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ABSTRACT OF THE DISSERTATION

METHODS FOR MODELING AND ANALYZING CONCURRENT SOFTWARE

by

Reng Zeng

Florida International University, 2013

Miami, Florida

Professor Xudong He, Major Professor

Concurrent software executes multiple threads or processes to achieve high perfor-

mance. However, concurrency results in a huge number of di�erent system behaviors

that are di�cult to test and verify. The aim of this dissertation is to develop new

methods and tools for modeling and analyzing concurrent software systems at de-

sign and code levels. This dissertation consists of several related results. First, a

formal model of Mondex, an electronic purse system, is built using Petri nets from

user requirements, which is formally veri�ed using model checking. Second, Petri

nets models are automatically mined from the event traces generated from scienti�c

work�ows. Third, partial order models are automatically extracted from some in-

strumented concurrent program execution, and potential atomicity violation bugs

are automatically veri�ed based on the partial order models using model checking.

Our formal speci�cation and veri�cation of Mondex have contributed to the

world wide e�ort in developing a veri�ed software repository. Our method to mine

Petri net models automatically from provenance o�ers a new approach to build

scienti�c work�ows. Our dynamic prediction tool, named McPatom, can predict

several known bugs in real world systems including one that evades several other

existing tools. McPatom is e�cient and scalable as it takes advantage of the nature

of atomicity violations and considers only a pair of threads and accesses to a single

shared variable at one time. However, predictive tools need to consider the tradeo�s

vi



between precision and coverage. Based on McPatom, this dissertation presents two

methods for improving the coverage and precision of atomicity violation predictions:

1) a post-prediction analysis method to increase coverage while ensuring precision;

2) a follow-up replaying method to further increase coverage. Both methods are

implemented in a completely automatic tool.
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CHAPTER 1

INTRODUCTION

Concurrent software execute multiple threads or processes to achieve high perfor-

mance. However, concurrency results in a huge number of di�erent system behaviors

that are di�cult to test and verify. The aim of this dissertation is to develop new

methods and tools for modeling and analyzing concurrent software systems at de-

sign and code levels. Figure 1.1 gives an overview of the work in this dissertation,

from the perspective of design level and code level, as well as forward engineering

and reverse engineering. This dissertation �rstly focuses on the design level, makes

a shift from forward engineering to reverse engineering, then focuses on atomicity

violation bugs where reverse engineering is very useful for analysis.

Figure 1.1: Overview of this dissertation (Contributions in this dissertation are
highlighted in green background)

1



1.1 Motivation

In recent years, both the Computing Research Association in the U.S. and the UK

Computing Research Committee proposed a set of grand challenges in computing

sciences. These grand challenges involve great technical di�culties and have tremen-

dous signi�cance. One common grand challenge proposed by the above organizations

is on developing dependable software systems [1]. One of the research themes of this

grand challenge is to develop a veri�ed software repository [2]. The Mondex smart

card, an electronic purse, was chosen as the �rst pilot project in 2006. The ob-

jectives were to demonstrate how research groups can collaborate and compete in

scienti�c experiments, and to generate artifacts to populate the veri�ed software

repository [3]. This dissertation contributes to the world wide e�ort in developing

a veri�ed software repository by: developing a formal model of Mondex using Petri

nets and temporal logic, then applying model checking techniques to analyze the

formal model. On the other hand, formal models are often missing or incomplete,

therefore this dissertation develops methods to build formal models automatically

for scienti�c work�ows. In many disciplines, individual work�ows are large, due to

the large quantities of data used, so it is often very hard to create and maintain

scienti�c work�ows.

Scienti�c computing has entered a new era of large scaled sharing provided by the

cyberinfrastructure. Scienti�c work�ows have recently emerged as a new paradigm

for declarative representation of scienti�c applications as complex compositions of

software components and the data�ow among them [4]. Recent e�orts from the

scienti�c work�ow community aiming at large-scale capturing of provenance present

a new opportunity for using provenance to provide recommendation during creating

or updating scienti�c work�ows. Provenance, in the scienti�c work�ow community,

2



refers to the sources of information, including entities and processes, involved in

producing or delivering an artifact. Provenance is important for scientists to assess

data quality, validate results, and reproduce experiments. Consequently provenance

capture becomes an important scienti�c work�ow research area. Many existing sci-

enti�c work�ow management systems, such as Taverna [5], Kepler [6], VisTrails

[7] and Pegasus [8], capture provenance information implicitly in an event log that

records events related to the start and end of particular steps in the work�ow exe-

cution and the corresponding data read and write events. Based on provenance of

a combination of system-level monitoring and work�ow-based systems, this disser-

tation aims at providing a general method to mine work�ows from provenance to

aid designing scienti�c work�ows. Besides mining models from traces to aid model

building, this dissertation goes a step further to analyze models built on traces.

An interesting concurrent software to explore the methods of building models then

analyzing models automatically is multi-threaded programs.

Multi-threaded programs are the most di�cult ones to develop and verify because

of the huge interleaving space. Multi-core hardware is a growing industry trend,

for both high performance servers and low power mobile devices. Multi-threaded

programs can exploit multi-core processors at their full potential. Therefore, multi-

threaded programs are desired to improve performance. And in the real world, most

servers and high-end critical software are multi-threaded. Unfortunately, multi-

threaded programs are prone to bugs due to the inherent complexity caused by

concurrency. It is di�cult to detect concurrency bugs due to the huge number of

possible interleavings. Many concurrency bugs escape from testing into software

releases and cause some of the most serious computer-related accidents in history,

including a blackout leaving tens of millions of people without electricity [9]. Among

di�erent types of concurrency bugs, atomicity violation bugs are the most common
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one. Atomicity violation bugs are caused by violations to the atomicity of certain

code regions without proper synchronization. They widely exist in the real world

systems and contributed to about 70% of the examined non-deadlock concurrency

bugs [10]. Therefore, techniques for detecting atomicity violation bugs are extremely

important. Toward dependable software systems, this dissertation proposes methods

to analyze multi-threaded programs at the code level using model checking to �nd

atomicity violation bugs.

1.2 Model Checking

Testing is an essential part of each software development process, but cannot ensure

every possible scenario is covered. In concurrent systems, it is even more di�cult

to test every possible scenario due to non-determinism, making concurrency bugs

the most troublesome in all types of software bugs. Nowadays, it is becoming more

and more important to address concurrency bugs with the prevalence of multi-core

hardware and concurrent programs. As concurrency bugs are non-deterministic,

only exposed on speci�c thread or process scheduling, they are hard to trigger. This

frustrates both testing and reproduction for bug diagnosis.

Model checking is an automatic and e�cient method for analyzing �nite state

systems, to verify whether a given model satis�es given properties, by exhaustive ex-

ploration of non-determinism. To use model checking, one has to formulate both the

model and desired properties of a system into some precise mathematical language,

that is a formal speci�cation. For example, Petri nets or Promela can be used to

model a system while temporal logic can be used to specify the properties desired.

The analysis work in this dissertation is based on model checking techniques.
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1.3 Contributions

This dissertation addresses the following work, as highlighted in green in Figure 1.1.

All work attempts to improve software reliability using model checking techniques,

while the initial work is based on building models manually and the following-up

work aim at building models automatically, respectively, in the area of scienti�c

work�ows and atomicity violation bugs.

Model checking Petri nets at the design level This dissertation presents a

unique solution to the grand challenge Mondex, by specifying Mondex with high level

Petri nets and temporal logic, and o�ering a new systematic method to translate high

level Petri net to Promela. Our formal speci�cation and veri�cation of Mondex

have contributed to the world wide e�ort in developing a veri�ed software repository.

This work is based on models built manually.

Automatically building Petri net models from provenance Aiming at build-

ing models in Petri nets automatically, this part of the dissertation presents a method

based on provenance to mine models for scienti�c work�ows, including data and con-

trol dependency. The mining result can either suggest part of other work�ows for

consideration, or make familiar parts of work�ow easily accessible, thus providing

recommendation support for scienti�c work�ow composition. This o�ers a new ap-

proach to build work�ows in the context of scienti�c work�ows. Given the fact

that provenance captured in any scienti�c work�ow based systems or system level

monitoring systems contains information about tasks and their temporal order, the

proposed algorithm can give both control and data dependency for recommendation

during scienti�c work�ows composition. The method provided in this dissertation

can be applied to any scienti�c work�ow management systems.
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Automatically building models from traces of program execution Our

method checking formal models in Petri nets requires translation from Petri nets to

Promela code, this part of the dissertation considering building models in Promela

code directly in the context of atomicity violation bugs. I present a method to

extract a thread model from an instrumented interleaved trace that only records

events related to atomicity violations. Such an interleaved trace is much smaller

than the program behavior in a complete execution. Furthermore the extracted

thread model enables the checking of all alternative traces with the same causal

relationships as the interleaved trace. The completeness of instrumented interleaved

traces and the extracted thread models is proved.

Model checking atomicity violation at code level This dissertation presents

a complete set of the patterns of unserializable interleavings involving two threads

(most concurrency bugs involve only two threads [11]) containing any number of

accesses to a shared variable (either user de�ned or every word sized dynamically

allocated memory accessed by multiple threads). These patterns generalize and

cover the three accesses proposed in [10][12]. These atomicity violation patterns

become property speci�cations to be checked. Based on the extracted model and

the property speci�cations, this dissertation o�ers a unique prediction tool - Mc-

Patom, for detecting atomicity violation bugs through model checking. McPatom

instruments interleaved executions, extracts thread models from interleaved traces,

automatically converts (1) thread models into Promela programs and (2) atomicity

violation patterns into property speci�cations. By constraining the checking within

a pair of threads involving one shared variable at a time, the interleaving space to

be checked is vastly reduced. As a result, McPatom is applicable to large software
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systems. McPatom can predict atomicity violations that do not manifest during

testing or runtime.

Improving the coverage and precision of atomicity violation prediction

Predictive methods and tools need to consider the tradeo�s between precision and

coverage. An imprecise tool may report a large number of false positives and thus

is not very useful since it is extremely time-consuming if not impossible to man-

ually validate all false positives. On the other hand, a tool lacking coverage can

miss signi�cant real bugs and thus provides no assurance for software reliability.

This dissertation presents two methods for improving the coverage and precision of

atomicity violation predictions: 1) a post-prediction analysis method on relaxing the

under-approximate models to increase coverage while ensuring precision; and 2) a

follow-up replaying method to further increase coverage. The post-prediction anal-

ysis method is lightweight and fast, and makes the precise predictions and achieves

better coverage than other existing methods using under-approximate models. The

replaying method reduces context switches to the minimal level to improve scalabil-

ity. Both methods are implemented in a completely automatic tool.

1.4 Chapter Organization

The remainder of this dissertation is organized as follows. Chapter 2 presents our

work in model checking Mondex, a grand challenge project, at the design level using

Petri nets. Chapter 3 presents a method to build models in Petri nets automatically

in the context of scienti�c work�ows. Chapter 4 describes our predictive analysis

tool for atomicity violation using model checking at code level. Chapter 5 explains

methods for improving the coverage and precision of atomicity violation prediction.
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CHAPTER 2

ANALYZING PETRI NETS USING MODEL CHECKING

In this chapter we build a formal speci�cation of Mondex using Petri nets, and

provide a way of using model checking to verify the formal speci�cation of Mondex,

including the abstract model and concrete model.

2.1 Overview

In recent years, both the Computing Research Association in the U.S. and the UK

Computing Research Committee proposed a set of grand challenges in computing

sciences. One common grand challenge proposed by the above organizations is on

developing dependable software systems [1] [2]. The Mondex smart card, an elec-

tronic purse, was chosen as the 1st pilot project in 2006. The objectives were to

demonstrate how research groups can collaborate and compete in scienti�c experi-

ments, and to generate artifacts to populate the veri�ed software repository [3].

Mondex is a payment system, an electronic purse system, based on smart card

technology, which o�ers an alternative to paying cash for goods and services, allow-

ing person-to-person payment. In 1999, Mondex was awarded a security rating of

ITSEC Level E6 [13] - the highest possible rating achievable in ITSEC (Information

Technology Security Evaluation Criteria).

During the development of Mondex, Z was used to specify and to prove the

correctness of Mondex design [14]. Since no network access was required for trans-

action, it demanded critically high security level on each Mondex purse itself. Z

Speci�cation was used to prove the following security properties of Mondex:

1. no value may be created in the system: the sum of all the purses' balances

does not increase; and
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2. all values must be accounted for in the system: the sum of all purses' balances

and lost components does not change.

The security properties were proved manually, which was evaluated by a third party

group, and a sanitized version of the proof was published in 2000 [13]. The proof

has critically helped Mondex be granted ITSEC security level 6 , the highest level.

In [15], we presented a formal speci�cation of Mondex in Sam [16], a formal

software architecture model integrating high-level Petri nets and temporal logic. In

this section, we present a way using model checking to analyze the formal speci�-

cation of Mondex in Sam. This formal speci�cation and veri�cation contributes to

the world wide e�ort on developing a veri�ed software repository.

2.2 Specifying Mondex in Sam

A formal speci�cation of Mondex in Sam was developed in [15]. This section gives

a brief Sam speci�cation of the abstract model.

2.2.1 Sam

Sam [16], an architectural description model based on Petri nets and temporal logic,

is well-suited for modeling distributed systems. A Sam speci�cation is hierarchical

consisting of multiple compositions. Each composition may contain multiple ele-

ment. Each element C = (B, S) has a behavior model B (modeled in a high level

Petri net [17]), and a property speci�cation S (de�ned by a temporal logic formula).

An element is correctly designed if the behavior model B satis�es the property spec-

i�cation S, denoted by B |= S. The correctness of a Sam architecture description

is de�ned recursively from the correctness of all elements.
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A high level Petri net B is a tuple (P, T, F, Spec, ϕ,R,L,M0) where (P, T, F )

is the net structure, Spec is the underlying algebraic speci�cation that de�nes the

static semantics of net elements, and (ϕ,R,L,M0) is the net inscription that maps

net elements to terms in the algebraic speci�cation. ϕ associates each place in P

with a type in Spec. R associates each transition in T with a boolean term in Spec.

M0 is the initial marking which associates each place in P with type respecting

ground terms in Spec. We assume that the reader has some knowledge of Petri nets

and temporal logic, and thus omit their formal de�nitions, which can be found in

[16]. In the sequel, we simply use Petri nets to refer to high level Petri nets.

2.2.2 The Abstract Model

In the Z Speci�cation of Mondex [14], ether is used to model the communication

channel. Messages between purses could be lost, and also could be read by third

parties as there may be somebody eavesdropping, so ether is designed as lossy and

public, all request messages are initialized in ether . Each purse interacts with card

reader via connector, contact or contactless. Each purse accepts input from card

reader, which could be either an initial request in ether , or the message sent out

by another purse. Each purse produces an output to ether .

Accordingly in the Sam model of Mondex, two places, msg_in and msg_out ,

are used to model the communication channel, shown in Fig. 2.1, in which msg_in

contains tokens for input messages, and msg_out contains tokens for output mes-

sages. All request messages are initialized in msg_in , and each purse accepts input

messages from msg_in . For output messages, each purse sends them to msg_out .

All messages in msg_in comes from ether , and all messages in msg_out goes to

ether .
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Figure 2.1: The Abstract Model

The abstract model has only one atomic operation to transfer balance from

paying purse to receiving purse. It corresponds to transition AbPurseTransfer in

Fig. 2.1. Transition AbIgnore is introduced in Fig. 2.1 to handle invalid messages.

The whole world of abstract purses is modeled using a power set of purses,

AbWorld .

The net inscription for abstract model is given below, which de�nes the types

of places, constraints of transitions, and the initial marking. The de�nition of arc

labels are omitted since they are self evident in Fig. 2.1.

The Types of Places

The type of msg_in contains information of operations and parameters. An op-

eration can be aNullIn or transfer , and parameters provide transferring details

including the name of from side (paying party), the name of to side (receiving

party), and the value to transfer. The type of msg_in is thus de�ned as below.

OP ={aNullIn, transfer} (2.1)

ϕ(msg_in) =OP × string × string × N (2.2)
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The type of AbWorld is a power set of purses, in which each purse has 3 �elds,

the �rst �eld de�nes the name of each purse, the second one de�nes balance and the

third one de�nes lost value.

ϕ(AbWorld) = P(string × N× N) (2.3)

The type of msg_out is modeled as aNullOut .

ϕ(msg_out) ={aNullOut} (2.4)

The Constraints of Transitions

The precondition of transition AbIgnore tests that the message msg1 contains op-

eration aNullIn , and its postcondition keeps AbWorld unchanged.

R(AbIgnore) =(msg1[1] = aNullIn) ∧ (A1′ = A1) (2.5)

For transition AbPurseTransfer , its inputs are a message from msg_in denoted

by msg2 and all abstract purses from AbWorld denoted by A2 . R(AbPurseTransfer)

is the constraint for transition AbPurseTransfer , which assures the purse m is the

from side and purse n is the to side, and m is not the same purse as n . It also
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updates the balance in abstract world.

R(AbPurseTransfer) = (msg2 [1] = transfer)∧

∃ (m ∈ A2, n ∈ A2) � (

m[1] = msg2[2] ∧ n[1] = msg2[3] ∧msg2[2] 6= msg2[3]

∧ A2′ = A2 \ {m,n}∪

{(m[1], (m[2]−msg2[4]),m[3]),

(n[1], (n[2] +msg2[4]), n[3])

}

)

(2.6)

The Initial Marking

Any permissible initial marking can be provided. To demonstrate the dynamic

behavior of our speci�cation, the following initial marking is used.

M0(msg_in) = {(transfer, 1, 2, 50)}

M0(msg_out) = {}

M0(AbWorld) = {{(P1, 100, 0), (P2, 200, 0), (P3, 150, 0)}}

(2.7)

2.2.3 The Concrete Model of Mondex in Sam

The concrete model deals with the following security issues: (1) a purse could dis-

connect at any time due to power failure; (2) a message could be lost in the ether ,

the communication channel; and (3) messages in the ether are public and could be

read by any purses.

The concrete model follows the protocol shown in Fig. 2.2: The wallet starts

the transfer with the following messages sequence, message req , message val , and
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Figure 2.2: The Protocol in Concrete Model
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Figure 2.3: The Concrete Model

message ack . Message startFrom and startTo come from card reader, that is

triggered by pressing buttons with value to transfer.

Actually state eaFrom and eaTo can be merged into one state: idle , since a

purse cannot stay in both eaFrom and eaTo states.

Fig. 2.3 shows a Petri net model of the concrete purse, in which msg_in is the

input port in Sam model, and msg_out is the output port in Sam model.

There are seven operations that have corresponding transitions in Petri net

above, which are listed in Table 2.1.
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Table 2.1: Operations List

Operation Name Operation Description

startFrom The operation to process the initial message
startFrom for paying purse.

startTo The operation to process the initial message
startTo for payee purse.

req The operation to process message req, requesting
payment from paying purse.

val The operation to process message val,
transferring balance to payee purse.

ack The operation to process message ack, con�rming
the paying purse that the transfer is completed.

readExceptionLog The operation to process message
readExceptionLog, reading the exception log
from purse, and putting the output message into
ether.

ExceptionLogClear The operation to process message
exceptionLogClear, to clear the exception logs
in purse which are already in archive.
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Following is the net inscription for the concrete model including types of places,

constraints of transitions. The initial markings and de�nitions of arcs are obvious

and thus are omitted.

There is one transition called abort , which does not have a corresponding mes-

sage. Abort is triggered in case the message input is startFrom , startTo or

clearExceptionLog , and the purse state is epv or epa .

Operations interact with ConWorld , which is a power set of concrete purses.

CounterPartyDetails consists of name , value and nextSeqNo .

CPDetails = NAME × N× N

PayDetails contains TransferDetails , fromSeqNo , toSeqNo.

FROM = NAME

TO = NAME

XferDetails = FROM × TO × V ALUE

PayDetails = XferDetails× N× N

The type of msg_in includes operation, parameter and name. Operations are

listed in Table 2.1 above. A parameter can be CounterpartyDetails , or PayDetails ,

for corresponding operations. Name is used to specify which purse to receive the

message.

OP = {startFrom, startTo, readExceptionLog, req, val, ack,

exceptionLogResult, exceptionLogClear, forged}

PARAM = CPDetails× PayDetails

16



Therefore, the type of msg_in , is OP ×PARAM ×NAME, de�ned as follows.

ϕ(msg_in) =OP ×NAME × N× N

× FROM × TO × V ALUE × N× N×NAME

For forged de�ned in OP , all messages emitted by any operation ignoring an

input message, or emitted by non-authentic purses, could be forged .

The status can be idle , epr , epv , epa . Idle is the one merged from eaFrom

and eaTo in Z Speci�cation, the initial state, epr is the state waiting for message

req , epv is the state waiting for message value , and epa is the state waiting for

message ack .

