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ABSTRACT OF THE THESIS 

GENETIC STRUCTURE OF THE FLORIDA KEY TREE CACTUS, Pilosocereus 

robinii, USING RESTRICTION SITE ASSOCIATED DNA (RAD) MARKERS  

by 

Tonya Dee René Simons Fotinos  

Florida International University, 2013 

Miami, Florida 

Professor Eric von Wettberg, Major Professor 

Rare plant conservation efforts must utilize current genetic methods to ensure the 

evolutionary potential of populations is preserved. One such effort involves the Key Tree 

Cactus, Pilosocereus robinii, which is an endangered columnar cactus native to the 

Florida Keys. The populations have precipitously declined over the past decade because 

of  habitat loss and increasing soil salinity from rising sea levels and storm surge. Next-

generation DNA sequencing was used to assess the genetic structure of the cactus 

populations. Twenty individuals representative of both wild and extirpated cacti were 

chosen for Restriction Site Associated DNA (RAD) analysis. Samples processed using 

the HindIII and NotIII restriction enzymes produced 82,382,440 high quality reads used 

for genetic mapping, from which 5,265 Single Nucleotide Polymorphisms (SNPs) were 

discovered. The analysis revealed that the Keys’ populations are closely related with little 

population differentiation. In addition, the populations display evidence of inbreeding and 

low genetic diversity.    
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INTRODUCTION 

Biological systems around the globe are being plunged into crisis by the 

anthropogenic effects of landscape changes, habitat degradation and climate change 

(Barnosky et al. 2011; Lindenmayer & Fischer 2006; Thomas et al. 2004; Tilman et al. 

1994).  Although there is a considerable threat across the globe, numerically the threat is 

highest in the biodiversity hotspots of the world.  Of those hot spots, South Florida and 

the Caribbean are considered in the top five areas for conservation action because of the 

high level of endemism and threat (Myers et al. 2000).  South Florida contains roughly 

125 endemic species and is the northernmost limit of the distribution of many tropical 

species (Abrahamson 1984; Gann et al. 2002).  Most of South Florida and the Caribbean 

are threatened by a sea level rise of  >1 m  within the century (Maschinski et al. 2011).   

As we enter into the sixth mass extinction in the fossil record, restoration of 

imperiled populations is a priority for mitigating this process (Barnosky et al. 2011).  

Repopulating previously occupied areas or supplementing a local population of existing 

individuals is a strategy that improves the odds that a population can recover from the 

fate of being the “living dead.” To maximize the benefit of applying limited conservation 

funds, restoration projects must proceed with genetic information about the populations 

being augmented. Reintroduction efforts guided by genetic data have consistently had 

more successful outcomes (Falk et al. 1996; Godefroid et al. 2011; Maschinski & 

Haskins 2012).  More typically projects proceed with ecological information (Barrett & 

Kohn 1991; Neale 2012) and some efforts have been successful (Menges 2008), but all 

could have benefited from genetic information.  Undertaking conservation actions with 

genetic considerations will have a much higher chance of success and can bolster overall 
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genetic diversity, thus improving a species' chance of persistence (Godefroid et al. 2011).   

Genetic factors affect population success at the same rate or faster than demographic or 

ecological factors (Frankham & Ralls 1998; Saccheri et al. 1998) making their 

consideration just as vital as overall population numbers. 

To inform restoration efforts effectively, genetic considerations must be 

incorporated.  Plant populations with low numbers of individuals are affected by 

increased  rates of genetic drift and inbreeding.  Plants, by their sedentary nature, also 

have other genetic considerations such as outbreeding depression and clonality that 

require consideration in planning efforts.  Supplementing a population with individuals 

can increase local genetic diversity and genetic information can drastically improve the 

odds of successful restoration of populations .   

One such ongoing effort is the reintroduction of the United State federally 

endangered Key Tree cactus, Pilosocereus robinii, in South Florida. My project will 

contribute to the restoration of this species by examining the current genetic structure and 

diversity in the South Florida cactus populations utilizing a novel genetic analysis for an 

endangered species. 

 

LITERATURE REVIEW 

Genetic Drift and Inbreeding 

 Populations of small size are affected by an increase in two genetic processes,  

genetic drift and inbreeding.  Genetic drift in a population is a change in allele frequency 

by random fluctuations caused by the sampling effect.  In small populations, there are 

fewer copies of alleles than in larger populations and through the process of differential 



3 
 

reproduction and sampling, the allele frequencies change faster because they are more 

driven by unpredictable fluctuations (Ellstrand & Elam 1993).  

Inbreeding is the mating of individuals that are genetically similar (Hedrick & 

Kalinowski 2000).  Selfing in plants, where an individual pollinates itself,  is the most 

extreme form of inbreeding.  Excessive inbreeding among individuals decreases the 

fitness of their offspring by expressing deleterious mutations in the homozygote form and 

by decreasing heterozygosity at loci that express overdominance (Charlesworth & Willis 

2009).    Inbreeding is greater in small populations. Because there are fewer mating 

opportunities than in larger populations, individuals inevitably mate more with those 

closely related to themselves.  

Effects on Genetic Diversity and Extinction 

Genetic drift and inbreeding affect the fitness of populations by lowering overall 

genetic diversity.  Effectively large population sizes must be maintained to minimize the 

effects of  genetic drift and maintain the rarest of alleles (Lynch & Lande 1998).    

