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ABSTRACT OF THE THESIS 

CLIMATE, LAND USE AND HYDROLOGIC SENSITIVITIES OF STORMWATER 

QUANTITY AND QUALITY IN COMPLEX COASTAL URBAN WATERSHEDS 

by 

Shams Al-Amin 

Florida International University, 2013 

Miami, Florida 

Professor Omar I. Abdul-Aziz, Major Professor 

The study analyzed hydro-climatic and land use sensitivities of stormwater runoff and 

quality in the complex coastal urban watershed of Miami River Basin, Florida by 

developing a Storm Water Management Model (EPA SWMM 5). Regression-based 

empirical models were also developed to explain stream water quality in relation to 

internal (land uses and hydrology) and external (upstream contribution, seawater) sources 

and drivers in six highly urbanized canal basins of Southeast Florida. Stormwater runoff 

and quality were most sensitive to rainfall, imperviousness, and conversion of open 

lands/parks to residential, commercial and industrial areas. In-stream dissolved oxygen 

and total phosphorus in the watersheds were dictated by internal stressors while external 

stressors were dominant for total nitrogen and specific conductance. The research 

findings and tools will be useful for proactive monitoring and management of storm 

runoff and urban stream water quality under the changing climate and environment in 

South Florida and around the world.  
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CHAPTER 1 

INTRODUCTION 

1.1   BACKGROUND 

The growth and expansion of urban areas have been intervening with the natural drainage 

of surface water and stressing the surface water quality all over the world. The 

importance of research in stormwater science, engineering and management, therefore, 

cannot be overstated. Stormwater runoff is the fourth most extensive cause of water 

quality impairment of rivers, and the third most extensive source of water quality 

impairment of lakes in the USA (USEPA, 1990; Novotny, 1991; Novotny & Olem, 1994; 

Tsihrintzis & Hamid, 1996). Research in stormwater science, engineering and 

management revolves around multidimensional aspects (e.g., climate, land use, 

hydrology) and a complete understanding of urban runoff is yet to be achieved (Marsalek 

& Viklander, 2011). Further research is, therefore, needed to trace the major stressors of 

stormwater and surface water quality. 

1.2  SIGNIFICANCE OF THE STUDY 

This study first reviewed the major and mostly unresolved challenges in both mechanistic 

and empirical modeling of stormwater and shed light on the scientific gaps with 

conventional practices. It offered important perspectives on both the approaches by 

considering the highly urbanized Miami River Basin of Florida as an example of complex 

urban-coastal watersheds. The hydro-climatic and land use sensitivities of stormwater 
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runoff and quality in the Miami River Basin was then analyzed by developing a dynamic 

rainfall-runoff model using a Storm Water Management Model (EPA SWMM 5). The 

research used an innovative approach to resolve stormwater runoff as a component of the 

total watershed water budget, incorporating all the important processes (i.e., 

evapotranspiration, surface water, groundwater, sea level, in addition to climatic drivers 

and land use features). Empirical models were also developed to explain seasonal and 

annual in-stream water quality in relation to land use, groundwater, seawater and 

upstream contribution in six major canal basins of Broward County, Florida. Considering 

these highly urbanized watersheds as pilot studies, the research identified dominant 

environmental stressors and their relative influence on stream water quality in complex 

coastal urban watersheds. 

1.3  OBJECTIVES OF THE STUDY 

The overall goal of this study is to determine the climate, land use and hydrologic 

sensitivities of surface water quantity and quality in complex coastal urban watersheds. 

The specific objectives are as below. 

 To demonstrate the pros and cons of mechanistic and empirical methods of 

stormwater modeling and their complementary applications for appropriate 

parameterizations of interactive processes. 

 To quantify dominant stressors and their relative, as well as combined, influence on 

stormwater runoff and six major pollutants (i.e., total suspended solids, total nitrogen, 
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total phosphorus, copper, zinc and biochemical oxygen demand) in the complex urban 

watershed of Miami River. 

 To identify dominant sources and stressors (land use, groundwater, seawater and 

upstream contribution) and their relative influence on in-stream water quality parameters 

(total nitrogen, total phosphorus, dissolved oxygen, specific conductivity, and chlorophyll 

a) of six highly urbanized canal basins of Southeast Florida.  

 To provide recommendations for more insightful and timely research for robust 

modeling of stormwater quantity/quality and predictions of in-stream water quality. 

1.4  ORGANIZATION OF THE THESIS 

The thesis is presented in five distinct chapters. The current chapter presents a brief 

introduction of the study along with the significance, objective and organization of the 

thesis. 

Chapter 2 reviews the literature related to the mechanistic and empirical modeling efforts 

on stormwater runoff processes. The limitations of both approaches and the scope for 

improvements are discussed in this chapter. 

Chapter 3 describes the sensitivity of stormwater runoff and quality to major climate, 

land uses, and hydrologic parameters by developing a Storm Water Management Model 

(EPA SWMM 5) and identifies the dominant stressors in the complex urban watershed of 

Miami River Basin considering it a pilot study. 
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Chapter 4 describes data driven empirical models linking in-stream water quality to the 

possible stressors of climate, groundwater, seawater, watershed land use and hydrology in 

six highly urbanized, major canal basins of Broward County, FL.  

Chapter 5 summarizes the research outcomes, indicates limitations of the current study 

and provides recommendations for future research. 
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CHAPTER 2 

CHALLENGES IN MECHANISTIC AND EMPIRICAL MODELING OF 

STORMWATER: REVIEW AND PERSPECTIVES 

2.1  INTRODUCTION 

As the world becomes increasingly urbanized and cities keep growing, the importance of 

research in stormwater science, engineering and management cannot be overstated. 

Stormwater runoff is often blamed for urban flooding and poor water quality in urban 

streams and rivers around the world. It is the fourth most extensive cause of water quality 

impairment of rivers, and the third most extensive source of water quality impairment of 

lakes in the USA (USEPA, 1990; Novotny, 1991; Novotny & Olem, 1994; Tsihrintzis & 

Hamid, 1996). 

Much research has focused on the understanding and quantification of urban runoff 

quantity and quality. Although notable progress was made in the modeling of urban 

runoff quantity, the progress with stormwater quality-its impacts on receiving waters and 

the means of mitigating such impacts-has been much slower (Marsalek & Viklander, 

2011). Example of recent research includes identification of significant factors (e.g., land 

use, percentage imperviousness, conveyance, and watershed controls) affecting 

stormwater quality using the National Stormwater Quality Database (Maestre & Pitt, 

2006), highway contribution to runoff quantity and pollutant loading (Lau et al., 2009), 

sampling issues in urban runoff monitoring programs by comparison of composite and 
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grab samples (Ma et al., 2009), and groundwater contaminations by stormwater (Pitt et 

al., 1996; Foulquier, 2010). 

Many studies have investigated the correlation between stormwater pollutant generation 

and urban land use characteristics. Hatt et al. (2004) reported strong influence of urban 

density and drainage infrastructure on the concentrations and loads of pollutants in small 

streams. Goonetilleke et al. (2005) developed significant relationships between land use 

characteristics and pollutant generation by using univariate and multivariate data analysis 

approaches. Hood (2007) compared stormwater lag times for low impact and traditional 

residential development. Mahbub et al. (2010) showed significant traffic and climate 

change impacts on water quality by measuring build-up and wash-off of heavy metals 

and petroleum hydrocarbons. Mahbub (2012) also predicted wash-off of traffic related 

semi- and non-volatile organic compounds from urban roads under climate change 

influenced rainfall characteristics. Simon (2008) developed a predictive model for storm-

water runoff on a GIS platform based on the unit area loading method for soil 

characteristics. Park et al. (2009) analyzed accuracy and precision of the volume-

concentration method for urban stormwater modeling.  

The complex interactions among land use and climate variables in the backdrop of highly 

altered and engineered catchment hydrology are difficult to explain and require data of 

finest resolutions for proper modeling and quantifications. Generally, two approaches 

have been pursued to explain and model the underlying biogeochemistry in stormwater 

processes. Mechanistic models generally include the mathematical representations of 

relevant physico-chemical processes to generate storm runoff quantity and quality. 
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Empirical approaches analyze available data for potential response and predictor 

variables to trace the interactions of major processes and develop data-driven explanatory 

and/or predictive relationships. 

The potential of climate change increases the dimensions of stormwater challenges and 

underlines the urgency for more insightful research. The main objective of this chapter is 

to review and identify the major scientific gaps with conventional mechanistic and 

empirical modeling of stormwater and offer insights by taking the highly urbanized 

Miami River Basin of Florida as an example.  The chapter demonstrates the pros and 

cons of mechanistic and empirical methods and their complementary applications for 

appropriate parameterizations of interactive processes. Recommendations were made for 

more insightful and timely research for the robust modeling of stormwater quantity and 

quality.  

2.2  SCIENTIFIC GAPS IN MECHANISTIC MODELING 

The major processes involving stormwater can be divided in two categories: (i) 

stormwater generation under specific climate conditions and land use features, and (ii) 

stormwater transport through natural courses (e.g., overland flow, channels) and/or man-

made hydraulic networks to a specific outfall. Mechanistic models attempt to 

parameterize the detailed processes representing runoff generation, transport, and quality 

(Figure 2.1). A mechanistic stormwater model, therefore, integrates various processes and 

input variables and generates results mainly based on the principles of physics and 

chemistry. The sources of major variability and uncertainty of mechanistic modeling of 
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stormwater runoff are demonstrated here by taking subcatchments of the highly 

urbanized Miami River Basin of Florida as examples. 

 
Figure 2.1: Sources of pollution and transport of stormwater. 

 

2.2.1  Uncertainty due to catchment delineation 

A basic step involved in stormwater modeling is catchment and subcatchment 

delineation. Traditionally this delineation is based on hydrologic features (Burian et al., 

2001). However, the hydrological watershed boundary and the stormwater network 

boundary vary significantly. To demonstrate this challenge, let us consider the Wagner 

Creek Watershed, a subcatchment of the Miami River Basin (Figure 2.2).  

B
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Figure 2.2: Comparison of stormwater network boundary and watershed boundary for 

Wagner Creek, a tributary of the Miami River, Florida (Shown in the inset). 
 

As shown, the watershed boundary (green shaded area) (Tyler, 2006) and the 

corresponding stormwater network boundary (yellow shaded area) (FDEP, 2011) for 

Wagner Creek would contribute a substantially different amount of runoff (and 

pollutants) through the creek outlet into the Miami River. Although both overland flow 

and flow through the stormwater network should contribute to stormwater runoff, 

overland flow from remote locations in the watershed is unlikely to make an effective and 

a rapid contribution to stormwater runoff into Wagner Creek or its drainage network. The 

catchment should, therefore, be delineated considering both the relatively slow watershed 

hydraulics as well as fast conveyance through the stormwater drainage network. Failure 
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in keeping an optimum balance between the two approaches would only yield inaccurate 

and unreliable estimates of the stormwater contributions into the urban streams, rivers, 

and lakes. 

2.2.2  Uncertainty in impervious area calculation 

Two major parameters used in runoff volume calculation are imperviousness and runoff 

coefficients. The runoff coefficient is defined as the ratio of runoff to rainfall over a given 

time period and depends on the percent impervious surfaces, slope, and soil conditions 

(Chow et al., 1988). Imperviousness of small urban watersheds can be directly measured 

by field surveys and analysis of aerial photographs (Han & Burian, 2009); for large 

watersheds imperviousness can be indirectly determined through analysis of rainfall-

runoff data, assigning  specific total impervious area (TIA) values to different land use 

types (Kauffman et al., 2006; Han & Burian, 2009). A common approach to calculate 

imperviousness is to use typical values of runoff coefficient following basic literature 

(UDFCD, 2001) for different land uses and compute the imperviousness as the area-

weighted average of the runoff coefficients for all land uses in the subcatchment or study 

area. Another approach is to use remote sensing technique to extract impervious area 

from Landsat satellite images, for example (Xian & Crane, 2005). Significant differences 

can result with these two approaches subsequently affecting the quantifications of runoff 

volume and quality. To illustrate further, a portion of the Wagner Creek Watershed was 

considered as an example (Figure 2.3). Based on the city zoning map (Miami Dade 

County, 2010) and UDFCD (2001) coefficients, around 81% of the shown catchment area 

is impervious. In contrast, 74% of the area appeared to be impervious from our analysis 
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of satellite image using GIS. Since impervious area is a very important parameter in 

determining overland flow, uncertainty herein is likely to be crucial in shaping the overall 

stormwater modeling accuracy and consistency (i.e., precision).  

Figure 2.3: Satellite map (left) and city zoning map (right) for a portion of catchment of 
Wagner Creek in Miami-Dade County, Florida. 

 

2.2.3  Uncertainty due to climate data quality 

The precision of runoff generation can vary significantly depending on the availability 

and quality of observed climate data. Rainfall-runoff models are either based on isolated 

storm events or continuous long term precipitation. Most models often consider an 

incomplete set of watershed hydrologic processes, including infiltration, overland and 

channel flow, and possibly interception and detention storage. For a more appropriate 

evaluation of the contributions of regular (i.e., high frequency, low magnitudes) 

precipitation impacts on the receiving stream flow or lake during inter-storm periods, 

continuous simulation models should include additional hydrologic properties such as 

evapotranspiration, shallow subsurface flow, and groundwater flow.  
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Most event models use a constant time interval that typically ranges from minutes to 

several hours. Continuous simulation models are usually run for a sustained period that 

includes both rainfall events, as well as inter-storm conditions. The model time-step 

should be flexible, ranging from sub-hourly to monthly intervals. Modeling time-step is 

likely to be dictated by the availability of observed input data collection. The frequency 

of data acts as a frequency of model loading and can affect the runoff generation. The 

choice of data interval is very important and should be determined based on the study 

objective and catchment of concern.  

Another challenge is that climate data are generally recorded at point stations, which 

often do not coincide with the study area. Conventional practices in this case include 

obtaining rainfall data from a nearby recording station or using spatial estimation 

techniques such as the Thiessen polygon to estimate the areal average rainfall 

(Subramanya, 1995). The storm runoff volume can substantially vary between the two 

methods. To demonstrate, we considered two nearby weather stations (S-27_R and 

Miami 2_R) for a subcatchment of the Wagner Creek Watershed and divided the study 

area in two rainfall zones (Figure 2.4). 
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Figure 2.4: Division of a subcatchment of Wagner Creek Watershed, Miami for 

precipitation data interpolations (Inset shows the Miami River Basin) 
 
 

The runoff volumes obtained by using rainfall data from any of the stations, as well as 

from the Thiessen polygon based areal rainfall, for the entire study area were 

substantially different (Figure 2.5). 

 
Figure 2.5: Variation in runoff due to spatial variation of station data in a subcatchment 

of Wagner Creek Watershed, Miami. “Both” refers to the combined spatial distribution of 
precipitations from station S-27R and Miami 2_R based on a Thiessen polygon method. 

Red color refers to S-27R, green to Miami 2_R, and blue refers to the combination. 
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2.2.4  Uncertainty due to hydraulic routing 

Hydraulic routing is a very important feature in stormwater modeling. As overland flow 

and flow in conveyance network move down-gradient, they are subjected to translation 

and storage effects. Translation results in movement of the flow without reduction of 

peak discharge whereas storage effect reduces the peak. The upper limit of flood routing 

is translation of the peak discharge with no attenuation due to storage and the lower limit 

corresponds to storage effects acting alone as stormwater moves downstream resulting in 

maximum attenuation (USDA, 2012).  

Compared to channel flow, stormwater routing is more complicated as it constitutes both 

overland flow and flow through conveyance networks. Although research has 

investigated the selection criteria of routing methods in natural channels (Moussa, 1996), 

the choice of the most appropriate hydraulic routing technique for stormwater modeling 

is not yet completely understood. Following Woolhiser and Liggett (1967), the dynamics 

of flow tend to be dominated by kinematic waves for a kinematic parameter of K greater 

than 10.0. In overland flow, the value of K usually exceeds this threshold, warranting a 

kinematic wave approach (Ramirez, 2000). However, in complex urban watersheds 

where overland flow and networked flow act simultaneously, unsteady and non-uniform 

flows occur; and the kinematic wave assumptions may not be valid because the 

significance of inertia and pressure forces compared to the gravitational and frictional 

forces can increase drastically. 
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2.2.5  Specific issues in mechanistic quality modeling 

Water quality is a challenging part of stormwater modeling. The gaps in water quality 

modeling can be attributed to the (i) uncertain parameterizations of the relevant physical, 

chemical, biological, and ecological processes, and (ii) unavailability of water quality 

data of appropriate spatial and temporal resolutions. The sources of stormwater pollution 

are numerous. Water quality changes due to physical transport and exchange processes 

(such as advection and diffusion/dispersion), as well as by biological, chemical, 

biochemical and physical conversion processes (Rauch, 1998). It is hard to properly 

quantify all the parameters in terms of mechanistic modeling. 

The mechanistic modeling of stormwater quality is conventionally simplified in the two 

steps of buildup and wash off. The buildup of a pollutant in a catchment is expected to be 

a function of climate variables, land use parameters and the pollutant characteristics. 

Subject to the difficulty of parameterizations, buildup is generally associated with land 

use and expressed as a function of time with coefficients specific to the catchment 

characteristics. This simplification sometimes overlooks the sensitivity of stormwater 

pollution to many micro parameters. For example, rainfall is incorporated in models in 

terms of volume or intensity. Therefore, the role of raindrop size (which is difficult to 

measure) on pollution cannot be addressed.  

A significant portion of pollutants are removed by management practices, which are 

applied in models in terms of street sweeping. The management practices are run under 

supervised organization and involve human efforts. To quantify percentage of pollutants 

removal in street sweeping accurate data are required for sweeping interval and 
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operations, which involve diverse parameters and vary both in time and place.  Without 

necessary data, it is hard to quantify the efficiency of street sweeping process. Lack of 

data of management practices can adversely affect the water quality modeling. 

Another important mechanism of pollutant removal is wind erosion. A notable part of 

gaseous and particulate pollutants can be lost from the catchment area by wind erosion. 

The materials are suspended in the atmosphere and deposited at another place 

(Brinkmann, 1985). The effect of wind erosion is not explicitly parameterized in 

conventional stormwater modeling practices. 

A common approach in stormwater quality modeling is the incorporation of Event Mean 

Concentration (EMC). An EMC is the average pollutant concentration during the storm 

event and defined as the total pollutant mass divided by total runoff volume (Huber & 

Dickinson, 1988). Generally, EMCs are characterized mainly by the land uses in the 

watershed, because they depend on site characteristics and storm events (Smullen et al., 

1999). Pollution estimates are likely to vary with different EMCs for the same land use 

and pollutants (Park et al., 2009).  It is imperative that the EMC method only provide an 

approximation of actual storm water quality. Subject to data availability, more 

sophisticated methods (e.g., advection-dispersion-reaction) should be pursued for a more 

accurate parameterization of the relevant biogeochemical processes to develop dynamic 

models of storm runoff quality.   

Wash off is also correlated with flow and land use variables and parameterized using 

empirical coefficients. One major improvement in modeling wash off can be the 

inclusion of impact of individual subcatchment pollutant trapping (Sutherland, 2010). 
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Since instantaneous stormwater runoff volume is relatively low most of the time, a 

significant portion is temporally entrapped in catchments. The common practice of storm 

water quality routing assuming a continuously stirred tank reactor might overlook the 

entrapment of pollutant in the catchment. 

2.3  SCIENTIFIC GAPS IN DATA-DRIVEN EMPIRICAL MODELING 

Data-driven models attempt to establish empirical relationships and predict behaviors of 

different parameters of a system by mathematical equations using concurrent data. 

Although empirical models do not necessarily describe the pertinent biogeochemical 

processes of a system, they often provide simple, quite useful impulse-response (rather 

than causal) type relationships, offering important insights that complement a 

mechanistic understanding and facilitating engineering applications. Empirical modeling 

has been extensively explored in water resources engineering, typically involving the 

rating curves, unit hydrograph method, regression-based statistical models, stochastic 

methods, linear and dynamic programming, and methods of machine learning (e.g., 

artificial neural network). Relevant recent examples can include successful applications 

in hydrology (Govindaraju, 2000; Dibike & Solomatine, 2001), river water quality 

modeling (Mohseni et al., 1998), water system control (Bhattacharya et al., 2003), 

sediment transport (Bhattacharya et al., 2005), river stage-discharge relationships 

(Sudheer & Jain, 2003), streamflow hydrographs (Moradkhani et al., 2004), etc. 

However, the potential of data-driven empirical modeling in stormwater applications is 

yet to be fully explored, particularly in the context of a highly complex urban 

environment. 
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2.3.1  Difficulty in identifying the input variables 

Selection of the appropriate model inputs or decision variables is a major challenge in the 

developments and applications of data driven empirical models for stormwater quality.  

To illustrate, we present three relatively recent studies that reported significant 

correlations between water quality and different climatic, hydro-geomorphic, and 

biogeochemical variables (Table 2.1).   

Table 2.1: Variation of input variables for quality study. 
Reference 

study 
Response variables Predictor variables 

Brezonik 
and 
Stadelmann 
(2001) 

Stormwater Loads  
(TSS, VSS, TP, DP, 
SRP, COD, TKN, NN, 
Pb) 

Total precipitation, intensity and duration of 
precipitation, day since last event (i.e., antecedent dry 
days), total drainage area, residential area, commercial 
and industrial area, and public and open area. 

Hatt et al. 
(2004) 

Water quality in 
streams (TSS, EC, 
total nutrients, NH4, 
NOx, FRP, DOC, pH, 
temperature) 

Imperviousness, drainage connection, septic tank 
density, unpaved road density, basin area, elevation, and 
longitude. 

May and 
Sivakumar 
(2008) 

Stormwater 
loads 

COD 
 

Effective impervious area, amount of rainfall during the 
preceding 3 days, peak discharge, total precipitation, 
and total storm rainfall depth. 

Pb 

Duration of runoff, impervious area, amount of rainfall 
during the preceding 7 days, residential land-use, peak 
discharge, street density, total storm runoff depth, and 
sine seasonal variable. 

SS 
Duration of rainfall, nonurban land-use, maximum 5 
min rainfall rate, mean annual rainfall, average storm 
rainfall intensity, and sine seasonal variable 

TKN 
Effective impervious area, ammonium concentration in 
rainfall, amount of rainfall during the preceding 7 days, 
peak discharge, and average storm runoff intensity. 

TP 

Duration of runoff, effective impervious area, average 
soil erodibility, residential land-use, amount of rainfall 
during the preceding 3 days, percent of streets with curb 
and gutter drainage, and total precipitation. 

Notes. (1) TSS- total suspended solids, VSS- volatile suspended solid, TP- Total Phosphorus  ,DP-  
Dissolved Phosphorus  , SRP- soluble reactive Phosphorus ,COD- chemical oxygen demand, TKN- Total 
Kjeldahl Nitrogen , NN- Nitrite Nitrogen, Pb- Lead, SS- Suspended Solids, EC-  electrical conductivity;  
NH4- ammonium ,NOx- nitrate/nitrite, FRP- filterable reactive phosphorus , DOC- dissolved organic 
carbon ; (2) Sine seasonal variable is a variable from Nationwide Urban Runoff Program (NURP) dataset 
for representing seasonal harmonics. 
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As shown, the set of predictor variables differed among the studies.  Available literature 

is commonly used as a source to identify major components and variables in data-driven 

modeling (Opher et al., 2009). This approach requires prior knowledge of the relevant 

biogeochemical processes in the watershed. In case of stormwater modeling, the process 

dynamics are yet to be understood well and predefining the parameters has the possibility 

of missing major components. Where prior knowledge is not available, an analytical 

technique such as correlation analysis, is often employed to select potential predictor and 

response variables (Lee et al., 2003). The major disadvantage with correlation analysis is 

that it is only able to detect linear dependence between two variables. Therefore, such an 

analysis is unable to capture any non-linear dependence that may exist between the inputs 

and the outputs, and can result in the omission of important inputs that are related to the 

output in a non-linear fashion (Muttil & Lee, 2005). Some studies used data mining 

techniques such as the principal component analysis (PCA) and cluster analysis for 

selecting the significant, statistically independent input variables (Goonetilleke et al., 

2004). PCA techniques also suffer from drawbacks as the associated methods are based 

on linear principles, while the relationships between environmental variables are often 

non-linear. 

Forward selection and backward elimination is another set of useful approaches for data-

driven empirical modeling. Forward selection starts by finding the best single input and 

selecting it for the final model. In each subsequent step, given a set of selected inputs, the 

input variable that improves the model’s performance most is added to the final model. 

