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ABSTRACT OF THE DISSERTATION 

MAGNETIC NANOPARTICLE-BASED TARGETED DRUG DELIVERY FOR 

TREATMENT OF NEURO-AIDS AND DRUG ADDICTION 

by 

Vidya Sagar 

Florida International University, 2013 

Miami, Florida 

Professor Madhavan Nair, Major Professor 

Brain is one of the safe sanctuaries for HIV and, in turn, continuously 

supplies active viruses to the periphery. Additionally, HIV infection in brain results 

in several mild-to-severe neuro-immunological complications termed neuroAIDS. 

One-tenth of HIV-infected population is addicted to recreational drugs such as 

opiates, alcohol, nicotine, marijuana, etc. which share common target-areas in 

the brain with HIV. Interestingly, intensity of neuropathogenesis is remarkably 

enhanced due to exposure of recreational drugs during HIV infection. Current 

treatments to alleviate either the individual or synergistic effects of abusive drugs 

and HIV on neuronal modulations are less effective at CNS level, basically due to 

impermeability of therapeutic molecules across blood-brain barrier (BBB).    

Despite exciting advancement  of nanotechnology in drug delivery, 

existing nanovehicles such as dendrimers, polymers, micelles, etc. suffer from 

the lack of adequate BBB penetrability before the drugs are engulfed by the 

reticuloendothelial system cells as well as the uncertainty that if and when the 

nanocarrier reaches the brain. Therefore, in order to develop a fast, target-
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specific, safe, and effective approach for brain delivery of anti-addiction, anti-viral 

and neuroprotective drugs, we exploited the potential of magnetic nanoparticles 

(MNPs) which, in recent years, has attracted significant importance in biomedical 

applications. We hypothesize that under the influence of external (non-invasive) 

magnetic force, MNPs can deliver these drugs across BBB in most effective 

manner. Accordingly, in this dissertation, I delineated the pharmacokinetics and 

dynamics of MNPs bound anti-opioid, anti-HIV and neuroprotective drugs for 

delivery in brain. I have developed a liposome-based novel magnetized 

nanovehicle which, under the influence of external magnetic forces, can 

transmigrate and effectively deliver drugs across BBB without compromising its 

integrity. It is expected that the developed nanoformulations may be of high 

therapeutic significance for neuroAIDS and for drug addiction as well.  
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1. Introduction   

1.1. AIDS epidemiology:  

Acquired immune deficiency syndrome (AIDS) is one of the most sought 

infectious diseases of the modern world (Castro-Nallar et al., 2012). It ranks 

among the top four cause of death throughout the globe - particularly in Africa 

and women of reproductive age group it is the number one cause of death 

(MMWR, 2001; UNAIDS, 2012a). Since it was discovered in the early 1980s that 

HIV is the causative agent of AIDS, about 65 million people throughout the world 

have been estimated to be infected (ILO, 2012). The Sub-Saharan African region 

remains the epicenter of this infection; however, certain other parts of the globe 

such as the Caribbean Island, America, Eastern Europe and Central Asia also 

fall in high alarm zones where HIV prevalence in adults are equal to or more than 

0.5% (UNAIDS, 2010). Almost 34.2 million people are currently living with this 

global pandemic where women account for half of the population (UNESCO, 

2012; UNAIDS, 2012a). People from all age group including children and young 

adolescent are affected by this pandemic. While Children (age 0-15) alone 

constituted 10% of total people living with HIV in the year 2010 (UNAIDS, 2010), 

42% of all new adult (15+ age) infections were found in the young aged 15-24 

(UNAIDS, 2012b).       

Human immunodeficiency virus (HIV) is transmitted mainly through sexual 

contact, contaminated injection equipment, and/or mother-to-child transmission. 

Sexual contact remains the primary source of transmissions and accounts for 
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almost 80% of the HIV infections throughout the globe (Skar et al., 2011). 

Mother-to-child transmission resulted in the birth of approximately 370, 000 HIV 

positive children in 2009; nevertheless, this is a declining trend as compare with 

2001 when nearly 500, 000 cases were estimated (UNAIDS, 2010). The 

transmission of HIV as a result of contaminated injection continue to be the 

matter of concern. Predominantly among intravenous drug abusers, sharing of 

injection equipment is a common practice and thus, they are extremely 

vulnerable to explosive outbreaks of HIV infections as have been seen in many 

regions like Finland, Sweden, Thailand, and former Soviet Union. Globally, 

almost 10% of HIV infections are related to injection drug use which accounts for 

approximately one fifth of all injection drug users (UNAIDS/PCB, 2009; Skar et 

al., 2011). This proportion is more alarming in the United States, and Eastern 

Europe and Central Asia where, respectively, one third and one fourth of injection 

drug users are HIV-infected (UNAIDS, 2010; UNODC, 2012). Similarly, higher 

proportions of HIV infected people among injection drug users have been 

estimated in places like Nairobi (36%), Zanzibar (27%), Myanmar (38%), 

Thailand ( 30%-50%), Vietnam    (32% -58%), Indonesia (50%), Russian 

Federation (37%) and, Ukraine (39%-50%-Kryvyi Rih-88%)( UNAIDS, 2010).         

Implementation of antiretroviral therapies (ART) has come up as respite 

for AIDS patients. Nearly 21% decline in the AIDS-related death rate has been 

reported between the years 1997-2010 (The World Bank, 2012; UNAIDS, 2012). 

Nonetheless, HIV/AIDS still remains unstoppable and incurable. Alarmingly, 
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almost 7000 new individuals were infected every day throughout the globe in 

2010 (Douce et al., 2012) and nearly 9 million people living with HIV lack access 

of any of treatment (WHO, 2012). Additionally, quite unrealistically, uninterrupted 

treatment for several years has been theorized for complete viral eradication with 

existing ART (Perelson et al., 1997; Chun et al., 2007). Also, their therapeutic 

values have been shown to of small benefit for associated complications such as 

illness of central nervous system (CNS) (Vivithanaporn et al., 2011). Most 

importantly, limited or zero reachability of most antiretroviral drugs to viral tissue 

sanctuaries such as brain hampers the viral clearance and it is believed as the 

main reason of resurgence of HIV from below detection level to outbreak on 

interruption of the treatment (Varatharajan and Thomas., 2009; Douce et al., 

2012). These, in association with epidemiological data, indicate a less promising 

trend towards faster eradication of HIV infections.  Thus, significant 

improvements over the current therapies of HIV/AIDS are needed immediately.     

1.2. HIV, drugs of abuse and CNS impairment:      

Nervous system alterations as a result of direct or indirect effect of HIV 

infection, collectively known as neuroAIDS, are always associated with AIDS 

patients. At least 10% of diagnosed cases are accompanied by some kind of 

neurological illness (Almeida and Ellis, 2006) and further during the disease 

progression approximately 50% cases demonstrate neuropathological signs or 

symptoms (McArthur et al., 2005). In the same line, mild to severe neurological 

alterations are seen in at least 80% autopsies of AIDS patients (Almeida and 
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Ellis, 2006). Many CNS diseases such as viral and chronic meningitis, HIV-

associated neurocognitive disorders (HAND), vacuolar myelopathy, peripheral 

neuropathies, etc. have been coupled to the neurovirulent effects of HIV 

(Letendre et al., 2009; Singer et al., 2010).  

Previously it was believed that penetration of HIV into CNS occurs only 

during the final stage of infection when higher load of virus is found in the 

peripheral blood. Now it is putatively believed that virus may enter the CNS from 

the onset of infection (Kramer-Hammerle et al., 2005). Towards this end, 

presence of HIV-particles, -proteins, and -DNA in the CNS along with the 

intrathecal production of anti-HIV antibodies have been seen during the initial 

infection (Ho et al., 1985; Resnick et al., 1985; An SF and Scaravilli, 1997, Rolfs 

and Schumacher, 1990;  Davis et al., 1992; 1996; Gray et al., 1996; Almeida and 

Ellis, 2006). HIV may enter into CNS either directly or as “Trojan passenger” via 

trafficking of infected monocytes, macrophages, and/or T-cells across the tightly 

junctioned brain microvascular endothelial cells (BMECs) of blood-brain barrier 

(BBB) (Albright et al., 2003; Ghafouri et al., 2006). Initial infection of HIV in the 

CNS triggers production of proteins that alter the BBB integrity (e.g. matrix 

metalloproteinase) (Sporer et al., 1998; Conant et al., 1999) and influence 

leukocytes transmigration across this barrier (e.g., monocyte chemotactic 

protein-1) (Boven et al., 2000). These intensify the HIV infection resulting in 

degradation of BBB and CNS injury. Numbers of viral proteins have been shown 

to induce the HIV neurotoxicity and associated pathology. Particularly, HIV 

protein gp120 and Tat have been extensively studied. Both, gp120 and Tat can 
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breach BBB independent of viral penetration and can be toxic across multiple 

species and cell lines. Several neuropathological features are noticed due to 

treatment of these proteins (Ghafouri et al., 2006; Ferris et al., 2008).  

As discussed earlier, spread of HIV infection and drug abuse are 

significantly interlinked. Along the same line, drug abuse can alter the 

neuroplasticity and damage the CNS analogous to that happens during the HIV 

infections (e.g., loss of dopaminergic neurons) (Nath et al., 2002; Burdo et al., 

2006). Most importantly, many illicit drugs have been shown to promote 

susceptibility/progression of HIV infections and associated neuropathogenesis. 

This stimulation of neuropathogenesis in drug-addicted AIDS patients can be 

attributed to the concerted effect of HIV (or its protein) and drugs of abuse on 

neurotoxicity. All sorts of abusive drugs such as psychomotor simulants 

(Amphetamines), opiates (cocaine, morphine), alcohol, nicotine, marijuana, etc. 

have been shown to cause concerted effect on the HIV-associated 

neuropathogenesis in one or other way (Hauser et al., 2007; Ferris et al., 2008; 

Rogers, 2011). For examples, the immunomodulatory actions of opioids induce 

the expression of µ and other chemokine receptors in monocytic cells resulting in 

increased HIV susceptibility and stimulation of HIV expression (Peterson et al., 

1993; 1999; Rogers et al., 2000). Also, opiates enhance the production of 

proinflammatory factors like MCP-1, RANTES, IL-6, ROS, etc. in the brain cells 

such as neurons, astroglia and microglia (Peterson et al., 1998; El-Hage et al., 

2005). These exacerbate the preexisting inflammation of neurons as a 

consequence of HIV infections. Additionally, alteration in endogenous opioids 
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level cause disruption of dopaminergic functions which affect the neuro-

immunological ability of nervous system to respond against HIV (Hauser et al., 

2005; Reddy et al., 2012). Psychostimulants such as methamphetamine and 

cocaine have also been shown to disrupt the dopamine level resulting in 

oxidative damage of neurons (Cubells et al., 1994; Brown and Yamamoto, 2003; 

Riddle et al., 2006). Likewise, alcohol exposure alters the BBB permeability 

which leads to increased HIV entry and ROS level in the brain via influx of 

macrophages (Haorah et al., 2004; 2005; Persidsky et al., 2006). Thus, a 

concerted effect of drugs of abuse and HIV infection result in sever 

neurobiological alterations.  

 

Figure1. Simplified overview of the common pathways involved in HIV and Recreational drugs 

induced neuropathogenesis. 
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1.2.1. Neurobiology of morphine addiction and effect on HIV infection:  

Morphine, a μ opioid receptor agonist is a highly potent analgesic drug. It 

is highly addictive resulting in rapid development of tolerance, physical and 

psychological dependence (Coller and Hutchinson, 2012). Several attempts have 

been made in the past to understand the neurobiology of opiate addition (Nath et 

al., 2002; Burdo et al., 2006; Hauser et al., 2007; Ferris et al., 2008; Rogers, 

2011). There are various hypotheses that describe morphine addition that 

includes the alteration in affinity or number of opioid receptors (Simonato, 1995), 

changes in specific brain regions, alterations in neurotrophin signaling pathways 

that regulate the non-adrenergic response of Locus Coeruleus (LC) neurons to 

opiates (Hatami et al., 2007) and role of glutamate receptors (Inoue et al., 2003). 

Thus, morphine tolerance and addiction involve intricate mechanism involving 

dopaminergic, noradrenergic and glutamatergic neurons. Due to this complexity, 

opioid dependence is proposed to involve multicellular event, where individual 

neurons differentially adapt based on the signals they receive and the second 

messengers and genetic programming of the cell (Simonato, 1995). The exact 

mechanism by which opiate acts as a cofactor for HIV infection is not clear. 

However, it is reported that μ opioid ligands act synergistically with HIV proteins 

(tat; transactivator and gp120) to potentiate the HIV-related neurotoxicity. 

Further, morphine upregulates the expression of HIV entry coreceptors CCR3 

and CCR5 on astrocytoma cells, which increases viral binding and entry into the 

cells and promotes viral replication (Stefano et al., 1996). In recent years, the 

role of astrocytes and microglia in the neuropathogenesis of HIV is becoming 
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increasingly evident. Therefore, use of a μ opioid receptor antagonist in addition 

to ART could be of therapeutic importance and may provide significant benefits in 

treatment of HIV infected subjects who are opiate users. CTOP (D-Pen-Cys-Tyr-

DTrp-Orn-Thr-Pen-Thr-NH2) is a highly selective and potent μ receptor 

antagonist; however it is impenetrable through the Blood Brain Barrier (BBB). 

The current study proposes to bind CTOP to the magnetic nanoparticles and 

target to the brain using an in vitro BBB model.  

  

1.3. Problems of neuroAIDS treatments:     

1.3.1.  Limitations of current treatments:     

Highly active anti-retroviral therapy (HAART) has been successfully 

implemented for management and prevention of AIDS progression. Antiretroviral 

(ARV) drugs recommended by WHO for HAART formulations belongs to seven 

classes: Nucleotide Reverse Transcriptase Inhibitors (NtRTI), Nucleoside 

Reverse Transcriptase Inhibitors (NRTI), Non- Nucleoside Reverse Transcriptase 

Inhibitors (NNRTI), Protease Inhibitors (PI), Fusion Inhibitors (FI), Integrase 

Inhibitors (InI), and CCR5 antagonists (AIDSinfo-NIH, 2012). Basically, 

combinations of three or more class of antiretroviral (ARV) drugs are formulated 

for HAART regimens. With the proper HAART treatment plasma viral load can 

decline below the detection limit (Douce et al., 2012) and median life expectancy 

of AIDS patients may also rise by tenfold (Vyas et al., 2006; Mallipeddi and 

Rohan, 2010). In fact, HAART has resulted in remarkable decline in the mortality 
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rate of AIDS Patients during the last decade and it is predicted that 50% of HIV-

infected people will cross the age of 50 by 2015 (Smith, 2005, Holt et al., 2012). 