Conservation biology has often utilized genetics to help ensure the continued 

persistence of at-risk species and mitigate the effects of small population size. The main 

focus of conservation genetic studies has been to understand the current and historical 

genetic diversity of imperiled species in order to remove them from the extinction vortex 

that is often the fate of collapsing populations. The vortex is characterized by decreased 

genetic diversity, which decreases fitness, evolutionary potential, and reproductive 

potential; all of which reinforce each other (Frankham et al. 2002).  

The key element needed to  incorporate genetic analysis into conservation of rare 

and endangered species is to understand the current genetic structure of the populations, 
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not merely to increase or stabilize population numbers. Well done genetic analysis should 

provide meaningful information so that management decisions can be executed to 

maintain the populations’ ability to evolve rather than simply provide a defined number 

of individuals or geographic population size (Vogler & Desalle 1994). To be able to 

preserve the evolutionary potential of a species, it is critical to understand the current 

level and distribution of genetic variation since this is the foundation of adaptation 

(Hamrick et al. 1991).   The loss of genetic diversity has been correlated with decreased 

time to extinction and is therefore directly related to a species persistence (Frankham 

2005; Frankham & Ralls 1998; Gilpin & Soulé 1986).  The greater the genetic diversity 

of a population, the greater the probability of persistence (Frankham 2005; Lande & 

Barrowclough 1987).   

There is a relationship between the inbreeding coefficient and fitness indicators 

since inbreeding itself declines the fitness of populations.   The relationship between 

fitness and inbreeding was demonstrated in Drospholia (Frankham 1995b; Miller & 

Hedrick 2001) and also confirmed for terrestrial plants (Ouborg & Vantreuren 1994).  

However, not all instances of heightened inbreeding actually lead to lower fitness in the 

population.  Inbreeding in populations that are isolated, such as island populations or self-

pollinating individuals, can result in the purging of deleterious mutations as they are 

expressed and selected against. Thus, the population rids itself of harmful alleles yet will 

display a high amount of inbreeding (Crnokrak & Barrett 2002; Ellstrand & Elam 1993).  

However, not every inbred population will undergo a purging effect because this process 

is stochastic and not deterministic (Miller & Hedrick 2001). 
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Inbreeding depression is affected by other factors in addition to population size, 

such as life history traits and environmental conditions, further complicating our ability 

to predict the genetic outcome of inbreeding depression and low population size.  Plant 

species with a history of bottlenecks, colonization events, and lack of pollinators should 

show more self fertilization rates and display less inbreeding (Lande & Schemske 1985).  

Furthermore, inbreeding depression is influenced by environmental conditions with 

populations under stress displaying more inbreeding (Armbruster & Reed 2005).  It has 

been difficult for conservation genetics to define and measure inbreeding depression 

appropriately, particularly in the case of plants where self-pollination occurs (Ellstrand & 

Elam 1993; Frankham & Ralls 1998). Inbreeding depression, taken as an estimate of the 

genetic variation or heterozygosity, nevertheless remains a central concern in small 

populations because it is negatively correlated with time to extinction (Ellstrand & Elam 

1993; Frankham & Ralls 1998) and the magnitude of the effect of inbreeding is related to 

population size (Angeloni et al. 2011).  

Outbreeding Depression 

When crossbreeding occurs between locally adapted populations, the reduction in 

fitness of their progeny is referred to as outbreeding depression (Frankham et al. 2011).  

Unlike the heterosis of most outcrosses, the subsequent generations of individuals are 

maladapted to local conditions (McKay et al. 2005).  Mating outside the local population 

can disrupt co-adapted gene complexes and have unpredicatable effects on epistatis 

(McKay et al. 2005).  When local populations become genetically distinct based on 

adaptation to microsite conditions rather than genetic drift, reintroductions from 

genetically dissimilar individuals can dampen the local effect and reduce the overall 
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fitness of the population (Hufford & Mazer 2003).  Plants are particularly prone to this 

effect because of their sedentary and often perennial lifestyle (Frankham 1995a; Hufford 

& Mazer 2003). Understanding and identifying the genetic distinctiveness based on local 

adaptation of subpopulations is critical to restoration efforts so that outbreeding 

depression does not occur.  

Markers in Conservation Genetics 

 Genetic diversity is a measure used to quantify the health of species of 

conservation concern. To examine genetic diversity, gene expression or the basis of 

heredity, markers must be chosen as proxies for the entire genome of the individuals.  

Ideally, the marker system chosen would be highly informative with little labor 

investment and would directly relate to the underlying adaptive genetic diversity in order 

to be effective.  In the past thirty years, several markers have been utilized for study such 

as microsatellites, amplified fragment length polymorphisms (AFLPs), and alloyzymes 

(Avise 1994).  Although useful, these markers are plagued by several shortcomings, 

particularly, lengthy development time for primers, variable reproducibility  in different 

labs, and failure to cross amplify in related species or taxonomic groups (Seeb et al. 

2011).  Because of the laborious nature of discovery involved in these marker systems, 

the return on investment is usually 20 or less codominant markers for any particular 

organism.  Also, many unknowingly utilize areas in the genome that are effectively 

neutral in terms of evolution and have limited application to interpret future adaptive 

potential.  

