 

identify sources of airborne particulate samples collected in different Canadian cities 

(Celo & Dabek-Zlotorzynska, 2011). Furthermore, it has been proposed that to provide a 

higher degree of confidence to the data interpretation, is preferable to evaluate the 

similarities in the outputs of two MRMs. For example, PCA was used in combination 

with UNMIX in the works by Chen et al. (2007) in the San Joaquin Valley, California 

and by Song et al. (2006) in Beijing, China. Also known as N-dimensional Edge 

detection, UNMIX was first introduced by Henry (2003) and has gained popularity as is 

able to provide source apportionment based solely on the ambient data, and also because 

a peer-reviewed, free to use software package for its application is available from USEPA 

(Henry & Christensen, 2010; USEPA, 2013b).  

By increasing the number of samples available in the EARL-FIU library of APM 

filters, and by analyzing a large number of elements by Inductively Coupled Plasma Mass 

Spectrometry (ICP-MS), this work aimed to apply MRMs to identify the possible sources 

of airborne particulate samples collected by EARL-FIU in the vicinity of Port 

Everglades, FL.  
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5.2. Hypotheses 

Airborne Particulate Matter collected around the large installations of Port 

Everglades in Florida contain elements toxic to humans, such as Cr, Cu, Mn, Ni, Pb, V, 

As and Zn, originating from both anthropogenic and natural sources.  

Sources of APM can be identified by analyzing a large number of elements by 

ICP-MS and applying statistical analysis, differentiating between mineral dust and local 

anthropogenic APM sources.   

 

5.3. Study objectives 

- To continue the efforts started by previous researchers of our group to collect 

airborne particulate samples near Port Everglades, FL, in order to increment 

the number of airborne particulate matter samples.  

- To perform elemental analysis by ICP-MS with a large number of elements, 

including Rare Earth Elements (REE), in order to perform statistical analysis 

to identify the different sources of APM to the local environment. 
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5.4. Materials and reagents 

Concentrated nitric acid and 30% v/v hydrogen peroxide were Optima™ grade 

and purchased from Fisher Scientific (Fairlawn, NJ, USA). Multi-elemental certified 

calibration standards (Claritas PPT™ grade; 10,000 µg/L in 5% HNO3) were purchased 

from Spex Certiprep (Metuchen, NJ, USA) for all element groups (cat. number CLMS-2 

for regular elements and CLMS-1 for REE). The internal standard mixture for the 

analysis of regular elements was a 1/10 dilution of a solution containing Ge, Y, In, Bi, Sc, 

Tb and 6Li, also purchased from Spex Certiprep (Claritas PPT™ grade, cat. number CL-

ISM1-100; 10,000 µg/L; 3% HNO3). For REE, the internal standard solution was 

prepared by combining 1/1000 dilutions of single component, certified standards of Bi, 

Ge and In (1,000,000 µg/L in 3% HNO3) purchased from Environmental Express 

(Charleston, South Carolina, USA). Initial calibration verification was performed by 

using certified multi-elemental standards purchased from Accustandard (New Haven, CT, 

USA), Ultra Scientific (North Kingstown, RI, USA) and Environmental Express. The 

ICP-MS tuning solution (6Li, Y, Ce, Tl) was also purchased from Accustandard. Ultra-

high purity liquid argon was purchased from Airgas (Kennesaw, GA, USA).  

Filters (61 x 61 cm) were cut out from a roll of Versapor® 450R membrane 

(acrylic copolymer on a nonwoven nylon support, 0.45 µm pore size), purchased from 

Pall (Port Washington, NY, USA). The filters were placed in a super-high air volume 

collector system, built by Pacific Sierra Research (Santa Monica, CA, USA) and property 

of the United States Geological Survey (USGS). The system is equipped with a digital air 
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flowmeter to record the total air volume filtered, model GD-200 (Fluid Inventor AB, 

Stockholm, Sweden).   

Filters sub-samples were digested using a SC100 HotBlock™ digestion system, 

purchased also from Environmental Express. 50 mL, metal-certified homopolymer 

polypropylene digestion vessels (model SC475) were used for sample digestion, in 

combination with the FilterMate™ metal-certified filtration system (model SC0409, 0.45 

µm PTFE with a 2 µm PTFE prefilter), also purchased from Environmental Express. A 

filtered air laminar flow hood was employed to minimize the introduction of impurities 

during sample preparations (Envirco, Albuquerque, NM, USA). Analysis of digestates 

was performed with an 4500 ICP-MS (Agilent Technologies, Santa Clara, CA, USA), 

equipped with an ASX-500 autosampler (Cetac Technologies, Omaha, NE, USA). 

Instrument operation and data analysis was performed with the Chemstation™ software, 

also obtained from Agilent Technologies.      

Pictures for the determination of APM load percentage were taken with a 5.1 

megapixel digital camera, model S5200, purchased from Fujifilm (Tokyo, Japan) 

mounted on a tripod equipped with a hydraulic level. Exact areas were determined from 

photographs using the CellSens® digital imaging software for research applications, 

purchased from Olympus (Tokyo, Japan). Filters were visually analyzed using a digital 

microscope, model VSX-200 (Keyence, Chicago, IL, USA) available at the International 

Forensic Research Institute at FIU.  
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Statistical analysis software packages used were JMP version 10.0 (SAS, Cary, 

NC., USA), Sigmaplot version 12.5 (Systat Software Inc., San Jose, CA. USA) and 

UNMIX version 6.0 (USEPA, Washington, DC. USA). 

5.5. Sample collection 

A detailed description on the high volume air sampler and the sample location can 

be found on the work by Arroyo-Mora (2009).  Briefly, an stainless steel  sampler 

containing an airtight filter compartment is housed inside a trailer and the air is pulled 

onto the filter by a maintenance-free electric motor at a flow rate of approximately 100 

m3/h, entering trough an omnidirectional opening in a PVC pipe extending 4 m above the 

trailer rooftop (see figure 5.2).  

 The trailer was placed about 10 meters from the Port Everglades inlet (see figure 

5.2). The collector operated 24/7 and filters were replaced biweekly (when possible) 

between years 2005 and 2006. A second collection period was performed between 2008 

and 2010 but collection was not as regular as the first period. With every filter installed, 

initial and final flow rates were recorded along with the total volume of air filtered. 

Exposed filters were carefully folded and stored in plastic bags at room temperature. 
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Figure 5.2 (Top) Location of airborne particulate matter collector at Port Everglades, 
Florida (26.092542°N, 80.108415°W). (Bottom left) View of the trailer housing the air 
sampler and the omnidirectional air collection PVC pipe. (Bottom right) View of the air 
sampler machine with a new filter being loaded.  
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5.6. Analytical methodology 

5.6.1. Determination of the concentration of APM in air  

A small piece was cut out from each filter and carefully weighed to the ±0.001 

mg. Each weighed piece was then photographed with a tripod-mounted digital camera. 

The obtained picture was used to determine the area of the filter piece using a software 

originally designed to determine cellular areas from microscope observations. A distance 

reference included in the picture was used to calibrate the software (see figure 5.3). The 

total mass of APM in the exposed filter (mAPM,ex) results from subtracting the mass of an 

unexposed filter (mv) to that of the exposed filter (mex). This quantity can be indirectly 

determined by subtracting the unexposed versapor area density (ρv) from the obtained 

exposed filter area density (ρex) and multiplying by the total exposed area of the filters 

(Afilter = (3151 ± 48) cm2, n=18).  

𝒎𝒎𝑨𝑨𝑨𝑨𝑨𝑨,𝒆𝒆𝒆𝒆 = 𝑚𝑚 −𝑚𝑚 = 𝜌𝜌 − 𝜌𝜌 ∗ 𝐴𝐴 =
𝑚𝑚
𝐴𝐴 − 𝜌𝜌 ∗ 𝐴𝐴       (1) 

Where (mpiece) is the mass of the exposed filter piece and (Apiece) is the output of 

the photographic area determination procedure. The unexposed filter area density was 

experimentally determined by weighing pieces of the unexposed material and measuring 

their area (ρv = (7.6±0.2) mg/cm2, n=5).   

The APM concentration in air (CAPM,air) was then calculated according to equation 

2. 
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𝑪𝑪𝑨𝑨𝑨𝑨𝑨𝑨,𝒂𝒂𝒂𝒂𝒂𝒂 =
𝑚𝑚 ,

𝑉𝑉       (2) 

 Where (Vair) is the total volume of air that passed through the filter, obtained 

from the digital flowmeter at the air sampler.  

The weight percentage of APM in each exposed filter was determined in order to 

enable the calculation of the amount of APM in each weighed portion of filters digested 

for ICP-MS analysis, according to equation 3. 

%𝑨𝑨𝑨𝑨𝑨𝑨 =
𝑚𝑚 ,

𝑚𝑚 ∗ 100 =
𝑚𝑚 ,

𝑚𝑚 ∗ 100 = 1 −
𝐴𝐴 ∗ 𝜌𝜌
𝑚𝑚 ∗ 100      (3) 

 

 

Figure 5.3 Output from the photographic procedure to determine areas of weighed filter 
pieces. (LEFT) Unexposed filter material. (RIGHT) Exposed filter subsample. This 
particular sample had an area density of 9.35 mg/cm2, equivalent to 18.6% w/w of APM 
and a concentration of APM in the filtered air of 34 µg/m3.  
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5.6.2. Sample preparation: acid digestion of filter sub-samples 

Filter sub-samples were treated with an acid reflux oxidative digestion procedure, 

derived from standard digestion procedures for sediments, soil and airborne particulate 

matter analysis by ICP-MS (methods EPA 3050B and EPA IO-3.1) (USEPA, 1996a, 

1999a). This technique dissolves almost all elements in the sample and uses hydrogen 

peroxide to destroy organic matter that could protect metals from dissolution, including 

the polymeric filter. Each exposed filter was digested by duplicate. 

A piece of approx. 4 cm x 10 cm of each filter was cut out and shredded using 

acid-cleaned ceramic scissors. The shredded filter subsample was collected in a certified 

clean, disposable digestion vessel and weighed to the ±0.1 mg. 5 mL of concentrated 

nitric acid were added to the samples in the digestion vessels, leaving the samples to react 

overnight.  

The next day samples were subjected to acid reflux by heating at 95ºC for 1 hour, 

covering the digestion vessels with a plastic cover. Then, a second 5 mL portion of 

concentrated nitric acid was added and heating continued for an additional hour, period 

after which samples were cooled to room temperature.  A 0.5 mL volume of 30% v/v 

hydrogen peroxide was added, causing a highly exothermic reaction with effervescence, 

during which care was taken to prevent mechanical losses of digestates. After the 

effervescence receded, a second 0.5 mL volume of hydrogen peroxide was added, and 

heating resumed for another hour. This procedure was repeated two more times for a total 

of 3 mL of 30% hydrogen peroxide per sample.  
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After the last heating period, digestates were cooled down to room temperature, 

taken to 25 mL with double deionized water and filtered directly in the digestion vessel 

with a push-down 0.45 µm PTFE filter. The filtered digestates were then analyzed for 

elemental composition by ICP-MS. 

5.6.3. Analysis of digestates by ICP-MS 

Multi-elemental analysis of filter digestates was performed using three different 

instrumental methods for majors, trace and REE, which were minor modifications from 

the USEPA methodologies to analyze acid digestates of soils and filters for ambient 

particulate matter using ICP-MS (methods EPA 6020A and IO-3.5) (USEPA, 1999b, 

2007b).  

Acid digestates (or dilutions as needed) were fortified with internal standards and 

directly aspirated into a cooled nebulizing chamber. The nebulized droplets were carried 

into the plasma using argon, where a quick ionization of elements occurred. Ions thereby 

produced were introduced into a quadrupole mass spectrometer operating in scanning 

mode. Analytes and mass-to-charge rations used for quantification, calibration ranges and 

instrument detection limits are listed in table 5.2, along with the major spectroscopic 

interferences and the respective mathematical corrections employed. These corrective 

equations are listed in several EPA methods for environmental analysis by ICP-MS 

(USEPA, 1999b, 2007a, 2007b). 
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Table 5.2 Elements, interferences, correction equations, calibration ranges and instrument 
detection limits for the determination of elemental composition of APM by ICP-MS.  

 

E m/z IS m/z Interference Interference equation IDL 
(µg/L)c 

Cal. Range 
(µg/L) 

 
MAJORS 

Al 27 Sc 45   1.15 

5-100 

V 51 

Ge 72 

35Cl16O+ (51C)-3.127*[(53C)-0.113*(52C)]a 0.08 
Cr 52   0.34 
Fe 57   3.91 
Ni 60   0.31 
Cu 63   0.27 
Zn 66   0.57 
Sr 88 Y 89   0.05 

        TRACE METAL 
Li 7 Sc 45   0.06 

0.05-25 

Be 9   0.01 
Mn 55 

Ge 72 
  0.03 

Co 59   0.01 
Ga 69   0.01 
As 75 40Ar35Cl+ (75C)-(77C)*3.127+(82C)*2.736 0.19 
Se 82 

Y 89 
  0.74 

Rb 85   0.02 
Ag 107   0.01 
Cd 111 95Mo16O+ (111C)-(108C)*1.073+(106C)*0.764 0.02 
Cs 133 

Tb 159 

  0.01 
Ba 137   0.02 
Tl 205   0.03 
Pb 208 b (208C)+(207C)+(206C) 0.37 
U 238   0.01 

        RARE EARTH ELEMENTS 
Sc 45 Ge 72   0.008 

0.005-3 

Y 89   0.005 
La 139 

In 115 

  0.002 
Ce 140   0.004 
Pr 141   0.002 
Nd 145   0.003 
Sm 147   0.002 
Eu 151   0.002 
Gd 157 141Pr16O+ (157C)-(141C)*0.0234c 0.004 
Tb 159   0.002 
Dy 163   0.002 
Ho 165 

Bi 209 

  0.001 
Er 166   0.002 
Tm 169   0.002 
Yb 172   0.002 
Lu 175   0.002 
Th 232     0.007 

a (XC): measured intensity (cps) of m/z = X.  bIsotopic variability of Pb. cBased on the yield of 141Pr16O in a pneumatic nebulizer 

equipped ICP-MS (Cao, Yin, & Wang, 2001; Raut, Huang, Aggarwal, & Lin, 2005).   c Instrument detection limits, standard deviation 

of seven measurements of the instrument blank (3% HNO3+IS)  multiplied by Student’s t number for six degrees of freedom (t=3.14).  
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5.6.4. ICP-MS instrumental parameters 

Sample peristaltic pump 

Pre-analysis steps: 

1.- Sample uptake (speed, uptake time):    0.5 rps, 30 s 

2.- Signal stabilization (speed, stabilization time):  0.1 rps, 30s 

Analysis uptake speed:     0.1 rps 

Post-analysis steps: 

 1.- AS probe rinse (speed, uptake time, solution): 0.5 rps, 30 s, 2% HNO3 

2.- System rinse (speed, uptake time, solution): 0.5 rps, 50 s, 3% HNO3 

Nebulization 

Nebulizer type:       Babington 

Nebulizing chamber type:     Quartz, Scott type 

Nebulizing chamber temperature:    2 ºC 

Plasma parameters 

 RF Power:       1200 W 

 RF matching:       1.8 V 

 Carrier gas:       1.15 L/min 

 Blend gas:       0 

Integration  

Points per mass:       3 

Time per integration point (total time per mass):  

Majors:      100 ms (300 ms) 

Trace, REE:      200 ms (600 ms) 

Repetitions per mass:      3 
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5.6.5. Calculations of elemental concentration in filtered air 

The final output concentration is calculated by considering the contribution of the 

unexposed filter to the measurement in the exposed filters.  