Backward elimination (network trimming) starts with a set of all inputs, and sequentially 
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deletes the input that reduces performance the least (Muttil & Lee, 2005). The main 

disadvantage of these approaches is that they are based on trial-and-error, and as such, 

there is no guarantee that they will find the globally best subsets. The forward selection 

approach may also fail when there is interaction amongst variables, i.e., when a variable 

that is useless by itself may provide a significant performance improvement when taken 

in conjunction with the others. 

2.3.2  Difficulty in explaining the mechanisms 

A major criticism of data-driven empirical models is their limitation in explaining the 

mechanisms of a system. Data driven models are based on correlations between different 

input variables. They can successfully predict the correlation of variables, their sensitivity 

and relative significance. But they cannot describe the associated physical-chemical, and 

biological processes. They can explain ‘what’ rather than ‘why.’  We present recent 

examples of empirical methods that successfully quantified stormwater runoff and quality 

from roadways (Table 2.2). The studies successfully correlated stormwater quality with 

different, individual parameters. The role of a certain parameter is explained in depth, 

however the sensitivity of a parameter with respect to other parameters is seldom 

investigated. In reality, many parameters act simultaneously and, therefore, to better 

understand the relative significance of a particular parameter, relevant other parameters 

should be considered in concert.  

The complex interactions between different parameters are difficult to portray through 

conventional empirical models. Where process-based models can holistically explain the 

process, the scope of data driven models are confined to available end data rather than the 
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governing mechanisms. The application of data driven modeling, has therefore been 

limited to a section or sub-processes of the overall stormwater generation, transport and 

interaction with the environment. The study of a whole system through all the 

components and sub processes in terms of data driven technique is yet to be tested. 

Table 2.2: Examples of data based study on stormwater pollution from roadway 
Reference 
Study  

Response 
variables 

Predictor variables Major findings 

Vaze and 
Chiew ( 2002) 

Surface 
pollutant load 

Rainfall regime, 
street sweeping 

Effect of rain and street 
sweeping on surface pollutant 
load, and effect of rain and 
street sweeping on particle 
size distribution of surface 
pollutant 

Gilbert and 
Clausen(2006)

Quality and 
quantity of 
stormwater 
runoff 

Driveway type 
(asphalt, permeable 
paver, and crushed-
stone driveways) 

Comparison of runoff depth 
and concentration of 
pollutants among asphalt, 
permeable paver, and crushed-
stone driveways 

Backstorm et 
al. (2003) 

Heavy metals 
in road runoff 
and roadside 
deposition 

Seasonal variation  
(summer and winter) 
, deicing material 

Variation of heavy metals in 
summer and winter and the 
role of deicing material 

John and 
Horner (1997) 

Highway 
runoff quality 
and quantity 

Road shoulders Quantity and quality of 
stormwater from three types 
of shoulder materials: 
conventional asphalt, gravel, 
and porous asphalt. 

Wheeler and 
Rolfe (2003) 

Lead in 
roadside soil 
and 
vegetation 
 

Average daily traffic 
volume 

The relationship between daily 
traffic volume and the 
distribution of lead in roadside 
soil and vegetation 
 

 

2.3.3  Site-specificity  

The data driven empirical water quality models are generally built on the underlying 

correlations between the quality variables and those representing climate, hydrologic, 
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land use, biogeochemical, and ecological parameters, which can vary significantly from 

place to place. For example, Mohseni et al. (1998) estimated wide ranges of model 

parameters after analyzing around 573 different streams across the USA to develop a 

successful nonlinear regression model of weekly stream and air temperatures. Although 

some stormwater modeling studies (e.g., Maestre & Pitt, 2005; Kayhanian et al., 2007) 

reported relatively small parameter variations across space, application of appropriate 

scaling can be greatly useful in developing spatio-temporally robust models to predict 

stormwater runoff quantity and quality.  

2.4  CONCLUSIONS 

Stormwater generation and transport is influenced mainly by the features of climate, land 

use, and catchment hydrology (Figure 2.6). Proper mechanistic and empirical modeling 

would require a careful consideration of all these processes. A basic need for stormwater 

research is, therefore, the availability of data of appropriate spatial and temporal 

resolutions. Often, unavailability of data leads to the omission or crude approximations of 

important processes at different scales. For example, lack of precipitation data at finer 

resolution fails to incorporate local micro-climate and hampers realistic modeling with 

sufficiently small time intervals (e.g., hour). Reliable stormwater quality data appear to 

be most scarce. Lack of resources is perhaps the main reason for this undesired scientific 

gap. The data collection efforts by different agencies and individual researchers should be 

coordinated in a watershed for the most utilization of available resources.  
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Figure 2.6: Major variables for mechanistic modeling of stormwater. 

 

Most studies look into the stormwater runoff quantity and quality by focusing on either 

design storms or observed data of a less frequent, high magnitude storm event for a small 

area. Research into the contributions of high frequency, low magnitude precipitation 

events incorporating both surface and groundwater components at a watershed scale is 

lacking. In sum, these typical precipitation events may contribute the most pollution. 

Unlike mechanistic modeling, conventional data driven empirical models tend to focus 

more on some particular aspects of the whole watershed. Given the importance and great 

utility in engineering applications, data driven models should be developed by 

incorporating a more complete matrix of potential variables (Table 2.3). The variable list 
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is continuously updating, which underlines the need for more detailed study for 

stormwater research. Further, research into the scaling and similarity patterns of 

respective biogeochemical variables should be pursued for developing stormwater 

models that can provide robust predictions in time and space. 

Table 2.3: Land use and climate variables often used in data driven models for 
stormwater quality 
Type Variables 
 
 
Land use 

 
Total drainage area, residential area, nonurban land-use , 
commercial and industrial area, public and open area, 
imperviousness,  effective impervious area, drainage connection, 
septic tank density, unpaved road density, basin area, elevation, 
longitude, average soil erodibility, % of streets that have curb and 
gutter drainage 
 

 
 
Climate 

 
Precipitation duration, precipitation intensity, day since last event, 
amount of rainfall during the preceding 3 days, amount of rainfall 
during the preceding 7 days , total precipitation, total storm rainfall 
depth, maximum 5 min rainfall rate, mean annual rainfall, average 
storm rainfall intensity, sine seasonal variable. 
 

 

Mechanistic and data driven models can be complementary by accepting and adopting the 

advancements in respective fields. The empirical models can be a useful means for 

identifying any missing aspects of mechanistic models. Mechanistic models, on the other 

hand, can explain the physical, chemical, and biological processes underlying 

correlations established in data driven models. The respective successes of both 

approaches indicate their suitability as well as mutual necessity. This aspect should be 

explored further in future research. 
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CHAPTER 3 

CLIMATE, LAND USE AND HYDROLOGIC SENSITIVITIES OF 

STORMWATER QUANTITY AND QUALITY IN A COMPLEX COASTAL 

URBAN WATERSHED 

3.1  INTRODUCTION 

Stormwater is often held responsible for urban flooding and poor water quality in streams 

and rivers around the world. It is the fourth most extensive cause of water quality 

impairment of rivers, and the third most extensive source of water quality impairment of 

lakes in the USA (USEPA, 1990; Novotny, 1991; Novotny & Olem, 1994; Tsihrintzis & 

Hamid, 1996). Therefore, stormwater research integrating land use and climate variables 

in the backdrop of highly altered and engineered catchment hydrology is important for 

understanding the science in stormwater generation and runoff to develop appropriate 

management approaches. 

Much research has focused on the understanding and quantification of urban runoff 

quantity and quality. Example of recent research includes identification of significant 

factors affecting stormwater quality using the National Stormwater Quality Database 

(Maestre & Pitt, 2006), defining the stormwater first flush phenomenon (Bach et al., 

2010), identification of hydrologic shortcomings of conventional urban stormwater 

management and opportunities for reform (Burns et al., 2012), and identification of 

dominant perspectives and the shape of urban stormwater futures (Winz et al., 2011). 

Both mechanistic (i.e., process-based) and empirical (i.e., data-driven) techniques have 
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been adopted to analyze stormwater runoff and pollutant generation features. Examples 

of mechanistic model application include estimation of urban imperviousness and its 

impacts on stormwater systems (Lee & Heanay, 2003), assessing watershed-scale long-

term hydrologic impacts of land-use change using a GIS-NPS model (Bhaduri et al, 

2000), and stormwater management implementation through modeling and GIS (Shamsi, 

2000). Empirical modeling has also been explored in stormwater modeling,typically 

involving the rating curves, unit hydrograph method, and regression-based statistical 

models. Relevant recent examples may include stormwater runoff quality and quantity 

from asphalt, paved, and crushed stone driveways in Connecticut (Gilbert & Calusen, 

2006), experimental study of pollutant accumulation on an urban road surface (Vaze & 

Chiew, 2002), and speciation of heavy metals in road runoff and roadside total deposition 

(Backstorm et al., 2003).  

Studies have reported strong influence of urban density and drainage infrastructure (Hatt 

et al., 2004), based on land use characteristics (Goonetilleke et al., 2005), on the 

concentrations and loads of pollutants in small streams. Research linking watershed land 

uses with primary stormwater pollutants such as sediments (e.g., Nelson & Booth, 2002) 

and metals (e.g., Helsel et al., 1979), as well as with secondary stream responses such as 

aquatic biota (e.g., Lenat & Crawford, 1994), have demonstrated a significant role of 

watershed land uses in determining stormwater quality. Furthermore, the entire process of 

stormwater generation and runoff is believed to be affected by changing climatic 

conditions and catchment hydrology. Mahbub et al. (2010) reported climate change 

impacts on water quality by measuring build-up and wash-off of heavy metals and  
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petroleum hydrocarbons on urban roads. Shaw et al. (2005) discussed how and why 

climate change impacts should be incorporated in stormwater design. Ferguson (1990) 

described the role of the long-term water balance in management of stormwater 

infiltration. Dean et al. (2005) analyzed the influence of hydrology on rainfall-runoff 

metal element speciation. Therefore, a simulation simultaneously considering all the 

important stressors of climate, land use, and catchment hydrologyis necessary for 

developing a comprehensive understanding of stormwater processes. Mechanistic 

modeling in a watershed-scale, in particular, can provide important insights for 

appropriate management of stormwater runoff and quality in complex urban coastal 

environments around the world. 

Considering the Miami River Basin of Florida as an example of complex coastal-urban 

watersheds, we determined the hydro-climatic and land use sensitivities of stormwater 

runoff and quality by developing a Storm Water Management Model (EPA SWMM 5.0). 

The objective of the study was to quantify dominant stressors and their relative, as well as 

combined, influence on stormwater runoff and potential loads of six major pollutants 

(i.e., total suspended solids, total nitrogen, total phosphorus, copper, zinc and 

biochemical oxygen demand) in the Miami River Basin. Unlike traditional studies 

considering stormwater as a standalone process, we resolved the stormwater runoff as a 

component of the total watershed water budget, incorporating the important processes of 

coastal-urban watershed hydrology (i.e., precipitation, evapotranspiration, surface runoff, 

groundwater, sea level) and land use/cover features (e.g., imperviousness, roughness, 

slope, drainage networks). In contrast to short-term, event-based applications of SWMM 

in conventional studies, we have used longer-term, continuous climate and hydrology 
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data to calibrate the model and elucidate seasonal, as well as annual, responses of 

stormwater runoff to changes in climate, land use and hydrologic drivers. Although the 

research considered the Miami River Basin as a pilot study area, it can provide important 

insights for appropriate management of stormwater runoff and quality in complex urban 

coastal environments around the world. 

3.2  MATERIALS AND METHODS 

3.2.1  Study area 

The study area comprises of the complex urban watershed of Miami River, which is 

located in Miami-Dade County on the southeast coast of Florida, U.S.A. (Figure 3.1). 

The juxtaposition of eastern coastal urban developments, including the City of Miami, 

one of the largest U.S. metropolises and the U.S city most vulnerable to sea level rise, 

with several surrounding National Parks and natural areas makes the Miami Basin a 

unique location and living laboratory for analysis of complex socio-ecological 

interactions. Essential to its historical development as an urban region is the unique and 

perplexing system of drainage canals that are highly engineered and network throughout 

the region’s relatively flat topography. The Miami River has a length of approximately 

15.2 miles from its mouth at Biscayne Bay (Atlantic Ocean) and a drainage area of 

around 67.5 square miles. Miami Canal (also known as the C-6 Canal) terminates into the 

Miami River after flowing south-southeast approximately 77 miles from its (Miami 

Canal) source at the Lake Okeechobee through the Everglade Agricultural Area (EAA) 

and Water Conservation Area 3 (WCA3). The primary canals of Tamiami, Comfort, and 

Wagner Creek drain into the Miami River. The secondary canals draining into the Miami 
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River or the primary canals include the Russian Colony Canal, NW 58 ST Canal, Melrose 

Canal, Red Road Canal, and Dressel Dairy Canal, FEC Canal. 

 
Figure 3.1: Miami River Basin of Florida. 

 

Miami River Basin is highly urbanized and characterized by a variety of land use types, 

including agricultural lands (in the northwest) and a mixture of park, single/ multi-family 

residential, commercial and industrial areas.  The complex land uses, as well as the 

inflow from the Miami Canal passing through the EAA and WCA3, cause a variety of 

pollutant loadings into Miami River. The Basin is characterized by a tropical monsoon 

climate with hot, humid summers and short, dry winters (Kottek et al., 2006). On 
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average, the Basin receives approximately 52 inches of annual rainfall (NCDC). The 

topography of the study area is almost flat; the elevation varies between 0 to 12 feet 

(NAVD, 1988) for most of the areas. The agricultural area is the northwest section is 

relatively lower with elevation varying between 0 to 4 feet. For most of the middle part in 

the urban basin, the elevation varies between 5 to 8 feet and for southeast urban part 

between 5 to 12 feet. 

3.2.2  Preparation of datasets  

The Miami River Basin was extracted from the smallest available (12-digit) hydrologic 

unit codes (HUC ID: 030902061405), as delineated nationally by the US Geological 

Survey (USGS) (available online at http://water.usgs.gov/GIS/huc.html; last accessed on 

July 9, 2013.). The study area was further subdivided into 33 subcatchments following 

the zoning map of Sustainability, Planning and Economic Enhancement Department, 

Miami Dade County (available online at 

http://www.miamidade.gov/business/library/maps/zoning.pdf ; last accessed on July 11, 

2013). The land use features (i.e., slope, area) were extracted by analyzing the 10 ft 

FDEM LiDAR Data of the South Florida Water Management District (SFWMD) in an 

ESRI ARCGIS 9.0 platform. The twelve land use types of the Basin (Figure 3.1) were 

aggregated into the five land use types of park and open lands (park+agricultural areas), 

single family residential , multifamily residential, commercial and industrial  for each 

subbasin. Industrial-commercial areas were equally divided in industrial and commercial 

areas. Similarly, residential-commercial areas were also equally divided into residential 

and commercial areas. Office and institutional areas were considered as commercial 
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areas. The general area was divided following the percentage distribution of other land 

uses in each subcatchment. The imperviousness of each subcatchment was calculated 

using an area-weighted average of runoff coefficients for different land uses, as obtained 

from literature (UDFCD, 2001).  

 
Figure 3.2: Boundary conditions and calibration points for the model. 

 

Flow and stage data for the drainage canals were obtained from the DBHYDRO 

(Environmental database of SFWMD). Continuous time series data for two upstream 

inflows, such as Miami Canal east of levee 30 (C6.L30) and Snapper Creek Canal 

extension at NW74 Street near Hialeah (C2.74) were used as the upstream boundary 
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conditions (Figure 3.2). Stage data for two downstream stages, namely the Miami River 

stage monitoring station (MRMS4) and the Coral Gables Canal (C-3) at Red Road (G.93) 

were used as the downstream boundary conditions (Figure 3.2). 

The bathymetric data (i.e., channel cross section, slope and bed elevations) for canals 

were extracted from survey data, as collected by SFWMD for the C-4 (Tamiami Canal) 

Flood Control Operations Modeling Project. The C-4 data were obtained from Dr. Ruben 

Ortega of SFWMD in 2012 through personal communications. The model domain 

includes two gated spillway (S-26 and S-25B) and one gated culvert (S-25A). The 

operational data for the control structures were obtained from DBHYDRO and the C-4 

Flood Control Operations Modeling Project Report (Reference this report) and 

incorporated into the model development.  

In order to reflect the spatio-temporal rainfall variability, daily available data for three 

rainfall stations (with the DBHYDRO station IDs of MIA, K8673 and 19332) within and 

around the Miami River Basin were used (Figure 3.2). Hourly data were available for 

only the MIA station. The daily data at other stations were approximately distributed 

among different hours based on the observed, hourly distribution at the MIA station. 

Observed daily evaporation data for a US Geological Survey (USGS) station near 

Pennsuco were used to incorporate evaporation from the basin.  
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Figure 3.3: Groundwater observation wells used for the model. 

 

The observed groundwater levels (i.e., water table depths) of the Miami Basin were 

considered to reflect the role of groundwater in stormwater generation. Data from eight 

USGS observation wells (G-3466, G-3566, G-3567, G-968 G, G-973G, G-1368A G, F-

239 G, S-68) and two SFWMD observation wells (G-3264A G, G-1166 G) were used 

(Figure 3.3) as the initial water tables and the model dynamically updated the subsequent 

groundwater levels. 
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3.2.3  Development of a Storm Water Management Model (EPA SWMM 5) 

The EPA Storm Water Management Model (SWMM 5.0) is a largely mechanistic, one-

dimensional (longitudinal) dynamic rainfall-runoff model that links climate, land use, and 

surface and subsurface hydrologic processes (Rossman, 2010). The model primarily 

computes urban runoff quantity and can estimate quality (potential pollutant loads) based 

on land use- and pollutant-specific event mean concentrations (EMCs), which represents 

the average pollutant concentration (i.e., total pollutant mass divided by total runoff 

volume) during a storm event (USEPA, 1983; Huber & Dickinson, 1988). Since a 

comprehensive documentation of SWMM 5.0 developments and application can be found 

in Rossman (2010) and Gironás et al. (2010), we provide a brief overview here. 

SWMM conceptualizes a drainage system as a series of water and material flows between 

four major environmental compartments of “Atmosphere”, “Land surface”, 

“Transportation”, and “Groundwater” (Figure 3.4). The atmosphere compartment 

includes rain gage objects to represent rainfall inputs and evapotranspiration. Spatial 

variation in rainfall can be represented by assigning different rain gages to different sub 

catchments. Spatial variation in evapotranspiration (ET) cannot be incorporated in EPA 

SWMM 5.0 and are assumed to be the same over the model area. Monthly average 

(inch/day) evapotranspiration data can be incorporated into the model. The model 

assumes constant daily evapotranspiration for each month and divides the ET according 

to the time step chosen. The land surface compartment is represented through one or 

more subcatchment objects that receive precipitation from the atmospheric compartment 

as rain (and/or snow), allowing infiltration into the groundwater compartment and 
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sending surface runoff and pollutant loadings to the transport compartment. Each 

subcatchment of the land surface compartment is treated as a nonlinear reservoir; inflow 

can also come from designated upstream subcatchments. Reservoir outflows include 

infiltration, evapotranspiration, and surface runoff. Reservoir capacity represents the 

maximum depression storage, which is the ultimate surface storage provided by ponding, 

surface wetting and interception. Surface runoff occurs only when the depth of water in 

the reservoir exceeds the maximum depression storage; the outflow is computed by using 

Manning's equation. The components (e.g., drainage networks) of the transport 

compartment are modeled as a series of nodes (typically representing large changes in 

hydraulic head or channel cross section) connected by links (e.g., open channels). The 

flow in the conduits (i.e., links) is routed using steady flow, kinematic wave or dynamic 

wave routing. Dynamic Wave routing is the most powerful of the flow routing methods 

as it solves the complete one-dimensional Saint Venant equations of flow for the entire 

conveyance network and was chosen for our study. However, each of these routing 

methods employs the Manning equation to relate flow rate to flow depth and bed (or 

friction) slope. SWMM models groundwater with aquifer objects using a simple approach 

(Rossman, 2010). The groundwater compartment receives infiltration from the land 

surface compartment and dynamically interacts with transport compartment. A threshold 

groundwater elevation must be reached before any flow occurs. In our model we set the 

value equal to receiving nodes invert elevation. The groundwater level is dynamically 

updated by linear transfer due to difference in hydraulic head. This approximation of 

groundwater flow is reasonable given storm runoff in a highly urbanized area is mainly a 

surface process, which is rigorously parameterized by SWMM. 
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Figure 3.4: Summary of dataset preparation and SWMM model development. 
 

We considered 33 subbasins, 81 nodes, and 105 links to properly represent the land uses, 

topography, and drainage network of the Miami Basin (Figure 3.4). Land uses in each 

subbasins were aggregated under five categories: (i) open lands and parks, (ii) single 

family residential, (iii) multi-family residential, (iv) commercial, and (iv) industrial areas. 

Since our objective was to determine the basin-scale sensitivity of the total potential 

stormwater runoff (rather than the actual flooding on the ground), we did not explicitly 

incorporate management infrastructures such as catch-basins or underground sewers in 

model development.  Instead, we assumed stormwater from the individual subbasins and 

their temporary retentions (e.g., catch-basin) will eventually flow into the drainage 

canals, which were represented in the model by a network of nodes and links. Each 

subbasin was associated with the closest of the three rainfall stations and eight 

groundwater wells.  

The developed SWMM model was constrained by observed time-series of canal 

discharges at four gauging stations as the boundary conditions (Figure 3.2) and run in an 

hourly time-step, simulating the surface runoff in each subcatchment and discharges at all 

Transportation compartment 

Groundwater compartment 

81 nodes and 105 links to model the 
river network with bathymetric data 

8 USGS and 2 SFWMD observation 
well data to model initial GW level 

Land surface compartment 33 subcatchments with hydrologic and 

Atmosphere compartment 3 rainfall gages (hourly data) & 1 
evapotranspiration gage (daily data) 
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the nodes on drainage canals. The total stormwater generated for the Miami Basin was 

computed by summing the runoffs of all subbasins at each time-step. The hourly, basin-

scale stormwater flow rates (volume per time) were aggregated to compute total monthly 

and annual stormwater (in volume units), which were later used for determining 

stormwater sensitivity in the Basin. Hourly simulated discharges (volume per time) were 

averaged to compute the mean daily discharges at two calibration stations (Figure 3.2). 

We estimated the potential pollutant load rates (in units of mass per time) from each 

subbasin by multiplying the simulated hourly runoff with a pollutant-specific event mean 

concentration (EMC) (Table 3.1), the EMCs for six pollutants (e.g., total suspended 

solids, total nitrogen, total phosphorus, copper, zinc and biochemical oxygen demand) are 

obtained from published literature based on existing land uses (Migliaccio & Castro, 

2009) The hourly load rates of all subbasins were aggregated to compute potential 

monthly and annual pollutant loads (in mass units) for determining load sensitivities to 

hydro-climatic and land use/cover variations.  

Table 3.1: Event mean concentrations (EMCs) used for the Miami River Basin.  
Land use 
category 

Runoff concentrations (mg/l) 
TN TP BOD TSS Cu Pb Zn 

Single family 
residential 

2.07 0.327 7.9 37.5 0.016 0.004 0.062 

Multi- family 
residential 

2.32 0.520 11.3 77.8 0.009 0.006 0.086 

Commercial 2.4 0.345 11.3 69.7 0.015 0.005 0.160 

Industrial 1.2 0.26 7.6 60 0.003 0.002 0.057 

Parks and open 
lands 

3.47 0.616 5.1 94.3 0.013 0.003 0.021 
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3.2.4  Model calibration 

The model was calibrated using the mean daily flow data for 2010 at the Miami River (S-

26) and the Tamiami Canal (S-25B) stations (Figure 3.5). For evaluating calibration 

performance, the Nash-Sutcliffe Efficiency (NSE) (Nash and Sutcliffe, 1970), RMSE-

observations standard deviation ratio (RSR) and correlation coefficient (r) were chosen. 

The NSE measures the goodness of fit and approaches unity if the simulation is perfectly 

representing the observation. If the efficiency becomes negative, model predictions are 

worse than a prediction performed using the average of all observations. The Nash–

Sutcliffe model efficiency coefficients for S-26 (Miami River station) and S-25B 

(Tamiami station) were, respectively, 0.89 and 0.55, which is satisfactory for calibration 

with daily observed flow. RSR is calculated as the ratio of the RMSE and standard 

deviation of measured data. A RSR value of 0 indicates a perfect model with 0 RMSE. 