STATUS = {idle, epr, epv, epa}

ConPurse is the concrete purse including �elds: name of purse, balance, excep-

tion log, next sequence number, pay details and status.

ConPurse =NAME × N× PPayDetails× N× PayDetails× STATUS

=NAME × N× PPayDetails× N× FROM × TO × V ALUE

× N× N× STATUS

Message is de�ned as the same as msg_in .

Message = msg_in

ConWorld is composed of a power set of concrete purses, ether , and archive ,

in which ether is a power set of Message , for public communication channel, and
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archive is LogBook , for persistent storage of exception logs.

LogBook =P(NAME × PayDetails)

=P(NAME × FROM × TO × V ALUE × N× N)

ϕ(ConWorld) =P(ConPurse)× PMessage× LogBook

ϕ(msg_out) =msg_in

As ConWorld involves a power set of ConPurse , and a ConPurse involves a power

set of PayDetails , thus making ConWorld a nested power set. Our tool under

development does not support nested power set for the consideration of simpli�ng its

implementation, given the fact that there is always an equivalent non-nested power

set. For ConPurse , we can transform it as below to remove power set, thus making

ConWorld a non-nested power set. A ConPurse can have a set of PayDetails as

exception logs, so we use a bool to indicate emptiness of the set of PayDetails . If

the size of the set of PayDetails is greater than 1, we can put another ConPurse

into ConWorld , with di�erent PayDetails .

ConPurse =NAME × N× bool × N× FROM × TO × V ALUE

× N× N× STATUS × PayDetails

=NAME × N× bool × N× FROM × TO × V ALUE

× N× N× STATUS × FROM × TO × V ALUE

× N× N

The types of ConPurse and msg_in are summarized in Table 2.2 and Table 2.3

to facilitate understanding. The mapping relation can also be implemented in a tool

for syntax checking against the constraints in the future.
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Table 2.2: Summarization of type ConPurse

Number Type Description

1 NAME Name of purse

2 N Balance

3 bool Emptiness of exception log

4 N Next Sequence Number

5 FROM Name of paying side in
PayDetails

6 TO Name of payee side in PayDetails

7 VALUE Value to transfer in PayDetails

8 N fromSeqNo in PayDetails

9 N toSeqNo in PayDetails

10 STATUS Status

11 FROM Name of paying side in an
exception log

12 TO Name of payee side in an
exception log

13 VALUE Value to transfer in an exception
log

14 N fromSeqNo in an exception log

15 N toSeqNo in an exception log
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Table 2.3: Summarization of type msg_in

Number Type Description

1 OP Operation or message type

2 NAME Name in CounterPartyDetails

3 N Value in CounterPartyDetails

4 N Next Sequence Number in
CounterPartyDetails

5 FROM Name of paying side in
PayDetails

6 TO Name of payee side in PayDetails

7 VALUE Value to transfer in PayDetails

8 N fromSeqNo in PayDetails

9 N toSeqNo in PayDetails

10 NAME Name of destination purse of this
message

The constraint of each transition consists of a precondition and a postcondition.

The precondition de�nes the enabling condition of a transition and the postcondition

de�nes the �ring result of the transition. We only provide a detailed explanation

of the precondition and the postcondition of transition startFrom . For all other

transitions, we just give the formula de�ning its precondition and postcondition.

Transition startFrom de�nes the operation upon receiving startFrom message.

The precondition tests whether there is purse in concrete world meeting the following

conditions:

1. The purse's name matches the name speci�ed in received message, and does

not equal the counterparty name in message;

2. The balance of the purse is greater than or equal to the value speci�ed in

startFrom message; and
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3. The purse is in state idle .

The postcondition is as follows:

1. Its new nextSeqNo is greater than the one before �ring transition;

2. Payment details are stored, as paying purse name, payee purse name, value to

transfer, paying purse nextSeqNo , payee purse nextSeqNo ;

3. Move to epr state;

4. No output message; and

5. The concrete world is updated with new purse and output message.

R(startFrom) = (msg_from[1] = startFrom)

∧∃(purse ∈ CF [1]) � (

(purse[1] = msg_from[10]) ∧ (purse[1] 6= msg_from[2])

∧ (purse[2] ≥ msg_from[3]) ∧ (purse[10] = idle)

∧ (purse′[1] = purse[1]) ∧ (purse′[2] = purse[2])

∧ (purse′[3] = purse[3]) ∧ (purse′[11] = purse[11])

∧ (purse′[12] = purse[12]) ∧ (purse′[13] = purse[13])

∧ (purse′[14] = purse[14]) ∧ (purse′[15] = purse[15])

∧ (purse[4] < purse′[4]) ∧ (purse′[5] = purse[1])

∧ (purse′[6] = msg_from[2]) ∧ (purse′[7] = msg_from[3])

∧ (purse′[8] = purse[4]) ∧ (purse′[9] = msg_from[4])

∧ (purse′[10] = epr) ∧ (msg_from′ = (forged))

∧ (CF ′[1] = CF [1] \ purse ∪ purse′)

∧ (CF ′[2] = CF [2] ∪msg_from′) ∧ (CF ′[3] = CF [3])

)
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Transition startTo de�nes the operation upon receiving message startTo . The

following formula de�nes the precondition and the postcondition of this transition:

R(startTo) = (msg_to[1] = startTo)

∧∃(purse ∈ CT [1]) � (

(purse[1] = msg_to[10]) ∧ (purse[1] 6= msg_to[2])

∧ (purse[2] ≥ msg_to[3]) ∧ (purse[10] = idle)

∧ (purse′[1] = purse[1]) ∧ (purse′[2] = purse[2])

∧ (purse′[3] = purse[3]) ∧ (purse′[11] = purse[11])

∧ (purse′[12] = purse[12]) ∧ (purse′[13] = purse[13])

∧ (purse′[14] = purse[14]) ∧ (purse′[15] = purse[15])

∧ (purse[4] < purse′[4]) ∧ (purse′[5] = msg_to[2])

∧ (purse′[6] = purse[1]) ∧ (purse′[7] = msg_to[3])

∧ (purse′[8] = purse[4]) ∧ (purse′[9] = msg_to[4])

∧ (purse′[10] = epv) ∧ (msg_to′ = (req,msg_to[2],msg_to[3],

msg_to[4], purse′[5], purse′[6], purse′[7], purse′[8],

purse′[9],msg_to[2]))

∧ (CT ′[1] = CT [1] \ purse ∪ purse′)

∧ (CT ′[2] = CT [2] ∪msg_to′) ∧ (CT ′[3] = CT [3])

)

Transition req is �red upon receiving corresponding message in place msg_in .

Its inputs are a message from msg_in denoted by msg_req and all concrete purses

from ConWorld denoted by CR , its outputs are a message denoted by msg_req'
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to msg_out , and all concrete purses denoted by CR' to send back to ConWorld

with necessary change. The precondition and the postcondition of transition req is

de�ned by the following formula:

R(req) = (msg_req[1] = req)

∧∃(purse ∈ CR[1]) � (

(purse[1] = msg_req[10]) ∧ (purse[10] = epr)

∧ (purse′[1] = purse[1]) ∧ (purse′[2] = purse[2]−msg_req[7])

∧ (purse′[3] = purse[3]) ∧ (purse′[4] = purse[4])

∧ (purse′[5] = purse[5]) ∧ (purse′[6] = purse[6])

∧ (purse′[7] = purse[7]) ∧ (purse′[8] = purse[8])

∧ (purse′[9] = purse[9]) ∧ (purse′[10] = epa)

∧ (purse′[11] = purse[11])

∧ (purse′[12] = purse[12]) ∧ (purse′[13] = purse[13])

∧ (purse′[14] = purse[14]) ∧ (purse′[15] = purse[15])

∧ (msg_req′ = (val,msg_req[2],msg_req[3],

msg_req[4], purse′[5], purse′[6], purse′[7], purse′[8],

purse′[9],msg_req[6]))

∧ (CR′[1] = CR[1] \ purse ∪ purse′)

∧ (CR′[2] = CR[2] ∪msg_req′) ∧ (CR′[3] = CR[3])

)
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Transition val de�nes the operation upon receiving message val . The precon-

dition and postcondition of transition val are de�ned by the following formula:

R(val) = (msg_val[1] = val)

∧∃(purse ∈ CV [1]) � (

(purse[1] = msg_val[10]) ∧ (purse[10] = epv)

∧ (purse′[1] = purse[1]) ∧ (purse′[2] = purse[2] +msg_val[7])

∧ (purse′[3] = purse[3]) ∧ (purse′[4] = purse[4])

∧ (purse′[5] = purse[5]) ∧ (purse′[6] = purse[6])

∧ (purse′[7] = purse[7]) ∧ (purse′[8] = purse[8])

∧ (purse′[9] = purse[9]) ∧ (purse′[10] = idle)

∧ (purse′[11] = purse[11])

∧ (purse′[12] = purse[12]) ∧ (purse′[13] = purse[13])

∧ (purse′[14] = purse[14]) ∧ (purse′[15] = purse[15])

∧ (msg_val′ = (ack,msg_val[2],msg_val[3],

msg_val[4], purse′[5], purse′[6], purse′[7], purse′[8],

purse′[9],msg_val[5]))

∧ (CV ′[1] = CV [1] \ purse ∪ purse′)

∧ (CV ′[2] = CV [2] ∪msg_val′) ∧ (CV ′[3] = CV [3])

)
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Transition ack de�nes the operation upon receiving message ack . The precon-

dition and the postcondition are de�ned by the following formula:

R(ack) = (msg_ack[1] = ack)

∧∃(purse ∈ CA[1]) � (

(purse[1] = msg_ack[10]) ∧ (purse[10] = epa)

∧ (purse′[1] = purse[1]) ∧ (purse′[2] = purse[2])

∧ (purse′[3] = purse[3]) ∧ (purse′[4] = purse[4])

∧ (purse′[5] = purse[5]) ∧ (purse′[6] = purse[6])

∧ (purse′[7] = purse[7]) ∧ (purse′[8] = purse[8])

∧ (purse′[9] = purse[9]) ∧ (purse′[10] = idle)

∧ (purse′[11] = purse[11])

∧ (purse′[12] = purse[12]) ∧ (purse′[13] = purse[13])

∧ (purse′[14] = purse[14]) ∧ (purse′[15] = purse[15])

∧ (msg_ack′ = (forged))

∧ (CA′[1] = CA[1] \ purse ∪ purse′)

∧ (CA′[2] = CA[2] ∪msg_ack′) ∧ (CA′[3] = CA[3])

)

Transition readExceptionLog de�nes the operation upon receiving message

readExceptionLog . The precondition and the postcondition are de�ned below:

R(readExceptionLog) = (msg_read[1] = readExceptionLog)

∧∃(purse ∈ C1[1]) � (

(purse[1] = msg_read[10]) ∧ (purse[10] = idle)
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∧ ((purse[3] = true) ∧ (msg_read′ =

(exceptionLogResult,msg_read[2],msg_read[3],

msg_read[4], purse[11], purse[12], purse[13],

purse[14], purse[15],msg_read[10]))

∨ (purse[3] = false ∧msg_read′ = (forged))

)

∧ (C1′[1] = C1[1]) ∧ (C1′[3] = C1[3])

∧ (C1′[2] = C1[2] ∪msg_read′)

)

Transition clearExceptionLog de�nes the operation upon receiving message

clearExceptionLog . The precondition and the postcondition are de�ned below:

R(clearExceptionLog) = (msg_clr[1] = clearExceptionLog)

∧∃(purse ∈ C2[1]) � (

(purse[1] = msg_clr[10]) ∧ (purse[10] = idle)

∧ (purse[3] = true) ∧ (msg_clr′ = (forged))

∧ (purse′[1] = purse[1]) ∧ (purse′[2] = purse[2])

∧ (purse′[3] = false) ∧ (purse′[4] = purse[4])

∧ (purse′[5] = purse[5]) ∧ (purse′[6] = purse[6])
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∧ (purse′[7] = purse[7]) ∧ (purse′[8] = purse[8])

∧ (purse′[9] = purse[9]) ∧ (purse′[10] = purse[10])

∧ (C2′[1] = C2[1] \ purse ∪ purse′)

∧ (C2′[2] = C2[2] ∪msg_clr′) ∧ (C2′[3] = C2[3])

)

Transition Abort de�nes the operation to deal with exception. The precondition

and the postcondition are de�ned by the following formula:

R(Abort) = ((msg_abort[1] = startFrom) ∨ (msg_abort[1] = startTo)

∨ (msg_abort[1] = clearExceptionLog))

∧∃(purse ∈ C3[1]) � (

(purse[1] = msg_abort[10])

∧ ((purse[10] = epv) ∨ (purse[10] = epa))

∧ (purse′[1] = purse[1]) ∧ (purse′[2] = purse[2])

∧ (purse′[4] = purse[4])

∧ (purse′[5] ≥ purse[5]) ∧ (purse′[6] = purse[6])

∧ (purse′[7] = purse[7]) ∧ (purse′[8] = purse[8])

∧ (purse′[9] = purse[9]) ∧ (purse′[10] = idle)

∧ (purse′[3] = true) ∧ (purse′[11] = purse[5])
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∧ (purse′[12] = purse[6]) ∧ (purse′[13] = purse[7])

∧ (purse′[14] = purse[8]) ∧ (purse′[15] = purse[9])

∧ (C3′[1] = C3[1] ∪ purse′)

∧ (C3′[2] = C3[2]) ∧ (C3′[3] = C3[3])

)

The de�nitions of arcs are self evident from Fig. 2.3.

2.3 Analyzing the Speci�cation in Sam

Model checking is an automatic and e�ective method for analyzing �nite state sys-

tems, which is well suited for this Sam speci�cation. In Sam, model checking is

to ensure B |= S, that is the behavior model B satis�es the property speci�cation

S. The behavior model B uses high level Petri net, which employs sets and power

sets as the type of places. The property speci�cation S uses linear temporal logic.

Spin uses Promela as its input language to model the behavior, and uses linear

temporal logic to specify the properties. In order to use Spin for model checking

Sam speci�cation, the behavior model B is translated to Promela code, and the

property speci�cation S remains the same. Translation between formal models are

often useful, various issues with regard to formal model translation were discussed

in [18].

2.3.1 Spin and Promela

Spin [19] is a well known model checking tool used in the veri�cation of �nite state

systems. Promela, as the input language of Spin, consists of processes, channels,
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and variables. For the channels, there are operations to fetch messages from them

randomly or �rst-in-�rst-out, and to fetch the messages with desired �eld value. It is

also possible to test the existence of desired messages in channels while not changing

anything.

Speci�cally, single question mark "?" is a Promela operator that returns the

�rst message in the channel, double question mark "??" is a Promela operator

that returns the �rst matched message in the channel, "[...]" is a Promela testing

operator returning true or false, while does not block the execution and does not

copy messages in the channel, and "<...>" is a Promela channel poll operator

which copys a message without removing it from the channel if a desired message

exists in the channel. There is a prede�ned unary function in Promela called eval

to turn an expression into a value. "!" is a Promela operator that sends a message

to the channel.

2.3.2 Rules to Translate High Level Petri Net to Promela

This section introduces the rules to translate a high level Petri net to Promela,

with the abstract model of Mondex (Fig. 2.1) as the example, however, the rules

are also applied to the concrete model of Mondex for model checking discussed in

Section 2.4. Before discussing the details of rules, we outline the translation by

explaining the mapping from a high level Petri net to Promela code, as shown in

Table 2.4.

Without the loss of generality, we assume all the types in a Petri net model are

directly de�nable in Promela in this section, since we can always make a type

conversion before the translation.
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Table 2.4: Outline of mapping relationships from Petri Nets to Promela

Petri Nets Description

Places Places contain tokens,while in Promela channel
contains messages, thus places are translated into
channels.

Transitions Each transition is translated into a Promela
inline function.

Transition constraints The contraints for each transition have 2 parts:
precondition and postcondition.

Initial markings The initial marking is translated to initial
messages in the channel.

2.3.2.1 Step 1. De�ne places as channels

Each place is translated into a Promela channel; and tokens are translated into

messages. Speci�cally, let p ∈ P be a place in Petri net with type ϕ(p) = s1, s2, ..., sn,

we de�ne a bounded channel in Promela as follows.

#define Bound_p const

chan type_p = [Bound_p] of {s1, s2, ..., sn};

where const is a user de�ned positive integer value. Line 5 in Section 2.5 is a

translation example of place AbWorld in Fig. 2.1 with type de�ned in Formula 2.3.

2.3.2.2 Step 2. De�ne the inline functions for the precondition of a

transition

The inline function works like usual preprocessor macro. It is introduced here to

o�er better translation structure and facilitate automated translation.

Formally, for each transition t ∈ T with constraint:

R(t) = PreCond(t) ∧ PostCond(t) (2.8)
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where PreCond(t) is the precondition of transition t and PostCond(t) is the post-

condition of transition t. R(t) contains basic relational expression connected through

logical conjunction ∧ or logical disjunction ∨, in which PreCond(t) contains only

variables on input arcs and PostCond(t) contains variables on output arcs with or

without variables on input arcs. Let v ∈ L(p, t) denote a simple variable in case v

does not have a power set type. Let v ∈ S, S ∈ L(p, t), S has a power set type, v

denotes a quanti�ed variable. We assume the �rst �eld of either simple variables or

quanti�ed variables be the key �eld, and for those variables v containing only one

�eld, each reference of v is viewed as v[1].

We use the constraint (Formula 2.6) of transition AbPurseTransfer as an ex-

ample in this section, in which the part above the line is the precondition and the

part below the line is the postcondition.

We de�ne an inline function to check the enabledness of the precondition of each

transition. First, we de�ne a boolean variable t_is_enabled to store the truth

value of the checking for transition t , with initialized value false, refer to Step 5

below. Second, for the �elds of each simple variable or quanti�ed variable, we de�ne

corresponding variables. Let v be the name of simple variable or quanti�ed variable

containing n �elds, TY PE(i) be the type of ith �eld, we de�ne TY PE(i) v_fieldi;

for i ∈ 2..n. For example, we de�ne Line 29-30 in Appedix 2.5 for Formula 2.6.

Table 2.5 gives the general mapping for basic relational expression connected

through logical conjunction ∧ or logical disjunction ∨. We use single question mark

for simple variables such that messages in the channel are retrieved in FIFO order,

and we use double question mark for quanti�ed variables since existential quanti�-

cation implies a search throughout the whole power set. We use "<...>" to make a

guard statement for if statement in Promela, so that only in case there is a desired

message the statements following guard statement are executed and the matched
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Table 2.5: General Mapping from basic relational expressions in the precondition of
each transition in a Petri Net to Promela Expressions

Basic Relational Expression Promela Expressions

v[1] = Exp
where v ∈ L(p, t) , p ∈ P, t ∈ T and v is
a simple variable containing n �elds, Exp
does not contain any �rst �eld.

type_p ? <eval(Exp),
v_field2, v_field3, ..., v_fieldn>

∃(v ∈ S) � (v[1] = Exp)
where v ∈ S, S ∈ L(p, t) , p ∈ P, t ∈ T
and v is a quanti�ed variable containing
n �elds, Exp does not contain the �rst
�eld of any quanti�ed variable.

type_p ?? [eval(Exp),
v_field2, v_field3, ..., v_fieldn]

Table 2.6: Mapping from the precondition in Formula 2.6 to Promela Expressions

Basic Relational Expression Promela Expressions

msg2[1] = transfer type_msg_in? < eval(transfer),msg2_field2,
msg2_field3,msg2_field4 >

m[1] = msg2[2] type_AbWorld??[eval(msg2_field2),m_field2,
m_field3]

n[1] = msg2[3] type_AbWorld??[eval(msg2_field3), n_field2,
n_field3]

msg2[2] 6= msg2[3] msg2_field2 ! = msg2_field3

message is copied, for example, in Section 2.5, Line 31 is a guard statement for Line

60, where the matched message is copied to msg2_�eld2 to msg2_�eld4 for each

�eld; and we use "[...]" to test the existence of messages in case a truth value is

needed for if statement and the matched message does not require a copy.

Table 2.6 gives the mapping for the precondition in Formula 2.6.