However, the advent of next generation sequencing is making high throughput 

sequencing readily available for non-model organisms (Mardis 2008; Thomson et al. 
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2010).  Single nucleotide polymorphisms (SNPs) that are generated via next generation 

technologies have less genotyping error and increased statistical power (Allendorf et al. 

2010; Hohenlohe et al. 2011).  Restriction site associated DNA (RAD) is one such 

technique that can create hundreds to thousands of markers without the development of a 

primer system thus relieving the necessity for a lengthy discovery time for non-model 

organisms which could prove to be a very powerful tool for conservation (Davey & 

Blaxter 2010; Rowe et al. 2011).  This new technique has the ability to resolve fine scale 

patterns of variation allowing for resolution of past genetic flow or introgression 

(Hohenlohe et al. 2013).  The statistical power of next generation sequencing and RAD 

methods can be directly applied to the conservation field for parameters that have been 

difficult to estimate such, as inbreeding coefficients and kinship.  These methods have the 

potential to offer new insight into genetic questions that previous marker sets have been 

unable to address.   

Study Species:  Pilosocereus robinii 

The focal species of this study is the Key Tree Cactus, Pilosocereus robinii, which 

is a federally endangered columnar cactus native to the tropical hardwood hammocks in 

the Florida Keys (Figure 1).  As early as 1917, botanist John Small noted in his 

description that the cactus was rare in the Keys and in danger of extirpation as a 

consequence of colonization in the area (Small 1917). An extensive survey done in 1984 

also noted declines in previously occupied areas (Adams & Lima 1994).  Although 

historically low, the number of remaining individuals has declined by more than 80% in 

the past decade because of continued habitat loss and environmental change (Goodman et 

al. 2012; USFWS 2010).  The tropical hardwood hammocks of the Florida Keys are 
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found on limestone outcroppings that represent the areas of highest elevation on the 

islands. These forests harbor a large number of endemic populations from the Caribbean 

region. These populations represent the northernmost distribution of most of these plant 

species, all of which are threatened by environmental change (Maschinski et al. 2011; 

Ross et al. 2009; USFWS 1999).  Tropical hardwood hammocks are threatened currently 

and historically by urbanization, anthropogenically- induced change in fire frequency, 

conversion to agriculture, and climate change (Harveson et al. 2007; Ross et al. 2001; 

Ross et al. 2009; USFWS 1999). Rising sea level is of particular concern and, coupled 

with a recent increase in storm frequency and intensity, is predicted to have a potentially 

devastating impact on the small remaining populations in the Florida Keys (Maschinski 

& Haskins 2012; Maschinski et al. 2011). Recent habitat surveys and experiments 

conducted by Fairchild Tropical Botanic Garden have suggested that increasing soil 

salinity has contributed to the Key Tree cactus’ decline and that rapid climate change is 

the major driving cause (Goodman et al. 2012; Maschinski et al. 2011).  

 Pilosocereus robinii is part of a larger Pilosocereus complex of species found in 

the Caribbean but is the only representative of the genus that occurs in North America.  

The phylogenetic relationships of the various Pilosocereus populations in the Keys have 

been disputed since their discovery in 1838.  Botanists John Torrey and Asa Gray first 

officially documented the cactus in 1838 as Cereus peruvianus (Torrey & Gray 1838).  

The cactus was renamed six more times including genus and species names (see full 

history USFWS 1999) .  The Key Largo population has historically been treated as P. 

bahamensis (Britton) Byles & G.D.Rowley (USFWS 2010).  Despite this classification, 

both P. robinii and P. bahamensis have at times been grouped into the more widespread 
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Caribbean-based species Pilosocereus polygonus (Lem.) Byles & G.D.Rowley (Anderson 

2001; Zappi 1994), but inclusion into P. polygonus has not been upheld elsewhere (ITIS 

2013).  Therefore, the relationship between the Key Largo population and the rest of the 

Keys population has to be resolved for appropriate management and reintroduction action 

for this species.  The conservation effort for P. robinii would also benefit from 

clarification of the taxonomic relationships within the Pilososcereus genus across the 

entire Caribbean complex. 

METHODS 

DNA Isolation  

Root material was collected from twenty individuals from the Fairchild Tropical 

Botanic Garden ex situ collection which included 11 individuals that were alive in the 

wild and 9 individuals that were extirpated from the wild (Table 1).   Root samples were 

collected by unearthing individually potted Pilosocereus stems from the Fairchild 

Tropical Botanic Garden holdings.  The collection of stems from specific populations 

were taken as a proxy for field collection.  Care was applied to ensure that root 

collections were connected to the main cactus stem and not adventitious sprouts.  Root 

samples were then dried on Drierite© indicator 10-20 mesh desiccant (W.A. Hammond 

Drierite, Xenia, OH) for a minimum of 24 hours and then DNA was extracted using a 

DNeasy© Plant Mini kit (Qiagen, Valencia, CA).   

