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ABSTRACT OF THE DISSERTATION 

THE ROLE OF TELEOST GRAZERS IN A RELATIVELY PRISTINE SEAGRASS 

ECOSYSTEM 

by 

Cindy Bessey 

Florida International University, 2013 

Miami, Florida 

Professor Michael R. Heithaus, Major Professor 

Trophic downgrading of ecosystems necessitates a functional understanding of trophic 

cascades.  Identifying the presence of cascades, and the mechanisms through which they 

occur, is particularly important for seagrass meadows, which are among the most 

threatened ecosystems on Earth.  Shark Bay, Western Australia provides a model system 

to investigate the potential importance of top-down effects in a relatively pristine seagrass 

ecosystem.  The role of megagrazers in the Shark Bay system has been previously 

investigated, but the role of macrograzers (i.e., teleosts), and their importance relative to 

megagrazers, remains unknown.  The objective of my dissertation was to elucidate the 

importance of teleost macrograzers in transmitting top-down effects in seagrass 

ecosystems. Seagrasses and macroalgae were the main food of the abundant teleost 

Pelates octolineatus, but stable isotopic values suggested that algae may contribute a 

larger portion of assimilated food than suggested by gut contents.  Pelates octolineatus is 

at risk from numerous predators, with pied cormorants (Phalacrocorax varius) taking the 

majority of tethered P. octolineatus.  Using a combination of fish trapping and unbaited 

underwater video surveillance, I found that the relative abundance of P. octolineatus was 
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greater in interior areas of seagrass banks during the cold season, and that the mean 

length of P. octolineatus was greater in these areas compared to along edges of banks.  

Finally, I used seagrass transplants and exclosure experiments to determine the relative 

effect of megagrazers and macrograzers on the establishment and persistence of three 

species of seagrasses in interior microhabitats.  Teleost grazing had the largest impact on 

seagrass species with the highest nutrient content, and these impacts were primarily 

observed during the warm season.  My findings are consistent with predictions of a 

behaviorally-mediated trophic cascade initiated by tiger sharks (Galeocerdo cuvier) and 

transmitted through herbivorous fishes and their predators. 
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GENERAL INTRODUCTION 
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Trophic cascades can be critical in structuring communities, but the ultimate 

mechanisms driving cascades and variation in their strength and prevalence continue to 

be debated (Schmitz et al. 2004, Shurin et al. 2006, Heithaus et al. 2008a, Terborgh and 

Estes 2010).  The indirect effects of top predators on plants, transmitted through 

herbivores, are a result of both consumptive and non-consumptive effects of top 

predators, and their interaction.  Although many studies assume that density changes in 

plant populations in response to variation in top predator abundance are the result of 

predator-inflicted mortality on herbivores (Hairston et al. 1960, Carpenter et al. 1985, 

Bascompte et al. 2005), it is now understood that these changes are the result of both 

consumptive and non-consumptive effects of predators, and many “classic” examples of 

consumptive effects may actually be a consequence of non-consumptive mechanisms 

(Peckarsky et al. 2008).  In fact, recent studies suggest that non-consumptive effects (or 

“risk effects”), including behaviorally-mediated indirect interactions (BMII), may be 

equally or more important than indirect effects initiated by direct consumption of prey 

(Dill et al. 2003, Schmitz et al. 2004,  Preisser et al. 2005, Creel and Christianson 2008, 

and Heithaus et al. 2008b, 2009).  The greater importance of risk effects partially stems 

from their influence on a larger proportion of a prey population and the possibility of 

compensatory reproduction in response to predator-inflicted mortality (Schmitz 2008, 

Heithaus et al. 2009).   

The nature and relative importance of risk effects, however, are context 

dependent, and may by influenced by the energy state of prey, life-history characteristics 

of both predators and their prey (e.g. predator hunting mode and prey escape tactics), 

community diversity, habitat heterogeneity or the interaction of these factors (Schmitz 
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2008, Heithaus et al.  2009).   Therefore, an understanding of the natural history of 

predator-prey interactions is required for predicting community dynamics.  Most studies 

to date which incorporate the importance of risk effects have been conducted in 

mesocosms using relatively simple communities, whereas studies in large-scale systems 

are relatively unexplored (but see Ripple and Beschta 2003, 2004, Creel and Christianson 

2008), especially in marine settings.  Furthermore, studies of cascades, especially those 

driven by risk effects, tend to focus on only one module of a community or overall 

indirect effects, and do not account for the possibility that multiple indirect pathways may 

serve to attenuate or amplify overall indirect effects of predators. 

Understanding marine trophic cascades stemming from both consumptive and risk 

effects as well as their interaction has become critically important because of the 

unprecedented declines in top predators resulting from disturbances such as overfishing 

and habitat destruction (Pauly et al. 1998, Myers and Worm 2005, Myers et al. 2007).  

Global fisheries statistics from 1950-1994 indicate that the mean trophic level of species 

groups declined, resulting in a shift from landings of large piscivorous fishes towards 

smaller fishes (Pauly et al. 1998).  Likewise, shark-targeted surveys conducted annually 

since 1972 off the eastern coast of the United States demonstrate large declines in many 

species, including 87%, 97% and 99% declines over the course of the survey for sandbar 

(Carcharhinus plumbeus), tiger (Galeocerdo cuvier), and smooth hammerhead sharks 

(Sphyrna zygaena), respectively (Myers et al. 2007).  Currently, the ecosystem effects of 

these predator declines remain largely unexplored and in many cases controversial (e.g. 

Heithaus et al. 2008a). Although structurally different, lessons from terrestrial systems 

indicate that the resulting habitat shifts of herbivores that result from the removal or 
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reintroduction of top predators into a system can have substantial consequences on the 

resulting plant community (Schmitz et al. 2000, Ripple and Beschta 2003, 2004).   

Seagrasses are the foundation of highly productive ecosystems with primary 

productivity levels that are comparable to the world’s leading agricultural crops (Phillips 

and McRoy 1980). Seagrasses also provide critical habitat in the form of shelter and 

foraging sites for many fishes and invertebrates (Connolly 1994).  However, seagrass 

meadows are among the most threatened ecosystems on earth and are estimated to be 

disappearing at a rate of 110 km2 yr-1 since 1980 (Waycott et al. 2009). The global 

decline has prompted an increased interest in understanding the factors driving the 

dynamics of seagrass communities in order to protect, or restore, these crucial habitats 

and the organisms they support.  Multiple stressors, such as eutrophication, physical 

disturbances, and climate change, contribute to seagrass declines (Hughes et al. 2004, 

Orth et al. 2006).  However, the disruption of top-down processes as a potential driver of 

seagrass declines is less appreciated (Heck and Valentine 2006).  

Historically, top-down effects in seagrass ecosystems had been largely ignored 

because it was widely assumed that few animals directly consume seagrasses, and of 

those that do, their ingestion is infrequent and inconsequential.  Heck and Valentine 

(2006) referred to this view as a “gross oversimplification” that may neglect the 

importance of seagrass-herbivore interactions.  It is possible that the role of herbivory has 

been largely overlooked because the disappearance of large grazers, including fishes, 

predates and preconditions modern ecological investigations (Jackson et al. 2001). Recent 

studies show that the intensity of herbivory can vary widely both temporally and 

spatially, with anywhere from 3% to 100% of seagrass net primary production entering 
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the food web via the grazing pathway (Heck and Valentine 2006).  Furthermore, 

megagrazers, such as green turtles (Chelonia mydas) and dugongs (Dugong dugon), can 

affect seagrass community structure, biomass and nutritional attributes (Preen 1995, 

Aragones 2000 for a review, Nakoaka et al 2002, Moran and Bjorndal 2005).   For 

example, dugong grazing can remove more than 50% of seagrass production, resulting in 

regrowth of nitrogen-rich species and overall higher nitrogen levels in individual plants 

(de Iongh et al 1995, Masini et al. 2001, Aragones et al. 2006). Herbivorous fishes also 

can consume seagrasses.  For example, two recent studies show that herbivorous fish can 

consume substantial proportions of seagrass production (e.g. 80% in the Florida Keys: 

Kirsch et al. 2002, and 73% off the northeast coast of Spain: Tomas et al. 2005). 

Understanding the interactions of teleosts in regulating seagrass dynamics, therefore, may 

be important for protection of seagrass communities.   

 To understand the role of teleost mesograzers in regulating seagrass 

communities, it is important to gain an understanding of their patterns of habitat use, 

abundance, and foraging behavior under relatively pristine conditions.  Since teleost 

grazers are prey for higher trophic level species (e.g. larger fish, birds and marine 

mammals), it is important to understand spatial and temporal variation in susceptibility to 

predators (Paine 1980, Werner et al. 1983, Lima and Dill 1990, Turner and Mittelbach 

1990). Predation-sensitive shifts in habitat use are critical in shaping the spatiotemporal 

patterns of grazing by large bodied herbivores in terrestrial and marine settings (Ripple 

and Beschta 2004, Wirsing et al. 2007), and, therefore, it is likely that predation also will 

influence teleost grazing and impacts on seagrasses.   
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Shark Bay is perhaps one of the last remaining relatively pristine seagrass 

ecosystems. The area was listed as a World Heritage Area in 1991 by United Nations 

Educational, Scientific and Cultural Organization and satisfies all four of the natural 

criteria required for listing: biological diversity, ecological processes, earth history, and 

natural beauty. The high densities of tiger sharks, piscivores, dugongs and fishes (see 

Heithaus et al. 2012 for a review), combined with low anthropogenic impacts to seagrass 

beds and minimal fishing pressures, allows for detailed studies of diverse ecological 

processes in a relatively pristine system. Shark Bay is a model system for studying 

predator-prey interactions, particularly the importance of risk effects of top predators in 

marine ecosystems, due to the seasonal variation in tiger shark abundance, and the 

variation in the subsurface landscape – in particular the presence of discrete shallow 

seagrass banks separated by deep channels – which allows for replicate sampling of 

habitat types.  The structure of the Shark Bay food web also provides a model system for 

investigating the dynamics of communities that feature parallel pathways for transmission 

of behaviorally mediated indirect effects with differing numbers of steps. 

The objective of my dissertation was to elucidate the importance of top-down 

effects in regulating seagrass communities – particularly those deriving from risk effects 

of top predators and mediated by herbivorous teleosts.   I start out in Chapter II using a 

combination of primary producer surveys, gut content, and stable isotope analyses to 

quantify diets of the western striped trumpeter (Pelates octolineatus) - the most abundant 

facultative herbivorous fish in the Shark Bay study site.  I also compare the isotopic niche 

of P. octolineatus to that of a megaherbivore in the study system (green turtles, Chelonia 

mydas) for which stomach content data is not available.   I then, in Chapter III, identify 
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potential predators of P. octolineatus using tethering trials and investigate the seasonal 

and spatial patterns of predator encounter rates.  In Chapter IV, I elucidate patterns of 

abundance of P. octolineatus, as well as two additional teleost species which are 

abundant in the study site, using a combination of fish trapping and continuous 

underwater video surveillance.  In Chapter V, I used seagrass transplants and exclosure 

experiments to determine the relative effect of megagrazers and macrograzers on the 

establishment and persistence of three species of seagrasses.  Finally, in Chapter VI, I 

conclude by relating my findings to the predictions of a behaviorally-mediated trophic 

cascade, initiated by tiger sharks (Galeocerdo cuvier) and transmitted through 

herbivorous fishes and their predators. 
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Abstract 

Teleost herbivores can play an important role in the dynamics of algal 

communities in coral reef systems, as well as seagrass communities near patch reefs.  

Their roles in seagrass ecosystems not associated with reefs, however, remains unclear. 

Here, I use a combination of primary producer surveys, gut content analysis, and stable 

isotope analysis to investigate the role of Pelates octolineatus in the relatively pristine 

seagrass ecosystem of Shark Bay, Western Australia.  Seagrass cover was significantly 

greater in the middle of shallow banks compared to the edges of banks, but algal cover 

did not differ spatially.  More than 98% of all fish analyzed had primary producers in 

both their stomachs and digestive tracts, and primary producers constituted the vast 

majority of their stomach contents.  Fish caught in the middle of seagrass banks 

contained a greater proportion of algae relative to seagrass.   Stable isotopic values 

suggested that algae may contribute a larger portion of assimilated food across both 

microhabitats than would be inferred by gut contents.  Therefore, algae may be a more 

important food source than suggested by standing stocks and stomach contents, but 

ingestion rates and impacts of P. octolineatus on seagrasses may be underestimated by 

stable isotopic approaches. These results, combined with the high abundance of P. 

octolineatus in the study area, suggest that they may play a more important role in 

facilitating the transfer of primary production to higher trophic levels than previously 

appreciated.  In addition, herbivores in this seagrass ecosystem, including P. octolineatus 

and green turtles (Chelonia mydas) – which occupy a similar isotopic niche, may have 

greater impacts on seagrass communities than might be predicted from isotopic data 

alone. 
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Introduction 

 Teleosts are important herbivores in coral reef ecosystems (Lewis 1985, 

Carpenter 1986, Bruggemann et al. 1994, McClanahan et al. 1994, Hay 1997, Burkepile 

and Hay 2010). Fish can regulate the distribution, abundance, and community structure of 

macroalgae on reefs (e.g. Hay 1997), thereby affecting coral-macroalgal interactions (e.g. 

Hughes 1994).  For example, Burkepile and Hay (2010) found that the species-specific 

effects of teleost herbivores on the colonization and succession of macroalgal 

communities can be critical in enhancing reef resilience in the face of disturbance.  Fish 

can also control the abundance and species composition of seagrasses near patch reefs 

(Armitage and Fourqurean 2006).  In contrast, the impact of teleost grazers on non-reef 

seagrass ecosystems remains unclear, and has generally been considered to be low 

(Thayer et al. 1984, White et al. 2011, Poore et al. 2012).  The lack of teleost grazer 

impacts on seagrass ecosystems has been advanced in part because of the inability of 

many organisms to digest cellulose, and the estimated poor nutritional value of seagrass 

as a result of high C:N ratios (Lawrence 1975, Duarte 1990).  Although the digestion of 

primary producers present a challenge to herbivorous fish, grinding dentation, complex 

alimentary structure, and symbiotic microbes can all assist in the processing of seagrass 

and algal matter (Choat and Clements, 1998). 

 Top-down effects in seagrass ecosystems had historically been overlooked, but 

Heck and Valentine (2006) challenged the view that top-down effects were unimportant 

in seagrass ecosystems.  Indeed, it is possible that the role of herbivory has been largely 

overlooked because the disappearance of large grazers, including fishes, predates and 

preconditions modern ecological investigations (Jackson et al. 2001).  Recent studies 
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show that, in some systems, herbivorous fish can consume substantial proportions of 

seagrass production (e.g. 80% in the Florida Keys: Kirsch et al. 2002; 73% off the 

northeast coast of Spain: Tomas et al. 2005), and may modify plant traits that indirectly 

affect other species (Pages et al. 2012).  Understanding patterns of teleost herbivory 

across a range of conditions and contexts in seagrass ecosytems, therefore, is important 

for predicting responses of seagrass ecosystems to anthropogenic changes.   

Such a predictive framework is important because seagrasses are the foundation 

of highly productive ecosystems that provide critical habitat in the form of shelter and 

foraging sites (Connolly, 1994), are an important carbon store (Fourqurean et al. 2012), 

and now are among the most threatened ecosystems on earth (Waycott et al. 2009). Heck 

and Valentine (2006) described a simple trophic cascade that could potentially lead to 

die-offs of aquatic vegetation in response to the disruption of top-down processes.  They 

posit that the overharvesting of top predators could lead to increased numbers of their 

prey; including smaller predatory fishes. An increase in smaller predatory fishes would 

reduce populations of small grazers of seagrass epiphytes that, in turn, would lead to 

accumulation of epiphytic algae on leaves that could trigger reductions in seagrass 

biomass because of shading.  Less considered is whether the loss of herbivorous fishes, or 

their predators, could similarly disrupt seagrass communities.   

A critical first step in understanding the effects of teleost grazers on seagrass 

communities is to quantify spatial and temporal variation in diets.  While gut or stomach 

content analysis is the most common method for elucidating teleost diets and provides 

detailed information on taxa that are consumed, it provides only a snapshot of an 

individual’s diet and can overlook temporal and spatial variation in diets (see Hyslop 
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1980).  Complementary insights into trophic position of species can be obtained using 

stable isotope analysis (SIA), typically expressed as δ values (Peterson and Fry 1987).  

SIA provides time-integrated insights into relative trophic level using δ15N values, as well 

as, the source of carbon supporting diets using δ13C values (Peterson and Fry 1987, 

Layman et al. 2012).  However, isotopes do not provide detailed information on the 

types, or amounts, of food consumed because different food items may have similar 

isotopic values, and isotopes only reveal assimilated, not consumed, biomass.  Therefore, 

a combination of both stomach content and stable isotope analysis can provide 

complementary insights into foraging ecology. 