Line 26-37 in Section 2.5 is the resulted Promela code.
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Table 2.7: General Mapping from basic relational expressions in the postcondition
of each transition in a Petri Net to Promela Expressions

Basic Relational Expression Promela Expressions

v[1] = Exp
where v ∈ L(p, t) , p ∈ P, t ∈ T , and v is a simple
variable containing n �elds.

type_p ? eval(Exp),
v_field2, v_field3, ...,
v_fieldn

S ′ = S\{v}
where
v ∈ S, S ∈ L(p, t) , S ′ ∈ L(t, p) p ∈ P, t ∈ T , and
v is a quanti�ed variable containing n �elds,
v[1] = Expression is a part of the precondition.

type_p ?? eval(Exp),
v_field2, v_field3, ...,
v_fieldn

v′ = Exp
where v′ ∈ L(t, p) , p ∈ P, t ∈ T .

type_p ! Exp

S ′ = S ∪ {(Exp1, Exp2, ..., Expn)}
where S ∈ L(p, t), S ′ ∈ L(t, p) , p ∈ P, t ∈ T .

type_p ! Exp1, Exp2, ..., Expn

2.3.2.3 Step 3. De�ne the inline function for the postcondition of a

transition

For each transition, once its precondition is met, it can �re. This section introduces

the rules to de�ne an inline function for the postcondition of a transition �ring.

In the rules for the precondition, we test enabledness without moving any tokens,

thus as part of the postcondition we move tokens through input arcs. For a simple

variable v on an input arc a message from the head of channel obtained from place

p is retrieved, according to the constraint v[1] = Exp in the precondition. For

a simple variable v′ on an output arc, a message is sent to the channel obtained

from place p. For a quanti�ed variable v ∈ S, if S ′ = S\{v} is a part of the

postcondition, a message is retrieved by searching throughout the channel obtained

from place p, according to the constraint v[1] = Exp in the precondition. Besides the

cases above, we need to deal with ∪{(Exp1, Exp2, ..., Expn)} in case S ′ = S\{v} ∪

{(Exp1, Exp2, ..., Expn)}is a part of the postcondition, by sending a message to the
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Table 2.8: Mapping from the postcondition in Formula 2.6 to Promela Expressions

Basic Relational Expression Promela Code

msg2[1] = transfer type_msg_in?eval(transfer),msg2_field2,
msg2_field3,msg2_field4

A2′ = A2\{m} type_AbWorld??eval(msg2_field2),m_field2,
m_field3;

\{n} type_AbWorld??eval(msg2_field3), n_field2,
n_field3;

∪{(m[1], (m[2]−
msg2[4]),m[3])}

type_AbWorld!msg2_field2,m_field2−
msg2_field4,m_field3;

∪{(n[1], (n[2] +
msg2[4]), n[3])}

type_AbWorld!msg2_field3,n_field2 +
msg2_field4, n_field3;

channel obtained from place p, using the values of (Exp1, Exp2, ..., Expn). Table 2.7

gives the general mapping. After �ring the transition, t_is_enabled is set to false.

Table 2.8 gives the mapping for the postcondition in Formula 2.6, in which

m[1] is replaced with msg2_field2 and n[1] is replaced with msg2_field3 as the

precondition since we do not declare variables in Promela for the �rst �eld of each

simple variable or quanti�ed variable.

Line 38-47 in Section 2.5 is the resulted Promela code.

2.3.2.4 Step 4. De�ne an inline function for each transition

Each transition has its precondition and postcondition, we de�ne an inline function

for each transition t ∈ T using the inline functions for its precondition and postcon-

dition. Firing transition is de�ned as atomic operations using Promela keyword

atomic .

inline t()

{

is_enabled_t (); /*Set t_is_enabled to true/false*/
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if

:: t_is_enabled -> atomic{fire_t ()}

:: else -> skip

fi

}

For example, Line 48-54 in Section 2.5 is the inline function for transition

AbPurseTransfer in Fig. 2.1.

2.3.2.5 Step 5. De�ne a process for the whole net

The dynamic semantics of a Petri net is to non-deterministically �re enabled transi-

tions. We de�ne the following Promela process with a loop to capture the dynamic

semantics of a Petri net.

proctype ModelName (){

bool t1_is_enabled = false;

bool t2_is_enabled = false; ...

bool tn_is_enabled = false;

do

::t1()

::t2() ...

::tn()

od

}

where T = {t1, t2, ...tn}. For example, we de�ne a process as Line 55-62 in Section

2.5, for abstract model of Mondex in Fig. 2.1.
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2.3.2.6 Step 6. De�ne the initial marking and run the processes

Let P = {p1, ..., pn}, for each place p ∈ P , with initial markingM0(p) = {m1,m2, ...,

mk}. We de�ne sort_p ! mi for each i, i ∈ 1..k and run the process ModelName

de�ned in the steps above.

init {

type_p1!m1;... type_p1!mk1;

...

type_pn!m1;... type_pn!mkn;

run ModelName ()

}

For example, we de�ne Line 63-67 in Section 2.5 for abstract model of Mondex

in Fig. 2.1, according to Formula 2.7.

2.3.3 Translation Correctness

Katz et al. [18] proposed a framework for translating models and speci�cations,

in which atomicity of transitions and variables with unspeci�ed next values were

discussed as issues in translation. In our work, we use the atomic keyword in

Promela to make the transition atomic, and we use temporal logic to specify the

postcondition for each variable.

We introduce the de�nitions of completeness and consistency before de�ning

translation correctness. Completeness ensures that each place, transition and initial

marking has its representation in Promela code.

De�nition 1. Translation Completeness: Each entity in a Petri net is mapped to

a language construct in Promela.
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Lemma 1. Given a Petri net N , there exists a Promela program PN representing

N .

Proof. The rules in Section 2.3.2 cover the translation from N to PN .

Consistency ensures that the Promela code preserves the semantics of a Petri

net. While there are several well known semantic models of Petri nets, we adopt the

interleaving semantics, which is adequate for studying the system properties de�ned

in temporal logic.

De�nition 2. Translation Consistency: The dynamic behaviour of a Petri net

is preserved in Promela code. The interleaved execution is a sequence σ =

M0toM1t1...tn−1Mn, where n > 0, Mi(i ∈ N ∧ 0 6 i 6 n) is a marking and

ti(i ∈ N ∧ 0 6 i 6 n) is a transition �ring. Promela code execution is σ′ =

S0Run(pt0)S1Run(pt1)...Run(ptn−1)Sn, where Si(i ∈ N ∧ 0 6 i 6 n) is a snapshot

of values in variables de�ned in Promela code, and Run(pti)(i ∈ N ∧ 0 6 i 6 n)

denotes the execution of inline function pti translated from ti as the rules in Section

2.3.2.

Lemma 2. (Initial Marking Consistency) The initial marking of a Petri net N is

consistent with the initial values of variables in translated Promela PN .

Proof. According to Step 1 in Section 2.3.2, marked places are translated into chan-

nels, and Step 6 in Section 2.3.2, the initial marking is used to initialize the channel

variables. The initial marking of a Petri net N is M0, and S0 is the snapshot of ini-

tial values of variables in translated Promela PN . According to Step 6 in Section

2.3.2, S0 is mapped from M0.

Lemma 3. (Semantic Consistency) PN bisimulates N .
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Proof. Let σ be an execution of N , we proof PN simulates N by induction on the

length of sequence n.

Base case, n = 0. It is the initial marking consistency proved above.

Suppose it is true for n = k that the claim holds, that is, σ = M0toM1t1...tk−1Mk

is consistent with σ′ = S0Run(pt0)S1Run(pt1)...Run(ptk−1
)Sk.

If n = k + 1, as the Step 2 in Section 2.3.2, the precondition of ptk is the

mapping of precondition of tk; as the Step 3 in Section 2.3.2, the postcondition of

ptk is the mapping of postcondition of tk, that is, Sk+1 is the mapping of Mk+1;

as the Step 4 in Section 2.3.2, Run(ptk) generates Sk+1, which denotes marking

Mk+1 obtained from �ring tk. So, σk+1 = M0toM1t1...tkMk+1 is consistent with

σ′k+1 = S0Run(pt0)S1Run(pt1)...Run(ptk)Sk+1.

The reverse direction is proved in the same way, hence, PN bisimulates N .

De�nition 3. Translation Correctness: Translation correctness consists of transla-

tion completeness and translation consistency.

Theorem 1. Given a Petri net N , the Promela program PN obtained from the

translation rules in Section 2.3.2 preserves the semantics of N .

Proof. We prove the translation correctness by proving translation completeness

and consistency. It is straightforward from Lemma 1 to 3.

2.3.4 Analysis Result

There are two security properties to verify for Mondex [14], the details of these

properties are listed in Table 2.9.

We use the model checker Spin to verify the properties in exhaustive mode. Here

are the LTL properties we used in Spin to do veri�cation, in which bal_sum =∑
a∈A,A∈AbWorld a[2] is the sum of balances, lost_sum =

∑
a∈A,A∈AbWorld a[3] is the
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Table 2.9: The Properties of Mondex to Verify

Property Name Property Description

All Value Accounted all value must be accounted for in the system: the sum of
all purses' balances and lost components does not change.

No Value Created no value may be created in the system: the sum of all the
purses' balances does not increase.

sum of lost amounts, and 450 is exactly the sum of bal_sum and lost_sum in all

initial marking.

� bal_sum+ lost_sum = 450 (2.9)

� bal_sum 6 450 (2.10)

The veri�cation result is that all these LTL properties are satis�ed with given

initial marking.

2.4 Related Works

Several research groups around the world have tackled this 1st pilot project in

recent years. In [20], Z/Eves was used to mechanize the original speci�cation of

Mondex in Z [14], which took about eight weeks to complete the mechanization of

the entire speci�cation, re�nement and its proof. In [21], Alloy was used to specify

Mondex and Alloy Analyzer was used to check the speci�cation that resulted in the

discovery of several bugs. The speci�cation and analysis took about 6 months for a

research internship to �nish. [22] used the KIV to specify and verify Mondex using

a single re�nement, which took about one person month. [23] presented an Event-B

speci�cation of Mondex using B4free, which consists of 10 levels, an abstract model

and 9 levels of re�nement. The development took approximately 2 weeks of total
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e�ort spread over several months. In [24], RAISE was used to specify Mondex. The

speci�cation consists of three levels: abstract, intermediate, and concrete. Half of

the proofs were done automatically.

Other works on Mondex mainly focus on the automation of the proof of Mondex,

while [24] not only made e�ort on proof of Mondex, but also did some model checking

with limits such that there are only 2 purses in the world, and money is in the range

0 to 3, to reduce states as much as possible. Our approach using model checking

o�ers great scalability to verify the properties of Mondex.

Regarding the translation from Petri net to Promela, this section o�ers a

unique way to translate high level Petri net to Promela. [25] provides an ap-

proach to translate Sam to Promela in which the embedded C code was used as

the main approach, while we do not use embedded C code. [26] had the similar idea

to ours on translation rules from Petri net to Promela, but it only dealt with low

level Petri nets, while we propose an approach to translating high level Petri nets

to Promela codes.

2.5 A Promela program translated from Abstract Model of

Mondex

1 #define BOUND_msg_in 10

2 #define BOUND_AbWorld 10

3 #define BOUND_msg_out 10

4 chan type_AbWorld =[ BOUND_AbWorld] of {short , int , int};

5 mtype = {aNullIn , transfer };
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6 chan type_msg_in = [BOUND_msg_in] of {mtype , short , short

, int};

7 mtype = {aNullOut };

8 chan type_msg_out = [BOUND_msg_out] of {mtype};

9 int bal_sum = 450, lost_sum = 0,seed = 0,last_seed = 0;

10 inline is_enabled_AbIgnore () {

11 short msg1_field2;short msg1_field3;int msg1_field4;

12 type_msg_in?<aNullIn ,msg1_field2 , msg1_field3 ,

msg1_field4 > ->

13 AbIgnore_is_enabled = true

14 }

15 inline fire_AbIgnore (){

16 type_msg_in?aNullIn ,msg1_field2 , msg1_field3 ,

msg1_field4;

17 AbIgnore_is_enabled = false

18 }

19 inline AbIgnore (){

20 is_enabled_AbIgnore ();

21 if

22 :: AbIgnore_is_enabled -> atomic{fire_AbIgnore ()}

23 :: else -> skip

24 fi

25 }

26 inline is_enabled_AbPurseTransfer (){

27 short msg2_field2 , msg2_field3;int msg2_field4;

28 int m_field2 , m_field3 , n_field2 , n_field3;
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29 type_msg_in?<transfer ,msg2_field2 , msg2_field3 ,

msg2_field4 >;

30 if

31 :: msg2_field2 != msg2_field3 &&

32 type_AbWorld ??[ eval(msg2_field2), m_field2 , m_field3]

&&

33 type_AbWorld ??[ eval(msg2_field3), n_field2 , n_field3]

->

34 AbPurseTransfer_is_enabled = true

35 :: else -> skip

36 fi

37 }

38 inline fire_AbPurseTransfer () {

39 type_msg_in?transfer ,msg2_field2 , msg2_field3 ,

msg2_field4;

40 type_AbWorld ??eval(msg2_field2), m_field2 , m_field3;

41 type_AbWorld ??eval(msg2_field3), n_field2 , n_field3;

42 atomic{type_AbWorld!msg2_field2 , m_field2 - msg2_field4

, m_field3;

43 bal_sum = bal_sum - msg2_field4 ;}

44 atomic{type_AbWorld!msg2_field3 , n_field2 + msg2_field4

, n_field3;

45 bal_sum = bal_sum + msg2_field4 ;}

46 AbPurseTransfer_is_enabled = false

47 }

48 inline AbPurseTransfer () {
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49 is_enabled_AbPurseTransfer ();

50 if

51 :: AbPurseTransfer_is_enabled -> atomic{

fire_AbPurseTransfer ()}

52 :: else -> skip

53 fi

54 }

55 proctype AbstractMondex (){

56 bool AbIgnore_is_enabled = false;

57 bool AbPurseTransfer_is_enabled = false;

58 do

59 :: AbIgnore ()

60 :: AbPurseTransfer ()

61 od

62 }

63 init {

64 type_msg_in!transfer ,1,2,50; type_AbWorld !1 ,100,0;

65 type_AbWorld !2 ,200,0; type_AbWorld !3,150 ,0;

66 run AbstractMondex ()

67 }

2.6 Summary

We provide a way of using model checking to verify the formal speci�cation of

Mondex in Sam [15], including the abstract model and concrete model. this section

is presented with the abstract model as an example.
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E�ort

It took us two person months to complete the speci�cation[15], and 80 person-hours

to translate the Sam model into Promela code for Mondex concrete model and to

verify the model automatically using Spin.

Bugs found

[21] found three bugs in the Z speci�cation, in which one bug is for missing con-

straints about authenticity, also found by KIV method [22], two bugs are related

with reasoning errors during re�nement. For the authenticity bug, Z speci�cation

gives no constraints for authenticity so that a purse could be making a transaction

with a non-authentic purse. For example, a purse is in epv status, which is to purse,

waiting for val message, there should be constraints preventing this purse from re-

ceiving req message as from purse. Similarly there should also be constraints

preventing the purse in epa status as from purse from receiving val message as to

purse. Without these constraints for authenticity, the actual role of purse could be

inconsistent in the transaction. The other two bugs are both for reasoning errors

during re�nement which is not present in this section as we using model checking

do not do that re�nement. Our speci�cation avoids the authenticity bug through

adding proper constraints and does not have re�nement bugs.

Scalability

We conducted the model checking of Mondex concrete model with a Windows based

PC which has 1.8Ghz CPU and 2GB memory. Since the Mondex system is not

a network system and only contains atomic operations involving two purses; it is

adequate to model and analyze the system with one randomly chosen initial message.
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Figure 2.4: Scalability of Model Checking on Mondex
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Therefore, we created a random message in the initial markings, the range for value

of money was 0 . . . 231−1. We conducted an experiment by increasing the number of

purses in the initial markings, to show the scalability of memory usage, cpu timing

and allocated state vector, as the Fig. 2.4 below.
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CHAPTER 3

A METHOD TO MINE TRACES FOR BUILDING PETRI NETS TO

AID DESIGNING SCIENTIFIC WORKFLOWS

In this chapter, we develop methods to mine traces to build Petri nets automat-

ically to aid designing scienti�c work�ows.

3.1 Using Existing Process Mining Algorithms

This section presents existing process mining algorithms using scienti�c work�ows as

examples. Section 3.1.1 presents a method using process mining based on provenance

to create and analyze scienti�c work�ows. Figure 3.1 shows a high level view of the

context to mine provenance. Applying process mining in the context of scienti�c

work�ow needs to address the following issues. In this section we focus on control

�ow mining, and discuss the other two issues in Section 3.1.4.

1. Control �ow mining: To mine control �ows from provenance, we need to ex-

tract information and to present it in the format acceptable to existing process

mining tools. We also need to select appropriate process discovery algorithms

depending on the context of scienti�c work�ows.

2. Data dependency: Data dependency contained in provenance can contribute

to process mining for improving the mining results. It is critical to enhance

the existing control �ow based process mining algorithms with data �ow ca-

pabilities.

3. Incremental mining: Given a scienti�c work�ow template [27], scientists need

to �ne-tune it many times, which makes updating large scienti�c work�ows

a challenge for scientists. Mining from scratch is neither e�cient for large

scale scienti�c work�ows nor e�ective to address existing scienti�c work�ow
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Figure 3.1: Mining provenance

templates. Incremental mining can utilize the information in existing scienti�c

work�ow templates to make mining more e�cient and e�ective.

Section 3.1.2 presents a method to convert provenance to XES format that is ac-

cepted by existing process mining tools, and provides a method using process mining

to create and analyze scienti�c work�ows. Section 3.1.3 contains a brief discussion

of related works. Section 3.1.4 discusses our research direction for using process

mining to address speci�c issues in the context of scienti�c work�ows.

3.1.1 Overview

Provenance, in scienti�c work�ow community, refers to the sources of information,

including entities and processes, involved in producing or delivering an artifact.

More speci�cally, provenance is captured at four levels [28]. First, the process

level captures information about the invoked processes, their inputs/outputs and

start/end times. Second, the data level, inferred from the process level, provides

derivation paths of intermediate and �nal products. Third, the organization level
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stores the metadata for the experiments. Fourth, the knowledge level connects the

scienti�c experiments' discovery with other provenance levels as supporting evidence.

The stored information is used to infer the provenance of intermediate and �nal

results and to verify the quality of the data through tracing the processing steps.

Recent e�orts from the scienti�c work�ow community aiming at large-scale cap-

turing of provenance present a new opportunity for building scienti�c work�ow using

provenance. Several researchers [29] have investigated how to synthesize a process

model from event logs. The research area of process mining focuses on extract-

ing information about processes by examining event logs. Practical experience has

shown that typical information recorded in event logs includes information about

which activities are performed, at what time, by whom and in the context of which

case (i.e., process instance). By explicitly using the case context, process discovery

algorithms are capable of constructing process models that accurately describe the

process [29]. Since both event logs and provenance contain process information, a

given scienti�c work�ow may be executed multiple times [30] thus creating multiple

work�ow execution instances. Scienti�c experiments are exploratory in nature thus

change are the norm. As a result, mining processes from scienti�c work�ows is highly

valuable. Provenance does not record control �ows associated no data �ows, we are

interested in building scienti�c work�ows by combining data �ows from provenance

and control �ows mined from provenance. Our work provides a new direction in

using captured provenance.

3.1.1.1 Process Mining and XES format of ProM tool

The goal of process mining, or more speci�cally control �ow discovery is to extract

information about processes from event logs, such that the control �ow of a process

is captured in a process model. In process mining an activity refers to an atomic
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part of a process, which may be executed over any length of time and by anyone.

We refer to a case (also a process instance) as the execution trace of a process. The

starting point for control �ow discovery is an event log that contains events such

that:

1. Each event refers to an activity (i.e., a well-de�ned step in the process),

2. Each event refers to a case (i.e., a process instance) and

3. Events are totally ordered (for example by a timestamp).

The (Pro)cess (M)ining framework ProM [31] has been developed as a generic open-

source framework where various process mining algorithms have been implemented.

Currently, over 280 plug-ins have been added. The framework provides researchers

an extensive base to implement new algorithms in the form of plug-ins. The frame-

work provides easy to use user interface functionality, a variety of model type imple-

mentations (e.g. Petri nets) and common functionality like reading and writing �les.

In most cases the starting input is an event log. ProM can read event logs stored in

the formats MXML [32] and from Version 6 also in the new event log format XES

[33]. For more information on process mining and the ProM framework, we refer to

the website www.processmining.org.

XES is an open standard for storing and managing event log data. Its objective

is to provide a generic framework onto which all event log meta-models found in

practice can be mapped with relative ease, without assuming a speci�c �eld of

application, or any purpose of the event logs whatsoever. The XES meta-model

recognizes and treats all extensions as equal, independent from their source or level

of proliferation. This allows users to extend it at will to �t any purpose or domain

setting, and thus makes XES a �exible format for all applications. Due to the

�exible handling of extensions, and the attributes de�ned by those, the XES meta-
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model allows using applications to interpret also previously unknown information.

To provide universally understood semantics, a number of extensions have been

standardized, and thus equipped with a �xed semantics. The currently standardized

extensions include concept extension, lifecycle extension, organizational extension,

time extension, semantic extension and classi�cation extension.