Any RSR value in the range of 0 to 0.5 is considered very good. A model with RSR 

higher than 0.7 is unsatisfactory (Moriasi, 2007). The RSR values for S-26 and S-25B 

were 0.33 and 0.68 accordingly, which indicates calibration is very good for S-26 and 

satisfactory for S-25B. The relatively lower value of S-25B can be attributed to the 

portion of Tamiami Canal watershed within the model domain for which overland flow 

was not considered.  The correlation coefficient (r) was 0.98 for S-26 and 0.93 for S-25B, 

which indicates strong linear correspondence between observed and predicted flow rates 

at both stations. The application of upstream and downstream boundary conditions and 

calibration with measured data ensured a realistic model response to the hydro-climate, 

watershed, and land use/cover variables. 
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Figure 3.5: Daily calibration for 2010 at S-26(top) and S-25B stations (bottom). 

 

3.2.5  Definition of sensitivity coefficients 

The changes in predicted stormwater runoff and potential pollutant loads for any changes 

in model parameters and variables can be determined by defining sensitivity coefficients, 

which shows both the magnitude and direction (i.e., increase or decrease) of model 

responses. Following Abdul-Aziz et al. (2010), we defined the dimensionless, relative 

sensitivity coefficients ( *S ) as below. 
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P/P

M/M*




S  

Where P/P  represents the percent change in model parameters (or input variables) and

M/M represents the corresponding percent change in model response (i.e., percent 

changes in predicted runoff or pollutant loads).  

Relative sensitivity coefficients of stormwater runoff and potential pollutant loads were 

computed by changing one parameter at a time for quantifying model responses to 

variations in hydrologic, climate, and land use parameters and variables. Percent changes 

in runoff and pollutant loads in each month were calculated for up to 25% change in each 

parameter. The 25% change is considered as a reference for this scenario based analysis 

so that model responses to different parameters can be compared on a common 

perturbation basis. The variation of model sensitivity over a year was reflected by the 

range between maximum and minimum value of sensitivity coefficient for each 

parameter. Mean annual sensitivity was presented by the annual sensitivity coefficients, 

which were computed by dividing the percent changes of annual runoff (or pollutant 

loads) by the specified changes in model parameters/variables.  

3.2.6  Parameters of concern 

We computed relative sensitivity coefficients of stormwater runoff and potential pollutant 

loads for five hydrologic and two climate parameters/variables and nine land use 

conversions (Table 3.2). The parameters were selected based on relevance to storm water 

generations in the Miami Basin (Al-Amin and Abdul-Aziz, 2013) after carefully 
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reviewing the parameterization and methodological details in Storm Water Management 

Model (SWMM 5). 

Table 3.2: Parameters of concern for sensitivity analysis. 
Stressor Parameter Range 

Climate 
Rainfall 

0.01-2.32a

0.00-3.34b

0.00-1.57c

Evapotranspiration 0.37-0.66d 

Land use 

Single family residential areas 8-96% 
Multi-family residential areas 2-100% 
Industrial areas 4-34% 
Commercial areas 5-100% 
Open lands and parks 2-100% 

Hydrology 
and land cover

Slope 0.0002-0.0054 
Imperviousness 5-85.65% 
Roughness 0.04 
Percentage routed from impervious to pervious areas 25% 
Percentage impervious with zero storage 0.08% 

aHourly precipitation in station 19332, bhourly precipitation in station K8673, chourly precipitation in 
station MIA, dmonthly evapotranspiration 
 

The hydrologic parameters of percentage of runoff routed from impervious areas to 

pervious areas before reaching outlet and percentage of impervious areas with zero 

storage represent management practices. When the runoff from the impervious surface is 

routed across the pervious surface, the runoff is subjected to infiltration and depression 

storage in the pervious sub-area. Routing from impervious to pervious areas, therefore, 

can be used to implicitly model Low Impact Development (LID) controls. Impervious 

areas with zero storage accounts for immediate runoff that occurs at the beginning of 

rainfall before depression storage is satisfied. It represents pavement close to the gutters 

that has no surface storage, pitched rooftops that drain directly to street gutters, new 

pavement that may not have surface ponding, etc. (Gironás et al., 2010).  Nine land use 
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conversions among the five land use types were evaluated as follows: open lands and 

parks to (i) single family residential, (ii) multi-family residential, (iii) industrial, and (iv) 

commercial areas; single family residential to (v) multi-family residential, (vi) industrial, 

and (vii) commercial areas; and multi-family residential to (viii) industrial, and (ix) 

commercial areas. 

3.3  RESULTS 

 Using the calibrated SWMM model outputs, we computed the dimensionless, monthly 

and annual sensitivity coefficients of total potential storm runoff and loads of six 

pollutants(total suspended solids, total nitrogen, total phosphorus, copper, zinc and 

biochemical oxygen demand) in response to climate, land uses/cover, and hydrologic 

variations in the Miami Basin. Although the computed sensitivity coefficients (Eq. 1) can 

be used to estimate model responses to any changes (increases or decreases) in 

parameters or variables, we report here the percent changes in runoff and pollutant loads 

caused by an increase in model parameters and variables as examples.   

3.3.1  Climate sensitivities 

During the model calibration year of 2010, the Miami Basin received lower rainfalls from 

October to January and higher rainfalls during March to September (Figure 3.5). 

December and January received the least rainfalls, while September experienced the 

highest rainfall amounts. The temporal variation of precipitation, in concert with resulting 

soil saturation, appeared to have caused differential sensitivities of potential stormwater 

runoff in the basin (Figure3.6).  For each month, runoff increased almost linearly with an 

increase in rainfall. However, percent changes in runoff per changes (%) in parameter 
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(i.e., slope of the sensitivity curves) were much steeper for November and December; 

Rainfall was increased for the model by increasing rainfall depth (keeping the number of 

rainfall days unchanged). Therefore, although November and December received very 

low rainfall, the rainfall events in these months were concentrated in 3-4 days only. A 

plausible explanation of these higher sensitivities is that soil was already saturated and 

depression storages were filled due to higher rainfalls in the current or the previous days. 

Drier months (e.g., January, February) with evenly distributed precipitation showed less 

change in runoff as initial portion of precipitation was used to saturate the soil and/or fill 

the depressions first, for each rainfall event. 

 

 
Figure 3.6: Monthly rainfall variation in the Miami River Basin, Florida (top) and 

Predicted changes in runoff for changes in rainfall in Miami Basin (bottom). 



 

44 

A comparison of the two major climatic components (i.e., rainfall and evapotranspiration) 

showed opposite effects on runoff sensitivities. With an increase of 25% in rainfall and 

evapotranspiration (ET), annual runoff, respectively, increased by 64% and decreased by 

39%. Rainfall, as expected, was the most dominant driver for runoff. The temporal 

variation for change in rainfall was also higher compared to that in ET (which is strongly 

driven by solar radiation and temperature), indicating that temporal variations of 

stormwater were dictated by rainfall variability rather than by variations in temperature 

and/or solar radiation. Overall, rainfall had around 50% stronger leverage than ET on 

stormwater runoff generation in the basin. 

A change in climatic components can lead to varying levels of atmospheric deposition of 

the pollutants, causing variations in pollutant generation processes. Pollutant transport 

can also change due to the varied amount of generated runoff. However, the 

parameterization in SWMM does not include the atmospheric deposition; since we used 

an EMC based modeling approach, the climate sensitivities of six pollutants (total 

suspended solids, total nitrogen, total phosphorus, copper, zinc and biochemical oxygen 

demand) were found to be same as that of storm runoff.  

3.3.2  Hydrologic and land cover sensitivities 

 Runoff increased linearly at different, but intriguing monthly sensitivity rates with 

increasing imperviousness in the Miami Basin (Figure 3.7). For example, increasing 

imperviousness from 10% to 25% led to the highest increases of 5% to 24% in October 

runoff and the lowest increases of 0.5% to 2% in December and January runoffs, 

although these months received similar amounts of rainfall (Figure 3.7). In contrast, 
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much higher rainfall months such as September, August, July, and April showed an 

intermediate level of runoff sensitivities for the same changes in imperviousness. The 

temporal variation of precipitation, in concert with resulting soil saturation, appeared to 

have caused differential sensitivities of potential stormwater runoff in this case, as well. 

But unlike change in precipitation, here the differential sensitivities were influenced by 

the number of rainfall days in the current or previous months (as rainfall depths were 

unchanged here).  Higher sensitivity was observed for months where an increase in 

imperviousness caused early soil saturation and filling up of depression storages due to 

higher rainfalls in the current or the previous months.  Overall, the annual runoff 

increased by around 3 to 10% for a 5 to 25% increase in soil imperviousness in the Basin 

(Figures 3.6).  

 
Figure 3.7: Predicted changes in runoff for increase in imperviousness of the Miami 

Basin. 
 

Among different hydrologic and land cover parameters, watershed imperviousness and 

slope had positive impacts on runoff generation (Figure 3.8). On average, monthly runoff 

increased by around 8% and 10% for a 25% increase in imperviousness and slope, 
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respectively. The lower runoff changes for slope can be attributed to the relatively flat 

topography in the Miami Basin. Roughness had a strong negative impact on potential 

runoff, leading to an average decrease of 13% in monthly runoff for a 25% increase in 

roughness (e.g., greening through plantations and landscaping). Runoff also exhibited 

high temporal variability to changes in imperviousness and roughness. The parameters of 

percent impervious area with zero storage (accounts for immediate runoff that occurs at the 

beginning of rainfall before depression storage is satisfied)  and percent runoff routed from 

impervious to pervious areas before reaching outlet (accounts for  higher infiltration and 

depression storage in the pervious sub-area) can represent conventional management 

practices on land covers in a watershed. Increasing the percent runoff routed by 25% 

decreased the monthly runoff by 25%, while runoff was nearly insensitive to changes in 

percent imperviousness with zero storage reemphasizing the insignificant presence 

(0.08%; see Table 3.1) of this management practice in the Miami Basin. These two 

parameters contributed no temporal variability in runoff due to their time-invariable 

representations in the SWMM model. Variations in hydrologic and land cover 

components can also change the pollutant generation and transport. However, since we 

modeled the potential pollutant loads using relevant EMCs, which depend on land uses 

rather than land cover, hydrologic and land cover sensitivities of pollutants were found to 

be nearly identical to that of runoff. 
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Figure 3.8: Comparison of the effects of hydrologic and land cover components on runoff 

in the Miami Basin. 

3.3.3  Land use sensitivities 

3.3.3.1  Land use sensitivities of runoff 

Land use conversions contributed a change in runoff generation due to the difference in 

imperviousness associated with each land use type in the Storm Water Management 

Model (EPA SWMM 5). Percentage change in runoff due to a 25% conversion of each 

considered land use was compared (Figure 3.9). Conversion of open lands (25%) to 

industrial area caused highest change in runoff (6.5%) followed by commercial (6.0%), 

residential multi-family (5.5%) and residential single family areas (5%).  

 
Figure 3.9: Comparison of the effects of land use conversions on runoff in the Miami 
Basin (OL=Open lands and parks, SFR=Single family residential, MFR= Multi-family residential, 

IND=industrial, COM=commercial areas). 
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Conversion of single family residential areas to multi-family residential areas (1%), 

commercial areas (1%) and industrial areas (2%) produced little changes in runoff. The 

temporal variability for single family residential area conversions was smaller than that of 

conversions of open lands. Conversion of multi-family residential areas to industrial and 

commercial areas caused a change in runoff less than 1%. In comparison to climatic and 

hydrologic parameters, runoff showed less sensitivity to land use parameters. The 

conversion of open lands to other land use types was found to be most dominant land use 

conversion for runoff. 

3.3.3.2  Land use sensitivities of pollutants 

Sensitivities of pollutant loading and runoff were not similar for land use conversions 

(Table 3.3). Change in runoff due to a change in imperviousness is coupled with the 

change in Event Mean Concentrations (EMCs) due to land use conversions. The pollutant 

loading, therefore, varies based on the total runoff generated and the corresponding 

changes in concentrations.  

Total suspended solids (TSS) 

The EMC values are highest for total suspended solids in single family residential areas 

followed by multi-family residential, commercial and industrial areas. The 

imperviousness, on the other hand, is higher for industrial areas followed by commercial, 

multi-family and single family residential areas.  Conversion of single residential to 

multi-family residential, commercial or industrial areas, therefore, produced higher runoff 

at a lower concentration. So, whether there would be a decrease or increase in terms of 

TSS loading in runoff, was determined by two factors; change in runoff and change in 
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EMC associated with change in land use types. For Miami River Watershed, change in 

runoff was more dominant and therefore, TSS loading increased in all land use 

conversions of open lands and single family residential areas (Table 3.3).  

Nutrients 

In our study, the nutrients (total nitrogen and total phosphorus) showed highest sensitivity 

to land use conversions. For total nitrogen, The EMC’s were highest for open lands and 

parks followed by commercial, multi-family residential, single family residential and 

industrial areas. For total phosphorus, EMC was higher for multi-family residential than 

commercial. Except for few monthly runoffs for conversion to multi-family residential 

areas, total nutrient in runoff increased for all the conversion of open lands and parks. 

Conversion of multi-family residential to industrial areas produced higher runoff with a 

lower concentration which led to an overall decrease in nutrient loading.  

Biochemical oxygen demand (BOD) 

EMC for BOD is highest for multifamily residential and commercial areas followed by 

single family, industrial and open lands and parks. All the land use conversions increased 

the BOD generation except conversion of multi-family residential areas to industrial 

areas. BOD loading in the later was governed by an increase in concentrations whereas 

for the others BOD loading was dominated by an increase in runoff. 
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Table 3.3: Percentage (%) change in parameters due to a 25% conversion among the land use types of Miami River Basin. 
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Change in 
quality  

parameters 

Open land 
to single 
family 

residential 

Open land 
to  multi-

family 
residential

Open 
land to 

industrial 

Open land 
to 

commercial

Single 
family  to 

multi-
family 

residential 

Single 
family 

residential 
to 

industrial 

Single 
family 

residential 
to 

commercial 

Multi-
family 

residential  
to 

industrial 

Multi-
family 

residential 
to 

commercial

TSS 
Average 4.2 5.7 5.8 6.4 2.9 2.4 3.2 -0.9 0.3 

Maximum 7.0 9.1 9.4 9.9 3.9 4.4 5.6 -0.2 0.6 

Minimum 1.0 1.2 1.3 1.3 1.2 0.9 1.2 -2.2 -0.1 

TN 
Average 5.4 6.5 6.6 7.5 1.2 0.1 2.1 -0.8 0.6 
Maximum 8.8 10.4 10.5 11.7 2.5 2.4 4.8 -0.3 1.0 
Minimum 1.0 1.1 1.1 1.2 0.4 -0.9 0.6 -1.5 0.3 

TP 
Average 5.2 5.3 6.5 7.2 2.3 0.3 1.9 -1.4 -0.4 
Maximum 8.7 8.7 10.7 11.3 3.5 2.8 4.6 -0.4 0.2 
Minimum 1.0 -1.0 1.1 1.2 0.8 -1.0 0.4 -2.7 -1.3 

BOD 
Average 4.1 5.3 5.1 6.0 2.1 1.2 3.0 -1.1 0.6 
Maximum 6.7 8.4 8.3 9.3 3.3 3.4 5.5 -0.4 0.9 
Minimum 1.1 1.2 1.2 1.3 0.9 0.2 1.1 -2.2 0.3 

Cu 
Average 5.4 4.6 5.3 7.3 -0.7 -4.4 1.7 1.1 0.5 

Maximum 8.5 7.4 8.1 11.0 1.2 -1.2 4.6 2.0 0.8 

Minimum 1.2 1.3 1.3 1.4 -2.5 -5.9 0.4 0.3 0.3 

Zn 
Average 3.7 4.4 4.3 6.4 1.6 1.2 6.2 -0.7 3.6 
Maximum 6.2 7.2 7.1 10.0 2.8 3.5 8.1 -0.2 5.6 
Minimum 1.0 1.1 1.1 1.2 0.2 0.2 3.2 -1.4 1.7 
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Metals 

For copper (Cu), EMC was highest for commercial areas followed by single family 

residential, multi-family residential and industrial areas where as for zinc (Zn), EMC was 

highest for commercial areas followed by multi-family residential, single family 

residential and industrial areas. As previous, change in Cu and Zn was also runoff 

controlled and Cu and Zn generation from the watershed increased for all the open land 

and park conversions. Conversion of single family residential areas reduced Cu 

generation in most of the months. Conversion of multi-family residential areas to 

industrial areas reduced Zn generation, too.  

The annual sensitivity coefficients are representatives of an average condition for the 

entire year. Annual sensitivity coefficient for rainfall (2.56) was higher than 

evapotranspiration (-0.83). The annual sensitivity coefficient for rainfall was 2.56 implies 

that for 1% change in rainfall runoff would change by 2.56% in the Miami River Basin. 

Although these sensitivity coefficients were obtained for 1% change in parameters, they 

can be used to calculate changes in runoff and pollutants for any percentage of change in 

parameters by applying appropriate multiplying factors. Imperviousness (0.42) and 

roughness (-0.47) were important hydrologic and land cover sensitivities. Percentage of 

impervious area with zero storage, which signifies management practices showed very 

low sensitivity (0.003). Percentage routed from impervious area to pervious area before 

reaching outlet showed very strong sensitivity (-1.00).  
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Table 3.4: Summary of annual sensitivity coefficients for runoff and quality in Miami 
Basin. 

 

Conversion of open lands and parks to residential, commercial or industrial areas showed 

highest sensitivity which reemphasizes the need for up-gradation of management 

strategies and drainage infrastructure to counteract the increased runoff and pollutant 

generation corresponding to these conversions. Although the land use conversions among 

single family and multifamily residential areas to commercial or industrial areas did not 

show much sensitivity, these conversions might be crucial from individual pollutants 

perspective. For example, conversion of residential areas to commercial or industrial 

areas might increase Zn loading to surface water bodies and have detrimental effects on 

aquatic lives in a watershed. The sensitivities of pollutants, therefore, need careful 

consideration from watershed perspectives. 

Parameters 
Annual sensitivity coefficients for 25% change in parameters 

Runoff TSS TN TP BOD Cu Zn 

Open land to 
single family residential  

0.22 0.2 0.26 0.25 0.24 0.26 0.17 

Open land to  multi-family 
residential 

0.27 0.28 0.32 0.29 0.30 0.22 0.21 

Open land to industrial 0.29 0.28 0.32 0.32 0.29 0.25 0.21 

Open land to commercial 0.31 0.31 0.37 0.35 0.33 0.36 0.31 

Single family  to multi-
family residential  

0.04 0.12 0.05 0.10 0.14 -0.02 0.08 

Single family residential to 
industrial 

0.06 0.11 0.00 0.02 0.10 -0.18 0.06 

Single family residential to 
commercial 

0.07 0.15 0.10 0.09 0.18 0.08 0.27 

Multi-family residential  to 
industrial 

0.02 -0.03 -0.03 -0.04 0.01 0.04 -0.02 

Multi-family residential to 
commercial 

0.02 0.01 0.03 -0.01 0.07 0.02 0.12 
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3.3.4  Combined hydro-climatic sensitivities 

The relative sensitivity analysis showed that imperviousness and roughness are the most 

important hydrologic parameters. Increased imperviousness is a consequence of 

urbanization and causes shorter lag time and high runoff (Shuster et al., 2005).   Increased 

roughness, on the other hand, increases lag time and decreases runoff (Darboux & Huang, 

2005). We analyzed the effects of increasing imperviousness and roughness under an 

increasing rainfall to examine watershed responses under combined hydro-climatic 

changes. Unlike the relative sensitivity analysis, the combined sensitivity analysis was 

undertaken by changing both the climate (rainfall) and hydrologic parameters 

(imperviousness and roughness) simultaneously. Change in runoff was analyzed for 5% 

increment in both climate and hydrologic parameters. For ease of visualization, change in 

runoff for a change of parameters up to 20% is presented. 

3.3.4.1  Combined sensitivity to rainfall and imperviousness 

As previous, runoff increased linearly with an increase in rainfall and with an increase in 

imperviousness (Figure 3.10). However, increase in runoff due to increase in rainfall was 

much higher than for increase in imperviousness.  
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Figure 3.10: Comparison of the combined effects of changes in rainfall and 

imperviousness on runoff in Miami Basin. 
 

The change in runoff under combined hydro-climatic changes was not entirely linear. For 

a 20% increase in rainfall, runoff increased by 52%. For 20% increase in imperviousness, 

runoff increased by 8.5%. But, when both rainfall and runoff were increased by 20%, 

runoff increased by 66%, which is higher than sum of their individual contributions 

(60%). The synergic effect of simultaneous increase in rainfall and imperviousness, 

therefore, can be significantly different than the projected standalone impacts of changing 

climate or growing urbanization. The management strategies developed without due 

consideration of this effect poses risk of overlooking a considerable margin (10%) which 

may led to an insufficient or ineffective arrangement to counteract stormwater runoff and 

quality. 
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3.3.4.2  Combined sensitivity to rainfall and roughness 

An increase in surface roughness increases lag time and possibility of infiltration due to 

higher residence time. An increase in roughness, therefore, decreases surface runoff 

(Figure 3.11). When roughness was increases by 20% in the model, runoff decreased by 

10%. On the other hand, when rainfall was increased by 20%, runoff increased by 52%. 

But when both rainfall and roughness were increased by 20%, runoff increased by 39%. 

The change in runoff is also different than their individual linear contributions (42%).  

 
Figure 3.11: Comparison of the combined effects of changes in rainfall 

and roughness on runoff in Miami Basin. 
 

The results are in line with our previous findings for imperviousness. The surface 

roughness showed higher utility in minimizing runoff and effectively brought down the 

runoff by almost 8% under the combined effect of climate. The non-linear response of 

stormwater runoff under combined hydro-climatic changes emphasizes needs for further 

research and due consideration in scenario based stormwater management approaches. 
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3.3.5  Combined climatic and land use sensitivities 

In the relative sensitivity analysis, it was observed that conversion of open lands and 

parks to residential, commercial and industrial areas were most dominant land use 

changes for stormwater runoff and pollutant generation. Since conversion to industrial 

and commercial areas showed close sensitivities, we analyzed the combined climatic and 

land use sensitivities for conversion of open lands and parks to residential and 

commercial areas only. Analyses of changes in pollutants were also minimized to four 

pollutants (i.e., TSS, TN, CU and DO) to address the four major categories of pollutants 

observed in relative sensitivity analyses. Changes in runoff were not included as the 

changes would take place due to the varying amount of impervious areas, which was 

discussed in a previous section. Climate was dominant over land use conversions in the 

combined analysis also (Fig 3.12 and Table 3.5). For a 20% increase in rainfall, TSS 

increased by 52.8%. The increases in TN (52%), Cu (52%) and DO (53%) were similar. 

On the other hand, for a 20% conversions of open lands and parks to residential areas, the 

increase in pollutants were very small (TSS (5%), TN (6%), Cu (4%) and DO (5%)). 

 
Interestingly, when rainfall was increased by 20% and 20% of open lands and parks were 

converted to residential areas simultaneously, changes in TSS (60%), TN (61.5%), Cu 

(59%), DO (60%) were higher than the summation of their individual contributions (TSS 

(58%), TN (58%), Cu (56.5%), DO (57%)). 
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Figure 3.12: Comparison of the combined effects of changes in rainfall and land use 
(conversion of parks and open lands) on potential total nitrogen load in Miami Basin. 

 

Similar results were also found for conversion of open lands and parks to commercial 

areas. When rainfall was increased by 20% and simultaneously 20% of open lands and 

parks were converted to commercial areas, changes in TSS (63%), TN (64%), Cu (64%), 

DO (62%) were higher than the summation of their ( rainfall and conversion of land use) 

individual contributions (TSS (59%), TN (60%), Cu (60%), DO (59%)). In general, Total 

Nitrogen (nutrients) was most sensitive to combined climate and land use changes. 

Conversion of open lands and parks to commercial areas produced more pollutants than 

conversion to residential areas. The results are in line with the relative sensitive analysis. 

The difference of pollutant generations under combined climate and land use changes 

require more in details research. 
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Table 3.5: Comparison of the combined effects of changes in rainfall and land use on potential pollutant loads in Miami Basin. 