Restriction site associated DNA mapping (RAD) was used to identify SNPs in the 

twenty samples. Samples were processed at the Genome Center at the University of 

California at Davis.  The DNA from P. robinii was digested using two restriction 

enzymes, HindIII and NotIII, and an adapter was ligated to the fragment overhanging 
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ends that contained an identifier allowing the samples to be pooled.  The product was 

sheared randomly then a second adapter was ligated to the ends.  PCR was used to 

amplify the fragments and were then sequenced on an Illumnina sequencing platform.  

The cactus sample from Key Largo was used as a reference genome for mapping the 

other samples. A total of 151,829,113 reads using the Illumina Hi-Seq next generation 

DNA sequencer were recovered.  After quality filtering, 82,382,440 high quality (HQ) 

reads were used for mapping. The high quality reads were used as a reference to recover 

5,265 single nucleotide polymorphisms (SNPs) for analysis. Additionally, 2,215 

microsatellite loci were identified from the reference genome, which could be used for 

future genetic studies. 

Statistical Methods  

Genetic diversity among the populations was assessed using the program 

GenAlEx 6.5b3, which determined the percentage of polymorphic loci (p), the observed 

heterozygosity (HO), and expected heterozygosity (HE) across the population samples 

(Peakall & Smouse 2012). Global estimates of the inbreeding coefficient (FIS) for each 

population were calculated using Genepop in the method of Weir and Cockerham (1984).  

Global deviations from Hardy-Weinberg equilibrium for each population were also 

calculated using Genepop 4.2 with 10,000 dememorization steps, 20 batches with 5,000 

iterations per batch (Raymond & Rousset 1995; Rousset 2008).     

The program GenAlEx was used to test for genetic differentiation within and 

among stands of cacti using an analysis of molecular variance (AMOVA) (Excoffier et al. 

1992) among populations (with p-values obtained after 9999 permutations) and Phipt 

pairwise comparisons between populations. 
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There are several statistical approaches for clustering genetic data to find areas of 

diversity among populations.  Discriminant analysis of principal components (DAPC) 

was chosen because the method has few assumptions and an ability to refine the 

differentiation between populations to minimize the within population differences, thus 

yielding reliable population information (Jombart et al. 2010).  This analysis was 

conducted using the R statistical environment with the package adegenet (Jombart & 

Ahmed 2011).  Principal Coordinate Analyses (PCO) among all the individuals included 

in our study was computed with GenAlEx based on the algorithm developed by Orloci 

(1978).  Prior to this analysis, these data were converted to pairwise individual genetic 

distances (Smouse & Peakall 1999), standardized, and formatted as a covariance matrix.  

Lastly, to examine whether the mortality status of each individual has a genetic 

component, an AMOVA and PCO were performed in GenAlEx. 

 

RESULTS 

Genetic diversity 

 Genetic diversity was relatively low across the populations sampled.  The percent 

of polymorphic loci across the populations ranged from 6.27% to 64.16 % (Table 2).  

Although relatively low, the observed heterozygosity estimates were generally higher 

than what was expected across the populations.  Inbreeding coefficients were all positive, 

indicating a deficit of heterozygotes, consistent with inbred populations.  The Lower 

Matecumbe Key population displayed less inbreeding than the other populations with a 

value closer to zero.  All populations significantly deviated from Hardy-Weinberg 

equilibrium (Table 2). 
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Genetic differentiation 

 We found a small amount of subdivision in populations with pairwise PhiPT values 

of  0.436 and 0.395 (Table 3).  Only four pairwise comparisons were significant at 

P<0.05 with Big Pine having the most numerous pairwise differences from the rest of the 

samples.  Key Largo had the least amount of variation, displaying zero difference 

between every population except Lower Matecumbe.  Additionally, AMOVA indicated 

that 86% of the genetic variation was shared across the group and only 14% of the overall 

variation was restricted to a particular population (F=0.139, p=0.020).   

 The principal coordinate analysis showed that 39.69% and 16.62% of the genetic 

variation was explained on the first two axes, respectively.  The Lower Matecumbe 

population grouped together in the lower half (Figure 1).  The two Key Largo samples 

did not cluster in the same quadrant suggesting this clump of stems is not clonal.  The 

subdivision of the two populations is further supported by the DAPC cluster analysis 

which revealed the true number of populations as two [k=2] (Figure 3). 

Assessing Genetic differences between Living and Dead Cacti 

The examination of a genetic component between living and extirpated cacti 

showed that only 1% of the variation were specific to the plant status in the wild and was 

not significant (F= 0.010, p=0.340).  The PCO analysis did not reveal a relationship 

between mortality status and genetic relatedness (Figure 5). 

 

DISCUSSION 

 The populations of Pilosocereus robinii in the Florida Keys display considerable 

amounts of inbreeding and low levels of genetic diversity.  The results are consistent with 
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the species’ having a history of bottlenecks and colonization.  Global inbreeding 

coefficients for P. robinii were all high which indicates populations that are characterized 

by inbreeding.  There was very little genetic difference between the stands of cacti in the 

Florida Keys, with pairwise Phipt values were relatively low.  The AMOVA and pairwise 

comparisons indicated that most of the genetic variation is shared among the group as a 

whole rather than between individual populations.  Although some values of Phipt 

indicate low levels of population differentiation, others are relatively high particularly 

those between Big Pine and Lower Matecumbe. Big Pine Key had the most significant 

deviations in the pairwise comparison and according to the PCO diagram had the greatest 

breadth of genetic differentiation.  Although Lower Matecumbe grouped out in the PCO 

diagram in a separate quadrant suggesting some unique variation, only one pairwise 

comparison was significant.    