3.1.2 A Method to Build Scienti�c Work�ows from Prove-

nance

Figure 3.1 shows a high level view of the context to mine provenance, to build and

update scienti�c work�ows. This section uses provenance generated from scienti�c

work�ow management systems, thus results of the method in this section can be

compared with existing scienti�c work�ows. Note that the method can be applied

to provenance from both sources in Figure 3.1. Figure 3.2 shows a high level view

of the method presented and evaluated in this section.

3.1.2.1 Converting Provenance to XES format

XESame [33] is a tool to extract event logs from a data source. The conversion

consists of two steps: conversion de�nition and execution. Conversion de�nition

speci�es a mapping, to map concepts of the data source onto concepts of the event

log. Conversion execution produces event logs as speci�ed in the mapping. In this

section, we use XESame to convert provenance to event logs as the input for process

mining tool ProM.

In conversion de�nition, the most important extension is the concept extension

that includes instances and names. Providing names for each event is desired as

it is very informative. Names of events are the names of the executed activity
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Figure 3.2: Overview of the method

represented by the event. Instances represent identi�ers of the activity instances

whose executions have generated the events. Another important extension is the

time extension. Time extension speci�es a timestamp attribute for events, which

enables events to be ordered to infer control dependency, and enables performance

analysis. For example, using Taverna provenance system, shown in Figure 3.3, we

join two tables PROCESSORENACTMENT and PROCESSOR on their PROCES-

SORID, PROCESSORENACTMENT provides event identi�ers and corresponding

start time while PROCESSOR provides a event name for each event identi�er. Since

we need steps in scienti�c work�ow and corresponding start time, we set instance

as PROCESSORID, name as PROCESSORNAME, and timestamp as ENACT-

MENTSTARTED.
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Figure 3.3: Con�guration of XESame

3.1.2.2 Building Scienti�c Work�ows through Process Discovery

The Running Example We adopt the challenge work�ow from the third Prove-

nance Challenge as an example (http://www.myexperiment.org/work�ows/750), which

contains both control �ow and data �ow. While there are several teams implemented

the challenge work�ow, we choose Taverna as it is connected well to the open scien-

ti�c work�ow repository myExperiment. Provenance provided by Taverna records

the tasks executed and its timestamp, together with data links between tasks. As

the ongoing research work [7] and [34], the provenance in the near future will be

applicable to non-work�ow systems that enable provenance to record tasks users per-

form in their familiar environment, so that the methods investigated in this section

are able to build scienti�c work�ows automatically.

Using the Fuzzy Miner The fuzzy miner [35] assumes that problems in mining

large scale processes are caused by mismatch between fundamental assumptions of

traditional process mining, and the characteristics of real-life processes. Fuzzy miner

developed an adaptive simpli�cation and visualization technique for process models,

which is based on two metrics, signi�cance and correlation. The two metrics are
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similar to the concept of data clustering domain where a binary distance metric is

inferred to �nd related subsets of attributes. In the context of scienti�c work�ows,

signi�cance, which can be determined both for tasks and precedence relations over

them, measures the relative importance of behavior. As such, it speci�es the level of

interest we have in tasks and their control dependency. Correlation is only relevant

for precedence relations over tasks, which measures how closely related two events

following one another is.

As scienti�c work�ows are usually quickly evolving, change can be made to the

example work�ow several times, including the activities and data. Using the fuzzy

miner, a work�ow can be mined to provide an abstract view of what does not change,

which o�ers insight of evolving work�ows. For the running example, we run it for

10 times, then remove ReadCSVReadyFile and run it for 10 times again, after that

we undo removing ReadCSVReadyFile, remove IsMatchCSVFileTables and run it

for 10 times. Using XESame provenance can be transformed to a XES �le, based on

which the fuzzy miner can be applied. Figure 3.4 shows a resulting model in which

there is every task but IsMatchCSVFileTables, when signi�cance cuto� is increased

to 0.392, as Figure 3.5, ReadCSVReadyFile disappeared so that the unchanged part

is shown, which can be the key part of the whole work�ow. What's more, by double

clicking �Cluster 14� that contains 2 elements, the tasks with low signi�cance are

shown, which in our context is the changing tasks. As Figure 3.6 shows, there is a

process model related with low signi�cance tasks, which exactly matches the original

work�ow model in the running example. Therefore, in case there is provenance from

either work�ow based systems or non-work�ow systems that include tasks scientists

perform, a scienti�c work�ow can be built automatically at di�erent abstract level

by using the fuzzy miner.
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Figure 3.4: Fuzzy Mining Result - 1

Figure 3.5: Fuzzy Mining Result - 2
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Figure 3.6: Fuzzy Mining Result - 3

Using the Alpha Miner The alpha miner assumes the completeness of direct

succession (DS) such that �if two transitions can follow each other directly, then this

has occurred at least once in the log�, yet it may not be the case in reality, the alpha

miner allow users to edit log relations manually to o�er more information about di-

rect succession, as shown in Figure 3.7. For large amount of events, manually adding

log relations can be impossible. In scienti�c work�ows context, provenance contains

data dependencies that imply direct succession in time order, data dependencies can

somehow be considered in the alpha miner thus making it closer to completeness of

direct succession. We discuss further about data dependencies in Section 3.1.4.

Using the Genetic Miner The genetic miner is a control-�ow process min-

ing algorithm that can discover all the common control-�ow structures (i.e. se-

quences, choices, parallelism, loops and non-free-choices, invisible tasks and du-

plicate tasks) while being robust to noisy logs. The genetic miner has more dif-

�culties to mine models with constructs that allow for many interleaving situa-

tions. Figure 3.8 shows the result of the genetic miner on the running exam-
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Figure 3.7: Alpha Mining Result

ple. Genetic miner successfully get a non-free-choices construct such as both Is-

MatchTableRowCount and IsMatchTableColumnRanges depend on UpdateCom-

putedColumns while IsMatchTableRowCount depends on others as well that means

mixture of choice and synchronization. It also successfully suggests the dependency

between IsMatchTableRowCount and IsMatchTableColumnRanges that is a control

link in the running example. The results also give a clear view of frequency by an-

notating numbers on each event and arc, where numbers in event boxes mean how

many times the events happen in the event logs, and numbers on arcs mean how

many times the two events directly succeed each other.

Using the Heuristic Miner The heuristics Miner is a practical applicable mining

algorithm that can deal with noise, and can be used to express the main behavior (i.e.

not all details and exceptions) registered in an event log [36]. It includes three steps:

(1) the construction of the dependency graph, (2) for each activity, the construction

of the input and output expressions and (3) the search for long distance dependency
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Figure 3.8: Genetic Mining Result

relations. Figure 3.9 shows the result of heuristics miner on the running example.

Although IsMatchCSVFileTables does not directly succeed ReadCSVReadyFile in

event logs, heuristics miner successfully suggests their dependency with reliability

0.833 and it happens 5 times in event logs considering long distance dependency

relations. This is particularly useful in the context of scienti�c work�ows, just as

the running example, many scienti�c work�ows have multiple tasks even hundreds

of tasks scheduled in parallel, not each parallel task succeed the dependent task

directly in provenance, therefore, long distance dependency discovery is especially

important in the context of scienti�c work�ows.

3.1.2.3 Analyzing Scienti�c Work�ows

Using LTL Checking The size of provenance is growing large quickly, Linear

Temporal Logical (LTL) checking is a great tool to help scientists discovering and
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Figure 3.9: Heuristic Mining Result

double checking temporal properties of provenance. As shown in Figure 3.10, we can

easily check whether ReadCSVFileColumnNames eventually happens when IsEx-

istsCSVFile happens, it is true for 27 instances while false for 4 instances, for further

information, the speci�c work�ow run can be referred to according to work�ow run

identi�er.

Figure 3.10: LTL Checking Example
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Figure 3.11: Dotted Chart Analysis

Using Dotted Chart A dotted chart o�ers insight of performance during scien-

ti�c work�ow execution, thus enables improving the performance of a work�ow by

exploiting an episodic memory of prior work�ow executions. Figure 3.11 shows part

of the result using dotted chart analysis on an example1, in which each row is a

task in work�ow and each dot is an occurrence of the corresponding task along the

time scale, so we can easily see the performance of scienti�c work�ow execution in

the perspective of tasks and take corresponding actions such as distributing tasks

further.

3.1.3 Related Works

The cloud computing and other technologies are changing the way we create, share

and use information, which o�ers great bene�ts but also exposes us to serious new

problems. [34] believes that provenance will play an essential role in this revolution,

providing data integrity, trustworthiness, authenticity, and availability, while o�er-

ing potential bene�ts to information retrieval, collaboration, and scienti�c compu-

tation. [37] aims at mining provenance, by applying Case Based Reasoning (CBR)

methods to provenance to support scientists' work�ow generation process, which

does not generate the whole work�ow but focusing on assisting work�ow composi-

1http://www.myexperiment.org/work�ows/158.html
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tion by providing recommendation to scientists regarding each interested task. [38]

addresses the queries from the provenance challenge workshop such as semantic rea-

soning which exposes the implicit links between provenance, e.g. the implicit links

between provenance of studying any part of a human's body including chest, legs,

arms and etc. An abstraction over the provenance information is presented by two

means: one is the users' speci�ed annotations that draw an interpretative link be-

tween tasks, and the other is the typed views that hide or expose the execution

details of an iteration or a nested run, or the data lineage of a collection and its

elements. Other works such as [39], [40] and [41] also address the queries from the

provenance challenge workshop, however do not deal with mining processes from

provenance.

3.1.4 Discussion

3.1.4.1 Results of di�erent process discovery algorithms

Section 3.1.2.2 presents results of four di�erent process discovery algorithms on

the running example. Table 3.1 discusses the results in the context of scienti�c

work�ows. Note that the result of each miner is correct based on given provenance,

but providing di�erent views of the provenance. It is found that the result of the

fuzzy miner is closest to the original scienti�c work�ow in the running example.

Section 3.1.4.3 discusses a possible way to improve the results in Table 3.1.

3.1.4.2 Number of Traces in Provenance

As Figure 3.2 shows, this section uses provenance from scienti�c work�ow manage-

ment systems. A question that current tools can not address is how many times

should the scienti�c work�ow be run to get enough traces. There should be a �xed
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Table 3.1: Discussion on results of process discovery algorithms

Description Result

Fuzzy
Miner

Provides a zoom-able view
of scienti�c work�ows by
controlling signi�cance
cuto� to show tasks at
di�erent importance level.

Under certain signi�cance cuto�, the
fuzzy miner successfully gives the
changed part and unchanged part.
Comparing with original scienti�c
work�ow, the fuzzy miner gets most
dependency correctly, but concludes
some dependency that does not exist.

Alpha
Miner

Provides a view of direct
succession between tasks
in provenance.

Assuming the completeness of direct
succession, the alpha miner fails to
give a view close to the original
scienti�c work�ow.

Genetic
Miner

Provides a view of
frequency for both tasks
and succession between
tasks, and discovers all
common control-�ow
structures assuming the
existence of noise.

The genetic miner gets a good view of
structures and frequencies, yet gives
some wrong dependencies which does
not exist in both the original scienti�c
work�ow and the results of the fuzzy
miner.

Heuristic
Miner

Provides a view of
scienti�c work�ows by
considering long distance
dependency.

The heuristic miner gives long
distance dependency successfully, but
gives too much dependency for some
tasks such as
ReadCSVFileColumnNames.
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point after that no more precedence relations to be discovered even given additional

provenance. This section manually �nd a point after that the mined results do not

change signi�cantly with additional provenance.

3.1.4.3 Build Scienti�c Work�ows using Data Dependency

Scienti�c work�ows include data dependency and control dependency, provenance

provides data dependency besides temporal sequences. The method provided in this

section only uses the temporal sequences of tasks in provenance to mine dependency

among tasks. Data dependency can contribute to process mining for improving the

mining result, but process mining and its existing tools do not accept explicit data

dependency as source. Since provenance provides data dependency, we can derive

causality relation from data dependency, which compliments the causality relation

extracted from the precedence of tasks.

3.1.4.4 Incremental Scienti�c Work�ow Mining

Scienti�c problem solving is an evolving process. Scientists start with a set of ques-

tions then observe phenomenon, gather data, develop hypotheses, perform tests,

negate or modify hypotheses, reiterate the process with various data, and �nally

come up with a new set of questions, theories, or laws. Often before this process

can end in results, scientists will �ne-tune the experiments, going through many

iterations with di�erent parameters [28]. Updating scienti�c work�ows is hence a

challenge for scientists. We believe with pre-existing scienti�c work�ow template,

created either manually or automatically through mining, we can apply process

mining to update it based on new provenance obtained from either work�ow based

systems or non-work�ow systems. We are working on incremental scienti�c work-

�ow mining. Incremental mining can utilize the information in existing scienti�c
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work�ow templates to make mining more e�cient for large scale scienti�c work�ows

and more e�ective for addressing existing scienti�c work�ow templates.

3.1.5 Conclusion

This section provides a method using process mining to build and analyze scienti�c

work�ows, which o�ers a new approach to build large scale work�ows in the con-

text of scienti�c work�ows. Recent e�orts from scienti�c work�ow community on

capturing provenance present a new opportunity for using provenance. This section

presents a method using process mining based on provenance to build and analyze

scienti�c work�ows, which provides a new direction in using captured provenance.

Given the fact that provenance captured in any scienti�c work�ow based systems or

system level monitoring systems contains information about tasks and their tempo-

ral order, there is always a way to translate the provenance to XES format acceptable

to process mining tools, the method provided in this section can be applied to any

scienti�c work�ow management systems.

3.2 A Method to Mine Petri Nets by Improving Process Min-

ing Algorithms with Data Dependency

This section presents a method of improving process mining algorithms with data

dependency. The method is applied to �nd a scienti�c work�ow model from prove-

nance and to provide recommendation support during scienti�c work�ows composi-

tion based on the mined work�ows, as shown in Figure 3.12.
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Figure 3.12: Background of the method described in this section (denoted by solid
arrows)

3.2.1 What are Scienti�c Work�ows and Provenance?

There are many works on scienti�c work�ows and provenance, that use di�er-

ent terminology for scienti�c work�ows and di�erent ways to organize provenance

[42][43][28][5]. The common basics of scienti�c work�ow and provenance this section

relies on are given as follows.

A task is a procedure or a group of procedures to execute computational activ-

ities. A data product can be a single data object or a collection of data objects.

A scienti�c work�ow is a directed graph where nodes are tasks and edges between

nodes represent either data dependency or control dependency. Provenance records

the task invocations and data products used or generated by each invocation. For-

mally, Provenance ⊆ P(Data×Task×Data) . Data dependency is the relationship

between two tasks t1 and t2 when t2 need t1's output as input, denoted as t1 ≺d t2.

Formally, t1 ≺d t2 i� ∃d1, d2, d3 ∈ Data � (d1, t1, d2) ∈ Provenance ∧ (d2, t2, d3) ∈

Provenance . Data dependency can be derived from provenance as causality rela-

tion pairs, such as t1 ≺d t2. Control dependency is the relationship between two

tasks t1 and t2 when a task t1 is required to be invoked before invoking another task

t2, it is denoted as a causality relation pair t1 ≺c t2. A causality relation pair infers

data dependency or control dependency, denoted as t1 ≺ t2. A task trace, corre-
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sponds to a run of a scienti�c work�ow, is a sequence of task invocations. Formally,

let Σ be the set of all tasks that appear in task traces, a task trace is a sequence of

task invocations, denoted as t1, t2, t3, ..., tm where ti ∈ Σ for 1 ≤ i ≤ m.

3.2.2 Scienti�c Work�ow Models in Petri Nets

The algorithm in this section mines a Petri net as a model to represent a scienti�c

work�ow. Tasks are modeled by transitions and causal relations are modeled by

places and arcs. A place corresponds to a condition which can be used as pre-

condition and/or post-condition for tasks. An AND-split corresponds to a transition

with two or more output places, and an AND-join corresponds to a transition with

two or more input places. OR-splits/OR-joins correspond to places with multiple

outgoing/ingoing arcs.

This section uses WF-nets [44] that is based on Place/Transition nets, a variant

of the classic Petri net model.

De�nition 4. Place/Transition nets

A Place/Transition net, or simply a P/T-net, is a tuple (P, T, F,M) where

1. P is a �nite set of places,

2. T is a �nite set of transitions such that P ∩ T = ∅, and

3. F ⊆ (P × T ) ∪ (T × P ) is a set of directed arcs.

4. M : P → N is a function that associate each place with a natural number.

A place p is an input place of a transition t, also called pre-condition, if there is a

directed arc from the place p to the transition t, i.e. (p, t) ∈ F . Similarly a place p

is an output place of a transition t, also called post-condition, if (t, p) ∈ F .
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Figure 3.13: A sample work�ow (the circle arrow denotes control dependency, and
the other arrows denote data dependency)

De�nition 5. Work�ow nets

Let N = (P, T, F,M) be a P/T-net and t′ be a transition such that t′ /∈ P ∪ T ,

N is a work�ow net (WF-net) i�:

1. Object creation: P contains an input place i such that •i = ∅,

2. Object completion: P contains an output place o such that o• = ∅,

3. Connectedness: N ′ = (P, T ∪ {t′}, F ∪ {(o, t′), (t′, i)}) is strongly connected.

3.2.3 A Simple Example

To illustrate the principle of the algorithm in this section, we consider the task trace

extracted from provenance shown in Table 3.2. Suppose the work�ow that generated

the provenance is given in Figure 3.13. Consider the fact that scienti�c work�ows

evolve quickly thus the change is recorded in provenance, and provenance capturing

systems support non-work�ow environment, the work�ows behind the provenance

are often unknown before mining. Since the control �ow does not generate any

data product, we cannot get the control �ow from provenance. This section aims at

mining the control dependency from provenance to provide recommendation support

during work�ow composition.

66



Table 3.2: A task trace in provenance

Work�ow Running Identi�er Task Identi�er

1 a
2 a
1 b
2 e
1 c
2 b
2 c
1 d
2 d
1 e

Table 3.3: Direct precedence table

a b c d e

a 0 1 0 0 1
b 0 0 2 0 0
c 0 0 0 2 0
d 0 0 0 0 1
e 0 1 0 0 0

3.2.4 Construction of a Causality Table

De�nition 6. Direct precedence table

For n tasks, the direct precedence table is a n × n matrix P , P = [pij] where

1 ≤ i, j ≤ n and pij is the number of times that task ti directly precede task tj.

Using the example above, a direct precedence table is shown in Table 3.3.

De�nition 7. Indirect precedence table

For n tasks, the indirect precedence table is a n × n matrix S, S = [sij] where

1 ≤ i, j ≤ n and sij is calculated as follows. For task ti and tj, in each work�ow

run, if there is a sequence ti, tk, ..., tm, tj, suppose the number of tasks from tk to

tm is m − k + 1, add δm−k+1 (δ = 0.8) to sij. 0.8 is chosen after experimentation
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Table 3.4: Indirect precedence table

a b c d e

a 0 0.8 1.44 1.152 0.512
b 0 0 0 1.6 0.64
c 0 0 0 0 0.8
d 0 0 0 0 0
e 0 0 0.8 0.64 0

Table 3.5: Weight table

a b c d e

a 0 3.8 3.44 1.152 3.512
b 0 0 2 1.6 0.64
c 0 0 0 4 0.8
d 0 0 0 0 1
e 0 1 0.8 0.64 0

which satis�es two requirements: 1) for direct precedence, δm−k+1 = 1; 2) The longer

distance, the smaller addition.

Using the example above, an indirect precedence table is shown in Table 3.4.

According to the de�nition, data dependency can be derived from provenance as

causality relation pairs. For the example above, it is a ≺d e, a ≺d c, a ≺d b, c ≺d d.

Following is the construction of weight table combining both precedence tables and

data dependency.

De�nition 8. Weight table

For n tasks, the weight table is a n× n matrix W , W = [wij] where 1 ≤ i, j ≤ n

and wij is calculated as follows. First, wij = pij + sij; second, if i ≺d j is present in

causality relation pairs derived from provenance as data dependencies, add σ to wij

where σ is the number of work�ow running.

Using the example above, σ = 2, the weight table is shown in Table 3.5.
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Table 3.6: Con�dence table

a b c d e

a 0 3.8 3.44 1.152 3.512
b 0 0 2 1.6 -0.36
c 0 0 0 4 0
d 0 0 0 0 0.36
e 0 0.36 0 -0.36 0

Table 3.7: Causality table

Causality Relation Pair Weight

a ≺ b 3.8
b ≺ c 2
c ≺ d 4
d ≺ e 0.36
a ≺ e 3.512
e ≺ b 0.36
a ≺ c 3.44
a ≺ d 1.152
b ≺ d 1.6
e ≺ d -0.36

De�nition 9. Con�dence table

For n tasks, the con�dence table is a n×n matrix C, C = [cij] where 1 ≤ i, j ≤ n

and cij is calculated as follows: cij = wij − wji.