Undoubtedly, as a result of HAART, this lethal disease has been transformed into 

a chronic pathology. Nevertheless, little irregularity or interruption of HAART 

treatment lead to resurgence of suppressed viral replication (Douce et al., 2012) 

and so, challenge of complete restriction or elimination of progression of HIV 

infections still exist.    

A dramatic decrease in morbidity of many AIDS related symptoms is 

noticed following the HAART treatment. In the same line, occurrence of some of 

the neuronal disabilities has also been remarkably declined (e.g. HIV associated 

dementia (HAD) and symptomatic distal sensory polyneuropathy has been 

reduced to less than 7 and 10 % of affected people respectively) (Antinori et al. 

2007; Woods et al. 2009; Vivithanaporn et al., 2010). Nevertheless, a 

concomitant rise in the other form of CNS dysfunction such as minor cognitive 

impairments/motor disorders has widely been noticed in the patients on HAART 

regimes (Fischer-Smith and Rappaport, 2005; Ghafouri et al., 2006; Kraft-Terry 

et al., 2010; Wong et al., 2010). This resulted in an increase in the cumulative 

occurrence of HIV associated neurocognitive complications. Vivithanaporn et al., 

(2010) reported that during the decades of 1998-2008, at least 25% of HAART 

treated patients developed one or other neurological syndrome. Thus, burden of 

HIV associated neurological disorders prevail on larger scale. This reduced 

efficacy of current HAART regimens for treatment of increased incidence of 
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neuroAIDS can be attributed to many reasons. Firstly, these treatments are not 

targeted for inflammatory cascades underlying any of the HIV-associated 

neuronal disorders. Thus, HAART does not have direct effect on the HIV 

associated inflammatory degeneration (Rumbaugh et al., 2009). Secondly, 

inadequate reachability of ARV drugs across the brain barriers has minimum 

effect on the resting viral loads in the brain hideout. This may result in gradual 

generation of resistance viral strain against HAART as has been seen in some of 

the infected populations (Vella and Palmisano, 2005; Amiji et al., 2006; Kozal, 

2009; Griffiths, 2009; Nijhuis et al., 2009; Gupta and Jain, 2010). Third, and 

importantly, inadequate CNS reachability of ARV drugs, which is also the main 

obstacle towards treatment of neuroAIDS, is caused due to impermeability of 

drugs across the brain barriers. This can be attributed to properties of brain 

barriers that make it ultra-selective permeable for both, endogenous compounds 

and xenobiotic molecules as well. Additionally, ARV drug’s short half-life and low 

bioavailability, due to extensive first pass metabolism including gastrointestinal 

degradation, may also add to their insignificant arrival in the CNS (Gupta and 

Jain, 2010; Wong et al., 2010). Moreover, emergence of various side effects and 

cost of HAART may also result in cessation of treatment (Nolan et al., 2005; 

Douce et al., 2012). Overall, the basic problem of HAART failure in treatment of 

neuroAIDS lies in the structural and functional complexity of brain barriers.     
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1.3.2. Barriers of CNS:   

The organizational uniqueness of CNS is featured by three structural 

barriers, namely, the BBB, blood-cerebrospinal fluid barrier (BCSFB), and the 

Cerebrospinal fluid-brain barrier (CSFB). In particular, the BBB and BCSFB are 

very special anatomical features because they safeguard the brain from the 

periphery, respectively by means of tightly junctioned brain microvessel 

endothelial cells (BMECs) and choroid epithelial cells. These tightly packed 

structures possess very low and selective paracellular permeability. In contrast, 

CSFB may not be considered as an anatomical barrier because it is structured by 

loosely linked ventricular ependymal cells and can readily allow reversible 

diffusion of solutes from ventricular cerebrospinal fluid (CSF) to brain 

parenchyma or vice versa (Enting et al., 1998; McGee et al., 2006; Johanson et 

al., 2011).  

The BBB function as the interface that separates the brain parenchyma 

(CNS) from the blood stream (peripheral circulation). It is an extensive, 

continuous, fenestrationless, and almost impermeable barrier of tightly junctioned 

BMECs along the capillaries lining throughout the cerebral microvasculature. The 

tightness of this transendothelial junction is 50-100 folds higher than the 

peripheral vessels, giving an electrical resistance of 1500-2000 Ωcm-2(Crone and 

Christensen, 1981; Butt et al., 1990; Gonzalez-Mariscal et al., 2003; Weksler et 

al., 2005; Hamilton et al., 2007; Wang and Bordey, 2008). This indicates the 

severity of opposition-intensity to the passage of molecules from entering the 
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cerebral space. The structural sophistication of the BBB is further compounded 

by persistent and intimate contact of BMECs to other neuronal cells, mainly 

pericytes and perivascular astrocytes (Hawkins and Davis, 2005; Abbott et al., 

2006). The integrity of tight junctions is maintained by three main tight junction 

transmembrane integral proteins, occludin, claudin and junction adhesion 

molecules and many cytoplasmic accessory proteins, such as zonula occludens, 

cingulin, 7H6 antigen, etc. (Citi et al., 1988 ; Hirase et al., 1997; Haskins et al., 

1998; Denker and Nigam, 1998; Furuse et al., 1999). Additionally, BMECs 

possess few pinocytotic vesicles and its mitochondrial content (both quantity and 

volume) is also high which, respectively, limit the transcytosis and fuel the 

increased demand of transport activity associated with the endothelial influx-

efflux pump (Enting et al., 1998). Only selected molecules necessary for ideal 

functional efficiency of the brain such as certain amino acids, monocarboxylic 

acids, amines, sugars, purine bases, hydrophilic molecules like O2 and CO2, etc. 

is actively transported via mechanisms such as carrier mediated transport, fluid-

phase endocytosis, receptors- or absorptive -mediated endocytosis (King and 

Johnson, 1985; Gonatas et al., 1984; Fishman et al., 1987; Dehouck et al., 1994; 

Descamps et al., 1996; Tsuji and Tamai, 1999; Tamai and Tsuji, 2000; Wolka et 

al., 2003; Yousif et al., 2007; Hamilton et al., 2007; Zhang, 2010). Many 

substrate specific transporters such as monocarboxylate transport system, 

glucose transporter-1, insulin receptor, transferrin receptor, ceruloplasmin 

receptor, etc are present on the BMECs (Wong et al., 2012). Also, certain 

neurotransmitters and small lipophilic xenobiotics or endogenous molecules up to 
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molecular weight of 600 Dalton can freely diffuse transcellularly across the BBB 

(Pardridge, 2001). However, all these mode of selective permeability and 

transportation of small lipophilic or other drug molecules across the BBB provide 

very little or no benefit for the management of most brain diseases. 

Transportation of small or large drugs in the CNS, in overall, is also critically 

affected due to functional sophistication of the BBB. Regardless of the drug’s 

ability or inability to permeate the BBB, their active percentage in the CNS 

remains below the pharmacological significant level in most cases including 

many ARV drugs. Towards this end, endothelium of the BBB is equipped with 

large spectrum of influx-efflux receptors/proteins that can actively transport 

molecules such as nutrients, metabolites, hormones, neurotransmitters, peptides, 

drugs, etc in or out of the brain. These transporters have been classified into two 

main groups, namely, ATP-binding cassette (ABC) transporters and solute-

carrier (SLC) superfamily. Major ABC transporters and SLC carriers that affect 

drug delivery across the BBB are P-glycoprotein (P-gp), breast cancer resistance 

protein (BCRP), multi-drug resistance-associated proteins (MRPs), organic 

cation transporter (OCTs),  organic anion transporters (OATs),  organic anions-

transporting polypeptide (OATPs), equilibriative and concentrative nucleoside 

transporters (ENTs and CNTs), system L-transporters, etc. Many of these 

carriers have been shown to affect the distribution of ARV drugs across the BBB 

(Ronaldson et al., 2008; Varatharajan and Thomas, 2009). An anti-HIV drug may 

serve as substrate, inhibitor or both for different influx-efflux transporters or, in 

other words, these transporters possess overlapping specificity for ARV drugs. 
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Such as, Abacavir, an NRTI, is a substrate for ABC transporters, P-gp and 

BCRP; and simultaneously, it functions as an inhibitor of other ABC transporters, 

MRP-1, 2 and 3 (Pan et al., 2007; Shaik et al., 2007; Weiss et al., 2007; Giri et 

al., 2008). Similarly, Nelfinavir, a PI, is substrate for P-gp and inhibitor of BCRP 

and two SLC superfamily transporters, OCT-1 and 2 (Kim et al., 1998; Gupta et 

al., 2004; Jung et al., 2008). While being a substrate of efflux transporters causes 

own inaccessibility to the target, as inhibitor of influx transporters it blocks the 

CNS entry of corresponding useful substrates. Further, as inhibitors of efflux 

transporters, an ARV drug may influence the targeted delivery-kinetics of 

corresponding drug substrate and this may be reason for positive or negative 

drug interaction during successful or failed recipe of a combined ART therapy. 

BEMCs also possess enzymatic barrier for metabolization of undesirable 

neuroactive substances recruited through blood (Minn et al., 1991; Brownson et 

al., 1994). Elevated expressions of various enzymes such as γ-glutamyl 

transpeptidase, aromatic acid decarboxylase, alkaline phosphatase, etc are 

found in cerebral microvessels. Metabolism-dependent luminal or abluminal 

expression of these enzymes significantly affects the dynamics and kinetics of 

xenobiotics in the brain (Betz et al., 1980; Hau, 2005). Thus, in order to maintain 

the brain homeostasis, various structural and functional uniqueness of the BBB 

allow exogenous molecules at zero level or far below the pharmacological 

significant amount. Therefore, the BBB may be considered as the primary 

impediment that prevents drug penetration into the CNS.  



15 
 

The BCSFB, at the choroid plexus in ventricles, also restricts flux of ions 

and molecules from the blood into the brain. Anatomically, tightly junctioned 

monolayer of choroid epithelial cells surrounds highly permeable fenestrated 

endothelium of choroid capillaries. This creates a barrier between the 

extracellular blood filtrate from these capillaries and the CSF in the brain 

ventricular spaces. The epithelium of this barrier possesses a special 

combination of basal labyrinth contacting the blood filtrates and profuse apical 

microvilli towards the CSF. This unique structural arrangement affords necessary 

surface area for appropriate transport physiology of solute and water exchange 

across the BCSFB (Enting et al., 1998; McGee et al., 2006; Johanson et al., 

2011). The functional sophistication of the BCSFB is similar to that of the BBB in 

many ways. As such, dense mitochondrial content and various influx/efflux 

receptors and transporters belonging to ABC and SLC superfamily are also 

present in choroid epithelial cells (Varatharajan and Thomas, 2009; Wong et al., 

2012). However, BCSFB is quantitatively more permeable and possesses unique 

transportability for many compounds and molecules such as Ca2+, iodide, 

homovanillic acid etc (Siegel et al., 1999). Various transportation processes such 

as low capacity transcellular pinocytosis/exocytosis, limited facilitated or non-

facilitated paracellular diffusion, and receptors-transporters mediated active 

passage have been demonstrated in the BCSFB. Additionally, presence of few 

incomplete junctions at this barrier is putatively believed to allow protein/peptides 

movement within a limit. Importantly, brisk blood flow at the choroid plexus (~10 

times more than the brain) increases the overall concentration of metabolites in 
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the extracellular blood filtrate from capillaries leading to increased passage 

probability across the BCFB via relevant transportation routes (Johanson et al., 

2011). Nevertheless, most xenobiotics remain impermeable to the BCSFB. Even 

most of the transportable metabolites could be secreted in the ventricular CSF by 

epithelial cells and must diffuse into brain parenchyma to be effective. Notably, 

the CSF from both, choroidal (epithelium) and extrachoroidal (from brain 

capillaries and ventricular wall) secretion is deposited in the ventricular spaces. 

Basically, the CSF serves as “sink” that collects metabolic waste and other 

molecules from the brain in a gradient dependent manner and releases them 

over the brain. This helps to maintain the steady-state concentrations of various 

endogenous molecules and xenobiotics that penetrate into the brain or CSF 

(Davson et al., 1961). The CSF from ventricles passes into cerebral- and spinal-

subarachnoid spaces where it is separated from the direct blood contact via the 

tight arachnoid membrane. Arachnoid membrane contains arachnoid villi for 

absorption and unidirectional exit of the CSF and its metabolites into the venous 

sinuses over the brain surface. The CSF in the ventricular and subarachnoid 

spaces may also reversibly diffuse into brain interstitium through loosely linked 

ependyma of CSFB and pia-glial membranes respectively. Diffused compound 

from CSF to brain interstitium can reach to parenchyma (neurons and glial cells) 

or/and may face the BBB along the cerebral microvasculature (Johanson et al., 

2011). However, diffusion of such metabolites to the parenchyma is remarkably 

hampered due to rapid rate of the CSF turnover (~ 4 times per day) (Davson and 

Segal, 1996; Siegel et al., 1999). The CSF convection and bulk flow towards the 
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exit rout through arachnoid villi is much faster than drugs diffusion from the CSF 

to the brain parenchyma leading to rapid removal of CSF metabolites. Also, 

larger distance between the CSF and brain interstitial fluid decreases the 

diffusion process (Pardridge, 2011). Thus, presence of drugs in the CSF does 

not guarantee its passage to the brain. Large molecular weight molecule and 

hydrophilic compounds are more frequently released due to sink effect. As such, 

azidothymidine (AZT), an ARV drugs, can enter the CSF probably either as a 

result of their bulk flow movement or using the choroid thymidine transporter; 

however, it never reaches to the brain (Wu et al., 1992). Overall, we see that with 

the novel molecular, structural, and functional arrangements, BCFB can be 

considered as the secondary barrier that prevents drug penetration into the CNS.        

1.4. Advantages of nano-scale technology in drug-delivery: 

Nanotechnology harvests the unique physicochemical parameters of 

materials at a nanometer size range. Few of the intrinsic properties of 

nanoparticles such as higher specific surface area and increased circulation 

time have shown remarkable potential for their use as novel drug carrier. Also, 

other properties like biocompatibility, surface charge, hydrophobicity, and 

crystallinity are among the fundamental considerations for selection of a 

nanoparticle in the field of medicine (Semete et al., 2010). The concept of nano-

drugs revolves around development of “target-specific, effective, safe and 

controllable” drug-delivery method which is need of the hour. Basically, drugs, 

alone or in association/combination with target-specific molecules, are enclosed 
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in or absorbed on nanoparticles for better efficacy and lesser side effects (Liu et 

al., 2010).  