The Key Largo cactus has been thought to perhaps be a large clonal stand but the 

PCO diagram and the  sequence data do not support this.  They demonstrate that the 

putative clonal stand on Key Largo is in fact made up of separate individuals since truly 

clonal individuals would be represented by points that fall very near one another or right 

on top of one another.  This cacti stand is known to be a prolific reproducer in the wild 

and one of the few individuals that does so.  The low amount of differentiation between 

Key Largo and  the other populations suggests that the Key Largo population is closely 

related to the settlement of Pilosocereus in the lower Keys.  On the basis of the  PCO and 

raw sequences, the individuals sampled are not completely clonal and reproduction has 

taken place in the wild at some point in the past.  Currently, the Key Largo plant is the 

only cactus to set fruit successfully in the wild. 
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Additionally, the DAPC results confirm a true number of populations as k=2, 

which is supported by the PCO diagram showing Lower Matecumbe distinct from the 

result of the cacti.  The lack of significant pairwise Phipt values could be based on the low 

sample size. 

 The comparisons of living versus extirpated cacti indicate that there is not a 

genetic basis for morality or survival that is detectable in this study.  The Key Tree Cactus 

is known to be adversely affected by salinity levels and mortality has been demonstrated 

to be directly related to the surrounding levels of salinity in the soil (Goodman et al. 

2012).  However, the genetic basis of salinity tolerance in plants has proved challenging 

to unravel, so whether extirpation has a detectable genetic relation to soil salinity cannot 

currently be determined from this data.  

 Recent studies investigating the genetic diversity and clonality of Pilosocereus 

species in South America have revealed a high amount of genetic diversity with expected 

heterozygosity estimates of 0.3 (Figueredo et al. 2010; Moraes et al. 2005).  An adequate 

indicator of differentiation is typically an FST value above 0.30 and all pairwise 

comparisons for the Key Tree Cactus populations were below this threshold.  Many  rare 

species, however, when compared to their more widespread relatives appear deficient in 

genetic diversity (Hamrick & Godt 1996).   

CONCLUSION 

  

 The lack of differentiation from the stand of cacti on Key Largo compared to the 

rest of the populations could indicate that the Key Largo population was established by 

an initial colonizing event and could be the mother plant to the rest of the P. robinii in the 
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Florida Keys.  Further testing and comparisons between the Pilosocereus genus in the 

Caribbean can elucidate this issue.  The Key Largo stand of cacti appears more similar to 

all of the rest of the populations than they do to each other.  The lack of significant 

deviations from Key Largo to the rest of the populations lends credibility to the argument 

than P. bahamensis is in fact P. robinii since this particular cactus is more similar to the 

rest of the cacti in the Keys.   

 Given the limited knowledgebase concerning the taxonomic relationship of this 

genus in the Caribbean, further genetic work must be completed to reveal the relationship 

of this North American-based species to the rest of Pilosocereus.  An inclusion of 

Bahamian and Dominican Republic samples of P. polygonus is currently being planned 

for analysis in the dataset to answer these remaining questions. 

 The reintroduction of Pilosocereus robinii into the Florida Keys is ongoing.  The 

first transplant population was planted August 2012.  Most of the transplants are thriving, 

although some mortality has occurred.  My genetic analysis suggests that the plantings 

have not interfered with population structure across the Keys, and that lower Keys 

material can be safely transplanted to higher ground in the upper Keys.  There is little 

genetic evidence to suggest that plantings need to remain within the population of origin.  

Lower Matecumbe and Long Key are priorities for collection since they contain distinct 

variation and Big Pine Key for its greater amount of genetic diversity. 

  



16 
 

LITERATURE CITED 

 
Abrahamson, W. G. 1984. Species responses to fire on the Florida Lake Wales Ridge. 

American Journal of Botany 71:35-43. 

Adams, R. M., and A. N. Lima. 1994. The natural history of the Florida keys tree 
cactus,Pilosocereus robinii in U.S.F.W. Service, editor, Jacksonville, Florida. 

Allendorf, F. W., P. A. Hohenlohe, and G. Luikart. 2010. Genomics and the future of 
conservation genetics. Nature Reviews Genetics 11:697-709. 

Anderson, E. F. 2001. The Cactus Family. Timber Press, Portland, Oregon. 

Angeloni, F., N. J. Ouborg, and R. Leimu. 2011. Meta-analysis on the association of 
population size and life history with inbreeding depression in plants. Biological 
Conservation 144:35-43. 

Armbruster, P., and D. H. Reed. 2005. Inbreeding depression in benign and stressful 
environments. Heredity 95:235-242. 

Avise, J. C. 1994. Molecular Markers, Natural History, and Evolution. Chapman and 
Hall, New York. 

Barnosky, A. D., N. Matzke, S. Tomiya, G. O. U. Wogan, B. Swartz, T. B. Quental, C. 
Marshall, J. L. McGuire, E. L. Lindsey, K. C. Maguire, B. Mersey, and E. A. 
Ferrer. 2011. Has the Earth's sixth mass extinction already arrived? Nature 
471:51-57. 