The contribution of the filter (and other uncontrolled element inputs during 

digestion) can be estimated by digesting a portion of the unexposed filter along with the 

digested sample batch. A concentration of each element in the unexposed filter (CE,v) can 

be obtained by equation 4: 

𝑪𝑪𝑬𝑬,𝒗𝒗 =
, ∗ ∗ ,

∗
        ,      ( )      (4) 

Where (OE,v) is the ICP-MS output measurement for element E (in µg/L) from the 

analysis of the unexposed filter digestate, (DF) is the dilution factor applied to the 

digestate, (Vdig,v) is the total digestate volume (in mL) and (mv) is the mass (in grams) of 

unexposed filter weighed to be digested. The mass of element E in the digestate of 

exposed filters contributed by the digestion of Versapor® material (mE,v) can then be 

calculated by equation 5: 

𝒎𝒎𝑬𝑬,𝒗𝒗 = 𝑪𝑪𝑬𝑬,𝒗𝒗 ∗ 𝑚𝑚 , = 𝑪𝑪𝑬𝑬,𝒗𝒗 ∗ (𝑚𝑚 −𝑚𝑚 ) 

= 𝑪𝑪𝑬𝑬,𝒗𝒗 ∗ [𝑚𝑚 −𝑚𝑚 ∗ % ] = 𝑪𝑪𝑬𝑬,𝒗𝒗 ∗ 𝑚𝑚 (1 − 0.01 ∗ %APM)    ,      (𝑚𝑚𝑚𝑚 )    (5) 

Where (mv,ex) is the mass of Versapor® in the exposed filter, (mex) is the total mass 

of exposed filter weighed for digestion (in kg), (mAPM) is the mass in kg of airborne 

particulate matter in the digested exposed filter sub-sample and (%APM) is the 

percentage of APM in the exposed filter (see section 5.4.1). The concentration of element 
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E in the APM (CE,APM) is equal to the ratio of the mass of E in the digestate produced by 

the digestion of APM (mE,APM) and the mass of APM in the digested filter and can then be 

calculated by equation 6: 

𝑪𝑪𝑬𝑬,𝑨𝑨𝑨𝑨𝑨𝑨 = ,    (6) 

The total mass of element E dissolved in the digestate (mE,dig) can be directly 

obtained from the ICP-MS measurements and is equal to the sum of the mass contributed 

by the APM (mE,APM) and the versapor filter (mE,v).    

𝒎𝒎𝑬𝑬,𝒅𝒅𝒅𝒅𝒅𝒅 =   𝑚𝑚 , + 𝑚𝑚 ,   (7) 

Therefore, combining equations 5, 6 and 7 yields the concentration of element E 

in the airborne particulate matter (equation 8) with measurable variables:  

𝑪𝑪𝑬𝑬,𝑨𝑨𝑨𝑨𝑨𝑨 =
𝑚𝑚 , − 𝑚𝑚 ,

𝑚𝑚  

=
∗%

∗ 𝑂𝑂 , ∗ 𝐷𝐷𝐷𝐷 ∗ 𝑉𝑉 , ∗ 10 − 𝑪𝑪𝑬𝑬,𝒗𝒗 ∗ 𝑚𝑚 1 − 0.01 ∗ %APM     ,      ( )   (8)      

Where (OE,ex) is the ICP-MS output measurement for element E (in µg/L) from 

the analysis of the exposed filter digestate, (Vdig,ex) is the final volume (in mL) of the 

digestate of exposed filter and (10-6) is an unit conversion factor. The concentration of 

element E in the filtered air (CE,air) can be obtained by multiplying the concentration of 

element E in the APM by the concentration of APM in air (CAPM,air , in µg/m3), obtained 

by the procedure outlined in section 5.4.1 (equation 8).  

𝑪𝑪𝑬𝑬,𝒂𝒂𝒂𝒂𝒂𝒂 = 𝑪𝑪𝑬𝑬,𝑨𝑨𝑨𝑨𝑨𝑨 ∗ 𝑪𝑪𝑨𝑨𝑨𝑨𝑨𝑨,𝒂𝒂𝒂𝒂𝒂𝒂        , ( )     (8)  



151 
 

5.7. Results and discussion 

5.7.1. Determination of filter APM load 

The determination of filter APM load is a critical step since concentrations of 

elements in air are calculated with this parameter. The APM load is usually determined 

with a gravimetric procedure, weighing the filters in reproducible conditions of 

temperature and relative humidity before and after APM collection (Rodriguez, Alastuey, 

& Querol, 2012).  

The procedure employed by Arroyo-Mora to determine the APM contents in the 

filter collected by FIU-EARL involved folding the filters into an open plastic container 

and weighing by difference to the ±0.1 mg (Arroyo-Mora, 2009). In the present work, it 

was observed that around 400 min (ca. 7 hours) were required to attain a constant weight 

of a whole filter, probably because trapped air inside the folded filter causes an increased 

apparent weight and is slowly released with time (see figure 5.4). This procedure is not 

practical and if the proper equilibration time is not allowed severe errors on the 

gravimetric analysis will occur yielding erroneous estimations on APM contents.  

To overcome this challenge, an alternative approach was developed based on the 

photographic determination of the area of a small filter subsample after gravimetric 

analysis to the ±0.001 mg, which required almost no balance equilibration time. This 

procedure is described in section 5.6.1 and the output of the photographic determination 

of filter APM load is presented in table 5.3.   
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Table 5.3 Filter data and determination of APM load (see section 5.6.1). 

Filter Data  Determination of APM load 

Start End Total 
air (m3)  

mpiece 
(mg) 

Apiece 
(mm2) 

ρex 
(mg/cm2) 

mAPM,piece 
(mg) 

% 
APM 

CAMP, air 
(µg/m3) 

8/15/2005 8/23/2005 25887  32.949 327 10.08 8.03 24.4 299 
8/23/2005 8/30/2005 16068  34.552 370 9.34 6.36 18.4 337 
8/30/2005 9/8/2005 23967  45.130 503 8.97 6.80 15.1 178 
9/8/2005 9/19/2005 30616  44.985 467 9.63 9.40 20.9 207 

9/19/2005 10/12/2005 28496  42.423 412 10.30 11.03 26.0 296 
12/21/2005 12/28/2005 15496  53.604 551 9.73 11.62 21.7 429 
12/28/2005 1/18/2006 60769  41.965 499 8.41 3.94 9.4 41 
1/18/2006 1/25/2006 19432  30.578 308 9.93 7.11 23.2 374 
1/25/2006 2/6/2006 32784  33.236 359 9.26 5.88 17.7 157 
2/6/2006 2/10/2006 11030  54.279 572 9.49 10.69 19.7 534 

2/10/2006 2/15/2006 13878  41.387 489 8.46 4.13 10.0 192 
2/15/2006 2/22/2006 19435  56.959 608 9.37 10.63 18.7 283 
2/22/2006 3/1/2006 19833  39.565 412 9.60 8.17 20.7 315 
3/1/2006 3/8/2006 19458  58.520 568 10.30 15.24 26.0 434 
3/8/2006 3/16/2006 21852  60.952 668 9.12 10.05 16.5 217 

3/16/2006 3/30/2006 43820  54.431 552 9.86 12.37 22.7 161 
3/30/2006 4/17/2006 39789  81.684 735 11.11 25.68 31.4 277 
4/17/2006 4/24/2006 38204  48.877 546 8.95 7.27 14.9 110 
4/24/2006 5/1/2006 29857  57.010 611 9.33 10.45 18.3 181 
5/1/2006 5/25/2006 55889  46.226 440 10.51 12.70 27.5 163 

5/25/2006 6/8/2006 41633  57.999 607 9.56 11.75 20.3 146 
6/8/2006 6/20/2006 33818  48.647 472 10.31 12.68 26.1 250 

6/20/2006 6/30/2006 28147  64.541 627 10.29 16.76 26.0 299 
6/30/2006 7/12/2006 16136  62.878 670 9.38 11.82 18.8 345 
7/12/2006 7/23/2006 33479  41.797 463 9.03 6.52 15.6 132 
7/23/2006 8/5/2006 40182  66.833 746 8.96 9.99 14.9 105 
8/5/2006 8/13/2006 21801  47.747 489 9.76 10.49 22.0 310 

8/13/2006 8/25/2006 33186  60.639 600 10.11 14.92 24.6 236 
8/25/2006 10/10/2006 127080  65.138 634 10.27 16.83 25.8 66 

10/11/2006 10/24/2006 35967  63.327 691 9.16 10.67 16.9 135 
12/10/2007 3/3/2008 144450  57.878 576 10.05 13.99 24.2 53 

3/3/2008 4/3/2008 84079  44.436 549 8.09 2.60 5.9 18 
4/3/2008 5/2/2008 70707  45.871 547 8.39 4.19 9.1 34 
5/2/2008 7/9/2008 180397  59.229 647 9.15 9.93 16.8 27 
7/9/2008 8/18/2008 109247  45.649 517 8.83 6.25 13.7 35 

8/18/2008 11/7/2008 192848  47.772 578 8.27 3.73 7.8 11 
11/7/2008 2/4/2009 198915  43.162 509 8.48 4.38 10.1 14 
2/4/2009 3/19/2009 112023  39.891 503 7.93 1.56 3.9 9 

3/19/2009 4/22/2009 79978  49.641 593 8.37 4.45 9.0 30 
4/22/2009 8/28/2009 275162  46.894 508 9.23 8.18 17.5 18 
8/28/2009 5/10/2010 508434  58.321 661 8.82 7.95 13.6 7 
6/2/2010 6/22/2010 99465  52.829 593 8.91 7.64 14.5 41 
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Figure 5.4  Equilibration time required for the weighting of a whole exposed filter (Final 
recorder weight: 32611.4 mg, dotted line). 

 

5.7.2. Estimation of method detection limits 

Method detection limits (MDLs) were determined by analyzing digestions of 

unexposed Versapor®, subjected to the same analytical process as the exposed filter 

samples. This procedure accounts for all species introduced during the digestion process, 

including metallic content of the digestion vessels, filters and reagents. The standard 

deviation of five filter blank measurements was multiplied by the Student t value 

(t=3.75). Method detection limits in terms of mg of element in kg of APM are listed in 

table 5.4. Elements that presented concentrations below the MDL (in term of mg/Kg of 

APM) were considered as non-detected, and therefore do not contribute to the data 

analysis procedures discussed in the following sections. 
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Table 5.4 Analyte concentrations measured in the Versapor filter media and estimated 
method detection limits. (All concentrations in mg/Kg). 

Element m/z   Filter SD   MDL 
MAJORS 

Al 27   5.1 2.0   7.5 
V 51 

 
0.8 0.3 

 
1.6 

Cr 52 
 

4.1 1.3 
 

6.0 
Fe 57 

 
15.9 5.8 

 
21.8 

Ni 60 
 

1.0 0.2 
 

1.1 
Cu 63 

 
16.5 2.7 

 
10.2 

Zn 66 
 

3.3 0.7 
 

3.2 
Sr 88 

 
0.07 0.01 

 
0.1 

TRACE METAL 
Li 7 

 
0.024 0.018 

 
0.12 

Be 9 
 

0 0 
 

0.01 
Mn 55 

 
0.154 0.017 

 
0.12 

Co 59 
 

0.01 0.002 
 

0.01 
Ga 69 

 
0.03 0.038 

 
0.26 

As 75 
 

0.08 0.06 
 

0.40 
Se 82 

 
0.6 0.1 

 
0.86 

Rb 85 
 

0.05 0.06 
 

0.40 
Ag 107 

 
0.008 0.007 

 
0.05 

Cd 111 
 

0.002 0.001 
 

0.02 
Cs 133 

 
0 0 

 
0.01 

Ba 137 
 

0.08 0.01 
 

0.09 
Tl 205 

 
0 0 

 
0.04 

Pb 208 
 

0.076 0.003 
 

0.39 
Th 232   0 0   0.0072 
U 238 

 
0 0 

 
0.01 

RARE EARTH ELEMENTS 
Sc 45  0.06 0.02  0.1 
Y 89  0.007 0.004  0.03 
La 139 

 
0.0018 0.0003 

 
0.002 

Ce 140 
 

0.0043 0.0005 
 

0.005 
Pr 141 

 
0.0002 0.0002 

 
0.003 

Nd 143 
 

0.0030 0.0002 
 

0.003 
Sm 147 

 
0.24 0.01 

 
0.08 

Eu 151 
 

0 0 
 

0.0023 
Gd 157 

 
0 0 

 
0.004 

Tb 159 
 

0 0 
 

0.0020 
Dy 163 

 
0 0 

 
0.002 

Ho 165 
 

0 0 
 

0.0015 
Er 166 

 
0 0 

 
0.0021 

Tm 169 
 

0 0 
 

0.00175 
Yb 174 

 
0 0 

 
0.0019 

Lu 175 
 

0 0 
 

0.00221 
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5.7.3. Enrichment factors 

A simple receptor model to interpret airborne particulate matter data is the 

calculation of enrichment factor (EFs). Its use is well described in a recent review 

(Scheuvens et al., 2013). Briefly, the concentrations are compared with the average 

composition of the Earth Upper Continental Crust (UCC), and elements with large 

anthropogenic contributions will present high EFs while elements occurring from natural 

sources (crustal elements) will produce EFs closer to unity. Enrichment factors are 

calculated according to equation 9, where Cs,E and CUCC,E are the concentrations in the 

sample and in the UCC for element E while Cs,ref and CUCC,ref  are the concentrations in 

the sample and in the UCC of an element considered as crustal reference (usually 

aluminum is used).  Based on this information, EFs were calculated using average upper 

crustal values found in the literature (Wedepohl, 1995). Results are presented in figure 

5.5. 