 Shark Bay, Western Australia, offers a model system in which to investigate the 

potential impacts of a teleost grazer in a seagrass system; it is one of the largest intact 

seagrass ecosystems in the world that features large populations of both large and small-

bodied herbivores, large piscivores, and top predators (e.g. Heithaus et al. 2012).   The 

teleost Pelates octolineatus (western striped trumpeter) is a mid-sized fish (maximum 

length of 28cm) that has been observed consuming primary producers (Burkholder et al. 

2012). It is the most abundant mid-sized teleost in the Shark Bay long-term study site 

(Heithaus 2004) and, therefore, could substantially impact seagrass and algal 

communities.  In addition, Shark Bay has been the site of multiple studies investigating 

the trophic interactions of a diversity of species including megagrazers (green turtles, 

Chelonia mydas and dugongs, Dugong dugon; Burkholder et al. 2011; Wirsing et al. 

2007) facilitating a community-level understanding of trophic interactions.  Here, I use a 

combination of primary producer surveys, gut content and stable isotope analyses to 

investigate the distribution of potential food sources and spatial and temporal variation in 
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trophic interactions of P. octolineatus.  I also investigated factors affecting gut and 

stomach fullness of P. octolineatus and compared their trophic position and isotopic 

niche to another grazer in the community; the green turtle. 

 

Methods 

Study Site 

Shark Bay (25°45’S, 113°44’E) is a ca. 13,000km2 subtropical embayment 

located along the central coast of Western Australia.  The study site was in the Eastern 

Gulf, offshore of Monkey Mia, where water temperatures are generally high (>20°C) 

during September to May (warm season) and drop to as low as 12°C during June to 

August (cold season) (Heithaus and Dill 2002).  Approximately one-third of Shark Bay 

(~4,000km2) is covered by seagrasses. The study site consists of shallow seagrass banks 

(1.5 – 4.5 m depth) which are seperated by deeper water channels (6-12 m depth) that 

consist primarily of sand-bottoms and occasional seagrass patches (Burkholder et al. 

2013a).  The shallow seagrass banks can be further subdivided into interior (<2.5m depth 

and >75m from deep waters) and edge (2.5m - 4.5m depth, and < 2.5m depth that are 

within 75m from water >4.5m depth) microhabitats (Heithaus and Dill 2006).  Both of 

these shallow microhabitats consist of seagrasses with occasional sand patches.  The 

community is dominated by two slow-growing and large-bodied species (Amphibolis 

antartica, Posidonia australis), with fast-growing, small-bodied species (Cymodocea 

angustata, Cymodocea serrulata, Halodule uninervis, Halophila ovalis, Halophila 

spinulosa, Syringodium isoetifolium; Walker et al. 1988, Burkholder et al. 2013a) 

occurring less frequently.  Benthic communities in Shark Bay also host ca. 160 taxa of 
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macroalgae. Epiphytic red algaes (Rhodophyta) are most speciose but green algaes 

(Chlorophyta) are the most conspicuous (Kendrick et al. 1990). The brown algae Dictyota 

furcellata (Heterokontophyta) is also common (Kendrick et al. 1990).  

Fish communities inside the study area are dominated by western striped 

trumpeters (Pelates octolineatus, previously referred to as P. sexlineatus) (Heithaus 

2004).  Pelates octolineatus is a member of the Terapontidae family (also spelled 

Teraponidae and Theraponidae), known as grunters, named for the characteristic noise 

made by the fish within this family.   This demersal species is commonly found in 

estuaries, lagoons, and seagrass/algae beds around the southwestern coast of Australia, 

from Broome to eastern South Australia (Gomon et al. 1994).  They reach a maximum 

length of approximately 28.0 cm (Gomon et al.1994).  They are reported to be omnivores 

(Paxton et al. 1989), and egg guarders, with the eggs guarded and fanned by the male 

parent (Breder and Rosen, 1966).  Beyond observations of P. octolineatus consuming 

uprooted primary producers (Burkholder et al. 2012) however, its diet and role in the 

Shark Bay ecosystem are unexplored.  

Field Methods 

To estimate the relative abundance of seagrasses and macroalgae within the study 

location, I surveyed 49 stations (n=19 edge, n=30 interior) across three offshore banks 

between March 24 and July 30, 2012.  I focused the survey on the most commonly 

occurring taxa including five seagrass species (Magnoliophyta: Amphibolis antartica, 

Posidonia australis, Cymodocea angustata, Halodule uninervis and Halophila ovalis) 

and four algal taxa (Rhodophyta (red algaes): Laurencia sp., Haliptilon roseum; 

Heterokontophyta (brown algaes): Dictyota furcellata, and Sargassum sp.).   Specific 
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stations were determined by stopping the vessel every 400m along pre-established 

transects in each microhabitat of each bank.  Each station was surveyed using snorkel or 

hookah diving.  Percent cover was estimated by an observer using a 60cm x 60cm 

quadrat dropped haphazardly three times at the station.  I calculated the average percent 

cover of each species for the three drops at each station.  For every site, I recorded water 

temperature, water depth, and GPS location. It is important to note that the seagrass/algae 

surveys were conducted after a “marine heat wave”, in which unprecedented water 

temperatures exceeded more than 3°C above the long-term average over an extended area 

of Shark Bay during February and March 2011 (Pearce et al. 2011).  

Samples of seagrass and algae were collected by hand at each site for stable 

isotope analysis.  I collected up to three individuals per species per site if available.  I 

supplemented these samples by haphazardly collecting species of seagrass and algae that 

were not encountered during quadrat sampling. All samples were stored on ice and frozen 

upon return to shore until analyzed.  

I collected P. octolineatus from interior and edge microhabitats during both the 

warm (February to May) and cold seasons (June to August) of 2010-2012 using 

rectangular fish traps (34 x 24 x 21 cm with 1.2 x 1.3 cm mesh) baited with squid.  Bait 

bags prevented the ingestion of bait by fish to avoid biasing gut content analysis.  

Captured fish were euthanized, stored on ice and immediately frozen upon return to shore 

until fish could be processed.  From euthanized individuals, I collected data on fork 

length, wet weight, conducted gut and stomach content analyses, and collected muscle 
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samples for stable isotope analysis.  Fish muscle tissue was collected from each fish just 

below the dorsal fin ensuring all skin was removed.   

Diet analysis 

For each fish, wet weight was determined for gut content collected from the 

esophagus through to the anus, as well as stomach content alone.  Excess water was 

removed by blotting until dry.  The contents were leveled in a petri dish, observed under 

a dissecting microscope, and the contribution of each food category (primary producers 

and animal matter) were estimated as a percentage of the total volume of contents.  These 

methods provided an estimate of the relative mass of food types and an approximate mass 

of each food type (i.e., percentage of total volume x total weight of stomach contents).  

These methods were selected because of logistical constraints combined with individual 

contributions of some food types being too small to be weighed practically (Hyslop 

1980).  I quantified content of each prey category for all fish sampled using frequency of 

occurrence and mean estimated volume of contents (Bowen 1996, Jobling et al. 2001).   

To determine the identity of primary producers consumed by P. octolineatus, I 

used all available stomachs.  I identified all primary producers to lowest taxonomic group 

possible.  I was unable to identify all fragments either because of state of digestion or 

inability to identify to genus or species; therefore, I included an additional category of 

“Unknown” within broader taxonomic groups if I could not identify the genus or species.   

To provide an indication of fish fullness, I determined the ratio of gut or stomach 

content to that of body weight as 

 gut or stomach content wet weight (g) x 100    (1) 
 fish wet weight (g)  
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After normalizing fish content ratio data using a power transformation, I used analysis of 

variance (ANOVA) to determine if season, microhabitat, year, percent of primary 

producers observed in gut contents, soak time of trap, or fish length were significant 

predictors of fish content ratio (α=0.05).  I include soak time in the analysis of fish 

content ratio because I wanted to account for any differences in gut content that may be 

attributed to differences in the amount of time the fish remained in the trap.   

 Because I was interested in the potential variation in effects of P. octolineatus 

foraging on different primary producer taxa, I determined the proportion of seagrass 

relative to algae in all stomach contents of fish that consumed ≥ 80% primary producers.  

I used a Kruskal-Wallis test to evaluate the influence of year, season, and microhabitat on 

the proportion of stomach contents that were seagrass. 

Stable Isotope Analysis 

All seagrass, algae and fish tissue samples were rinsed in deionized water, dried 

in a food dehydrator (Ezidri Ultra FD 1000) at 60°C for a minimum of 24 h, and then 

ground to a fine powder.  For all seagrass samples, I used a razorblade to scrape 

epiphyte/epibiota from leaves prior to dehydration.  I used a subsample of ~6 specimens 

of seagrass and algae species to obtain a general overview of their isotopic signature in 

the study area during the course of the current study, and supplemented these data with 

data obtained in previous years (2005-2009; Burkholder et al. 2011, Heithaus 

unpublished data).  I analyzed carbon isotopic signatures both with and without 

acidification procedures for all algae samples (previous studies in the study area showed 

that acidification was not necessary for seagrass; Burkholder et al. 2011).  I used acidified 

δ13C values for taxa when acidification resulted in changes in carbon isotopic values of 
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more than 0.3‰.  Acidification required placing dried powder samples in petri dishes 

placed in an open chamber of hydrochloric acid for a minimum of 5 days, after which 

time the samples were again dehydrated and powdered. 

  No lipid extraction was performed on fish samples because C:N ratios indicated 

that lipid corrections were unnecessary (i.e. C:N<3.5, Post et al. 2007; fish muscle tissue 

= 3.39 ± 0.3 SD).   

For analysis, 0.4-0.7mg of powdered samples were weighted into tin capsules and 

analyzed at the Florida International University Stable Isotope Laboratory.  I used linear 

regression to investigate the relationship between stable isotope values and fish length.  

In addition, using only fish that consumed ≥ 80% primary producers, I use a linear 

regression model to investigate the relationship between percent of seagrass in stomach 

content in relation to fish length.  I used a δ15N - δ13C stable isotope bi-plot and 

descriptive statistics of all available data to compare seagrasses to other primary 

producers in the system.  Likewise, I describe the trophic position of P. octolineatus 

relative to green turtles (Chelonia mydas), which are another abundant herbivore in the 

system.  In addition, I calculated the total area of the convex hull encompassing all 

isotopic values for both consumers to obtain an estimate of overall trophic diversity 

(Layman et al. 2007).   

All statistical analyses were run using R (version 2.14.0; R Development Core 

Team 2011). 
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Results 

Primary Producer Surveys  

Seagrass cover was significantly greater at interior stations than ones along the 

edge (Kruskal-Wallis, χ2=5.52, df=1, p=0.02, Figure 2.1). The pattern of increased 

seagrass cover at interior stations was driven primarily by the presence of the slow-

growing, large-bodied seagrass, P. australis, which was not observed in edge stations.  

Amphibolis antarctica dominated edge sites, but fast-growing, small-bodied species were 

also present. Overall algal percent cover did not differ between microhabitats (Kruskal-

Wallis, χ2=0.17, df=1, p=0.68).   

Diet Analysis 

A total of 122 fish were collected for gut and stomach content analysis, of which 

only one stomach was empty.   All seagrass and algae species observed during the 

primary producer survey were also observed in the stomach contents (Figure 2.2), as 

were species not observed in quadrats (Rhodophyta: Ceramium sp., Chlorophyta: 

Penicillus sp.).  Interestingly, seagrass segments contained within the stomach were not 

merely small bites but could be long segments of seagrass, often in excess of 3.5cm (see 

photo insert of Figure 2.4).   Laurencia sp., unknown red algaes, and Dictyota furcellata 

were the most frequently encountered food items in the stomach content of P. 

octolineatus. The frequency of occurrence of Laurencia sp. in fish from interior 

microhabitats was higher than that of those caught in edge microhabitats (Chi-squared 

test; χ2=9.56, df=1, p<0.01). 
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Figure 2.1: Mean percent cover of seagrass and algae species at sites in edge (n=19) and interior (n=30) microhabitats.   Error bars 
are ± SE. 
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Figure 2.2: Frequency of occurrence of individual primary producer taxa in Pelates octolineatus diets (edge; n=53, interior; n=69). 
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I limited the quantitative analysis of gut content, stomach content, and fish content ratio 

to only fish caught on a rising tide in less than 3 hours between 8am and 5pm, and for 

years in which data was obtained in both the warm and cold seasons (2011 and 2012).  

Limiting the analysis minimized the influence of soak time and tide on diet analyses 

(Bowen 1996) and allowed for the analysis of 85 fish for gut content, and 83 fish for 

stomach content analysis. More than 98% of all fish analyzed were observed with 

primary producers in both their gut and stomach (Table 2.1).  Primary producers made up 

the majority of their estimated volume of contents, with animal matter constituting only 

8.7±19% (mean±SD) of the gut content, and 10.4±24% of the stomach content (Table 

2.1). Gut content ratio varied between years (F=16.69, df=1,81, p<0.001), with fish 

length (F=4.47, df=1,81, p=0.04), and with their interactions (F=10.37, df=1,81, p<0.01), 

whereas stomach content ratio varied with only year (F=15.26, df=1,79, p<0.001) and 

fish length (F=5.17, df=1,79, p=0.03).  Not only did the gut and stomach content make up 

a greater percent of overall fish weight in 2011 (gut: 5.59±0.56; stomach: 2.69±0.36) than 

in 2012 (gut: 3.24±0.32; stomach: 1.50±0.15), there was also a significant positive 

relationship between fish content ratio and length during 2011 that was not observed 

during 2012 (Figure 2.3).  There was no variation between years in the amount of animal 

matter consumed (Kruskal-Wallis, χ2=1.14, df=1, p=0.29).   

The majority of fish (88%; 72/82) contained at least 80% primary producers in 

their stomach contents; 74% (60/82) contained only primary producers (Figure 2.4).  

Using only those with at least 80% primary producers, I found that fish caught in edge 

microhabitats contained a significantly greater proportion of seagrass (relative to algae)  
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Table 2.1: Quantitative analysis of gut and stomach content for P. octolineatus caught in less than 
three hours on a rising tide during 2011 and 2012. 

  
Total 

Primary 
Producers 

Animal 
Matter 

Gut Content 
Frequency of Occurrence n=85  100 %  41.2 % 
Mean Estimated Mass of Contents (%±SD) 91.3 ± 19 % 8.7 ± 19 % 
Gut Content Ratio (±SD) 4.35 ± 3.1 %     

Stomach Content 
Frequency of Occurrence n=83  98.8 %  27.7 % 
Mean Estimated Volume of Contents (±SD) 89.6 ± 24 % 10.4 ± 24 % 
Stomach Content Ratio (±SD) 1.74 ± 1.6 %     
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Figure 2.3: Inter-annual variation in the relationship between length and A) gut content to 
body mass and B) stomach content to body mass ratios. 
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Figure 2.4: Number of individuals consuming different proportions of primary producers and animal matter. Insert picture  
displays a fish containing 100% seagrass in gut (entire petri dish) and stomach contents (bottom half of petri dish). 
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than those in interior areas (edge: 64.2±41.6%, interior: 39.9±45.6%, mean±SD; Kruskal-

Wallis, χ2=4.82, df=1, p=0.03).  The proportion of seagrass in stomachs did not vary 

between years (Kruskal-Wallis, χ2=1.29, df=1, p=0.26) or seasons (Kruskal-Wallis, 

χ2=0.17, df=1, p=0.68).   

Stable Isotope Analysis 

 The mean δ15N of seagrass taxa ranged from -3.30‰ (±2.31 SD) to 1.99‰ 

(±0.74), while mean δ15N of algal taxa ranged from 4.84‰ (±0.60) to 5.68‰ (±0.22) for 

red algae, 3.74‰ (±1.17) to 5.31‰ (±0.71) for brown algae, and was 3.69‰ (±0.18) for 

the green algae collected (Table 2.2, Figure 2.5).  Seagrasses were relatively more 

enriched in δ13C compared to algae; with a range in mean δ13C from -9.79‰ (±0.87 SD) 

to -7.58‰ (±1.62) for seagrasses, -29.47‰ (±0.97) to -18.03‰ (±1.60) for red algae, -

16.99‰ (±0.67) to -14.30‰ (±1.40) for brown algae, and -15.86‰ (±2.17) for green 

algae.  

Pelates octolineatus isotope values varied considerably (Figure 2.5).  For fish 

collected from 2010-2012, δ15N ranged from 6.1‰ to 9.6‰ with a mean of 8.5±0.6‰ 

(SD), and δ13C ranged from -21.3‰ to -10.5‰ with a mean of -16.6 ± 2.5‰ (SD). The 

range in isotopic values increased only slightly when data from (2005-2009) were 

included (δ13C: -21.3‰ to -9.8‰, 15.9±2.5‰; δ15N: 5.5 to 9.6, 8.5±0.7‰).  Mean values 

of δ15N and δ13C did not vary across microhabitats, seasons, or with their interactions 

(Table 2.3).  Values of δ15N did not vary with fish length (F=0.26, df=1,93, p=0.61; 

Figure 2.6A), but δ13C increased with fish length (r2=0.13, F=13.77, df=1,93, p<0.001;  



30 
 

Table 2.2: Primary producer δ15N and δ13C stable isotope values (mean and 
standard deviation). 