Barrett, S. H., and J. R. Kohn. 1991. Genetic and Evolutionary Consequences of Small 
Population Size in Plants:  Implications for Conservation. Pages 3-30 in D. A. 
Falk, and K. E. Holsinger, editors. Genetics and Conservation of Rare Plants. 
Oxford University Press, New York. 

Charlesworth, D., and J. H. Willis. 2009. Fundamental concepts in genetics: The genetics 
of inbreeding depression. Nature Reviews Genetics 10:783-796. 

Crnokrak, P., and S. C. H. Barrett. 2002. Purging the genetic load: A review of the 
experimental evidence. Evolution 56:2347-2358. 



17 
 

Davey, J. L., and M. W. Blaxter. 2010. RADSeq: next-generation population genetics. 
Briefings in Functional Genomics 9:416-423. 

Ellstrand, N. C., and D. R. Elam. 1993. Population genetic consequences of small 
population size - implications for plant conservation. Annual Review of Ecology 
and Systematics 24:217-242. 

Excoffier, L., P. E. Smouse, and J. M. Quattro. 1992. Analysis of molecular variance 
inferred from metric distances among DNA haplotypes - application to human 
mitrochondrial-DNA restriction data. Genetics 131:479-491. 

Falk, D. A., C. I. Millar, M. Olwell, and (Eds.) 1996. Restoring Diversity: strategies for 
reintroduction of endangered plants. Island Press, Washington, D.C. 

Figueredo, C. J., J. M. Nassar, A. E. Garcia-Rivas, and J. A. Gonzalez-Carcacia. 2010. 
Population genetic diversity and structure of Pilosocereus tillianus (Cactaceae, 
Cereeae), a columnar cactus endemic to the Venezuelan Andes. Journal of Arid 
Environments 74:1392-1398. 

Frankham, R. 1995a. Conservation genetics. Annual Review of Genetics 29:305-327. 

Frankham, R. 1995b. Inbreeding and extinction - a threshold effect. Conservation 
Biology 9:792-799. 

Frankham, R. 2005. Genetics and extinction. Biological Conservation 126:131-140. 

Frankham, R., J. D. Ballou, M. D. B. Eldridge, R. C. Lacy, K. Ralls, M. R. Dudash, and 
C. B. Fenster. 2011. Predicting the Probability of Outbreeding Depression. 
Conservation Biology 25:465-475. 

Frankham, R., Ballou, J. D., & Briscoe, D. A. 2002. Introduction to conservation 
genetics. Cambridge University Press, Cambridge, UK. 

Frankham, R., and K. Ralls. 1998. Conservation biology - Inbreeding leads to extinction. 
Nature 392:441-442. 

Gann, G. D., K. A. Bradley, and S. W. Woodmansee. 2002. Rare Plants of South Florida: 
Their history, conservation, and restoration, The Institute of Regional 
Conservation. Retrieved  
from:  http://regionalconservation.org/ircs/RSFNPH/RSFNPHdefault.asp. 



18 
 

Gilpin, M. E., and M. E. Soulé. 1986. Minimum Viable Populations and Processes of 
Species Extinctions in M. E. Soule, editor. Conservation Biology:  The Science of 
Scarcity and Diversity. Sinauer Associates, Massachusetts. 

Godefroid, S., C. Piazza, G. Rossi, S. Buord, A. D. Stevens, R. Aguraiuja, C. Cowell, C. 
W. Weekley, G. Vogg, J. M. Iriondo, I. Johnson, B. Dixon, D. Gordon, S. 
Magnanon, B. Valentin, K. Bjureke, R. Koopman, M. Vicens, M. Virevaire, and T. 
Vanderborght. 2011. How successful are plant species reintroductions? Biological 
Conservation 144:672-682. 

Goodman, J., J. Maschinski, P. Hughes, J. McAuliffe, J. Roncal, D. Powell, and L. O. 
Sternberg. 2012. Differential Response to Soil Salinity in Endangered Key Tree 
Cactus: Implications for Survival in a Changing Climate. Plos One 7. 

Hamrick, J., M. Godt, D. Murawski, and M. Lovelass. 1991. Correlations between 
species traits and allozyme diversity: implications for conservation biology. Pages 
75-86. In: Falk DA, editors, editor. Genetics and conservation of rare plants. 
Oxford University Press, New York. 

Harveson, P. M., R. R. Lopez, B. A. Collier, and N. J. Silvy. 2007. Impacts of 
urbanization on Florida Key deer behavior and population dynamics. Biological 
Conservation 134:321-331. 

Hedrick, P. W., and S. T. Kalinowski. 2000. Inbreeding depression in conservation 
biology. Annual Review of Ecology and Systematics 31:139-162. 

Hohenlohe, P. A., S. J. Amish, J. M. Catchen, F. W. Allendorf, and G. Luikart. 2011. 
Next-generation RAD sequencing identifies thousands of SNPs for assessing 
hybridization between rainbow and westslope cutthroat trout. Molecular Ecology 
Resources 11:117-122. 

Hohenlohe, P. A., M. D. Day, S. J. Amish, M. R. Miller, N. Kamps-Hughes, M. C. Boyer, 
C. C. Muhlfeld, F. W. Allendorf, E. A. Johnson, and G. Luikart. 2013. Genomic 
patterns of introgression in rainbow and westslope cutthroat trout illuminated by 
overlapping paired-end RAD sequencing. Molecular Ecology. 
doi: 10.1111/mec.12239. 