Increase 
in 

rainfall 

Conversion of open lands and parks to residential areas 

0% 5% 10% 15% 20% 

∆TSS ∆TN ∆Cu ∆DO ∆TSS ∆TN ∆Cu ∆DO ∆TSS ∆TN ∆Cu ∆DO ∆TSS ∆TN ∆Cu ∆DO ∆TSS ∆TN ∆Cu ∆DO 

0% 0.0 0.0 0.0 0.0 1.5 1.9 0.8 1.3 2.7 3.4 2.0 2.5 3.9 4.7 3.1 3.6 4.9 5.9 4.1 4.6 

5% 12.3 12.2 12.2 12.3 13.9 14.3 13.1 13.7 15.4 16.1 14.1 15.1 16.6 17.5 15.7 16.3 17.8 18.8 16.8 17.4 

10% 25.2 25.0 25.1 25.2 27.0 27.3 26.0 26.8 28.6 29.3 27.6 28.3 31.0 30.9 28.9 29.6 31.3 32.4 30.2 31.0 

15% 38.7 38.4 38.5 38.7 40.7 41.0 39.6 40.5 42.4 43.1 41.3 42.1 44.0 45.0 42.8 43.7 45.5 46.7 44.2 45.1 

20% 52.8 52.4 52.4 52.8 54.9 55.2 53.6 54.8 56.9 57.6 55.5 56.6 58.6 59.7 57.2 58.2 60.2 61.5 58.7 59.8 

Increase 
in 

rainfall 

Conversion of open lands and parks to commercial areas 

0% 5% 10% 15% 20% 

∆TSS ∆TN ∆Cu ∆DO ∆TSS ∆TN ∆Cu ∆DO ∆TSS ∆TN ∆Cu ∆DO ∆TSS ∆TN ∆Cu ∆DO ∆TSS ∆TN ∆Cu ∆DO 

0% 0.0 0.0 0.0 0.0 1.9 2.5 2.3 1.7 3.6 4.5 4.3 3.3 5.1 6.2 6.0 4.6 6.4 7.7 7.4 5.9 

5% 12.3 12.2 12.2 12.3 14.4 15.0 14.8 14.2 16.3 17.2 17.0 15.9 18.0 19.2 18.9 17.5 19.4 20.8 20.6 19.0 

10% 25.2 25.0 25.1 25.2 27.6 28.1 27.9 27.4 29.7 30.7 30.4 29.3 31.5 32.8 32.5 31.0 33.2 34.7 34.4 32.7 

15% 38.7 38.4 38.5 38.7 41.3 41.8 41.7 41.1 43.7 44.7 44.4 43.2 47.1 47.1 46.8 45.1 47.6 49.2 48.9 47.0 

20% 52.8 52.4 52.4 52.8 55.7 56.1 55.9 55.4 58.2 59.2 58.9 57.8 61.9 61.9 61.5 59.9 62.6 64.3 63.9 62.0 
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3.4  DISCUSSION 

Limited availability of data is a major constraint in the development of stormwater 

models. Generally, Stormwater models are, therefore, developed for small catchments 

and single storm events. In contrast, we have used long-term, continuous climate, 

hydrologic, and sea level data to elucidate seasonal, as well as annual, responses of 

stormwater runoff to changes in climate and hydrologic drivers. Since the model explored 

the stormwater responses in a watershed scale, the results might not be accurate enough 

in smaller sub catchment scales, but water balance of the total watershed is preserved, 

and the objective of evaluating stormwater runoff and quality sensitivity in watershed 

scale is well served.  

The selection of the calibration parameter for Storm Water management model (EPA 

SWMM 5.0) depends on the objectives of the study and the data availability (Tsihrintzis 

& Hamid, 1998). Selection of parameters for calibration, therefore, varied in literature. 

For example, Bedient and Huber (1988) estimated the catchment area, imperviousness, 

slope, Manning's n, pervious and impervious depression storage and Green-Ampt 

parameters. Jewell et al. (1978) used the percentage imperviousness as the main 

calibration parameter for volume and Manning's n, and the characteristic width for peak 

adjustment. Warwick and Tadepalli (1991) concluded that detail in model representation 

was not significant in calibration, and percentage imperviousness as the single calibration 

parameter was more useful than pervious depression storage. However, recent 

developments in impervious area calculations (Han & Burian, 2008) have facilitated 

accurate prediction of impervious areas in watersheds. For our study, therefore, 
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impervious area is a set parameter and the calibration was based on roughness (Manning's 

n) and groundwater parameters.  The Nash–Sutcliffe model efficiency coefficients (NSE) 

for calibration against daily observed flow at S-26 and S-25B were 0.89 and 0.55. The 

RMSE- standard deviation ratio (RSR) for the two stations were 0.33 (very good) and 

0.68 (satisfactory), as well. The application of upstream and downstream boundary 

conditions and calibration with measured data ensured a realistic model response to the 

hydro-climate, watershed, and land use/cover variables. In a previous study (Dotto et al., 

2010), the NSE varied between -0.04 to 0.46 for TSS and between -0.38 to 0.36 for TN. 

Due to unavailability of quality data at appropriate boundaries and time scale, we could 

not incorporate observed water quality data in our model. Instead, Event Mean 

Concentrations (EMCs) from published literature based on existing land uses, 

(Migliaccio & Castro, 2009) were incorporated. Site-specific data for water quality, 

measured at the boundaries and calibration points, would have improved the model 

performance. 

Land use conversions and associated landscape modification significantly affects the 

watershed hydrogeology. According to literature, runoff was most sensitive to the 

imperviousness (Jewell et al., 1978) among hydrologic parameters. Roughness 

(Manning's n) and the characteristic width influences the shapes and peaks of the 

predicted hydrographs. In another study (Tsihrintzis & Hamid, 1998), the impervious 

depression storage (IDS) was the most sensitive parameter, followed by the roughness 

(Manning’s n), the Green-Ampt infiltration parameters and the pervious depression 

storage (PDS). In our study too, runoff showed profound sensitivity to imperviousness 
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and percentage routed from pervious to impervious areas, followed by roughness. One 

novel contribution of our study is that we have not only evaluated the individual 

sensitivity of each parameters but also identified the range over which the sensitivity 

varied in different months. The study this way took care of the seasonal variation of the 

sensitivity coefficients in a watershed scale. 

The synthesis of precipitation (rainfall depth and duration) with catchment properties 

(e.g., topology, land cover and soil condition) controlled the runoff characteristics in the 

watershed. According to literature, changes in rainfall were always amplified in runoff, 

the amplification being greater in drier catchments (Chiew et al., 1995). Nearing et al, 

(2005) reported that relative change in runoff (sensitivity) was higher for small storms 

while absolute change (total runoff) was higher for larger storms. In a different context, 

we also found highest sensitivity of runoff in drier months (Figure 3.6) when the 

precipitation was concentrated in smaller durations. The sensitivity was lowest for drier 

months when precipitation was distributed. For wet periods, precipitation was evenly 

distributed and sensitivity was moderate. This emphasizes the need for separate 

management strategies based on rainfall intensity and duration. Controlled urban 

landscaping (e.g., grass lawns in residential areas and grass strips along the pavements, 

topologic modification to guide runoff in block scale) can be effective for counteracting 

the short duration high intensity dry period precipitations that produces sudden increase 

in runoff. Developments of catch basins and drainage infrastructure should be aimed at 

the long duration wet period precipitation events which produces larger volume of runoff. 
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The model predictions were compared to field observations of stormwater quality data. 

Maestre and Pitt (2006) analyzed significant factors ( e.g., The EPA rain zone, percentage 

of imperviousness, land use, type of conveyance, controls in the watershed, sample 

analysis method, and type of sampling procedures) affecting stormwater quality using the 

National Stormwater Quality Database. It was observed that TSS, TP and Cu 

concentration in stormwater runoff was higher in summer and fall than in winter and 

spring. In our study too, the model predicted higher pollutant generation in wet period 

that receives most of the precipitations (April to September). The model prediction of a 

decrease in pollutant generation with an increase of imperviousness was also verified 

against the observations in this study. The development and application of mechanistic 

model for stormwater quality is restrained by the availability of data of appropriate 

frequency in a watershed scale. However, the model provides useful information for 

stormwater quality and its sensitivity to hydro-climatic parameters and land use 

conversions in complex urban watershed. 

Runoff was most sensitive to climate under combined climate-land use changes in a 

previous study (Legesse et al., 2003). A 10% decrease in the daily rainfall amount year-

round caused an average annual decrease in runoff at the outlet of about 30% in the 

tropical Africa. In our study, analyzing a different land use and hydrologic regime, we 

found a change of 24% in runoff corresponding to a 10% increase in rainfall. The study 

(Legesse et al., 2003) also considered a scenario based land use change of forest to short 

crops (50% of the total catchment area) and observed an increase in evapotranspiration of 

about 2.5% and a decrease in the mean annual river flow of about 8% with respect to the 
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actually simulated value. In our study, we found less sensitivity to changes of open lands 

and parks to residential (5%) and commercial (6.5%) areas. This was expected as Miami 

River Basin is highly urbanized and the base percentage of open lands and parks are 

relatively lower. In another study (Tu, 2009), the change in stream flow under both 

climate and land use change scenarios was found consistent to that under only climate 

change scenario. In our study also, we found smaller differences (compared to combined 

hydro-climate affect) between response of runoff to simultaneous climate and land use 

changes to the arithmetic summation of their individual changes. However, the responses 

of runoff under combined hydro-climatic changes were significantly different than 

arithmetic summation of their individual contributions. Urbanization (increasing 

imperviousness) caused higher increase in runoff (from its standalone impact by 10%) 

whereas roughness caused higher decrease in runoff (from its standalone impact by 8%) 

under the synergic effect of climate (rainfall). The non-linear response of stormwater 

runoff under combined hydro-climatic changes emphasizes needs for further research and 

due consideration in scenario based stormwater management approaches. 

Although we differentiated land use parameters from hydrologic and land cover 

parameters, a change in either of these two, will simultaneously change the others. For 

example, changing open lands and parks to residential or commercial areas will 

automatically change the landscapes and will change the slope, imperviousness and 

roughness of a watershed. Since, conclusive correlations are yet to be made between land 

uses and land cover parameters, the parameterizations in most commonly used models do 

not take care of their mutual dependency. Therefore, we differentiated land use 
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parameters from land cover parameters to identify their relative roles. The changes in 

land uses thus should be interpreted in terms of changes in imperviousness and pollutant 

generation only. All the analyses in this study were also undertaken under the assumption 

of constant drainage density. With changes in climate and land use, the drainage density 

is expected to be revised and upgraded. However, this study analyzed runoff and 

pollutant generations from the source perspective.  The objective was to compare the 

runoff and pollutant generation and need for drainage infrastructures and density up-

gradation. The assumption of constant drainage density is, therefore, satisfactory.   

The EMC based stormwater quality modeling approach in this study revealed small 

differences in sensitivity for different pollutants. According to literature, the dominant 

factors that control pollutant generation in a watershed are different. Hence, the 

sensitivity analyses for stormwater quality need further research. Empirical relationships 

based on the data driven models of a particular hydro-climatic regime can be fit into this 

models to analyze sensitivities more coherently to their contributing stressors. Although 

all the stormwater models are based on existing knowledge of the pollutant generation 

and runoff processes, their parameterization varies significantly. The results, thus, should 

be carefully considered keeping the parameterization of SWMM in mind. An uncertainty 

analysis can be helpful to accommodate the variability of the sensitivities of stormwater 

runoff and pollutants.    

3.5  CONCLUSIONS 

We quantified sensitivities of stormwater runoff and quality to hydro-climatic and land 

use parameters in complex urban-coastal watersheds. The temporal variation of 
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precipitation, in concert with resulting soil saturation, appeared to have caused 

differential sensitivities of runoff in different months in the watershed.  Stormwater 

runoff in the complex urban basin showed the greatest sensitivity to rainfall (stronger 

responses in the drier winter months). Among the hydrologic parameters, imperviousness 

and roughness showed relatively stronger influence than slope.  Higher increase in runoff 

and pollutants resulted from conversion of open lands/agricultural to residential, 

commercial or industrial areas. Conversion among residential, commercial, and industrial 

land uses showed much less changes. The combined sensitivity analyses showed that the 

change in runoff and pollutants under simultaneous hydro-climatic or climate-land use 

changes were significantly different than the arithmetic summation of their individual 

contributions.   

The quantified climate and land use sensitivity is useful for appropriate management of 

stormwater quantity and quality in complex urban watersheds under changing climate, 

sea level, hydrology, and land use/cover. Although the research considered the Miami 

River Basin as a pilot study area, it can provide important insights for appropriate 

management of stormwater runoff and quality in complex urban coastal environments 

around the world. For example, the results reemphasize that decreasing imperviousness, 

as well as increasing roughness and percentage routed from impervious to pervious areas 

can be effective ways of stormwater runoff management, echoing the call for a greener 

urban planning. In particular, inclusion of grass lawns in residential, commercial and 

industrial areas, as well as adding grass strips alongside the pavements can be relatively 

low-impact means for stormwater runoff and pollution control in the Miami Basin. 
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Watershed slope can be adjusted at the local scale (e.g., subbasin or block level) through 

landscaping, leading stormwater to flow and infiltrate in lawns and grass covers. The 

temporal variation in sensitivities can provide a guideline for seasonal management 

strategy developments for efficient utilization of time and money. The model is not 

limited to short-term, event-based applications; rather we used long-term, continuous 

climate, hydrologic, and sea level data to elucidate seasonal, as well as annual, responses 

of stormwater runoff and quality to changes in climate and hydrologic drivers.  

A comparison with similar watershed scale models developed in some of the other parts 

of the world with similar climate and land use features will be helpful for comparing the 

robustness of the model prediction. Similar watershed scale models can be developed for 

different hydro-climatic regimes to assess stormwater sensitivity and assist stormwater 

management.  It will also be interesting to see the model response in connection with 

some of the regional climate models (RCM) for assessing future stormwater runoff and 

quality under changing climate and land use scenarios (Rehfeldt et al., 2012; Terando et 

al., 2012). Considering the availability of quality data, development of empirical models 

with similar approaches including hydro-climatic and land use parameters, might be 

useful for understanding major drivers in stormwater runoff and quality. 
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CHAPTER 4 

IDENTIFICATION OF DOMINANT ENVIRONMENTAL STRESSORS AND 

THEIR RELATIVE INFLUENCE ON STREAM WATER QUALITY IN 

COMPLEX COASTAL URBAN WATERSHEDS  

4.1  INTRODUCTION 

Human and ecological use of in-stream water depends on ambient water quality. Human 

alterations of the landscape has an extensive influence on watershed hydrology 

(Claessens et al., 2006; Chang, 2007), pollutant loadings (Kang, 2010), and heat budget 

(Oke, 1987) that subsequently increases in-stream water temperature (Nelson & Palmer, 

2007). The surface water-groundwater interactions (Jolly, 2008) and seawater intrusion 

(Rahman, 2010) can also affect the hydrology and pollutant loadings, particularly in 

coastal streams.  All these factors can modify in-stream biogeochemical processes that 

drive dissolved oxygen, nutrient, sediment cycling, and ultimately the stream food webs 

(Baker, 2003; Abdul-Aziz, 2008; Abdul-Aziz et al., 2010). Therefore, identifying spatial 

and temporal changes in water quality (Chang, 2008), as well as linking stream water 

quality to land use patterns (Kang, 2010) in river basins, have been a major research 

focus for decades. 

Much research has been undertaken to quantify the role of anthropogenic activities and 

natural contributions to pollutant generations in stream water. Noteworthy research 

includes that on the Frome River in U.K. (Hanrahan et al., 2003), the Struma River in 

Bulgaria (Astel et al., 2007) and northern Greece (Simeonov et al., 2003), the Lake Tahoe 
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Basin in U.S.A. (Stubblefield et al., 2007), the Han River in South Korea (Chang, 2008), 

the Amu Darya River in Central Asia (Crosa et al., 2006), the Bagmati River in Nepal 

(Kannel et al., 2007), the Stream Zerede in Brazil ( Alves et al., 2009), and  the Florida 

Gulf Coast streams (Chelsea Nagy et al., 2012). Results from these studies revealed the 

multi-dimensional aspects (e.g., influence of drainage density, snow and glacier melt, 

irrigation, river discharge, biological activity etc.; classification in stream pollution 

zones; seasonal and temporal variability) of stream water quality deterioration.  

Watershed land uses, as proxies of anthropogenic activities, can a play pivotal role to 

shape stream water quality. Using multiple linear regression and constraint least squares 

regression techniques, Kang et al. (2010) reported strong links of land use types with 

metal and coliform concentration in rivers. Tran et al. (2010) used proximity analysis to 

measure relative role of near land use and far land use in stream water quality. They 

concluded that at the watershed zone of influence, water quality indicators did not 

correlate significantly with land cover type. Dissolved oxygen values within the 200-m 

buffer zone varied inversely with the percentage of urban-land cover. Raogsta et al. 

(2010) reported strong associations between riparian canopy cover, presence or absence 

of cattle, rainfall, solar radiation, month of year, dissolved oxygen, turbidity, salinity, and 

enterococcus concentrations in riparian surface soils. Butler et al. (2011) demonstrated 

synergies between water quality regulations (community, tourists, tour operators and 

fishermen) and floodplain recreational and commercial fisheries (fishermen), identifying 

trade-offs and thresholds between services and associated stakeholders.  
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Surface water-groundwater interaction is also believed to be a mean of trade off of 

pollutants between these two sources. Cardenas (2008) proposed a mechanistic 

foundation and explanation for temporal fractal stream chemistry through surface water-

groundwater exchange across bed forms, bars and bends, and basins characteristics. 

Stedmon et al. (2011) developed a potential approach for monitoring drinking water 

quality from groundwater systems using organic matter fluorescence as an early warning 

for contamination events using parallel factor analysis (PARAFAC). Rozemeijer (2011) 

proposed a method of direct measurements of the tile drain and groundwater 

contributions to surface water contamination by using field-scale concentration patterns 

in groundwater and catchment-scale surface water quality. Reay et al. (1992) analyzed 

groundwater discharge and associated nitrate concentration in coastal environments, 

reporting higher groundwater contributions near shore at low tide periods and markedly 

decreasing contributions with increasing distance offshore (towards the coast). 

More recent research focused on the complex interactions of surface water, groundwater, 

and seawater intrusion. Viezzoli et al. (2011) developed a quasi-3D interpretation of the 

airborne electromagnetics outcome by a spatially constrained inversion method, 

distinguishing different hydrogeological features down to a depth of about 200 m. Akbar 

et al. (2011) applied multivariate statistical techniques for assessing surface water quality 

at the Mid-Black Sea Coast of Turkey and quantified dissolved salts from soil leaching 

and runoff process. Groundwater was to be endangered by salt water encroachment due 

to lateral intrusion of present sea water and up-coning of connate salt water trapped in 

paleodeltaic sediments (Barrocu & Dahab, 2011). Developing a coupled groundwater–
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surface water model, Sonnenborg et al. (2012) reported significant climate Although 

much research (e.g., Varol & Sen, 2009; Singh et al., 2004) investigated the combined 

effect of different stressors on stream water pollutions, the relative  influence of  

watershed land uses, surface hydrology, groundwater, seawater carriage of pollutants, and 

upstream pollutant inflow (i.e., contributions from boundary inputs) on stream water 

quality is yet to be understood well. Particularly in heavily urbanized, complex coastal 

environments (e.g., South Florida, U.S.A.), a mechanistic model building to achieve 

comprehensive insights into stream water quality is challenged by the perplexing 

complexity in system representation, over parameterizations without much gain in 

predictive power, and lack of pertinent observational data. In contrast, successful 

applications of data-driven approaches in hydrology (Govindaraju, 2000; Dibike & 

Solomatine, 2001), river temperature modeling (Mohseni et al., 1998), sediment transport 

(Bhattacharya & Buraimo, 2003), river stage-discharge relationships (Sudheer & Jain, 

2003), etc. encourage empirical modeling as a viable alternative tool for understanding 

and predicting stream water quality dynamics in complex urban watersheds. Application 

of advance statistical techniques such as principal component analysis  and partial least 

squares regression analysis (;were especially useful for constructing empirical models 

that can describe different pollutant sources (Mahbub et al., 2011) and predict stream 

water quality using satellite observations (Singh et al., 2013). 

The objective of this study is to develop an understanding of relative influence of land 

uses, surface hydrology, groundwater, seawater, and upstream contributions on the 

stream and river water quality of six highly urbanized, complex urban watersheds of 
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Southeast Florida. We employed correlation analysis to understand the correlations 

among quality parameters and the change in quality parameters with distance and time. 

Principle component analysis was also conducted to analyze the mutual correlations of 

the spatial parameters, as well as, to the quality parameters. Empirical models were 

developed to explain seasonal stream water quality using multiple land uses, surface 

hydrologic parameters, groundwater, seawater, and upstream contributions 

simultaneously. Our findings provide important insights on the dominant environmental 

stressors and their relative influence in shaping seasonal stream water quality of complex 

coastal urban watersheds.   

4.2  METHODS AND MATERIALS 

4.2.1  Site description 

The study basins are mostly located in Broward County of Southeast Florida, U.S.A. 

(Figure 4.1).  It has the Everglades to the west and the Atlantic Ocean to the east. More 

than 266 miles of primary natural and dredged canals connect these two large aquatic 

systems and traverse the county’s urban corridor. The primary drainage system for 

Broward County consists of nine major canals and their corresponding drainage basins, 

as identified by Florida Department of Environmental Protection (FDEP)’s Water Body 

Identification Number (WBID): Hillsboro Canal (3264), C-14 Canal (WBID 3270), 

Pompano Canal (WBID 3271), C-13 Canal (Middle River, WBID 3273), C-12 Canal 

(Plantation, WBID 3276), North New River Canal (WBID 3277), C-11 Canal (South 

New River, WBIDs 3279 and 3281), C-9 Canal (Snake Creek, WBIDs 3283 and 3284), 

and the C-10 Canal (Hollywood Canal, WBID 3282) (Cooper & Lane, 1987). 
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The Hillsboro canal drains an area of approximately 102 square miles of which 40 square 

miles are located in northeastern Broward County and the remaining within the 

boundaries of southeastern Palm Beach County. The canal’s headwaters are in Palm 

Beach County (Cooper & Lane, 1987). Four water quality measuring sites were 

considered for this study from this canal. Site 4 primarily represents water quality 

discharged to the parts of Hillsboro Canals in Broward County. Site 3 is the central most 

site. Site 2 represents the final discharge point into the brackish regions of the canal and 

Site 1 is in the brackish part of the canal. 

 
Figure 4.1: Study area in Southeast Florida, U.S.A. Inset showing the state of Florida is 

not on the stated scale. 
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The C-14 Canal (Pompano Canal) Basin is located in northern Broward County and is 

one of the larger basins with an area of 59 square miles (Cooper & Lane 1987). Data for 

seven water quality measuring sites were considered from this canal. Sites 6 and 7 are in 

the same segment of the waterway continued from C-14, also called the Cypress Creek 

Canal (Figure 4.1). Site 6 and site 110 are the two easternmost sites and represent water 

quality that is discharged to the brackish regions. Site 5 is in the brackish region. The C-

14 Canal has three more sites in the upstream. Site 89 is the furthest upstream quality 

measuring point that represents quality of water that enters in Broward County through 

C-14 from its upper part in Everglades. Site 8 and 109 are in the same section of C-14 

Canal hydrologically but are physically in separate drainage areas of the overall C-14 

Basin. 

The C-13 Canal (Middle River Canal) Basin is a medium-sized basin located in north-

central Broward County with an area of 39 square miles (Cooper & Lane, 1987). Six 

water quality sites were considered for this study from this canal.  Site 14, 13 and 12 are 

freshwater sites and site 11 represents entrance into the brackish region. Site 111, site 112 

and site 10 are in the brackish region. Site 111 is in the segment of waterway also called 

South Fork Middle River. 

The C-12 Basin has a relatively small drainage area of 19 square miles and is located in 

east-central Broward County (Cooper & Lane, 1987). The C-12 Basin is unique among 

the major basins because no temporary or permanent flow originates from the upstream 

Water Conservation Area (WCA) seepage and water supply to the basin is limited to 

rainfall (Cooper & Lane 1987). Overall flow in the canal is basically limited to major 
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storm events. A recent study (BCDPEP, 1999) compiled the SFWMD flow estimations 

for fourteen months and showed that no flow occurred 85% of the time at Station 33 (not 

shown in Figure 4.1). From the C-12 Canal, 5 water quality measuring sites were 

considered for the study. Three of these sites (site 18, site 17 and site 64) are in 

freshwater and two sites (site 16 and site 15) represent brackish water. 