Species n Mean δ15N SD δ15N Mean δ13C SD δ13C 
Seagrasses 
Amphibolis antartica 60 1.26 0.84 -9.77 0.87 
Posidonia australis 12 1.99 0.74 -8.62 0.73 
Cymodocea angustata 8 -0.33 3.23 -9.77 1.14 
Halodule uninervis 9 -1.02 1.84 -9.79 1.55 
Halophila ovalis 8 -3.30 2.31 -7.58 1.62 
Red Algae 
Laurencia sp. 6 5.54 0.59 -18.03 1.60 
Haliptilon roseum 5 4.84 0.60 -21.7 1.66 
Coelarthrum sp. 4 5.68 0.22 -29.47 0.97 
Brown Algae 
Dictyota furcellata 5 5.31 0.71 -16.99 0.67 
Sargassum sp. 24 3.84 0.82 -14.30 1.40 
Padina sp. 16 3.74 1.17 -16.79 1.15 
Green Algae 
Penicillus sp. 5 3.69 0.18 -15.86 2.17 
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Figure 2.5: Isotopic values of Pelates octolineatus, potential prey items, and Chelonia mydas within the study site.  Closed 
symbols are data from 2010-2012.  Open symbols represent data from 2005-2009 (Heithaus unpublished data; C. mydas data from 
Burkholder et al. 2011). 
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Figure 2.6: Effects of total length on A) δ15N, B) δ13C and C) proportion of seagrass in 
stomach contents of Pelates octolineatus. 
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Table 2.3:  Pelates octolineatus stable isotope values did not vary with 
season, microhabitat, or their interaction. 

Predictors df SS Mean SS F value p value 

δ15N 

Season 1 6.0 6.01 1.00 0.32 
Microhabitat 1 8.7 8.66 1.44 0.23 
Season*Microhabitat 1 6.2 6.22 1.03 0.31 
Residuals 91 547.9 6.02     

δ13C 

Season 1 0.22 0.22 0.58 0.45 
Microhabitat 1 0.29 0.29 0.78 0.38 
Season*Microhabitat 1 0.33 0.33 0.88 0.35 
Residuals 91 34.25 0.38     
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Figure 2.6B).  In addition, δ13C increased with the proportion of seagrass in stomach 

contents (F=13.13, df=1,70, p<0.001; Figure 2.6C).    

Chelonia mydas had a greater range in δ15N values (6.18) than did Pelates 

octolineatus (4.08), as well as a greater range in δ13C values (14.33 and 11.51, 

respectively). Chelonia. mydas also had a larger convex hull total area (62.4) than did P. 

octolineatus  (27.3; Figure 2.7). The total area of the convex hull constructed for P. 

octolineatus displayed considerable overlap with C. mydas in the study area.  Only 1.2% 

(2 of 166) of individual isotopic values for P. octolineatus fell outside the total area of C. 

mydas, while 37.0% (30 of 81) of individual isotopic values for C. mydas fell outside the 

total area of P. octolineatus. Only 17% of P. octolineatus and 28% of C. mydas had δ13C 

values which overlapped with the range of δ13C observed in seagrasses.  Since primary 

producers may display temporal variation in isotope values that was not specifically 

investigated in this study, the current results should be interpreted cautiously. 

 

Discussion 

 I found that the most abundant relatively large-bodied (i.e. > 5 cm) teleost species 

in Shark Bay (Heithaus 2004, Chapter 4) consumed primarily macroalgae and seagrasses.  

Approximately 75% of all P. octolineatus sampled contained only primary producers in 

their stomachs and guts.  The high proportion of primary producers in the diets of P. 

octolineatus combined with their high abundance in the study area suggests that these 

herbivorous fish may play a more important role in facilitating the transfer of primary  
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Figure 2.7: Convex hulls for dietary habits of Pelates octolineatus and Chelonia mydas with mean and standard deviation in δ15N 
and δ13C for seagrasses (dark green), red algae (red),  brown algae (brown) and green algae (light green). 
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production to higher trophic levels than was previously appreciated and that teleost 

herbivory in pristine seagrass ecosystems may be more important than generally 

appreciated.  

Teleost herbivores are capable of exerting considerable top-down control on 

primary producers in many ecosystems round the world, but these impacts are generally 

associated with algaes on coral reefs (Hay 1997, Burkepile and Hay 2010) and seagrasses 

around patch reefs (e.g. Armitage and Fourqurean).  In contrast, teleosts are thought to 

have less impact in seagrass systems not associated with reefs (Poore et al. 2012), which 

may be due to a lack of studies on teleost herbivory in seagrass systems not associated 

with reefs, rather than a lack of impact in these habitats.  Indeed, in a meta-analysis of 

613 herbivory exclusion experiments (Poore et al. 2012), only 28 studies had occurred in 

seagrass beds, of which only one investigated the effects of fish (Gacia et al. 1999).   

Although we have not tested whether teleosts modify primary producer communities, we 

have shown that such effects are at least plausible in Shark Bay because of the large 

biomass that P. octoleneatus is capabale of removing.  

Less than 1% of fish had empty stomachs, as would be expected for an herbivore 

(Arrington et al. 2002), and most fish had a large amount of food in their stomach.  This 

pattern likely is driven by the generally low quality of primary producers (e.g., Bowen et 

al. 1995).  Although the digestion of primary producer matter presents a challenge, 

complex gut alimentary may assist P. octolineatus in the processing of seagrass and algal 

matter.  Indeed, within the Terapontidae family, fish display complex looping of the 

intestine during ontongeny, which may represent an important functional innovation, and 
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facilitate the adoption of diverse modes of feeding - including onmivory, herbivory and 

detritivory – within this family (Davis et al. 2013).   

  Interestingly, gut content weight to body weight ratio was much lower in 2012 

compared to 2011, and the positive relationship between fish content ratio and length that 

existed in 2011 did not in 2012. Although diet switching to prey items with higher energy 

content (e.g., animal matter) offers a potential explanation, this seems unlikely since the 

proportion of animal matter in P. octolineatus stomach contents was similar across years, 

as was the relative proportion of seagrass and algae.  It is possible that fish in 2012 

experienced lower food availability.  Indeed, a “marine heatwave”  in 2011, where 

unprecedented temperatures were observed along Western Australia, including Shark Bay 

(Pearce et al. 2011, Wernberg et al. 2011), led to significant declines in the cover of 

Amphibolis antarctica (Thomson et al. unpublished data).  

 In general, macroalgae may have a higher nutritional value than seagrasses (Smit 

et al. 2006), allowing for easier assimilation of energy and nutrients from macroalgae 

(Choat and Clements 1998).  Both red and brown algae are commonly consumed by 

herbivorous fish (Bell et al. 1978, Conacher et al. 1979) and both macroalgae and 

epiphyte-covered seagrasses have been identified as important food sources for 

herbivorous fishes in other coastal systems (Mississippi salt marsh, Sullivan and 

Moncreiff 1990, subtropical lagoon in Bermuda, McGlathery 1995, temperate seagrass 

meadow in Western Australia, Smit et al. 2006). Red and brown algae were frequently 

encountered in the stomach contents of P. octolineatus in my study, and appear to be 

consumed at a higher rate than their relative abundance, particularly in interior 
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microhabitats.  Therefore, the importance of macroalgage to the diets of herbivores – and 

the potential importance of herbivory in structuring macroalgal abundance - might be 

greater than suggested by its standing stock in the study area.    Further studies into algal 

nutritional value, palatability, and productivity as well as, more explicit studies 

investigating the role of grazers in structuring seagrass and algal dynamics are important 

to gaining further insights into the dyanmics of seagrass ecosystems.  

The combination of gut contents and stable isotope analysis suggests that while 

macroalgae may make up a greater portion of assimilated biomass than would be 

expected, herbivore consumption of seagrasses might be greater than would be predicted 

by stable isotopic data alone.  Indeed, despite roughly similar proportions of algae and 

seagrass in the stomachs of fishes, δ15N-δ13C values of P. octolineatus were more similar 

to those of algae than seagrasses, which contrasts with stomach content analysis where 

the mean proportional contribution of seagrass to fish diets was 0.64 and 0.40 depending 

on whether fish were caught in edge or interior microhabitats.  Therefore, diet studies 

based on stable isotope data alone may overlook the contribution of seagrass.  

The mis-match between views of trophic interactions based on isotopes and gut 

contents has important implications for understanding the ecological role of other 

herbivores in seagrass ecosystems.  For example, the total isotopic niche space of P. 

octolineatus fell almost entirely within that of green turtles.  Mixing models suggested 

that these turtles were assimilating a large proportion of nutrients from algae, some from 

gelatinous macroplankton, and - with the exception of a few individuals - relatively little 

from seagrasses (Burkholder et al. 2011).  If turtle assimilation efficiency of seagrass is 
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similar to that of these fish, then it is likely that turtle impacts on seagrass communities 

are greater than would be expected based on isotopic data alone.  Results from recent 

exclosure experiments in Shark Bay show that green turtles can exert considerable top-

down impacts on seagrass biomass and community structure (Burkholder et al. 2013b, 

this dissertation Chapter V). 

Seagrass beds are threatened by myriad anthropogenic impacts, necessitating an 

understanding of the processes that affect seagrass ecosystem structure and function 

(Waycott et al. 2009, Adam et al. 2011).  My current study suggests that fish may play a 

role in the dynamics of seagrass communities, even though seagrasses may account for 

relatively small portions of assimilated biomass. Therefore, further studies that directly 

measure the impacts of herbivorous teleosts in structuring seagrass communities will 

assist in effective management of these communities, and could enhance our ability to 

predict community trajectories under scenarios of climate change and other 

anthropogenic impacts.  
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CHAPTER III: 

ALARM CALL PRODUCTION AND TEMPORAL VARIATION IN PREDATOR 

ENCOUNTER RATES FOR A FACULTATIVE TELEOST GRAZER IN A 

RELATIVELY PRISTINE SEAGRASS ECOSYSTEM 
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Abstract 

Predation risk can structure the spatial and temporal patterns and strength of 

grazer impacts on primary producer communities.  Although teleost grazers have the 

potential to exert strong top-down effects on seagrass communities, relatively little is 

known about how risk might structure these effects.  Here, I used tethering trials to 

identify potential predators of an abundant facultative teleost grazer, the western striped 

trumpeter (Pelates octolineatus, Jenyns 1840), and investigate patterns of predator 

encounter rates in a relatively pristine seagrass ecosystem.  Pied cormorants 

(Phalacrocorax varius) were identified as the most common predator during 116 

tethering trials that were video-recorded.  Trumpeters also were preyed upon by giant 

shovelnose rays (Glaucostegus typus), nervous sharks (Carcharhinus cautus), and blue 

swimmer crabs (Portunus pelagicus).  Predation events on tethered fish were higher 

during trials conducted during a warm period compared a colder period, which 

corresponded to variation in cormorant densities observed along standardized transects.  

Activity rates of fish that survived the tether trials were similar to those that were preyed 

upon.  Fish vocalization rates were low throughout the majority of tethering trials, but 

high immediately preceding and during predatory attacks suggesting that trumpeters may 

produce alarm calls.  Although further studies are needed, our data suggest that seasonal 

variation in predation risk could be an important factor in structuring the behavior and 

foraging impacts of an abundant facultative teleost grazer in a relatively pristine seagrass 

ecosystem. 
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Introduction 

Predation is an important driver of habitat use, abundance, and foraging behavior 

in diverse taxa and can limit prey population sizes (e.g. Lima and Dill 1990, Brown and 

Kotler 2004, Ritchie and Johnson 2009).  Thus, predators may indirectly influence plant 

communities by altering spatial and temporal patterns and overall intensity of herbivory 

(e.g., Hairston et al. 1960, Schmitz et al. 2004 and Estes et al. 2011 for reviews). Recent 

studies suggest that non-consumptive effects (or “risk effects”), including behaviorally-

mediated indirect interactions (BMII) such as reduced activity and altered habitat use, 

may be equally or more important than indirect effects initiated by direct consumption of 

prey because of their tendency to affect large portions of prey populations (Dill et al. 

2003, Schmitz et al. 2004, Preisser et al. 2005, Creel and Christianson 2008, Heithaus et 

al. 2008a).   

Despite their central role in the dynamics of many systems (e.g. Estes et al. 2011), 

top-down effects in seagrass ecosystems have only received attention relatively recently 

(Valentine et al. 2007, Moksnes et al. 2008, Heithaus et al. 2009, Poore et al. 2009, Pages 

et al. 2012).   Previously, it was thought that direct herbivory had little impact on seagrass 

communities and the possibility that predators could affect seagrasses through direct 

predation or risk effects on herbivores – especially highly mobile species - was largely 

overlooked (reviewed in Heck and Valentine 2006).   Recently, however, it has become 

apparent that the intensity of herbivory can vary widely both temporally and spatially in 

seagrass systems, and may be at least partially driven by predators (Heck and Valentine 

2006, Valentine et al. 2007, Heithaus et al. 2008b, and 2009, Moksnes et al. 2008, Lewis 

and Anderson 2012).  For example, fish can limit the abundance of low-mobility 
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herbivores (Duffy and Hay, 2000), and invertebrate mesograzer abundances increase in 

the absence of predators, resulting in low biomass of algae on seagrass leaves (Moksnes 

et al. 2008, Eriksson et al. 2009). Also, top predators can modify foraging patterns of 

megaherbivores, including dugongs (Dugong dugon; Wirsing et al. 2007) and green 

turtles (Chelonia mydas; Heithaus et al. 2007). The potential indirect effects of predators 

on primary producers mediated through herbivorous fish are less known, but are likely 

(see Armitage and Fourqurean 2006). Indeed, fish can remove substantial amounts of 

primary production and are at risk from a diversity of piscivores in many locations, 

making predation risk to teleost grazers in seagrass ecosystems of particular interest 

(Kirsch et al. 2002, Tomas et al. 2005, Armitage and Fourqurean 2006). 

Predation risk is a product of the encounter rate between predator and prey and 

the probability of death given an encounter (Lima and Dill 1990).  Measuring predation 

risk in relatively large-bodied and mobile species, like many teleosts, can be difficult.  

Restraining prey (or tethering) can provide insights into predator encounter rates and the 

ability to compare these encounter rates across space and through time, but the limitations 

of this technique must be considered (Peterson and Black 1994, Aronson and Heck 1995, 

Aronson et al. 2001, Lank and Ydenberg 2003).  For example, although tethering 

removes observer bias, it impedes escape behavior (i.e. increases the probability of death 

in an encounter situation) and may increase attack rates (i.e. increases estimates of 

encounter rates) if predators are attracted to tethered individuals.  Continuous video 

recording of tethering trials, however, offers the potential for a more complete 

retrospective evaluation of the degree to which biases of tethering may differ between 
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treatments (Peterson and Black 1994).  It also has the potential to provide insights into 

anti-predator behaviors, such as the use of alarm calls.  

Shark Bay, Western Australia, has been used as a model system for investigations 

of top-down processes, particularly risk effects, in a relatively pristine seagrass 

ecosystem (Heithaus et al. 2009).  Although predation sensitive foraging of large-bodied 

herbivores (dugongs and green turtles) (Heithaus et al. 2007, Wirsing et al. 2007), and 

their resulting impacts on seagrass (Heithaus et al. 2007, Burkholder et al. 2012 and 

2013a), has been studied in Shark Bay, less attention has been given to the potential for 

risk-sensitive foraging behavior of fish grazers and how this may impact seagrass 

ecosystem dynamics.  The teleost Pelates octolineatus (western striped trumpeter; 

Terapontidae) is the most abundant mid-sized teleost (maximum length of 28cm) in the 

long-term Shark Bay study site (Heithaus 2004) and has been observed consuming 

substantial proportions of primary producers (Burkholder et al. 2012, Davis et al. 2012, 

Bessey unpublished data). Therefore, western striped trumpeters could impact seagrass 

and algal communities (Burkholder et al. 2012).  Little is known, however, about the 

specific predators of P. octolineatus and how encounter rates with predators might vary 

in space and time.  Likewise, little is known about the use of anti-predator behaviors, 

such as alarm calls, by these soniforous fish. Here, I used tethering trials with continuous 

video surveillance to identify potential predators of western striped trumpeters, 

investigate patterns of predator encounter rates, and determine whether fish might use 

alarm calls when threatened by predators.    
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Methods 

Study Site 

The study occurred in the Eastern Gulf of Shark Bay offshore of the Monkey Mia 

Dolphin Resort.  Shark Bay (25°45’S, 113°44’E) is a ca. 13,000km2 subtropical 

embayment in Western Australia with approximately one-third of its area (~4,000km2) 

covered by seagrass meadows (Walker et al. 1988).  Water temperatures are generally 

high (>20°C) during September to May (warm season) and drop to as low as 12°C during 

June to August (cold season) (Heithaus and Dill 2002, 2006). 