Using the example above, the con�dence table is shown in Table 3.6.

The causality table is shown in Table 3.7. For each pair t1 ≺ t2, if it is not data

dependency t1 ≺d t2, then it is control dependency t1 ≺c t2.

Rules are designed as below to update causality table:

1. For tasks tk, tm and its causality tk ≺ tm, if its weight is lower than 1, remove

it.
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Figure 3.14: A resulting Petri net (all causality pairs are included, and an AND-split
is used for task a)

2. For tasks tk, tm and its causality tk ≺ tm, if there is tk ≺ ... ≺ tm, in which

each pair has higher con�dence than the one of tk ≺ tm, remove tk ≺ tm from

causality table.

Firstly, for each valid causality, there are many chances to get higher than 1, such

as direct precedence, data dependency, or indirect precedence (e.g. 0.82 + 0.84 =

1.0496 > 1). Secondly, For tk ≺ ... ≺ tm, it is highly possible that tk ≺ tm get higher

than 1 for multiple indirect precedences, but actually there is no direct causality

between tk and tm.

Using the steps and rules above for the example, valid causality pairs are derived:

a ≺ b, b ≺ c, c ≺ d, a ≺ e, a ≺ c, a Petri net can be constructed as Figure 3.14, which

matches exactly the original work�ow.

The construction of a causality table is summarized in Algorithm 3.1.

3.2.5 Generating a Petri Net from a Causality Table

It is straightforward to derive a causality graph from a causality table, but it requires

additional information to generate a Petri net from a causality table, including
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Algorithm 3.1 Construction of a Causality Table
Input: Provenance for σ running of a work�ow that contains n tasks
Output: A causality table T
1: for all work�ow running instances Run do
2: for all (ti, tj) ti directly precedes tj do

3: pij++
4: end for

5: for all (ti, tj) ti indirectly precedes tj do

6: Assume the sequence as ti, tk, ..., tm, tj
7: δ = 0.8
8: sij+= δm−k+1

9: end for

10: end for

11: for i = 1 to n do
12: for j = 1 to n do
13: wij = pij + sij
14: if ∃d1, d2, d3 ∈ Data � (d1, ti, d2) ∈ Run ∧ (d2, tj, d3) ∈ Run then
15: wij+=σ
16: end if

17: end for

18: end for

19: for i = 1 to n do
20: for j = 1 to n do
21: cij = wij − wji
22: if cij ≥ 1 then
23: T = T ∪ {(ti ≺ tj, cij)}
24: end if

25: end for

26: end for

27: for all (ti ≺ tj, cij) ∈ T do

28: if ∃tk ≺ ... ≺ tm � (ti ≺ tk) ∧ (tm ≺ tj) ∧ (cik > cij) ∧ (...) ∧ (cmj > cij) then
29: T = T\{(ti ≺ tj, cij)}
30: end if

31: end for
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parallelism and choice of tasks. In Petri nets, parallelism can be represented with

a AND-split, and choice can be represented with a OR-split. For instance, if there

are causality pairs ti ≺ tj and ti ≺ tk, the type of a split from ti to tj AND/OR tk

has to be detected, to generate a Petri net. The principle of detection is to employ

the weight table above to check the pattern of tj and tk: 1) wjk = 0 and wkj = 0,

that shows the pattern tjtk or tktj cannot appear, it is an OR-split; 2) Otherwise,

that shows the pattern tjtk or tktj can appear, it is an AND-split. The algorithm

to detect the type of a split is given in Algorithm 3.2. It is assumed that a OR-split

is placed after an AND-split, i.e. it is conjunctions of clauses, and each clause is a

disjunction of tasks.

Algorithm 3.2 Detection of the type of the splits

Input: Weight table w, task t0 and tasks t1, ...ti, ..., tn in which t0 ≺ ti (1 ≤ i ≤ n)
is a causality pair

Output: A set of clauses Disj in which each is a set of tasks that are in the OR-
relation

A set of tasks Conj in which each is in the AND-relation
1: Derive W ′ from W with the rows and columns related with t1, ...ti, ..., tn
2: Let W ′ = [w

′
ij]; Disj = ∅; Conj = ∅

3: Create n empty sets: Seti where 1 ≤ i ≤ n
4: for i = 1 to n do
5: for j = 1 to n do
6: if w

′
ij=0 & w

′
ji=0 & i 6= j then

7: Seti = Seti ∪ {i, j}
8: Setj = Setj ∪ {i, j}
9: end if

10: end for

11: end for

12: for i = 1 to n do
13: if Seti is empty then
14: Conj = Conj ∪ {ti}
15: else

16: Disj = Disj ∪ {< Seti >}
17: end if

18: end for
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3.2.6 Providing Recommendation for Scienti�c Work�ow Com-

position

Given a partial work�ow, based on a set of causality tables and a set of Petri nets,

this section provides a method to recommend a next most likely task and related

part of a Petri net.

A causality path is a sequence of tasks t1, ..., ti, ...tn in which ti ≺ ti+1 (1 ≤ i < n)

are causality pairs. The length of causality path is n.

For the current task t0 selected in the partial work�ow, a set of possible next

tasks can be easily found by looking up the set of causality tables as {pi | t0 ≺ pi

and 1 ≤ i ≤ m}, where m is the number of tasks found. A method is given in

Algorithm 3.3 to provide recommendation. Firstly, the method gives an indicator

on each causality table how it matches the given partial work�ow. Secondly, for

each possible next task, the method gets a recommendation rate by two factors: the

weight of the corresponding causality pairs and the indicator of match level. Finally,

the method gives recommendation con�dence Confi for each possible next task:

Confi =
ratei∑m
j=1 ratej

where ratei is the recommendation rate for each possible next task.

3.3 Evaluation

The method described in this chapter is evaluated using a Java program for the

accuracy of recommendation. The provenance being used in this section are gen-

erated with a real scienti�c work�ow from the open scienti�c work�ow repository

myExperiment, that is the challenge work�ow from the third Provenance Challenge

(http://www.myexperiment.org/work�ows/750).
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Algorithm 3.3 Providing Recommendation
Input: A causality path that end at current task t0 in the partial work�ow

tn, ..., ti, ...t0;
a set of causality tables {Tj | 1 ≤ j ≤ k }

Output: A set of possible next tasks with recommendation rates R
1: Let the set of possible next tasks be

{pi | t0 ≺ pi and 1 ≤ i ≤ m}
2: for j = 1 to k do
3: matchj = 1
4: for i = 1 to n do
5: if ∃ (tx ≺ ty, wxy) ∈ Tj�

tx = ti−1 ∧ ty = ti then
6: matchj++
7: end if

8: end for

9: end for

10: for i = 1 to m do

11: ratei = 0
12: for j = 1 to k do
13: if ∃ (t0 ≺ pi, wi) ∈ Tj then
14: ratei+=wi ×matchj
15: end if

16: end for

17: end for

18: for i = 1 to m do

19:

R = R ∪ {(pi,
ratei∑m
j=0 ratej

)}

20: end for
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To evaluate the accuracy of recommendation, the method is applied to each task

of work�ows. For each task ti, there are n dependent tasks, and there are p possible

next tasks with recommendation con�dence. n tasks are picked up from the set of

possible next tasks with highest con�dence if available, in which there are m tasks

matched with one of n dependent tasks, that is m hits out of n real ones. And, it

is also m hits out of p recommendations. The accuracy of recommendation for each

task is de�ned as:

accuracyi =
m2

n× p

.

Figure 3.15 compares the method described in this chapter to the methods using

only control dependency or only data dependency for recommendation. The α

algorithm only mine control dependency while most recommendation algorithms

uses only data dependency, this chapter combines both control dependency and

data dependency to improve the recommendation accuracy. As shown in Figure 3.15,

our method performs better than the method that mines only control dependency,

because the data dependency is utilized in the algorithm to assist mining control

dependency; and our method performs better than the method that uses only data

dependency except in a task, because for some tasks that has only data dependency,

our method may give false control dependency, thus lower down the accuracy.

3.4 Related Works

The α algorithm [44] assumes completeness of event logs, this chapter proposes an

algorithm based on the α algorithm to use data dependency improving the mining

result. There are also a number of process mining algorithms implemented to mine
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Figure 3.15: Comparison of Recommendation Accuracy for Di�erent Methods

incomplete events logs, such as fuzzy miner, heuristic miner. The fuzzy miner [35] as-

sumes that problems in mining large scale processes are caused by mismatch between

fundamental assumptions of traditional process mining, and the characteristics of

real-life processes. Fuzzy miner developed an adaptive simpli�cation and visualiza-

tion technique for process models, which is based on two metrics, signi�cance and

correlation. The two metrics are similar to the concept of data clustering domain

where a binary distance metric is inferred to �nd related subsets of attributes. In

the context of scienti�c work�ows, signi�cance, which can be determined both for

tasks and precedence relations over them, measures the relative importance of be-

havior. As such, it speci�es the level of interest we have in tasks and their control

dependency. Correlation is only relevant for precedence relations over tasks, which

measures how closely related two events following one another are. The heuristics

miner is a practical applicable mining algorithm that can deal with noise, and can

be used to express the main behavior (i.e. not all details and exceptions) registered

in an event log [36]. It includes three steps: (1) the construction of the dependency

graph, (2) for each activity, the construction of the input and output expressions

and (3) the search for long distance dependency relations. All those miners do not
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utilize data dependency, the algorithm of this chapter can be applied to any of them

enhancing the mining result.

This chapter is related to work�ow recommendation papers based on provenance.

Besides the di�erence in recommendation technique with other papers, this chap-

ter has a unique advantage that it can build a whole work�ow model for general

reference. The work in [37], based on large scale databases of work�ow execution

traces, proposes exploiting these databases with a �knowledge light� approach to

reuse, applying case based reasoning (CBR) methods to those traces to support sci-

entists' work�ow generation process in two phases. The �rst phase is retrieving from

a database the entries for all work�ows containing any one of the current tasks, the

second phase is similarity assessment based on the ranking by the size of the largest

mapping produced between current tasks and retrieved cases. This chapter uses a

di�erent approach to do recommendation for work�ow generation, which has two

advantages compared with [37]: this chapter does not use expensive graph matching

algorithms, thus is more e�cient; and this chapter can make recommendation on

both data dependency and control dependency while [37] only considers data de-

pendency in their analysis. [45] makes recommendation based on the path in partial

work�ow, instead of last node in partial work�ow. Provenance are synthetically

generated from a set of nodes, as a set of node sequences. If there is a path, that

has 5 possible following nodes, each of 5 nodes then has 20% con�dence, it would be

di�cult to determine the threshold. [46] proposes a framework for service oriented

scienti�c work�ow reuse, its recommendation is based on searching a collection of

work�ows with the help of annotation. They �rst collect scienti�c work�ows from

centralized repositories such as myExperiment, then integrates annotations gener-

ated from various heterogeneous data sources such as author annotations at di�erent

levels (for example, work�ow, service, or data channels), user comments at runtime,
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best practices, and statistical data of existing scienti�c work�ows and services, in-

cluding popularity and usage patterns. They also support manual annotation. With

the collected work�ows and integrated annotations, they uses Apache Lucene, an

open source search engine, to index the information in collection and associated

annotations. Their method can provide relevant information, but cannot suggest a

con�dence level of each recommendation.

There is also a related work in data mining area that focuses on pairwise temporal

patterns [47]. They state the problem of mining event relationships as: given event

sequence, �nding all pairwise statistically dependent patterns that can be character-

ized as temporal patterns, that assert dependency between events and specify the

timing information, such as �event a happens after event b, say, about 5 minutes�.

Their result is in fact the precedence table in this chapter. Since this chapter focuses

on scienti�c work�ow area, provenance provides work�ow running identi�er for each

event so that it is obvious to get the precedence table, which is the pairwise event

dependency in [47]. Combined with algorithms in [47], this chapter can be applied

to unstructured data, or semi-structured data, such as computer system log �les.

3.5 Summary

This chapter presents a method based on provenance to mine models for scienti�c

work�ows, including data and control dependency. The mining result can either

suggest part of others' work�ows for consideration, or make familiar part of work-

�ow easily accessible, thus provide recommendation support for scienti�c work�ows

composition, which o�ers a new approach to build work�ows in the context of scien-

ti�c work�ows. Given the fact that provenance captured in any scienti�c work�ow

based systems or system level monitoring systems contains information about tasks
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and their temporal order, the proposed algorithm can give both control and data de-

pendency for recommendation during scienti�c work�ows composition. The method

provided in this chapter can be applied to any scienti�c work�ow management sys-

tems.
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CHAPTER 4

MCPATOM: A PREDICTIVE ANALYSIS TOOL FOR ATOMICITY

VIOLATION USING MODEL CHECKING

4.1 Overview

Multi-core hardware is a growing industry trend, for both high performance servers

and low power mobile devices. Multi-thread programs can exploit multi-core pro-

cessors at their full potential. In the real world, most servers and high-end critical

software are multi-threaded. Unfortunately, multi-thread programs are prone to

bugs due to the inherent complexity caused by concurrency. It is di�cult to detect

concurrency bugs due to the huge number of possible interleavings. Many concur-

rency bugs escape from testing into software releases and cause some of the most

serious computer-related accidents in history, including a blackout leaving tens of

millions of people without electricity [9].

Among di�erent types of concurrency bugs, atomicity violation bugs are the most

common one. Atomicity violation bugs are caused by violations to the atomicity

of certain code regions without proper synchronization. They widely exist in the

real world systems and contributed to about 70% of the examined non-deadlock

concurrency bugs [10]. Therefore, techniques for detecting atomicity violation bugs

are extremely important.

This chapter presents a dynamic prediction tool McPatom to predict atomicity

violation bugs involving a pair of threads accessing a shared variable using model

checking, based on binary executables that use POSIX thread library. McPatom uses

memory access patterns instead of subroutine atomicity. The only input needed by

McPatom is a binary executable, while source code is optional for locating bugs.
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Figure 4.1: Overview of McPatom Framework to predict atomicity violation bugs
using model checking

The McPatom framework contains the following major steps: (1) using Pin [48]

to instrument an interleaved execution of a multi-thread program and to record an

interleaved trace containing only atomicity violation impacting events including all

shared variable accesses and all synchronization routines (locks, condition variables,

barriers and thread management events); (2) projecting the interleaved trace into a

partial order thread model of abstract threads, which maintains the causal relation

within actual threads imposed by the synchronization routines; (3) automatically

translating the partial order thread model into a Promela program for model check-

ing in Spin [19]; (4) de�ning a complete set of atomicity violation patterns involving

a pair of threads accessing every single shared variable and automatically translat-

ing them into temporal logic formulas; (5) using Spin to model check the atomicity

violation patterns; and (6) mapping the violation reported in Spin to the execution

trace in the original multi-thread program. Figure 4.1 gives an overview of McPatom

framework.

Our work makes the following contributions:

1. A method to extract a thread model from an instrumented interleaved trace

that only records events related to atomicity violations. Such an interleaved
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trace is much smaller than the program behavior in a complete execution. Fur-

thermore the extracted thread model enables the checking of all alternative

traces with the same causal relationships as the interleaved trace. The com-

pleteness of instrumented interleaved traces and the extracted thread models

is proved.

2. A complete set of the patterns of unserializable interleavings involving two

threads (most concurrency bugs involve only two threads [11]) containing any

number of accesses to a shared variable (either user de�ned or every word sized

dynamically allocated memory accessed by multiple threads). These patterns

generalize and cover the three accesses proposed in [10][12]. These atomicity

violation patterns become property speci�cations to be checked.

3. A unique prediction tool - McPatom, for detecting atomicity violation bugs

through model checking. McPatom instruments interleaved executions, ex-

tracts thread models from interleaved traces, automatically converts (1) thread

models into Promela programs and (2) atomicity violation patterns into prop-

erty speci�cations. By constraining the checking within a pair of threads

involving one shared variable at a time, the interleaving space to be checked is

vastly reduced. As a result, McPatom is applicable to large software systems.

McPatom can predict atomicity violations that do not manifest during testing

or runtime.

We applied McPatom to predict several known atomicity violations in real world

systems as well as an atomicity violation that cannot be detected by several existing

tools. We obtained favorable experimental results with regard to atomicity violation

predictability, accuracy and performance of using McPatom.
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4.2 Extracting Partial Order Thread Models fromMulti-thread

Program Executions

4.2.1 Description of the Partial Order Thread Model

A multi-thread program has a set of threads and a set of shared variables. Shared

variables are addresses of global variables and every word sized dynamically allo-

cated memory accessed by multiple threads. The same memory address is considered

as another shared variable if it is released and reallocated through the invocations

of memory functions. An execution σ = s1, ..., sn of a multi-thread program P is a

sequence of executed statements. A trace is the projection of an execution to a se-

quence of annotated shared variable accesses and synchronization events. Formally,

a trace, τ = e1, ..., em is a sequence of events where each event ei(1 ≤ i ≤ m) is

a tuple 〈tidi, timestampi, actioni〉 in which tidi is a thread handle, timestampi is

a time stamp based on real time and actioni is one of the following: (read/write,

a shared variable), (a synchronization routine, a synchronization variable) or (a

thread management operation, a thread handle). McPatom uses POSIX Threads

in which a synchronization routine is a routine related to semaphores, mutex locks,

condition variables and barriers, does not handle user-de�ned synchronization prim-

itives. McPatom also assumes a shared variable as a synchronization variable if it

is accessed by synchronization routines, thus does not treat its accesses as shared

variable accesses.

Lemma 4. A trace τ = e1, ..., em extracted from an execution sequence σ = s1, ..., sn

is sound and complete with respect to σ in terms of atomicity violation predictability.
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Proof. (1) Soundness: An atomicity violation revealed in τ must exist in σ. This is

obvious since τ is a projection of σ. An atomicity violation pattern appearing in τ

exists in σ.

(2) Completeness: Any existing atomicity violation in σ remains in τ . Since

atomicity violations do not depend on general program states, and only depend on

the execution orders of shared variable accesses and synchronization events, that are

completely captured in τ .

De�nition 10 (Partial Order Thread Model). Given a trace τ = e1, ..., em con-

taining shared variable accesses and synchronization events, a partial order thread

model (Eτ ,≺) is de�ned as follows:

1. Eτ = {ei | ei in τ}

2. ≺ is a partial order relation such that, for any ei, ej ∈ E (i 6= j), ei ≺ ej i�

(a) tidi = tidj and i < j, or

(b) tidi 6= tidj, actioni = (Signal, cvar), actionj = (Wait, cvar) and ∀k �

((j < k < i) ∧ (actionk 6= (Signal, cvar)) in which cvar is a condition

variable, or

(c) tidi 6= tidj, actioni = (Wait, bvar) and (i < j)∧∃k � ((tidk = tidj)∧ (k <

j) ∧ actionk = (Wait, bvar) ∧ ∀h � ((tidh = tidk) ⇒ ¬(k < h < j))) in

which bvar is a barrier variable, or

(d) tidi 6= tidj, actioni = (Create, tidj), or

(e) tidi 6= tidj, actionj = (Join, tidi).

3. Mutual exclusion: for any ei, ej, em, en ∈ E (i 6= j 6= m 6= n), ej ≺ em or

en ≺ ei i�
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(a) tidi = tidj, actioni = (Lock, lvar), actionj = (Unlock, lvar), and

(b) tidm = tidn, actionm = (Lock, lvar), actionn = (Unlock, lvar).

The above partial order relation (or simply causal relation) is similar to the

happened-before relation given in [49]. From the above de�nition, we have (1)

shared variable accesses within the same thread are ordered, and (2) a pair of shared

variable accesses from two di�erent threads are only ordered if and only if they are

constrained by some intermediate synchronization events such as one thread creating

the other.

While the partial order thread model (Eτ ,≺) respects the causal relation in trace

τ , it captures an equivalent class of alternative traces that obey the same causal re-

lation as τ , in which each alternative trace τ ′ is a result of rearranging some shared

variable accesses not constrained by ≺. The partial order thread model allows us to

explore all possible alternative traces that correspond to a set of feasible interleav-

ings in a multi-thread program, however, the model provides an over-approximation

without considering data-�ow, thus cannot guarantee each permissible trace in the

model is covered by some feasible interleaved execution in the multi-thread program

P.