The North New River Canal (NNRC) Basin is a medium-sized drainage area of 

approximately 30 square miles (Cooper & Lane, 1987). The North New River Canal was 

the first in Broward County to connect to Lake Okeechobee (in upstream; see the inset in 

Figure 4.1) through a series of levees and water control structures. The NNRC connects 

to the C-12 and the South Fork Middle River as it reaches the estuary. Site 23 represents 

water quality that enters NNRC in Broward County from its upper portion. Site 22 and 21 

are intermediate freshwater sites. Site 20 and 19 are in the brackish region. 

The C-11 Canal (South New River Canal) Basin is the largest basin located entirely 

within the county. It has an area of 100 square miles (Cooper & Lane, 1987). The C-11 

Canal receives flow from the Hollywood Canal as it reaches the estuary (Figure 4.1). 

Data for seven water quality measuring sites on this canal were available for this study. 

Site 29 is the most upstream station within Broward County. Site 28 and site 27 are 

intermediate freshwater sites. Site 26, 24 and 47 are brackish sites with site 47 being the 

furthest downstream station. Site 25 represents water quality of the incoming flow from 

the Hollywood Canal. 
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4.2.2  Stream water quality parameters 

The upstream flow from Everglades and wildlife management areas brings a considerable 

amount of pollutants to the canals in Broward County. The six major canals, along with 

secondary and tertiary canals, eventually drain eastward to the estuarine areas (e.g., 

Intracoastal Waterway) at the Atlantic coast. Seawater from the Atlantic Ocean and the 

underlying Biscayne Aquifer is believed to affect the in-stream geochemical processes 

(Broward County Environmental Protection Department, 2007). Six water quality 

parameters (i.e., total nitrogen, total phosphorus, dissolved oxygen, chlorophyll a, 

salinity, and specific conductivity) were measured by the Broward County Environmental 

Lab  in 44 water quality sites quarterly each year; the data were made available online 

through the Natural Resources Planning and Management Division 

(http://www.broward.org/NaturalResources/Lab/Pages/canalwaterquality.aspx; last 

accessed on 6-16-2013) of Broward County. 

Total nitrogen (TN) is the sum of nitrate-nitrogen (NO3-N), nitrite-nitrogen (NO2-N), 

ammonia-nitrogen (NH3-N) and organically bonded nitrogen. Sources of nitrogen 

include fertilizer, organic substances (e.g., grass clippings, seeds, flowers, and leaf litters, 

pruning wastes and tree trimmings from lawns and gardens), nitrogenous compounds 

released from the soil and plants through volatilization and decomposition processes, pet 

waste and septic tank, laundry detergents (car washing), vehicle exhaust fumes, etc. In 

the five canals except C-12 Canal, TN decreased as the canals approached towards the 

coast. Maximum five year (2006-10) annual average of TN was observed in site 4 (1.71 

mg/L) for Hillsboro Canal, site 89 (1.33 mg/L) for C-14 Canal, site 14 (1.45 mg/L) for C-
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13 Canal, site 22 (1.67 mg/L) in North New River Canal and site 29 (1.64 mg/L) in C-11 

Canal. In C-12 Canal maximum TN was observed in site 16 (1.29 mg/L) which is closest 

to the coast. In most of the freshwater quality sites TN was highest in spring or winter. 

However in sites in brackish region (i.e., Site 1, 10, 19, 15) TN was often highest in fall. 

Phosphorus may be found in dissolved form (orthophosphate), inorganic form (reactive 

plus condensed or acid hydrolysable phosphate) and organically bound forms. Total 

phosphorus (TP) is the sum of reactive, condensed and organic phosphorous. Sources of 

phosphorus include particles of soil and rock, living and dead organisms, volatile 

compounds released from plants, natural fires, and the burning of fossil fuels, recently 

fertilized land surfaces, pet waste and septic tank, laundry detergent (car washing), etc. 

Unlike TN, total phosphorus generally increased as the canal approached the coast in the 

six study basins. Maximum five year annual average for TP was observed in site 110 

(0.0769 mg/L) for C-14 Canal, in site 112 (0.0579 mg/L) for C-13 Canal, in site 19 for 

North New River Canal and site 25 (0.05 mg/L) for C-11 Canal. For Hillsboro (site 3) 

and C-12 Canal (site 64) maximum TP was found in intermediate sites. No specific 

seasonal trend was observed in the sites and concentration in different seasons at the 

same station was close. 

Dissolved oxygen (DO) is a measure of in-stream oxygen demanding substances, which 

include organic materials, low-boiling hydrocarbon fractions of oils and greases resulting 

from transportation and industrial sources, benzene from gasoline, synthetic detergents, 

pesticides, herbicides, wood preservatives, and a wide range of synthetic organic 

industrial chemicals. For DO, maximum five year annual average was found in 
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intermediate sites. Maximum DO was observed in site 2 (6.14 mg/L) for Hillsboro Canal, 

in site 7 (6.45 mg/L) for C-14 Canal, in site 12 (6.25 mg/L) for C-13 Canal, in site 17 

(6.11 mg/L) for C-12 Canal, in site 19 for NNRC (5.64 mg/L) and in site 15 (5.56 mg/L) 

for C-11 Canal. Higher DO concentrations were observed in all the sites in spring 

followed by summer, winter and fall. 

 

Chlorophyll a is a specific form of chlorophyll used in oxygenic photosynthesis. The 

concentration of chlorophyll a is a measurement of the health of streams. Chlorophyll is 

also an important link between the nutrient levels in water and the plant growth. When 

there is a large amount of algae in a lake or reservoir the organisms change the chemical 

composition of the water by absorbing oxygen. If too much dissolved oxygen is absorbed 

by the algae, the health of all other organisms in the water decreases. Maximum five year 

annual average of chlorophyll a was observed in site 3 (20.98 μg/L) for Hillsboro Canal, 

in site 110 (14.54 μg/L) for C-14 Canal, in site 111 (10.40 μg/L) for C-13 Canal, in site 

64 (30.62 μg/L) for C-12 Canal, in site 20 (8.35 μg/L) for NNRC and in site 27 (6.35 

μg/L) for C-11 Canal. Except for C-12 Canal, higher chlorophyll a concentrations were 

observed in summer and fall in all the five canals. For C-12 canals higher concentrations 

were observed in winter. 

 

Specific conductance is a measure of the ability of water to conduct an electrical current. 

It is highly dependent on the amount of dissolved solids (such as salt) in the water. The 

specific conductance is thus a measure of salinity in stream water. For all the sites in 

brackish region specific conductance were very high, as expected. Maximum five year 
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annual average for conductance was observed in site 11 (35147 umhos/cm) on C-11 

Canal followed by site 10 (33390 umhos/cm at 25°C) on C-13 Canal and site 5 (32390 

umhos/cm) on C-14 Canal. Neither freshwater nor brackish water sites show any seasonal 

trend.  

4.2.3  Dataset preparation 

To assess the correlations of stream water quality to land use, surface hydrology, 

groundwater, seawater, and upstream contributions, a comprehensive set of parameters 

and their spatio-temporal variations were analyzed(Table 4.1). 

 

Table 4.1: List of parameters and variables considered for empirical analysis of stream 
water quality 
 
Water quality 
parameters 

 
Total nitrogen, total phosphorus, dissolved oxygen, specific 
conductance, chlorophyll a. 
 

 
Spatial parameters 
(Land uses/cover and 
surface hydrology) 

Total area, imperviousness, characteristics length, slope, single 
family residential area, multifamily residential area, commercial 
area, Industrial area, parks and open lands area, forests, distance 
from coast. 

 
Temporal parameters 

 
Groundwater, upstream concentration. 

 

4.2.3.1  Spatial dataset preparation 

The watersheds for which each of the water quality monitoring sites work as an outlet 

were delineated (Figure 4.2) . The watersheds were delineated considering the 12-digit 

Hydrologic Unit Code (HUC) (HUC 030902061100 for Hillsboro Canal, HUC 

030902061201 for C-14 Canal, HUC 030902061202 for C-12 Canal, HUC 

030902061203 for NNR Canal, HUC 030902061204 for C-11 Canal upper segment, 
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HUC 030902061205 for C-11 Canal lower segment) maps (available online at 

http://water.usgs.gov/GIS/huc.html; last accessed on July 9, 2013.) developed by US 

Geological Survey (USGS) as primary (national or global) reference. Then Water Body 

Identification Number (WBID) delineation by Florida Department of Environmental 

Protection (FDEP) and independent watersheds generated by taking into account the 

canal network and topology of the region using Arch Hydro tool in an Arc GIS platform 

(ESRI ARCGIS 9.0) were used to delineate subbasins for individual quality monitoring 

stations.   

 
Figure 4.2: Watershed boundaries corresponding to each quality stations. Inset showing 

the state of Florida is not on the stated scale. 
 



 

80 

Although sub-basins for individual quality stations were delineated (Figure 4.2), water 

quality contributing area for a particular station on the canal were computed using a 

cumulative approach, which means watershed delineated for a lower stream site 

encompasses the watershed corresponding to any upper stream site (Figure 4.3). As such, 

the impacts of watershed characteristics (e.g., land-use, slope, imperviousness, area, and 

characteristic length) on the water quality at  a monitoring station can be evaluated 

independently without relying  on the observations of adjacent monitoring sites (Kang et 

al., 2010).  

 
Figure 4.3: Schematic of watershed delineation on the basis of the positions of the 

monitoring sites. A(j), S(j), and Imp(j) are respectively the area, the average slope, and 
the imperviousness of watershed j , C(j) is the quality reading at the site on the outlet 

point of watershed j 
 

Area and slope of each watershed were calculated using ESRI ARCGIS 9.0. Slope was 

calculated by analyzing the 10 ft LiDAR data available through DBHYDRO, South 

Florida Water Management District's corporate environmental database (available online 

at http://my.sfwmd.gov/gisapps/sfwmdxwebdc/dataview.asp?; last accessed on July 18, 
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2013). Land use, and imperviousness of each watershed was estimated using land use 

maps of Broward County available through DBHYDRO (available online at 

http://my.sfwmd.gov/gisapps/sfwmdxwebdc/dataview.asp?; last accessed on July 18, 

2013). The imperviousness of each watershed was calculated using area-weighted 

average of runoff coefficients from literature (UDFCD, 2001) for different land uses. The 

land uses were categorized in the six categories of single family residential area, 

multifamily residential area, commercial area, industrial area, parks and open lands area, 

and forests (Figure 4.4).  

Figure 4.4: Land use types in the study area. Inset showing the state of Florida is not on 
the stated scale. 
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The parks and open lands are representation of golf course, recreational places, race 

tracks, parks and zoos, disturbed land, borrow areas, and spoil areas. Examples of the 

forested areas include mixed rangeland, pine flatwoods, upland coniferous forests, upland 

hardwood forests, live oak, upland mixed conifers, tree plantations, hardwood and 

coniferous plantations, forest regeneration, mixed wetland hardwood, mixed shrubs, 

cypress, pine savannah, saltwater marsh, and wet prairies. 

4.2.3.2  Temporal dataset preparation 

The temporal dataset for the analysis include water quality and groundwater 

measurements at the inlets and outlets of different subbasins, each representing a quality 

monitoring station. . Six water quality parameters (i.e., total nitrogen, total phosphorus, 

dissolved oxygen, chlorophyll a, salinity and specific conductivity) were gathered from 

the Natural Resources Planning and Management Division of Broward County for 44 

water quality sites quarterly each year during 1999-2000. . Salinity was not considered in 

this study as specific conductance is a surrogate for salinity and offers more analytical 

flexibility due to no occurrences of zero values. The sites include both freshwater and 

brackish water sampling sites. The sites along the coast line were not included in our 

analysis, because for these stations a watershed that correlates to the water quality in the 

stream could not be defined. As such, water quality data for 12 years (1999-2010) for 29 

sites were considered for correlation analysis. For multiple regression analysis, data for 

19 stations for 5 years (2006-2010) were considered. Sites on the C-12 Basin were not 

considered for multiple regression analysis as this basin is unique among the basins with 

no temporary or permanent flow originating from the upstream Water Conservation Area 
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(WCA) and seepage and water supply to the basin being limited to rainfall (Cooper & 

Lane 1987). The most upstream site in each canal was considered as representation of 

upstream contribution and was not considered for multiple regression analysis, as well. 

The water quality data at each site were collected in four seasons. Since our objective was 

to link in-stream water quality with watershed land use/cover and hydrologic parameters 

through a spatial analysis, we only incorporated quality and groundwater data from 2006 

through 2010 for building the multiple regression models. Given that growing 

urbanization can lead to changes in land use/cover and hydrologic parameters, assuming 

no significant changes in the five-year (2006-10) time-frame is more appropriate than that 

over the 12-year period (1999-2010). During 2006-10, the water quality data collection 

dates ranged from 1st of February to 2nd of March (representing Winter), from 26th of 

April to 22nd of June (Spring), from 2nd of August to 31st of August (Summer), and from 

25th of October to 29th of November (Fall). Groundwater level (i.e., water table) data, 

corresponding to the 19 quality stations, were collected from the Active Groundwater 

Level Network database of US Geological Survey (USGS) (available online at 

http://groundwaterwatch.usgs.gov/countymaps/FL_011.html; last accessed July 18 2013). 

Average water table of the preceding seven days (including the quality sampling day) at 

the closest groundwater station was assigned as the groundwater level for a subbasin 

outlet representing a quality station. Five year (2006-10) average data for groundwater 

and five water quality parameters were considered for each seasonal model. Based on 

annual rainfall patterns (NOAA, 2012; SFWMD, 2012) we also reanalyzed the data sets 

by considering only two seasons: wet period (May 1 to October 30) and dry period 

(November 1 to April 30). The bi-seasonal data sets for groundwater and quality of 19 
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stations were prepared by averaging multiple observations first over the seasonal time-

frames and then over the 5-year period (2006-10).  

4.2.3.3  Quality assurance/ quality control 

All the water quality data were processed by the Environmental Monitoring Division of 

the Broward County Environmental Protection Department. This division has a Florida 

Department of Health certified laboratory (#E46053) and follows a comprehensive 

quality assurance plan (#870191G). Sampling of freshwater canals was primarily 

performed from bridge crossings across specific canals (Broward County Environmental 

Protection Department, 2007). Grab samples were mainly collected via a 

Kemmerer/Niskin bottle, which was lowered to collect water from a canal. Samples for 

individual constituents were then placed into clean glass bottles, plastic bottles and/or or 

whirlpacks depending on the parameter to be analyzed. Samples were placed on ice and 

brought back to the laboratory within four hours of collection. Specific conductance was 

measured using whetstone bridge or equivalent technique following USEPA 120.1 

method. Dissolved oxygen was measured using Winkler titration technique following 

USEPA 360.1/360.2 method. Total nitrogen was measured using cadmium reduction 

(nitrite+nitrate+nitrogen) following USEPA 353.2 method and automated phenate 

(ammonia-nitrogen) following USEPA 350.1 method (Broward County Environmental 

Protection Department, 2007). Total phosphorus was measured using acid, block 

digestion, ascorbic acid following USEPA 365.4 method. Chlorophyll a was measured 

using membrane filter or 90% acetone extraction technique following SM 10200H 

method (Broward County Environmental Protection Department, 2007). 
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4.2.4  Dataset analysis 

The analysis of stream water quality to investigate the dominant stressors and their 

relative influence is a complex undertaking, particularly in the highly urbanized, coastal 

urban settings of our study basins. The dataset was, therefore, analyzed in three steps. 

First, correlation analyses using 12 years (1999-2010) of four-seasonal time-series of 

water quality data at 29 stations were conducted to understand interrelations among 

different in-stream pollutants, as well as to examine auto-correlations (i.e., memory) of 

each pollutant spatially (linking with the most upstream observations in a canal basin) 

and temporally (linking quality status with the preceding seasons). Second, principal 

component analysis (Mahbub et al., 2011), using the 5-year (2006-2010) average spatial 

datasets (including data from the 19 stations) for different seasons, were conducted 

involving all parameters (land uses/cover, surface hydrologic, groundwater, seawater, and 

upstream contributions) to identify the dominant sources and stressors of seasonal stream 

water quality and the correlations among different predictor and response parameters and 

variables. Third, the 5-year average spatial datasets of 19 stations were utilized to build 

seasonal, multiple regression models for determining the relative influence of individual 

parameters in shaping the in-stream water quality. Findings from the previous two steps 

were leveraged to develop relatively parsimonious models, which included a reduced 

parameter set that covers the important contributory aspects. 

4.2.4.1 Correlation and principal component analysis 

Temporal correlations were first investigated among the stream water quality parameters. 

Three different temporal correlations were analyzed to get a comprehensive idea of 
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stream water quality parameters. At first, the inter-pollutant correlations were analyzed 

among the five quality parameters in all the 29 sites. The cross pollutant correlations are 

effective in revealing relationships among different quality parameters in a certain section 

of stream and explaining stream regimes based upon the correlations. 

Second, correlations of quality parameters in all the sites to the most upstream site in the 

respective canals were investigated to see how correlations change with distance in the 

downstream direction. The correlations between each site to its most upstream site were 

plotted against the distance between these two sites to see how correlations change with 

distance for the same parameter. Correlations of quality parameters at a particular site to 

the upstream site are also indicators of the influence of stream and flow characteristics. 

Third, autocorrelation of the stream water quality time series was analyzed. 

Autocorrelation refers to the correlation of quality parameter with its own past and future 

values. Autocorrelation is also sometimes called “lagged correlation” or “serial 

correlation”, which refers to the correlation between members of a series of numbers 

arranged in time. Positive autocorrelation might be considered a specific form of 

“persistence”, a tendency for a system to remain in the same state from one observation 

to the next. Autocorrelation between stream water quality from immediate next season up 

to three seasonal gap were evaluated to see how persistence for quality parameters 

change with increase in time-lag.  

Correlations of each stream water quality parameters to spatial parameters were also 

analyzed through principal component analysis. The analysis gave useful initial 

information about correlations of the dependent (response) and independent (predictor) 
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variables. The dominant roles of different sources and stressors of water quality were 

evident through this analysis. Principal component analysis of data sets for four seasons 

(winter, spring, summer, and fall), as well as for dry and wet periods, were undertaken.      

4.2.4.2 Multiple regression model development  

The multiple regression model (MRM) can be written as a linear and/or nonlinear 

function of the contributions of different land use/cover, surface hydrology, groundwater, 

seawater, and upstream contribution parameters to the overall water quality. The 

parameters were chosen based on the preliminary correlation and principal component 

analysis. The idea is that the observed pollutant concentration at the outlet point of a 

watershed (C) can be reproduced by a linear combination of relevant contributory 

parameters. We tried three different types of models. At first untransformed parameters 

were set in to a multiple linear regression model. Then a semi logarithm model was 

developed where only the concentration terms were log transformed and finally a log 

transformed model (i.e., power-law regression model) was set where all the parameters 

were log transformed. The log transformed model showed better performance in terms of 

accuracy (lowest root-mean-square errors) and fitting efficiency (highest coefficient of 

determination values). The power-law MRM can be formulated into a source-receptor 

model (Henry, 2002; Kang, 2010) and are expressed in natural (e-base) logarithmic form 

as follows: 
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Where α, β, γ, η, µ, δ are regression coefficients. The three hydrologic parameters 

(Hi) were imperviousness (I), slope (S), and characteristics length (L). The six land uses 

were single family residential area (ARS), multifamily residential area (ARM), commercial 

area (AC), industrial area (AI), parks and open lands (AOL), and forests (AF). Groundwater 

level (GW), distance from the nearby coast (Dc), and upstream concentrations (C0) were 

included as representations of groundwater, coastal, and upstream contributions, 

respectively. 

Equation (1) was solved using MS EXCEL. In a backward regression approach, one 

parameter was taken out in each step until a set of parameters were obtained where all the 

parameters were significant (p-value<0.15). Both four seasonal models, as well as, dry 

and wet period models, for all the five quality parameters, were developed. The residuals 

were checked for randomness (by plotting predicted versus residuals) and normality (by 

plotting histograms of residuals) properties (Appendix). 

The fitted the models were evaluated based on four statistical measures. Coefficient of 

determination (R2) explains how much variance about the mean is explained by a model. 

R2 varies from 0 to 1 and the higher the R2 value the more variance it can explain. 

However R2 value always increases with the addition of a new predictor irrespective of its 

correlation with the dependent variable. Therefore, a second parameter adjusted R2 was 

also considered. Unlike R2, the adjusted R2 increases when a new explanatory variable is 

included only if it improves the R2 more than that would be expected in the absence of 

any explanatory value being added by the new explanatory variable. The adjusted R2 

value can be negative and never exceeds the value of R2. The root-mean-square error 
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(RMSE) is a frequently used measure of the differences between values predicted by a 

model (or an estimator) and the values actually observed. Although it is commonly 

accepted that the lower the RMSE the better the model performance is, a satisfactory 

RMSE is subject to the units of the model predictions. Based on recommendation by 

Singh et al. (2004), the RMSE-observations’ standard deviation ratio (RSR) was, 

therefore, also considered. A RSR value of zero indicates a perfect model with zero 

RMSE. A model with a RSR value of 0 to 0.5, 0.5 to 0.6, 0.6 to 0.7 and higher than 0.7 is 

considered, respectively, very good, good, satisfactory and  unsatisfactory (Moriasi, 

2007). 

4.3  RESULTS 

4.3.1 Correlation analysis 

The temporal correlation focuses the relationships among the independent stream water 

quality parameters. The inter-pollutant correlations identify the significant correlations 

among the five pollutants. The correlation of water quality at each site with the most 

upstream site explains how the correlation changes spatially, and the auto correlation 

explains how these correlations change temporally. 

The inter-pollutant correlation analysis showed good correlations of dissolved oxygen 

(DO) and chlorophyll a to total phosphorus (TP) (Table 4.2). All the sites in C-14, C-13 

and NNRC showed significant correlation for these two combinations. The percentages 

of stations with significant correlations in the rest of the three canals were also high. The 

strongest correlations between TP and DO were observed in site 3 (0.95) in Hillsboro 
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Canal, in site 109 (0.99) in C-14 Canal, in site 13 (0.99) in C-13 Canal, in site 17 (0.98) 

in C-12 Canal, in site 22 (0.99) in NNR Canal, and in site 29 (0.99) in C-11 Canal. All 

these sites are freshwater sites. The strongest correlations between chlorophyll a and TP 

were observed in site 1(0.83) in Hillsboro Canal, in site 109 (0.99) in C-14, in site 13 

(0.99) in C-13 Canal, in site 17 (0.98) in C-12 Canal, in site 22 (0.99) in NNR Canal and 

in site 28 (0.98) in C-11 Canal. Comparatively, there was weak or no correlations 

observed for total nitrogen (TN) with DO or chlorophyll a. The strongest correlation 

observed were in site 110 (0.35) for TN-DO and site 8 (0.56) for TN-CHL both in C-14 

Canal. Nutrients (total phosphorus and total nitrogen) play an important role for growth 

of algae and other plants in stream and consequently affect the level of chlorophyll a, 

which in turn influences the dissolved oxygen concentration in a stream. The strong 

correlation of TP and relatively no or weak correlation of TN with DO and chlorophyll a 

shows that TP is the limiting nutrient in this canals. Strong correlations were also 

observed between specific conductance and TN. Correlations were significant in all the 

canal stations, except for C-12 and C-11 canals where, respectively, 80% and 57% of the 

stations showed significant correlations. We hypothesize that salinity effects nodulation 

efficiency (Within legume nodules, nitrogen gas from the atmosphere is converted into 

ammonia, which is then assimilated into amino acids, the building blocks of proteins), 

symbiotic nitrogen fixation and other plant physiological processes (Salah et al., 2011) 

that could also limit TN’s role as a nutrient in these canals. 
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Table 4.2: Summary of in-stream inter-pollutant correlations in the study area 

Descriptions 
Canal  
(no of sites) 

Correlation between parameters 

TN-TP TN-DO 
TN-
CHL TN-CON TP-DO TP-CHL 

TP-
CON 

DO-
CHL 

DO-
CON 

CHL-
CON 

Percent 
sites with 
significant 
(p<0.05) 
correlations 

Hillsboro (4) 0 0 25 100 75 50 0 50 25 50 
C-14 (7) 57 14 86 100 100 100 14 29 14 29 
C-13 (5) 0 40 20 100 100 100 0 20 80 20 
C-12 (5) 0 0 20 80 80 100 20 40 0 40 
NNRC (4) 0 0 0 100 100 100 25 50 25 25 
C-11 (7) 29 43 14 57 71 71 14 14 43 14 

            

Range of 
correlations 

Hillsboro - - 0.33 0.58-0.82 0.34-0.95 0.61-0.83 - 0.18-0.52 0.32 0.22-0.25 
C-14 0.27-0.33 0.35 0.56 0.53-0.87 0.64-0.99 0.2-0.99 0.41 0.28-0.54 0.3 0.28-0.44 
C-13 - 0.29-0.30 0.26 0.23-0.65 0.97-0.99 0.98-0.99 - 0.2 0.38-0.47 0.47 
C-12 - - 0.36 0.45-0.81 0.97-0.98 0.50-0.98 0.36 0.51-0.64 - 0.29-0.47 
NNRC - - 0.41-0.56 0.80-0.99 0.70-0.99 0.34 0.39-0.56 0.29 0.29 
C-11 0.31-0.51 0.31-0.41 0.25 0.35-0.75 0.86-0.99 0.86-0.99 0.21 0.71 0.39-0.99 0.33 
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The correlations between each site to its most upstream site were plotted against the 

distance between these two sites to see how correlations change with distance for the 

same parameter (Figure 4.5). Except for total phosphorus, correlations for all the quality 

parameters notably varied with distance; correlations became weaker as the distance 

increases. The change was more evident in TN and specific conductance than DO. For 

chlorophyll a, power relationship seemed more appropriate (Figure 4.5).  