Superiority of the nano-drug delivery methods could be attributed to 

combinations of its various features. Firstly, a dramatic increase in the 

bioavailability of drugs can be achieved through nano-drugs or nano drug-

delivery carrier. As such, a significant amount of orally administered nano-

capsulated drugs (<100 nm) escape the portal blood circulation route avoiding 

the reticuloendothelial digestion; rather they are passed to systemic circulation 

via intestinal lymphatic transport resulting in remarkable reduction in the first 

pass hepatic metabolism which enhance their quantity and duration of 

bioavailability. Further, because of the ability to freely flow into capillaries and 

remarkable increase in blood circulation time, nanoparticles can travel to 

tissues in every nook and corner of the body (McNeil, 2005; Desai et al., 1996; 

1997). The nano-size particles are compatible for easy intracellular uptake and 

can even travel across different physiological barriers such as BBB, stomach 

epithelial, etc (Koziara et al., 2003). The increased circulation time and higher 

cellular uptake of nanoparticles is greatly influenced by their surface charge and 

hydrophobicity/hydrophilicity (besides size). While coating of nanoparticles with 

positively charged molecules such as chitin enhances their attachment to 

negatively charged surface of cells, coating with hydrophilic compounds (e.g. 

polyethylene glycol, pluronics, etc) circumvent opsonization resulting in longer 

blood circulation time (Freiberg and Zhu, 2004; Mohanraj et al., 2006; Park et 
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al., 2010). The hydrophobic/hydrophilic nature of nanocarriers also affects the 

solubility of weaker hydrophilic drugs, and thus in turn influences their 

bioavailability (Semete et al., 2010). Moreover, the larger surface to volume 

ratio of nanoparticles allows higher drug loading and dissolution rate influencing 

the bioavailability (Soppimath et al., 2001; Kondo et al., 1993; Semete et al., 

2010). Additionally, crystallinity of many nanoparticles (e.g. polymers) 

significantly affects their degradable speed which influences the biological half-

life of associated drugs (Izumikawa et al., 1991; Mahato, 2007).   

Secondly, nano-drugs possess comprehensive advantages in context to 

the drug release kinetics. The increased specific surface area of nanoparticles 

enhances the drug loading ability. Higher amount of drugs in nano-carrier 

results in initial burst release and then followed by a constant slow release, 

which affect the kinetics and minimize dose frequency (Soppimath et al., 2001; 

Kondo et al., 1993). Similarly, crystallinity of materials affects their dissolution 

characteristics – the amorphous region degrades faster in compare to 

crystalline region. Thus, release kinetics of associated/combined drug is 

affected (Izumikawa et al., 1991; Mahato, 2007). Furthermore, surface charge 

and hydrophobicity of nanoparticles or coating materials play significant role in 

drug kinetics. These properties of nanoparticles greatly affect their molecular 

composition and so as their degradation rate is influenced (Semete et al., 

2010). The increased blood circulation time due to hydrophobic coating 

prolongs the associated drug release. Also, hydrophilic coating reduces the 
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dose frequency of the poor soluble drugs due to their improved solubility 

(Blume, 1993; Vert and Domurado, 2000, Immordino et al., 2006).       

Third and last, the feasibility of selective targeting can be significantly 

improved by the nano-drugs. This, in turn, can improve the drug efficacy and 

side effects can be minimized as well. Nano-drugs or nano-carriers can be 

molded for both, passive and active targeting. The reduced first pass hepatic 

metabolism and increased blood circulation time of nanoparticles makes them 

suitable for the purpose of passive targeting. The application of passive 

targeting of lymph nodes (Maeda et al., 2000; Mitra et al., 2001; Briz et al., 

2003; Gunaseelan et al., 2010). In active targeting, drugs or carriers are 

combined with target efficiency of nanoparticles has been successfully 

demonstrated in the case of enhanced permeability and retention effect in 

targeting tumors of enterohepatic circuit and HIV infections moieties or vector 

molecules that can recognize and bind to a specific target sit. Thus, direct 

administration of a drug into an affected organ or tissue can be achieved. 

Various substances like antibodies, peptides, hormones, polysaccharides, 

lipoproteins, etc can be used as targeting moieties. Thermal- and pH-sensitive 

targeting molecules (e.g. N-isopropylacrylamide) and suitable adjuvant can also 

be part of active targeting nano-drug carriers (Chung et al., 1998; Kohori et al., 

1998; Meyer et al., 1998; Yoo et al., 2002; Sershen et al., 2000; Liu et al., 

2010).   
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1.5. Nanomedicines for neuroAIDS treatment:   

A complete lack of ARV therapies for ~40% of AIDS patients (WHO, 2012) 

and further, ineffectiveness of HAART in treatment of HIV-associated 

neurological syndromes has molded the neuroAIDS as a consistent global 

problem. In the wake of fact that more than 98% of small and large drugs are 

unable to cross the brain barriers (Pardridge, 2007), which is believed to be main 

impediment in the cure of neuroAIDS, several strategies are being experimented 

to administer the desired therapeutic levels of anti-HIV drugs across those 

barriers. Transcranial drug delivery (focused ultrasound and microbubble 

approach to disrupt the BBB), transnasal drug delivery (direct access to CNS 

from nasal cavity via olfactory neurons and avoid fist-pass metabolism), 

disruption of BBB using pharmacological agent (etoposide and cisplatin), hyper-

osmotic solutions (mannitol and urea), prodrugs approach (lipidization of ARV 

molecules and fusion of drugs with cell-penetrating peptides or antibody specific 

to BBB receptors), and inhibition of ABC transporters (P-gp) are few approaches 

with potential to deliver ARV drug across BBB (Wong et al., 2010; Nair and 

Saiyed, 2011). However, these strategies have less strength than limitations 

which restrict their use as common and novel drug delivery method. An effective 

drug delivery method or diagnostic agent must have systemic administration 

ability i.e., majority of therapeutic agents should be delivered to the target site 

while non-target site should get minimal drug exposure. Complying with this 
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notion, practice of nanotechnology in medicine has shown exciting prospect for 

development of novel drug delivery system.  

1.6. Functional nanovehicles for prevention and treatment of 

neuroAIDS:   

Improved drug delivery across brain barriers is essential for the 

management of neuroAIDS. In this context, applications of various 

nanocarriers have generated a promising trend for the better ARV drug 

distribution to the CNS. Schemes of CNS drug delivery using nanovehicles can 

be broadly classified based on their passive or active targeting ability (Wong et 

al., 2010). Approaches involving the passive targeting can result in 

accumulation of higher concentration of drug at endothelium of the BBB. This 

local gradient difference may allow the drug penetration by passive diffusion. 

Also, trafficking via non-receptor mediated endocytosis (e.g., 

macropinocytosis) may enhance the cellular drug uptake. Actively targeted 

drug trafficking can be possible via receptor mediated endocytosis when 

periphery of nanocarriers is tagged with ligand molecules matching to specific 

cell receptor (Pelkmans et al., 2001; Amyere et al., 2002; Kaplan et al., 2005; 

Khalil et al., 2006). Nanocarriers can also be tagged/ loaded with specific efflux 

transporters inhibitors or blocking agent which can result in increased drug 

concentration across the BBB (Liu et al., 2010). Several nanocarrier systems 

such as liposomes, dendrimers, different nanoparticles, micelles, etc. have 

been intensively explored (Figure 2) and approaches for their improvement are 
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under investigation. Recently, applications of magnetic nanocarriers and 

monocytes/macrophage based nanoformulations have gained considerable 

interest for the treatment of neuroAIDS.  

1.6.1. polymeric nanovehicles: 

Acrylic and polyester polymers are the most studied synthetic polymeric 

compounds as nanocarriers for CNS drug delivery. Poly (butyl cyanoacrylate) 

(PBCA), an acrylic polymer, have been extensively explored for this purpose. 

PBCA possess rapid in vivo degradation ability which can minimize their longer 

accumulation and, in turn, can prevent the brain from potential polymeric 

toxicity (Wong et al., 2012).  The lipophilic property of PBCA makes it suitable 

for loading of various kinds of compounds with hydrophilic property and 

weak/low basicity (Alyaudtin et al., 2001; Gao et al., 2006). Without causing 

any permanent physical harm to BBB, PBCA nanoparticles are able to deliver 

an improved amount of ARV drugs in both brain tissues and CSF. Kuo and 

Chen (2006) reported that the use of PBCA nanoparticles enhance the in vitro 

BBB permeability of ARV drugs zidovudine and lamivudine by 8–20 and 10–18 

fold, respectively. In the same study, application of other acrylic polymer 

nanoparticle, methylmethacrylate–sulfopropylmethacrylate (MMSPM), showed 

100% rise in the BBB permeability of zidovudine and lamivudine. Additionally, 

PBCA and MMPSM coated with PS-80 (a tensoactive agent) were used for the 

delivery of ARV drugs, stavudine, delaviridine, and saquinavir, in in vitro BBB 

model. It was found that permeability of these three drugs was enhanced by 
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~12-16 and 4-11 folds with PBCA and MMSPM formulations respectively (Kuo 

and Su, 2007). Increase in the BBB permeability of acrylic polymers are 

facilitated by receptor mediated transcytosis which is triggered by binding of 

apolipoproteins (adsorbed on the surface of polymeric nanoparticles) to the low 

density lipoprotein receptors on BMVECs (Kim et al., 2007). Besides this 

transcellular pathway, acrylic polymers can also use the paracellular route via 

reversible disruption of BBB for short period of time (Alyaudtin et al., 2001; 

Rempe et al., 2011).  

 
 
Figure 2: Nanoparticles used for the delivery of ARV drugs across BBB. (A) Polymeric 

nanoparticle. (B) Dendrimer nanoparticle.  (C) Polymeric micelle. (D) Nonpolymeric micelle. (E) 

Liposomes. (F). Solid lipid nanoparticles. (G). Lipid nanoemulsions. (H) Lipid nanocapsules. 
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Despite these merits, application of polymeric nanoparticles is restricted 

because they are not ideal for the delivery of polar/ionic compounds (Wong et 

al., 2010). Furthermore, process of PBCA degradation can produce toxic 

formaldehyde by-products (Olivier, 2005). Thus, other polymers like polyesters 

are considered a safer choice for CNS drug delivery. Two polyester, polylactide 

(PLA) and poly(lactide-co-glycolide) (PLGA) have been approved by United 

States Food and Drug Administration for human use (D’Souza and DeLuca, 

2006). These highly versatile biocompatible polyesters are degraded into 

glycolic acid and lactic acid which are converted into water and carbon dioxide 

via TCA cycle and eventually eliminated from the body (Yoo et al., 2005; 

Makadia and Siegel, 2011). Importantly, injection of these polyesters induces 

negligible and transient inflammatory response (Athanasiou et al., 1995; Dechy-

Cabaret et al., 2004). Variety of drugs of both hydrophilic and hydrophobic 

nature can be entrapped on the matrix of PLA and PLGA. In addition, drugs 

entrapment can be tailored for sustained release for longer time (Zhang and 

Feng, 2006). Surface modifications of these polyester polymers such as 

PEGlyation (attachment of poly(ethylene glycol), agglutinin coating, alginate 

embedding, etc., have been strongly recommended for delivery of therapeutic 

dose across the BBB. Both, PLA and PLGA with certain modifications have 

been shown to be useful for the improved brain delivery of many non-ARV 

drugs such as dexamethasone, vasoactive intestinal peptide, superoxide 

dismutase, etc (Kim and Martin., 2006; Gao et al., 2007; Reddy et al., 2009; Liu 

et al., 2012). Study on ARV drugs by Destache et al., (2010) demonstrated that 
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nanoformulations of ritonavir, lopinavir, and efavirenz with PLGA can maintain a 

sustain peak of about 28 days in mice brain which is limited to only 2 days with 

free drugs. Similarly, Rao et al., (2008) demonstrated that at two weeks post-

administration, PLA nanoparticles in conjugation with Tat peptides could result 

in 800 fold higher level of ritonavir in mouse brain in compare to drug delivered 

in solution. It should be noted that the cell penetration ability of Tat peptide 

makes it a natural accessory for carriers used for drug delivery across BBB. 

Along with synthetic polymers, natural polymers such as albumin, chitosan, 

alginate, gelatin, collagen, etc. are also being explored as the potential 

nanocarrier for brain drug delivery (Semete et al., 2010). Al-Ghananeem et al 

(2010) investigated the potential of chitosan for delivery of ARV drugs via both, 

intravenous and intranasal route and found a significant improvement in the 

level of didanosine in brain and CSF of rat.   

1.6.2. Dendrimer nanovehicles: 

Dendrimers are basically globular or spheroidal structures made up of 

controlled repeats of monomer units branched around a central core (Figure 

2B) (Svenson et al., 2009; Wong et al., 2010). They can be engineered in the 

size range of 10-100 nm and may contain many reactive functional end groups, 

which make them potent for drug delivery systems (Semete et al., 2010). 

Dendrimers may also contain internal void spaces. Thus, both encapsulation (in 

void space) and conjugation (with reactive end groups) of compounds with 

different polarity can be possible with dendrimers. Though more than 100 types 
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of dendrimers exist, five main classes used for medicinal purposes are: 

Polyamine amine, Polypropyleneimine (PPI), Phosphorus, Carbosilane, and 

Polylysine dendrimers. However, Phosphorus dendrimers has never been used 

for HIV research (Dzmitruk et al., 2011). Similar to polymeric nanoparticles, 

dendrimers have been mostly studied for brain delivery of anti-cancerous drug. 

Nevertheless, Jiménez et al., (2010) investigated the potential of 2G-NN16 

dendrimers (a Carbosilane dendrimer) in in vitro BBB model for delivery of 

antiviral (HIV) siRNA. This siRNA/2G-NN16 dendriplexes showed permeability 

across the in vitro BBB and caused a significant reduction in the viral 

replication. Most of the ARV study involving dendrimers in HIV research has 

been restricted to different cell types such as, macrophages, dendritic cells, 

MT2 cells, etc  (Dutta and Jain, 2007; Dzmitruk et al., 2011) and thus, more in 

vitro and in vivo BBB investigations are required before their use for CNS 

delivery of ARV drugs. The limited application of dendrimers can be attributed 

to their complex synthesis process and inconsistent and premature drug 

release kinetics (Wong et al., 2010). The drug release mechanism is also not 

clear, though some report suggest toward transcytosis through the BBB 

(Dzmitruk et al., 2011). Additionally, polycationic surface groups of dendrimers 

proved to be toxic for negatively charged cell membranes resulting in cell death 

(Bawarski et al., 2008; Pion et al., 2010).     
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1.6.3. Micelles nanovehicles: 

Micelles are self-aggregated assembly of amphiphilic molecules 

dispersed in aqueous media (Kabanov and Alakhov, 2002; Wong et al., 2006). 