4.2.2 Implementation of the Partial Order Thread Model

4.2.2.1 Capturing runtime traces and related source code

McPatom uses Pin binary instrumentation framework [48] to collect runtime trace

information, speci�cally including, every access to every shared variable and ev-

ery synchronization event using POSIX Thread (locks, condition variables, barriers,

thread joining and etc.). For each collected event, McPatom also �nds the corre-

sponding source code information including �le name and line number. The source
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3047143104 , 1, thread.c-624, Read , threads

3047143104 , 1, thread.c-172, Create , 3020999536

3020999536 , 1, thread.c-240, Lock , init_lock

3020999536 , 1, thread.c-241, Read , init_count

3020999536 , 1, thread.c-241, Write , init_count

3020999536 , 1, thread.c-242, Signal , init_cond

3020999536 , 1, thread.c-243, Unlock , init_lock

Figure 4.2: A Sample of a Partial Trace (The format of each line: thread handle,
timestamp, �le name - line number, action)

code information can be used to help locating the predicted bugs. A sample of a

partial trace is shown in Figure 4.2.

4.2.2.2 Automatically encoding traces to Promela code

McPatom uses Spin model checker to detect atomicity violations in a partial order

thread model. This section shows how we realize a partial order thread model from

a recorded trace in Spin's underlying language Promela.

De�ning Shared Variable Accesses McPatom de�nes every shared variable v

as a short in Promela, automatically assigns a unique value for all reading accesses

and a unique value for all writing accesses in each thread. Formally, let rw ∈ {r, w}

and tid be thread ID, each access of v is de�ned as v=rw+tid. Since the maximum

number of threads per process is limited to 64 in POSIX threads, McPatom sets r

to 0, and w to 64. For example, given two threads: t1(tid=1) and t2(tid=2), and a

shared variable v, McPatom makes the following assignments :

1. v = 64+1 for each writing access of v in thread t1,

2. v = 1 for each reading access of v in thread t1,

3. v = 64+2 for each writing access of v in thread t2,

4. v = 2 for each reading access of v in thread t2.
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#define NUM_LOCKS 100

short locked[NUM_LOCKS] = -1;

inline Lock(l) {

if

:: atomic {( locked[l] == -1) -> locked[l] = _pid}

fi;

}

inline Unlock(l) {

assert(locked[l] == _pid);

locked[l] = -1;

}

Figure 4.3: Promela Code Modeling Mutex Locks

De�ning Synchronization Primitives McPatom automatically generates Promela

code for all synchronization primitives. Due to space limit, we only present Promela

code for mutex locks. McPatom models synchronization events to capture the causal

relationships between threads, to prune infeasible interleavings. The Promela code

shown in Figure 4.3 models the POSIX Thread routines pthread_mutex_lock and

pthread_mutex_unlock. The atomic construct groups indivisible statements to-

gether to ensure no interleaving within an atomic sequence. Lock inline function

accepts a lock l as its argument. If lock l is not locked, Lock function locks it and

sets the owner to the thread that is the prede�ned variable _pid for the executing

process in Promela. If lock l is in locked status, no guards are executable so that the

thread is blocked until lock l is available according to Promela semantics. Unlock

inline function simply sets lock l to unlocked status. It is exactly what is required

to model locking and unlocking of a mutex lock.

De�ning Threads All events with regard to a particular thread from the recorded

trace are grouped into a Promela process in which each event is represented by its

corresponding Promela code de�ned in previous steps as shown in Figure 4.4. Since

the maximum number of threads per process in POSIX threads is 64, which is well
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proctype t1() { ... }

proctype t2()

{

Lock(init_lock); /* thread.c - 240 */

init_count = 0 + 2; /* thread.c - 241 */

init_count = 64 + 2; /* thread.c - 241 */

Signal(init_cond); /* thread.c - 242 */

Unlock(init_lock); /* thread.c - 243 */

...

}

init

{

run t2(); /* thread.c - 172 */

...

}

Figure 4.4: A Sample of Partial Promela Code

below the maximum number (256) of processes allowed in Promela, we do not have a

problem to encode all possible threads occurring in a recorded trace. The interleaved

execution of processes in the Promela program generates all alternative permissible

traces in the partial order thread model.

4.3 De�ning and Encoding Unserializable Interleaving Pat-

terns between Two Threads

Atomicity is a semantic correctness property for concurrent programs. A thread

interleaving is serializable if and only if it is equivalent to a serial execution, which

executes a code region without other threads interleaved in between. The code region

is typically enforced as atomic explicitly in the code. When proper synchronization

is missing to enforce atomicity, atomicity violation bugs may occur. [50] proved that

a thread interleaving is serializable if and only if its con�ict graph is acyclic.
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Most concurrency bugs involve two threads, instead of a large number of threads,

based on the study in [11], in which 101 out of 105 bugs involved only two threads.

Thus atomicity violation bugs in a multi-thread program can be explored through

every pair of threads. Our work is inspired by the works in [10][12], which addressed

a special case of unserializable interleavings with three accesses of the same shared

variable. However, as Figure 4.5 shows, there are real world bugs involving four

accesses of the same shared variable. Furthermore, there can be more accesses

involved, such as reading accesses of a shared variable for logging purpose. The

patterns given in this chapter cover atomicity violation bugs involving any number

of accesses of a shared variable between a pair of threads.

4.3.1 Three-access and Four-access Atomicity Violation

Many recent works focused on three-access atomicity violations [10][12][11], which

involve one shared variable, two threads and three accesses to the variable. For sim-

plicity, two threads are referred as a local thread (Thread 1) and a remote thread

(Thread 2), the opposite view is also explored during the detection process. If two

consecutive accesses of a shared variable in a local thread are interleaved with an

access to the variable from a remote thread, the interleaving is a potential unserializ-

able one. In practice, unserializable interleavings indicate the presence of atomicity

violation bugs. The explanation of unserializable interleavings of three accesses and

many real world atomicity violation bugs can be found in [10].

Three-access atomicity violations are chosen by tools above because (1) there

are many real world atomicity violation bugs involving only three accesses, and

(2) checking only two accesses (current access and previous access) in a thread

can reduce the complexity of algorithms. However, some atomicity violation bugs
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Figure 4.5: A four-access atomicity violation bug [51] in Mozilla (Incorrect interleav-
ing 1 was detected by PSet [51] and missed by AVIO [10], while incorrect interleaving
2 cannot be detected by either PSet or AVIO.)

involve more than three accesses. A real world example [51] is shown in Figure 4.5.

The shared variable accesses in Thread 1 must be in an atomic region; otherwise,

a possible interleaving may result in HandleEvent function of Thread 2 returning

with a missing event. PSet [51] detected this bug (incorrect interleaving 1) since

PSet keeps track of either the last writer or the set of last readers for every memory

location. However PSet cannot detect the mutant of the bug (incorrect interleaving

2) because in PSet's view the mutant only involves a set of last readers and the

current reading access. AVIO [10] cannot detect this bug because it involves more

than three accesses.

4.3.2 Patterns of Two-thread Atomicity Violations involving

Any Number of Accesses

In the sequel, a two-thread atomicity violation refers to a two-thread atomicity viola-

tion involving any number of accesses of a shared variable, and A ∈ {Read,Write},
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Figure 4.6: Unserializable Interleavings with two threads. In (1)(2)(3)(5), W in
Thread 2 unexpectedly changes the value; In (4), An intermediate value in Thread
1 is read by Thread 2.

R = Read, W = Write, A∗ denotes zero or more A, A+ denotes one or more A, R∗

denotes zero or more R and R+ denotes one or more R. This section gives a set of

patterns covering all possible two-thread atomicity violations.

Figure 4.6 shows all possible scenarios of unserializable interleavings with only

one access from Thread 2. If any of the unserializable interleaving patterns is

matched, it indicates a potential atomicity violation.

Theorem 2 (Completeness of the set of Patterns in Figure 4.6). The set of patterns

in Figure 4.6 is complete, i.e. they cover all possible unserializable interleavings

between two threads.

Proof. Let At11 , A
t2
2 , ..., A

tn
n be a sequence of atomic accesses in an interleaved exe-

cution of two threads, in which Atii (ti ∈ {1, 2}, Atii ∈ {Read,Write}, 1 ≤ i ≤ n)

denotes an atomic access from thread ti to the same shared variable. Let every sub-

sequence of At11 , A
t2
2 , ..., A

tn
n be of the form B1

1 , B
2
2 , B

1
3 where B

1
1 and B

1
3 of Thread 1
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are sequences of Atii (ti = 1), B2
2 of Thread 2 is a sequence of Atii (ti = 2). Let Pi be

pattern i. B2
2 is assumed to be or can be reduced without losing writing operations

to a single access A2
2. If B1

1 , A
2
2, B

1
3 does not match with any of the patterns in

Figure 4.6, B1
1 , A

2
2, B

1
3 satis�es ¬P1 ∧ ¬P2 ∧ ¬P3 ∧ ¬P4 ∧ ¬P5. Since operator ∧ is

commutative, we can select a speci�c order and carry out an incremental analysis

of possible B1
1 , A

2
2, B

1
3 based on each of Pi(1 ≤ i ≤ 5).

1. B1
1 , A

2
2, B

1
3 satis�es ¬P1. B

1
1 , A

2
2, B

1
3 can only be one of the following:

(a) B1
1 = A∗WA∗, A2

2 = W , B1
3 = A+

(b) B1
1 = A+, A2

2 = W , B1
3 = A∗WA∗

(c) B1
1 = A+, A2

2 = R, B1
3 = A+

2. B1
1 , A

2
2, B

1
3 satis�es ¬P1 ∧ ¬P2. B

1
1 , A

2
2, B

1
3 can only be one of the following:

(a) B1
1 = A∗WA∗, A2

2 = W , B1
3 = A∗WA∗

(b) B1
1 = A+, A2

2 = W , B1
3 = A∗WA∗

(c) B1
1 = A+, A2

2 = R, B1
3 = A+

3. B1
1 , A

2
2, B

1
3 satis�es ¬P1 ∧ ¬P2 ∧ ¬P3. B

1
1 , A

2
2, B

1
3 can only be one of the fol-

lowing:

(a) B1
1 = A∗WA∗, A2

2 = W , B1
3 = A∗WA∗

(b) B1
1 = A∗WA∗, A2

2 = W , B3 = A∗WA∗ which is equivalent to above one.

(c) B1
1 = A+, A2

2 = R, B1
3 = A+

4. B1
1 , A

2
2, B

1
3 satis�es ¬P1 ∧¬P2 ∧¬P3 ∧¬P4. B

1
1 , A

2
2, B

1
3 can only be one of the

following:
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(a) B1
1 = A∗WA∗, A2

2 = W , B1
3 = A∗WA∗

(b) B1
1 = R+, A2

2 = R, B1
3 = A+

(c) B1
1 = A+, A2

2 = R, B1
3 = R+

5. B1
1 , A

2
2, B

1
3 satis�es ¬P1 ∧¬P2 ∧¬P3 ∧¬P4 ∧¬P5. B

1
1 , A

2
2, B

1
3 can only be one

of the following:

(a) B1
1 = R+, A2

2 = R, B1
3 = A+

(b) B1
1 = A+, A2

2 = R, B1
3 = R+

According to the Serializability Theorem [50], an interleaved sequence is serializable

if and only if its con�ict graph is acyclic. Either 5(a) B1
1 = R+, A2

2 = R, B1
3 = A+

or 5(b) B1
1 = A+, A2

2 = R, B1
3 = R+ is serializable. Therefore, the completeness of

the set of patterns in Figure 4.6 is proved.

4.3.3 Automatically encoding atomicity violation patterns into

Linear time Temporal Logic (LTL) Formulas

For every shared variable and every pair of threads t1 and t2, McPatom automat-

ically de�nes a LTL formula (4.1) for each pattern in Figure 4.6 and another LTL

formula (4.2) reversing the view of t1 and t2. Let v be a shared variable, r = 0 and
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w = 64 as de�ned in section 4.2.2.2, Ai ∈ {r, w}, and tidi , tidi ∈ {1, 2}.

[]! <> ((v == A1 + tid1)&&

X((v == A2 + tid2)U((v == A3 + tid3)&& (4.1)

X((v == A4 + tid4)U(v == A5 + tid5)))))

[]! <> ((v == A1 + tid1)&&

X((v == A2 + tid2)U((v == A3 + tid3)&& (4.2)

X((v == A4 + tid4)U(v == A5 + tid5)))))

where �[]� denotes Always, �!� denotes Logical Negation, �<>� denotes Even-

tually, �X� denotes Next and �U� denotes Until. These formulas specify that the

atomicity violation patterns do not occur.

Using Figure 4.6 (2) as a concrete example, one formula in LTL is shown below:

[]! <> ((v == w + 1)&&

X((v == r + 1)U((v == w + 2)&& (4.3)

X((v == w + 2)U(v == r + 1)))))

(v == w+ 2)U(v == r+ 1) is true if and only if v == w+ 2 holds until v == r+ 1

is true or simply v == r + 1 holds without v == w + 2 holds. This subformula

captures W ∗
2R

+
1 in which W ∗

2 means zero or more writing accesses from Thread

2, R+
1 means one or more reading accesses from Thread 1. Furthermore, (v ==

w+2)&&X((v == w+2)U(v == r+1)) capturesW+
2 R

+
1 and (v == r+1)U((v ==

w + 2)&&X((v == w + 2)U(v == r + 1))) re�ects R∗1W
+
2 R

+
1 . Therefore, (4.3)

captures []! <> W1R
∗
1W

+
2 R

+
1 and ensures that patternW1R

∗
1W2R

+
1 in Figure 4.6 (2)

does not occur in the partial order thread model. The reason that the LTL formula

contains W+
2 instead of W2 is that there can be synchronization events between W2

and R+
1 , for each of those events, W2 needs to hold.
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4.4 Predictive Analysis of Atomicity Violation using Model

Checking

In this section, we discuss McPatom framework's general merits in terms of its

soundness and completeness as well as speci�c ways in using Spin model checker

[19] to show its applicability.

4.4.1 Soundness and completeness of McPatom

An important feature of a prediction method is its capability to predict as many

violations as possible. Since the majority of existing prediction methods uses an ab-

stract model extracted from one interleaved execution at a time from a multi-thread

program, a prediction method's capability rests on the quality of the abstract model

built and its thoroughness in exploring the permissible traces in the abstract model.

McPatom extracts the least constrained partial order thread model respecting the

causal relation from the observed interleaved execution and uses model checking to

explore all permissible traces in the partial order thread model.

Theorem 3. McPatom ensures the completeness of its prediction - any possible

atomicity violation involving a pair of threads accessing one shared variable in the

partial order thread model can be detected.

Proof. McPatom encodes all possible atomicity violation patterns involving a pair

of threads accessing one shared variable (Theorem 2) into linear time temporal

logic formulas. McPatom uses model checking to exhaustively check whether any

temporal logic formula fails in the partial order thread model. Thus none of possible

atomicity violation will be undetected.
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In general, McPatom cannot guarantee the soundness of its prediction, i.e., each

predicted atomicity violation is covered by a feasible execution, since data-�ow is

ignored in the partial order thread model.

One major potential problem using model checking is the state explosion prob-

lem. Fortunately, the state explosion problem will not occur in atomicity violation

prediction due to the following reasons (1) the partial order thread model (cap-

turing only shared variable accesses and synchronization events) used for model

checking is drastically smaller compared to the original multi-thread program, (2)

each atomicity violation pattern to be checked involves only one shared variable,

and (3) checking each atomicity violation pattern does not depend on the value of

the shared variable. Another possible problem with model checking is the potential

exponential number of possible interleavings due to the number of threads involved

and the number of shared variable accesses. This problem is partially resolved (1)

due to our focus on checking atomicity violations involving only two threads, (2) due

to the constraints imposed by causal relations that drastically reduce the number of

potential interleavings generated by the number of shared variable accesses, and (3)

due to our implementation strategies of grouping all reading event sequences in each

thread into atomic blocks in Spin to achieve partial order reductions and enforcing

the wait/signal order of condition variables in the observed execution while explor-

ing alternative interleavings. Our experiment results show very good performance

using model checking.
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70: proc 2 (t13) spin_av.pml :551 (state 28) [sharedvariable

= (0+13)]

72: proc 3 (t48) spin_av.pml :591 (state 31) [sharedvariable

= (64+48)]

76: proc 2 (t13) spin_av.pml :552 (state 29) [sharedvariable

= (0+13)]

Figure 4.7: A Sample of Atomicity Violation Trace Reported by Spin

4.4.2 Using Spin model checker to �nd atomicity violation

traces

McPatom selects Spin model checker [19] based on its maturity, popularity, and ca-

pability. Spin is used to check every atomicity violation freedom property involving

every pair of threads accessing every single shared variable one at a time in the par-

tial order thread model extracted from a single interleaved trace recorded through

instrumentation using Pin. Based on the partial order thread model encoded in

Promela in section 4.2.2.2, and the atomicity violation freedom property encoded in

LTL formulas in section 4.3.3, McPatom uses Spin to �nd atomicity violation traces

or report no atomicity violations. Figure 4.7 gives an example of atomicity violation

reported by Spin, which is mapped to real code in the original program.

Spin can be con�gured to search all errors or stop at the �rst error. McPatom

chooses to stop at the �rst error, thus McPatom reports no atomicity violation if

there exists no atomicity violation; when McPatom reports some atomicity violation

traces, there may be additional atomicity violations not yet reported, which can be

detected by re-running McPatom after grouping the previously reported violation

related accesses into an atomic region so that it will not cause a new violation in the

next run. For each shared variable and each pair of threads, an atomicity violation

is recorded in a Spin trail �le for each pattern if it exists. The Spin trail �le can be
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sharedvar =0+13; /* mod_log_config.c -1353*/ |if (len+buf ->outcnt >LOG_BUFSIZE)

sharedvar =64+48; /* mod_log_config.c -1373*/| buf ->outcnt += len;

sharedvar =0+13; /* mod_log_config.c -1369*/ |s = &buf ->outbuf[buf ->outcnt]

Figure 4.8: Promela code and the corresponding real code in the original program

Table 4.1: Bug List
Bug # Program Issue Number

1 Apache 25520
2 Apache 21287
3 Apache 21285
4 MySQL 644
5 MySQL 791
6 Mozilla-extract Figure 4.5

simulated by Spin to give a clear view of those accesses involved in the atomicity

violation, as shown in Figure 4.7.

4.4.3 Mapping the violations reported in Spin to the original

program

Atomicity violations reported in Spin, as shown in Figure 4.7 as an example, are

mapped to real code in original program. McPatom automatically identi�es the

related lines in Promela �les, in which the comments of each line in Promela are

�le names and line numbers of the corresponding source code. Figure 4.8 shows

the Promela code at the left and the corresponding real code at the right, for the

atomicity violation in Figure 4.7.

4.5 Evaluation

We have used several real-world systems with known bugs listed in Table 4.1 (the is-

sue numbers are the IDs in corresponding Bugzilla Databases) ([10],[51]) to examine
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Table 4.2: Performance

Program Program Input
Trace
Size
(MB)

Time
to

Check
(mins)

Number
of

Shared
Vari-
ables

Number
of Prop-
erties

Average
Time per
Property
(secs)

1 �t -p2 -m1024 4.3 304 3656 36560 0.499

2 fmm
Particles : 64
Processors : 2

10.8 183 1248 12480 0.88

3 lu -p2 -n16 0.3 0.44 5 50 0.53

4 radix -p2 -n10 3.7 328 3094 30940 0.636

5 Apache
2 concurrent

httperf
9.4 15.68 151 3360 0.005

Table 4.3: Performance (Continue)

Program
The Shared Variable with Maximum Number of Accesses

Number of Accesses Number of States Time to Check (secs)
1 �t 1041 3294 0.04
2 fmm 20064 9996 0.08
3 lu 282 941 0.02
4 radix 81 433 0.01
5 Apache 1415 16 less than 0.01
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our tool's bug prediction capability, as well as four programs [10] without atomicity

violations in SPLASH-2 parallel benchmark suite [52] to test the accuracy of our

tool (no false positives are reported).

Bug prediction capability

McPatom has successfully predicted all the known bugs listed in Table 4.1, especially

bug number 6 - an extraction of a real world atomicity violation bug reported in

[51], which evades PSet [51] because this bug involves a set of last readers and the

current reading access, and AVIO [10] because this bug involves more than three

accesses.

Accuracy

We have chosen four programs (also used in [10]) without atomicity violations in

SPLASH-2 parallel benchmark suite [52] to test whether McPatom produces viola-

tion predictions, which would certainly be false positives. McPatom passed this test

without reporting any violations.

Performance

Since McPatom framework uses model checking as the underlying atomicity viola-

tion prediction method and relies on a third party tool, Spin, to perform the model

checking, it is extremely important to demonstrate the applicability of McPatom.