 
Figure 4.5: Change in correlation coefficient with distance for water quality parameters. 
 

As shown, there is no separate regime evident for any of the pollutants, which may 

indicate that the stream and flow characteristics were consistent within the study area. 

The plots are useful in explaining the spatial memory of pollutants.  Under similar stream 
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and land use conditions, these figures might be useful in generating pollutant profiles for 

known upstream conditions (or concentrations) with a reasonable accuracy. 

 

From the autocorrelation analysis (Table 4.3), we found that specific conductance had the 

highest temporal memory. For specific conductance, the correlation, both at 90 days and 

180 days, were highest in site 4 (0.59 and 0.27, respectively). All the quality parameters 

showed moderate correlations at 10-50% stations at 90 days and only some station 

showed significant correlations at 180 days for TN, DO, and specific conductance.  

Table 4.3: Summery of autocorrelation analysis of quality parameters 

Quality 
parameter 

No of 
sample 

Sites with 
significant 
correlation 
(P<0.1) at 90 
days 

Range of 
correlation 
coefficients at 
90 days 

Sites with 
significant 
correlation 
(P<0.1) at 
180 days 

Range of 
correlation 
coefficients at 180 
days 

Total Nitrogen 25 12 0.23-0.46 2 0.28-0.37 

Total Phosphorus 25 6 0.20-0.47 0 - 

Dissolved Oxygen 25 9 0.18-0.47 4 0.25-0.45 

Chlorophyll a 25 3 0.34-0.49 0 - 

Sp. Conductance 25 9 0.20-0.59 3 0.17-0.27 

 

Autocorrelation or the temporal memory of the quality parameter is expected to decrease 

with time. For our study, we could hypothesize power relationship for few of the stations 

based on three data points (Figure 4.6). However, in most of the sites, no such 

relationships were observed. 
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Figure 4.6: Change in correlation over time for the same quality parameters in study area. 
 

4.3.2  Principal component analysis 

Principal component analysis was undertaken to gain insights into the correlation 

structure of the data matrix, including all the independent (predictor) and dependent 

(response) variables (Figure 4.7). The influence of the observations on the variables were 

also evident in this analysis. The first two principal components explained around 60% of 

the total data variance in winter, 61% in spring, 63% in summer, and 62% in fall. It was 

observed that the land use parameters were correlated and formed a group. Distance from 

the coast and groundwater were orthogonal to this group, which indicates they were 

uncorrelated to land use.  The hydrologic parameter of slope was almost orthogonal with 
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distance from the coast , which indicated they were uncorrelated. Among the independent 

variables DO, Chl a and TP showed mutual correlations. TN was uncorrelated to this 

group but correlated to specific conductance. 

Figure 4.7: Principal component analysis for four seasonal analyses. 
 

The Hillsboro canal and the C-11 canal had higher areas of different land uses but 

relatively less slope and imperviousness. The C-13 canal and NNR canal were found to 

have higher hydrologic features (i.e., slope and imperviousness). Groundwater was also 

NNR Canal C-11 Canal C-14 Canal Hillsboro Canal C-13 Canal 

Winter Spring 

Summer Fall 
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higher in the Hillsboro canal and the C-11 canal. Since the canals were almost orthogonal 

to the coast, the distance from the coast was contributed almost equally by all the canals.   

From the biplots of the principal component analysis, the first component could be 

interpreted as the land use/cover and hydrologic component, while the second component 

could be interpreted as the coastal and groundwater influenced component. TP and DO 

appeared to be influenced higher by the land use/cover and hydrologic parameters, 

although groundwater (GW) also showed a strong influence on TP. Chlorophyll a was 

influenced by both land use and groundwater parameters. Specific conductance and total 

nitrogen, on the other hand, were less influenced by land use and more influenced by 

distance from the coast. Seasonal variation was also observed in the dependent variables. 

DO was more strongly correlated with the second component in summer, which indicate 

the influence of coast on DO would be stronger in summer. Similar observation was 

applicable for TN. Chl a and TP, on the other hand, showed higher correlation in summer 

with first components, which indicate higher influence of land uses on these two 

variables in summer. 

The spatial dataset for the four and the two (dry and wet) seasonal analyses were same. 

Hence, the biplots for dry and wet period showed similar characteristics as that of four 

seasons. The DO showed stronger correlation to the second component in wet period. 

That indicates less dominance of land use on DO in wet period. Chlorophyll a, on the 

other hand, showed stronger correlation to the first component in wet period, which 

indicates Chlorophyll was dominated by land use more in wet period than in dry period. 



 

97 

Although the role of groundwater (GW) did not change much in dry and wet periods, GW 

was more strongly correlated with the second (coastal) component in the dry period. 

Figure 4.8: Principal component analyses for dry and wet period. 

4.3.3  Multiple regression models for four seasons 

The multiple linear regression models for all the quality parameters except chlorophyll a 

were satisfactory (Table 4.3 and Figure 4.9). The seasonal model explained 79%-92% of 

the variance about mean for TN.  The seasonal models for TP (51%-80%), DO (66%-

90%) and conductance (74%-84%) were satisfactory as well.  

Except for few seasonal models (winter and spring model for TP, spring model for DO), 

the RSR value for all the models are in the “very good” range. For chlorophyll a, none of 

the seasonal models were satisfactory, which shows that chlorophyll a at a particular 

section of the stream is more influenced by the in-stream processes and factors than land 

use and hydrologic stressors of the watershed. 
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Table 4.3: Summary of multiple linear regression model performances 
Quality 
parameter 

Temporal 
scale 

R2 
Adjusted 
R2 

Standard 
error 

RSR 

TN 

Winter 0.905 0.858 0.043 0.377 

Spring 0.812 0.789 0.045 0.459 

Summer 0.869 0.818 0.038 0.428 

Fall 0.948 0.922 0.037 0.278 

TP 

Winter 0.790 0.685 0.153 0.561 

Spring 0.592 0.510 0.175 0.700 

Summer 0.861 0.772 0.144 0.477 

Fall 0.865 0.798 0.112 0.449 

DO 

Winter 0.897 0.857 0.023 0.378 

Spring 0.719 0.663 0.037 0.581 

Summer 0.918 0.867 0.032 0.365 

Fall 0.936 0.895 0.023 0.325 

CON 

Winter 0.877 0.816 0.347 0.430 

Spring 0.830 0.745 0.401 0.505 

Summer 0.900 0.836 0.282 0.406 

Fall 0.836 0.753 0.383 0.497 

Chl A 

Winter 0.327 0.135 0.286 0.930 

Spring 0.546 0.319 0.221 0.825 

Summer 0.560 0.435 0.248 0.752 

Fall 0.540 0.362 0.193 0.798 
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Figure 4.9: Observed vs. predicted values for four seasonal analyses 
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4.3.3.1  Total nitrogen 

The multiple linear regression models of total nitrogen (TN) explained the variability of 

corresponding stressors that differ from season to season (Table 4.4). Overall, the 

distance from the coast and characteristics length are the major dominant hydrologic 

predictors of TN in this study area. The land use contributions vary in different seasons. 

In general, upstream contributions play the most significant role for the TN 

concentrations in a watershed and role of the groundwater is less significant and variable 

with time.  

Table 4.5: Multiple log-linear regression models description of total nitrogen. 

Eqn’s 
inter-
cept 

Dc LC I AC AI AOL AF CUS GW 

W
in

te
r 

C
oe

ff
 

0.969 0.306 -1.176 0.218 -0.261 1.074 -0.089 

S
E

 

1.452 0.051 0.603 0.114 0.128 0.470 0.043 

S
p

ri
n

g C
oe

ff
 

-0.947 0.188 1.130 

S
E

 

0.140 0.035 0.285 

S
u

m
m

er
 

C
oe

ff
 

-3.930 0.317 0.729 0.015 -0.133 0.748 

S
E

 

0.550 0.036 0.121 0.005 0.026 0.247 

F
al

l 

C
oe

ff
 

-3.599 0.471 0.978 -0.883 0.015 -0.212 0.169 

S
E

 

0.825 0.040 0.200 0.258 0.006 0.042 0.067 
(Dc=distance from coast, Lc =characteristics length, I=imperviousness, Ac=commerciall area AI=industrial 
area, AOL= open lands and parks, AF= forests, GW=groundwater level, Cus= upstream concentrations)  
 
The two important natural processes in which nitrogen (N2) is converted into ammonia 

(nitrogen fixation) and organic nitrogen is produced (assimilation) are adversely affected 

with an increase in salinity (Silveira et al., 2001; Cordovilla et al., 1994). Greater the 

distance from the coast, higher TN generation is thus expected. On the other hand, greater 

the characteristics length, higher the time of concentration is and more accumulation of 
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pollutants are allowed. Thus, a positive correlation with characteristics length is also 

expected.  

The forests can either have additive effects on the nutrient concentration in stream as a 

source of leafs and other organic N-bound components or negative effect, due to nutrient 

uptakes for their growth based on the plant profiles of the watersheds. In the study area of 

Broward, TN was seen to have a negative effect which means nutrient uptake dominates 

in this area and an increase in forests resulted in a decrease in TN. The open land and 

parks also found to have a negative effect on TN concentration of the stream. This 

indicates that these areas also work as an uptake of TN in the watersheds. The industrial 

areas can produce N-rich effluents and was found to be significantly contributing in 

summer and fall. However, the contribution is relatively weaker compared to other land 

use contributions.  

The negative coefficients of parks and open lands and forests and the positive coefficients 

of upstream contribution showed that the TN concentrations in the watersheds are 

dominated by their upstream contributions. The surface runoff dilutes the concentration 

in the watersheds. Groundwater, which may also be an important source of nitrogen, can 

either have positive or negative effects based on its relative concentration to upstream 

and surface runoff concentrations. For TN, groundwater had a negative effect in winter 

when surface runoff is expected to be lower due to less precipitation and upstream 

contribution was found to have highest coefficient. Groundwater in winter thus brings 

less TN and dilutes the overall concentration in winter. In fall, when the upstream 
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contribution was not significant, groundwater increased the TN concentration. In general, 

the annual profile of TN is more dominated by its summer and fall profile. 

4.3.3.2  Total phosphorus 

The hydrologic parameters that were significant for TP were slope and characteristics 

length (Table 4.5). It is understandable that, with an increase of slope, runoff is quicker 

and the accumulation of pollutants is less. Hence, an increase in slope is expected to 

decrease the surface runoff TP concentration.  

Table 4.6: Multiple log-linear regression models description of total phosphorus. 
  
Eqn 

inter-
cept S Lc I ARS ARM AC AI AOL AF Cus GW 

W
in

te
r 

C
oe

ff
 

-15.77 -1.81 3.960 
  

-0.49 
   

-0.289 -1.378 1.182 

SE
 

4.161 0.483 1.075 
  

0.172 
   

0.157 0.515 0.403 

S
p

ri
n

g 

C
oe

ff
 

-2.532 -1.87 1.412 
 

-
0.498        

SE
 

1.419 0.454 0.583 
 

0.302 
       

Su
m

m
er

 

C
oe

ff
 

12.506 -3.12 1.424 -3.53 -1.45 
 

0.924 
 

-1.365 0.484 
  

SE
 

5.433 0.672 0.532 1.934 0.692 
 

0.404 
 

0.537 0.190 
  

F
al

l C
oe

ff
 

-5.312 
 

1.952 
 

-1.01 
 

0.691 0.024 
  

1.384 0.692 

SE
 

1.016 
 

0.562 
 

0.258 
 

0.199 0.016 
  

0.208 0.175 

(S=slope, Lc =characteristics length, I=imperviousness, ARS =single family residential, ARM multifamily 
residential, AC=commercial, Ai=industrial, AOL=parks and open lands, AF= forests, GW=groundwater level 
and Cus= upstream concentrations)  
 

The role of characteristics length in TP is similar to that of TN and was discussed in the 

previous section. Comparing with the hydrologic parameters retained in the TN models, 
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we can hypothesize that retention time is very important for nutrients as nutrients cannot 

be readily up taken by runoff as it moves over the surface.  

It was observed that residential areas and open land and parks were negatively correlated 

to TP concentration in the streams. That confirmed that plants in the lawn areas, as well 

as, in parks and open lands retained TP for their growth and these areas act as a sink for 

TP concentrations. The upstream inflow that passed through Everglade area was also 

found to be negatively correlated in winter as plants retained TP in this area, as well, 

which produced a low concentration upstream in winter. Interestingly, forest areas in the 

watersheds, followed similar behaviors in winter but acted as a source in summer. In a 

previous study, it was observed that TP is released from wetland soils during the summer 

and fall, when relatively low stream flow rates (compared with spring) and warm 

temperatures (compared with winter) result in stagnant conditions that promote oxygen 

limitation and the release of soluble Fe2+ and associated P (O’Brien et al., 2013; Carlyle 

& Hill, 2001; Roden & Edmunds, 1997).  We hypothesize that forests in this watersheds 

also act a source in summer under favorable conditions.  

Total phosphorus in this zone is much dominated by groundwater, which is apparent in 

the models. In general, the summer model is dominated by land use and the fall-winter 

models are dominated by either groundwater or upstream. The spring model for TP has 

high RSR and low adjusted R2. The relatively higher standard error (compared to 

coefficient) shows that the spring model is probably influenced by unknown aspects not 

considered in this study. 
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4.3.3.3  Dissolved oxygen 

Dissolved oxygen (DO) which is also a measure of water aeration and photosynthetic 

activity, showed highest dependence on land use ( compared to other quality parameters 

considered) and relatively low or no dependence on groundwater and upstream (Table 

4.6).  

Table 4.7: Multiple log-linear regression models description of dissolved oxygen. 

Equation 
inter-
cept S Dc I ARS ARM AC AI AOL AF GW 

W
in

te
r 

C
oe

ff
 

1.115 -0.219 0.093 -0.461   0.273     -0.243     

S
E

 

0.742 0.091 0.029 0.285   0.030     0.041     

S
pr

in
g C
oe

ff
 

-0.030 0.301       0.272 -0.194         

S
E

 

0.271 0.091       0.048 0.055         

S
um

m
er

 

C
oe

ff
 

0.747 0.330 -0.316   0.598 0.380 -0.79 -0.009 
 

-0.091   

S
E

 0.865 0.135 0.056   0.134 0.063 0.139 0.004 
 

0.044   

F
al

l C
oe

ff
 

-0.863   -0.066 
 

0.344 0.157 -0.172     -0.146 0.162 

S
E

 

0.766   0.041 0.154 0.058 0.086     0.048 0.050 

(S=slope, Dc=distance from coast, I=imperviousness, ARS =single family residential, ARM multifamily 
residential, AC=commercial, AOL=parks and open lands, AF= forests, GW=groundwater level)  
 

Among the hydrologic parameters, distance from the coast and slope are the major 

dominant parameters. It was observed that in winter when stream flow is low, DO 

increased as the distance from the coast increased but in summer and fall DO decreased 

as the distance from the coast increased. We hypothesize that in winter, due to low flow 

sea water dominates and intrusion of seawater forces the stream flow. Hence, higher the 

distance from coast, less the salinity and higher DO is expected. But in summer and fall, 

when stream flow was high, sea water intrusion was minimum. So, closer to the coast, 
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higher the dissolved oxygen was found. The results were in line with the initial 

observations of spatial distribution of DO, where DO was found higher in downstream 

direction before reaching the brackish region. These two observations lead to hypothesize 

that DO in the urban part of the study area increased relative to its forest and agricultural 

upstream portion. The hypothesis is supported by the coefficients as DO increased with 

an increase in residential areas and decreased with an increase in agricultural and forest 

areas. It was observed in a previous study that the concentration of DO was lower in old 

forests relative to young forests and agricultural areas (Uriarte et al., 2011). In our study, 

we found negative correlation between forests and DO in the streams. Both forests and 

agricultural and open lands produce litters and other organic contents that decrease 

stream DO concentration. 

The positive correlation of residential areas can be explained by two observations. Firstly, 

the conversion of most open lands in this area was used for development of residential 

areas. Hence higher residential area also signifies higher conversion of open lands which 

is a major source of litters that lower DO in streams. Also, in the TP model, we found 

that residential areas retain nutrients which enhance stream DO due to lower possibility 

of eutrophication. Commercial areas have less nutrient generation and higher runoff due 

to higher impervious areas. So, eventually commercial areas have low concentration high 

volume runoff that enhanced DO of the streams, as well.  In general, the DO models are 

urban land use and watershed hydrology dominated.  Groundwater was important only in 

some seasons, when overland flows were low. 
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4.3.3.4  Specific conductance 

Specific conductance increases with an increase in salinity. Distance of the stream point 

from the coast is therefore the most important factor for specific conductance of the 

corresponding stream points. From surface runoff perspective, specific conductance is 

more triggered by solids for which accumulation time is less likely to be important. 

Instead a high retention time might cause re-suspension of the dissolved particles. 

Therefore a quicker runoff might have positive effect on stream specific conductance as 

seen in the models (Table 4.7).  

Table 4.8: Multiple log-linear regression models description of specific conductance. 

Equation 
inter-
cept S Dc Lc ARS AC AI AOL AF Cus GW 

W
in

te
r Coeff 42.212 2.229 -3.852 

 
5.124 -4.164 

  
-0.92 -9.67 

 

SE 14.994 1.135 0.542 1.419 0.853 0.451 3.283 

S
p

ri
n

g Coeff 3.557 7.163 -4.079 
 

4.996 -5.356 
 

2.948 -1.40 
  

SE 10.433 2.605 0.696 1.673 1.213 1.345 0.527 
 

S
u

m
m

er
 Coeff 20.809 3.066 -3.591 -4.83 5.203 -3.077 

-
0.09    

-1.48 

SE 
4.859 1.215 0.652 1.905 1.350 0.845 0.04 

   
0.409 

F
al

l 

Coeff 7.230 6.031 -3.980 
 

4.388 -4.831 
 

2.316 -1.05 
  

SE 9.978 2.492 0.665 1.600 1.160 1.286 0.504 
 

(S=slope, Dc=distance from coast, Lc=characteristics length, ARS=single family residential, 
AC=commercial, Ai=industrial, AOL=parks and open lands, AF= forests, GW=groundwater level and Cus= 
upstream concentrations)  
 

For specific conductance groundwater, is significant only in summer, when precipitation 

is higher. Upstream contribution was found significant in winter, when there was less 
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flow in the streams. The upstream contribution was negative, as it carried freshwater 

flows. 

Among the different types of land uses, residential areas and parks, agricultural areas and 

open lands were positively correlated with specific conductance, as they are the primary 

source of solids. Commercial areas are expected to produce less solids (compared to 

residential) due to lower impervious areas. On the contrary, forests work as retention of 

solids and decrease the specific conductance in the stream, as well.   

4.3.3.5  Chlorophyll a 

For chlorophyll a, the models (Table 4.8) did not show a satisfactory goodness of fit. The 

adjusted R2 value ranged from 0.13 to 0.44 and the RSR was higher than 0.75. This 

indicates that chlorophyll a cannot be adequately modeled by considering the hydrologic 

and land use details of the watershed only. Chlorophyll a is an indication of 

photosynthetic activities in the stream and depends largely on the algal growth profile 

and in-stream dynamics. Temperature and lights are two important factors, as well. 

However, within the scope of the models, chlorophyll a showed some resemblance to TP 

and TN models. As in case of TN and TP, DO also showed correlated to retention time 

by retaining slope and characteristics length. 
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Table 4.9: Multiple log-linear regression models description of chlorophyll a. 

(S=slope, Dc=distance from coast, Lc=characteristics length, I=imperviousness, ARS =single family 
residential, AC=commercial, AI= industrial, AF= forests, CUS= upstream concentrations, GW=groundwater 
level)  
 

It is understood from the models that greater the distance from the coast and the higher 

the concentration of chlorophyll a in the streams. Salinity decreased with an increase in 

distance from coast. As DO have a negative correlation with salinity, DO increased as the 

distance from the coast increased. Chlorophyll a is therefore higher in distant sites from 

the coast. Groundwater, which has higher nutrient and DO concentration was found to be 

positively correlated with chlorophyll a, also. 

4.3.4  Multiple regression models for dry and wet periods 

The four seasonal analyses revealed similarities in contributory parameters in different 

seasons for the same water quality parameter. Based on this observation, we developed 

multiple linear regression models for the water quality parameters by dividing the year in 

Equation 
inter-
cept 

S Dc Lc I ARS AC AI AOL AF Cus GW 
W

in
te

r 

C
oe

ff
 

-8.582 -1.999 0.629 2.135 
     

-0.302 
  

S
E

 

4.568 0.903 0.296 1.085 
 

0.185 

S
pr

in
g 

C
oe

ff
 

0.809 
 

-0.746 3.079 
  

-1.399 0.073 
  

-1.563 2.103 

S
E

 

3.476 
 

0.303 1.420 0.554 0.031 
  

0.812 0.858 

S
um

m
er

 

C
oe

ff
 

7.196 
    

-1.273 
   

0.579 0.571 
 

S
E

 

5.768 
  

0.904 
 

0.310 0.382 

F
al

l 

C
oe

ff
 

19.769 
   

-6.038 -1.593 0.981 
 

-0.740 0.429 
  

S
E

 

7.205 
  

2.568 0.777 0.511 0.533 0.250 
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two seasons, i.e., dry (November 01 to April 30) and wet  (May 1 to October 30) period. 

The dry and wet period models (Table 4.9 and Figure 4.10) explained 93% and 88% of 

the variance about the mean for TN. For DO (91% and 90%) and specific conductance 

(88% and 84%) the model performance was satisfactory as well.  

Table 4.10: Multiple linear regression model performances for dry and wet periods. 

Quality 
parameter 

Temporal 
scale 

R2 Adjusted R2 
Standard 
error 

RSR 

TN 
Dry period 0.949 0.917 0.031 0.286 
Wet period 0.876 0.841 0.037 0.399 

TP 
Dry period 0.663 0.595 0.167 0.636 
Wet period 0.704 0.645 0.155 0.596 

DO 
Dry period 0.911 0.885 0.019 0.339 
Wet period 0.906 0.869 0.026 0.362 

CON 
Dry period 0.876 0.796 0.354 0.451 
Wet period 0.836 0.754 0.375 0.496 

Chl a 
Dry period 0.293 0.091 0.248 0.953 
Wet period 0.452 0.343 0.230 0.811 

 

For TP (60% and 65%) and chlorophyll a (9% and 34%) the model was not successful in 

explaining variance. For specific conductance, similar to four seasonal analyses, two 

distinct regimes were visible for freshwater and seawater, which indicates that two 

separate models would be more appropriate for specific conductance. 
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Figure 4.10: Observed vs. predicted values for dry and wet period 

4.3.4.1  Total nitrogen 

The dry and wet period model for TN was consistent with the seasonal models previously 

described (Table 4.10). Distance from the coast and the characteristics length appeared to 

be significant hydrologic parameters for TN in this case as well. Among the land use 

parameters, commercial and industrial areas were found to be positively and open lands 

and forests were found to be negatively correlated. 

 
Table 4.11: Multiple log-linear regression models description of Total nitrogen. 