The diameter of micelle particles may vary from 1-50 nm (Semete et al., 2010). 

Particles are assembled in such a way that there is an inner hydrophobic core 

and the hydrophilic heads of amphiphilic molecules are exposed outside (Figure 

2C and D). The inner core serves as the encapsulation space competent for the 

better solubilization of poor water-soluble and lipophilic compounds (Jones and 

Leroux, 1999; Gaucher et al., 2005; Bae and Kataoka., 2009; Wong et al., 

2010). Three types of amphiphilic molecules, namely, block-copolymers, 

surfactants and polymer-lipid conjugates are used for formation of micelles 

(Trivedi and Kompella, 2011). However, pluronic block-copolymers has been 

the most studied micelles types for CNS drug delivery. Pluronic micelles 

demonstrate zero toxicity to the BBB and can inhibit efflux transporters such as 

P-gp, MDR1, etc which, in turn, increase their substrate permeability (Batrokova 

et al., 2003; Spitzenberger et al., 2007; Shaik et al., 2008). Notably, many ARV 

drugs are substrates for efflux transporters/receptors of BBB. Thus, pluronic 

micelles can serve as both, drug carrier and efflux inhibitor and have been 

demonstrated to be valuable for CNS delivery of ARV drugs. Batrokova et al 

(1999) showed that exposure of pluronic P85 enhance permeability of ritonavir 

across in vitro BBB. Similarly, in vivo experiment by Spitzenberger et al (2007) 

demonstrated that administration of pluronic P85 alone or in combination with 
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ART (zidovudine, lamivudine, and nelfinavir) resulted in 78-92% reduction in the 

p24 expressing monocyte-derived macrophages (MDM) from mouse brain in 

compare to 62 % of only ART treated group at two weeks post-inoculation of 

HIV. Additionally, Sharma and Garg (2010) suggested that micelles may be 

tailored for highly selective active targeting by tethering hydrophilic block to 

ligands specific to HIV reservoir receptors such as lecitn. Nevertheless, 

instability of the non-cross-linked pluronic micelles remains a matter of concern 

because it may reduce the circulation time resulting in premature drug release 

(Trivedi and Kompella, 2010).  

1.6.4. Liposomes nanovehicles: 

Liposomes are the first and probably the most applied drug delivery 

carrier (Langer, 1976; Costantino et al., 2009; Wong et al., 2012). They can be 

defined as auto-spontaneously arranged unilamellar or multilamellar, spherically 

closed colloidal vesicles made up of amphipathic phospholipid bilayer 

membranes surrounding an aqueous core. While one hydrophilic head of 

phospholipid bilayer is exposed to outside, the other is in contact with vesicle 

core (Figure 2E). Thus, hydrophobic group of the bilayer is protected from the 

aqueous environment.  This unique character of liposomes allows loading of 

both hydrophilic (encapsulated in aqueous core) and hydrophobic/lipophilic 

(incorporated into the bilayer of phospholipid) compounds (Sharma & Sharma, 

1997; Voinea et al., 2002; Carvalho et al., 2011). Depending upon the 

processing methods and constituent, size of liposomes may go up to mm; 
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however, it can be restricted to a minimum of 20-30 nm which is ideal for a 

nanocarrier (Wong et al., 2010). Surface of liposomes can be engineered for 

active targeting by applying surface charge modifications (Makino and Shibata, 

2006) and/or conjugation of antibodies/ligands specific to diseased cells or 

tissues including brain and CNS (Desormeaux and Bergeron, 1998; Allen et al, 

2002; Kreuter, 2004). Additionally, modifications such as PEGlyation can 

improve the inherent poor stability of conventional liposomes (Koukourakis et 

al., 2000; Jain, 2008; Bertrand et al., 2010) and can also reduce their uptake by 

reticuloendothelial system resulting in improved plasma circulation time 

(Gunaseelan et al., 2010). Lipid composition may also be tweaked for better 

stability and circulation rate (Vitas et al., 1996; Katragadda et al., 2000). 

Different types of liposomes used so far for the delivery of anti-HIV/AIDS drugs 

can be broadly categorized into ionic-, immune- and sterically-stabilized- 

liposomes (Lanao et al., 2007). The rationale of using liposomes for ARV drugs 

is based on the fact that mononuclear phagocytic system recognizes 

conventional liposome as foreign body; and since monocytes and macrophages 

are HIV reservoirs and can travel to brain, an improved efficacy of drugs can be 

achieved (Prior et al., 2002). Kim et al., (1990) demonstrated that half-life of 

intraventricularly administered, liposome-encapsulated zalcitabine in the brain 

of Sprague-Dawley rat increase to 23 h as compared with 1.1 h for the 

unencapsulated drug. In the same line, Dusserre et al., (1995) showed that 

liposomal encapsulation could enrich the rat brain with about 13 times more 

foscarnet – a salvage therapy for multi-drug resistant AIDS patients – in 
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compare to its solution. Further, the superiority of CNS targeting ability of 

liposomes-loaded AZT-myristate (prodrug of AZT) was studied by Jin et al 

(2005). It was shown that, with about 98% encapsulation efficiency and longer 

half-life, a higher concentration of AZT was found in the brain and other organs 

of rats. Potential of liposomes have also been evaluated for management of 

HIV-related opportunistic infections which is critical for the HIV/AIDS patients. 

Several fold increase in the concentration of amphotericin B (drug for fungal 

infections in HIV patients) was demonstrated when liposomes tethered with 

RMP-7 (Bradykinin B2 receptor agonist) were used for delivery across in vitro 

rat-BBB model (Zhang et al., 2003). Despite these demonstrations of potential 

of liposomes for improving ARV drug delivery, stability and leakiness of loaded 

drug during storage remain the issue to be sorted out (Semete et al., 2010).  

Additionally, low drug entrapment ability, especially for water-soluble drugs due 

to tiny space of aqueous core (Torchilin, 2005), is an area for improvement in 

liposome-based drug delivery.   

1.6.5. Solid lipid nanoparticles (SLN) based nanovehicles:  

Recently, SLN (Figure 2F) has emerged as novel particulate system with 

tremendous potential to be used as a drug delivery nanocarrier. For the 

synthesis of SLN, one or more biocompatible solid lipids such as fatty acids, 

glycerides, waxes, glycerine mixtures, etc. are liquefied by heating and 

dispersed and stabilized in either ionic or non-ionic surfactant which can be 

emulsifiers and/or co-emulsifiers (Gupta & Jain, 2010; Carvalho et al., 2011). 
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The size of resulting solid lipid particles may vary from 1 to 1000 nm and are 

compatible for carrying both hydrophilic and lipophilic drugs (Gupta and Jain, 

2010). Because of the lesser non-specific cell toxicity, superior physical and 

biological stability, high tolerability, higher drug entrapment efficacy, and cost-

effective manufacturization, the SLN is believed to be a better nano-drug carrier 

than other colloidal carriers such as liposomes, PLGA, etc. (Muller et al., 1997; 

Mehnert and Mader, 2001; Reddy et al., 2006; Wong et al., 2010). Additionally, 

flexibility to modify its size and charge can be employed for the site-specific 

targeting and for drug release in response to specific stimuli such as 

temperature, pH, etc (Bummer, 2004; Manjunath et al., 2005). Also, the 

immediate burst drug release profile of conventional SLN (attributable to their 

larger surface area) can be modified for prolonged drug release (Semete et al., 

2010).  All these properties in conjugation with the natural ability of small 

lipophilic material to cross the BBB make SLN a favorable nanocarrier for the 

CNS drug delivery. In this context, few studies have shown the potential 

applicability of SLN for ARV drug delivery across BBB. Kuo and Su (2007) used 

in vitro BBB model of human BMECs and demonstrated that the permeability 

coefficient of stavudine, delaviridine and saquinavir loaded on SLN was 

respectively 4–5, 8–11 and 9–11 times as compared with free drugs. In the 

same study, delaviridine and saquinavir loaded on SLN showed enhanced 

permeability than those loaded on MMSPM; however, it was suggested that the 

particle size of these nanoparticles may have significant influence on their drug 

-loading, -entrapment and BBB permeability efficacy. Further, the same group 
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(Kuo and Kuo, 2008) performed that under the influence of 5mV 

electromagnetic force (EMF) the in vitro BBB permeability of SLN loaded 

saquinavir was better than that loaded on PBCA and MMSPM; thus, a 

combination therapy, involving SLN with EMF, was recommended for the 

beneficial clinical application. Other in vitro BBB model study by Chattopadhyay 

et al (2008) showed a significantly improved cellular uptake of SLN loaded 

atazanavir in compare to aqueous solution. Similarly, higher cellular 

accumulation of Rhodamine-123, a substrate of efflux transporter P-gp, was 

also shown in this study. Thus, it was predicted that SLN may either mask or 

bypass the efflux pump. Despite these early promising in vitro data, supportive 

in vivo experiments are yet to be tested. Thus, more in vitro and in vivo study 

are necessary to delineate the authenticity of SLN for the delivery of ARV drugs 

in brain.  

1.6.6. Magnetic nanovehicles: 

Magnetite (Fe3O4) and maghemite (Y-Fe2O3) are the most commonly 

used magnetic nanoparticles (MNPs) in the field of biomedicine (Chomoucka et 

al., 2010; Yoo et al., 2012). They have been extensively investigated for target-

specific improved drug delivery. The main advantage that makes MNP superior 

over other counterparts such as liposomes, micelles, polymeric nanoparticles, 

etc. is that the unique superparamagnetism property can be utilized for 

simultaneous monitoring and quantitation of their tissue-specific or nonspecific 

distribution (Jain et al., 2008). Thus, techniques like magnetic resonance 
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imaging (MRI) and magnetometery can be applied for, though indirect, 

measurement of localization of MNPs associated drugs (Koning et al., 2007) 

which may help in determining site-specific optimal or suboptimal dosing. 

Besides, MNPs possess many characteristics essential for a suitable drug 

delivery nanocarrier. First, synthesis of MNPs is quite easy (Wiogo et al., 2012) 

and it is feasible to produce monodispersed particles at the laboratory. Second, 

the flexibility in the size of MNPs, ranging from a few up to tens of nanometers, 

gives opportunity for optimization of sizes as per requirement of the study. It 

should be noted that the higher surface to volume ratio enhances target-affinity 

of MNPs in comparison to the micro-sized magnetic particles and can even 

manipulate and target at the subcellular organelles levels. Third, MNPs can 

respond to an external magnetic field. Thus, it is possible to “remote control” the 

movement of drug loaded nanoparticles for target-specific delivery by applying 

the magnetic force at the exterior of desired site (Pan et al., 2012). Fourth, as 

mentioned above, the MNPs can function as contrast agent for MRI because 

signal of protons, an essential requirement for MRI, in the periphery of particles 

is enhanced by the magnetic moment (Chaughule et al., 2012). Fifth, aqueous 

solutions of MNPs such as Fe3O4 perform amphoterism and develop positive or 

negative charges at the magnetite-water interface in pH-dependent manner 

(Tombacz et al., 2006;). The flexibility in the surface charge allow binding of 

wide range of molecules either via direct, but week, ionic interactions to the 

MNPs (Saiyed et al., 2009) or via surface coating or tethering agents (Yoo et 

al., 2012; Amal et al., 2012). The well-defined and rigid structures of MNPs, with 
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or without coating, further widen the attachment options by acting as a solid 

binding platform for various ligands (Pan et al., 2012). Sixth, in combination with 

the liposomes, MNPs can also be developed as hybrid nanoparticles called 

“magnetoliposomes” (Figure 3).  

 
 
Figure 3: Magnetic Nanoparticles based nanovehicles: Magnetoliposome for drug delivery across 

BBB.  
 

The liposomal encapsulation of MNP is advantageous in many ways. 

While drugs attached with MNPs can be encapsulated in the liposomal core, 

additional free drugs can be supplemented on the phospholipid bilayers and 

core as well. Thus, per unit loading efficiency of nanocarrier is enhanced. Also, 

the liposomal encapsulation protects the drug loaded on the MNPs from the 

biological degradations and increase the circulation time resulting in increased 

bioavailability. Furthermore, magnetoliposomes can be utilized for the 
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monocytes/macrophage-based nanodrug delivery at the various inflammatory 

sites including the brain (Jain et al., 2003; Saiyed et al., 2010). The movement 

of magnetoliposomes or magnetized monocytes/macrophages for targeted drug 

delivery can be manipulated in the same way as for naked MNPs. Seventh, 

doses of MNPs within the permissible limit have non-significant safety concerns 

and are biodegradable (Jain et al., 2008). Particularly, it has been suggested 

that biologically produced nanosized magnetosomes from magnetotactic 

bacteria, which is predicted to be highly biocompatible, can be utilized in the 

same way as artificially synthesized MNPs (Lefevre et al., 2011; Sun et al., 

2011). Thus, we see that MNPs possess many features required to be molded 

for nano-drug delivery in target-specific manner.   

1.6.7. Cell-based nanovehicles: 

The inherent migratory potential of inflammatory-response cells 

(monocytes, macrophages, dendritic cells, neutrophils, lymphocytes, neuronal 

stem cells, bone-marrow derived mesenchymal stromal cells, etc) towards the 

zone of inflammation can be exploited for the targeted drug delivery (Batrakova 

et al., 2011). Although still at the preliminary stage, this relatively newly 

hypothesized drug delivery strategy own superior therapeutic and diagnostic 

potential. While cells can be genetically modified for a continuous production of 

therapeutic molecules (Studeny et al., 2002; Muller et al., 2006; Menon et al., 

2009), in the context of nanomedicine, drug loaded nanocarriers such as 

liposomes, magnetoliposomes, polymers, etc are either packaged inside the 
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cell or, in extreme case, attached to the cell surface for the delivery at the 

specific injury site (Behr et al., 1997; Krantz et al., 1997; Thiele et al., 2003; 

Nowacek et al., 2009; Cheng et al., 2010;  Zhao et al., 2011; Nair and Saiyed, 

2011; Roy et al., 2011). Entry of drug loaded nanovehicles in these cells is 

mediated by cell surface receptors such as mannose, complement, Fc 

receptors, etc. Thus, coating of nanocarriers with the receptor-specific moieties 

such as mannose, folate, gelatin, A- protein, RGD peptide, etc complement the 

recognition by specific cell surface receptors leading to cellular internalization 

(Batrakova et al., 2011). Factors such as surface charge, size, and shape of 

nanocarriers also plays vital role in their internalization by cells. For example, it 

has been demonstrated that absorption of positively-charged nanoparticles by 

cells is better than their opposite counterparts (Nowacek et al., 2009). At the 

same time, the drug preservation efficiency of positively-charged nanoparticles 

in the cell is also superior (Thiele et al., 2003; Zhao et al., 2011). Once inside 

the cell, it is critical to home the drug-loaded cell-carriers at the right site. To this 

end, monocytes and macrophages have gained considerable attention for 

delivery of drug across the CNS (Dou et al., 2006; 2009; Muthana et al., 2008). 