Hufford, K. M., and S. J. Mazer. 2003. Plant ecotypes: genetic differentiation in the age 
of ecological restoration. Trends in Ecology & Evolution 18:147-155. 



19 
 

ITIS. 2013.  Integrated Taxonomic Information System. Retrived from:  
http://www.itis.gov/servlet/SingleRpt/SingleRpt?search_topic=TSN&search_valu
e=19855. 

Jombart, T., and I. Ahmed. 2011. adegenet 1.3-1: new tools for the analysis of genome-
wide SNP data. Bioinformatics 27:3070-3071. 

Jombart, T., S. Devillard, and F. Balloux. 2010. Discriminant analysis of principal 
components: a new method for the analysis of genetically structured populations. 
Bmc Genetics 11. 

Lande, R., and G. F. Barrowclough. 1987. Effective population size, genetic variation and 
their use in population management. Pages 87-123 in M. E. Soule, editor. Viable 
populations for conservation. Cambridge University Press, Cambridge, England. 

Lande, R., and D. W. Schemske. 1985. The evolution of self-fertilization and inbreeding 
depression in plants I. Genetic Models. Evolution 39:24-40. 

Lindenmayer, D., and J. Fischer 2006. Habitat Fragmentation And Landscape Change: 
An Ecological And Conservation Synthesis. Island Press, Washington, D.C. 

Lynch, M., and R. Lande. 1998. The critical effective size for a genetically secure 
population. Animal Conservation 1:70-72. 

Mardis, E. R. 2008. The impact of next-generation sequencing technology on genetics. 
Trends in Genetics 24:133-141. 

Maschinski, J., and K. E. Haskins 2012. Plant Reintroduction in a Changing Climate: 
Promises and Perils. Island Press. 

Maschinski, J., M. Ross, H. Liu, J. O’Brien, E. von Wettberg, and K. Haskins. 2011. 
Sinking Ships: Conservation Alternatives for Endemic Taxa Threatened by Sea 
Level Rise. Climate Change available 107:147-167 

McKay, J. K., C. E. Christian, S. Harrison, and K. J. Rice. 2005. "How local is local?" - A 
review of practical and conceptual issues in the genetics of restoration. 
Restoration Ecology 13:432-440. 

Menges, E. S. 2008. Restoration demography and genetics of plants: when is a 
translocation successful? Australian Journal of Botany 56:187-196. 



20 
 

Miller, P. S., and P. W. Hedrick. 2001. Purging of inbreeding depression and fitness 
decline in bottlenecked populations of Drosophila melanogaster. Journal of 
Evolutionary Biology 14:595-601. 

Moraes, E. M., A. G. Abreu, S. C. S. Andrade, F. M. Sene, and V. N. Solferini. 2005. 
Population genetic structure of two columnar cacti with a patchy distribution in 
eastern Brazil. Genetica 125:311-323. 

Myers, N., R.A. Mittermeier, C. G. Mittermeier, G.B.  daFonseca, and J. Kent. 2000. 
Biodiversity hotspots for conservation priorities. Nature 403:853-858. 

Neale, J. 2012. Genetic Considerations in Rare Plant Reintroduction: Practical 
Applications (or How Are We Doing?). Pages 71-88 in J. Maschinski, and K. E. 
Haskins, editors. Plant reintroduction in a changing climate: Promises and Perils. 
Island Press, Washington D.C. 

Orloci, L. 1978. Multivariate analysis in vegetation research. Springer, New York. 

Ouborg, N. J., and R. Vantreuren. 1994. The significance of genetic erosion in the process 
of extinction IV. Inbreeding load and heterosis in relation to population size in the 
mint Salvia pratensis. Evolution 48:996-1008. 

Peakall, R., and P. E. Smouse. 2012. GenAlEx 6.5: genetic analysis in Excel. Population 
genetic software for teaching and research-an update. Bioinformatics 28:2537-
2539.199 

Raymond, M., and F. Rousset. 1995. GENEPOP (Version-1.2) - Population genetics 
software for exact tests and ecumenicism. Journal of Heredity 86:248-249. 

Ross, M. S., M. Carrington, L. J. Flynn, and P. L. Ruiz. 2001. Forest succession in 
tropical hardwood hammocks of the Florida keys: Effects of direct mortality from 
Hurricane Andrew. Biotropica 33:23-33. 

Ross, M. S., J. J. O'Brien, R. G. Ford, K. Q. Zhang, and A. Morkill. 2009. Disturbance 
and the rising tide: the challenge of biodiversity management on low-island 
ecosystems. Frontiers in Ecology and the Environment 7:471-478. 

Rousset, F. 2008. GENEPOP ' 007: a complete re-implementation of the GENEPOP 
software for Windows and Linux. Molecular Ecology Resources 8:103-106. 



21 
 

Rowe, H. C., S. Renaut, and A. Guggisberg. 2011. RAD in the realm of next-generation 
sequencing technologies. Molecular Ecology 20:3499-3502. 