Equation 
inter-
cept 

Dc L I ARM AC AI AOL AF CUS 

D
ry

 
p

er
io

d
 Coeff 0.630 0.307 

 
-1.154 0.096 0.224 0.010 -0.346 

 
1.494 

SE 1.082 0.035 0.413 0.052 0.078 0.005 0.089 0.315 

W
et

 
p

er
io

d
 Coeff -1.609 0.275 0.495 -0.655 

 

   
-0.09 

 

SE 0.682 0.034 0.117 0.239  0.023 
 
(Dc=distance from coast, Lc =characteristics length, I=imperviousness, Ac=commercial area AI=industrial 
area, AOL= open lands and parks, AF= forests, Cus= upstream concentrations)  
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The only major difference with the seasonal models was the role of groundwater. Unlike 

four seasonal analyses, groundwater didn't retain in any of the models as a significant 

contributor for TN. In general, upstream contribution was dominant for TN in dry periods 

and the relative role of land use and upstream could not be revealed due to dominance of 

hydrologic parameters in wet periods. 

4.3.4.2  Total phosphorus 

For total phosphorus, the dry and wet period models (Table 4.11) were dominated by two 

hydrologic parameters as well. The models were, however, consistent as slope was 

negatively and characteristics length was positively correlated to TP in four seasons, as 

well. Similar to the wet period model of TN, in both dry and wet period models for TP, 

none of the land use, groundwater and coastal parameter retained due to dominance of the 

two hydrologic parameters. We hypothesize that, for nutrients, the seasonal classification 

solely based on rainfall increases the explanatory power of hydrologic parameters. The 

high RSR values (0.64 for dry and 0.6 for wet period) for TP model need careful 

consideration for application of the models.  

Table 4.12: Multiple log-linear regression models description of total phosphorus. 
 
Equation intercept S Lc AOL 

D
ry

 P
er

io
d 

C
oe

ff
 

-3.218 -2.432 1.394 -0.404 

S
E

 1.426 0.623 0.464 0.251 

W
et

 P
er

io
d 

C
oe

ff
 

-2.618 -2.586 1.310 -0.414 

S
E

 

1.319 0.576 0.429 0.232 

(S=slope, Lc =characteristics length, , AOL= open lands and parks) 
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4.3.4.3  Dissolved oxygen 

The dry and wet period models (Table 4.12) for dissolved oxygen were consistent with 

the four seasonal models, as well. Distance from the coast was positively correlated in the 

dry period and was negatively correlated in the wet period. Residential areas were found 

to be positively correlated and commercial areas and open lands and parks were 

negatively correlated, as previous. The dry and wet period model supports our 

assumption that urban DO increased in the residential area dominated urban part relative 

to its agricultural and forest upstream parts in wet seasons. The dry period was dominated 

by seawater intrusion, as previous, too. 

 
Table 4.13: Multiple log-linear regression models description of dissolved oxygen. 

Equation intercept S Dc ARS ARM AC AOL 

D
ry

 p
er

io
d 

C
oe

ff
 

0.187 -0.245 0.109 
 

0.225 
 

-0.189 

S
E

 0.225 0.060 0.020 0.022 
 

0.020 

W
et

 p
er

io
d 

C
oe

ff
 

1.186 0.393 -0.181 0.181 0.383 -0.564 
 

S
E

 0.323 0.097 0.041 0.069 0.049 0.109 
 

(S=slope, Lc =characteristics length, I=imperviousness, ARS =single family residential, ARM multifamily 
residential, AC=commercial, Ai=industrial, AOL=parks and open lands, AF= forests, GW=groundwater level 
and Cus= upstream concentrations)  
 

4.3.4.4  Specific conductance 

For the specific conductance model (Table 4.13) for dry period, upstream contribution 

was a significant contributor. The observation was consistent with the four seasonal 

model where upstream contribution was significant in winter model only. The major 

difference with the four seasonal model was the absence of GW as a significant predictor 

in wet period, unlike in summer model. Relative roles of different land uses were 
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consistent with the four seasonal models, as well. For specific conductance, similar to 

four seasonal analyses, two distinct regimes were visible for freshwater and seawater, 

which indicates that two separate models would be more appropriate for specific 

conductance. 

Table 4.14: Multiple log-linear regression models description of specific conductance. 
Equation intercept S Dc ARS AC AI AOL AF Cus 

D
ry

 p
er

io
d

 

C
oe

ff
 

82.594 3.245 -4.605 8.287 -6.423 -0.128 
 

-1.095 -25.481 

S
E

 28.364 1.225 0.707 1.777 1.317 0.068 
 

0.464 9.065 

W
et

 p
er

io
d

 

C
oe

ff
 

5.108 6.271 -3.891 4.561 -4.884 
 

2.510 -1.185 
 

S
E

 9.762 2.438 0.651 1.565 1.135 1.259 0.493 

(S=slope, Lc =characteristics length, I=imperviousness, ARS =single family residential, ARM multifamily 
residential, AC=commercial, Ai=industrial, AOL=parks and open lands, AF= forests, GW=groundwater level 
and Cus= upstream concentrations)  
 

4.3.4.5  Chlorophyll a 

For chlorophyll a, the dry and wet season models (Table 4.14) did not show a satisfactory 

goodness of fit, as well. The adjusted R2 value in this cases were 0.09 (dry) and 0.34 

(wet).  The RSR values were 0.95 and 0.81 accordingly. This lead to conclude that 

chlorophyll a cannot be adequately modeled by considering the hydrologic and land use 

details of the watershed only. The algal growth profile and in-stream dynamics should be 

carefully considered, too.  
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Table 4.15: Multiple log-linear regression models description of chlorophyll a. 
Equation intercept S Dc Lc ARS AOL AF 

W
in

te
r 

C
oe

f f
 

-1.428 -2.146 0.388 1.340 
 

-0.565 
 

S
E

 

2.397 1.057 0.220 0.817 
 

0.420 

S
p

ri
n

g C
oe

f f
 

8.897 
   

-1.460 
 

0.630 
S

E
 

4.935 0.783 
 

0.263 

(S=slope, Lc =characteristics length, I=imperviousness, ARS =single family residential, ARM multifamily 
residential, AC=commercial, Ai=industrial, AOL=parks and open lands, AF= forests, GW=groundwater level 
and Cus= upstream concentrations)  
 

4.4  DISCUSSION 

Linking land use to stream water quality using spatial data has been an area of active 

research. Kang et al. (2010) developed regression models linking land use types for urban 

watershed and predicted bacterial and metal concentrations with reasonable goodness of 

fit (Adjusted R2 from 0.5 to 0.83 for dry weather and 0.67-0.95 for wet weather). In our 

study, we also found a statistically significant linkage between watershed land use and 

corresponding stream water quality. The inclusion of upstream, coastal and groundwater 

contribution added more explanatory power to the models with reasonable goodness of 

fit. 

For total nitrogen (TN), in our study we found stronger contribution of upstream than that 

of watershed land uses. It was observed in a previous study (Swaney et al., 2012) that 

75% or so of net anthropogenic nitrogen inputs of watershed is not exported in rivers 

which explains the  reason for weaker correlations with the watershed land use 

(compared to upstream). The study (Swaney et al., 2012) also suggested that forests act 
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as retention sites for nutrients, which is supported in our findings. Mayer et al. (2010) 

showed optimal conditions for nitrogen removal in urban streams probably occur when 

groundwater residence time is long. In our study, we also found negative correlation 

between groundwater and TN concentration of stream in winter, when stream flow is low 

and groundwater residence time is possibly high.  

According to the literature (Drolc & Koncan, 2002; Mainstone & Parr, 2002), the major 

anthropogenic sources for total phosphorus (TP) include wastewater treatment plants, 

animal excreta, point sources and agriculture. In our study, we could not establish any 

such relationships. However, according to Mainstone and Parr (2002), sub-surface 

drainage and leaching may be important pathways for phosphorus under certain 

conditions, particularly if the soil is overloaded with phosphorus. Sandy soils and 

underlying sandstone geology are particularly vulnerable since they have a very low 

adsorption capacity for phosphorus. Geological formation of Broward County suggests 

most of the study area has well or excessively drained sandy soil. We hypothesize that, 

subsurface flow is the major source for total phosphorus in Broward, which is evident in 

the models due to its geological formation. For TP, distance from the coast was not 

significant which indicates less influence of seawater in comparison to surface runoff, 

groundwater and upstream contribution. The initial findings of correlation analysis that 

suggested that total phosphorus is the limiting nutrient in this zone is strengthened as TP 

is less affected by salinity in this coastal watersheds.  

Dissolved oxygen has been suggested to be used as a natural tracer (Sklash et al., 1976) 

of watershed pollution (Sanchez et al., 2007). We also found stronger influence of land 
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use components (compared to nutrients) on dissolved oxygen (DO) concentration in a 

complex urban watershed compared to upstream, coastal and groundwater.  It was 

interesting to observe that residential areas were not significant in total nitrogen models 

as they were in DO models. We hypothesize that the relative dominance of upstream 

contribution limited the significance in case of total nitrogen. In a watershed, receiving 

little or no TN from upstream, the significance of residential areas will be higher.  

Specific conductance in the streams were influenced both by their distance from the coast 

and corresponding land uses. This was expected as the majority of the sites were 

freshwater sites for which watershed disturbance is a major source of solids. The term 

‘‘watershed disturbance’’ refers to alteration of natural lands for urban development and 

should be differentiated from ‘‘watershed pollution’’ as the first term refers mostly to 

generation of solids. According to literature (Dow & Zampella, 2000; Zampella et al., 

2007), specific conductance can be used as an indicator of watershed disturbance. We 

also found good correlations between land use and stream specific conductance.  

Chlorophyll a in a stream largely depends on DO and nutrients, which in turn are affected 

by watershed land use and hydrology. A correlation of watershed response to stream 

chlorophyll a is thus expected. However, to develop a predictive model for chlorophyll a, 

in-stream details of zooplankton abundance, hydrologic flushing rate (Hoyer & zones, 

2011), biomass, substratum are to be considered. In our study however, we found 

reasonable correlations of watershed land use and hydrology parameters. But the model 

lacks predictive power and goodness of fit, as the stream and flow characteristics are not 

considered. 
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The empirical predictive models we have developed can significantly explain the relative 

role of watershed land use and hydrology to groundwater, coastal and upstream 

contribution. The consistency of variables in four seasonal models to dry and wet period 

models showed that the technique can be useful in understanding dominating stressors for 

in-stream water quality parameters. However, the models are climate implicit, which 

means they can interpret the effect of changing climate in terms of the parameters 

considered but climatic details are not incorporated in the model. The limited spatial 

dataset might also affect the results and the models need to be validated with a larger 

dataset. A climate implicit model may be useful in predicting stream water quality, 

however the parameterization of the model should carefully consider the risk of 

multicolinearity. 

4.5  CONCLUSIONS 

The research broadens the perspective of traditional empirical modeling of urban water 

quality by comparing internal (i.e., land use and hydrology) and external components 

(i.e., seawater, groundwater, upstream input) of a watershed simultaneously. It can 

provide insight into the stream water quality by considering the concurrent dataset of 

spatially variable stressors and correlating each water quality parameter with the 

dominant ones. 

From the analysis and results, it is evident that internal components were more dominant 

for dissolved oxygen and specific conductance (in non-coastal areas) and external 

components were more dominant for total nitrogen (upstream contribution) and total 

phosphorus (Subsurface flow) in the watershed of Broward County. For chlorophyll a, in-
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stream variables and flow characteristics should be considered for more insightful and 

explanatory model development. The dry and wet period analysis showed that hydrologic 

parameters gain higher explanatory powers in purely rainfall based seasonal divisions. 

The dry and wet period analysis was consistent with the four seasonal analysis, which 

shows potential of multiple regression analysis in robust explanatory stream water quality 

model developments.  

The results recommend a holistic watershed approach for appropriate empirical modeling 

and predictions of stream water quality in complex urban watersheds. The temporal 

validity of these models would require careful consideration of the changing pattern of 

land use and climate. Appropriate scaling technique, for incorporating temporal 

variability, might be useful for developing a robust model for stream water quality with 

respect to spatio-temporal variables. 
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CHAPTER 5 

CONCLUSIONS AND RECOMMENDATIONS 

5.1  CONCLUSIONS 

The research broadens the perspective of traditional stormwater modeling by resolving 

stormwater runoff as a component of the total watershed water budget, incorporating all 

the important processes (i.e., groundwater, sea level, in addition to climatic drivers and 

land use features) using both the mechanistic and empirical approaches. The results 

recommend a holistic watershed approach for appropriate modeling and predictions of 

stream water quality in complex urban watersheds. 

The sensitivity analysis using rainfall-runoff model showed that stormwater runoff and 

quality has the greatest sensitivity to rainfall between the climate parameters and 

imperviousness among the hydrologic parameters. Higher increase in runoff and 

pollutants was also found for conversion of open lands and agricultural areas. The study 

quantified seasonal as well as annual sensitivity coefficients for runoff and six major 

quality parameters (TSS, TN, TP, BOD, Cu and Zn). The quantified climate and land use 

sensitivity would be useful for appropriate management of stormwater quantity and 

quality in complex urban watersheds under a changing climate, sea level, hydrology, and 

land use/cover. 

The empirical models quantitatively explained stream water quality by considering the 

concurrent dataset of spatially variable stressors. In-stream dissolved oxygen and total 
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phosphorus in the coastal urban watersheds were dictated by internal stressors, while 

external stressors were dominant for total nitrogen and specific conductance. Statistically 

significant spatio-temporal empirical models were developed for the five quality 

parameters (TN, TP, DO, chlorophyll a and specific conductance) that can be used to 

predict seasonal stream water quality profiles under similar hydro-climatic and land use 

conditions. 

5.2  LIMITATIONS OF THE STUDY 

Due to the limitations in the parameterization of Storm Water Management Model (EPA 

SWMM 5), the variation of important climate parameters (i.e., radiation, temperature) 

could not be included in this study. The lack of climate data at appropriate temporal and 

spatial scale for stormwater modeling also affected the analysis results.  Although the 

model was developed on historical event mean concentrations of quality parameters, a 

site specific water quality measurement would be more appropriate for the analysis. 

The regression models are climate implicit which means they can interpret the effect of 

changing climate in terms of the parameters considered, but climatic details are not 

incorporated in the model. The limited spatial dataset might also affect the results and the 

models need to be validated with a larger dataset. 

5.3  RECOMMENDATIONS  

For the sensitivity analysis using rainfall-runoff model, a comparison with similar 

watershed scale models, developed in different hydro-climatological regimes, will be 

helpful for comparing the robustness of the model prediction. It will be interesting to see 
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the model response in connection with some of the regional climate models (RCM) for 

assessing future stormwater runoff and quality under changing climate and land use 

scenarios (Rehfeldt et al., 2012; Terando et al., 2012). A comprehensive uncertainty 

analysis of the parameters will provide more insights on sensitivities in changing hydro-

climatic and land use conditions. 

For the spatio-temporal regression model, a climate-explicit scheme may be useful in 

predicting stream water quality. However, the parameterization of the model should be 

carefully considered to avoid the risk of multicolinearity. Appropriate scaling techniques 

for incorporating spatio-temporal variability can be useful for developing a robust model 

for stream water quality analysis and predictions. 



 

122 

REFERENCES 

Abdul-Aziz (2008). Ecohydrology of Unit River Ecosystems: Scaling and Critical 
 Responses of Stream Health Indicators to the Environmental Drivers. Ph.D. 
 thesis, Department of Civil Engineering, University of Minnesota, Minneapolis. 

Abdul-Aziz, O.I., Wilson, B.N. and Gulliver, J. S. (2010). Two-zone model for stream 
 and river ecosystems. Hydrobiologia, 638 (1): 85-107, doi: 10.1007/s10750-009-
 0011-7. 

Akbal, F., Gürel, L., Bahadır, T., Güler, İ., Bakan, G., & Büyükgüngör, H. (2011). 
Multivariate Statistical Techniques for the Assessment of Surface Water Quality at 
the Mid-Black Sea Coast of Turkey. Water, Air, & Soil Pollution, 216(1), 21-37. 

 
Al-Amin, S. and Abdul-Aziz, O.I. (2013). “Challenges in mechanistic and empirical 

modeling of stormwater: Review and perspectives.” Irrigation and Drainage, 
Wiley, in press. 

 
Alves, M. R., Dias, H. C. T., Lani, J. L., Paiva, H. D., Gleriani, J. M., & Pinheiro, J. A. C. 
 (2009). Water quality in the function of the catchment pluviometria of the stream 
 Zerede, Timoteo, Minas Gerais. Floresta e Ambiente, 16(1), 30-38. 
 
Astel, A., Tsakovski, S., Barbieri, P., & Simeonov, V. (2007). Comparison of self-
 organizing maps classification approach with cluster and principal components 
 analysis for large environmental data sets. Water Research, 41(19), 4566-4578. 
 
Bach, P. M., McCarthy, D. T., & Deletic, A. (2010). Redefining the stormwater first flush 

phenomenon. Water research, 44(8), 2487-2498. 
 
Bäckström M, Nilsson U, Håkansson K, Allard B, Karlsson S. 2003. Speciation of heavy 

metals  in road runoff and roadside total deposition. Water, Air, & Soil Pollution, 
147(1), 343-366. 

 
Barrocu, G., Dahab, K., Taniguchi, M., & Holman, I. P. (2010). Changing climate and 

saltwater intrusion in the Nile Delta, Egypt. Groundwater response to changing 
climate, 11-25. 

 
Bhaduri, B., Harbor, J., Engel, B., & Grove, M. (2000). Assessing watershed-scale, long-  

term hydrologic impacts of land-use change using a GIS-NPS model. 
Environmental Management, 26(6), 643-658. 

 
Bhattacharya, B., Deibel, I. K., Karstens, S. A. M., & Solomatine, D. P. (2007). Neural 

networks in sedimentation modeling approach channel of the port area of 
Rotterdam. Proceedings in Marine Science, 8, 477-492. 



 

123 

Bhattacharya, B., Lobbrecht, A. H., & Solomatine, D. P. (2003). Neural networks and 
reinforcement learning in control of water systems. Journal of water resources 
planning and management, 129(6), 458-465. 

Brezonik, P. L., & Stadelmann, T. H. (2002). Analysis and predictive models of 
stormwater runoff volumes, loads, and pollutant concentrations from watersheds in 
the Twin Cities metropolitan area, Minnesota, USA. Water Research, 36(7), 1743-
1757. 

Broward County Environmental Protection Department. (2007). Broward County, florida 
water quality atlas: freshwater canals 1998 – 2003. 

 http://www.broward.org/EnvironmentAndGrowth/EnvironmentalProgramsResourc
es/Publications/Documents/water_atlas_19982003.pdf (accessed on July 19, 2013) 

 
Burian, S. J., Streit, G. E., McPherson, T. N., Brown, M. J., & Turin, H. J. (2001). 

Modeling the atmospheric deposition and stormwater washoff of nitrogen 
compounds. Environmental Modeling & Software, 16(5), 467-479. 

  
Burns, M. J., Fletcher, T. D., Walsh, C. J., Ladson, A. R., & Hatt, B. E. (2012). 

Hydrologic shortcomings of conventional urban stormwater management and 
opportunities for reform. Landscape and Urban Planning. 

 
Butler, J. R., Wong, G. Y., Metcalfe, D. J., Honzák, M., Pert, P. L., Rao, N., & Brodie, J. 

E. (2011). An analysis of trade-offs between multiple ecosystem services and 
stakeholders linked to land use and water quality management in the Great Barrier 
Reef, Australia. Agriculture, Ecosystems & Environment.  

Cardenas, M. B. (2008). Surface water-groundwater interface geomorphology leads to 
scaling of residence times. Geophysical Research Letters, 35(8), L08402. 

Chang, H. (2008). Spatial analysis of water quality trends in the Han River basin, South 
Korea. Water Research, 42(13), 3285-3304. 

Chang, H. (2007). Comparative streamflow characteristics in urbanizing basins in the 
Portland Metropolitan Area, Oregon, USA. Hydrological Processes, 21(2), 211-
 222. 

Chang, H., & Kwon, W. T. (2007). Spatial variations of summer precipitation trends in 
South Korea, 1973–2005. Environmental Research Letters, 2(4), 045012. 

 
Chang, H. (2005). Spatial and temporal variations of water quality in the Han River and 

its tributaries, Seoul, Korea, 1993–2002. Water, Air, and Soil Pollution, 161(1-4), 
267-284. 

 
Chang, H., & Carlson, T. N. (2005). Water quality during winter storm events in Spring 

Creek, Pennsylvania USA. Hydrobiologia, 544(1), 321-332. 
 



 

124 

Chiew, F. H. S., Whetton, P. H., McMahon, T. A., & Pittock, A. B. (1995). Simulation of 
 the impacts of climate change on runoff and soil moisture in Australian 
 catchments. Journal of Hydrology, 167(1), 121-147. 
 
Chelsea Nagy, R., Graeme Lockaby, B., Kalin, L., & Anderson, C. (2012). Effects of 

urbanization on stream hydrology and water quality: the Florida Gulf Coast. 
Hydrological Processes, 26(13), 2019-2030.  

 
Claessens, L., Hopkinson, C., Rastetter, E., & Vallino, J. (2006). Effect of historical 

changes in land use and climate on the water budget of an urbanizing watershed. 
Water Resources Research, 42(3), W03426. 

 
Cooper, R. M., & Lane, J. (1987). An atlas of eastern Broward County Surface water 

management basins. Water Resources Division, Resource Planning Department, 
South Florida Water Management District. 

Cordovilla, M. P., Ligero, F., & Lluch, C. (1994). The effect of salinity on N fixation and 
assimilation in Vicia faba. Journal of experimental botany, 45(10), 1483-1488. 

 
 Crosa, G., Froebrich, J., Nikolayenko, V., Stefani, F., Galli, P., & Calamari, D. (2006). 

Spatial and seasonal variations in the water quality of the Amu Darya River 
(Central Asia). Water research, 40(11), 2237-2245. 

Dean, C. M., Sansalone, J. J., Cartledge, F. K., & Pardue, J. H. (2005). Influence of 
hydrology on rainfall-runoff metal element speciation. Journal of Environmental 
Engineering, 131(4), 632-642. 

Dibike, Y. B., & Solomatine, D. P. (2001). River flow forecasting using artificial neural 
networks. Physics and Chemistry of the Earth, Part B: Hydrology, Oceans and 
Atmosphere, 26(1), 1-7. 

Dow, C. L., & Zampella, R. A. (2000). Specific conductance and pH as indicators of 
watershed disturbance in streams of the New Jersey Pinelands, USA. 
Environmental Management, 26(4), 437-445. 

Drolc, A., & Zagorc Koncan, J. (2002). Estimation of sources of total phosphorus in a 
river basin and assessment of alternatives for river pollution reduction. 
Environment international, 28(5), 393-400. 

 
Ferguson, B. K. (1990). Role of the long-term water balance in management of 

stormwater infiltration. Journal of Environmental Management, 30(3), 221-233. 

Foulquier, A., Malard, F., Mermillod-Blondin, F., Datry, T., Simon, L., Montuelle, B., & 
Gibert, J. (2010). Vertical change in dissolved organic carbon and oxygen at the 
water table region of an aquifer recharged with stormwater: biological uptake or 
mixing?. Biogeochemistry, 99(1-3), 31-47. 

 



 

125 

Giorgi, F., Shields Brodeur, C., & Bates, G. T. (1994). Regional climate change scenarios 
over the United States produced with a nested regional climate model. Journal of 
Climate, 7(3), 375-399. 

 
Gilbert, J. K., & Clausen, J. C. (2006). Stormwater runoff quality and quantity from 

asphalt, paver, and crushed stone driveways in Connecticut. Water research, 40(4), 
826-832. 

  
Gironás, J., Roesner, L. A., Crossman, L. A., & Davis, J. (2010). A new applications 

manual for the Storm Water Management Model (SWMM). Environmental 
Modeling & Software, 25(6), 813-814. 

 
Goonetilleke, A., Thomas, E., Ginn, S., & Gilbert, D. (2005). Understanding the role of 

land use in urban stormwater quality management. Journal of Environmental 
Management, 74(1), 31-42. 

 
Govindaraju RS. 2000. Artificial neural network in hydrology. Journal of Hydrologic 

Engineering, 5(2), 115–137.  
 
Hanrahan, G., Gledhill, M., House, W. A., & Worsfold, P. J. (2003). Evaluation of 
 phosphorus concentrations in relation to annual and seasonal physico-chemical 
 water quality parameters in a UK chalk stream. Water research, 37(15), 3579-
 3589. 
 