These immunocytes possess margination and extravasation properties and can 

cross the BBB paracellularly in response to brain inflammation (Pawlowskiet al., 

1988; Lossinsky et al., 2004).  Thus, “Trojan nanocarriers” residing inside these 

cells can be delivered in the brain (Figure 4). Uploading of drugs from cellular 

carriers at the delivered site is an area which is less understood and need to be 

intensively investigated for advancement of this novel delivery system. In this 
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context, it is believed that feasibility of controlled drug release from cellular 

carriers may significantly rely on prolonged stay of cell-carriers at the target site, 

pathology-specific response (change in temperature, pH, etc), exocytosis of 

drug containing intracellular vesicles, and intracellular Ca2+ concentration of 

carrier cells (Sollner et al., 1993; Batrakova et al., 2007; 2011). Additionally, 

external stimulus such as mild hyperthermia may also affect the drug uploading 

from cell-carriers as has been shown for anti-cancer therapy (Ikehara et al., 

2006). Other area which must be addressed for better practicality of cell-

mediated nanocarriers is the minimization of possible cytotoxicity. Mononuclear 

phagocytes recruited in response to inflammatory cytokines produce reactive 

oxygen species. In the same line, inhibition of recruitment of 

monocytes/macrophages in the zone of inflammation is part of therapeutic 

strategies for many neurodegenerative disorders (Hendriks et al., 2005). 

Nonetheless, few reported studies to date indicate no shed of cytotoxicity in 

macrophage-mediated drug delivery in the brain (Brynskikh et al., 2010). 

Eventually, successful clinical application of this method will depend upon 

loading of nanoformulated drugs either to harvested mononuclear phagocytes 

from peripheral blood or to artificially differentiated monocytes from harvested 

stem cells from bone marrow and their re-infusion/infusion to patients 

(Batrakova et al., 2011). Injection of nanoformulations, coated with 

monocytes/macrophages specific receptors, in blood circulation may also be 

another way for development of cell based delivery in clinical settings 
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(Bestman-Smith et al, 2000). However, sufficient research-homework is 

required before practical application of these speculations.  

 
 
Figure 4: Cell-based drug delivery: Monocytes/Macrophages loaded with liposomal nanocarriers. 
 
 

Cell mediated delivery of nanoformulated drugs is gaining significant 

consideration for the treatment of various brain diseases, specifically in chronic 

pathologies such as Alzheimer’s, Parkinson’s, brain cancer, epilepsy, etc 

(Popescu et al., 2006; Batrakova et al., 2007; Boison et al., 2009; Garcia et al., 

2010; ). Its implications in HIV related neuropathogenesis has also shown 

encouraging trends. Dou et al., (2009) demonstrated that macrophage-based 

nanoparticle platform can successfully deliver the active ARV drug in the brain. 

Indinavir formulated in suspensions of lipid nanocrystals were packaged into ex 

vivo cultivated bone-marrow-derived macrophages and injected intravenously 

into severely combined immunodeficient HIV-1 encephalitis (HIVE) mice. High 
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drug release in different regions of the brain were noticed consistently for at 

least two weeks and corresponding reduction in HIV replication were observed 

in the HIVE brain regions.  In the same line, Nowacek et al., (2010) 

nanoformulated a combination of atazanavir, efavirenz, and ritonavir in a 

mixture of block copolymers and liposomes and loaded into MDM.  In vitro drug 

release study demonstrated their continuous presence from minimum of 15 

days to more than 20 days with complete suppression of viral infection. Basic of 

this study was recently expanded with another nanoformulated combination of 

atazanavir, ritonavir, indinavir, and efavirenz. By co-cultivating the drugs-

packed mononuclear phagocytes with human brain microvascular endothelial 

cells, it was suggested that intracellular crosstalk may facilitate transfer of drugs 

from carrier/donor cells to recipient cells (Kanmogne et al., 2012). However, 

mechanisms of this cell-to-cell transfer have not been explained.    

1.6.8. Other promising nanovehicles for ARV drug delivery across BBB: 

The growing popularity of nanotechnology in recent years has steadily 

opened the field for variety of nanomaterials. With the same perspective, many 

nanocarriers have been explored for their possible application in the field of 

nanomedicine. Two novel polymeric materials, nanoemulsions and lipid 

nanocapsules (LNC) (Figure 2G and H), have been preliminarily investigated for 

their ability to deliver ARV drugs in brain. Vyas et al., (2008) demonstrated that 

the oral administration of saquinavir loaded oil-in-water nanoemulsions to 

Balb/c mice improved the brain uptake in compare to the aqueous formulation. 
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It was suggested that higher availability of drug in the brain may be result of the 

higher rate of absorption of drug encapsulated in nanoemulsions. Potential of 

other polymeric novel nanoparticles, LNC, for the delivery of ARV protease 

inhibitor (Indinavir) in the mouse brain was evaluated by Pereira et al., (2005). It 

was found that tissue/plasma ratios of LNC loaded Indinavir in the brain of 

normal (mdr1a+/+) or efflux transporter, P-gp deficient (mdr1a-/-) mouse 

increased by 1.9 times on average as compared with Indinavir in aqueous 

solution. At the same time, ratio of aqueous Indinavir in the brain of mdr1a-/- 

mouse was 21.3-fold higher than mdr1a+/+ mice suggesting that mechanisms 

other than, or additional to, P-gp inhibition may influence the higher uptake of 

LNC loaded drugs.  

Few other nanocarriers such as gold nanoparticles (Bowman et al, 2008; 

Reynolds et al, 2012a; 2012b; Arnaiz et al, 2012), silver nanoparticles 

(Elechiguerra et al, 2005; Lara et al, 2010 & 2011), aptamers (Neff et al, 2011; 

Zhou and Rossi, 2011;  et al, 2011; Ramalingam et al, 2011), carbon nanotubes 

(Liu et al, 2007; Cheng et al, 2010), quantum dots (Bonoiu et al, 2009), etc. 

have also been explored either for their modulated antiretroviral activity or for 

the targeted drug delivery in the field of HIV research. However, these initial 

applications are either restricted to different HIV10-infected cell types or their 

applicability in ARV drug delivery across CNS have been derived from other 

brain related, but directly or indirectly connected to HIV research such as drug 

of abuse, integrity of BBB, etc. Hence, further in vitro and/or in vivo 
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investigations can shed light on the legitimacy of their application for ARV drug 

delivery in CNS.  

1.7. Nanovehicles mediated delivery of anti-abuse drugs for treatment of 

neuroAIDS: 

Drug addicted AIDS patients account for one-tenth of HIV-infected 

individuals. Addiction of abusive drugs remarkably affects the initiation of HIV 

infections and expedites the progression of associated pathogenesis. 

Particularly, neuroimmunological changes as a consequence of alterations in 

reward or relapse pathways associated with drug abuse (Coller and 

Hutchinson, 2012) significantly enhance the progression of neuropathogenesis 

during HIV infections (Nath et al., 2002; Burdo et al., 2006; Hauser et al., 2007; 

Ferris et al., 2008; Rogers, 2011). Towards this end, last two decades of 

systematic research on molecular mechanism for addiction therapy emphasize 

on use of antagonists against different neuronal and non-neuronal receptors 

involved in the signaling cascades induced by drugs of abuse such as 

dopamine receptor antagonist, opioid-antagonist, etc. (Xi et al, 2006; 

Shippenberg, 2009; Gerra et al, 2009; Peng et al, 2010; Karila et al, 2011; Zhu 

et al, 2011; Bonoiu et al, 2009; Coller and Hutchinson, 2012). Nevertheless, 

majority of drug formulations tested so far in the pre-clinical or clinical 

experimental settings for treatment of neuroAIDS is restricted to the ARV drugs 

only. Antiretroviral (ARV) drugs are meant to target HIV replication and have 

little or no effect on the HIV-associated neuronal disorder. Thus, 
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supplementation of anti-dependence agents with ARV drugs in the treatment 

regimen of drug addicted individuals at very early post-diagnosis of HIV 

infection may countercheck the rate of concerted neurotoxicity and disease 

progression by attenuating the rewarding effects of drug abuse.   

The application of nanocarriers for target-specific drug delivery may be 

extended to all sorts of drugs and diseases. This approach has just commenced 

for addiction therapy (Bonoiu et al, 2009) and attenuation of concomitant 

deleterious effects of drug abuse and HIV infection. Only recently, Reynolds et 

al (2012) reported application of gold nanoparticles mediated delivery of siRNA 

against galectin-1 (an adhesion molecule) in methamphetamine treated, HIV 

infected MDM. They showed that stimulatory effect of methamphetamine on 

gelatin-1 gene expression is countered due to siRNA knock down and 

concomitantly HIV infection is attenuated. However, any similar nanocarriers 

based study to counter the concerted neurodegenerative effect of abusive 

drugs during HIV infection is completely lacking. Thus, in our views, 

nanocarriers based in vitro and in vivo study must be initiated to deliver various 

anti-dependence agents across the BBB and subsequently the legitimacy of 

their use for drug abuse associated neuropathogenesis during HIV infections 

could be delineated. Moreover, transfer of this strategy in clinical settings may 

be beneficial for suppression of rate of pathogenesis in drug addicted HIV 

patients and, in turn, it may add to achieve near-normal life expectancy for 

treated individuals.  
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1.8. Future perspectives: 

Reduction or elimination of HIV load from their safe sanctuaries such as 

brain still remains the major limitation for treatment of this pandemic. To this end, 

nanomedicines have shown tremendous promise and various forms of 

nanovehicles are in pre-clinical stage for targeted delivery of ARV drugs to the 

drug-impenetrable viral sanctuaries. Thus, relevant research-homework has to 

be elucidated more rigorously to sort out the various associated shortcomings of 

this novel approach in treatment of neuroAIDS. Better structural and 

physiological understanding of the brain barriers, selection of safe (non-toxic and 

biodegradable) material for the nanovehicles, development of specific brain cell-

types targeting strategies, refinement of multifunctional nanocarriers, 

development of on-demand drug release strategies, universal formulation 

schemes for intramuscular, intravenous or oral delivery, and more realistic in vivo 

experimentations are few areas which should be given importance to enhance 

the feasibility of nanodrugs to treat the AIDS related neuropathogenesis. 

Additionally, delivery of neuron-resuscitating agents such as exogenous 

neurotrophins to the affected brain may improve the survival, development and 

function of neurons. Furthermore, special attention should be given to generation 

of new strain of resistant virus while using the nanodrugs treatment. Eventually, 

proper pharmacokinetic and pharmacodynamics studies and large scale 

manufacturization will shed light for successful application of nanodrugs in more 

realistic clinical settings, impacting the live of HIV infected patients.   
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2. Hypothesis and aims  

Practice of nanotechnology in medicine has shown exciting prospect for 

development of a novel drug delivery system to administer the desired 

therapeutic levels across the BBB. Several nanocarrier systems such as 

dendrimers, polymeric nanoparticles, micelles, etc have been intensively 

explored (Wong et al., 2010; 2012). Nevertheless, these nano drug-delivery 

methods have one or other major limitations that affect the bioavailability of 

desired amount of drugs at the targeted site. As such, more than 99% of the 

nanodrugs/carriers are deposited either in liver, lungs, or other lymphoid organ 

before they may cross BBB (Gunaseelan et al., 2010). Additionally, poorly-

understood and ambiguous mechanistic details behind the delivery of existing 

nanocarriers across the BBB are prohibiting their advancement as brain-specific 

nanodelivery system. So, a fast and effective way of delivering and releasing the 

drugs from the carrier in the brain is very much needed to eradicate HIV 

reservoir. More recently, the use of magnetic nanoparticles, particularly 

magnetite (Fe3O4), has attracted significant importance in biomedical applications 

(Chomoucka et al., 2010; Yoo, 2012). Magnetically guided drug targeting has 

been successfully demonstrated in various pathological cases including 

carcinomas, inflammations, etc (Senyei et al., 1978; Chertok et al., 2008; 

Escribano et al., 2011). However, its application in the field of HIV/AIDS is 

limited. We explored the potential of magnetite for delivery of CTOP, BDNF and 

AZTTP in brain and found that functional efficacy of MNP bound drug remains 

comparable to the free drug. Hence, it is postulated that ARV and anti-abuse 



46 
 

drugs may be directly immobilized on the surface of MNPs (Fe3O4) via ionic 

interaction and under the influence of external magnetic force MNPs based 

nanoformulations can be delivered across the blood-brain barrier (BBB) in more 

effective manner leading the way for treatment of HIV and associated 

neurotoxicity. Accordingly, following aims are proposed:  

Aim 1: To characterize binding isotherm and pharmacokinetics of MNP bound 

anti-opioid and neuroprotective agent and ARV drugs. 

Hypothesis: (a) Aqueous solutions of MNPs perform amphoterism and develop 

positive or negative charges at the magnetite-water interface in pH-dependent 

manner. Charge on the surface of magnetic particles can allow either week or 

strong interaction of ARV and anti-opioid agents. (b) AZTTP is an established 

ARV drugs that have inadequate or zero reachability across the BBB under 

normal condition. Similarly, CTOP and BDNF cannot cross the BBB. (c) Drugs 

bound to MNPs may sustain its biological activity and efficacy may remain 

comparable to free drugs.   

Aim 2: Development of liposome-based magnetic nanocarriers. 

Hypothesis: (a) Encapsulation of MNPs within the core of liposomes will lead to 

formation of magnetoliposomes which could be a very promising material for 

clinical applications because it remarkably improves the drug stability and 

bioavailability in circulation. (b) Magnetoliposomes can be transported across 

BBB under influence of external magnetic force. (c) The hybrid form of MNPs 

(magnetoliposomes) can reduce the decomposition of drugs due to metabolic 
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(enzymztic mainly) activity of peripheral circulation (blood), and clearance and 

entrapment by reticuloendothelial systems.   

Aim 3: To evaluate the transmigration efficacy of MNP with or without drugs 

across the in vitro BBB model and determination BBB integrity. 