The study site is made up of a series of shallow offshore banks (<4.5m depth) 

surrounded by deeper waters 6-12m depth.  Shallow banks are largely covered by 

seagrass, although the community composition varies with depth, while deeper waters are 

largely unvegetated (Burkholder et al. 2013b).  Western striped trumpeters are largely 

confined to shallow habitats and are concentrated in vegetated areas (Heithaus 2004). 

Tethering Trials 

 I tethered individual western striped trumpeters at least 100m apart within 

shallower (mean water depth ±sd = 2.1±0.4m) and deeper (mean water depth ±sd = 

4.4±0.5m) portions of three separate seagrass banks in our study site.  I chose 100m as a 

conservative distance that would exceed the visual (Strod et al. 2008), electrosensory 

(Haine et al. 2001), and the echolocation range (Wilson et al. 2013) of potential predators 

foraging in a seagrass meadow (e.g., small sharks, large teleosts, dolphins, marine birds); 

thereby minimizing the likelihood of multiple predation events by a single individual 

predator.  I used continuous video surveillance to determine time to attack of tethered 

fish, predator identity, as well as to make post-hoc comparisons of tethered fish behavior.  
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A total of 116 tethered fish were deployed over nine days during the warm period (April 

3- May 8, 2012; mean water temperature = 22.8±0.7°C; n=30 in deeper and n=31 in 

shallower microhabitats), and eight days in the cold period (June 30-August 4, 2012; 

mean water temperature = 15.5±0.6°C; n=27 in deeper and n=28 in shallower 

microhabitats).  It was necessary to place tethered fish in patches of sand or sparse 

seagrass within each microhabitat to prevent tethered fish from becoming entangled in 

seagrass shoots.   Although this method likely increases the rate of predation on tethered 

fish above that which would occur were fish able to hide in dense seagrass, western 

striped trumpeters do occur in sparse seagrass habitats and this method facilitates 

identification of potential predators while providing an index of relative encounter rates 

through time. 

Tethered fish were obtained on the day of trials using squid-baited fish traps 

(34x24x21 cm; 12x13 mm mesh) and measured for fork length (mean ± sd = 

16.7±1.9cm).  Individual fish were tethered to a swivel on the end of a stake using a 30 

cm long leash of monofilament fishing line tied through the membrane behind the lower 

jaw of the fish and out the mouth.  The 30cm leash allowed for natural swimming 

behavior of fish (representative video provided below) while limiting the range of 

movement to within the field of view of the camera.  The length of leash also minimized 

entanglement of tethered fish with structure in the immediate vicinity. The stake was 

positioned 80cm in front of an 8 kg I-beam that was mounted with a GoPro Hero 

(Woodman Labs, http://gopro.com, Nov.20’2012) underwater camera.  Fish were 

tethered between 9am-2:30pm because grazers typically display diurnal feeding patterns 
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(Helfman 1986). Continuous video footage of each trial was obtained for the duration of 

the trial (mean ± sd = 186±26mins). All equipment was collected at the end of each day 

and all remaining fish were released.  All fish that were not preyed upon survived the 

tether trials and were in apparent good health and readily swam away.  Video footage was 

used to determine the identity of attacking predators. In addition, the video footage from 

40 trials where tethered fish survived was reviewed to determine if a potential predator 

was observed within the field of view (n = 40; 10/microhabitat/period).   

 Tethering fish allowed me to limit escape and anti-predator behavior as 

interacting determinants of mortality.  However, to investigate behavioral differences in 

tethered fish that might lead to increase attraction of predators, I determined activity rates 

and vocalizations using video footage of trials.  The activity rate of a fish was measured 

as the average number of seconds spent swimming (caudal fin movement) versus 

stationary (no caudal fin movement) during five different randomly assigned 1-min 

segments of a trial.  I determined the activity rate of 88 different fish; 60 fish that 

survived (30 from the warm period and 30 from the cold period), and 28 fish that were 

preyed upon.  In addition, I recorded whether each fish was heard vocalizing at any time 

during the analysed footage.  Vocalization was also determined for the minute 

immediately prior to the predation event for preyed upon fish.  

A representative video of tethered fish behavior, as well as, behaviour of 

conspecific fishes near the tethered individual are provided as supplemental material 

online at: 
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https://www.dropbox.com/s/8xs68gayq6br1zw/TetherTrialMovie_BesseyHeithaus_June1

7.wmv. 

Belt Transects 

To compare attack rates on tethered fish to abundances of pied cormorants, the 

most abundant air-breathing predator in the study area (Heithaus 2005), I conducted 

visual surveys of cormorant abundance along pre-established belt transects (~3.2km long) 

over the seagrass banks where tether trials were conducted.  I completed eight passes 

over seagrass banks during five different days in the warm period and eight passes over 

seven different days in the cold period.   Although surveys corresponded to the general 

timing of tether trails (n=8 in April and n=8 in July), surveys were not conducted on days 

when tethering occurred to prevent disturbance.  Belt transects were driven at 6-9 km/hr 

in a 5.5 m boat containing at least three observers.  Observers recorded the number and 

GPS location of all cormorants sighted within a 60m sighting belt before the boat passed 

their position.  To minimize sighting bias, surveys were conducted in Beaufort wind 

conditions of 2 or less.  If a cormorant flew away as the boat approached, observers noted 

the landing location to ensure that each individual was counted only once.  The 

combination of slow survey speeds and cormorant diving patterns (long surface intervals 

and short dive durations; Dunphy-Daly et al. 2010) make it unlikely that any individuals 

were missed during surveys.  I calculated cormorant density (birds/km2) as nt /At where nt 

is the number of cormorants sighted on transect t, and At is the area of the transect (km2).     
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Statistical Analysis 

I examined the effects of period (cold/warm), depth (shallower/deeper), their 

interaction, and fish length on the probability of fish survival using a generalized linear 

model with a binomial link function that considered the outcome for each fish to be either 

a success (survived for duration of tether deployment) or failure (death by predation).  

The non-significant interaction term was removed from the model (period x depth, 

p=0.29).  Because transect data passed a Lilliefors Test for normality (D=0.19, p=0.13), I 

used a Students t-Test to compare cormorant densities obtained in the cold period to those 

of the warm period.  I used non-parametric statistics (Mann-Whitney Test) to analyze 

post hoc behavioral data from video footage because these data were not normally 

distributed nor would a transformation enable normalization  (Lilliefors Test for 

normality; swim time: D=0.21, p<0.01; vocalization: D=0.27, p<0.01).  All analyses were 

conducted in R (version 2.14.0; R Development Core Team 2011). 

 

Results 

Of 116 tethered fish, only 3 escaped their tether; one during a cold period trial in 

the deeper microhabitat and two during warm period trials in shallower microhabitats. 

These were excluded from analyses.  The probability that a fish was preyed upon was 

more than three times higher during the warm period (41%, 24 of 59) than the cold period 

(13%, 7 of 54; Table 3.1).  There was no significant difference in the probability that a 

fish was preyed upon between microhabitats [18.5% (5 of 27) in cold/deeper; 7.4% (2 of 

27) in cold/shallower; 40% (12 of 30) in warm/deeper; 41.4% (12 of 29) in  
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Table 3.1: Logistic regression results of parameters affecting the 
probability of western striped trumpeter predation events during tether 
trials. 
Parameter Estimate Std. Error z value Pr(>|z|) 
Intercept -2.19 2.11 -1.03 0.30 
Period 1.54 0.49 3.16 0.002 * 
Depth -0.26 0.45 -0.58 0.56 
Fish Length 0.02 0.12 0.20 0.85 
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warm/shallower], and also did not vary with fish length (Table 3.1). Video surveillance 

allowed for the identification of all predators (Table 3.2, Figure 3.1). The most common 

predator during the cold period was the giant shovelnose ray (n=3), while pied 

cormorants took the most fish (n=18) during the warm period. All attacked fish were 

successfully removed from their tether, with the exception of two unsuccessful attacks by 

blue swimmer crabs (Portunus pelagicus). For fish that were preyed upon, there was no 

significant difference in time until successful attack between cold and warm period trials 

(cold: 90 ± 25 mins, warm: 106 ± 11, Mann-Whitney Test: W=69, p=0.49).  All taxa of 

successful predators also were observed at least once in the field of view of a trial in 

which the tethered fish was not attacked (Table 3.3).  In the two trials where a cormorant 

was seen swimming through the field of view, the cormorants did not appear to have 

observed the tethered fish. This was likewise the case for four sightings of shovelnose 

rays (Glaucostegus typus) and two sightings of nervous sharks (Carcharhinus cautus).  

On three occasions, however, two with a shovelnose ray, and one with a nervous shark, 

the predator was seen entering the field of view at least six times without attacking the 

tethered fish before leaving the field of view without returning.   

Densities of pied cormorants were more than twice as high during the warm 

period (mean±sd = 62.9±24 birds/km2) than the cold period (25.2±9.5) (Figure 3.2A, 

Student t-Test: t=-4.08, p<0.01).   

There was no significant difference in activity rates between fish that were preyed 

upon and those that survived (mean±sd; survived: 39.7 ± 2.7 s/min; preyed upon: 45.0 ±  

3.6, Mann-Whitney Test: W=707, p=0.23).  However, fish were significantly less active 

during the cold period (Figure 3.2B, Mann-Whitney Test: W=681, p=0.03).   
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Table 3.2: Number of western striped trumpeters preyed upon by each 
identified predator during both the cold and warm period. 
Predator Cold Warm 
Pied Cormorant (Phalacrocorax varius) 2 18 
Giant Shovelnose Ray (Glaucostegus typus) 3 3 
Nervous Shark (Carcharhinus cautus) 3 
Blue Swimmer Crab (Portunus pelagicus) 2 

 



59 
 

Figure 3.1: Video screen shots identifying predators of tethered western striped 
trumpeters. 
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Table 3.3: Number of trials where a predator was observed but did not 
successfully attack the tethered fish during 40 analyzed trials 
(10/depth/period).  
Potential Predator Cold Warm 
Pied Cormorant (Phalacrocorax varius) 1 1 
Giant Shovelnose Ray (Glaucostegus typus) 5 1 
Nervous Shark (Carcharhinus cautus) 1 2 
Blue Swimmer Crab (Portunus pelagicus) 3  
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Figure 3.2: A) Cormorant density (birds/km2) per period corresponding with timing of 
tether trials, and B) activity rate (mean time fish spent swimming versus stationary - 
s/min) of tethered fish by period.  Letters represent differences between groups (A: 
Student t-test, t=-4.08, p=0.01; B: Mann-Whitney Test, W=681, p=0.03).
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The probability that a fish vocalized during any of the five randomly analyzed 

minutes was relatively low, with no statistically significant difference in vocalization 

between fish which survived compared to those that were preyed upon  (mean ± sd; 

survived: 0.11 ± 0.02 vocalization occurrence/min, preyed upon: 0.13 ± 0.04, Mann-

Whitney Test: W=865, p=0.80).  In contrast, the probability of vocalizations occurring 

was significantly higher immediately prior to, and during, the attack (Figure 3.3, Mann-

Whitney Test: W=2389, p<0.001).  Vocalizations were recorded for all fish that were 

preyed upon with one exception. 

 

Discussion 

Tether trials revealed that western striped trumpeters can experience high 

encounter rates with predators, but these rates were temporally variable as was the 

relative abundance of different potential predators. During the cold period, fish were 

preyed upon by pied cormorants, giant shovelnose rays and blue swimmer crabs, while in 

the warm period, fish were taken by cormorants, shovelnose rays and nervous sharks.  

Because untethered trumpeters are likely to escape attacks by shovelnose rays and 

swimmer crabs, cormorants and nervous sharks are likely the only predators observed 

during tethering trials that are a threat to striped trumpeters.  Indeed, in nearshore waters 

of Shark Bay, diets of nervous sharks were dominated by teleosts (ca. 70% by volume) 

and terapontid fishes accounted for an estimated 4.6% by volume of the stomach content, 

which was among the highest percentage for any teleost consumed (White et al. 2004).
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Figure 3.3: Vocalization occurrence of western striped trumpeter per minute at random 
intervals compared to at attack.  Letters represent differences between groups based on a 
Mann-Whitney Test (W=2389, p<0.001).
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Pied cormorants primarily consume teleosts (~90% by weight for cormorants; del Hoyo 

et al. 1992). In Queensland, Australia, terapontid fishes accounted for an estimated 5.1% 

of the mass of pied cormorant diets (Blaber and Wassenberg 1989).  Diet studies of pied 

cormorants are not available for Shark Bay. While cormorants were very effective in 

capturing tethered fish once encountered, it is likely that risk to free-swimming fish, 

especially those over heavily vegetated areas would be lower.  Indeed, the evasive 

swimming before the appearance of predators in video fames suggests that fish would 

have had time to seek refuge in dense seagrass before being attacked.  Nervous sharks 

may face similar difficulties during prey capture in heavily vegetated areas. 

The giant shovelnose ray is reported to consume teleosts in the study area but they 

accounted for a small proportion of their diets (~9%, Vaudo and Heithaus 2011).  Little is 

known about ray foraging behavior, and it is possible that rays would be able to catch 

trumpeters at night or as an ambush predator.  Blue swimmer crabs are unlikely to be able 

to take a free-swimming, healthy trumpeter.  During our tether trials, there were two 

unsuccessful attacks by blue swimmer crabs on tethered fish.   

Not all known predators of western striped trumpeters were observed during 

tether trials.  Indo-Pacific bottlenose dolphins (Tursiops aduncus) prey heavily upon 

striped trumpeters (Heithaus and Dill 2002), but none were observed taking tethered fish.  

The lack of dolphin predation could be a consequence of lower densities of dolphins than 

other predators in the study area (e.g. Heithaus and Dill 2002, Heithaus 2005) combined 

with the relatively small number of days where tethering occurred, or perhaps dolphins 

avoided the tethering apparatus.  Therefore, while I have gained insights into potential 

predators of western striped trumpeters and temporal variation in encounter rates with 
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these predators, work remains to be done to investigate the lethality of different predator 

types and to gain further insights into encounter rates over a variety of bottom types (e.g. 

more heavily vegetated areas).   

Differences in encounter rates with predators between the cold and warm periods 

were consistent with temporal variation in cormorant densities on belt transects.  Indeed, 

cormorant densities in the warm period were twice those during the cold period when 

fewer fish were preyed upon by cormorants.  The presence of shovelnose rays year round, 

and nervous sharks taking trumpeters during warm months, is consistent with seasonal 

variation in abundances of these species in the bay (White and Potter 2004, Vaudo and 

Heithaus 2009).  Interestingly, there were no seasonal differences in the length of time 

fish were tethered before being preyed upon.  Since cormorant density was more than two 

times higher during the warm period, it would be reasonable to predict that fish would be 

consumed faster, as well as, more frequently in the warm period.  However, cormorants 

are a visual predator, and perhaps the lack of difference in length of time until predation 

event was driven by seasonal changes in the physical condition of the bay waters.  Shark 

Bay experiences increased winds during the warm season, which results in reduced water 

clarity and increased turbidy (Smith and Atkinson 1983). These physical conditions in 

turn reduce water visibility, increase suspended particulates, and reduce light penetration 

which could reduce predator detection rates of prey (Abrahams and Kattenfeld 1997, 

Abrahams et al. 2007).  Alternatively, it is possible that foraging cormorants were 

disturbed during tether deployments, and durations until removal may reflect the time 

until cormorants returned to the area to forage. 
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Investigations into the role of cormorants in transmitting top-down effects in 

Shark Bay could be informative.  Habitat use by cormorants in the study area appears to 

be influenced by a trade-off between food and the risk of tiger shark predation (Heithaus 

2005, Heithaus et al. 2009).  Predation-sensitive foraging could lead to reduced risk of 

predation for western striped trumpeter in areas dangerous to cormorants during times 

when tiger shark abundance is higher.  Indo-Pacific bottlenose dolphins also exhibit such 

predation-sensitive habitat shifts (Heithaus and Dill 2002, 2006) and resulting 

spatiotemporal variation in risk to western striped trumpeters could lead to differential 

impacts of fish on primary producer communities in space and time. Recent findings that 

predation-sensitive foraging by megagrazers can transmit indirect effects of tiger sharks 

on seagrass (Heithaus et al. 2007, Burkholder et al. 2013b) suggests that investigating the 

shark-piscivore-trumpeter-primary producer trophic pathway could provide insights into 

the dynamics of seagrass ecosystems. 