𝑬𝑬𝑬𝑬 = , ,

, ,
    (9) 

The output shows that Pb, Zn, V, Ni, Cd, As, Cr, and Cu presented the highest 

EFs, which suggests the presence of important local anthropogenic emissions of APM 

containing these elements. These results are in agreement with those from Trapp et al. 

(2010), who observed the highest EFs in these same elements in APM collected at 

Virginia Key. The EFs observed in that work were lower (maximum EF of ~100 for Cd), 

probably caused by the air sampler used, which was set to operate only when winds 

arrived from the open sea (north-northwest direction), to understand inputs of mineral 
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dust arriving from northern Africa. That group attributed the enrichment of these 

elements to sources within the Miami area and in Virginia Key, also noting that 

anthropogenic sources in Northern Africa such as pollution from cities in the African 

Northern Atlantic coast could also contribute to anthropogenic elements in African Dust. 

  

 

Figure 5.5 Enrichment factors used to identify elements of anthropogenic origin using 
aluminum as crustal reference.   

 

The observed EFs are also in agreement with other works that collected total 

suspended particles in coastal urban environments. For example Xia and Gao (2010) 

reported that Pb, Cu, Zn and Cd were the most enriched elements (in that order) in APM 

collected in New Jersey, attributing this enrichments to heavy oil and coal combustion 

from power plants within the city.  
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5.7.4. Descriptive statistics 

The summary statistics on the collected dataset is presented in table 5.5 and in 

figure 5.6. The crustal elements Fe and Al were in average the most abundant elements, 

followed by Cu, V, Zn and Cr, elements that presented a high anthropogenic character 

upon EF analysis (figure 5.5). Other crustal elements such as REEs follow in decreasing 

average abundance. 

 

Figure 5.6 Box-plot diagrams of elements measured in the APM collected at Port 
Everglades, FL, ordered by decreasing mean concentrations.  

Maximum concentrations guidelines for airborne metals listed as toxic by the 

European Union and the USEPA (As, Ni, Cd and Pb) were 1 to 3 orders of magnitude 

higher than the concentrations of those elements measured in the total suspended APM 

collected during the present work.  However, the air quality standards are based on 

thoracic particles (<10 µm diameter, or PM10) which are able to enter the respiratory 

track and become bioaccessible (Brunekreef & Holgate, 2002), while the data presented 

in this work was produced from total suspended particles.   
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Table 5.5 Summary statistics on the measured elemental concentrationsa of APM 
collected at Port Everglades, FL, between 2005 and 2010 (n=42).  

Element AQSb MDLe nf Mean SD Min. 0.25 Median 0.75 Max. 
Fe  3894 40 38222 32019 8428 17583 30234 42512 126735 
Al  1332 42 28884 30873 4591 11221 17436 33110 128329 
Cu  1825 18 4812 1704 3485 3527 4218 5774 8430 
Cr  1066 20 3196 1451 1967 2233 2515 4468 5957 
Zn  569 39 3036 2290 949 1480 2291 3827 11140 
V  277 42 2916 2355 531 1208 1944 3767 9966 
Sr  12 42 1812 1076 364 1008 1647 2237 5222 
Ba  17 42 996 630 162 445 937 1302 3357 
Ni 20000d 193 34 965 615 364 511 817 1176 3392 
Mn  21 42 764 663 197 340 487 1001 2871 
Se  153 40 398 299 158 237 297 442 1709 
Pb 150000c 70 39 250 176 42 132 190 302 776 
As 6000d 72 30 212 167 86 143 168 214 843 
Rb  72 20 132 32 85 99 145 152 153 
Ga  47 38 104 43 58 67 101 131 251 
Ce  0.9 42 57 59 6.5 26 39 63 266 
Li  22 31 55 30 22.2 30 48 64 130 
Sc  24 17 45 14 34.9 37 41 50 72 
Sm  15 22 39 17 20.1 28 34 45 80 
La  0.4 42 35 28 5.6 15 28 46 133 
Co  2.6 18 26 17 9.3 13 22 33 71 
Nd  0.5 42 24 27 2.3 9.6 15 24 117 
Y  5.3 36 23 20 8.4 12.1 15 24 82 
Cd 5000d 3.5 36 9.1 10 1.3 3.6 7.3 9.5 58 
Th  1.3 40 7.3 9.1 0.7 2.6 4.2 7.0 37 
Pr  0.5 42 6.1 6.7 0.6 2.7 3.9 6.5 29 
Gd  0.8 41 4.8 5.3 0.6 1.8 3.2 5.0 22 
U  2.5 34 4.4 2.7 0.9 2.1 3.6 6.4 10 

Dy  0.4 41 3.5 3.9 0.3 1.4 2.4 3.5 17 
Cs  2.6 24 3.0 2.9 0.4 0.8 2.1 3.9 10 
Er  0.4 39 1.9 2.0 0.2 0.8 1.3 2.5 8.4 
Be  2.3 18 1.5 1.7 0.2 0.3 0.8 2.5 5.0 
Yb  0.3 34 1.4 1.6 0.2 0.6 0.9 1.5 6.7 
Eu  0.4 34 1.2 1.3 0.14 0.5 0.7 1.3 5.4 
Tb  0.4 27 0.9 0.9 0.15 0.3 0.5 1.1 3.0 
Ho  0.3 31 0.8 0.8 0.12 0.3 0.5 0.9 3.1 
Tm  0.3 17 0.6 0.4 0.17 0.2 0.6 1.0 1.1 
Lu  0.4 16 0.5 0.3 0.15 0.2 0.7 0.8 0.8 

Total APM 
(×106)  - - 180 135 7 40 171 299 434 

aConcentration units are pg/m3. bCurrent Air Quality Standards (PM10 based). cUSEPA (2012).  dEU (2012).  
eConversion from mass MDLs listed in table 5.4, calculated using the average APM concentration in the 
whole dataset (180 µg/m3). fNumber of samples above MDL. 
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To gain information on the particle size distribution of the collected APM, a 

digital microscope was employed to view the exposed filter media surface, and 

representative examples are presented in figure 5.7.  The change in filter coloration after 

exposure may suggest accumulation of fine particles. Since many particles were visually 

recognized and measured to sizes starting at 5 µm, it could be proposed that thoracic 

particles may be an important fraction of the collected APM. However, as discussed 

below, the low concentrations of toxic metals in the collected APM may not be an 

evidence of good air quality for public health.  

The occurrence of coarse crystalline particles, possibly marine spray, was 

observed. Marine spray particles are produced at sizes ranging from a few nanometers to 

hundreds of micrometers when seawater waves break against the shoreline (de Leeuw et 

al., 2011). Since the air sampler was located very near the water it is possible that marine 

spray particles could have been continuously aspirated, and species such as sodium 

chloride and other marine salts that are not representative of APM depositions could be 

present in high quantities in the filters. A high amount of marine spray particles would 

increase the APM load of the filters which was determined gravimetrically (section 5.6.1) 

and thus would decrease the calculated concentrations of airborne toxic elements that 

deposited with fine particles on the sampling site.  

Therefore, the concentrations of toxic elements in thoracic particles could be 

higher than reflected by this dataset, and further research is required to correctly establish 

the threat of toxic airborne metals to public health in the area.  
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Figure 5.7 Digital microscope images of Versapor® filters before and after APM 
collection at Port Everglades, FL. 
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5.7.5. Identification of APM sources 

The obtained data was analyzed using principal component analysis (PCA) and 

the UNMIX software provided by the USEPA, according to the methodology described 

by Song et al. (2006). PCA was performed on the correlation matrix (presented in 

appendix 3). Five factors were admitted based on the eigenvalue rule (>1), which 

describe 89% of the variance observed in the dataset. Varimax rotation was applied on 

the obtained factors to simplify data interpretation. For the UNMIX model, the most 

abundant elements were selected according to the descriptive statistics output (Fe, Al, V, 

Zn, Sr), along with the total APM concentration in air. The software was asked to identify 

initial species that would produce a solution. Then, additional species were added to the 

model in order of importance to compare with the PCA output, until the software could 

not identify a feasible solution.  

Results are summarized in table 5.6 and the UNMIX output is graphically 

observed in figure 5.8. Results show that the UNMIX and the PCA outputs had a similar 

data structuration, except that UNMIX only identified four sources versus the five factors 

identified by PCA. Crustal elements such as Al, Fe and Mn presented strong loadings in 

factor number one (F1), along with all of the REEs. Source 1 (S1) from the UNMIX 

model strongly agrees with F1 in the PCA model. Therefore, this dataset suggests that F1 

is probably the result of contributions by geological material such as mineral dust from 

North Africa and trace metal contributions from marine aerosol.  
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Table 5.6 Comparison of factor loadings obtained using PCA and source contributions 
(%) obtained using UNMIX. Similarities between both models are highlighted using 
colors. (Loadings >0.5 are bolded and <0.2 are faded. For UNMIX: >50% contributions 
are bolded, <10% faded). 

Element S1 S2 S3 S4 
Th 81 6 0 13 

     
     

Al 63 14 0 23 
     
     
     
     
     
     
     
     

Y 68 23 0 9 
Mn 58 13 0 29 

     
     
     

Fe 45 23 0 32 
La 52 39 0 9 
Co 42 16 0 41 
Cs 94 0 0 6 

     
     

Li 71 0 21 7 
As 46 0 54 0 
Pb 1 49 14 36 
Ba 22 57 0 21 
U 30 30 0 40 
Sr 21 44 22 13 
Ga 26 62 0 12 
V 0 61 3 36 
Cd 0 55 45 0 
Zn 0 55 45 0 
Cu 0 0 100 0 
Cr 0 0 4 96 
Ni 0 16 0 84 

APM 7 62 29 2 
 
 
 

Element F1 F2 F3 F4 F5 
Th 0.98 0.10 0.04 0.09 0.00 
Nd 0.98 0.14 0.10 0.08 -0.04 
Eu 0.98 0.03 0.04 0.17 0.04 
Al 0.97 0.08 0.01 -0.09 0.06 
Gd 0.97 0.18 0.09 0.05 -0.03 
Yb 0.97 0.04 -0.01 0.19 0.01 
Dy 0.97 0.17 0.08 0.09 -0.01 
Pr 0.97 0.16 0.11 0.06 -0.04 
Er 0.97 0.14 0.06 0.13 0.00 
Ho 0.97 -0.03 0.00 0.20 -0.02 
Ce 0.96 0.21 0.13 0.02 -0.04 
Tb 0.95 0.00 -0.03 0.19 -0.12 
Y 0.95 0.22 -0.09 -0.08 -0.09 

Mn 0.94 0.24 0.04 0.09 0.13 
Tm 0.91 -0.04 -0.22 0.09 -0.08 
Lu 0.90 -0.01 -0.24 0.08 -0.10 
Be 0.88 -0.02 -0.27 -0.01 -0.13 
Fe 0.87 0.32 -0.02 -0.21 0.16 
La 0.85 0.42 0.17 -0.07 -0.07 
Co 0.85 0.29 -0.01 -0.03 0.29 
Cs 0.83 0.09 -0.30 0.22 -0.13 
Rb 0.80 0.02 -0.29 0.26 -0.10 
Sc 0.77 -0.14 -0.29 -0.05 -0.19 
Li 0.72 -0.05 0.02 0.46 -0.07 
As 0.52 0.08 0.03 0.71 -0.04 
Pb -0.03 0.85 0.20 0.27 0.20 
Ba 0.32 0.81 0.24 -0.24 0.00 
U 0.42 0.81 -0.20 0.19 0.14 
Sr 0.18 0.74 0.16 0.47 -0.09 
Ga 0.40 0.73 0.25 -0.38 -0.09 
V -0.16 0.71 0.34 -0.04 0.23 
Cd -0.11 0.28 0.78 -0.07 -0.11 
Zn -0.01 0.21 0.72 0.14 0.10 
Cu 0.06 0.15 0.61 0.66 0.21 
Cr -0.01 0.02 0.09 0.14 0.93 
Ni -0.15 0.48 -0.05 -0.20 0.79 

Eigenvalue 22 3 2 2 1 
% Var. 58 13 7 6 5 

Cum. % Var. 58 71 78 84 89 
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Figure 5.8 Contributions to individual elements in the APM collected at Port Everglades 
by each of the sources identified by the UNMIX statistical model.  

 

Temporal analysis of elements selected from F1/S1 shows that this group in fact 

is influenced by African dust. As can be observed in figure 5.9, the concentrations of Fe, 

Al and the sum of REEs (except for Sm and La which were identified as slightly enriched 

in the EF analysis, section 5.7.3) were similar throughout 2006 except for the summer 

months of July-September. Those months are usually associated with the arrival of 

mineral dust from Northern Africa (Trapp et al., 2010), and dust events are clearly visible 

in figure 5.9 as sharp increases in the air concentration of those elements.  
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Figure 5.9 Concentrations of tracers of geological material measured in APM samples 
collected in 2006. African Dust events are highlighted with shaded areas. (Sm and La 
were excluded from the REEs as they present anthropogenic enrichment in the EF 
analysis, section 5.7.3). 

 

 These results suggest that the sum of REEs can also be employed as a proxy to 

detect events of airborne African Dust arriving to the local environment. The variability 
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on the concentrations in non-summer months seems to be lower for REEs than for Fe or 

Al, which may be useful in order to identify African dust events more clearly. 

Additionally, these results demonstrate that African dust events can be readily identified 

using an omnidirectional sampler as the one used in this study, without interferences from 

local anthropogenic sources from the Miami area. Temporal analysis of REEs also 

confirms the observations by Arroyo-Mora, who used Al and Fe as mineral dust proxies 

for the same year (Arroyo-Mora, 2009).  

Regarding other APM sources, Ni and V have been described before as indicators 

of fossil fuel combustion and petrochemical processes (Celo & Dabek-Zlotorzynska, 

2011; Querol et al., 2007). Ni and V presented loadings on F2 and F5, although not in the 

same proportion. Ni loaded strongly on F5 and UNMIX shows that S4 contributes to 84% 

of that element, while V load strongly on F2 and UNMIX presents a contribution of 61% 

by S2. This observation suggests that the collected APM has contributions from at least 

two distinct sources of fossil fuel-related emissions in the area.  

Figure 5.10 presents the location of the air sampler relative to possible fossil fuel 

emission sources. Port Everglades has three main terminals for large, diesel-powered 

vessels (cargo ships, oil tankers and cruise ships) all within 3 km of the sampler. There is 

also the Oil-fired Port Everglades Electricity Plant (2 km) and the Fort Lauderdale 

International Airport (ca. 5 km) surrounded by a large highway system. Thus, emissions 

from marine commercial vessels, the Port Everglades Power Plant, gasoline vehicles and 

aircrafts are potential fossil fuel related sources.  
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Figure 5.10 Location of the air sampler (yellow arrow) relative to the three docks of Port 
Everglades, FLL and the Port Everglades Power Station (red icon). 