Saccheri, I., M. Kuussaari, M. Kankare, P. Vikman, W. Fortelius, and I. Hanski. 1998. 
Inbreeding and extinction in a butterfly metapopulation. Nature 392:491-494. 

Seeb, J. E., G. Carvalho, L. Hauser, K. Naish, S. Roberts, and L. W. Seeb. 2011. Single-
nucleotide polymorphism (SNP) discovery and applications of SNP genotyping in 
nonmodel organisms. Molecular Ecology Resources 11:1-8. 

Small, J. K. 1917. The tree cacti of the Florida Keys. Journal of the New York Botanical 
Garden 18:199-203. 

Smouse, P. E., and R. Peakall. 1999. Spatial autocorrelation analysis of individual 
multiallele and multilocus genetic structure. Heredity 82:561-573. 

Thomas, C. D., A. Cameron, R. E. Green, M. Bakkenes, L. J. Beaumont, Y. C. 
Collingham, B. F. N. Erasmus, M. F. de Siqueira, A. Grainger, L. Hannah, L. 
Hughes, B. Huntley, A. S. van Jaarsveld, G. F. Midgley, L. Miles, M. A. Ortega-
Huerta, A. T. Peterson, O. L. Phillips, and S. E. Williams. 2004. Extinction risk 
from climate change. Nature 427:145-148. 

Thomson, R. C., I. J. Wang, and J. R. Johnson. 2010. Genome-enabled development of 
DNA markers for ecology, evolution and conservation. Molecular Ecology 
19:2184-2195. 

Tilman, D., R. M. May, C. L. Lehman, and M. A. Nowak. 1994. Habitat destruction and 
the extinction debt. Nature 371:65-66. 

Torrey, J., and A. Gray. 1838. A Flora of North America.  Reprinted (1968). Hafner Press, 
New York, New York. 

USFWS. 1999. Multi-species Recovery Plan for South Florida. Accessed online at: 
ecos.fws.gov/docs/recovery_plans/1999/990518.pdf. 

USFWS. 2010. Key tree-cactus (Pilosocereus robinii) 5-Year Review: Summary and 
Evaluation. 

Vogler, A. P., and R. Desalle. 1994. Diagnosing units of conservation management. 
Conservation Biology 8:354-363. 



22 
 

Weir, B. S., and C. C. Cockerham. 1984. Estimating F-statistics for the analysis of 
population structure. Evolution 38:1358-1370. 

Zappi, D. 1994. Pilosocereus:  The genus in Brazil, David Hunt, Dorset England. 

 
 



23 
 

FIGURES AND TABLES 

 
Figure 1.  Map showing the populations of Pilosocereus robinii in Florida including the 
ex situ collection held at Fairchild Tropical Botanic Garden in Coral Gables, Florida 
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Table 1.  Individuals from the Fairchild Tropical Botanic Garden ex situ collection of 
Pilosocereus robinii that were included in the genetic analysis and their population of 
origin. 
 

Total Dead in wild1 

Big Pine Key 7 5 

Long Key 2 1 

Upper Matecumbe Key – stand 1 4 3 

Upper Matecumbe Key – stand 2 2 0 

Lower Matecumbe Key 3 0 

Key Largo 2 0 

Total 20 9 
 

1 In situ plant subsequently extirpated after the vegetative ex situ collection was  
   made beginning in 2007   
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Table 2 - Population genetic statistics for 20 samples of Pilosocereus robinii; p = 
percentage of polymorphic loci; HO = observed heterozygosity; HE= expected 
heterozygosity; nds = Number of loci that deviate significantly from Hardy-Weinberg 
Equilibrium (p < 0.05); FIS = inbreeding coefficient 
          

          

Population %p HO HE FIS 
Key Largo 25.33% 0.240 0.125** 0.1875 
Cactus preserve 37.75% 0.114 0.146** 0.4319 
Long Key 14.63% 0.086 0.067** 0.4247 
Lower Matecumbe Key 18.12% 0.089 0.070** 0.0359 
Big Pine Key 64.16% 0.155 0.232** 0.4472 
Upper Matecumbe Key 6.27% 0.052 0.030** 0.3911 
          
**Populations that deviate significantly from Hardy-Weinberg Equilibrium 
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Table 3. PhiPT values for the six groups of Pilsocereus robinii from the Florida Keys  
(** shows significance at 0.05 for pairwise PhiPT values) 
 

Key Largo 
Cactus 
preserve 

Long 
Key 

Lower 
Matecumbe Big Pine 

Cactus preserve 0.000 
Long Key 0.000 0.233 
Lower Matecumbe 0.095 0.292** 0.395 
Big Pine 0.000 0.134** 0.115** 0.214** 
Upper Matecumbe 0.000 0.243 0.087 0.436 0.151 
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Figure 3.  This graph shows the output of the DAPC analysis.  Bayesian information 
criterion (BIC) is provided for different numbers of clusters and the chosen number of 
clusters (2) is circled in red.  
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Figure 4.  Two dimensional plot of the PCO for the six populations of Pilosocereus 
robinii in the Florida Keys.  The first axis explained 37.69% and the second axis 
represents 16.63% of the total variation. 
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Figure 5.  Two dimensional plot of the PCO for the mortality status of Pilosocereus 
robinii.  The first axis explained 37.69% and the second axis represents 16.63% of the 
total variation. 
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