Hatt, B. E., Fletcher, T. D., Walsh, C. J., & Taylor, S. L. (2004). The influence of urban 

density and drainage infrastructure on the concentrations and loads of pollutants in 
small streams. Environmental Management, 34(1), 112-124. 

  
Ha, S. J., & Stenstrom, M. K. (2008). Predictive modeling of storm-water runoff quantity 

and quality for a large urban watershed. Journal of Environmental Engineering, 
134(9), 703-711. 

 
Hamid, R., Tsihrintzis, V. A., & Fuentes, H. R. (1995). Model validation for runoff 

pollution from urban watersheds. In The 22 nd Annual Conference on Integrated 
Water Resources Planning for the 21 st Century, Cambridge, MA, USA, 05/07-
11/95 (pp. 141-144). 

 
Han, W. S., & Burian, S. J. (2009). Determining effective impervious area for urban 

hydrologic modeling. Journal of Hydrologic Engineering, 14(2), 111-120. 
  
Hatt, B. E., Fletcher, T. D., Walsh, C. J., & Taylor, S. L. (2004). The influence of urban 

density and drainage infrastructure on the concentrations and loads of pollutants in 
small streams. Environmental Management, 34(1), 112-124. 



 

126 

Helsel, D. R., Kim, J. I., Grizzard, T. J., Randall, C. W., & Hoehn, R. C. (1979). Land use 
influences on metals in storm drainage. Journal (Water Pollution Control 
Federation), 709-717. 

 
Hood, M. J., Clausen, J. C., & Warner, G. S. (2007). Comparison of Stormwater Lag 

Times for Low Impact and Traditional Residential Development1. JAWRA Journal 
of the American Water Resources Association, 43(4), 1036-1046. 

 
Hoyer, M. V., & Jones, J. R. (1983). Factors affecting the relation between phosphorus 

and chlorophyll a in midwestern reservoirs. Canadian journal of fisheries and 
aquatic sciences, 40(2), 192-199. 

 
Hsu, K. L., Gupta, H. V., & Sorooshian, S. (1995). Artificial neural network modeling of 

the rainfall-runoff process. Water resources research, 31(10), 2517-2530. 
 
Huber, W. C., Dickinson, R. E., Barnwell Jr, T. O., & Branch, A. (1988). Storm Water 
 Management Model, version 4. Environmental Protection Agency, 600, 3-88. 
 

Jain, S. K. (2001). Development of integrated sediment rating curves using ANNs. 
Journal of hydraulic engineering, 127(1), 30-37. 

Jankowsky, S., Branger, F., Braud, I., Rodriguez, F., Debionne, S., & Viallet, P. (2011, 
September). Influence of urban expansion on the hydrology of small catchments: 
development of the suburban PUMMA model by coupling of urban and rural 
hydrological models. In Proceedings of the 12th International Conference on 
Urban Drainage. 

Jewell, T. K., & Adrian, D. D. (1978). SWMM stormwater pollutant washoff functions. 
Journal of the Environmental Engineering Division, 104(5), 1036-1040. 

  
Jones, K. B., Neale, A. C., Nash, M. S., Van Remortel, R. D., Wickham, J. D., Riitters, 

K. H., & O'Neill, R. V. (2001). Predicting nutrient and sediment loadings to 
streams from landscape metrics: a multiple watershed study from the United States 
Mid-Atlantic Region. Landscape Ecology, 16(4), 301-312. 

 
Kang, J. H., Lee, S. W., Cho, K. H., Ki, S. J., Cha, S. M., & Kim, J. H. (2010). Linking 

land-use type and stream water quality using spatial data of fecal indicator bacteria 
and heavy metals in the Yeongsan river basin. Water research, 44(14), 4143-4157. 

 
Kannel, P. R., Lee, S., Kanel, S. R., Khan, S. P., & Lee, Y. S. (2007). Spatial–temporal 
 variation and comparative assessment of water qualities of urban river system: A 
 case study of the river Bagmati (Nepal). Environmental Monitoring and 
 Assessment, 129(1-3), 433-459. 
 



 

127 

Kauffman, G. J., Corrozi, M. B., & Vonck, K. J. (2006). Imperviousness: a performance 
measure of a delaware water resource protection area ordinance1. JAWRA Journal 
of the American Water Resources Association, 42(3), 603-615. 

  
Lau, S. L., Han, Y., Kang, J. H., Kayhanian, M., & Stenstrom, M. K. (2009). 

Characteristics of highway stormwater runoff in Los Angeles: metals and 
polycyclic aromatic hydrocarbons. Water Environment Research, 81(3), 308-318. 

 
Lee, J. G., & Heaney, J. P. (2003). Estimation of urban imperviousness and its impacts on 

storm water systems. Journal of Water Resources Planning and Management, 
129(5), 419-426. 

 
Lee, J. H., Huang, Y., Dickman, M., & Jayawardena, A. W. (2003). Neural network 

modelling of coastal algal blooms. Ecological Modelling, 159(2), 179-201. 
 
Maestre, A., & Pitt, R. (2006). Identification of Significant Factors Affecting Stormwater 

Quality Using the NSQD. Stormwater and Urban Water Systems Modeling 
Proceedings, Monograph, 14, 287-326. 

 
Mahbub, P., Goonetilleke, A., Egodawatta, P. K., Yigitcanlar, T., & Ayoko, G. A. (2011). 

Analysis of build-up of heavy metals and volatile organics on urban roads in Gold 
Coast, Australia. Water Science and Technology, 63(9), 2077-2085. 

 
Mahbub, P., Ayoko, G. A., Egodawatta, P., Yigitcanlar, T., & Goonetilleke, A. (2011). 

Traffic and climate change impacts on water quality: measuring build-up and 
wash-off of heavy metals and petroleum hydrocarbons. Green Technologies: 
Concepts, Methodologies, Tools and Applications, 1, 1804-1823. 

 
Mahbub, P., Goonetilleke, A., & Ayoko, G. A. (2012). Prediction of the wash-off of 

traffic related semi-and non-volatile organic compounds from urban roads under 
climate change influenced rainfall characteristics. Journal of hazardous materials, 
213, 83-92. 

  
Ma, J. S., Kang, J. H., Kayhanian, M., & Stenstrom, M. K. (2009). Sampling issues in 

urban runoff monitoring programs: Composite versus grab. Journal of 
Environmental Engineering, 135(3), 118-127. 

 
May, D. B., & Sivakumar, M. (2009). Prediction of urban stormwater quality using 

artificial neural networks. Environmental Modelling & Software, 24(2), 296-302. 
  
Mayer, P. M., Groffman, P. M., Striz, E. A., & Kaushal, S. S. (2010). Nitrogen dynamics 

at the groundwater–surface water interface of a degraded urban stream. Journal of 
environmental quality, 39(3), 810-823.  

 



 

128 

Migliaccio, K., & Castro, B. (2009). Storm Event Sampling in Biscayne Bay Watershed: 
Final Project Report. 

 
Moriasi, D. N., Arnold, J. G., Van Liew, M. W., Bingner, R. L., Harmel, R. D., & Veith, 

T. L. (2007). Model evaluation guidelines for systematic quantification of accuracy 
in watershed simulations. Transactions of the ASABE, 50(3), 885-900. 

 
Moussa, R., & Bocquillon, C. (1996). Criteria for the choice of flood-routing methods in 

natural channels. Journal of Hydrology, 186(1), 1-30. 
 
Muttil, N., & Lee, J. H. (2005). Genetic programming for analysis and real-time 

prediction of coastal algal blooms. Ecological modelling, 189(3), 363-376. 
 
Nearing, M. A., Jetten, V., Baffaut, C., Cerdan, O., Couturier, A., Hernandez, M., ... & 
 Van Oost, K. (2005). Modeling response of soil erosion and runoff to changes in 
 precipitation and cover. Catena, 61(2), 131-154. 
 
Nelson, E. J., & Booth, D. B. (2002). Sediment sources in an urbanizing, mixed land-use 

watershed. Journal of Hydrology, 264(1), 51-68. 
 
National Oceanic and Atmospheric Administration. (2012). South Florida dry season 

outlook 2012-2013. 
 http://www.srh.noaa.gov/images/mfl/news/DrySeasonOutlook1213.pdf (accessed 

July 18 2013) 
 
 Novotny, V. (1991). Urban diffuse pollution: sources and abatement. Water Environment 

& Technology WAETEJ,, 3(12). 
 
Novotny, V., & Olem, H. (2003). Water Quality: Prevention, Identification, and 

Management of Diffuse Pollution. Wiley. 
 
O'Brien, H. D., Eimers, M. C., Watmough, S. A., & Casson, N. J. (2013). Spatial and 

temporal patterns in total phosphorus in south-central Ontario streams: the role of 
wetlands and past disturbance. Canadian Journal of Fisheries and Aquatic 
Sciences, 70(5), 766-774. 

 
Oke, T. R. (1992). Boundary layer climates. Psychology Press. 
 
Olsson, J., Amaguchi, H., Alsterhag, E., Dåverhög, M., Adrian, P. E., & Kawamura, A. 

(2013). Adaptation to climate change impacts on urban storm water: a case study 
in Arvika, Sweden. Climatic Change, 116(2), 231-247. 

 
Opher, T., Ostfeld, A., & Friedler, E. (2009). Modeling highway runoff pollutant levels 

using a data driven model. Water Science and Technology, 60(1), 19. 
 



 

129 

Park, M. H., Swamikannu, X., & Stenstrom, M. K. (2009). Accuracy and precision of the 
volume–concentration method for urban stormwater modeling. Water research, 
43(11), 2773-2786. 

 
Pitt, R. (1996). Groundwater contamination from stormwater infiltration. CRC PressI 

Llc. 
 
Ragosta, G., Evensen, C., Atwill, E. R., Walker, M., Ticktin, T., Asquith, A., & Tate, K. 

W. (2010). Causal connections between water quality and land use in a rural 
tropical island watershed. EcoHealth, 7(1), 105-113. 

 
Rauch, W., Henze, M., Koncsos, L., Reichert, P., Shanahan, P., Somlyódy, L., & 

Vanrolleghem, P. (1998). River water quality modeling: I. State of the art. Water 
Science & Technology, 38(11), 237-244. 

 
Reay, W. G., Gallagher, D. L., & Simmons, G. M. (1992). Groundwater discharge and its 

impact on surface water quality in a chesapeake bay inlet. JAWRA Journal of the 
American Water Resources Association, 28(6), 1121-1134. 

 
Rehfeldt, G. E., Crookston, N. L., Sáenz-Romero, C., & Campbell, E. M. (2012). North 

American vegetation model for land-use planning in a changing climate: a solution 
to large classification problems. Ecological Applications, 22(1), 119-141. 

 
Ramirez, J. A. (2000). Prediction and modeling of flood hydrology and hydraulics. 

Inland flood hazards: Human, riparian and aquatic communities, 293-333. 
 
Rosenberg, E. A., Keys, P. W., Booth, D. B., Hartley, D., Burkey, J., Steinemann, A. C., 

& Lettenmaier, D. P. (2010). Precipitation extremes and the impacts of climate 
change on stormwater infrastructure in Washington State. Climatic Change, 
102(1), 319-349. 

 
Rossman, L. A. (2010). Storm water management model user’s manual, version 5.0. 

National Risk Management Research Laboratory, Office of Research and 
Development, US Environmental Protection Agency, Cincinnati, OH. 

 
Rozemeijer, J., Van der Velde, Y., Van Geer, F., & Broers, H. (2011). Direct 

measurements of the tile drain and groundwater contributions to surface water 
contamination: from field-scale concentration patterns in groundwater to 
catchment-scale surface water quality. In AGU Fall Meeting Abstracts (Vol. 1, p. 
02). 

 
Salah, I. B., Slatni, T., Gruber, M., Messedi, D., Gandour, M., Benzarti, M., ... & 

Abdelly, C. (2011). Relationship between symbiotic nitrogen fixation, sucrose 
synthesis and anti-oxidant activities in source leaves of two Medicago ciliaris lines 



 

130 

cultivated under salt stress. Environmental and Experimental Botany, 70(2), 166-
173. 

 
Sánchez, E., Colmenarejo, M. F., Vicente, J., Rubio, A., García, M. G., Travieso, L., & 

Borja, R. (2007). Use of the water quality index and dissolved oxygen deficit as 
simple indicators of watersheds pollution. Ecological Indicators, 7(2), 315-328. 

 
Shamsi, U. M. (1996). Storm-water management implementation through modeling and 

GIS. Journal of Water Resources Planning and Management, 122(2), 114-127. 
 
Shaw, H., Reisinger, A., Larsen, H., & Stumbles, C. (2005, May). Incorporating climate 

change into stormwater design—why and how. In South Pacific Conference on 
Stormwater and Aquatic Resource Protection, Ministry for the Environment, 
Auckland, New Zealand. 

 
Silveira, J. A. G., Melo, A. R. B., Viégas, R. A., & Oliveira, J. T. A. (2001). Salinity-

induced effects on nitrogen assimilation related to growth in cowpea plants. 
Environmental and Experimental Botany, 46(2), 171-179. 

 
Singh, A., Jakubowski, A. R., Chidister, I., & Townsend, P. A. (2013). A MODIS 

approach to predicting stream water quality in Wisconsin. Remote Sensing of 
Environment, 128, 74-86. 

Singh, K. P., Malik, A., Mohan, D., & Sinha, S. (2004). Multivariate statistical 
techniques for the evaluation of spatial and temporal variations in water quality of 
Gomti River (India): A case study. Water Research, 38(18), 3980-3992. 

Simillen, J. T., & Shaltcross, A. L. (1999). Updating the US nationwide urban runoff 
quality database. Water Science & Technology, 39(12), 9-16. 

 
Sklash, M. G., Farvolden, R. N., & Fritz, P. (1976). A conceptual model of watershed 

response to rainfall, developed through the use of oxygen-18 as a natural tracer. 
Canadian Journal of Earth Sciences, 13(2), 271-283. 

 
South Florida Water Management District (SFWMD). (2012). News Release. 

http://www.sfwmd.gov/portal/page/portal/xrepository/ sfwmd_repository_pdf/ 
 nr_2012_1019_nws_dryseason.pdf (accessed July 18 2013) 
 
Stedmon, C. A., Seredyńska-Sobecka, B., Boe-Hansen, R., Le Tallec, N., Waul, C. K., & 

Arvin, E. (2011). A potential approach for monitoring drinking water quality from 
groundwater systems using organic matter fluorescence as an early warning for 
contamination events. Water research, 45(18), 6030-6038. 

 
St John, M. S., & Horner, R. R. (1997). Effect of road shoulder treatments on highway 

runoff quality and quantity (No. WA-RD 429.1). 
 



 

131 

Stubblefield, A. P., Reuter, J. E., Dahlgren, R. A., & Goldman, C. R. (2007). Use of 
 turbidometry to characterize suspended sediment and phosphorus fluxes in the 
 Lake Tahoe basin, California, USA. Hydrological Processes, 21(3), 281-291. 
 
Subramanya, K. (1994). Engineering hydrology. Tata McGraw-Hill Education. 
 
Sutherland RC. 2010. Stormwater Quality Modeling Improvements Needed For SWMM. 

Pacific  Water Resources, Inc. 
\http://www.pacificwr.com/Publications/stormwater%20quality%20modeling%20 
improvements%20needed%20for%20SWMM.pdf. (accessed January 28 2013). 

 
Swaney, D. P., Hong, B., Ti, C., Howarth, R. W., & Humborg, C. (2012). Net 

anthropogenic nitrogen inputs to watersheds and riverine N export to coastal 
waters: a brief overview. Current Opinion in Environmental Sustainability, 4(2), 
203-211. 

 
Terando, A. J., Easterling, W. E., Keller, K., & Easterling, D. R. (2012). Observed and 

modeled 20 th century spatial and temporal patterns of selected agro-climate 
indices in North America. Journal of Climate, 25, 473-490. 

Tran, C. P., Bode, R. W., Smith, A. J., & Kleppel, G. S. (2010). Land-use proximity as a 
basis for assessing stream water quality in New York State (USA). Ecological 
Indicators, 10(3), 727-733. 

Tsihrintzis, V. A., & Hamid, R. (1998). Runoff quality prediction from small urban 
catchments using SWMM. Hydrological Processes, 12(2), 311-329. 

Tyler, D. (2006). Fecal and Total Coliform TMDL for Wagner Creek (WBID 3288A). 
 
Uriarte, M., Yackulic, C. B., Lim, Y., & Arce-Nazario, J. A. (2011). Influence of land use 

on water quality in a tropical landscape: a multi-scale analysis. Landscape ecology, 
26(8), 1151-1164. 

 
Urban Drainage and Flood Control District. (2001). Drainage Criteria Manual. Colorado. 

Denver.  
 
US Environmental Protection Agency (USEPA). (1990). National water quality inventory 

– 1988  report to Congress, Office of the Water Program Operations, Water 
Planning Division, Washington, DC. 

 
US Department of Agriculture. (2012). National Engineering Handbook 3, Hydrology 

 (Draft). Natural Resources Conservation Service. Washington, DC. 
 
Varol, M., & Şen, B. (2009). Assessment of surface water quality using multivariate 

statistical techniques: a case study of Behrimaz Stream, Turkey. Environmental 
monitoring and assessment, 159(1), 543-553. 



 

132 

 
Vaze, J., & Chiew, F. H. (2002). Experimental study of pollutant accumulation on an 

urban road surface. Urban Water, 4(4), 379-389. 
 
Viezzoli, A., Tosi, L., Teatini, P., & Silvestri, S. (2010). Surface water–groundwater 

exchange in transitional coastal environments by airborne electromagnetics: The 
Venice Lagoon example. Geophysical Research Letters, 37(1). 

 
Viklander, M., & Marsalek, j. (2010). Controlling contaminants in urban stormwater: 

linking environmental science and policy. On the water front, 100-107. 
 
Wheeler, G. L., & Rolfe, G. L. (1979). The relationship between daily traffic volume and 

the distribution of lead in roadside soil and vegetation. Environmental Pollution 
(1970), 18(4), 265-274. 

 
Winz, I., Brierley, G., & Trowsdale, S. (2011). Dominant perspectives and the shape of 

urban stormwater futures. Urban Water Journal, 8(6), 337-349. 
 
Woolhiser, D. A., & Liggett, J. A. (1967). Unsteady, one‐dimensional flow over a 

plane—The rising hydrograph. Water Resources Research, 3(3), 753-771. 
 
Zampella, R. A., Procopio, N. A., Lathrop, R. G., & Dow, C. L. (2007). Relationship of 

Land‐Use/Land‐Cover Patterns and Surface‐Water Quality in The Mullica River 
 Basin1. JAWRA Journal of the American Water Resources Association, 43(3), 
 594-604. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

133 

APPENDIX  

Table 1: Principal components table (upto component 4) for winter season 
Variable PC1 PC2 PC3 PC4 

TN -0.091 -0.442 0.063 0.216 

TP 0.279 -0.004 -0.317 -0.283 

DO -0.119 0.141 0.458 -0.329 

CON 0.045 0.377 -0.398 0.083 

Chl a 0.102 -0.192 -0.296 -0.235 

S -0.214 0.039 0.135 0.576 

DC -0.126 -0.472 0.047 0.106 

L 0.33 0.053 -0.067 0.377 

I -0.249 0.339 0.113 0.162 

ARS 0.373 -0.102 0.094 0.229 

ARM 0.196 0.303 0.387 -0.132 

AC 0.307 0.233 0.241 0.198 

AI 0.285 0.086 -0.001 -0.021 

AOL 0.39 -0.085 0.046 -0.047 

AF 0.371 -0.162 0.09 0.163 

GW 0.108 -0.257 0.418 -0.23 
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Table 2: Principal components table (upto component 4) for spring season 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Variable PC1 PC2 PC3 PC4 
TN -0.025 -0.379 -0.224 -0.354 
TP 0.3 0.017 0.344 -0.223 
DO -0.107 0.361 0.232 -0.067 

CON 0.074 0.359 -0.075 -0.429 
Chl a 0.246 -0.149 0.284 -0.203 

S -0.217 0.021 -0.542 0.092 
DC -0.11 -0.466 -0.103 0.113 
L 0.31 0.076 -0.372 -0.166 
I -0.256 0.314 -0.16 0.102 

ARS 0.36 -0.065 -0.263 0.065 
ARM 0.184 0.342 0.029 0.381 
AC 0.287 0.259 -0.26 0.214 
AI 0.286 0.062 0.012 -0.068 

AOL 0.378 -0.057 0 0.059 
AF 0.365 -0.13 -0.176 0.088 
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Table 3: Principal components table (upto component 4) for spring season 
 
 
 
 
 
 
 

 

 

 

 

 

  

 

 

 

 

 

 

 

Variable PC1 PC2 PC3 PC4 
TN -0.099 -0.43 0.02 -0.17 
TP 0.271 0.079 0.39 0.23 
DO -0.086 0.294 -0.417 0.243 

CON 0.04 0.309 0.405 -0.296 
Chl a 0.203 -0.049 0.284 0.351 

S -0.218 0.102 -0.286 -0.361 

DC -0.146 -0.445 -0.152 -0.05 
L 0.313 0.048 -0.063 -0.429 
I -0.232 0.372 -0.102 -0.021 

ARS 0.357 -0.112 -0.181 -0.239 

ARM 0.219 0.316 -0.274 0.214 

AC 0.312 0.237 -0.245 -0.123 

AI 0.295 0.067 0.046 0.031 

AOL 0.38 -0.117 -0.044 -0.022 

AF 0.356 -0.172 -0.164 -0.143 
GW 0.12 -0.242 -0.332 0.438 
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Table 4: Principal components table (upto component 4) for fall season 
 

 
 
 
 
 
 
 

 

 

 

 

 

  

 

 

 

 

 

 

 

Variable PC1 PC2 PC3 PC4 
TN -0.15 -0.414 0.067 0.154 
TP 0.245 0.127 0.192 -0.39 
DO -0.143 0.308 -0.436 -0.047 

CON 0.095 0.35 0.402 -0.106 
Chl a 0.181 -0.234 -0.043 -0.33 

S -0.205 0.055 0.09 0.582 
DC -0.155 -0.444 -0.039 0.149 
L 0.334 0.028 0.232 0.298 
I -0.229 0.358 -0.041 0.219 

ARS 0.362 -0.119 -0.009 0.264 
ARM 0.21 0.292 -0.371 0.092 
AC 0.319 0.203 -0.126 0.291 
AI 0.278 0.03 -0.053 0.034 

AOL 0.378 -0.121 -0.059 -0.013 
AF 0.357 -0.181 -0.051 0.184 

GW 0.044 -0.148 -0.615 -0.079 
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Table 5: Principal components table (upto component 4) for dry period 
Variable PC1 PC2 PC3 PC4 

TN -0.097 -0.431 -0.041 0.264 
TP 0.282 -0.005 -0.235 -0.366 
DO -0.192 0.188 0.455 -0.11 

CON 0.081 0.35 -0.41 -0.056 
Chl a 0.12 -0.226 -0.201 -0.316 

S -0.207 0.077 -0.034 0.557 

DC -0.146 -0.458 0.054 0.155 
L 0.34 0.045 -0.126 0.337 
I -0.236 0.371 0.004 0.149 

ARS 0.364 -0.109 0.095 0.25 

ARM 0.187 0.307 0.404 -0.034 

AC 0.306 0.234 0.21 0.221 

AI 0.285 0.054 0.07 -0.044 

AOL 0.379 -0.112 0.134 -0.031 

AF 0.358 -0.169 0.108 0.18 
GW -0.063 -0.214 0.507 -0.252 
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Table 6: Principal components table (upto component 4) for wet period 
Variable PC1 PC2 PC3 PC4 

TN -0.105 0.417 0.19 -0.072 
TP 0.29 -0.022 -0.262 -0.369 
DO -0.066 -0.382 -0.221 0.17 

CON 0.078 -0.319 0.18 -0.443 
Chl a 0.24 0.133 -0.252 -0.281 

S -0.216 -0.069 0.463 0.225 

DC -0.155 0.439 0.063 0.159 
L 0.321 -0.028 0.397 -0.01 
I -0.229 -0.358 0.126 0.079 

ARS 0.353 0.117 0.226 0.18 

ARM 0.208 -0.316 -0.149 0.366 

AC 0.308 -0.217 0.168 0.281 

AI 0.292 -0.036 -0.055 -0.001 

AOL 0.374 0.119 -0.033 0.103 

AF 0.35 0.178 0.14 0.166 
GW -0.037 0.162 -0.484 0.435 
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Figure 1: Residual plots for four seasonal analyses. 
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Figure 2: Residual plots for dry and wet period analyses. 
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