 

Table 5.7 summarizes the estimated Broward County emissions of selected 

airborne metals, obtained from the 2008 National Emissions Inventory (USEPA, 2013a). 

According to those figures, 97% of Ni, the metal emitted in highest quantity, is originated 

from commercial marine vessels. Since Ni loadings are strong for F5 and also UNMIX 

shows an 84% contribution from S4, the combination of the measurements and the 

USEPA estimates suggests that F5/S4 is the contribution from shipping activities at Port 

Everglades. Further evidence is provided by Cr, which has an even stronger loading on 

F5 and a 96% contribution from S4, which is also consistent with the USEPA estimates 

of 68% of emissions from commercial vessels. Since F5/S4 probably represents APM 

emissions from marine commercial vessels arriving or leaving Port Everglades, F2/S2 

possibly represents the nearby Fort Lauderdale Electricity Plant which is oil-fired. The 
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identification is reinforced by the relative large contribution of S2 to La and the loading 

of that element on F2 in the PCA model, as the occurrence of La in APM emitted from 

oil-fired electricity plants has been reported before (Olmez & Gordon, 1985). 

Table 5.7 Broward County emissions of airborne metals and percent contributions from 
different sources, according to USEPA National Emissions Inventory, 2008 (USEPA, 
2013a). 

E Total 
(kg) 

Marine 
vessels 

Oil 
EGa 

Other 
EG 

Natural 
Gas EG 

Gasoline 
engines 

Diesel 
Engines 

Aircraft 
emissions Other 

Ni 5282 97 1 0 1 1 0 0 0 
Pb 422 5 1 9 2 0 1 82 0 
Cr 293 68 3 0 0 26 3 0 0 
As 196 68 1 0 0 22 9 0 0 
Co 110 89 11 0 0 0 0 0 0 
Mn 72 30 12 0 10 36 12 0 0 
Cd 9 38 10 39 2 0 1 0 10 

aElectricity generation. 

Cd presented a high enrichment factor in the collected APM (figure 5.5). This 

element loaded slightly on F2 and UNMIX shows that S2 contributes with 55% of that 

element, suggesting that the electricity plant is an important source of airborne Cd in the 

Port Everglades area. The data does not relate Cd to F5/S4 (previously allocated to 

marine vessels) although the NEI estimates that 38% of Cd emissions are originated from 

that source. This could be result of a minimization of that source by the much more 

abundant contributions of the electricity plant to the total APM (as suggested by S2 in 

UNMIX) and by the presence of a third source, represented by F3. Table 5.7 shows that 

39% of Broward County Cd emissions are estimated to originate from non-traditional 

electric generation, which include facilities such as the Wheelabrator North Broward 

Waste-to-Energy plant, located at approximately 10 km west from the air sampler. 

Another set of elements that presented a high loading on F3 are Zn and Cu, suggesting a 
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common provenance between the three elements. However airborne Zn and Cu are more 

commonly associated with suspended road dust from tire and brake wear (Celo & Dabek-

Zlotorzynska, 2011; Querol et al., 2007). Copper also loads strongly on F4, along with As 

and Pb. A similar association between Cu, As and Pb was described by Celo and Dabek-

Zlotorzynska (2011) in Canadian cities, and those authors interpreted the observation as 

multiple industrial sources such as mining and also to construction dust. According to the 

2008 NEI, aircrafts are an important source of Pb in Broward County, as lead tetraethyl is 

used as a fuel additive for piston aircrafts (Cho et al., 2011). On the basis of the output 

from both statistical models (table 5.6), it can be proposed that S3 in the UNMIX model 

corresponds to the sum of F3+F4 in the PCA model, which would explain the 100% 

contribution of S3 to airborne Cu from the mentioned industrial activities and road dust. 

 All these observations may suggest that F3 and F4 represent APM from inside 

the Metropolitan Area, and the common variability of the different sources described by 

F3+F4 and S3, such as road dust, incinerators, industrial sources, aircrafts, construction 

dust, mining activities, etc., could be a result of distance. Since these sources are far away 

from the air sampler, wind speeds and directions may have played a more significant role 

in the transport and deposition of APM from inside the city towards the coastal sampling 

site, than for nearby sources such as the power plant or the shipping vessels.  

According to USEPA estimates, suspended road dust and construction dust are the 

main source of airborne pollution in the Tri-County Metropolitan Area (USEPA, 2013a), 

which could explain why S3 was assigned the second highest abundance in the 
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contributions to APM by the UNMIX model following F2/S2 (identified as the electricity 

plant). 

5.8. Conclusions 

The elemental analysis of APM collected in the vicinity of Port Everglades, FL, 

suggests that certain toxic elements such as Pb, Cd, Ni, V, As, Cr and Cd are heavily 

enriched relative to the Earth upper crustal concentrations, suggesting that anthropogenic 

activities are responsible for their introduction.  

Visual analysis of the filters indicates a ubiquitous presence of coarse crystalline 

particles probably related to the aspiration of marine spray, which could have diluted the 

mass fractions of thoracic and breathable particles in the collected APM. Thus, 

concentrations of the toxic anthropogenic elements in fine particles that are relevant for 

human health could be significantly higher than what the obtained results reflect. The 

detection of toxic metals such as Cd from different sources in the collected APM suggest 

that the implementation of larger scale air quality monitoring programs in the Miami 

Metropolitan area is necessary, and such programs should perform size-dependent APM 

collections in order to assess the correct levels of toxic metals in air and the threat to 

public health. 

According to the multivariable statistical methods, the Port Everglades Electricity 

Plant (demolished in July 2013) was the main source of airborne particles in the area and 

this plant was an important Cd emitter. The second source identified in order of 

abundance was suspended matter from within the city that contained signatures of road 



170 
 

and construction dust, waste incineration and industrial activities. The association of Cd 

and As to these sources raises concerns over the overall air quality of the city, and further 

research is recommended in order to assess the levels of toxic elements in breathable 

particles. 

The contributions from marine vessels and mineral dust from Africa were also 

detected but were less significant than the power plant emissions, probably because of 

their sporadic character. As expected, the data is consistent with previous reports that 

indicate that African dust contributions to the total APM are significant only in the 

summer months. The analysis of the mostly crustal rare earth elements was useful to 

allocate the source contributing with geological material using multivariate receptor 

models. Additionally, REEs were found to be a good proxy to detect events of high 

mineral dust concentrations in the local air.  
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6. GENERAL CONCLUSIONS 

A series of methodologies that focused on simplicity and automation or 

unattended operation were developed and applied to the local environment. Two research 

projects dealt with nontraditional pollutants such as the herbicide glyphosate as a possible 

threat to protected wetlands in Biscayne National Park, and the analytical chemistry of 

surfactants employed during the 2010 Gulf Oil Spill response effort. Other two projects 

involved more traditional environmental pollutants known to pose a threat to public 

health, such as polycyclic aromatic hydrocarbons and air particulate matter.  

The concept of water removal by lyophilization followed by derivatization and 

analysis by LC-FLD+MS/MS was proven as a viable alternative for the analysis of 

glyphosate from canal waters. The developed methodology is simple to use, does not 

require expensive materials or reagents and also does not involve a high amount of 

analyst time. This technique was employed to assess the occurrence of the herbicide in 

canals that will be used to hydrate protected wetlands in BNP, and although data 

indicates that the aquatic use of glyphosate for canal maintenance does not seem to pose a 

threat to the protected environment, glyphosate was detected in runoff from agricultural 

farms which may pose a risk caused by the possible presence of toxic surfactants, and the 

investigation of this possibility is recommended. 

The analysis of Corexit® surfactant components in seawater, crude oil and 

dispersant formulations was investigated, resulting in a family of LC-MS/MS and online 

SPE-LC-MS/MS methodologies that may be useful not only for tracking the extent and 

fate of these compounds in future oil spills involving dispersants, but also to identify the 
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Corexit® formulations involved. The automated online SPE methodology for the analysis 

of DOSS is able to detect this analyte in seawater at concentrations as low as 7 ng/L, 

while the direct injection method can detect the compound in only 7 minutes. Seawater 

samples to be analyzed for DOSS should be stabilized with 15% acetonitrile in order to 

prevent analyte losses. The developed analytical protocols are being actively used to 

investigate the fate of Corexit® markers in the environment.  

Regarding traditional pollutants, an alternative method for the analysis of PAHs 

that challenges the established LLE+GC-MS technique in terms of speed, simplicity and 

environmental friendliness was developed. This methodology employed online SPE-LC-

MS/MS in order to eliminate sample preparation which allows obtaining results in almost 

real time, with a much lower consumption of dangerous solvents such as methylene 

chloride. Additionally, this work reports the highest number of PAHs simultaneously 

analyzed by liquid chromatography to date and the first LC separation of alkylated PAHs. 

The analysis was tested with different waters from the Miami-Dade County, detecting the 

presence of alkylated PAHs in seawater from local marinas and regular heavy PAHs in 

runoff from residential parking lots. While no PAHs were detected in WWTPs effluents, 

good recoveries from fortified matrix experiments suggest that the analysis of PAHs in 

this type of water is possible. Thus, the highly automated methodology showed flexibility 

to analyze different types of water relevant to the urban environment.  

Lastly, the elemental composition of atmospheric particulate matter collected 

from a coastal site of the Miami Metropolitan Area was analyzed. Receptor models were 

used to establish the anthropogenic character of toxic elements and their provenance, and 
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results suggest that APM in that area was mainly originated by the oil-fired Port 

Everglades Power Plant, with a combination of possible suspended road dust and waste 

incineration emissions as the second source of importance. The exact concentrations of 

toxic elements in thoracic or breathable particles (PM10, PM2.5) air could not be 

determined by the total suspended particles collection performed. However, toxic 

elements such as Cd and As presented high average enrichment factors, linked by two 

multivariate statistical models to the electricity plant and to suspended dust from inside 

the city. The possibility of high concentrations of Cd, As and other toxic elements in 

breathable particles may be a justification for further research. Rare earth elements were 

used to identify contributions of geological material to the APM and to identify events of 

high concentration of mineral African dust arriving in Miami during in the summer 

months.         



174 
 

LIST OF REFERENCES 

Apple, D., & Shaffer, J. (2010). Biscayne Bay Coastal Wetlands Phase 1. April 21, 2010 
Public Workshop. United States Army Corps of Engineers, South Florida Water 
Management District. Retrieved on 08/07/2013 from: 
http://www.evergladesplan.org/pm/public_meetings/docs/042110_workshop_pres.pdf. 

Arroyo-Mora, L. E. (2009). The Use of Hyphenated Spectrometric Techniques for the 
Environmental Forensic Assessment of Non-Traditional Pollutants and Degradates in the 
Greater Florida Everglades. (PhD. in Chemistry - Forensic Track), Florida International 
University, Miami, FL. USA. Retrieved on 09/12/2013 from: 
http://digitalcommons.fiu.edu/etd/144. 

ATSDR. (1990). Toxicological profile for Chlorobenzene.  Atlanta, GA. USA.: Agency 
for Toxic Substances and Disease Registry. U.S. Department of Health and Human 
Services. 

ATSDR. (2000). Toxicological profile for Methylene Chloride.  Atlanta, GA. USA.: 
Agency for Toxic Substances and Disease Registry. 
U.S. Department of Health and Human Services. 

Bastug, A. S., Goz, S. E., Talman, Y., Gokturk, S., Asil, E., & Caliskan, E. (2011). 
Formation constants and coordination thermodynamics for binary complexes of Cu(II) 
and some alpha-amino acids in aqueous solution. Journal of Coordination Chemistry, 
64(2), 281-292. doi: 10.1080/00958972.2010.541454 

Battaglin, W. A., Kolpin, D. W., Scribner, E. A., Kuivila, K. M., & Sandstrom, M. W. 
(2005). Glyphosate, other herbicides, and transformation products in Midwestern 
streams, 2002. Journal of the American Water Resources Association, 41(2), 323-332. 
doi: 10.1111/j.1752-1688.2005.tb03738.x 

Bellmund, S. (2008). [From National Park Service, personal communication]. 

Bergqvist, P. A., Augulyte, L., & Jurjoniene, V. (2006). PAH and PCB removal 
efficiencies in Umea (Sweden) and Siauliai (Lithuania) municipal wastewater treatment 
plants. Water Air and Soil Pollution, 175(1-4), 291-303. doi: 10.1007/s11270-006-9139-5 

Boehm, P. D., Douglas, G. S., Burns, W. A., Mankiewicz, P. J., Page, D. S., & Bence, A. 
E. (1997). Application of petroleum hydrocarbon chemical fingerprinting and allocation 
techniques after the Exxon Valdez oil spill. Marine Pollution Bulletin, 34(8), 599-613. 
doi: 10.1016/s0025-326x(97)00051-9 

Boehm, P. D., Neff, J. M., & Page, D. S. (2007). Assessment of polycyclic aromatic 
hydrocarbon exposure in the waters of Prince William Sound after the Exxon Valdez oil 
spill: 1989-2005. Marine Pollution Bulletin, 54(3), 339-356. doi: 
10.1016/j.marpolbul.2006.11.025 



175 
 

Borggaard, O. K., & Gimsing, A. L. (2008). Fate of glyphosate in soil and the possibility 
of leaching to ground and surface waters: a review. Pest Management Science, 64(4), 
441-456. doi: 10.1002/ps.1512 

Botta, F., Lavison, G., Couturier, G., Alliot, F., Moreau-Guigon, E., Fauchon, N., Guery, 
B., Chevreuil, M., Blanchoud, H. (2009). Transfer of glyphosate and its degradate AMPA 
to surface waters through urban sewerage systems. Chemosphere, 77(1), 133-139. doi: 
10.1016/j.chemosphere.2009.05.008 

Brook, R. D., Franklin, B., Cascio, W., Hong, Y. L., Howard, G., Lipsett, M., Luepker, 
R., Mittleman, M., Samet, J., Smith, S. C., Tager, I. (2004). Air pollution and 
cardiovascular disease - A statement for healthcare professionals from the expert panel on 
population and prevention science of the American Heart Association. Circulation, 
109(21), 2655-2671. doi: 10.1161/01.cir.0000128587.30041.c8 

Brook, R. D., Rajagopalan, S., Pope, C. A., Brook, J. R., Bhatnagar, A., Diez-Roux, A. 
V., Holguin, F., Hong, Y. L., Luepker, R. V., Mittleman, M. A., Peters, A., Siscovick, D., 
Smith, S. C., Whitsel, L., Kaufman, J. D. (2010). Particulate Matter Air Pollution and 
Cardiovascular Disease An Update to the Scientific Statement From the American Heart 
Association. Circulation, 121(21), 2331-2378. doi: 10.1161/CIR.0b013e3181dbece1 