My study investigated the variation of diurnal predator encounter rates.  However, 

encounter rates may also vary depending on time of day (Helfman 1986, Danilowicz and 

Sale 1999).  Piscivory on coral reefs was hypothesized to be highest during crepuscular 

periods (dawn and dusk) because it is a period during which few fish are evident above 

the reef.  Indeed, tethering trials conducted in the US Virgin Islands revealed that diurnal 

periods had the lowest relative risk of predation on a commonly occurring reef fish 

compared to dusk and nocturnal periods (Danilowicz and Sale 1999).  Further tethering 

trials conducted during crepuscular and noncturnal periods would be required to 

determine if time of day may affect the predator encounter rates of western striped 

trumpeters. 
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My tethering trials provided interesting information on anti-predator behavior of 

western striped trumpeters, specifically the production of alarm calls. Members of the 

Terapontidae family, including western striped trumpeters, are known to make a 

characteristic grunting sound when caught by fishers, but the function of these calls is 

unknown.  Although I heard calls during periods when predators were not present, they 

were not common.  Instead, calls where very frequent just prior to a predatory attack.  

Therefore, while calls likely serve multiple social functions, western striped trumpeters 

appear to produce alarm calls.  Such calls have been suggested for other teleosts.  For 

example, Heyd and Pfieffer (2002) reported vocal behavior in 19 species of catfish and 

suggested it may serve as an important means of warning and defense.  Many fishes from 

the family Sciaenidae (croakers and drums) produce disturbance calls, yet their exact 

function is not known (Ramcharitar et al. 2006).  Alarm calls could be important in 

structuring predator-prey interactions involving trumpeter schooling behavior (Sherman 

1977).  For example, alarm calls by one member of a school are likely to reduce foraging 

efficiency of an attacking predator or group of predators since individual trumpeters 

likely could obtain cover in seagrass before a successful series of attacks are made.  

Therefore, it is possible that small group sizes observed for cormorants (Heithaus 2005) 

and dolphins (Heithaus and Dill 2002) in shallow waters are necessitated by such 

effective anti-predator behavior by striped trumpeters.  For the caller, benefits of calling 

might accrue from a confusion effect as other school members flee.  Further studies 

investigating conspecific responses to calls would provide further insights into the 

importance and implications of alarm calls. 
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Tethering impedes escape behaviour and may increase encounter and attack rates 

relative to untethered prey, therefore, data from experiments like the current study must 

be interpreted cautiously (Peterson and Black 1994).   The methods were designed to 

minimize particular biases of tethering to facilitate comparisons of predator types and 

encounter rates across time.  For example, tethering in sparse seagrass and sandy areas 

minimized entanglement with seagrass and the possibility that fish would never leave 

shelter which may have underestimated predator encounter rates.  Tethering in sandy 

areas, however, may have led to elevated encounter rates because fish were more visible 

to predators than if they were over dense seagrass, which typifies the shallowest portions 

of seagrass banks.  Post-hoc analyses suggests that fish behaviour while tethered – which 

did not involve high-speed swimming or erratic swimming and did not differ between 

individuals that were preyed upon and those that were not – likely did not elevate 

encounter rates with predators.   The proportion of time tethered fish were swimming was 

slightly higher during the warm than the cold period, which could have increased 

detection probabilities by cormorants.   However, video footage revealed both cormorants 

and nervous sharks swimming near tethered and active fish but not observing them 

suggesting that activity levels were not solely responsible for differences in attack rates 

between periods.   

Relating results from tethering to absolute predation risk is difficult (Zimmer-

Faust et al. 1994), as is determining the relationship between attack rates on tethered fish 

to predator density (Kneib and Scheele 2000).  It is generally thought that both absolute 

encounter rates and mortality rates are higher during tethering trials than would occur on 

free-swimming individuals.  This may be the case in this study since the tether inhibited 
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anti-predator behavior over both long (e.g. moving to safer microhabitats, schooling) and 

short (i.e. effective escape during attack) time scales.  Constraining habitat choice is 

especially relevant because western striped trumpeters are typically found in heavily 

vegetated areas (Heithaus 2004) which would reduce detection rates by visual predators 

and provide hiding places during an encounter.  Mismatches between predation rates 

obtained from tethering and true predation rates in free-ranging individuals could also be 

driven by non-additive multi-predator effects (Crowder et al. 1997).  Although 

unexplored in Shark Bay, the production of an alarm call could confuse one predator but 

attract another, or alternatively, increased schooling behaviour may be an effective anti-

predator behaviour in response to some predators but not others (Jablonski 1999). 

Even with the drawbacks of tethering studies, by using the same technique in all 

trials, remotely video recording the entire trial, and relating results to predator abundance 

and diet, my methods provided insight into the predator-prey relationship of an abundant 

facultative grazer in a relatively pristine ecosystem (Aronson and Heck 1995; Aronson et 

al. 2001).  The continuous video footage allowed me to determine the predator identity of 

all successful fish attacks, frequency of potential predators in the field of view, and 

monitor differences in tethered fish activity rates in contrasting depths and periods. I 

learned that cormorants were responsible for the majority of striped trumpeter predation 

events, and that encounter rates varied between cold and warm periods in accordance 

with cormorant density in the study area. I also learned that the types of predators 

threatening western striped trumpeters may change seasonally, and that trumpeters may 

use alarms calls in response to predatory attacks.  The current study has provided the 

essential first step to investigating how predation may affect teleost grazing patterns in 
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Shark Bay.  Further studies are needed to investigate seasonal differences in striped 

trumpeter abundance, habitat use, and grazing rates and to determine if these aspects may 

be influenced by piscivores. 
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SPATIAL AND TEMPORAL VARIATION IN THE ABUNDANCE OF THREE 

DOMINANT TELEOSTS WITHIN A SEAGRASS ECOSYSTEM 
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Abstract 

Spatial and temporal variation in abundance shapes the scale and magnitude at 

which herbivores might impact primary producer communities.  Yet, for herbivorous 

fishes in seagrass ecosystems – especially those that have been relatively unimpacted by 

humans - relatively little is know about patterns of abundance. I used a combination of 

fish trapping and unbaited remote underwater video surveillance (URUVS) to investigate 

spatial and temporal variation in relative abundance of three commonly occurring teleost 

species within the seagrass meadows of Shark Bay, Western Australia. Two species are 

grazers on macroalgae and seagrasses or their epiphytes (Pelates octolineatus and 

Monacanthus chinensis, respectively), while the other is an abundant invertivore 

(Pentapodus vitta).  All target species were observed in both edge and interior 

microhabitats of shallow seagrass banks during both the warm and cold season. Un-

baited remote underwater surveillance revealed there was a greater number of both P. 

octolineatus and P. vitta in interior compared to edge microhabitats during the cold 

season.  In addition, P. octolineatus lengths were significantly greater for fish caught in 

interior microhabitats.  Within shallow seagrass beds, these species have the potential to 

exert considerable impacts on epiphytes (M. chinensis), seagrass and macroalgae (P. 

octolineatus), and invertebrates (P. vitta) that may vary seasonally and spatially.  
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 Introduction 

 Seagrass beds provide both abundant food resources and shelter for a diverse 

array of marine organisms, including economically important finfish (Connolly 1994, 

Heck et al.  2003). Although seagrass ecosystems are among the most productive systems 

in the world, they are also among the most threatened, and are estimated to be 

disappearing at a rate of 110 km2 yr-1 since 1980 (Waycott et al. 2009).  Multiple factors, 

including climate change, habitat degradation, and eutrophication have all contributed to 

seagrass declines (Hughes et al. 2004, Orth et al. 2006), which in turn leads to the 

reduction of crucial habitat for the organisms they support.  The global decline has 

prompted an increased interest in understanding the factors driving the dynamics of 

seagrass communities and their inhabitants. 

 Teleost grazers may play an important role in seagrass community dynamics 

(Armitage and Fourqurean 2006).  However, to understand their role in these 

communities, it is important to gain an understanding of their patterns of habitat use and 

abundance under relatively pristine conditions.  Shark Bay, Western Australia, offers a 

model system in which to investigate the relative abundance of teleost grazers in a 

seagrass system; it is one of the largest intact seagrass ecosystems in the world and 

features a high abundance of at least two facultative herbivore grazers; the western 

striped trumpeter (Pelates octolineatus, previously referred to as P. sexlineatus), and the 

fan-bellied leatherjacket (Monacanthus chinensis) (Travers and Potter 2002, Heithaus 

2004).    

 Multiple techniques are used to investigate fish abundance and distribution, 

including seining, trawling, fish trapping, visual census and underwater video 



78 
 

surveillance (Munro 1974, Jacobsen and Kushlan 1989, Collins 1990, Travers and Potter 

2002, Edgar et al. 2004, Harvey et al. 2007), all of which have their own biases.  For 

example, fish trapping can underestimate fish densities (Jacobsen and Kushlan 1989) and 

result in selective sampling of communities (Ovegard et al. 2011), while baited remote 

underwater video surveillance can attract greater numbers of predatory and scavenging 

species (Harvey 2007) and converting counts to density data can be difficult (Miller and 

Hunte 1987).   Using the same technique in different habitats or times of the year, 

however, facilitates insights into relative abundance and distribution providing the 

particular method employed is not biased by the differences presented by contrasting 

habitats or seasons.  Employing multiple techniques with differing biases concurrently 

can provide even greater insights (Harvey et al. 2012, Nett et al. 2012). 

In this study, I use a combination of fish trapping and un-baited remote 

underwater video surveillance (URUVS) to obtain insight into the factors affecting 

relative abundance and distribution of two common teleost herbivores, and one abundant 

invertivore (that could prey upon invertebrate grazers) in the relatively pristine seagrass 

ecosystem of Shark Bay, Western Australia.  

 

Methods 

Study Site 

This study was conducted in the Eastern Gulf of Shark Bay (25°45’S, 113°44’E), 

Western Australia, in the seagrass banks offshore of Monkey Mia.   Water temperatures 

are generally high during September to May (warm season; >20°C), but can reach as low 

as 12°C during June to August (cold season; <20°C) (Heithaus and Dill 2002).  The 
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shallow seagrass banks can be divided into edge (2.5m - 4.5m depth, and < 2.5m depth 

that are within 75m from water >4.5m depth) and interior (<2.5m depth and >75m from 

deep waters) microhabitats, which consist of seagrasses, algae, and occasional sand 

patches (Heithaus and Dill 2006).  The shallow seagrass banks are bisected by deep water 

channels (6-12 m depth) that consist primarily of sand-bottoms and occasional seagrass 

patches (Burkholder et al. 2013).   

The seagrass beds of the study site are dominated by two slow-growing and large-

bodied species (Amphibolis antartica, Posidonia australis), but fast-growing, small-

bodied species (Cymodocea angustata, Cymodocea serrulata, Halodule uninervis, 

Halophila ovalis, Halophila spinulosa, Syringodium isoetifolium) also occur less 

frequently throughout the understory and along the periphery of the more dominate 

seagrass species (Walker et al. 1988, Burkholder et al. 2013).  The percent cover of 

seagrass in the interior microhabitat is significantly greater than that of the edge 

microhabitat (~90% compared to ~30%, respectively, Chapter II).  The area also hosts an 

abundance of macroalgae; ca. 160 taxa (Kendrick et al. 1990), with red algae (Laurencia 

sp., Haliptilon roseum; Rhodophyta) and brown algae (Dictyota furcellata, and 

Sargassum sp.; Heterokontophyta) commonly occurring in the study area (Chapter II).  

The percent cover of these commonly occurring algae do not differ between edge and 

interior microhabitats. 

A greater abundance of teleost species can be caught in vegetated areas of the study site 

compared to deeper water habitats (Heithaus 2004), with the most abundant species being 

Pelates octolineatus (previously referred to as Pelates sexlineatus).  P. octolineatus 

(Terapontidae) is an omnivore (Paxton et al. 1989), although primary producers 
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constitute the large majority of stomach contents (Chapter II). They are a demersal 

species that reach a maximum length of approximately 28.0 cm (Gomon et al. 1994). M. 

chinensis (Monacanthidae) is also an omnivore which consumes considerable amounts of 

seagrass and algae (Bell et al. 1978).  M. chinensis inhabit estuaries, reefs and weed 

bottoms, and reach a maximum length of approximately 38.0cm (May and Maxwell 

1986).  P. vitta is an abundant bycatch species in recreational fisheries which reaches a 

maximum length of 26.0 cm and has a life span of eight years (Mant et al. 2006).  The 

distribution of these target species within edge and interior microhabitats of the shallow 

seagrass banks has not been previously investigated. 

Field Methods 

I used two methods with different biases - fish trapping and unbaited remote 

underwater video surveillance (URUVS) – to assess spatial and temporal variation in 

relative abundances. I deployed rectangular fish traps (34 x 24 x 21 cm with 1.2 x 1.3 cm 

mesh, with straight 10cm conical entrances that tapered from a 6 cm to 4cm diameter 

opening) concurrently in edge and interior microhabitats of three banks.  Each trap 

contained a bait bag filled with ~100g of whole squid tube.  Fish traps were haphazardly 

dropped within randomly assigned sections (north, middle, and south) of each seagrass 

bank, specifically avoiding sand.  Traps were deployed during daylight hours for 90-180 

minutes (mean ± SD = 131 ±18 min), between 0800-1700. For each trap deployment, I 

recorded the GPS location, depth, water temperature, soak time, identity and quantity of 

fish taxa.  All fish obtained from traps were identified to lowest possible taxonomic 

group and measured for fork length (±0.1cm).  Fish trapping was conducted over the cold 

seasons (June-August) and the warm seasons (February – May) of 2011 and 2012.  The 
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mean water temperatures corresponding to trap deployments were 26.4±1.4°C 

(mean±SD) and 17.6±2.3°C during the warm and cold season, respectively.  The mean 

depths corresponding to trap deployments were 4.25±0.5m (mean±SD) and 2.06±0.5m 

for edge and interior microhabitats, respectively.  For the purposes of analyses I collapsed 

data from multiple years. 

For URUVS, I used GoPro Hero (Woodman Labs, http://gopro.com, 

Nov.20’2012) underwater cameras, mounted to 8kg I-beams.  URUVS were deployed in 

edge and interior microhabitats of seagrass banks during the cold seasons (July to 

August) of 2011 and 2012, and the warm season of 2012 (February to May). The mean 

water temperature corresponding to URUVS deployments was 24.2±1.9°C and 

18.2±1.5°C during the warm and cold seasons, respectively. Cameras sat at a height of 

ca.70cm above the sea floor, which allowed for a standardized view parallel to the sea 

floor but above the seagrass canopy.  Cameras were deployed for 120-240 min, and 

provided continuous video surveillance (mean±SD  = 199 ± 24 min).  Video recordings 

were analyzed by stopping the video every 5 minutes, identifying all fish to lowest 

possible taxonomic group, and quantifying the total number of each species in the screen 

shot. I summed the total number of fish and species observed from these frames thereby 

limiting the chances of counting the same individual multiple times. The first 15 minutes 

of each video was not included in analysis to avoid disturbance from the presence of the 

boat during deployment.  Because water clarity limited visibility, especially during the 

warm season, I limited URUVS data analysis to include only videos that allowed for 

identification of fish up to approximately two meters in front of the camera. As a result, 
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only 14 useable URUVS deployments were obtained during the warm season (five in 

edge and nine in interior microhabitats).  Due to the small sample size for microhabitat 

comparisons, these data are not presented.  Rather, I focus analyses of URUVS data on a 

comparison of relative fish abundance between interior and edge microhabitats during the 

cold season. The mean depths corresponding to camera deployments were 3.71±1.0m 

(mean±SD) and 1.77±0.5m for edge and interior microhabitats, respectively.   

I determined the number of fish caught or sighted per trap or camera deployment 

for the three most abundant species.  Catches, or sightings, per deployment were non-

negative, and right skewed, due to data being zero-inflated. In some cases, treating the 

zeros separately can provide a more efficient estimate of abundance since the sample 

mean is sensitive to the occasional extreme observation (Pennington 1983, Syrjala 2000), 

and theory suggest that the count values and excess zeros may be generated by separate 

processes (Long 1997). To account for this, I examined the effects of season (cold/warm), 

microhabitat (edge/interior), and the interaction of season and microhabitat on catches 

using a zero-inflated Poisson regression; a Poisson distribution with log link function for 

the count model and a binomial distribution with a logit link for predicting excess zeros 

(eg. complete absence of the species in the trap; Martin et al. 2005, Bolker 2008).   I used 

a zero-inflated Poisson regression to analyze URUVS data which included only 

microhabitat as a predictor.  I computed the expected number of fish sightings per 

microhabitat using predictions from the zero-inflated Poisson regression model. 