We conducted the experiments1 on a PC with dual core 2.33GHz CPU and 2GB

memory. Performance data are given in Table 4.2 and Table 4.3, where time to

check included automatically running Spin, compiling generated pan.c and model

checking properties for all shared variables. There are ten properties to check for

1Data available at http://users.cs.�u.edu/~rzeng001/spin12/
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each pair of threads accessing a shared variable based on �ve violation patterns

and their mutants. Apache program contains more than two threads and results in

more properties to be checked. Instrumentation overhead was similar to that given

in [10]. Table 4.3 shows the shared variable with maximum number of accesses in

each program. From Table 4.2 and Table 4.3, it shows that the number of states

does not explode when the number of accesses increases since checking the shared

variable with maximum number of accesses took less than 0.01 seconds (not includ-

ing the time to run Spin and compile generated pan.c) while checking any shared

variable on average took 0.005 seconds. These preliminary experimental results are

very encouraging and demonstrate the scalability of McPatom. These results also

con�rm our belief that although the total number of possible interleavings to check

can explode quickly as the number of accesses increase; however, the number of

actual interleavings are drastically smaller due to the constraints imposed by causal

relationships between threads. Other major reasons, which also vastly reduce the

possible interleavings, are that McPatom takes advantage of the nature of atomic-

ity violations and considers only a pair of threads and accesses to a single shared

variable at one time, groups all reading event sequences in each thread into atomic

blocks in Spin to achieve partial order reductions , and enforces the wait/signal

order of condition variables in the observed execution while exploring alternative

interleavings. Table 4.2 and Table 4.3 show that the experiment with Apache has

even better performance than others, due to Apache's heavy use of condition vari-

ables. Since atomicity violations involving a single shared variable can be checked

independently from violations involving other shared variables, we can signi�cantly

reduce the duration (not the cumulative time) of model checking by using multiple

machines.
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4.6 Related Works

There are many recent works on tackling atomicity violations. Some works proposed

techniques to detect atomicity violations on actual program executions through test-

ing [53] or runtime monitoring ([10], [54], and [55]). Other works developed methods

to predict atomicity violations that may evade testing and runtime monitoring. In

this section, we mention some recent works most relevant to ours on dynamically

predicting atomicity violations. Most of these works share the following fundamen-

tal process: (1) instruments a multi-thread program P to record atomicity relevant

events, (2) extracts a trace τ of atomicity relevant events from an interleaved exe-

cution σ of P , (3) projects trace τ into a partial order model M based on a causal

relation de�ned on P , (4) explores various alternative trace τ ′ in M to predict po-

tential atomicity violations in a possible corresponding interleaved execution σ′ in

P. Various methods and their supporting tools di�er with regard to the strategies

used in the above process.

How to abstract a partial order modelM from a trace τ is critical. If the model is

too restrictive, many feasible atomicity violations cannot be explored. If the model

is too permissible, the prediction may not be sound, i.e. a predicted atomicity vio-

lation may not be a feasible interleaved execution of P. Penelope [56] ignores some

causal relationships in building a partial order model and thus requires additional

feasibility checking of a predicted atomicity violation. Fusion [12] abstracts a par-

tial order model called concurrent trace program (CTP) that ignores the causal

relation between di�erent threads. Linearized atomicity violation traces in CTP are

symbolically checked with additional order information from source codes to ensure

their feasibility. In [57], a theoretical study was conducted to analyze the complex-

ity of predicting atomicity violations, in which two simpli�ed partial order models
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are considered. The �rst one ignores all synchronization and the second one only

considers lock-based synchronization. It shows the tradeo�s between e�ciency and

accuracy. jPredictor [58] de�nes a partial order model based on a concept of sliced

causality and lock-atomicity, which may predict some infeasible violations. Our

work abstracts a partial order model respecting the causal relationships imposed

by all synchronization constructs, but without considering data-�ow, our work also

may produce some infeasible violations.

A variety of techniques have been proposed to explore atomicity violation traces

from an abstract partial order model. CTrigger [11] and Penelope [56] developed

di�erent algorithms to generate potential violation schedules and to prune away

many infeasible ones. However these algorithms may report infeasible atomicity

violation traces as well as miss feasible ones. jPredictor [58] uses model checking to

exhaustively check a property in the partial order model and is capable to predict

other concurrency bugs in addition to atomicity violations. Fusion [12] encodes

the partial order model, the source program, and three access atomicity violation

patterns into a logic formula; and uses a satis�ability modulo theory solver to check

the feasible interleavings for atomicity violations. Our work converts the partial

order model into a Promela program, de�nes a complete set of atomicity violation

patterns as temporal logic formulas, and then uses Spin model checker to produce

atomicity violation traces.

4.7 Summary

Concurrency bugs are extremely hard to detect using testing techniques due to huge

interleaving space. This chapter presents a tool McPatom using model checking

to predict atomicity violation concurrency bugs. McPatom is powerful and can
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explore a vast interleaving space of a multi-threaded program based on a small set

of instrumented test runs. McPatom is applicable to large real-world systems.

McPatom focuses on atomicity violations involving each single shared variable,

and thus cannot �nd atomicity violations involving multiple variables. Another

limitation is that redundant model checking may be performed if two recorded in-

terleaved traces yield the same partial order thread model.
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CHAPTER 5

METHODS FOR IMPROVING THE COVERAGE AND PRECISION

OF MCPATOM

5.1 Overview

Multi-threaded programs are prone to bugs due to concurrency. Concurrency bugs

are hard to �nd and reproduce because of the large number of interleavings. Most

non-deadlock concurrency bugs are atomicity violation bugs due to unprotected

accesses of shared variables by multiple threads. Existing approaches for detect-

ing atomicity violation are either static or dynamic. Static approaches [59] usually

su�ers from a large number of false positives due to the complexity of analyzing con-

currency and pointer aliasing. Dynamic approaches are either monitor based meth-

ods that require atomicity violations to manifest during monitored runs [11][54][55],

or predictive methods that explore atomicity violations in alternative interleavings

from some observed runs [56][12][57][58].

Predictive methods use either (1) under-approximate models ([60][61][58][62]) by

analyzing only interleavings with the same read-after-write relationships as in the

observed executions, which are a subset of all feasible interleavings; or (2) over-

approximate models ([63][56][64][65][66]) by exploring not only all feasible inter-

leavings but also infeasible interleavings due to data constraints and ad-hoc syn-

chronization, which may produce false positives. Table 5.1 shows ten interleaving

scenarios of three accesses to a shared variable between two threads that will result

in atomicity violations, among which only �ve can be predicted by methods using

under-approximate models while the other �ve are missed because some of read-

after-write relationships within three accesses are broken. Hence methods based on

under-approximate models have inadequate coverage, and methods based on over-
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Figure 5.1: Comparison with other predictive methods on coverage and precision,
in which each oval stands for the traces that can be generated in the corresponding
method as explained below.
UA - Under-approximate methods [60][61][58][62].
PPA - Post-prediction analysis method in this chapter, e.g. Figure 5.3.
Replay - Methods of rescheduling predicted violation traces, e.g. Figure 5.9(c).
Real code - Real program code, captured in Concurrent Trace Programs [12].
OA - Over-approximate methods [63][56][64][65][66], e.g. Figures 5.2, 5.4, 5.8, and
5.9(b).

approximate models are not precise. Many predictive methods mentioned above

explored the tradeo�s between precision and coverage.

This chapter presents two methods for improving the coverage and precision of

atomicity violation predictions: 1) a post-prediction analysis method on relaxing the

under-approximate models to increase coverage while ensuring precision; 2) a follow-

up replaying method to further increase coverage. The post-prediction analysis

method is lightweight and fast, and makes the precise predictions and achieves

better coverage than other existing methods using under-approximate models. A

comparison with other methods is given in Figure 5.1.
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Table 5.1: Limited coverage of prediction using under-approximate models for two
threads (T1 and T2)

Observed
Execution
T1 T2

Predicted
Execution
T1 T2

Description of Unserializability
or Missed Reason

C
ov
er
ed

R

R

W

R

W

R

Two reading accesses read from
di�erent writes

R

W

W

R

W

W

Forwarded writing access in T2
is overwritten

W

W

W

W

W

W

Forwarded writing access in T2
is overwritten

R

W

W

W

R

W

An intermediate value is read

W

W

W

W

W

W

Forwarded writing access in T1
is overwritten

M
is
se
d

W

R

W

None
Intra-thread read-after-write in
T1 prohibits interleaved writing
in T2

W

W

R

None
Inter-thread read-after-write
prohibits forwarded reading in
T2

W

R

R

None
Inter-thread read-after-write
prohibits forwarded reading in
T1

W

W

R

None
Intra-thread read-after-write in
T1 prohibits interleaved writing
in T2

W

R

W

None
Inter-thread read-after-write
prohibits forwarded reading in
T1
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5.2 Preliminaries

A multi-threaded program has a set of threads and a set of shared variables. An

observed execution σ = s1, ..., sn of a multi-threaded program P is a sequence of

executed statements. A trace is the projection of an execution to a sequence of

annotated shared variable accesses and synchronization events. Formally, a trace,

τ = e1, ..., em is a sequence of events where each event ei(1 ≤ i ≤ m) is a tuple

〈seqi, tidi, actioni, bri〉 in which seqi is an increasing sequence number, tidi is a thread

handle, actioni is either an atomic shared variable access or a synchronization event,

and bri is the number of branches between ei and its immediate preceding event

within the same thread. Given a trace τ = e1, ..., em, a partial order thread model

(Eτ ,≺) can be de�ned, where Eτ is the set of events occurring in τ and ≺ is a causal

relation on Eτ . The causal relation ≺ respects all constraints of synchronization

primitives and thread-local program orders. Sequential consistency is assumed in

this chapter, as it is typically accepted by other related works. A feasible atomicity

violation prediction in sequential consistent memory models is also feasible in other

memory models.

De�nition 11. A predicted atomicity violation in an interleaved trace τ ′ in (Eτ ,≺)

is a true violation if and only if it is contained in a feasible execution σ′.

The strength of the causal relation ≺ a�ects the size of possible interleaved

traces in (Eτ ,≺). When the same read-after-write relation in τ is enforced in ≺,

any predicted atomicity violation trace τ ′ is feasible. Such partial order thread

models are under-approximate and may miss feasible interleaved traces. On the

other hand, not enforcing the same read-after-write relation in τ within ≺ results in

over-approximate thread models that contain all feasible interleaved traces as well

as infeasible ones.

108



5.3 Post-prediction analysis

Methods using under-approximate models make precise (only feasible) atomicity

violation predictions but have limited coverage (missing other feasible atomicity

violations). This section introduces a post-prediction analysis method to improve

the coverage while ensuring precision. The under-approximate models can be relaxed

to become over-approximate models through removing the read-after-write relations

imposed by the observed execution. Our post-prediction analysis method works on

over-approximate models to remove false positives while achieving more coverage

than methods using under-approximate models. This analysis method is general and

is applicable to the prediction results from other methods using over-approximate

models. The only information needed is an observed trace τ and three memory

accesses in τ that forms an atomicity violation pattern in a predicted alternative

trace [63][12].

5.3.1 Data constraints causing false predictions

Data constraints concern data dependencies that may make a predicted atomicity

violation trace infeasible, such as the branch conditions that are dependent on shared

variables and queue accesses that are dependent on shared indexing variables. Figure

5.2 gives an example of data constraints that need to be taken into consideration

when analyzing an atomicity violation prediction. Figure 5.2(a) shows a trace of an

observed execution, in which shared variable index is read in line 7 and line 8 after

a writing of index in line 3, and hence there are data dependencies in two pairs of

accesses to index: line 3 and line 7, line 3 and line 8. Figure 5.2(b) shows a trace of

a predicted atomicity violation, in which line 10 has a writing access to the shared

memory item in Thread T2 between the reading (line 1R) access and writing access
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Figure 5.2: An example of data constraint analysis for false positives (extracted
from Apache)

(line 1W) in Thread T1. However, both pairs of accesses to index above are broken,

which makes the memory access in line 10 in the observed trace infeasible in the

predicted atomicity violation trace.

A perfect solution to the above problem requires a precise and complete partial

order thread model extracted from the observed trace. The precision ensures the

feasibility of any predicted atomicity violation in the partial order thread model, and

the completeness requires any feasible atomicity violation remain in the partial order

thread model. Enforcing all the read-after-write relations can ensure the precision of

the partial order thread models. Several methods [61][62] introduced the read-after-

write relations as a simple solution to ensure the precision. However, the constraints

imposed by read-after-write relations are too strong, thus make the resulting partial

order thread model over restrictive and under-approximate. Figure 5.3 shows an

example in which a real bug is missed if all the read-after-write relations are enforced,

because the reading access can be moved forward to read from a di�erent writing

access.
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Figure 5.3: A real bug is missed due to a read-after-write relationship

5.3.2 Ad-hoc synchronization causing false predictions

Ad-hoc synchronization is often used to ensure an intended execution order of certain

memory accesses. Speci�cally, instead of calling condition variable routines or using

other synchronization primitives, programmers often use ad-hoc loops to synchronize

a shared variable. A trace containing an ad-hoc synchronization includes a sequence

of reading accesses and a writing access, in which there is also a read-after-write

relationship as the data constraints discussed above. Figure 5.4 gives an example

of false positives related to an ad-hoc synchronization. (a) is an observed trace, in

which there is a sequence of reading accesses from line 2 to n+2 where n ≥ 0, and a

writing access in line n+1. Line n+2 reads after the writing in line n+1. (b) shows

a predicted atomicity violation trace, in which n+3R is a1i′ , line 1W is a2j′ , and line

n+3W is b1k′ . Line n+2 is a moved forward reading r1 as the case (1) in Lemma 6,

which breaks the read-after-write relationship between line n+1 and line n+2 in the

observed trace in (a). It is obvious the atomicity violation trace (b) is infeasible.

Thus the read-after-write relations in ad-hoc synchronization need to be enforced.

We treat ad-hoc synchronizations as a special case of data constraints discussed in

Section 5.3.1.
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Figure 5.4: A false positive related to an ad-hoc synchronization

5.3.3 Problem formulation

The method proposed in this section aims at avoiding false atomicity violation pre-

dictions while catching as many real bugs as possible. Our method works on over-

approximate models to remove false positives while achieving more coverage than

methods using under-approximate models.

During post-prediction analysis, any predicted atomicity violation trace is an

alternative interleaving respecting the same causal relations imposed by the syn-

chronization events as the original observed trace. Thus we can view a trace as a

sequence of atomic (reading or writing) accesses without synchronization events to

simplify the discussion. Let τ = at11 , a
t2
2 , ..., a

tn
n be a sequence of atomic accesses to

share variables in an interleaved execution of two threads, in which a superscript

indicates the thread an event belongs to, thus ti ∈ {1, 2} for 1 ≤ i ≤ n; and a

subscript indicates the occurrence position of an event in the interleaved trace.

Over-approximate methods in [63][11][56] were based on three-access atomicity

violation patterns a1i′ , a
2
j′ , a

1
k′ , where a

1
i′ and a1k′ are atomic accesses to a shared

variable x in thread 1 and a2j′ is an atomic access to x in thread 2. Table 5.1 gives

all possible scenarios that will result in atomicity violation patterns after reordering

the event in thread 2 to occur between the two events in thread 1.
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A predicted atomicity violation trace in over-approximate methods is τ ′ = ..., a1i′ ,

..., a2j′ , ..., a
1
k′ , ... with atomicity violation pattern a1i′ , a

2
j′ , a

1
k′ which are three consec-

utive accesses to a shared variable x. τ ′ is the result of reordering some accesses

in a given original observed trace τ such that (1) τ = ..., a1i , ..., a
1
k, ..., a

2
j , ... or (2)

τ = ..., a2j , ..., a
1
i , ..., a

1
k, ..., and thus may break the read-after-write relations in τ .

Note that accesses other than a1i′ , a
2
j′ , a

1
k′ are not explicitly identi�ed in τ ′ but may

also be reordered due to reordered a1i′ , a
2
j′ , a

1
k′ , and the exact positions of i′, j′, k′ in

τ ′ are not important. The corresponding i, j, k are the exact positions where three

accesses to x occurred in τ . τ may contain many other accesses to shared variables

including x. τ ′ is considered feasible if its pre�x up to a1k′ is feasible since anything

happens after a1k′ does not a�ect the feasibility of τ
′. Not all broken read-after-write

relations due to reordering a�ect the feasibility of τ ′, but some does.

5.3.4 Our method

The underlying idea of our method is checking whether any reordered event due

to reordered a1i′ , a
2
j′ , a

1
k′ may break read-after-write relations in the original trace.

Before reordering, a2j may happen after a1k, or before a
1
i . The idea of our method

is explained below assuming a2j happens after a
1
k, i.e. a

1
i 99K a

1
k 99K a

2
j , in Figures

5.5, 5.6 and 5.7. w and r are used to describe a read-after-write relationship with

regard to a shared variable other than the one in a1i′ , a
2
j′ , a

1
k′ . In Figure 5.5, a reading

event r2 is moved forward due to reordering of a2j , thus breaking the read-after-write

relationship between w1 and r2.

In Figures 5.6 and 5.7, Prev(a2j) denotes the immediate preceding access to the

same shared variable as a2j . In Figure 5.6, due to reordered a1i′ , a
2
j′ , a

1
k′ , Prev(a2j) is
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Figure 5.5: Read-after-write relationship is broken, assuming a1i 99K a
1
k 99K a

2
j and

a moved forward reading event before a1k′ .

moved forward to happen before a1i′ , thus r
2 is moved forward to happen before w1,

causing the read-after-write relationship between w1 and r2 is broken.

In Figure 5.7, due to reordered a1i′ , a
2
j′ , a

1
k′ , Prev(a2j) is moved forward to happen

before a1i′ , thus w
2 is moved forward to happen before r1 instead of happening after

r1, causing the read-after-write relationship between r1 and its original de�ning

writing access is broken.

Based on ideas above, Lemmas 5 and 6 identify all cases in which a reordered

event may a�ect the feasibility of τ ′. Let τ(a, b) be accesses in τ that occur after

a and before b, τ [a, b) be accesses in τ(a, b) including a, and τ(a, b] be accesses in

τ(a, b) including b, a 99K b denote event a occurs before event b, Prev(ai) denote

the immediate preceding atomic access to the same shared variable as a in thread

i, and Next(ai) denote the immediate succeeding atomic access to the same shared

variable as a in thread i.

Lemma 5. Given a predicted atomicity violation trace τ ′ = ..., a1i′ , ..., a
2
j′ , ..., a

1
k′ , ...

with atomicity violation pattern a1i′ ,a
2
j′ , a

1
k′ with regard to a shared variable x, and
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Figure 5.6: Read-after-write relationship is broken, assuming a1i 99K a
1
k 99K a

2
j and

a moved forward reading event before a1i′ .

Figure 5.7: Read-after-write relationship is broken, assuming a1i 99K a
1
k 99K a

2
j and

a moved forward writing event.
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the original observed trace τ = ..., a1i , ..., a
1
k, ..., a

2
j , .... τ ′ may be infeasible due to

a violated data constraint (a broken read-after-write relationship) caused by one of

the following cases (1) a moved forward reading event in thread 2: r2∈τ(a1k, a
2
j) and

r2 99K a1k′; (2) a moved forward reading event in thread 2: r2 ∈ τ(a1i , P rev(a2j)] and

r2 99K a1i′; or (3) a moved forward writing event in thread 2: w2∈τ(a1i , P rev(a2j)],

w2 99K a1i′ and there is some branch instruction between τ [a1i , a
1
k).

Proof. Given the observed trace τ = ..., a1i , ..., a
1
k, ..., a

2
j ,..., to obtain the violation

trace τ ′ = ..., a1i′ , ..., a
2
j′ , ..., a

1
k′ , ..., all access events in thread 2 between k and j are

moved before k′ (we can assume k′ = j′ + 1 since the violation trace is reported as

soon as a violation pattern occurs, and thus do not need to consider any thread 2

event after j). Some access events in thread 2 between i and k may be moved before

i′ (we can assume the last thread 2 event need to move before i′ is Prev(a2j) since

the violation pattern is reached as long as there is no other access to x in thread 2

between i′ and j′). We analyze all such needed moves and their impact below: (1)

for a moved forward reading event: r2∈τ(a1k, a
2
j) and r

2 99K a1k′ : if there is a writing

event w1 in thread 1 accessing the same shared variable as r2 such that w1∈τ(a1k, a
2
j)

and w1 99K r2 in τ . The read-after-write relationship w1 99K r2 in τ is broken since

a1k′ 99K w
1 in τ ′. As a result, the new value of r2 may make τ ′[a2j′ , a

1
k′ ] infeasible;

(2) a moved forward reading event in thread 2: r2 ∈ τ(a1i , P rev(a2j)] and r
2 99K a1i′ :

if there is a writing event w1 in thread 1 accessing the same shared variable as r2

such that w1∈τ(a1i , P rev(a2j)] and w
1 99K r2 in τ . The read-after-write relationship

w1 99K r2 in τ is broken since a1i′ 99K w
1 in τ ′. As a result, the new value of

r2 may make τ ′[a1i′ , a
2
j′ ] infeasible; (3) a moved forward writing event in thread 2:

w2∈τ(a1i , P rev(a2j)] and w2 99K a1i′ : if there is a reading event r1 ∈ τ [a1i , a
1
k) in

thread 1 accessing the same shared variable as w2 such that r1 99K w2 in τ ′. This

new read-after-write relationship may break the old read-after-write relationship of
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r1. However, the new value of r1 does not a�ect the execution of any thread 2 event

within τ(r1, a1k′) in τ
′, but may a�ect the execution of some thread 1 event between

τ [r1, a1k′ ], which can happen in two cases: (i) if the new value of r1 is used in some

branch instruction between τ [a1i , a
1
k); (ii) if the new value of r1 directs the access

at a1k′ to a di�erent shared variable when the memory address of the access at a1k′

depends on the value of r1, a new atomicity violation pattern r′1, w2, r1 on shared

variable y occurs, which makes τ ′ a feasible atomicity violation trace. As a result,

the new value of r1 may make τ ′[a1i′ , a
1
k′ ] infeasible only if the new value of r1 is used

in some branch instruction between τ [a1i , a
1
k).