Brunekreef, B., & Holgate, S. T. (2002). Air pollution and health. Lancet, 360(9341), 
1233-1242. doi: 10.1016/s0140-6736(02)11274-8 

Busetti, F., Backe, W. J., Bendixen, N., Maier, U., Place, B., Giger, W., & Field, J. A. 
(2012). Trace analysis of environmental matrices by large-volume injection and liquid 
chromatography-mass spectrometry. Analytical and Bioanalytical Chemistry, 402(1), 
175-186. doi: 10.1007/s00216-011-5290-y 

Cai, S. S., Stevens, J., & Syage, J. A. (2012). Ultra high performance liquid 
chromatography-atmospheric pressure photoionization-mass spectrometry for high-
sensitivity analysis of US Environmental Protection Agency sixteen priority pollutant 
polynuclear aromatic hydrocarbons in oysters. Journal of Chromatography A, 1227, 138-
144. doi: 10.1016/j.chroma.2011.12.111 

Cai, S. S., Syage, J. A., Hanold, K. A., & Balogh, M. P. (2009). Ultra Performance 
Liquid Chromatography-Atmospheric Pressure Photoionization-Tandem Mass 
Spectrometry for High-Sensitivity and High-Throughput Analysis of US Environmental 
Protection Agency 16 Priority Pollutants Polynuclear Aromatic Hydrocarbons. Analytical 
Chemistry, 81(6), 2123-2128. doi: 10.1021/ac802275e 

Cao, X. D., Yin, M., & Wang, X. R. (2001). Elimination of the spectral interference from 
polyatomic ions with rare earth elements in inductively coupled plasma mass 
spectrometry by combining algebraic correction with chromatographic separation. 
Spectrochimica Acta Part B-Atomic Spectroscopy, 56(4), 431-441. doi: 10.1016/s0584-
8547(01)00170-7 



176 
 

Celo, V., & Dabek-Zlotorzynska, E. (2011). Concentration and Source Origin of Trace 
Metals in PM2.5 Collected at Selected Canadian Sites within the Canadian National Air 
Pollution Surveillance Program. In F. Zereini & C. L. S. Wiseman (Eds.), Urban 
Airborne Particulate Matter (pp. 19-38): Springer Berlin Heidelberg. 

Chapman, H., Purnell, K., Law, R. J., & Kirby, M. F. (2007). The use of chemical 
dispersants to combat oil spills at sea: A review of practice and research needs in Europe. 
Marine Pollution Bulletin, 54(7), 827-838. doi: 10.1016/j.marpolbul.2007.03.012 

Chen, L. W. A., Watson, J. G., Chow, J. C., & Magliano, K. L. (2007). Quantifying 
PM2.5 source contributions for the San Joaquin Valley with multivariate receptor 
models. Environmental Science & Technology, 41(8), 2818-2826. doi: 
10.1021/es0225105 

Chiang, H.-L., Lai, Y.-M., & Chang, S.-Y. (2012). Pollutant constituents of exhaust 
emitted from light-duty diesel vehicles. Atmospheric Environment, 47, 399-406. doi: 
10.1016/j.atmosenv.2011.10.045 

Cho, S. H., Richmond-Bryant, J., Thornburg, J., Portzer, J., Vanderpool, R., Cavender, 
K., & Rice, J. (2011). A literature review of concentrations and size distributions of 
ambient airborne Pb-containing particulate matter. Atmospheric Environment, 45(28), 
5005-5015. doi: 10.1016/j.atmosenv.2011.05.009 

Corbera, M., Hidalgo, M., & Salvado, V. (2006). Extraction and preconcentration of the 
herbicide glyphosate and its metabolite AMPA using anion-exchange solid phases. 
Microchimica Acta, 153(3-4), 203-209. doi: 10.1007/s00604-005-0462-0 

Coupe, R. H., Kalkhoff, S. J., Capel, P. D., & Gregoire, C. (2012). Fate and transport of 
glyphosate and aminomethylphosphonic acid in surface waters of agricultural basins. 
Pest Management Science, 68(1), 16-30. doi: 10.1002/ps.2212 

Coutinho, C. F. B., Coutinho, L. F. M., Mazo, L. H., Nixdorf, S. L., & Camara, C. A. P. 
(2008). Rapid and direct determination of glyphosate and aminomethylphosphonic acid 
in water using anion-exchange chromatography with coulometric detection. Journal of 
Chromatography A, 1208(1-2), 246-249. doi: 10.1016/j.chroma.2008.09.009 

Dartsch, P. C., Hildenbrand, S., Gfrorer, W., Kimmel, R., & Schmahl, F. W. (1999). 
Cytotoxicity of 2-butoxyethanol and its oxidation products in vitro. International 
Archives of Occupational and Environmental Health, 72, M57-M61. doi: 
10.1007/pl00014203 

de Leeuw, G., Andreas, E. L., Anguelova, M. D., Fairall, C. W., Lewis, E. R., O'Dowd, 
C., Schulz, M., Schwartz, S. E. (2011). Production Flux of Sea Spray Aerosol. Reviews of 
Geophysics, 49. doi: 10.1029/2010rg000349 



177 
 

Denoux, G. J., Gardinali, P., & Wade, T. L. (1998). Quantitative Determination of 
Polynuclear Aromatic Hydrocarbons by Gas Chromatography/Mass Spectrometry 
(GC/MS) - Selected Ion Monitoring (SIM) Mode. In G. G. Lauenstein & A. Y. Cantillo 
(Eds.), Sampling and Analytical Methods of the National Status and Trends Program 
Mussel Watch Project:1993-1996 Update (pp. 129-139). Silver Spring, Maryland.: 
National Oceanic and Atmospheric Administration. 

Duke, S. O., & Powles, S. B. (2008). Glyphosate: a once-in-a-century herbicide. Pest 
Management Science, 64(4), 319-325. doi: 10.1002/ps.1518 

Ehrenhauser, F. S., Wornat, M. J., Valsaraj, K. T., & Rodriguez, P. (2010). Design and 
evaluation of a dopant-delivery system for an orthogonal atmospheric-pressure 
photoionization source and its performance in the analysis of polycyclic aromatic 
hydrocarbons. Rapid Communications in Mass Spectrometry, 24(9), 1351-1357. doi: 
10.1002/rcm.4518 

Engelstaedter, S., Tegen, I., & Washington, R. (2006). North African dust emissions and 
transport. Earth-Science Reviews, 79(1-2), 73-100. doi: 10.1016/j.earscirev.2006.06.004 

EU. (2012). Air quality in Europe.  Copenhagen, Denmark.:  Retrieved on 09/18/2013 
from http://www.eea.europa.eu/publications/air-quality-in-europe-2012. 

FDACS. (2010). Summary of Agricultural Pesticide Use in Florida 2007-2009.  
Tallahassee, Fl.:  Retrieved on 07/26/2013 from: 
http://www.flaes.org/pdf/PUI_narrative_2010.pdf. 

FDEP. (2013). Florida Department of Environmental Protection. 2012 Reuse Inventory. 
Appendix E. Tallahassee, FL. USA. Retrieved on 08/14/2013 from: 
http://www.dep.state.fl.us/water/reuse/docs/inventory/Appendix_E.pdf 

Ferriter, A., Doren, B., Goodyear, C., Thayer, D., Burch, J., Toth, L., Bodle, M., Lane, J., 
Schmitz, D., Pratt, P., Snow, S., Langeland, K. (2006). South Florida Environmental 
Report Chapter 9: The Status of Nonindigenous Species in the South Florida 
Environment.  West Palm Beach, FL.: South Florida Water Management District. 
Retrieved on 07/30/2013 from: 
http://www.sfwmd.gov/portal/page/portal/pg_grp_sfwmd_sfer/portlet_prevreport/2006_s
fer/volume1/chapters/v1_ch_9.pdf. 

Freuze, I., Jadas-Hecart, A., Royer, A., & Communal, P. Y. (2007). Influence of 
complexation phenomena with multivalent cations on the analysis of glyphosate and 
aminomethyl phosphonic acid in water. Journal of Chromatography A, 1175(2), 197-206. 
doi: 10.1016/j.chroma.2007.10.092 

Galloway, J. (2009). South Florida Environmental Report Appendix 5-10: STA Herbicide 
Application Summary for Water Year 2008.  West Palm Beach, FL.: South Florida Water 
Management District. Retrieved on 07/30/2013 from: 



178 
 

http://www.sfwmd.gov/portal/page/portal/pg_grp_sfwmd_sfer/portlet_sfer/tab2236041/2
009report/report/v1/appendices/v1_app5-10.pdf. 

Garcia-Ac, A., Segura, P. A., Viglino, L., Furtos, A., Gagnon, C., Prevost, M., & Sauve, 
S. (2009). On-line solid-phase extraction of large-volume injections coupled to liquid 
chromatography-tandem mass spectrometry for the quantitation and confirmation of 14 
selected trace organic contaminants in drinking and surface water. Journal of 
Chromatography A, 1216(48), 8518-8527. doi: 10.1016/j.chroma.2009.10.015 

Gianessi, L. P. (2008). Economic impacts of glyphosate-resistant crops. Pest 
Management Science, 64(4), 346-352. doi: 10.1002/ps.1490 

Giesy, J. P., Dobson, S., & Solomon, K. R. (2000). Ecotoxicological risk assessment for 
Roundup (R) Herbicide. Reviews of Environmental Contamination and Toxicology, Vol 
167, 167, 35-120.  

Gimeno, R. A., Altelaar, A. F. M., Marce, R. M., & Borrull, F. (2002). Determination of 
polycyclic aromatic hydrocarbons and polycylic aromatic sulfur heterocycles by high-
performance liquid chromatography with fluorescence and atmospheric pressure 
chemical ionization mass spectrometry detection in seawater and sediment samples. 
Journal of Chromatography A, 958(1-2), 141-148. doi: 10.1016/s0021-9673(02)00386-2 

Glass, R. L. (1987). Adsorption of Glyphosate by Soils and Clay Minerals. Journal of 
Agricultural and Food Chemistry, 35(4), 497-500. doi: 10.1021/jf00076a013 

Grey, L., Nguyen, B., & Yang, P. (2001). Liquid chromatography/electrospray 
ionization/isotopic dilution mass spectrometry analysis of n-(phosphonomethyl) glycine 
and mass spectrometry analysis of aminomethyl phosphonic acid in environmental water 
and vegetation matrixes. Journal of Aoac International, 84(6), 1770-1780.  

Guo, Z. X., Cai, Q. T., & Yang, Z. G. (2005). Determination of glyphosate and phosphate 
in water by ion chromatography - inductively coupled plasma mass spectrometry 
detection. Journal of Chromatography A, 1100(2), 160-167. doi: 
10.1016/j.chroma.2005.09.034 

Hamel, S. C., Buckley, B., & Lioy, P. J. (1998). Bioaccessibility of metals in soils for 
different liquid to solid ratios in synthetic gastric fluid. Environmental Science & 
Technology, 32(3), 358-362. doi: 10.1021/es9701422 

Hanke, I., Singer, H., & Hollender, J. (2008). Ultratrace-level determination of 
glyphosate, aminomethylphosphonic acid and glufosinate in natural waters by solid-phase 
extraction followed by liquid chromatography-tandem mass spectrometry: performance 
tuning of derivatization, enrichment and detection. Analytical and Bioanalytical 
Chemistry, 391(6). doi: 10.1007/s00216-008-2134-5 

 



179 
 

Hao, C., Morse, D., Morra, F., Zhao, X., Yang, P., & Nunn, B. (2011). Direct aqueous 
determination of glyphosate and related compounds by liquid chromatography/tandem 
mass spectrometry using reversed-phase and weak anion-exchange mixed-mode column. 
Journal of Chromatography A, 1218(33). doi: 10.1016/j.chroma.2011.06.070 

Harris, O., Wilbur, S., George, J., Eisenmann, C. (1998). Toxicological Profile for 2-
butoxyethanol and 2-butoxyethanol acetate.  Atlanta, GA. USA.: U.S. Department of 
Health and Human Services, Agency for Toxic Substances and Disease Registry 
Retrieved from http://www.atsdr.cdc.gov/toxprofiles/tp.asp?id=347&tid=61. 

Henry, R. C. (2003). Multivariate receptor modeling by N-dimensional edge detection. 
Chemometrics and Intelligent Laboratory Systems, 65(2), 179-189. doi: 10.1016/s0169-
7439(02)00108-9 

Henry, R. C., & Christensen, E. R. (2010). Selecting an Appropriate Multivariate Source 
Apportionment Model Result. Environmental Science & Technology, 44(7), 2474-2481. 
doi: 10.1021/es9018095 

Hidalgo, C., Rios, C., Hidalgo, M., Salvado, V., Sancho, J. V., & Hernandez, F. (2004). 
Improved coupled-column liquid chromatographic method for the determination of 
glyphosate and aminomethylphosphonic acid residues in environmental waters. Journal 
of Chromatography A, 1035(1), 153-157. doi: 10.1016/j.chroma.2004.02.044 

Horak, J., & Lindner, W. (2008). Contribution of sulfonyl-aromatic and sulfonic acid-
aromatic interactions in novel sulfonyl/sulfonic acid-embedded reversed phase materials. 
Journal of Chromatography A, 1191(1-2), 141-156. doi: 10.1016/j.chroma.2007.12.059 

Horak, J., Maier, N. M., & Lindner, W. (2004). Investigations on the chromatographic 
behavior of hybrid reversed-phase materials containing electron donor-acceptor systems 
II. Contribution of pi-pi aromatic interactions. Journal of Chromatography A, 1045(1-2), 
43-58. doi: 10.1016/j.chroma.2004.05.096 

Ibanez, M., Pozo, O. J., Sancho, J. V., Lopez, F. J., & Hernandez, F. (2005). Residue 
determination of glyphosate, glufosinate and aminomethylphosphonic acid in water and 
soil samples by liquid chromatography coupled to electrospray tandem mass 
spectrometry. Journal of Chromatography A, 1081(2), 145-155. doi: 
10.1016/j.chroma.2005.05.041 

Ibanez, M., Pozo, O. J., Sancho, J. V., Lopez, F. J., & Hernandez, F. (2006). Re-
evaluation of glyphosate determination in water by liquid chromatography coupled to 
electrospray tandem mass spectrometry. Journal of Chromatography A, 1134(1-2), 51-
55. doi: 10.1016/j.chroma.2006.07.093 

Imfeld, G., Lefrancq, M., Maillard, E., & Payraudeau, S. (2013). Transport and 
attenuation of dissolved glyphosate and AMPA in a stormwater wetland. Chemosphere, 
90(4), 1333-1339. doi: 10.1016/j.chemosphere.2012.04.054 



180 
 

Itoh, N., Aoyagi, Y., & Yarita, T. (2006). Optimization of the do pant for the trace 
determination of polycyclic aromatic hydrocarbons by liquid chromatography/dopant-
assisted atmospheric-pressure photoionization/mass spectrometry. Journal of 
Chromatography A, 1131(1-2), 285-288. doi: 10.1016/j.chroma.2006.08.091 

James, R. T., & Zhang, J. (2011). South Florida Environmental Report Chapter 10: Lake 
Okeechobee Protection Program – State of the Lake and Watershed.  West Palm Beach, 
FL.: South Florida Water Management District Retrieved from 
http://www.sfwmd.gov/portal/page/portal/pg_grp_sfwmd_sfer/portlet_prevreport/2011_s
fer/v1/chapters/v1_ch10.pdf. 