A linear regression was also used to investigate the effect of season and 

microhabitat on log transformed fish length, and a Tukey’s Test was used to determine 
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multiple pairwise comparisons.  For one species, the normalization of fish length data 

was not possible, in which case I used non-parametric statistics to evaluate any seasonal 

or habitat effects (Kruskal-Wallis Test). All analyses were conducted in R (version 3.0.0; 

R Development Core Team 2011). 

 

Results 

I deployed 82 traps over 12 different days during the cold season; 38 in edge 

microhabitat and 44 in interior microhabitat. I deployed 43 traps over 6 different days in 

the warm season; 21 in edge and 22 in interior microhabitats.  I captured eight species 

during the cold season, nine species during the warm season, and a total of 974 fish 

(Table 4.1).  The three most abundant species in fish traps during both seasons were 

Pelates octolineatus (Teraponidae), Monacanthus chinensis (Monacathidae), and 

Pentapodus vitta (Nemipteridae).   

When fish were present in the trap, there was effect of soak time on catches 

(F=2.80, df=1,98, p=0.10).  There was also no significant relationship of season, 

microhabitat, or their interaction, in either the number of fish caught per trap deployment, 

or the probability of catching at least one fish, for any of the species analyzed (Table 4.2-

4.4).       

A total of 67 usable URUVS were obtained during the cold season over 16 

different days (38 in edge microhabitat, 29 in interior microhabitat).  Soak time of 

cameras did not affect the average number of fish observed per frame grab during  

URUVS deployments (F=0.52, df=1,61, p=0.48).  The probability of sighting at 
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Table 4.1: Composition and number of species caught in traps by 
season and microhabitat. 
  Cold Warm 
Species Edge Interior Edge Interior 
Terapontidae 
Pelates octolineatus 162 149 106 101 
Amniataba caudavittata 1 
Monacanthidae 
Monacanthus chinensis 73 49 97 87 
Unidentified Monacanthus sp. 1 
Nemipteridae 
Pentapodus vitta 36 25 20 37 
Tetraodontidae 
Torquigener pleurogramma 3 
Mullidae 
Upeneus sp.  1 2 
Lethrinidae 
Lethrinus sp. 1 6 7 
Pseudochromidae 
Labracinus lineatus 2 2 
Latidae 
Psammoperca waigiensis 1 3 
Labridae 
Choerodon sp. 1 
Unidentified sp.     1   
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Table 4.2: Zero-inflated model results of parameters affecting P. 
octolineatus catch per trap deployment.   
Parameter Estimate Std. Error z value Pr(>|z|) 

Count Model  
Intercept 1.55 0.78 2.00 0.05 
Season 0.43 0.48 0.91 0.36 
Microhabitat 0.10 0.31 0.33 0.74 
Season*Microhabitat 0.15 0.19 -0.81 0.42 

Zero-Inflated Model 
Intercept 4.25 3.82 -1.11 0.27 
Season 2.72 2.16 1.26 0.21 
Microhabitat 0.82 1.48 0.56 0.58 
Season*Microhabitat 0.64 0.84 -0.77 0.45 
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Table 4.3: Zero-inflated model results of parameters affecting M. 
chinensis catch per trap deployment.   
Parameter Estimate Std. Error z value Pr(>|z|) 

Count Model  
Intercept 2.65 0.89 2.97 < 0.01 * 
Season -0.57 0.61 -0.93 0.35 
Microhabitat -0.09 0.36 -0.26 0.79 
Season*Microhabitat -0.02 0.25 -0.07 0.95 

Zero-Inflated Model 
Intercept -0.76 3.65 -0.21 0.84 
Season -0.46 2.10 -0.22 0.83 
Microhabitat -0.46 1.42 -0.32 0.75 
Season*Microhabitat 0.61 0.82 0.74 0.46 
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Table 4.4: Zero-inflated model results of parameters affecting 
P.vitta catch per trap deployment.   
Parameter Estimate Std. Error z value Pr(>|z|) 

Count Model  
Intercept 0.42 1.91 0.22 0.83 
Season 0.24 1.18 0.20 0.84 
Microhabitat 0.27 0.72 0.37 0.71 
Season*Microhabitat -0.19 0.46 -0.42 0.67 

Zero-Inflated Model 
Intercept 6.46 4.00 1.61 0.11 
Season -3.88 2.36 -1.65 0.10 
Microhabitat -2.95 1.60 -1.84 0.07 
Season*Microhabitat 1.81 0.94 1.93 0.05 
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least one P. octolineatus during a URUVS deployment during the cold season did not 

differ between microhabitats (Table 4.5), but the predicted number of P. octolineatus 

sighted per camera deployment, when present, was greater for interior (8.9) than edge 

(8.1) microhabitats (Table 4.5). No effect of microhabitat was observed for the 

probability of sighting M. chinensis, nor the number sighted (Table 4.6).  Although the 

probability of sighting P. vitta did not differ between microhabitats, the predicted number 

of P. vitta sighted was almost three times greater in interior (9.2) than edge (3.3) 

microhabitats (Table 4.7).  

 The three focal species of fish caught in traps were typically between 5 cm to 25 

cm (Figure 4.1).  Pelates octolineatus lengths caught in interior microhabitats during the 

cold season were significantly greater than those caught in edge microhabitats during 

both seasons, and greater than those caught in interior microhabitats during the warm 

season (Table 4.8, Figure 4.2).  Both M. chinensis and P. vitta were slightly larger during 

the cold season (Table 4.7, Figure 4.3). 
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Table 4.5: Zero-inflated model results for the effect of microhabitat 
on P. octolineatus sightings during URUVS in the cold season.   

Parameter Estimate Std. Error 
z 

value 
Pr(>|z|) 

Count Model  
Intercept 2.96 0.06 52.05 < 0.001 * 
Microhabitat 0.29 0.08 3.39 < 0.001 * 

Zero-Inflated Model 
Intercept 0.32 0.33 0.97 0.33 
Microhabitat 0.32 0.51 0.63 0.53 
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Table 4.6: Zero-inflated model results for the effect of microhabitat 
on M. chinensis sightings during URUVS in the cold season.   
Parameter Estimate Std. Error z value Pr(>|z|) 

Count Model  
Intercept 2.16 0.06 36.96 < 0.001 * 
Microhabitat -0.15 0.10 -1.57 0.12 

Zero-Inflated Model 
Intercept -2.14 0.53 -4.05 < 0.001 * 
Microhabitat 0.80 0.70 1.13 0.26 
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Table 4.7: Zero-inflated model results for the effect of microhabitat 
on P. vitta sightings during URUVS in the cold season.   
Parameter Estimate Std. Error z value Pr(>|z|) 

Count Model  
Intercept 2.64 0.05 49.25 < 0.001 * 
Microhabitat -0.90 0.12 -7.77 < 0.001 * 

Zero-Inflated Model 
Intercept -0.65 0.34 -1.91 0.06 
Microhabitat 0.30 0.51 0.58 0.56 
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Figure 4.1: Size (fork length) distributions of three common teleosts.   
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Table 4.8: ANOVA results for possible predictors of fish length. 
Predictors df SS Mean SS F value p value 

P. octolineatus 
Season 1 0.11 0.11 7.45 < 0.01 * 
Microhabitat 1 0.75 0.75 52.84 < 0.001 * 
Season*Microhabitat 1 0.15 0.15 10.57 < 0.001 * 
Residuals 439 6.23 0.01 

M. chinensis 
Season 1 0.22 0.22 5.02 0.03 * 
Microhabitat 1 0.13 0.13 3.03 0.08 
Season*Microhabitat 1 0.03 0.03 0.63 0.43 
Residuals 294 12.68 0.04 

P. vitta Kruskal-Wallis Test 
Season df=1 χ2=7.39 p<0.01 * 
Microhabitat df=1 χ2=0.63 p=0.43     
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Figure 4.2: Spatial and temporal patterns of fork length of P. octlineatus. 
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Figure 4.3: Seasonal variation in the sizes of M. chinensis and P. vitta. 
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Discussion 

The current study was aimed at investigating spatiotemporal patterns in habitat 

use and relative abundance of three commonly occurring fish species, Pelates 

octolineatus, Monacanthus chinensis, and Pentapodus vitta, within seagrass habiats.  All 

three species were observed in both microhabitats during both seasons, and un-baited 

remote underwater video surveillance (URUVS) revealed there was a greater number of 

both P. octolineatus and P. vitta in interior compared to edge microhabitats during the 

cold season. In addition, P. octolineatus lengths were significantly greater for fish caught 

in interior microhabitats.  Mean fish length of all species was greater during the cold 

season.  Identifying these patterns in relative fish abundance and habitat use is an 

important first step in understanding the scale and magnitude at which they might impact 

primary producer communities or those of small invertebrates.  

The factors shaping the distributions of these teleosts within seagrass beds 

remains poorly understood. Predation-sensitive shifts in habitat are important in shaping 

the spatiotemporal patterns of grazing by large-bodied herbivores (e.g., dugongs, Dugong 

dugon) in the study system (Wirsing et al. 2007).  It is likely that the relative affinity of 

fish for dense seagrass beds (primarily Amphibolis antarctica) found in previous studies 

(Heithaus 2004), where my trap and camera deplopyments were focused, is driven at 

least partially by the risk of predation.  The 3-dimensional structural complexity of 

seagrasses are proposed to impede the sight and movement of active visual predators 

(Heck and Orth 1980) rendering increased protection for prey items such as teleost fish 

(Heck et al. 2003).  Whether smaller-scale patterns are associated with predation risk, 

however, is less clear. I observed a relatively greater number of both P. octolineatus and 
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P. vitta in URUVS deployed in interior microhabitats during the cold season which 

would be consistent with predictions based on predation-sensitive foraging.  Teleost fish 

should be less willing to move out of dense interior seagrass cover during the cold season 

because two major piscivores in the study site, dolphin and cormorants, can forage freely 

in shallow seagrass banks without risk from tiger sharks (Heithuas and Dill 2006).  

The greater number of fish and the larger size of P. octolineatus caught in interior 

microhabitats are also consistent with predictions based on the distribution of food for 

these species.  Primary producers are the primary diet item of P. octolineatus in the study 

area (Chapter II).  Although algae are found in similar abundance in both microhabitats, 

the percent cover of seagrass is greater in interior compared to edge microhabitats.  

Nevertheless, the preferred forage species of seagrass is more abundance in edge 

microhabitats (Burkholder et al. 2012, Chapter II).  The higher percent cover of seagrass 

in interior microhabitats should render increase surface area for invertebrates, thereby 

increasing food abundance for P. vitta.  To test such a hypothesis, knowledge of the 

relative quality and amount of preferred food items for all species in each microhabitat 

would need to be obtained. 

Patterns revealed by URUVS data were not consistent with patterns revealed from 

fish trapping data.  I was unable to detect any seasonal or spatial patterns using my fish 

trapping data.   Potential biases associated with trap data are trap saturation (Sheaves 

1995), or alternatively, escape behavior (Munro 1974).  I was unable to detect a 

relationship between soak time and number of fish caught.  The mean soak time for traps 

was approximately 2 hours (131±18; mean±SD) and the mean number of fish caught per 

trap was 9, but trap deployments containing over 20 fish were obtained during the entire 
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range of soak times.  If traps were to become saturated I would predict total catch to 

asymptote at the carrying capacity of the trap, alternatively, if fish were escaping I would 

predict total catch to decrease with soak time.  I found no evidence of either.  A recent 

study in the United States Virgin Islands used underwater video to record rectangular 

traps similar to those used in the present study, albeit larger, and found that fish spent an 

average of fifteen minutes in traps before escaping (Renchen et al. 2012).  This limits the 

use of fish traps in obtaining absolute abundance estimates, and even relative abundance 

estimates if the probability of encountering fish varies between deployment locations, 

making URUVS data a more useful technique in some studies.  In my current study 

system, useable URUVS data were more difficult to obtain during the warm season 

because of decreased water visibility.   
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CHAPTER V: 

GUILD-DEPENDENT IMPACTS OF MARINE HERBIVORES ON AN INTACT 

SEAGRASS COMMUNITY 
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Abstract 

Trophic downgrading has disrupted top-down processes across ecosystems 

worldwide through a variety of mechanisms. Quantifying these impacts, especially in 

marine ecosystems involving large-bodied species, and predicting potential future 

changes to marine ecosystems has been hampered by a lack of studies in communities 

with intact predator populations and grazer populations from multiple guilds.  I used a 

series of 3 x 3 x 2 nested factorial exclosure – transplant experiments to investigate the 

relative impacts of megagrazers (dugongs and sea turtles) and macrograzers (mainly 

fishes) in structuring an intact seagrass system that includes healthy top predator 

populations (Shark Bay, Western Australia).  Both megagrazers and macrograzers 

affected the establishment and persistence of three species of seagrasses, but impacts 

varied between guilds, across seagrass species, and between seasons.  Fish grazing had 

the largest impact on the establishment and persistence of species with the highest 

nutrient content, but these impacts were primarily observed during summer months.   

Temporal patterns of fish impacts on seagrasses are consistent with predictions based on 

a behavior-mediated trophic cascade initiated by tiger sharks.  These results suggest that 

herbivore impacts on intact seagrass beds likely were seagrass species- and grazer guild-

dependent and likely were shaped by herbivore response to their predators.  To be 

effective, conservation and restoration efforts must incorporate an understanding of these 

impacts, in order to protect, or restore, these crucial habitats from increasing 

anthropogenic pressures. 
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Introduction 

Understanding controls of primary producer community structure and function is 

a central goal of ecology, and is of increasing importance as humans alter ecosystems 

(Duffy 2003).  Although it is widely appreciated that herbivores are capable of 

structuring primary producer communities in terrestrial and aquatic settings (e.g., Ripple 

and Beschta 2003, Burkepile and Hay 2008, Gruner et al. 2008, Griscom et al. 2011), 

there still is debate about the relative importance of top-down versus bottom up control 

(Burkepile and Hay 2006) and the context-dependence of their relative strengths.  

Complicating studies of potential top-down control of primary producer communities, but 

making them of considerable importance, is the trophic downgrading of ecosystems 

through the loss of large bodied grazers and predators (Post and Pederson 2008, Estes et 

al. 2011).  The relative strength of top-down impacts from herbivory (defined as the 

ingestion of plant material, regardless of its assimilation; Cry and Pace 1993) on producer 

communities appears to be affected by a myriad of factors, such as herbivore mortality, 

predator activity, recruitment, availability of allochthonous food sources, physical stress, 

as well as the identity of different herbivores in the community and their interactions 

(Harrold and Reed 1985, Cry and Pace 1993, Kawamata 1998, Vanderklift et al. 2009).  

Lessons from terrestrial systems indicate that although large grazers (for example, 

ungulates) can dramatically reduce plant biomass, the mechanisms driving these impacts 

may be strongly regulated by less obvious grazer guilds (e.g. rodents, MacLean et al 

2011).   

Seagrasses are the foundation of some of the most productive ecosystems in the 

world (Phillips and McRoy, 1980), and provide critical habitat in the form of shelter and 
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foraging sites for a diverse and large concentration of fish and invertebrate species 

(Connolly 1994, Heck et al. 2003). Yet, there still remain considerable gaps in our 

understanding of the importance of top-down processes in regulating the dynamics of 

seagrass ecosystems.  Such an understanding is critical because seagrass meadows are 

among the most threatened ecosystems on earth (Waycott et al. 2009).  

The potential importance of top-down effects in structuring seagrass ecosystems 

has been largely overlooked until recently.  Indeed, it was widely assumed that few 

animals directly consume seagrasses, and of those that do, their ingestion is infrequent 

and inconsequential.  This view, however, has been recently challenged (Heck and 

Valentine 2006).  For example, in places where populations persist, large herbivores 

(“megagrazers”), including sirenians (sea cows) and green turtles (Chelonia mydas), can 

alter species composition, structure and biomass of seagrass communities (Preen 1995a, 

Nakaoka et al. 2002; see Aragones et al. 2006, Heithaus et al. 2012 for reviews).  The 

importance of fish herbivory, however, has been less appreciated, but in some locations, 

fish can remove more than 70% of net aboveground production (Kirsch et al. 2002, 

Tomas et al. 2005).  The relative importance of megagrazers and fishes in structuring 

seagrass ecosystems in areas where they coexist or under relatively undisturbed 

conditions is unknown. This is in part due to the large-scale declines of megagrazers and 

dramatic changes in fish stocks (Pauly et al. 1998, Jackson et al. 2001), as well as 

changes in predator population sizes which may have impacted the intensity and 

spatiotemporal pattern of herbivore grazing and relative abundance, historically (e.g. 

Heithaus et al. 2008).  Elucidating the relative effects of megagrazers and fishes under 

natural population densities and species interactions is important for setting restoration 
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targets, predicting the consequences of declines in these taxa, and gaining insights into 

the context in which herbivory may play a greater or lesser role in ecosystem structure 

and function.     