Hypothesis: (a) MNPs guided nanocarriers may offer potential lead for delivery of 

ARV drugs across BBB by application of an external magnetic force which, in 

turn, can inhibit viral replication in the CNS. Similarly, CTOP and BDNF should 

antagonize the neurotoxic effect of morphine (b) CNS specific homeostasis such 

as change in temperature, pH, etc. may trigger the drug release from MNPs. (c) 

Due to non-invasive nature of magnetic force, integrity of BBB will remain intact.  
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3. Materials and Experimental approaches 

3.1. Materials:   

Iron (III) chloride (FeCl3, Cat#: 451649), sodium sulfite (Na2SO3, Cat#: 

71989), hydrochloric acid (HCl, Cat#: 320331), Ammonium thiocyanate 

(NH4SCN, Cat#: 431354), ammonium persulfate ((NH4)2S2O8, Cat#: 248614), 

ammonium hydroxide solution (NH3.H2O, Cat#: 320145), and Transferrin (Cat#: 

T4132) were purchased from Sigma-Aldrich (St. Louis, MO, USA). Unless 

notified, water used for all reactions was HPLC grade. Egg phosphatidylcholine 

(EPC, Cat#: 830071P), 1,2-distearoyl-sn-glycero-3-phosphoethnol- amine-N-

[methyoxy(polyethylene glycol)-2000] (mPEG2000-DSPE, Cat#: 880128P), 1,2-

distearoyl-sn-glycero-3-phosphoethnolamine-N-carboxylfluorescein (CFPE, Cat#: 

810332), and cholesterol (Chol, Cat#: 700000P) were obtained from Avanti Polar 

Lipids (Alabaster, AL, USA). The tetrazolium compound [3-(4, 5-dimethyl thiazol-

2-yl)-5-(3-carboxy-methoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium, inner salt 

(MTS, Cat#: G3580) was purchased from Promega Corporation (Fitchburg, WI, 

USA). Human brain endothelial cell (HMBVEC, Cat#: 1000), human brain 

astrocytes (HA, Cat#: 1800) and their culture medium (Cat#: 1001 and 1801 

respectively) were brought from ScienCell Research Laboratories (Carlsbad, CA, 

USA).    

          

3.2. Synthesis of magnetic nanoparticles:   

Magnetic nanoparticles were prepared by co-precipitating of Fe2+ and Fe3+ 

ions in alkaline solution and treating under hydrothermal condition as described 
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earlier (Saiyed et al., 2007). Hundred millilitres solution of 1 M FeSO4·7H2O and 

2M FeCl3 (Sigma) were thoroughly mixed and added to 8 M ammonium 

hydroxide (Sigma) with constant stirring at 25°C. The resultant black magnetite 

particles were washed repeatedly with hot distilled water to remove impurity ions 

such as chlorides and sulphates and dispersed in Tris-EDTA buffer (pH 7.5). The 

yield of precipitated magnetic nanoparticles was determined by removing known 

aliquots of the suspension and drying to a constant mass in an oven at 60 °C. 

Finally, the particles were dispersed in TE buffer at a suspension concentration 

of 10 mg/ml. The particles were characterized for size using transmission 

electron microscopy (TEM).   

 

3.3. Characterization of MNPs: 

3.3.1. X-ray diffraction (XRD) and transmission electron microscopy (TEM) 

analysis: 

Structural conformation of MNPs was determined by Shimadzu XRD-7000 

diffractometer (Shimazdu, Tokyo, Japan). TEM of MNPs was performed with the 

Phillips CM-200 200 kV transmission electron microscope operated at 80 kV.  A 

drop of MNPs was spread on carbon support film on 400 mesh Cu grids (Type B, 

Ted Pella, Inc., USA). For better contrast during TEM imaging, samples on grid 

were negatively stained with phosphotungstic acid (2.0% w/v; pH 6.4) and dried 

at room temperature. 
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3.3.2. Particle size and zeta potential  

The hydrodynamic radius, size distribution, and surface charge 

measurement of MNPs were carried out at 250C in dynamic laser scattering 

(DLS) (90 Plus Particles Size Analyzer, Brookhaven Instrument Corp., USA). 

Samples were prepared by diluting equal quantity of magnetic particles in 

different pH range of Tris-HCL and Tris-EDTA buffer. 

3.3.3. Superparamagnetism measurement  

The measurement of superparamagnetism was carried out by classical 

vibrating sample magnetometer (Model 4HF VSM, USA). The magnetic 

hysteresis loops of the Fe3O4 particles were measured between +1200 to − 1200 

Oersted (Oe) at room temperature. 

 

3.4. Binding of drugs onto the magnetic nanoparticles:  

3.4.1. CTOP binding to magnetic nanoparticles:  

Mixture of MNPs and CTOP procured from Sigma Aldrich at different mole 

ratios (1:0.16, 1:0.33, 1:0.66, 1:1, and 1:1.33) were incubated in tube rotator at 

room temperature and supernatant were collected for quantification of unbound 

CTOP by HPLC. The difference between the total CTOP added and unbound 

CTOP was used to calculate the amount of CTOP bound to the MNPs.   

3.4.1.1. High-performance liquid chromatography/Photo diode array 
(HPLC/PDA): 
 

HPLC/PDA analyses were performed with a P4000 Thermo-Finnigan 

chromatograph (Thermo Electron Corporation, San Jose, California) and 
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consisted of a SpectraSystem SMC1000 solvent delivery system, vacuum 

membrane degasser, P4000 gradient pumps and AS3000 autosampler. Column 

effluent was monitored at 254 nm with a SpectraSystem UV6000LP variable 

wavelength PDA detector and ChromQuest 4.1 software. Analytical separations 

were carried out with a C18 RP Hypersil GOLD column (RP5, 250 x 4.6 mm, pore 

size 5 µm, Thermo Electron Corporation). The mobile phase consisted of 0.1 % 

TFA in MeCN (phase A) and 0.1 % TFA in H2O (phase B). The linear gradient 

program was as follows: 10 to 100 % A over 30 min at a flow rate of 1.0 mL/min; 

10-20 μL of solution were usually injected. Peptide: Rt, 11.30 min; λmax 276 nm.  

3.4.1.2. Fourier transform infrared spectroscopy (FTIR): 

FTIR spectroscopy was performed on drug loaded and free nanoparticles 

to examine the immobilization of CTOP on its surface. MNPs bound CTOP 

isolated from binding reaction mixture were lyophilized to preserve the integrity of 

drug in the dried and powered MNPs colloids.  These powdered samples were 

used for FTIR analysis in the IR spectrophotometer (Perkin Elmer 

SpectrumTM 100). Spectra measurement were performed using attenuated total 

reflection (ATR) on a single bounce diamond/ZnSe ATR crystal. The spectra 

were collected in the mid-infra red range of 4000-600 cm-1 (2.5-25µm). 

3.4.1.3. Fluorescent tagging of CTOP for binding validation: 

Alexa flour 610 succinimidyl ester (NHS ester) (Life Technologies) were 

used for tagging of CTOP. NHS esters were mixed with equal amount of CTOP 

or PBS and were incubated overnight at room temperature. MNPs were added in 

the mixture and rotate in tube rotator at room temperature.  The collected 
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magnetic particle is used for quantification of attached peptide. Fluorescent 

intensity was measured at wavelength 485/20nm-528/20 nm (Ex/Em) by 

microplate reader (Synergy HT, Multi-mode microplate reader, BioTek 

Instrument, Inc., Winooski, Vermont, USA). MNPs added in mixture of NHS 

esters and PBS does not show any fluorescent.  

 

3.4.2. BDNF binding with magnetic nanoparticles:  

For the binding experiment, different ratios of magnetic nanoparticles and 

BDNF (1:0.05, 1:0.01, 1:0.015, 1:0.02, 1:0.025, 1:0.03, and 1:0.35) were mixed in 

TE buffer pH 7.4, followed by incubating the mixture on a shaker (100 rpm) for 3 

hrs at room temperature. After incubation, the magnetic particles bound with 

BDNF were attracted by application of an external magnetic field. The 

supernatant containing the unbound BDNF was collected and the pellet was 

resuspended in appropriate volume of TE buffer pH 7.5 and stored at 2°C to 8°C 

until further use.  

3.4.2.1. BDNF enzyme linked immunosorbent assay (ELISA):  

The binding efficiency (µg BDNF /mg of magnetic nanoparticles) was 

determined by measuring the amount of BDNF in the unbound fraction by ELISA 

(BDNF Kit from R&D Systems, Minneapolis, MN, USA) as per manufacturer’s 

recommendation. 100 µl of assay diluent were added to each well of microplate 

and were mixed with 50 µl standard, control, or sample. Plates were covered with 

a plate sealer and incubated at room temperature for 2 hours. 100 µl conjugate 

were added to each well following incubation and further incubated at room 
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temperature for 1 hour. Each well was aspirated and washed with washing 

solution, supplied with 200 µl substrate solution and incubated in dark at room 

temperature for 30 minutes.  50 µl stop solution is added to each well and 

fluorescent intensity is read at 450 nm by microplate reader (Synergy HT, Multi-

mode microplate reader, BioTek Instrument, Inc., Winooski, Vermont, USA). The 

amount of BDNF bound to the magnetic nanoparticles was calculated from the 

difference between the total BDNF added and unbound BDNF measured in the 

supernatant.  

3.4.2.2. Fluorescent tagging of BDNF for binding validation: 

Alexa flour 610 succinimidyl ester (NHS ester) (Life Technologies) were 

used for tagging of CTOP. NHS esters were mixed with equal amount of BDNF 

or PBS and were incubated overnight at room temperature. MNPs were added in 

the mixture and rotate in tube rotator at room temperature.  The collected 

magnetic particle is used for quantification of attached peptide. Fluorescent 

intensity was measured at wavelength 485/20nm-528/20 nm (Ex/Em) by 

microplate reader (Synergy HT, Multi-mode microplate reader, BioTek 

Instrument, Inc., Winooski, Vermont, USA). MNPs added in mixture of NHS 

esters and PBS does not show any fluorescent.  

 

3.5. Cell Culture 

3.5.1. Preparation of Peripheral blood mononuclear cells (PBMC) 

Normal peripheral blood mononuclear cells were isolated by density 

gradient centrifugation process as described by Gandhi et al (2009). The 



54 
 

Buffycoat leukopack, procured from the community blood bank, was diluted by 

adding five volumes of phosphate-buffered saline (PBS) and overlaid over 

histopaque (Sigma Aldrich, St. Louis, MO). The samples were centrifuged at 

1200 × g for 20 min at room temperature. PBMCs were carefully retrieved from 

the interface and washed twice with PBS. Red blood cells in the samples were 

lysed using Ammonium-Chloride-Potassium Lysing Buffer (Life Technologies). 

Collected cell pellet were resuspended in Roswell Park Memorial Institute 

Medium (RPMI) -1640.  

3.5.2. Peripheral blood mononuclear cells (PBMC) culture: 

PBMCs isolated by density gradient centrifugation were cultured in RPMI 

1640. RPMI 1640 culture medium was supplemented with 10% fetal bovine 

serum (FBS), 100  U/ml penicillin, and 100 mg/ml streptomycin (Gibco-BRL, 

Gaithersburg, MD). Cells were cultured at 37OC in 5%CO2 incubator.    

3.5.3. SK-N-MC cell culture: 

SK-N-MCs, a neuroepithelioma cell line derived from a metastatic supra-

orbital human brain tumor, were cultured in minimum essential medium (MEM). 

MEM was supplemented with 10% fetal bovine serum (FBS), 100  U/ml penicillin, 

and 100 mg/ml streptomycin (Gibco-BRL, Gaithersburg, MD). Cells were 

incubated at 37OC in 5%CO2 incubator.  

3.5.4. Primary human astrocytes (HA) culture:   

Human astrocytes were cultured in astrocyte medium (AM) (ScienCell). 

AM were supplemented with 2% FBS and 1% each of astrocyte growth 
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supplement and penicillin/streptomycin solution (ScienCell). Culture was 

performed in 37OC incubator with an atmosphere of 5% CO2 and 95% air.  

3.5.5. Human brain endothelial cell (HMBVEC) culture:   

Human brain endothelial cells (HMBVEC) were brought from ScienCell 

Research Laboratories (Carlsbad, CA, USA) and cultured in endothelial cell 

medium (ECM) (ScienCell). ECM were supplemented with 5% FBS and 1% each 

of endothelial cell growth supplement and penicillin/streptomycin solution 

(ScienCell). Culture was performed in 37OC incubator with an atmosphere of 5% 

CO2 and 95% air.  

 

3.6. Efficiency of MNPs bound CTOP:  

3.6.1. Apoptosis inhibition efficiency:    

1x106 PBMCs were treated either with 1.5 µm free or MNPs bound CTOP 

for 4-6 hrs before treatment of morphine (1 µm). A schematic of different 

treatment groups are depicted in figure 5. Following 60 hrs of morphine 

treatment, cells were washed twice with cold PBS and resuspended in 1x binding 

buffer at a concentration of 1 x 106 cells/ml. 100 μl of this resuspended cells were 

aliquoted into a 5 ml FACS tubes, mixed with 5 μl each of Annexin V and 7-AAD 

(BD Biosciences) and incubated at RT for 15 minutes in the dark. After 

incubation, 400 μl of 1X binding buffer is added to each tube, mixed gently, and 

analyzed within 1 hr by flowcytometry (FACScalibur). The untreated cells, which 

served as control, are used for defining the basal level of apoptotic and dead 

cells. The percentage of cells that have been induced to undergo apoptosis is 
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then determined by subtracting the percentage of apoptotic cells in the untreated 

population from percentage of apoptotic cells in the treated population. Cells 

treated with camptothecin for 5hrs at 370C is used as positive control.  

  

Figure 5: Schematic of the experimental design applied for apoptosis inhibition assay with MNPs-

CTOP nanoformulations. 

 

3.6.2. Characterization of neuro-spinal architecture:   

3.6.2.1. SK-N-MC staining: 

 Membrane staining of neuronal cells and measurement of spine 

density was performed according to the method adopted from Smith et al (2009). 

0.5x106 SK-N-MC cells were seeded onto 22x50mm glass coverslips placed in a 

petri-dish.  Following 24 hr of culture, cells were treated either with 1.5 µm free or 

MNPs bound CTOP for 4-6 hrs before treatment of morphine (1 µm). Media from 

the treatment was replaced every alternated day of culture and accordingly fresh 

or MNPs-bound CTOP were added to each treatment. Different groups for this 

treatment were similar to that shown in figure 5. Cells after 7th days of treatment 
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were washed with PBS and fixed in 4% paraformaldehyde for 30 min at room 

temperature. The fluorescent membrane tracer 1, 1’-Dioctadecyl-3,3,3’,3’-

tetramethylindocarbocyanine perchlorate (DIL; 5µg/ml in PBS) was directly 

added onto the fixed cells and allowed to incubate at room temperature for 60-90 

min. Further, coverslips are placed in small petri dishes containing PBS and 

incubated at 4˚C for 12hr before preparation for confocal microscopy.    