Jaworska, J., Van Genderen-Takken, H., Hanstveit, A., van de Plassehe, E., & Feijtel, T. 
(2002). Environmental risk assessment of phosphonates, used in domestic laundry and 
cleaning agents in the Netherlands. Chemosphere, 47(6), 655-665. doi: 10.1016/s0045-
6535(01)00328-9 

Kappos, A. (2011). Health Risks of Urban Airborne Particles. In F. Zereini & C. L. S. 
Wiseman (Eds.), Urban Airborne Particulate Matter (pp. 527-551): Springer Berlin 
Heidelberg. 

Kelly, C. A., Ayoko, G. A., Brown, R. J., & Swaroop, C. R. (2005). Underwater 
emissions from a two-stroke outboard engine: a comparison between an EAL and an 
equivalent mineral lubricant. Materials & Design, 26(7), 609-617. doi: 
10.1016/j.matdes.2004.08.013 

Kolpin, D. W., Thurman, E. M., Lee, E. A., Meyer, M. T., Furlong, E. T., & Glassmeyer, 
S. T. (2006). Urban contributions of glyphosate and its degradate AMPA to streams in 
the United States. Science of the Total Environment, 354(2-3), 191-197. doi: 
10.1016/j.scitotenv.2005.01.028 

Kuehn, B. M. (2006). Desertification called global health threat. Jama-Journal of the 
American Medical Association, 295(21), 2463-2465. doi: 10.1001/jama.295.21.2463 

Kujawinski, E. B., Soule, M. C. K., Valentine, D. L., Boysen, A. K., Longnecker, K., & 
Redmond, M. C. (2011). Fate of Dispersants Associated with the Deepwater Horizon Oil 
Spill. Environmental Science & Technology, 45(4), 1298-1306. doi: 10.1021/es103838p 

Kusters, M., & Gerhartz, M. (2010). Enrichment and low-level determination of 
glyphosate, aminomethylphosphonic acid and glufosinate in drinking water after cleanup 
by cation exchange resin. Journal of Separation Science, 33(8), 1139-1146. doi: 
10.1002/jssc.200900556 

Le Bot, B., Colliaux, K., Pelle, D., Briens, C., Seux, R., & Clement, M. (2002). 
Optimization and performance evaluation of the analysis of glyphosate and AMPA in 
water by HPLC with fluorescence detection. Chromatographia, 56(3-4), 161-164.  



181 
 

Le Fur, E., Colin, R., Charreteur, C., Dufau, C., & Peron, J. J. (2000). Determination of 
glyphosate herbicide and aminomethylphosphonic acid in natural waters by liquid 
chromatography using pre-column fluorogenic labeling. Part I: Direct determination at 
the 0.1 mu g/L level using FMOC. Analusis, 28(9), 813-818. doi: 
10.1051/analusis:2000148 

Lee, E. A., Strahan, A. P., & Thurman, E. M. (2002). Methods of Analysis by the U.S. 
Geological Survey Organic Geochemistry Research Group—Determination of 
Glyphosate, Aminomethylphosphonic Acid, and Glufosinate in Water Using Online Solid-
Phase Extraction and High-Performance Liquid Chromatography/Mass Spectrometry.  
Lawrence, Kansas: United States Geological Survey. Retrieved from 
http://ks.water.usgs.gov/pubs/reports/ofr.01-454.pdf. 

Lerda, D. (2011). Polycyclic Aromatic Hydrocarbons (PAHs) Factsheet. 4th Edition. 
European Commission, Joint Research Centre, Institute for Reference Materials and 
Measurements. Geel, Belgium. Retrieved on 04/24/2013 from: 
http://irmm.jrc.ec.europa.eu/EURLs/EURL_PAHs/about_pahs/Documents/Factsheet%20
PAH.pdf 

Li, Y., Yoshida, S., Chondo, Y., Nassar, H., Tang, N., Araki, Y., Toriba, A., Kameda, T., 
Hayakawa, K. (2012). On-Line Concentration and Fluorescence Determination HPLC for 
Polycyclic Aromatic Hydrocarbons in Seawater Samples and Its Application to Japan 
Sea. Chemical & Pharmaceutical Bulletin, 60(4), 531-535.  

Mahler, B. J., Van Metre, P. C., Bashara, T. J., Wilson, J. T., & Johns, D. A. (2005). 
Parking lot sealcoat: An unrecognized source of urban polycyclic aromatic hydrocarbons. 
Environmental Science & Technology, 39(15), 5560-5566. doi: 10.1021/es0501565 

Mahler, B. J., Van Metre, P. C., Crane, J. L., Watts, A. W., Scoggins, M., & Williams, E. 
S. (2012). Coal-Tar-Based Pavement Sealcoat and PAHs: Implications for the 
Environment, Human Health, and Stormwater Management. Environmental Science & 
Technology, 46(6), 3039-3045. doi: 10.1021/es203699x 

Mallat, E., & Barcelo, D. (1998). Analysis and degradation study of glyphosate and of 
aminomethylphosphonic acid in natural waters by means of polymeric and ion-exchange 
solid-phase extraction columns followed by ion chromatography post-column 
derivatization with fluorescence detection. Journal of Chromatography A, 823(1-2), 129-
136. doi: 10.1016/s0021-9673(98)00362-8 

Manoli, E., & Samara, C. (1999). Polycyclic aromatic hydrocarbons in natural waters: 
sources, occurrence and analysis. Trac-Trends in Analytical Chemistry, 18(6), 417-428. 
doi: 10.1016/s0165-9936(99)00111-9 

Manzetti, S. (2012). Ecotoxicity of polycyclic aromatic hydrocarbons, aromatic amines, 
and nitroarenes through molecular properties. Environmental Chemistry Letters, 10(4), 
349-361. doi: 10.1007/s10311-012-0368-0 



182 
 

Marce, R. M., & Borrull, F. (2000). Solid-phase extraction of polycyclic aromatic 
compounds. Journal of Chromatography A, 885(1-2), 273-290. doi: 10.1016/s0021-
9673(00)00428-3 

Marchi, I., Rudaz, S., & Veuthey, J. L. (2009). Atmospheric pressure photoionization for 
coupling liquid-chromatography to mass spectrometry: A review. Talanta, 78(1), 1-18. 
doi: 10.1016/j.talanta.2008.11.031 

Mathew, J., Schroeder, D. L., Zintek, L. B., Schupp, C. R., Kosempa, M. G., Zachary, A. 
M., Schupp, G. C., Wesolowski, D. J. (2012). Dioctyl sulfosuccinate analysis in near-
shore Gulf of Mexico water by direct-injection liquid chromatography–tandem mass 
spectrometry. Journal of Chromatography A, 1231(0), 46-51. doi: 
10.1016/j.chroma.2012.01.088 

Michulec, M., Wardencki, W., Partyka, M., & Namiesnik, J. (2005). Analytical 
techniques used in monitoring of atmospheric air pollutants. Critical Reviews in 
Analytical Chemistry, 35(2), 117-133. doi: 10.1080/10408340500207482 

Miles, C. J., Wallace, L. R., & Moye, H. A. (1986). Determination of Glyphosate 
Herbicide and (aminomethyl)phosphonic acid in Natural Waters by Liquid 
Chromatography using precolumn Fluorogenic Labeling with 9-fluorenylmethyl 
chloroformate. Journal of the Association of Official Analytical Chemists, 69(3), 458-
461.  

Mossler, M. A., & Nesheim, O. N. (2011). Tropical Fruit Pest Management Strategic 
Plan (PMSP).  Gainesville, FL. USA.: University of Florida, Institute of Food and 
Agricultural Sciences (IFAS) Retrieved on 08/09/2013 from: 
http://edis.ifas.ufl.edu/pdffiles/PI/PI06200.pdf. 

Moye, H. A., & Boning, A. J. (1978). Flourogenic Labeling of Glyphosate and its 
metabolite with 9-fluorenylmethyl chloroformate for analysis by HPLC. Abstracts of 
Papers of the American Chemical Society, 176(SEP), 47-47.  

Moye, H. A., Miles, C. J., & Scherer, S. J. (1983). A simplified High-Performance 
Liquid-Chromatographic Residue Procedure for the Determination of Glyphosate 
Herbicide and (aminomethyl)phosphonic acid in Fruits and Vegetables employing 
Postcolumn Fluorogenic Labeling. Journal of Agricultural and Food Chemistry, 31(1), 
69-72. doi: 10.1021/jf00115a018 

Muhs, D. R., Budahn, J. R., Prospero, J. M., & Carey, S. N. (2007). Geochemical 
evidence for African dust inputs to soils of western Atlantic islands: Barbados, the 
Bahamas, and Florida. Journal of Geophysical Research-Earth Surface, 112(F2), 26. doi: 
10.1029/2005jf000445 



183 
 

Mukhtar, A., & Limbeck, A. (2013). Recent developments in assessment of bio-
accessible trace metal fractions in airborne particulate matter: A review. Analytica 
Chimica Acta, 774, 11-25. doi: 10.1016/j.aca.2013.02.008 

NALCO. (2012a). Safety Data Sheet Product Corexit ® EC9500A.   Retrieved on 
02/05/2013 from: http://www.nalcoesllc.com/nes/documents/MSDS/NESLLC-
COREXIT-EC9500A-March_2012.pdf. 

NALCO. (2012b). Safety Data Sheet Product Corexit ® EC9527A.   Retrieved on 
02/05/2013 from:  http://www.nalcoesllc.com/nes/documents/MSDS/NESLLC-
COREXIT-_EC9527A-March_2012.pdf. 

Nedelkoska, T. V., & Low, G. K. C. (2004). High-performance liquid chromatographic 
determination of glyphosate in water and plant material after pre-column derivatisation 
with 9-fluorenylmethyl chloroformate. Analytica Chimica Acta, 511(1), 145-153. doi: 
10.1016/j.aca.2004.01.027 

Official Federal Portal for the Deepwater BP Oil Spill Response and Recovery. (2010). 
Retrieved on 10/12/2010 from: 
http://www.restorethegulf.gov/release/2010/08/28/operations-and-ongoing-response-
august-28-2010. 

Olmez, I., & Gordon, G. E. (1985). Rare-Earths - Atmospheric Signatures for Oil-Fired 
Power-Plants and Refineries. Science, 229(4717), 966-968. doi: 
10.1126/science.229.4717.966. 

Oppenhuizen, M. E., & Cowell, J. E. (1991). Liquid-Chromatographic Determination of 
Glyphosate and Aminomethylphosphonic Acid (AMPA) in Environmental Water - 
Collaborative Study. Journal of the Association of Official Analytical Chemists, 74(2), 
317-323.  

Patsias, J., Papadopoulou, A., & Papadopoulou-Mourkidou, E. (2001). Automated trace 
level determination of glyphosate and aminomethyl phosphonic acid in water by on-line 
anion-exchange solid-phase extraction followed by cation-exchange liquid 
chromatography and post-column derivatization. Journal of Chromatography A, 932(1-
2), 83-90. doi: 10.1016/s0021-9673(01)01253-5 

Pfeuffer, R. J. (2011). South Florida Water Management District ambient pesticide 
monitoring network: 1992 to 2007. Environmental Monitoring and Assessment, 182(1-4), 
485-508. doi: 10.1007/s10661-011-1892-2 

Place, B., Anderson, B., Mekebri, A., Furlong, E. T., Gray, J. L., Tjeerdema, R., & Field, 
J. (2010). A Role for Analytical Chemistry in Advancing our Understanding of the 
Occurrence, Fate, and Effects of Corexit Oil Dispersants. Environmental Science & 
Technology, 44(16), 6016-6018. doi: 10.1021/es102319w 



184 
 

Pollegioni, L., Schonbrunn, E., & Siehl, D. (2011). Molecular basis of glyphosate 
resistance - different approaches through protein engineering. Febs Journal, 278(16), 
2753-2766. doi: 10.1111/j.1742-4658.2011.08214.x 

Poster, D. L., Schantz, M. M., Sander, L. C., & Wise, S. A. (2006). Analysis of 
polycyclic aromatic hydrocarbons (PAHs) in environmental samples: a critical review of 
gas chromatographic (GC) methods. Analytical and Bioanalytical Chemistry, 386(4), 
859-881. doi: 10.1007/s00216-006-0771-0 

Prospero, J. M. (1999). Long-term measurements of the transport of African mineral dust 
to the southeastern United States: Implications for regional air quality. Journal of 
Geophysical Research-Atmospheres, 104(D13), 15917-15927. doi: 
10.1029/1999jd900072 

Prospero, J. M., Blades, E., Naidu, R., Mathison, G., Thani, H., & Lavoie, M. C. (2008). 
Relationship between African dust carried in the Atlantic trade winds and surges in 
pediatric asthma attendances in the Caribbean. International Journal of Biometeorology, 
52(8), 823-832. doi: 10.1007/s00484-008-0176-1 

Qian, K., Tang, T., Shi, T. Y., Wang, F., Li, J. Q., & Cao, Y. S. (2009). Residue 
determination of glyphosate in environmental water samples with high-performance 
liquid chromatography and UV detection after derivatization with 4-chloro-3,5-
dinitrobenzotrifluoride. Analytica Chimica Acta, 635(2), 222-226. doi: 
10.1016/j.aca.2009.01.022 

Querol, X., Viana, M., Alastuey, A., Amato, F., Moreno, T., Castillo, S., Pey, J., de la 
Rosa, J., de la Campa, A. S., Artinano, B., Salvador, P., Dos Santos, S. G., Fernandez-
Patier, R., Moreno-Grau, S., Negral, L., Minguillon, M. C., Monfort, E., Gil, J. I., Inza, 
A., Ortega, L. A., Santamaria, J. M., Zabalza, J. (2007). Source origin of trace elements 
in PM from regional background, urban and industrial sites of Spain. Atmospheric 
Environment, 41(34), 7219-7231. doi: 10.1016/j.atmosenv.2007.05.022 

Ragosta, M., Caggiano, R., Macchiato, M., Sabia, S., & Trippetta, S. (2008). Trace 
elements in daily collected aerosol: Level characterization and source identification in a 
four-year study. Atmospheric Research, 89(1-2), 206-217. doi: 
10.1016/j.atmosres.2008.01.009 

Ramstedt, M., Norgren, C., Sheals, J., Shchukarev, A., & Sjoberg, S. (2004). Chemical 
speciation of N-(phosphonomethyl)glycine in solution and at mineral interfaces. Surface 
and Interface Analysis, 36(8), 1074-1077. doi: 10.1002/sia.1844 

Raut, N. M., Huang, L. S., Aggarwal, S. K., & Lin, K. C. (2005). Mathematical 
correction for polyatomic isobaric spectral interferences in determination of lanthanides 
by inductively coupled plasma mass spectrometry. Journal of the Chinese Chemical 
Society, 52(4), 589-597.  