The seagrass meadows of Shark Bay, Western Australia, offer an unprecedented 

opportunity to investigate the ecological role of multiple grazer guilds on an intact 

seagrass system (Heithaus et al. 2008). One of the largest seagrass systems in the world, 

Shark Bay features substantial population densities of both macro- and megagrazers, 

including herbivorous fish, (Pelates octolineatus; Heithaus 2004), green sea turtles 

(Chelonian mydas; Heithaus et al. 2005), dugongs (Dugong dugon; Preen et al. 1997), 

and their predators (e.g. tiger sharks, Galeocerdo cuvier for megagrazers and Indo-Pacific 

bottlenose dolphins, Tursiops cf aduncus and pied cormorant, Phalacrocorax varius, for 

fishes).   

Here, I used a nested exclosure – transplant experiment to quantify the effects of 

megagrazers and fishes on the establishment and persistence of three species of fast-

growing seagrasses in shallow seagrass beds.  I found that although some megagrazer 

impacts were apparent, fish grazing appears to be a much stronger structuring force in the 

spatial context of the study, possibly due to a behavior-mediated trophic cascade initiated 

by tiger sharks and transmitted through a four-step food web module.  
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Methods 

Study System 

Shark Bay, Western Australia (25°45’S, 113°44’E) is a ca. 13,000 km2 semi-

enclosed subtropical bay featuring ca. 4000km2 of seagrass beds.  Monospecific stands of 

the temperate seagrasses Amphibolis antarctica, and to a lesser extent Posidonia 

australis, dominate the community with several fast-growing species that are primarily 

tropical in origin, including Halophilia ovalis, Halophilia spinulosa, Halodule univervis, 

Syringodium isoetifolium, Cymodocea serrulata and Cymodocea angustata occurring 

patchily throughout the bay (Walker et al. 1988, Burkholder et al. 2013a). Although these 

fast-growing seagrass species are often associated with shallow water habitats, including 

in some parts of Shark Bay (Walker 1989, Masini et al. 2001), within my study site in the 

Eastern Gulf of Shark Bay - which is characterized by a series of shallow (<4.5m) 

seagrass banks that are separated by deeper (6-11m) and mostly sandy bottom channels – 

these fast-growing, tropical species are largely confined to the edges of seagrass banks 

(Burkholder et al. 2013a).  Therefore, I focused my experiments within interior areas of 

seagrass banks to determine whether herbivory might inhibit the establishment and 

persistence of fast-growing seagrass species in these areas.   

I divided herbivores into two guilds, megagrazers and macrograzers, based on the 

body size of herbivore that would be excluded by different cage structures.  Megagrazers 

are all animals excluded by a 20 cm2 opening space, almost exclusively dugongs and sea 

turtles.  Macrograzers are animals that could pass through the large mesh but are 

excluded by 1.2 x 1.3 cm mesh, mainly fishes.  Smaller epifaunal grazers were not 

manipulated in my experiments. 
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Experimental Design 

To determine the relative impacts of megagrazers and macrograzers on the establishment 

and persistence of fast-growing seagrass species, I conducted a series of 3 x 3 x 2 

factorial experiments (Figure 5.1).   My two types of megagrazer treatment plots 

(megagrazers not excluded and megagrazers excluded) contained three types of 

macrograzer treatment subplots (Open – allowed for grazing, cage control (CC) – 

allowed for fish grazing, and Cage (ME) –excluded fish grazing) that were each 

replicated three times within larger plots. Experimental plots were spaced approximately 

10m apart at three replicate sites which were also spaced 10m apart.   

To test 1) whether megagrazers might be repelled by the presence of macrograzer 

cages in the megagrazers not excluded plots or 2) if the presence of macrograzer cages 

attracted herbivorous fishes, one of my experiments featured a Full Control treatment. 

The full control plots were the same size as megagrazer plots but contained only three 

replicates of Open subplots and where located away from any other manipulations.   If 

the presence of macrograzer cages affected megagrazers, I would expect that full control 

subplots would experience greater loss of seagrass than open subplots in the megagrazer 

not excluded plots.  If macrograzer cages attracted grazing fishes, then open plots in 

treatments with any structure should experience higher seagrass losses than open subplots 

in full control plots.   
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Figure 5.1: Diagram of the experimental design showing replicate sites (1-3) within one 
interior seagrass bed, where each site contains megagrazer treatment plots that A) are full  
controls; no exclusions, B) megagrazers no excluded, and C) megagrazers excluded.   
Each plot was 2.6 x 3.0m, which consisted of nine 30cm x 30cm macrograzer treatment  
subplots, spaced 50cm apart. Macrograzers exclusion cage (ME) subplots contain 30 x 30  
x 20cm tall cages made of ~1cm wire mesh.  Cage controls (CC) are the same as  
macrograzer cages but have open ends enabling fish to access the subplot and still  
encounter the presence of a cage, and open subplots (Open) have no cage 
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Figure 5.2: a) Surface view of a megagrazers excluded plot (2.6 x 3.0m) containing nine subplots (30cm x 30cm).  b) Side view of 
transplanted seagrass species under a cage control (CC) within a megagrazers excluded plot.  c) Side view of a cage control 
subplot (CC) in a megagrazers not excluded plot, and d) Side view of an open control (Open) subplot surrounded by a macrograzer 
exclusion cage subplot (ME) and cage controls (CC) within a megagrazers not excluded plot. 
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A megagrazer excluded treatment plot was constructed using a 2.6 x 3.0 m steel 

rebar top of 20 cm2 mesh that rested atop 40cm tall rebar side panels (Figure 5.2a).  

Macrograzer cage exclusion subplots were 30 x 30 x 20 cm tall cages made of heavy steel 

chicken wire of 1.2 x 1.3 cm mesh. Cage controls were identical but only had two sides, 

which allowed macrograzers access to the subplot (Figure 5.2b,c).  Subplot positions 

were randomly assigned within each plot such that each row and column only had one of 

the three treatments.  I transplanted the three most common fast-growing seagrass species 

(Cymodocea angustata, Halodule univervis, and Halophila ovalis) into each subplot 

(Figure 5.2d). Transplants consisted of three seagrass segments per species, and each 

segment contained at least three shoots along a rhizome with an intact apical meristem (n 

= 9-15 total shoots x species-1 x subplot-1).  The seagrass segments of each species were 

buried into the sediment with the middle of the segments overlapping; forming an 

asterisk pattern.  Wire staples (10cm long) secured seagrass at the middle and ends of 

segments. 

Cages were maintained at least every two weeks for the duration of the 

experiments.  Seagrass shoot density was quantified after 24 hours, 5 days, 9 days, 21 

days, bimonthly for two months, and then once a month until completion of the 

experiment.  To determine removal rates of established seagrasses in the absence of 

grazer exclusion cages, upon completion, all exclosure cages were removed and any 

remaining seagrass shoot densities were quantified at time of cage removal, and at 24, 96, 

and 210 hours after cage removal during May 2010 (removal rate experiment).  I 

calculated removal rate using proportions of seagrass remaining relative to the shoot 

density at time of cage removal.  
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Since the abundance and foraging behavior of several herbivores in the system 

may vary seasonally (Heithaus et al. 2007, Wirsing et al. 2007), I also investigated 

whether there might be seasonal variation in herbivore impacts on seagrasses.  In addition 

to a 4-month experiment, I established two three week experiments as described above 

(with the exception of full control plots), during the warm (April) and cold (July) seasons 

of 2011.   

Ultimately, to estimate the difference between grazer guilds, I calculated the 

proportional change of seagrass shoot density from the start to the end of the exclosure 

studies for all treatments based on the type of grazing they allowed (e.g full control plot / 

open subplot + megagrazer not excluded / open subplot = fish + megagrazing).   

Statistical Analysis 

I used a repeated measures nested ANOVA on transformed (log+1) shoot count 

data.  Seagrass counts from each subplot of each treatment plot where collapsed into a 

single mean value.  All three exclosure studies were analyzed in the same manner, 

however, I conducted a separate analysis of Open subplots across full controls and the 

two meagagrazer treatements.  All analyses were conducted in R (2011, free software; 

www.Rproject.com). 

 

Results 

4-Month Exclosure Study 

  All transplanted seagrass species within open subplots declined regardless of 

treatment type (Figure 5.3).  However, seagrass species responded differently to 

megagrazer treatment type when placed in the open (i.e. there was a significant 
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interaction of plot x species; Figure 5.3, Table 5.1).  Both Cymodocea angustata and 

Halodule uninervis declined more rapidly in the full control plots than the megagrazer 

excluded plots, indicating that excluding megagrazers influences rates of seagrass loss. C. 

angustata declined more slowly in the megagrazer excluded plots compared to 

megagrazer not excluded plot, while H. uninervis responded similarily regardless of 

whether megagrazers were excluded.  In contrast, Halophila ovalis responded similarly 

across all plot types, and declined more rapidly than all other species.  At the conclusion 

of the experiment, open subplots in the megagrazer exclosures maintained low densities 

of C. angustata and H. uninervis but these species were removed completely from open 

subplots of both plot types that allowed megagrazer access.   

Across treatments, shoot counts were influenced by a significant interaction of 

duration x plot x subplot x species (Table 5.2).  Regardless of whether megagrazers were 

excluded, cage control and open subplots had similar, but decreasing, shoot counts 

throughout the experiment for Halodule uninervis and Halophila ovalis.  Results were 

less consistent for Cymodocea angustata (Figure 5.3). For C. angustata, results for cage 

controls and macrograzer exclusion cages were more similar to one another and 

maintained higher shoot counts than open subplots.   Interestingly, both cage control 

subplots and open subplots in the two primary megagrazer plot types showed little impact 

of grazing over the first 20-60 days of the experiment for C. angustata and H. uninervis.  

After day 60, H. uninervis began to decline quickly, while H. ovails had declined rapidly 

over the first 1-10 days in all subplots subject to fish grazers.   
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Figure 5.3: Mean seagrass shoot counts for both megagrazer and macrograzer treatments during the 4-month exclosure study 
(Sept.2009-Jan.2010). Error bars are ± SE. 
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Table 5.1: Repeated measures nested ANOVA results for subplot Open of the 4-month 
(September 2009 – January 2010) exclosure study where three different tropical seagrass 
species were transplanted into different grazer treatment plots and monitored during the 
warm season.  Analysis was conducted to determine differences in open subplots where 
plot levels are a) full control; no exclusions, b) megagrazers not excluded, and c) 
megagrazers excluded. 
Predictors Df Sum Sq Mean Sq F value Pr(>F) 
Plot 2 7.020 3.510 5.945 0.003 * 
Species 2 73.200 36.598 61.987 < 0.001 * 
Duration:Species 2 5.500 2.750 4.658 0.010 * 
Plot:Species 4 9.280 2.320 3.930 0.004 * 
Duration:Plot:Species 4 4.710 1.177 1.994 0.094 
Residuals 545 321.780 0.590   
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There were significant differences among species in their response to macrograzer 

exclusion (Figure 5.3, Tables 5.1 and 5.2). Both H. uninervis and H. ovalis had shoot 

counts that remained constant or increased over the 4-month experiment when fish 

grazers were excluded.  C. angustata in macrograzer exclosures, however, declined in 

shoot count although not as much as it did in open plots.  

Exclosure Removal Study 

 All species of seagrass exposed to grazing after 8 months of release from 

herbivory declined significantly once macrograzer cages were removed, but the rates of 

removal differed among species (Figure 5.4, F2,130=13.557, p<0.001).  Halophila ovalis 

and Halodule univervis shoots declined significantly faster than did Cymodocea 

angustata  (Tukey Multiple Comparison Test; p=0.005, and p<0.001, respectively), and 

reached lower remaining densities.  Indeed, H. ovalis and H. uninervis had more than 

40% of their shoots removed within 24 hours of being exposed to herbivores and dropped 

to an average of less than 40% and 20% of shoots remaining, respectively, within 4 days 

after which time removal rates became relatively minimal.  In contrast, C. angustata had 

less than 25% of its shoots removed in the first 24 hours and, on average, more than 50% 

of original shoots were left after nine days. 

 

  



 

117 
 

 

Table 5.2: Repeated measures nested ANOVA results for the 4-month exclosure study 
where three different seagrass species were transplanted into different grazer treatment 
plots and monitored during the warm season (September 2009 – January 2010).  Plot 
levels are megagrazers not excluded and megagrazers excluded, and subplot levels are 
macrograzers not excluded (Open), cage control (CC), and cages (ME – excludes fish 
grazing). 
Predictors Df Sum Sq Mean Sq F value Pr(>F) 
Plot 1 1.140 1.139 2.084 0.149 
Species 2 98.980 49.488 90.558 < 0.001 * 
Duration:Species 2 0.930 0.466 0.853 0.426 
Plot:Species 2 4.010 2.005 3.669 0.026 * 
Duration:Plot:Species 2 3.290 1.647 3.014 0.0495 * 
Duration:Plot:Species:Subplot 8 48.290 6.036 11.045 < 0.001 * 
Residuals 1064 581.450 0.546   
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Figure 5.4: Removal rates of seagrasses exposed to grazing after four months of macrograzer exclusion.  Error bars are ± SE. 
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Short-term Studies – Seasonal variation in grazer impacts 

 All factors interacted to affect shoot counts in the short-term experiments (Table 

5.3, Figures 5.5 and 5. 6).  During the warm season, cage controls and open plots were 

similar for all species and between megagrazer plot types (Figure 5.5).   Halophila ovalis 

and Halodule uninervis exposed to fish grazing declined rapidly and were almost totally 

removed within 20 days, while Cymodocea angustata declined to ca. 30% of original 

shoot counts when exposed to fish grazing (Figure 5.5).  All three species showed little 

change in counts over the course of the experiment when protected from macrograzers.  

In contrast, during the cold season, there was relatively little change in shoot counts of C. 

angustata and H. uninervis over the course of the experiment regardless of subplot type 

(including those exposed to macrograzers; Figure 5.6).  However, shoot counts of H. 

ovalis declined rapidly after 10 days in both subplot types exposed to fish grazing, but not 

within macrograzer exclosure cages. 
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Table 5.3: Repeated measures nested ANOVA results for the short-term exclosure study where three different tropical seagrass 
species were transplanted into different grazer treatment plots and monitored over 18 days during both the warm (April 2011) and 
cold (July 2011) season.  Plot levels are megagrazers not excluded and megagrazers excluded, and subplot levels are macrograzers 
excluded (Open), cage control, (CC), and cages (ME – excludes fish grazing). 
Predictors Df Sum Sq Mean Sq F value Pr(>F) 
Plot 1 0.730 0.729 2.613 0.106 
Season 1 244.330 244.332 875.766 < 0.001 * 
Species 2 132.650 66.323 237.724 < 0.001 * 
Duration:Season 1 21.200 21.196 75.975 < 0.001 * 
Plot:Season 1 1.240 1.242 4.452 0.035 * 
Duration:Species 2 17.760 8.881 31.831 < 0.001 * 
Plot:Species 2 0.980 0.490 1.755 0.173 
Season:Species 2 55.010 27.505 98.587 < 0.001 * 
Duration:Plot:Season 1 0.060 0.059 0.210 0.647 
Duration:Plot:Species 2 0.020 0.012 0.044 0.957 
Duration:Season:Species 2 5.430 2.717 9.740 < 0.001 * 
Plot:Season:Species 2 1.590 0.795 2.850 0.058 
Duration:Plot:Season:Subplot 4 56.290 14.073 50.442 < 0.001 * 
Duration:Plot:Species:Subplot 8 57.020 7.128 25.549 < 0.001 * 
Duration:Plot:Season:Species 2 0.070 0.036 0.130 0.878 
Duration:Plot:Season:Species:Subplot 8 9.930 1.241 4.448 < 0.001 * 
Residuals 1323 369.110 0.279     
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Figure 5.5: Mean seagrass shoot counts for both megagrazer and macrograzer treatments during the short-term exclosure study in 
the warm season (April 2011). Error bars are ± SE. 



 

122 
 

Figure 5.6: Mean seagrass shoot counts for both megagrazer and macrograzer treatments during the short-term exclosure study in 
the cold season (July 2011). Error bars are ± SE. 



 

123 
 

Herbivore Impacts by Grazer Guild 

 The proportional change in seagrass shoots attributed to each grazer guild was 

variable between seagrass species and season (Figure 5.7). During the 4-month exclosure 

study, the proportional decline in C. angustata could be predominately attributed to 

megagrazing, however, this species also declined in the absence of all grazing (Figure 

5.7a).  In contrast, both H. uninervis and H. ovalis increased by ~1.3 times in the absence 

of grazing, and when subjected to grazing, fish accounted for the majority of seagrass 

loss for both species.  During the short-term exclosure study in the warm season, fish 

grazing accounted for the majority of seagrass loss of all species, with H. uninervis and 

H. ovalis declining more than C. angustata (Figure 5.7b). Comparatively, during the cold 

season, grazing had no clear effects on either C. angustata or H. uninervis, but did show 

some evidence for an effect of fish grazing on H. ovalis (Figure 5.7c). 