3.6.2.2. HIV co-infection of SK-N-MC with morphine treatments: 

0.5x106 SK-N-MC cells were seeded onto 22x50mm glass coverslips 

placed in a 90 mm petri-dish and allowed to adhere overnight.  Cells were treated 

with polybrene (10µg/ml) and 8hrs following this treatment 100 ng clade B HIV-1 

was added to each treatment. 12 hr post-infection, non-absorbed virus was 

washed with PBS, and HIV infection was carried for 7 days. Infected cells were 

treated with Morphine and CTOP as explained above. Similarly, co-infected cells 

were DIL stained and prepared for confocal microscopy. A schematic of different 

co-infections groups are depicted in figure 6.    

 

 

Figure 6: Schematic of the experimental design applied for efficiency determination of MNPs-

CTOP nanoformulations on morphine and HIV co-infection induced neuropathogenesis. 
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3.6.2.3. Confocal Microscopy:  

DIL stained SKNMC were mounted on the ProLong Gold antifade 

reagents (life technologies) and dried away from light at room temperature. Leica 

confocal laser scanning microscope was used for the morphological imaging of 

these cells. Images were obtained using 60x oil immersion objectives at 488nm 

(100%) illusion of an argon-ion laser. High numeric aperture and 2.5x electronic 

zoom were maintained to visualize the individual cells and their spines.  Three 

dimensional images of individual cells were obtained using optical serial sections 

at the rate of 0.14µm/section of the cells. Obtained images were used for 

quantification of spinal density through ImageJ software program. Randomly 

chosen dendritic segments of at least 10 cells from each treatment were 

measured from the apical to basal regions away from the cell soma and spine 

numbers were counted within this defined length. As shown in figure 7, spine 

density is calculated as the number of spines per unit dendritic length and 

expressed as spines/µm. 

 

Figure 7: Schematic of a typical 

dendrite segment: Spine density 

from is measured by calculating 

total number of spines in dendrite 

segment divided by the dendrite 

length (Venkata et al., 2013).   
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3.6.2.4. Validation of HIV infection:  

The culture supernatant from HIV infected SK-N-MC cells were collected 

for quantitation of HIV p24 antigen using a p24 ELISA kit (ZeptoMetrix, Buffalo, 

NY). Supernatant from each treatment groups were thoroughly mixed with lysing 

buffer in 1:9 ratios. 200 µl of lysed samples were added in triplicate in different 

wells of microplate. These wells are coated with anti-p24 monoclonal antibodies 

which allow binding of p24 from lysed samples at 37oC overnight incubation. 

Now, samples from each well was aspirated and washed 5-6 times with the wash 

buffer. 100 µl of HIV-1 p24 detector antibody (biotin conjugated) was added to 

each well and incubated at 37oC for 1 hour. Again wells were washed 5-6 times, 

supplied with 100 µl of streptavidin-peroxidase working solution, and incubated at 

37oC for 30 minutes. Solution from wells were aspirated, washed, and 100 µl of 

substrate working solution is added into each well and incubated at room 

temperature. Upon change of color to blue, 100 µl stop solution was added to 

each well which cause change of color into yellow.  The optical density of 

microplate at 450 nm gives the quantity of HIV p24 in each well.  Different 

concentration of standard p24 antigen is also used simultaneously to plot 

standard curve for quantitation.   

  

3.6.3. Cell viability assay:  

The MTT (Thiazolyl blue tetrazolium bromide) cell proliferation assay was 

performed as described by Wilson et al (1990) with modifications.  1x106 PBMCs 

were treated either with 1.5 µm free or MNPs bound CTOP for 4-6 hrs before 
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treatment of morphine (1 µm). A schematic of different treatment groups are 

depicted in figure 8.  Following 48 hrs of morphine treatment, cells were treated 

with 0.5% MTT at the rate of 100 µl per well and gently rocked in dark at room 

temperature for 2-3 hrs. One volume STOP solution containing 20% SDS in 50% 

dimethyl formamide were added to the rocking cell suspension in MTT solution 

and further rocked gently in dark at room temperature for 1-2 hrs.  Cell 

suspension is centrifuged at 2000 rpm for 10 minutes and supernatant were 

collected for the spectrophotometric measurement of optical density of the 

solubilized formazan at 550 nm. The optical density of formazan in each 

treatment groups is directly proportional to the cell viability.   

 Cell viability for SK-N-MC were determined similar to that for PBMCs 

except overnight culture media were changed with 1 ml fresh media before 

addition of 0.5 % MTT.  

 

Figure 8: Schematic of the experimental design applied for cell-viability assay with MNPs-CTOP 

nanoformulations. 

 

3.7. Efficiency of MNPs bound BDNF:  

3.7.1. Apoptosis inhibition efficiency:        

To see the protective effect of BDNF on morphine induced apoptosis, 

1x106 PBMCs were treated with free and MNPs bound BDNF 12 hr before 
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morphine treatment. Different doses of BDNF used were 10, 50, and 100ng/ml. 

The concentration showing optimum efficacy was used for efficiency-verification 

of MNPs-BDNF nanoformulations.  Morphine was treated with a concentration of 

10-7 M for 48 hrs and cells were processed for flowcytometry (FACScalibur) 

based apoptosis measurement as described for the CTOP efficiency 

measurement.   A schematic of different treatment groups are depicted in figure 9 

and 10.  

           

Figure 9: Schematic of the experimental design applied for determination of optimum BDNF 

concentration required for inhibition of morphine-induced apoptosis in PBMCs.  

 
 

 

Figure 10: Schematic of the experimental design applied for apoptosis inhibition assay with 

MNPs-CTOP nanoformulations. 
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3.7.2. Quantification of cAMP response element-binding protein (CREB):  

3.7.2.1. RNA isolation:    

To see the BDNF-mediated effect on the expression of cAMP response 

element-binding protein (cAMP), astrocytes were treated with free and MNPs 

bound BDNF in the presence and absence of Morphine. Different treatment 

groups for this experiment were similar that depicted in figure 10. Total RNA from 

each treatment groups was isolated using RNAeasy kit (Qiagen) as per the 

manufacturer’s protocol. 5-10 x106 cells were vortex-lysed using RLT buffer 

supplied with the kit. Lysate were loaded onto the QIAshredder spin columns and 

filtered by centrifugation at 10,000 rpm for 30 seconds. Filtered flow through were 

mixed thoroughly with 350µl 70% ethyl alcohol and filtered in RNeasy silica 

membrane column (RNeasy spin column) by centrifugation at 10,000 rpm for 30 

seconds. Bound RNA in the column is washed once with 700 µl RW1 buffer and 

twice with 500 µl RPE buffer, each at 10,000 rpm for 30 sec. Finally, RNA is 

washed with 50 µl water for elution and stored at -80oC for future use.  

3.7.2.2. Synthesis of cDNA:  

Isolated total RNA was used for the synthesis of cDNA using high capacity 

cDNA reverse transcription kits (Applied Biosystems). As per the manufacturer’s 

protocol, 2x cDNA master mixes were prepared by mixing 10x reverse 

transcription buffer, 25x dNTP mix, 10x random primers, RNAse inhibitors, and 

reverse transcriptase enzyme. Total volume was adjusted to 20 µl with DNAse 

and RNAse free water. Ratio of each components of this master mix is presented 

in table 1 a and b. This 2x cDNA master mix is adjusted to 1x by adding one 
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volume of 4µg total RNA. The mixture of master mix and RNA was subjected for 

the thermocycling reaction in 2720 thermocycler (Applied Biosystems). Initially 

reaction was fixed at 25oC for 10 minutes which allows primer annealing to the 

RNA. The reverse transcription reaction was extended at 37oC for 120 minutes 

and finally reaction is heated at 85oC for 5 minutes to inactivate the enzyme. The 

cDNA yield is stored at 4 or 20oC for further use.  

 
Table 1: (A) Ratios of ingredients for preparation of 2x cDNA master mix. (B) Ratios of 2x cDNA 

master mix and mRNA for PCR reaction during cDNA synthesis. 

 
  

3.7.2.3. Quantitative polymerase chain reaction (qPCR): 

Relative abundance of CREB mRNA was assessed using the SYBR green 

master mix from Stratagene (La Jolla, CA, USA). CREB specific primer was 

brought from life technologies. Ratio of each components of this reaction mix is 

presented in table 2.The real-time quantitative PCR was performed using the 

Stratagene 3000 instrument that detects and auto-plots the difference in 

fluorescence versus PCR cycle number and produces a continuous measure of 
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PCR amplification. Time taken by amplification plot of each sample to reach a 

fluorescence threshold above background gives their threshold cycle number 

(CT) which is used to calculate relative gene expression in terms of trans-

accumulation index.  The quantity of RNA input is controlled by measuring 

endogenous reference gene, β-actin. Additionally, data of RNA from treated 

groups were normalized to that from control untreated groups.  

     

 

 

 

 

 

Table 2: Ratio of ingredients for qPCR reactions 

 

3.7.2.4. Calculation of transcript accumulation index (TAI) or relative 

expression 

The ΔCT and ΔΔCT values were calculated for quantitation of TAI (Shively 

et al., 2003). The ΔCT values was calculated by taking mean CT values of CREB 

mRNA and subtracting the mean CT values of reference mRNA i.e. β-actin from 

the same reverse transcription reaction. 

ΔC T = C T  ( C R E B )  −  C T  (β−a c t i n )  

 

2 X Master mix 12.5     µl 

Reference dye 0.375   µl 

20 X Primer/Probe  1.25     µl 

Water 8.375   µl 

cDNA 2.5       µl 

Total: 25.0     µl 
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The ΔΔCT values were calculated by subtracting the ΔCT of the untreated control 

sample from that of treatment groups from the same reverse transcription 

reaction.  

ΔΔC T =ΔC T  ( t r e a t m e n t  g r o u p s )  −  ΔC T  ( u n t r e a t e d  c o n t r o l )  

The transcript accumulation index (TAI) which is the relative gene expression is 

given by, 

T A I = 2 − Δ Δ C T  

Thus, this TAI measurement of gene expression is relative to the reference gene 

and normalized to the untreated group. Importantly, PCR reactions are believed 

to be 100% efficient. Only values with >95% efficiencies in each reverse 

transcription reaction ascertain minimization of the calculations error. 

 

3.7.3. Characterization of neuro-spinal architecture: SK-N-MC staining and 

confocal microscopy: 

 Membrane staining of neuronal cells, confocal microscopy, and 

measurement of spine density was performed similar to that described previously 

for CTOP mediated effect. Different treatment groups for this experiment were 

similar that depicted in figure 10. In brief, 0.5x106 SK-N-MC cells were seeded 

onto 22x50mm glass coverslips placed in a petri-dish.  Following 24 hr of culture, 

cells were treated either with free or MNPs bound BDNF 12 hrs before morphine 

treatment and cultured were maintained for 7 days. Media from the treatment 

was replaced every alternated day of culture and accordingly fresh or MNPs-
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bound BDNF were added to respective treatment. Cells grown on cover slip were 

fixed, stained, mounted, and analyzed under confocal microscopy.   

  

3.7.4. Cell viability assay 

Live/Dead amine-reactive dye (ViViD; Invitrogen) was used to determine 

the viability of PBMCs (Pilakka-Kanthikeel et al., 2013). The cells were treated 

either with free or MNPs bound BDNF 12 hrs before treatment of morphine. A 

schematic of different treatment groups are depicted in figure 11. Following 48-60 

hrs of this treatment, PBMCs were washed with 1X FACS buffer. Pellets were 

mixed with dead cell discrimination dye supplied with the kit and incubated on ice 

for 15 minutes in dark. The dead cell discrimination dye can only cross the cell 

membranes of dead cells, where it reacts with cytoplasmic free amines. Finally, 

cells were washed 2X with FACS buffer and analyzed within 1 hr by 

flowcytometry (FACScalibur). The untreated cells, which served as control, are 

used for defining the basal level of dead cells. The percentage of cells that have 

been induced to undergo apoptosis is then determined by subtracting the 

percentage of dead cells in the untreated population from percentage of dead 

cells in the treated population.  

Figure 11: Schematic of 

the experimental design 

applied for cell-viability 

assay with MNPs-BDNF 

nanoformulations. 
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3.8. Formulation of liposomes-based magnetic nanocarriers: 

3.8.1. Synthesis of ultrasmall magnetic nanoparticles:   

The ultrasmall Fe3O4 MNPs were synthesized according to the co-

precipitation method proposed by Sun et al (2004), with minor modification. All 

glassware was cleaned overnight by aqua regia before used for reactions. 

Briefly, Solution of 3 ml FeCl3 (0.487 g dissolved in 2 mol/L HCl) and  10.33 ml 

H2O was stir-mixed with 2 mL Na2SO3 (0.126 g in 2 mL of water) drop-by-drop 

within a minute.  Upon change of color from yellow to red-light yellow, this 

solution was mixed into 80 mL NH3.H2O (0.85 mol/L) under vigorous stirring. A 

black precipitate is quickly formed, which was allowed to crystallize further for 

approximately 30 minutes under continuous stirring. The suspension was 

washed and formation of stable MNPs was achieved by adjusting the pH from 

7.5 to 3.0 and temperature from 90oC for first five minutes to 100oC degree for 

about one hour.  A change in color of dispersion from black to reddish-brown 

suggests towards compact MNPs which is washed with water for at least three 

times. 

 

3.8.2. Formulation of PEGylated magneto-liposome and transferrin 

conjugation  

Preparation of PEGylated liposomes and encapsulation of MNPs in its 

core was achieved simultaneously according to the extrusion method (Deng et 

al., 2012).  7:2:0.5 molar ratios of EPC, Cholesterol, and mPEG2000-DSPE was 

thoroughly mixed and evaporated under lower pressure. 1 mg ultrasmall MNPs 



68 
 

was added onto the resultant thin lipid film for rehydration. PEGylated liposomal 

vesicles containing MNPs is formed which is extruded by handheld extruder 

(Avanti Polar Lipids, Inc.) containing polycarbonate membrane filter of different 

pore size (400nm/200nm/100nm). Prior to extrusions, the extruder was warmed 

on a hot plate at a temperature above the transition temperature of lipid. The 

resulting unilamellar magnetized-liposomal nanovehicles of homogenous sizes 

were separated from unloaded MNPs by centrifugation at 1,000 rpm x 2 minutes. 

The purified magneto-liposomes were stored at 4oC further use. Fluorescent 

labeling was achieved by adding 0.8% of CFPE relative to the total lipids into the 

initial liposome formulation mixture.     

Transferrin conjugation was achieved by mixing 0.5mg fresh transferrin 

into 200µL of prepared magnetic-liposome at 37oC for ~30 min [36].   