185 
 

Relyea, R. A. (2005). The lethal impact of roundup on aquatic and terrestrial amphibians. 
Ecological Applications, 15(4), 1118-1124. doi: 10.1890/04-1291 

Relyea, R. A. (2012). New effects of Roundup on amphibians: Predators reduce herbicide 
mortality; herbicides induce antipredator morphology. Ecological Applications, 22(2), 
634-647.  

Renner, T., Baumgarten, D., & Unger, K. K. (1997). Analysis of organic pollutants in 
water at trace levels using fully automated solid-phase extraction coupled to high-
performance liquid chromatography. Chromatographia, 45, 199-205. doi: 
10.1007/bf02505561 

Rimmer, C., Sander, L., & Wise, S. (2005). Selectivity of long chain stationary phases in 
reversed phase liquid chromatography. Analytical and Bioanalytical Chemistry, 382(3), 
698-707. doi: 10.1007/s00216-004-2858-9 

Robb, D. B., & Blades, M. W. (2008). State-of-the-art in atmospheric pressure 
photoionization for LC/MS. Analytica Chimica Acta, 627(1), 34-49. doi: 
10.1016/j.aca.2008.05.077 

Robb, D. B., Covey, T. R., & Bruins, A. P. (2000). Atmospheric pressure 
photoionisation: An ionization method for liquid chromatography-mass spectrometry. 
Analytical Chemistry, 72(15), 3653-3659. doi: 10.1021/ac0001636 

Rodriguez, S., Alastuey, A., & Querol, X. (2012). A review of methods for long term in 
situ characterization of aerosol dust. Aeolian Research, 6, 55-74. doi: 
10.1016/j.aeolia.2012.07.004 

Rueppel, M. L., Brightwell, B. B., Schaefer, J., & Marvel, J. T. (1977). Metabolism and 
Degradation of Glyphosate in Soil and Water. Journal of Agricultural and Food 
Chemistry, 25(3), 517-528. doi: 10.1021/jf60211a018 

Sancho, J. V., Hernandez, F., Lopez, F. J., Hogendoorn, E. A., Dijkman, E., & 
vanZoonen, P. (1996). Rapid determination of glufosinate, glyphosate and 
aminomethylphosphonic acid in environmental water samples using precolumn 
fluorogenic labeling and coupled-column liquid chromatography. Journal of 
Chromatography A, 737(1), 75-83. doi: 10.1016/0021-9673(96)00071-4 

Sander, L. C., Pursch, M., & Wise, S. A. (1999). Shape selectivity for constrained solutes 
in reversed-phase liquid chromatography. Analytical Chemistry, 71(21), 4821-4830. doi: 
10.1021/ac9908187 

Scheuvens, D., Schutz, L., Kandler, K., Ebert, M., & Weinbruch, S. (2013). Bulk 
composition of northern African dust and its source sediments - A compilation. Earth-
Science Reviews, 116, 170-194. doi: 10.1016/j.earscirev.2012.08.005 



186 
 

Schlesinger, W. H., Reynolds, J. F., Cunningham, G. L., Huenneke, L. F., Jarrell, W. M., 
Virginia, R. A., & Whitford, W. G. (1990). Biological Feedbacks in Global 
Desertification. Science, 247(4946), 1043-1048. doi: 10.1126/science.247.4946.1043 

Schuler, L. J., & Rand, G. M. (2008). Aquatic risk assessment of herbicides in freshwater 
ecosystems of south Florida. Archives of Environmental Contamination and Toxicology, 
54(4), 571-583. doi: 10.1007/s00244-007-9085-2 

Seinfeld, J. H., & Pandis, S. N. (1998). Atmospheric Chemistry and Physics: From Air 
Pollution to Climate Change. New York, NY. USA: John Wiley & Sons. 

SFWMD. (2010). Canals in South Florida: A Technical Support Document.  West Palm 
Beach, Florida: South Florida Water Management District. 

SFWMD. (2013). DBHYDRO Browser.   Retrieved on 06/01/2013 from: 
http://www.sfwmd.gov/dbhydro 

SFWMD, & USACE. (2011). Final Integrated Project Implementation Report and 
Environmental Impact Statement.  Jacksonville, FL. USA.:  Retrieved on 08/07/2013 
from: 
http://www.evergladesplan.org/pm/projects/project_docs/pdp_28_biscayne/010612_fpir/
010612_bbcw_vol_1_main_report_rev_mar_2012.pdf. 

Shinn, E. A., Smith, G. W., Prospero, J. M., Betzer, P., Hayes, M. L., Garrison, V., & 
Barber, R. T. (2000). African dust and the demise of Caribbean coral reefs. Geophysical 
Research Letters, 27(19), 3029-3032. doi: 10.1029/2000gl011599 

Sinha, S. N., Vasudev, K., Rao, M. V. V., & Odetokun, M. (2011). Quantification of 
organophosphate insecticides in drinking water in urban areas using lyophilization and 
high-performance liquid chromatography-electrospray ionization-mass spectrometry 
techniques. International Journal of Mass Spectrometry, 300(1), 12-20. doi: 
10.1016/j.ijms.2010.11.006 

Skark, C., Zullei-Seibert, N., Schottler, U., & Schlett, C. (1998). The occurrence of 
glyphosate in surface water. International Journal of Environmental Analytical 
Chemistry, 70(1-4), 93-104. doi: 10.1080/03067319808032607 

Smith, D. R., Robb, D. B., & Blades, M. W. (2009). Comparison of Dopants for Charge 
Exchange Ionization of Nonpolar Polycyclic Aromatic Hydrocarbons with Reversed-
Phase LC-APPI-MS. Journal of the American Society for Mass Spectrometry, 20(1), 73-
79. doi: 10.1016/j.jasms.2008.09.012 

Solomon, K. R., & Thompson, D. G. (2003). Ecological risk assessment for aquatic 
organisms from over-water uses of glyphosate. Journal of Toxicology and Environmental 
Health-Part B-Critical Reviews, 6(3), 289-324. doi: 10.1080/15287390390155571 



187 
 

Song, Y., Xie, S. D., Zhang, Y. H., Zeng, L. M., Salmon, L. G., & Zheng, M. (2006). 
Source apportionment of PM2.5 in Beijing using principal component analysis/absolute 
principal component scores and UNMIX. Science of the Total Environment, 372(1), 278-
286. doi: 10.1016/j.scitotenv.2006.08.041 

Stalikas, C. D., & Konidari, C. N. (2001). Analytical methods to determine phosphonic 
and amino acid group-containing pesticides. Journal of Chromatography A, 907(1-2), 1-
19. doi: 10.1016/s0021-9673(00)01009-8 

Steinrucken, H. C., & Amrhein, N. (1980). The Herbicide Glyphosate is a Potent 
Inhibitor Of 5-enolpyruvyl-shikimic-acid 3-phosphate synthase. Biochemical and 
Biophysical Research Communications, 94(4), 1207-1212. doi: 10.1016/0006-
291x(80)90547-1 

Sun, Y. J., Wang, C. Y., Wen, Q. Y., Wang, G. X., Wang, H. H., Qu, Q. S., & Hu, X. Y. 
(2010). Determination of Glyphosate and Aminomethylphosphonic Acid in Water by LC 
Using a New Labeling Reagent, 4-Methoxybenzenesulfonyl Fluoride. Chromatographia, 
72(7-8), 679-686. doi: 10.1365/s10337-010-1705-8 

Swain, E. D., Kapadia, A., Kone, S., Damisse, E., Mtundu, D., & Tillis, G. M. (1997). 
Determining Discharge-Coefficient Ratings for Coastal Structures in Dade County, 
Florida. Tallahassee, Florida: U.S. Department of the Interior, U.S. Geological Survey. 

Syage, J. A., Evans, M. D., & Hanold, K. A. (2000). Photoionization mass spectrometry. 
American Laboratory, 32(24), 24-+.  

TOXNET. (2007). (L)-Aspartic Acid.  Bethesda, MD., USA.: National Institutes of 
Health, United Stated National Library of Medicine, Toxicology Data Network 
(TOXNET). Retrieved on 08/18/2013 from: http://toxnet.nlm.nih.gov/cgi-
bin/sis/search/a?dbs+hsdb:@term+@DOCNO+1430. 

Trapp, J. M., Millero, F. J., & Prospero, J. M. (2010). Temporal variability of the 
elemental composition of African dust measured in trade wind aerosols at Barbados and 
Miami. Marine Chemistry, 120(1-4), 71-82. doi: 10.1016/j.marchem.2008.10.004 

USDOC. (2010). U.S. Census Bureau. Florida Quickfacts.   Retrieved on 09/18/2013, 
from http://quickfacts.census.gov/qfd/states/12000.html 

USDOT. (2013). Tonnage of Top 50 U.S. Water Ports, Ranked by Total Tons. Retrieved 
on 09/22/2013 from: 
http://www.rita.dot.gov/bts/sites/rita.dot.gov.bts/files/publications/national_transportation
_statistics/html/table_01_57.html 

USEPA. (1990). Method 547: Determination of Glyphosate in Drinking Water by Direct-
Aqueous Injection HPLC, Post-Column Derivatization, and Fluorescence Detection.  
Cincinnati, OH. USA: Environmental Monitoring Systems Laboratory, Office of 



188 
 

Research and Development. Retrieved on 08/04/2013 from 
http://water.epa.gov/scitech/methods/cwa/bioindicators/upload/2007_11_06_methods_me
thod_547.pdf. 

USEPA. (1996a). Method 3050B: Acid digestion of sediments, sludges and soils.  
Washington, DC., USA:  Retrieved on 09/06/2013 from: 
http://www.epa.gov/osw/hazard/testmethods/sw846/pdfs/3050b.pdf. 

USEPA. (1996b). Method 3510C. Separatory Funnel Liquid-Liquid Extraction.  
Washington, D.C., USA.:  Retrieved on 07/06/2013 from: 
http://www.epa.gov/osw/hazard/testmethods/sw846/pdfs/3510c.pdf. 

USEPA. (1996c). Method 3630C. Silica Gel Cleaunp Online Test Methods for Evaluating 
Solid Waste, Physical/Chemical Methods (SW-846) (Revision 3). Washington, D.C. 
USA. Retrieved on 04/12/2013 from: 
http://www.epa.gov/osw/hazard/testmethods/sw846/pdfs/3630c.pdf 

USEPA. (1999a). Method IO-3.1: Selection, preparation and extraction of filter material.  
Cincinnati, OH, USA:  Retrieved on 09/07/2013 from: 
http://www.epa.gov/ttnamti1/files/ambient/inorganic/mthd-3-1.pdf. 

USEPA. (1999b). Method IO-3.5: Determination of metals in ambient particulate matter 
using inductively coupled plasma mass spectrometry (ICP/MS).  Cincinnati, OH, USA.  
Retrieved on 09/07/2013 from: 
http://www.epa.gov/ttnamti1/files/ambient/inorganic/mthd-3-5.pdf. 

USEPA. (2007a). Method 200.8: Determination of trace elements in waters and wastes 
by Inductively Coupled Plasma - Mass Spectrometry. Cincinnati, OH, USA. Retrieved on 
09/07/2013 from: 
http://water.epa.gov/scitech/methods/cwa/bioindicators/upload/2007_07_10_methods_me
thod_200_8.pdf. 

USEPA. (2007b). Method 6020A: Inductively Coupled Plasma Mass Spectrometry.  
Washington, DC. USA.  Retrieved on 09/06/2013 from: 
http://www.epa.gov/osw/hazard/testmethods/sw846/pdfs/6020a.pdf. 

USEPA. (2009). Integrated Science Assessment for Particulate Matter (Final 
Report). EPA/600/R-08/139F.  Washington, DC. USA: U.S. Environmental Protection 
Agency. Retrieved on 09/14/2013 from: 
http://cfpub.epa.gov/ncea/cfm/recordisplay.cfm?deid=216546. 

USEPA. (2010a). Retrieved on 10/22/2010 from: http://www.epa.gov/bpspill/dispersant-
methods.html 

USEPA. (2010b).   Retrieved on 02/05/2013 from: 
http://www.epa.gov/bpspill/dispersants-qanda.html#general 



189 
 

USEPA. (2010c). National Contingency Plan Product Schedule.   Retrieved on 
10/12/2010 from: http://www.epa.gov/emergencies/content/ncp/product_schedule.htm 

USEPA. (2010d). U.S. Code of Federal Regulations, Title 40. Part 136, Appendix A: 
Methods for Organic Chemical Analysis of Municipal and Industrial Wastewater. 
Method 610 - Polynuclear Aromatic Hydrocarbons.  Washington, D.C. USA.: Office of 
the Federal Register. 

USEPA. (2010e). U.S. Code of Federal Regulations, Title 40. Part 136, Appendix B: 
Definition and procedures for the determination of the method detection limit-Revision 
1.11.  Washington, DC. USA.: Office of the Federal Register. 

USEPA. (2011). Toxicological Review of Dichloromethane (Methylene Chloride). 
EPA/635/R-10/003F. Retrieved on 06/22/13 from 
http://www.epa.gov/iris/toxreviews/0070tr.pdf. Washington, D.C. USA.  

USEPA. (2012). National Ambient Air Quality Standards (NAAQS).   Retrieved on 
09/14/2013 from: http://www.epa.gov/air/criteria.html. 

USEPA. (2013a). 2008 National Emissions Inventory Data & Documentation.  
Washington. DC. USA.  Retrieved on 09/18/2013 from: 
http://www.epa.gov/ttn/chief/net/2008inventory.html. 

USEPA. (2013b). EPA Unmix 6.0 Model.   Retrieved on 09/18/2013 from: 
http://www.epa.gov/heasd/research/unmix.html. 