Discussion 

The trophic downgrading of ecosystems has led to trophic cascades across a wide 

range of ecosystems (e.g. Estes et al. 2011).  Our understanding of the mechanisms 

through which such cascades may (or may not) occur in large scale natural ecosystems, 

especially those including large-bodied taxa has, however, been hampered by a lack of 

experimental studies in relatively pristine ecosystems (e.g. Heithaus et al. 2008). My 

study provides the first data on the relative impacts of megagrazers and fish grazers in a 

seagrass ecosystem with intact populations of both grazer guilds.  In addition, the 

presence of relatively un-impacted top predator populations makes this study an  

important ecological baseline for understanding herbivore impacts in seagrass 

ecosystems, and how they might be structured by behavior-mediated trophic cascades.   
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Figure 5.7: Proportional change of seagrass shoot counts during a) the 4-month exclosure 

study ending in the warm season, b) the short-term exclosure study in the warm season, 

and c) the short-term exclosure study in the cold season.   Error bars are ± SE.  Bars with 

the same letters are not significantly different based on post-hoc Tukey’s test. 
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In one of the world’s last remaining relatively pristine seagrass ecosystems, I used 

experimental manipulations to demonstrate that grazers play a critical role in structuring 

seagrass communities, but impacts are guild-dependent and appear be structured by the 

presence of top predators.   Thus, my study suggests that incorporating an understanding 

of food web topology (e.g. Wollrab et al. 2012) and behavioral interactions (risk effects) 

is important for predicting ecosystem responses to top predator removal. 

Seagrasses were originally thought to be subject to low levels of herbivory due to 

their poor nutrient value (owing to high C/N ratios) (Duarte 1990), low digestibility, and 

overharvesting of large marine herbivores (Thayer et al. 1984).   Where grazing by fish 

had been measured, it was reported that carbon removal to the overall system was low 

compared to the high daily production of seagrass (Thayer et al. 1984).  More recently, 

however, these ideas have been challenged, suggesting that grazing in seagrass systems 

has been underestimated due to methodological issues and changes in the abundances of 

both herbivores and predators in seagrass ecosystems (Valentine and Duffy 2006).  

Because fish have food-processing mechanisms that optimize energetic supplies from 

nutrient poor food sources (Ferreira et al. 1998), they are capable of being important 

herbivores in seagrass ecosystems. Indeed, Heck and Valentine (2006) suggested that 

future studies of herbivory in seagrass dominated ecosystems should focus on 

understanding foraging strategies of teleost herbivores.  In some locations fish can 

consume a considerable biomass of seagrass (e.g. 80% in the Florida Keys: Kirsch et al. 

2002, and 73% off the northeast coast of Spain: Tomas et al. 2005), although this result is 

not universal (White et al. 2011), suggesting both a temporal and spatial variation in 

seagrass grazing by fish (Kirsch et al. 2002, White et al. 2011).   White et al. (2011) 
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found that fish grazing in a temperate seagrass system did not influence the growth and 

structure of seagrass since biomass removal was small, yet, studies from tropical regions 

indicate that fish grazing can be a predominate factor.  Although these studies indicate 

grazing in seagrass systems may be more pronounced in tropical versus temperate 

seagrass systems, a recent review of 613 marine exclusion experiments found no 

influence of latitude or mean annual water temperatures (Poore et al. 2012).  Rather, they 

found that grazing impacts on plant abundance was better predicted by producer traits.  

Combined, these studies support the need to further examine fish grazing, and it’s 

variation in contrasting systems, since this trophic pathway may possibly influence the 

structure of globally declining seagrass systems.  As Shark Bay is one of the largest intact 

seagrass systems in the world, with substantial populations of both mega- and 

macrograzers, and their predators, it provides a model system to investigate not only the 

impacts of macrograzers such as fish, but also that of megagrazers, and how the 

importance of these grazer guilds may differ.  

My experiments indicate that grazing by both megagrazers (dugongs and turtles) and 

macrograzer (fish) guilds limits the establishment of fast-growing species on shallow 

seagrass banks.  During the 4-month study and short-term study in the warm season, both 

H. uninervis and H. ovalis were eliminated or virtually eliminated from all plots that were 

exposed to fish grazers.  In contrast, both species became established and even grew 

when protected from fish grazing during the 4-month study.  Seagrass declines in cage 

control subplots were similar to those in open subplots suggesting there was little effect 

from the presence of the cage structure during the warm season. Furthermore, my 

observations of open subplots confirmed the presence of bite marks in seagrass shoots, 
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and rhizomes in the sediment, suggesting that herbivory, rather than tidal movement or 

current had displaced the transplanted seagrasses.  Nevertheless, the presence of cages 

provided structure in a system with relatively little structure, which potentially could be 

used by herbivore predators as a safe site.  Indeed, I observed many flathead fish in the 

cages on several visits, and in one case, even a small shark.  It is possible that open 

subplots were grazed at a slightly lower rate in the cold season because of the potential 

presence of more inconspicuous herbivore predators.  Although fish grazing accounted 

for the majority of seagrass loss for both H. uninervis and H. ovalis during the warm 

season, megagrazing accounted for the majority of seagrass loss for C. angustata during 

the 4-month exclosure study.  Indeed, all seagrass species in open subplots with 

megagrazer access were eliminated.  Comparatively, seagrass shoots in open subplots 

under megagrazer exclosures maintained low densities.  Nevertheless, these results 

should be interpreted cautiously as there was no obvious effect on H. ovalis, or H. 

uninervis, and C. angustata declined even in the absence of all grazers. It is possible that 

physical features of the banks may limit the persistence of C. angustata more than 

herbivory, although, a similar study conducted in the study area found this species did 

become established in the absence of megagrazers (Burkholder et al. 2013b).  H. ovalis 

was the preferred species by fish grazers, followed by H. uninervis.  Burkholder et al. 

(2012) also found these particular seagrass species to be the most highly grazed.  For 

these preferred forage species, my removal studies indicate, that even if they were to 

become established, fish grazing has the capacity to eliminate them from shallow 

seagrass banks.  This is consistent with observations that tropical seagrass species are 

rare, and ephemeral, on shallow seagrass banks in the study area (Burkholder et al. 
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2013a).  Interestingly, during the cold season, the impacts of grazing were greatly 

reduced, yet fish grazers maintained a preference for H. ovalis.   

Grazing impacts appear to vary temporally which raises the possibility that grazer 

impacts – at least by fishes – may be structured by impacts of predators.  Predation-

sensitive foraging of herbivores within the Shark Bay study site would predict fish 

grazers to have greater impacts on forage species during the warm season.  Like 

megagrazers, dolphins (a major piscivore in the study area) largely abandon the interior 

portions of banks during the warm months to minimize the risk of predation from tiger 

sharks (Heithaus and Dill 2006), thus allowing herbivorous fishes to forage more freely.  

As a result, fish should have larger impacts on fast-growing seagrass species than 

megagrazers during warm months.  In contrast, during the cold months, fish predators can 

forage in interior seagrass banks with reduced risk from tiger shark predators.  Although 

fish are still present over dense A. antarctica beds within interior habitats at this time 

(Heithaus 2004), fish should be less willing to move out of the protective cover of A. 

antarctica to forage in open habitats.  I would not expect considerable megagrazer 

impacts during the winter because 1) dugong abundances are low during the lowest-risk 

times of the year and 2) green turtles greatly reduce their foraging rates as water 

temperatures decline (Thomson et al. unpublished results). My results are consistent with 

the predictions of a behavior-mediated trophic cascade, where increased impacts on all 

three fast-growing species were observed during the warm season. It is important to 

mention, however, that metabolic demands of fishes are also influenced by body mass, 

temperature and activity levels, which may also influence grazing impacts (Killen et al. 

2010). Nevertheless, the idea that top-down processes and trophic cascades may be 
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important regulatory processes has been the focus of extensive studies (Estes et al. 2004) 

and is well documented on relatively small spatial scales (Schmitz et al. 2000, 2004), yet 

particular examples still cause considerable debate (Kauffman et al. 2010).   

Although previous studies have demonstrated the potential impacts of particular 

marine herbivore guilds on seagrass in isolation (Preen 1995, Kirsch et al. 2002, Moran 

and Bjorndal 2005, Tomas et al. 2005), our understanding of the relative importance of 

different guilds has been hampered by lack of studies in intact ecosystems where multiple 

herbivore guilds act simultaneously (Valentine and Heck 2006).  The importance of 

herbivory could be attenuated or amplified if grazers are overexploited or are rebounding 

or released from risk.  A recent terrestrial study conducted in South Africa found both 

mega- and mesoherbivores in combination could impact forest regeneration (Lagendijk et 

al. 2011).  Some marine studies have considered the differential effects of various grazer 

guilds, but their primary focus is invertebrate mesograzers and fish in algal systems, or in 

one instance a simulated eelgrass environment (Hay and Taylor 1985, Duffy et al. 2003, 

Fox 2004, Matthiessen et al. 2007, Bruno et al. 2008, Vanderklift et al. 2009, Ceccarelli 

et al. 2011).  My experiments provide in situ experimental data in an intact seagrass 

system enabling the investigation of guild-dependent differences that incorporate the 

potential effects of both mega- and macrograzers simultaneously, and indicate that guild 

dependent effects are both forage species, and herbivore species specific. 

Understanding the role of herbivory and how different herbivore guilds, that have 

been subject to different histories of exploitation, may impact primary producer 

communities is becoming increasingly important in order to protect, or restore, crucial 

habitats from increasing anthropogenic pressures (Ceccarelli et al. 2011).   Among these 
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threatened habitats are seagrasses, which provide an estimated $1.9 trillion per year in 

ecosystem services in the form of nutrient cycling, enhancement of coral reef fish 

production, habitat for thousands of organisms including several endangered species, in 

addition to being a globally significant carbon source (Waycott et al. 2009, Fourqurean et 

al. 2012).  To date, the importance of multiple grazer guilds in intact systems has 

remained elusive.  However, my experiments, have provided some of the first in situ data 

on the relative importance of multiple herbivore guilds in structuring an intact seagrass 

community, and provide a foundation for elucidating the ecological role of diverse 

herbivores on the dynamics of seagrass beds in general.   

More generally, this study suggests that behavior-mediated trophic cascades 

initiated by highly mobile top predators may be important in structuring primary producer 

communities. By extension, the overexploitation of top predators has a high potential to 

disrupt ecosystems through multiple mechanisms, and conservation strategies should not 

only take into account the potential for behavior-mediated trophic cascades but of 

restoring top predator populations to densities necessary to preserve such interactions. 
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Globally, marine grazers are widely recognized as being able to exert 

considerable top-down impacts on primary producers, but the relative strength of top-

down control varies markedly among grazer types and primary producer taxa (Poore et 

al. 2012).   Meta-analyses of experimental manipulations in seagrass ecosystems have 

suggested that teleost grazer impacts are small relative to other taxa (Poore et al. 2012), 

but these analyses are based on few studies.  In fact, some studies indicate that teleost 

grazers can consume substantial proportions of seagrass production (Kirsch et al. 2002; 

Tomas et al. 2005), and may control the abundance and species composition of 

seagrasses near patch reefs (Armitage and Fourqurean 2006).  Teleost impacts on primary 

producer communities of reefs can be affected by a myriad of factors, including the 

identity of different herbivores in the community and their interactions, food availability, 

predation risk, and recruitment (Harrold and Reed 1985, Cry and Pace 1993, Hugie and 

Dill 1994, Vanderklift et al. 2009).  This is likely to also be true in seagrass ecosystems.  

Complicating matters in these ecosystems, however, is the need to understand the relative 

importance of multiple grazer guilds, such as megagrazers and fishes, in areas where 

grazer species have not been dramatically reduced (Pauly et al. 1998, Jackson et al. 

2001).   

I used the relatively pristine seagrass ecosystem of Shark Bay, Western Australia 

as a model system to understand the ecological role of an abundant herbivorous teleost 

(Pelates octolineatus) and how this role might be affected by top-down processes.  In 

Chapter II, I investigated spatial and temporal variation in the diets of Pelates 

octolineatus using both stomach contents and stable isotope analysis and documented 

spatial variation in potential food sources.  Seagrass and macroalgae made up the 
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majority of stomach contents of P. octolineatus, which were consumed in similar 

proportions.  I did not find any differences in the overall amount of food consumed (gut 

content to body weight ratio) by fish caught in edge or interior seagrass microhabitats, 

although I did find that fish caught in edge microhabitats had a higher proportion of 

seagrass relative to algae in their stomachs.  Fast-growing and small-bodied seagrass 

species are the preferred forage item of these teleost fish (Burkholder et al. 2012, Chapter 

V), which are more abundant in edge microhabitats. (Burkholder et al. 2013)  There was 

some indication that larger fish may consume a greater proportion of seagrasses 

compared to algae than smaller fish.  Isotopic values of P. octolineatus suggested that 

algae may contribute a larger portion of assimilated food across both microhabitats than 

would be inferred by gut contents.  Algae, therefore, may be a more important food 

source than suggested by standing stocks and stomach contents, but ingestion rates and 

impacts of P. octolineatus on seagrasses may be underestimated by stable isotopic 

approaches. 

Since predation risk can structure the spatial and temporal patterns and strength of 

herbivore impacts on primary producer communities, in Chapter III, I used tethering trials 

to identify possible predators of P. octolineatus and gain insights into predator encounter 

rates.  I found that fish were more likely to be removed during the warm season and most 

were taken by pied cormorants (Phalacrocorax varius).  This, combined with data from 

belt transects, suggests that risk from pied cormorants during my study likely was higher 

during the warm season, which contrasts with seasonal patterns of cormorant abundance 

documented previously (Heithaus 2005). Unfortunately, it remains unclear how 

commonly pied cormorants prey upon free-swimming P. octolineatus, and the overall 
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risk from cormorants relative to other known trumpeter predators, like IndoPacific 

bottlenose dolphins (Tursiops aduncus) not observed taking tethered fish during the 

study. 

Patterns of habitat use and abundance are central to understanding the potential 

impacts of herbivores on primary producer communities.  In Chapter IV, I investigated 

the relative abundance of P. octolineatus, and another opportunistic herbivore 

(Monachanthus chinensis) in dense seagrass habitats found in the middle of banks 

(“interior” microhabitats) and along bank edges.  Continuous underwater video 

surveillance data found that the number of P. octolineatus was relatively greater in 

interior areas of seagrass banks during the cold season, and that the mean length of P. 

octolineatus was greater for fish caught in interior compared to edge microhabitats. 

Dense seagrass likely provides a refuge from predators through reduced detectability and 

hiding places.  In addition, dense seagrass sites may even provide increased food sources 

through increased surface area for epiphytic algae and invertebrates, which was not 

specifically investigated during my current studies.    

Predictions regarding potential future changes to marine ecosystems in the face of 

overfishing and other stressors could be enhanced by gaining insights into the dynamics 

of communities with intact predator populations and grazer populations from multiple 

guilds.  In chapter V, I used exclosure – transplant experiments to investigate the relative 

impacts of megagrazers (dugongs and sea turtles) and macrograzers (mainly fishes) in 

structuring an intact seagrass system.  Results from these experiments suggested that both 

megagrazers and teleost fish grazing affected the establishment and persistence of three 

species of seagrasses.  However, fish grazing had the largest impacts on seagrass species 
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with the highest nutrient content, but primarily during warm months.   These findings 

were consistent with predictions based on a behavior-mediated trophic cascade initiated 

by tiger sharks and transmitted through teleost grazers and their predators.  Since both 

megagrazers and dolphins largely abandon the interior portions of banks during the warm 

months to minimize the risk of predation from tiger sharks (Heithaus and Dill 2006), this 

may allow herbivorous fishes to forage more freely.  As a result, fish grazers should have 

larger impacts on fast-growing seagrasses than megagrazers during warm months.  In 

contrast, during the cold months, fish are still present in the dense seagrass beds of the 

interior habitats but may not forage as freely in the more open areas that characterize 

locations on banks where fast-growing species are found and where exclosures were 

located.  This is because teleost predators can forage more readily in interior seagrass 

banks because of reduced risk from tiger shark predators.    

Overall, my studies provided critical first steps towards understanding the 

potential effects of abundant teleost grazers on seagrass ecosystems.  Furthermore, I 

provided evidence that behavior-mediated trophic cascades involving teleost grazers 

likely are important in structuring communities, but food web structure may be important 

for determining the strength of these cascades.  For pathways involving teleost grazers in 

seagrass ecosystems, further studies are required to obtain an understanding of food 

selection and gain a functional understanding of habitat use (e.g. effects of food 

abundance and quality, predation risk, reproductive considerations).  In addition, specific 

studies investigating drivers of population regulation (e.g. recruitment limitation, food 

limitation, predation regulation) would also be beneficial.   
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