Note a moved forward writing event in thread 2: w2∈τ [Prev(a2j), a
1
k) and w

2 99K

a1k′ may break read-after-write relationships after a1k′ , but does not a�ect the feasi-

bility of τ ′.

Figure 5.2 shows an example of case (1) in Lemma 5, where the predicted atom-

icity violation trace τ ′ in (b) is an infeasible alternative interleaving of the original

observed trace τ in (a). In (b) line 1R is a1i′ , line 10 is a2j′ , line 1W is a1k′ , and line

7 is the moved forward reading r. Its read-after-write relationship with line 3 is

broken. As a result, the condition in line 7 is true and Wait is executed that makes

τ ′ infeasible.

Lemma 6. Given a predicted atomicity violation trace τ ′ = ..., a1i′ , ..., a
2
j′ , ..., a

1
k′ , ...

with atomicity violation pattern a1i′ ,a
2
j′ , a

1
k′ with regard to a shared variable x, and

the original observed trace τ = ..., a2j , ..., a
1
i , ..., a

1
k, .... τ ′ may be infeasible due to

a violated data constraint (a broken read-after-write relationship) caused by one of

the following cases (1) a moved forward reading event in thread 1: r1∈τ(a2j , a
1
i ] and

r1 99K a2j′; (2) a moved forward reading event in thread 1: r1 ∈ τ(Next(a2j), a
1
k)] ,

r1 99K Next(a2j′), and there is some branch instruction between τ [a1i , a
1
k).
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Figure 5.8: A false positive due to local dependency

Proof. The proof of case (1) is similar to that in Lemma 5 and is omitted here. In

case (2), only a thread 1 reading event r1 ∈ τ(Next(a2j), a
1
k)] needs to be moved

forward to reach the violation pattern such that Next(a2j) appears after a1k′ in τ
′.

However, the new value of r1 does not a�ect the execution of any thread 2 event

in τ(r1, a1k′) in τ ′, but may a�ect the execution of some thread 1 event between

τ [r1, a1k′ ], which can only happen if the new value of r1 is used in some branch

instruction between τ [a1i , a
1
k) as shown in the proof of Lemma 5. As a result, the

new value of r1 may make τ ′[a1i′ , a
1
k′ ] infeasible.

Note any moved forward writing event in thread 1 does not a�ect the feasibility

of τ ′.

Figure 5.8 shows an example of case (1) in Lemma 6, where the predicted atom-

icity violation trace τ ′ in (b) is an infeasible alternative interleaving of the original

observed trace τ in (a). In (b), line 3 is a1i′ , line 2 is a2j′ , line 5 is a1k′ , and line

3 is the moved forward reading r1∈τ(a2j , a
1
i ] , which broke the old read-after-write

relationship from line 2, and now reads a new value 0. As a result, b1k′ will not be

executed and thus τ ′ is infeasible.

Figure 5.3 shows another example, which is not infeasible according to of case

(1) in Lemma 6.
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Lemmas 5 and 6 de�ne the necessary conditions that a violated data constraint (a

broken read-after-write relationship) can occur and thus makes a predicted atomicity

violation trace infeasible. Thus Lemmas 5 and 6 have ensured that any surviving

predicted atomicity violation trace is a feasible one. Our post-prediction analysis

method ensures precision while eliminating only a subset of predicted atomicity

violation traces breaking the read-after-write relations in the original observed trace.

5.3.5 Algorithm of post-prediction analysis

An observed trace contains a sequence of events, and each event is de�ned by a

thread identi�er tid, a memory access type (read or write) rw, a shared variable

var, and the number br of branches between this event and its immediate preceding

event within the same thread. Other �elds in an observed trace are omitted here

without a�ecting the post-prediction analysis. An atomicity violation prediction is

based on an atomicity violation pattern a1i′ , a
2
j′ , a

1
k′ involving two threads 1 and 2.

The algorithm shown in Algorithm 5.1 analyzes the feasibility of a predicted violation

according to Lemmas 5 and 6. Five true returns in the algorithm correspond to the

�ve cases in Lemmas 5 and 6.

5.4 Replay

Post-prediction analysis on predicted violation traces, while making prediction pre-

cise and reducing possible missing real bugs, may still miss real bugs due to the

lacking of complete data dependencies. Replaying validates a predicted violation

execution trace by orchestrating thread scheduling in a concrete execution for a

given input, can be used to alone to eliminate infeasible traces, or used after post-

prediction analysis to validate the feasibility of uncertain traces.
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Algorithm 5.1 Algorithm of post-prediction analysis

Input: τ : seq → (tidseq, rwseq, varseq, brseq), and three seq: ...a1i ..., ...a
2
j ..., ...a

1
k...

that contain accesses relevant to a violation pattern a1i′ , a
2
j′ , a

1
k′ in τ

′.
Output: Whether a predicted violation maybe infeasible.
1: if a2j > a1i then
2: prev ← max(seq) where tidseq = 2∧varseq = vara2j∧seq < a2j
3: for r ∈ (a1i , prev] ∪ (a1k, a

2
j) ∧ rwr = read ∧ tidr = 2 do

4: w = max(seq) where rwseq = write ∧ varseq = varr ∧ seq < r
5: if r ∈ (a1i , prev] ∧ w > a1i ∧ tidw = 1 then
6: return True
7: end if

8: if r ∈ (a1k, a
2
j) ∧ w > a1k ∧ tidw = 1 then

9: return True
10: end if

11: end for

12: for r ∈ [a1i , a
1
k) ∧ rwr = read ∧ tidr = 1 do

13: w = min(seq) where rwseq = write ∧ varseq = varr ∧ seq > r ∧ tidw = 2
14: if w ≤ prev ∧ ∃seq � (r < seq < a1k) ∧ (tidseq = 1) ∧ brseq > 0 then
15: return True
16: end if

17: end for

18: end if

19: if a2j < a1i then
20: for r ∈ (a2j , a

1
i ] ∧ rwr = read ∧ tidr = 1 do

21: w = max(seq) where rwseq = write ∧ varseq = varr ∧ seq < r
22: if w ≥ a2j ∧ tidw = 2 then
23: return True
24: end if

25: end for

26: next← min(seq) where tidseq = 2∧varseq = vara2j∧seq > a2j
27: for r ∈ (a1i , a

1
k) ∧ rwr = read ∧ tidr = 1 do

28: w = max(seq) where rwseq = write ∧ varseq = varr ∧ seq < r ∧ tidw = 2
29: if w > next ∧ ∃seq � (r < seq < a1k) ∧ (tidseq = 1) ∧ brseq > 0 then
30: return True
31: end if

32: end for

33: end if

34: return False
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Figure 5.9: An example of replay related to data constraints

Figure 5.9 gives an example of data constraints, in which x is a shared variable.

In the �gure, (a) is an observed execution in which there are no interleaved accesses

between line 1 and line 2; (b) and (c) are violation traces predicted based on over-

approximate methods [63]. Both (b) and (c) break the read-after-write relationships

between line 2 and line 3, and are classi�ed as uncertain (maybe infeasible) traces

by post-prediction analysis. During replay, (b) is recognized as a false positive since

line 5 cannot be executed because the branch condition is not satis�ed, and (c) is

con�rmed as violation trace.

Given atomicity violation trace τ ′ = ..., a1i′ , ..., a
2
j′ , ..., a

1
k′ , ... with atomicity vio-

lation pattern a1i′ , a
2
j′ , a

1
k′ , we insert two signal-wait pairs in the following way: a

signal after a1i′ , a wait before a
2
j′ , a signal after a

2
j′ and a wait before a1k′ . The

memory access order will be enforced to let atomicity violation manifest; however,

as shown in Figure 5.10(a), there can be a deadlock even for a feasible prediction.
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Figure 5.10: Replaying need considering mutex

Thread T2 �rstly acquires the lock then wait for a signal, while thread T1 cannot

acquire the lock thus not be able to issue a signal, as a result, the two threads

cannot make any progress and run into a deadlock. Therefore, mutex locks need to

be taken into consideration when inserting instructions for enforcing the predicted

interleaving. Let L1
1 and L2

2 be two sets of locks acquired before a1i′ and between

a1i′and a2j′ respectively, L = L1
1 ∩ L2

2, and let FirstLock(L) be the instruction for

the �rst lock acquiring in L, LastUnlock(L) be the instruction for the last lock

releasing in L. If L 6= ∅, instead of inserting a signal-wait pair as described earlier,

we insert a signal after LastUnlock(L) and a wait before FirstLock(L). We de�ne

and insert another signal-wait pair similarly between a2j′ and a1k′ . An example is

shown in Figure 5.10(b).

A potential problem with above inserted signal-wait pair is that the modi�ed

program may run into deadlocks, livelocks and missing memory accesses, as shown in
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Figure 5.11. Figure 5.11(a) shows a deadlock, a signal-wait pair is inserted between

line 3 and 2, and there exists an ad-hoc synchronization implemented by a shared

variable done. T2 is waiting on T1 to set the �ag done, while T1 is waiting on T2

as required by the predicted interleaving, it results a circular wait. Figure 5.11(b)

shows a missing memory access, the predicted violation trace expects the memory

access in line 2 interleaves between memory accesses in line 3 and line 5. However,

line 5 together with inserted instructions are not executed at all as the condition

in line 4 is not satis�ed, so replaying misses a memory access and is not able to

observe the predicted interleaving. Figure 5.11(c) shows a livelock in which T1

can not make progress while T2 continues as normal, because line 5 together with

inserted instructions are not executed.

A simple solution is to use timeout mechanism to detect deadlocks and livelocks

caused by inserted signal-wait instructions, and to check signal-wait pairs in observed

replaying to detect missing memory accesses. If a deadlock, or a livelock or some

missing memory accesses are detected, the predicted interleaving is not feasible and

is marked as a false positive; otherwise, replaying continues as usually without a

large number of context switches.

5.5 Experiments and Evaluation

We have implemented the proposed algorithm in a prototype tool based on the tool

in [63] and conducted several experiments. The tool is automatic such that it only

requires running a use case of the target executable as the manual step. During our

experiments for the replaying method, predicted traces of known atomicity viola-

tions in [63] and Table 5.3 can be validated through replaying successfully, while all

other predicted violation traces cannot be replayed due to data constraints. Our ex-
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Figure 5.11: False positives pruned out by replaying
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Table 5.2: Experimental Results using Apache and FFmpeg
Program-Size Events_in_Trace OA PPA PPA-time

Apache 1.5 MB 140532 155 1 12.1 sec
FFmpeg 41 MB 550352 29 0 11.6 sec

periments for post-prediction analysis PPA used the benchmarks in [12], Apache web

server and FFmpeg audio/video codec library. The sequel in this section discusses

the experiments for PPA.

The results of experiments using Apache and FFmpeg are shown in Table 5.2,

and the results of experiments using the benchmarks in [12] are shown in Table 5.3.

In Table 5.2, Apache has a known atomicity violation bug but FFmpeg does not.

The �rst column Program-Size gives the size of the executable, the second column

Events_in_Trace lists the number of events in the trace; the third column OA

contains the number of prediction by the over-approximate method McPatom; the

fourth column PPA is the number of prediction by post-prediction analysis PPA; the

last column PPA-time is the time in seconds to perform post-prediction analysis.

In Table 5.3, Programs atom001 and atom002 have atomicity violations that

are extracted from a real bug [10]. Their modi�ed versions without atomicity vi-

olations are atom001a and atom002a. Other programs are Linux/Pthreads/C im-

plementation of the parameterized bank example [67], in which program bank-av-8

has atomicity violations; program bank-sav-8 adds a condition variable as a partial

�x without avoiding all atomicity violations for any shared variable; and program

bank-nav-8 adds a transaction lock to remove all atomicity violations. The �rst

three columns provide the statistics of programs, in which svars-causing-av is the

number of shared variables that cause atomicity violations. The next three columns

provide the statistics of our method, which uses the results of an over-approximate

method McPatom [63]. OA-svars is the number of shared variables that cause atom-
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icity violations predicted by over-approximate methods, PPA-svars is the number

of shared variables predicted by post-prediction analysis PPA that cause atomicity

violations and PPA-time is the running time in seconds. The last three columns

are statistics provided in [12], in which hb-pavs is the number of predicted atomicity

violation traces and sym-avs is the number of feasible atomicity violation traces out

of hb-pavs obtained from using symbolic method CTP. Note that a single shared

variable may generate many possible atomicity violations traces, which can often

be �xed in a single �x. We count shared variables in PPA-svars that have at least

one feasible predicted violation trace. The last column UA-avs is the number of

predicted atomicity violation traces by under-approximate methods that enforce all

read-after-write relations.

Lightweight and fast

The running times in Table 5.3 show our method's scalability is promising compared

to that of the symbolic method CTP. When the size of programs grows, e.g. bank-

nav-8 contains more code than others, the formulas built in CTP also grow bigger

and require more time to be solved. Our method stops as soon as a broken read-after-

write relation de�ned in Lemmas 5 or 6 is detected, incurs insigni�cant time increase

when the size of a program grows, and thus can handle much larger programs.

Our method is also evaluated using the complete Apache web server and FFmpeg

audio/video codec library, as shown in Table 5.2, in which the running times show

the scalability of our method is promising for large scale software.
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Precise predictions and better coverage

The results show that our method reports no false positives while reporting more real

bugs than under-approximate methods. Thus our method is precise and improves

coverage. One shared variable in atom002 is missed due to read-after-write relations

of accesses to other shared variables. Our method cannot decide whether it is feasible

because the value of a shared variable or a local variable depending on the value

of a shared variable a�ects the feasibility. [12] collects and encodes all program

information in CTP and thus can detect it.

5.6 Related Works

5.6.1 Post-prediction analysis

The post-prediction analysis method in this chapter achieves precision and improves

coverage by reducing the number of missing real bugs compared to other precise

methods. Under-approximate models such as [61][58][62] admit only interleavings

with the same read-after-write relations as in the observed executions to achieve pre-

cision; however, the constraints imposed by read-after-write relations are too strong,

thus make the model over restrictive and may miss real bugs. Over-approximate

models such as [63][56][64][65][66] admit not only all feasible interleavings but also

infeasible interleavings due to data constraints and ad-hoc synchronization, thus

make prediction imprecise due to false positives. [60] allows broken read-after-write

relations but prohibits the thread with such a read event to continue, hence can be

considered as an under-approximate model.

CTP [12] is an analysis tool applicable to the predicted violation traces gener-

ated by over-approximate methods, thus is the most relevant work to ours. CTP
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achieves precision and complete coverage by using the values of shared variables

and local variables in the predicted atomicity violation trace, which requires heavy

instrumentation and the static analysis of source code of expressions. Our method

explores ways to ensure precision and to improve coverage while avoiding heavy

instrumentation and the static analysis of source code.

5.6.2 Replay

Penelope [56] instruments the scheduler to follow a predicted schedule, from which

it gets a set of threads and the number of steps that each thread should take before

next context switch. Similar to us, the way it counts steps is also based on the

events that were monitored during an observed execution. Only after execution

reaches the point that the violation pattern is executed, the scheduler releases all

threads to execute as they normally do. Thus, before it reaches the point, it has to

pay the same overhead as an observed execution, and in addition the overhead of

instrumenting scheduler.

Maple [68] memoizes tested interleavings and tries to expose untested interleav-

ings for a given test input to increase interleaving coverage. The predicted untested

interleavings are exposed by controlling the thread schedule during execution for the

test input. In Maple, the active scheduler takes the test input and forces all threads

to run on a single processor, and therefore records the order of the thread schedule.

CHESS [53] is a systematic and deterministic testing tool for concurrent pro-

grams. It takes complete control over scheduling of threads. However, its scheduler

is non-preemptive , therefore cannot model the behavior of a real scheduler that

may preempt a thread at any point in its execution.

129



Existing works mentioned above need heavy context switches. However, even fol-

lowing exactly the same schedule of a predicted atomicity violation trace using heavy

context switches cannot guarantee perfect replaying. Perfect replaying is impossi-

ble without capturing all sources of nondeterminism, as demonstrated in [69][70][71].

Our method reduces context switches to the minimal level by allowing nondetermin-

ism while trying to ensure the determinism of events related to predicted atomicity

violations. In case of a large number of predicted atomicity violation traces, our

method performs post-prediction analysis �rst to e�ectively and signi�cantly reduce

the number of replays needed.

5.7 Summary

Predictive methods for atomicity violations need to consider the tradeo�s between

precision and coverage. This chapter presented a post-prediction analysis method

and a replaying method to ensure the precision and improve the coverage of predicted

atomicity violation traces generated from over-approximate methods. The post-

prediction analysis method covers all ten scenarios in Table 5.1. The replaying

method reduces context switches to the minimal level to improve scalability. Figure

5.1 compares our methods with other predictive methods on coverage and precision,

in which our post-prediction analysis method PPA improves coverage while ensuring

precision, our replaying method further improves coverage and ensures precision as

well. Both methods does not rely on the instrumentation of local variables and the

analysis of source code. Therefore, our methods are scalable and applicable to large

programs.
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CHAPTER 6

CONCLUSION

6.1 Summary

This dissertation presents methods and tools for modeling and analyzing concurrent

software systems at design and code levels, to improve reliability of concurrent

software. At design level, we build a formal speci�cation of Mondex using Petri

nets, and provide a way of using model checking to verify the formal speci�cation of

Mondex, including the abstract model and concrete model. We also develop methods

to mine traces to build Petri nets automatically to aid designing scienti�c work�ows.

At code level, we develop methods and tools to predict atomicity violation bugs using

binary instrumentation and model checking techniques.

Our method for mining traces to build Petri nets is based on provenance of scien-

ti�c work�ows, and mine both data and control dependency. The mining result can

either suggest part of others' work�ows for consideration, or make familiar part of

work�ow easily accessible, thus provide recommendation support for scienti�c work-

�ows composition, which o�ers a new approach to build work�ows in the context

of scienti�c work�ows. Given the fact that provenance captured in any scienti�c

work�ow based systems or system level monitoring systems contains information

about tasks and their temporal order, the proposed algorithm can give both control

and data dependency for recommendation during scienti�c work�ows composition.

Our tool McPatom, using model checking to predict atomicity violation concur-

rency bugs, is powerful and can explore a vast interleaving space of a multi-threaded

program based on a small set of instrumented test runs. McPatom is applicable

to large real-world systems. Predictive methods for atomicity violations need to

consider the tradeo�s between precision and coverage. Our post-prediction anal-

131



ysis method and our replaying method are presented to ensure the precision and

improve the coverage of predicted atomicity violation traces generated from over-

approximate methods. The post-prediction analysis method covers all ten possible

scenarios. The replaying method reduces context switches to the minimal level to

improve scalability. Comparing to other predictive methods on coverage and pre-

cision, our post-prediction analysis method PPA improves coverage while ensuring

precision, our replaying method further improves coverage and ensures precision as

well. Both methods does not rely on the instrumentation of local variables and the

analysis of source code. Therefore, our methods are scalable and applicable to large

programs. The experiment result shows the scalability of our methods is promising

compared to related works.

6.2 Future Work

In our tool McPatom, although the extracted thread model contains all equivalent

interleavings that have the same happen-before relationships as the instrumented

interleaved trace, there can be other interleaved traces containing di�erent happen-

before relationships involving other pairs of threads due to branching structures in

a concurrent program. Thus in order to predict all potential atomicity violations,

enough instrumented interleaved traces need to be captured during test runs of the

program. In a word, existing works on atomicity violation prediction check one path

at a time, however, it is desired for predictive analysis to reason on entire families

of paths. Additional methods can be developed in the future work, to improve the

branch coverage toward the completeness of predicting atomicity violations.
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