Viana, M., Pandolfi, M., Minguillón, M. C., Querol, X., Alastuey, A., Monfort, E., & 
Celades, I. (2008). Inter-comparison of receptor models for PM source apportionment: 
Case study in an industrial area. Atmospheric Environment, 42(16), 3820-3832. doi: 
http://dx.doi.org/10.1016/j.atmosenv.2007.12.056 

Vogelsang, C., Grung, M., Jantsch, T. G., Tollefsen, K. E., & Liltved, H. (2006). 
Occurrence and removal of selected organic micropollutants at mechanical, chemical and 
advanced wastewater treatment plants in Norway. Water Research, 40(19), 3559-3570. 
doi: 10.1016/j.watres.2006.07.022 

Vreeken, R. J., Speksnijder, P., Bobeldijk-Pastorova, I., & Noij, T. H. M. (1998). 
Selective analysis of the herbicides glyphosate and aminomethylphosphonic acid in water 
by on-line solid-phase extraction high-performance liquid chromatography electrospray 
ionization mass spectrometry. Journal of Chromatography A, 794(1-2), 187-199. doi: 
10.1016/s0021-9673(97)01129-1 

Wang, C. T., & Gardinali, P. R. (2012). Comparison of multiple API techniques for the 
simultaneous detection of microconstituents in water by on-line SPE-LC-MS/MS. 
Journal of Mass Spectrometry, 47(10), 1255-1268. doi: 10.1002/jms.3051 



190 
 

Wang, Z. D., Fingas, M., & Page, D. S. (1999). Oil spill identification. Journal of 
Chromatography A, 843(1-2), 369-411. doi: 10.1016/s0021-9673(99)00120-x 

Wang, Z. D., Stout, S. A., & Fingas, M. (2006). Forensic fingerprinting of biomarkers for 
oil spill characterization and source identification. Environmental Forensics, 7(2), 105-
146. doi: 10.1080/15275920600667104 

Watson, J. G., Zhu, T., Chow, J. C., Engelbrecht, J., Fujita, E. M., & Wilson, W. E. 
(2002). Receptor modeling application framework for particle source apportionment. 
Chemosphere, 49(9), 1093-1136. doi: 10.1016/s0045-6535(02)00243-6 

Watts, A. W., Ballestero, T. P., Roseen, R. M., & Houle, J. P. (2010). Polycyclic 
Aromatic Hydrocarbons in Stormwater Runoff from Sealcoated Pavements. 
Environmental Science & Technology, 44(23), 8849-8854. doi: 10.1021/es102059r 

Wedepohl, K. H. (1995). The Composition of the Continental Crust. Geochimica Et 
Cosmochimica Acta, 59(7), 1217-1232.  

Wells, D. E. (1998). Development of reference and test materials for organic 
contaminants in water. Analyst, 123(5), 983-989. doi: 10.1039/a705043g 

WHO. (1994). Environmental Health Criteria 159.  Geneva, Swittzerland: World Health 
Organization. Retrieved on 08/07/2013 from: 
http://www.inchem.org/documents/ehc/ehc/ehc159.htm#SectionNumber:4.1. 

Wolska, L., Mechlinska, A., Rogowska, J., & Namiesnik, J. (2012). Sources and Fate of 
PAHs and PCBs in the Marine Environment. Critical Reviews in Environmental Science 
and Technology, 42(11), 1172-1189. doi: 10.1080/10643389.2011.556546 

Xia, L. L., & Gao, Y. (2010). Chemical composition and size distributions of coastal 
aerosols observed on the US East Coast. Marine Chemistry, 119(1-4), 77-90. doi: 
10.1016/j.marchem.2010.01.002 

You, J., & Koropchak, J. A. (2003). Condensation nucleation light scattering detection 
with ion chromatography for direct determination of glyphosate and its metabolite in 
water. Journal of Chromatography A, 989(2), 231-238. doi: 10.1016/s0021-
9673(03)00084-0 



191 
 

APPENDICES 

 

Appendix 1 Determination of the recovery of surrogates used to correct for the 

liquid-liquid extraction step to quantify DOSS and 2-butoxyethanol in crude oil 

The following equation is used to calculate the relative response factors (RRF) of 

the surrogates relative to the internal standard in each calibration solution: 

   ( ) ( )
( ) ( )ISSU

ISSU
SU AC

CARRF
*
*

=  

Where: 

ASU = Peak area of the surrogate (isotopically labeled analytes). 

AIS = Peak area of the internal standard (SDS-D25). 

CSU = Concentration of the surrogate in the calibration solution. 

CIS = Concentration of the internal standard in the calibration solution. 

The following equation is used to calculate the average relative response factor of 

the surrogate from all the calibration runs (n = number of calibration runs): 

n
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Finally, the following equation is used to calculate the percent recovery for the 

surrogate relative to the internal standard in each sample. 

( ) ( )

( ) ( )
100*
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Where: 

AIS  = Peak area of the internal standard. 

ASU = Peak area of the surrogate. 

CIS = Concentration of the internal standard in the injected solution. 

CSU = Concentration of the surrogate in the sample extract. 

DF = Dilution factor applied to the sample extract for analysis   
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Appendix 2 Autosampler settings and injection program for the determination of 

PAHs by online SPE-LC/MS/MS 

Autosampler settings  

Syringe size:    5000 µL 

Air volume:    0 

Pre-clean with solvents:  0 

Pre-clean with sample:  0 

Filling speed:    100 µL/s 

Filling strokes:   0 

Injection speed:   100 µL/s 

Pre-inject delay:   500 ms 

Post-injection delay:   500 ms 

Rinsing solvent 1:   Deionized water 

Rinsing solvent 2:   Methanol 

Post-clean with solvent 1:  1  

Post-clean with solvent 2:  1  

Valve clean solvent 1:   1  

Valve clean solvent 2:   1  

Number of Injections:   2 

Number of Injections 2:  0 

Look ahead delay time:   5 min 
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 Macro program: “MH_MultiSampling_LookAhead_PAH_CR_v2.1” 

List of commands in macro: 

Commands: 26 

      MOVETO_OBJECT(Home,,,) 

      LOCK_TERMINAL(On,) 

      SWITCH_INJ(Inject to,Active,,) 

      CLEAN_INJ(Wash2,Inject to,ValveCleanSolvent2,,,,,,,,,) 

      CLEAN_INJ(Wash1,Inject to,ValveCleanSolvent1,,,,,,,,,) 

      REPEAT(NumberOfInjections,) 

      GET_SAMPLE(SL.tray,SL.index,SL.volume,,,,PullUpSpeed,,,Filling Strokes,Off,,,) 

      PUT_SAMPLE(Inject to,1,,SL.volume,PushOutSpeed,,) 

      END() 

      INC_INDEX() 

      REPEAT(Number of Injections 2,) 

      GET_SAMPLE(SL.tray,SL.index,SL.volume,,,,PullUpSpeed,,,Filling Strokes,Off,,,) 

      PUT_SAMPLE(Inject to,1,,SL.volume,PushOutSpeed,,) 

      END() 

      WAIT_FOR_DS() 

      SWITCH_INJ(Inject to,Standby,,) 

      SET_OUT_SIG(Injected,On,1000,) 

      SET_OUT_SIG(Injected,Off,,) 

      SET_OUT_SIG(Injected,On,1000,) 

      SET_OUT_SIG(Injected,Off,,) 

      SWITCH_EVENT(SW-Out1,On,1,) 

      SWITCH_EVENT(SW-Out1,Off,,) 

      CLEAN_SYR(Wash1,PostCleanSolvent1,,,,,,,) 
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      CLEAN_SYR(Wash2,PostCleanSolvent2,,,,,,,) 

      LOCK_TERMINAL(Off,) 

      CLEANUP(Wash1,Off,Off,Off,Off,Off,Off,Off,) 

 

The aforementioned list of commands in combination with the autosampler settings 
will order the Thermo HTC PAL autosampler to perform the following sequential 
actions:  

 

- Switch injection port to “LOAD” position 

- Inject 5 ml methanol through injection port and into sample loop 

- Inject 5 ml deionized water through injection port and into sample loop 

- Aspirate and inject 5 mL sample 

- Repeat (reads from “Number of injections” at Settings)  

- Switch injection port to “INJECT” position 

- Send a 1000 ms start signal (used to wake up dopant delivery pumps) 

- Send a second 1000 ms start signal (used to start dopant delivery program) 

- Send start event to LC pumps and mass spectrometer 

- Cleans syringe with 5 mL deionized water to remove salts 

- Cleans syringe with methanol to remove organics 
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Appendix 3 Correlation coefficients matrix between concentrations of elementsa measured in airborne particulate matter 
collected at Port Everglades, FL. (n=42, R2>0.6 highlighted). 

  Al V Cr Fe Ni Cu Zn Sr Li Be Mn Co Ga As Se Rb Cd Cs Ba Pb U Sc Y Th 
Al 1 -0.1 0.0 0.9 0.0 0.0 0.0 0.2 0.6 0.8 0.9 0.9 0.5 0.5 -0.1 0.7 -0.1 0.8 0.4 0.0 0.5 0.7 0.9 1.0 
V -0.1 1 0.2 0.1 0.6 0.3 0.4 0.5 -0.2 -0.2 0.0 0.1 0.4 -0.1 0.2 -0.3 0.4 -0.2 0.5 0.7 0.5 -0.3 0.0 -0.1 
Cr 0.0 0.2 1 0.1 0.7 0.4 0.1 0.0 0.0 -0.1 0.1 0.2 0.0 0.0 0.0 -0.1 0.0 -0.1 0.0 0.2 0.2 -0.2 -0.1 0.0 
Fe 0.9 0.1 0.1 1 0.2 0.0 0.0 0.3 0.5 0.7 0.9 0.9 0.6 0.4 0.0 0.7 0.0 0.7 0.6 0.2 0.6 0.6 0.9 0.9 
Ni 0.0 0.6 0.7 0.2 1 0.0 0.2 0.2 -0.3 -0.2 0.0 0.3 0.3 -0.2 -0.1 -0.2 0.1 -0.2 0.4 0.5 0.4 -0.3 -0.1 -0.1 
Cu 0.0 0.3 0.4 0.0 0.0 1 0.4 0.5 0.3 -0.1 0.2 0.1 0.1 0.5 0.4 0.0 0.6 0.0 0.2 0.4 0.2 -0.2 -0.1 0.1 
Zn 0.0 0.4 0.1 0.0 0.2 0.4 1 0.3 0.0 -0.3 0.1 0.1 0.2 0.1 0.1 -0.1 0.4 -0.1 0.3 0.5 0.0 -0.3 0.0 0.1 
Sr 0.2 0.5 0.0 0.3 0.2 0.5 0.3 1 0.3 0.1 0.4 0.3 0.5 0.5 0.3 0.2 0.3 0.2 0.6 0.6 0.7 -0.1 0.3 0.3 
Li 0.6 -0.2 0.0 0.5 -0.3 0.3 0.0 0.3 1 0.6 0.7 0.6 0.1 0.6 0.2 0.6 -0.1 0.7 0.1 0.1 0.4 0.6 0.6 0.7 
Be 0.8 -0.2 -0.1 0.7 -0.2 -0.1 -0.3 0.1 0.6 1 0.8 0.7 0.3 0.5 -0.1 0.8 -0.2 0.9 0.2 -0.1 0.4 0.9 0.8 0.8 
Mn 0.9 0.0 0.1 0.9 0.0 0.2 0.1 0.4 0.7 0.8 1 0.9 0.5 0.6 0.0 0.8 0.0 0.8 0.5 0.3 0.6 0.6 0.9 1.0 
Co 0.9 0.1 0.2 0.9 0.3 0.1 0.1 0.3 0.6 0.7 0.9 1 0.5 0.5 -0.1 0.6 -0.1 0.7 0.5 0.3 0.6 0.6 0.8 0.9 
Ga 0.5 0.4 0.0 0.6 0.3 0.1 0.2 0.5 0.1 0.3 0.5 0.5 1 0.0 0.2 0.2 0.5 0.3 0.9 0.5 0.6 0.2 0.5 0.4 
As 0.5 -0.1 0.0 0.4 -0.2 0.5 0.1 0.5 0.6 0.5 0.6 0.5 0.0 1 0.3 0.5 0.0 0.5 0.1 0.2 0.4 0.3 0.5 0.6 
Se -0.1 0.2 0.0 0.0 -0.1 0.4 0.1 0.3 0.2 -0.1 0.0 -0.1 0.2 0.3 1 -0.1 0.4 -0.1 0.2 0.2 0.0 -0.1 -0.1 0.0 
Rb 0.7 -0.3 -0.1 0.7 -0.2 0.0 -0.1 0.2 0.6 0.8 0.8 0.6 0.2 0.5 -0.1 1 -0.3 0.9 0.1 0.0 0.4 0.7 0.7 0.8 
Cd -0.1 0.4 0.0 0.0 0.1 0.6 0.4 0.3 -0.1 -0.2 0.0 -0.1 0.5 0.0 0.4 -0.3 1 -0.2 0.4 0.4 0.0 -0.3 -0.1 -0.1 
Cs 0.8 -0.2 -0.1 0.7 -0.2 0.0 -0.1 0.2 0.7 0.9 0.8 0.7 0.3 0.5 -0.1 0.9 -0.2 1 0.2 0.1 0.5 0.7 0.8 0.8 
Ba 0.4 0.5 0.0 0.6 0.4 0.2 0.3 0.6 0.1 0.2 0.5 0.5 0.9 0.1 0.2 0.1 0.4 0.2 1 0.7 0.6 0.1 0.5 0.4 
Pb 0.0 0.7 0.2 0.2 0.5 0.4 0.5 0.6 0.1 -0.1 0.3 0.3 0.5 0.2 0.2 0.0 0.4 0.1 0.7 1 0.7 -0.2 0.1 0.1 
U 0.5 0.5 0.2 0.6 0.4 0.2 0.0 0.7 0.4 0.4 0.6 0.6 0.6 0.4 0.0 0.4 0.0 0.5 0.6 0.7 1 0.3 0.6 0.5 
Sc 0.7 -0.3 -0.2 0.6 -0.3 -0.2 -0.3 -0.1 0.6 0.9 0.6 0.6 0.2 0.3 -0.1 0.7 -0.3 0.7 0.1 -0.2 0.3 1 0.7 0.7 
Y 0.9 0.0 -0.1 0.9 -0.1 -0.1 0.0 0.3 0.6 0.8 0.9 0.8 0.5 0.5 -0.1 0.7 -0.1 0.8 0.5 0.1 0.6 0.7 1 1.0 

Th 1.0 -0.1 0.0 0.9 -0.1 0.1 0.1 0.3 0.7 0.8 1.0 0.9 0.4 0.6 0.0 0.8 -0.1 0.8 0.4 0.1 0.5 0.7 1.0 1 
aRare earth elements strongly correlate with each other and are not displayed for simplicity
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