3.8.2.1. Validation of Transferrin conjugation: 

Conjugation of transferrin in the periphery of magneto-liposomes was 

determined spectrophotometrically with UV-visible spectrophotometer (Varian, 

USA).  Presence of transferrin-specific absorbance was measured by scanning 

wavelength range from 250-400nm.   

 

3.8.3. Determination of encapsulation efficiency (EE) 

The encapsulation efficiency value designates the percentage of MNPs 

loaded in liposomes and is given by the ratio between the iron concentration in 

magneto-liposomes and that feeded into the encapsulation-mixture in the 

beginning of formulation process. It is calculated as:  
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EE (%) = (Iron concentration in magneto-liposome)/(Iron concentration 

feeded in beginning of encapsulation process) x 100   

3.8.3.1. Quantitation of encapsulated MNPs in liposome  

Ammonium thiocyanate-based photometric assay was used to determine 

the amount of encapsulated Fe3O4. Magneto-liposomal formulation was mixed 

with Triton X-100 (1%, v/v) in a ratio of 1:1.5 causing de-encapsulation of MNPs. 

One volume concentrated HCl (37%) was added to this mixture and incubated at 

600C for 4 hrs. The suspension was centrifuged at 12,000 g for 10 minutes and 

supernatant was collected for quantification of iron oxide. Equal ratio of 

supernatant and 1% ammonium persulfate solution was mixed with one volume 

0.1 M Ammonium thiocyanate and incubated at RT for 5 minutes. The absorption 

of resulting red iron-thiocyanate was measured at 490 nm by a microplate reader 

(Synergy HT, Multi-mode microplate reader, BioTek Instrument, Inc., Winooski, 

Vermont, USA). A standard curve was prepared with known concentrations of 

Fe3O4 in H2O. 

 

3.8.4. Determination of colloidal- and fluorescent-integrity of magneto-

liposomes:  

The hydrodynamic size of freshly prepared magneto-liposomes was 

determined by DLS (90 Plus Particles Size Analyzer, Brookhaven Instrument 

Corp., USA). The nanocarriers were stored at 4oC and durability of their 

structural-integrity was evaluated by measuring the size by DLS for up to 28 

days. Further, their probable stability in peripheral-circulation was assessed by 
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measuring the size at body temperature and in an in vitro closed circulatory 

system. Magneto-liposomes were dispersed in the mixture of ECM and AM (1:1), 

incubated at 370C for up to 28 hrs, and used for DLS measurement. To analyze 

the sustainability of magneto-liposomal integrity in blood circulation, an in vitro 

closed circulation system was set up using a bidirectional, self-priming peristaltic 

pump (Mini Pump Peristaltic Pump Variable Flow C-2 Lab Pump, Fisher 

Scientific). The nanoformulation was allowed to circulate in a 0.8 mm capillary for 

120 times at a flow rate of 1ml/min. The circulating medium was prepared with 

5% dextran-500 (Cat #: 50-247-495, Thermo Fisher Scientific, Boston, US) in 

PBS which makes a viscosity equivalent to that of blood (4.5 centipoise). 

Samples were collected after 10, 30, 60, and 120 circulations and subjected to 

the size analysis by DLS. 

The fluorescent-integrity of magneto-liposome was determined by 

measuring the fluorescent intensity of associated CFPE at wavelength 

485/20nm-528/20 nm (Ex/Em) by microplate reader (Synergy HT, Multi-mode 

microplate reader, BioTek Instrument, Inc., Winooski, Vermont, USA).    

 

3.9. In vitro blood-brain barrier (BBB) and nanocarrier transmigration:   

3.9.1. Preparation of in vitro BBB model:  

The primary human brain microvascular endothelial cells (HBMEC) and 

human astrocyte (HA) cells were cultivated as per provider’s recommendations 

The BBB model was established as described earlier by Gandhi et al. (2010). 

The in vitro BBB model is developed in a bi-compartmental transwell culture plate 
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(Product # 3415, corning life sciences, Mexico). The upper chamber of this plate 

is separated from the lower one by a 10 µm thick polycarbonate membrane 

possessing 3.0 µm pores. In a sterile 24-well cell culture plate with pore density 

of 2x106 pores/cm2 and cell growth area  of 0.33 cm2, 2 x 105 HBMEC and HA 

were grown to confluency on the upper chamber and underside of lower chamber 

respectively. Intactness of in BBB was determined by measuring the 

transendothelial electrical resistance (TEER) using Millicell ERS microelectrodes 

(Millipore). A mean TEER value of ~200 ohms/cm2 cell culture insert is 

considered consistent with the formation of the BBB.  

   

3.9.2. Transmigration of fluorescent magneto-liposomes across in vitro 

BBB model:  

Transmigration study of magneto-liposomal nanoformulations was 

conducted on the 5th-6th day of the BBB culture when ideal integrity of this 

membrane was achieved as established by TEER measurement. Equal quantity 

of transferrin conjugated and/or unconjugated fluorescent magnetic-liposomes 

were added to the apical chamber and incubated at 370C in the presence or 

absence of a magnetic force of 0.03-0.08 Tesla placed externally below the 

trans-well’s basolateral chamber. Samples were collected from both the 

chambers at different time points and Fluorescent intensity was measured at 

wavelength 485/20nm-528/20 nm (Ex/Em) by microplate reader (Synergy HT, 

Multi-mode microplate reader, BioTek Instrument, Inc., Winooski, Vermont, 

USA). 
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The relative apparent permeability coefficient was calculated from the 

equation as: 

Relative Papp = (Fluorescent intensity in basal chamber)/(Fluorescent 

intensity in apical chamber) X 100 

     Where Papp: apparent permeability 

 

3.9.3. Transmigration and efficiency of BDNF: 

 The in vitro BBB were established in bi-compartmental transwell culture 

plate. Free and MNPs bound BDNF were added in upper well and a week 

magnet was placed on the basal side of the plate. After 48 hr exposure of 

magnetic force, samples were collected from the basal chamber and BDNF 

transmigration ability was analyzed by BDNF ELISA as explained above.  

 The functional efficiency of transmigrated BDNF was determined by its 

ability to induce CREB expression. Astrocytes were collected from the basal side 

of in vitro BBB and used for total RNA extraction, cDNA synthesis and qPCR as 

described above. 

 

3.9.4. Cytotoxicity assay:  

Cytotoxicity was assessed by MTS cell viability assay using CellTiter 

96®Aqueous one solution cell proliferation assay kit (Catalog # G 3580, 

Promega, USA). HBMEC and HA cells were seeded in 96-well tissue plates at a 

density of 5 x 103 cells/well. After 24 hr, culture medium was replaced with 100 µl 

fresh media containing different concentrations of Fe3O4 (from0.02-0.5 mgmL-1). 
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20 µL of MTS solution was added into each well 24 and 48 hr post-treatment and 

incubated at 370C for 2hr. Absorbance was recorded at 490 nm by microplate 

reader (Synergy HT, Multi-mode microplate reader, BioTek Instrument, Inc., 

Winooski, Vermont, USA) 
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4. Results and discussion:           

The brain is one of the common target organs for HIV and recreational drugs. 

Abusive drug is a risk factor for HIV-1 infection and AIDS progression (Nath et 

al., 2002; Burdo et al., 2006; Hauser et al., 2007; Ferris et al., 2008; Rogers, 

2011). Approximately 230 million are illicit drug users and it will increase by 25% 

in next 3-4 decades (UNODCb, 2012). Opiates are among the most abused drugs. 

About 26-36 million aged 15-64 have been estimated to use opioids in 2010 

(UNODCb, 2012).  It stimulates the μ opioid receptors that promote growth of HIV 

and potentiate the HIV-related neurotoxicity (Nath et al., 2000, 2002; Hauser et 

al., 2005). Despite significant advances in antiretroviral therapy, the worldwide 

HIV morbidities, mortalities and associated NeuroAIDS continue. This is 

attributed to the inability of the ARV drugs to completely eliminate HIV reservoirs 

especially in the brain, which is mainly as a result of the impenetrability of most of 

the ARV drugs across the BBB. Many of the new chemical entities, that do not 

cross BBB under normal condition, aimed at treating brain disorders have failed 

clinically because of their impenetrability across BBB. In recent years, the use of 

magnetic nanoparticles has created significant interest in biomedicine and 

biomedical engineering for applications including magnetic nanocarriers for drug 

delivery systems and contrast enhancement agents in MRI for diagnostics. As 

such, we investigated a novel magnetic nanoparticle based drug delivery system 

for delivery of μ opioid receptor antagonist (CTOP, a μ opioid receptor blocker), 

neuroprotective agent (BDNF), and ARV drugs across the BBB.  
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4.1. Characterization of magnetic nanoparticles:   

Size and morphology of MNPs were characterized by TEM. A typical TEM 

micrograph of magnetic particles is shown in Figure 12. It shows that the average 

size of magnetic particles is about 25-40 nm. It should be noted that the higher 

surface to volume ratio enhances target-affinity of MNPs in comparison to the 

micro-sized magnetic particles and can even manipulate and target at the 

subcellular organelles levels.  

              

Figure 12: (A) Transmission electron micrograph of Fe3O4 magnetic particles. (B) Size distribution 

of magnetic nanoparticles: Average size of particles is 25-40 nm.   

 

It has been established that smaller particles (<10 nm) are lost to 

extravasation and larger particles (>200 nm) are quickly captured and excreted. 

Particles between 10 - 70 nm have been shown to penetrate capillary vessels.  

Thus, characterized MNPs can be compatible for enhanced drug delivery across 

the tightly junctioned BMECs along the capillaries lining throughout the cerebral 

microvasculature. Furthermore, In view of the fact that particles between 70 -200 

nm possess longer blood circulation time, MNPs of 25-40nm size could be 

(B) (A) 
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successfully hybridized with liposomes for synthesis of magnetoliposomes of 

about 100 nm which will enhance the bioavailability of associated drugs. 

Importantly, MNPs of about 30 nm size exhibit superparamagnetism and can 

respond to an external magnetic field. Thus, it is possible to “remote control” the 

movement of drug loaded nanoparticles for target-specific delivery by applying 

the magnetic force at the exterior of desired site. 

 

4.2. Effect of pH on surface charge distribution of MNPs:   

Aqueous solutions of MNPs such as Fe3O4 perform amphoterism because 

of adsorption of amphoteric hydroxyl (-OH) group and develop positive or 

negative charges at the magnetite-water interface in pH-dependent manner 

(Tombacz et al., 2006). The flexibility in the surface charge allow binding of wide 

range of molecules either via direct, but week, ionic interactions to the MNPs 

(Saiyed et al., 2009) or via surface coating or tethering agents (Yoo et al., 2012; 

Wiogo et al., 2012). Thus, adsorption efficiency of a molecule on surface of 

MNPs may be influenced by pH of reaction mixture. The magnitude of charge at 

the surface of colloidal system is quantified by zeta potential using the zeta 

analyzer.  The measure zeta potentials at the surface of MNPs in different pH 

range of Tris-EDTA buffer are shown in figure 13A. Similar to previous reports, 

our results show that the isoelectric point (pI) of MNP is about 7.0 and have 

positive and negative charge below and above pI. We get a significant negative 

zeta potential value (-20.93) at pH 7.4, which is also the physiological pH range. 

Thus, it is possible that at pH 7.4 MNPs may have sufficient charge for the 
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adsorption of drug molecules. A model for electrostatic interaction between 

MNPs and different drugs has been illustrated in figure 13B. Different drugs 

possess reactive free functional groups such as OH, NH2, etc. These functional 

groups may gain charges such as OH2
+ and NH3

+due to change in pH of 

aqueous media and may influence peptide amphiphilic properties. Therefore, 

negative charge on the surface of MNPs at pH 7.4 and possible positive charges 

moieties in the drugs may allow direct binding via ionic interaction. The binding of 

molecules to MNPs can be reversible due to pH variation, which may allow the 

bound drugs to be released at the target site. 

         

Figure 13: (A). Zeta potential (surface charge) of MNPs at different pH.  (B). Schematic illustration 

of proposed electrostatic interaction between MNPs and different drugs at pH 7.4. 

 

4.3. CTOP adsorption on MNPs surface:               

Infrared spectra obtained via Fourier transform infrared spectroscopy 

(FTIR) can help in identifying the bonding present in an unknown molecule via 

measuring the bending vibration of certain functional groups that are present in 

(B) (A) 
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the sample (Balaji et la., 2009). In infrared spectroscopy, IR radiation is passed 

through a sample. Some of the infrared radiation is absorbed by the sample and 

some of it is passed through (transmitted). The resulting spectrum represents the 

molecular absorption and transmission, creating a molecular fingerprint of the 

sample. Like a fingerprint no two unique molecular structures produce the same 

infrared spectrum.  

 

 
Figure 14: FTIR spectra of transmittance: (A) % transmittance of MNP and “MNP+CTOP”. (B). 

Difference between % transmittance of MNP and “MNP+CTOP”: transmittance of “MNP+CTOP” 

obtained from FTIR were subtracted from transmittance of MNP only and difference in 

transmittance at specific band ranges were co-related with presence or absence of functional 

group associated with CTOP and aqueous medium. 

(B) 

(A) 
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Fourier Transform Infrared Spectroscopy (FTIR) spectra were performed 

to the lyophilized MNP bound with or without CTOP using a FTIR 

spectrophotometer in wave range of 4000-400 cm-1 (Figure 14A). Typically, 

bending vibration at about 900-1000 cm-1 corresponds to the O-H bond, 

particularly for strong hydrogen bridges. Similarly, about 1000-1600 cm-1 is 

typical of the H-O-H molecule (Lopez et al., 2010). In order to define the 

presence of CTOP on MNPs, transmittance spectra of “MNPs-CTOP” were 

subtracted from that of MNPs only and percent transmittance difference were 

plotted (Figure 14B). Maximum variation in transmittance was detected at about 

600-1600 cm-1. We can see a reduction in transmittance up to 18% at 1025 cm-1 

for CTOP bound MNPs. Thus, change transmittance for “MNP+CTOP” in 

compare to MNPs at these bands may correspond to two interrelated 

phenomenon. First, hydroxyl groups from water molecule may have attached by 

the hydrogen bonds in the iron oxide surface influencing the negative charge 

distribution on surface which is reflected as higher negative zeta potential. 

Similarly, water molecules (H-O-H) may have chemically adsorbed to the 

magnetic particle surfaces, again influencing the surface charge. Second and 

more importantly, presence of charge due to O-H or H-O-H on the surface of 

MNPs might have allowed binding of CTOP resulting in change of bending 

vibration of bonds which may be reason of reduced transmittance. Additionally, 

we noticed that transmittance of “MNP+CTOP” is also reduced up to 7% at about 

2870cm-1 and 3370 cm-1 which may reflect increased absorption at these bands 

due to presence of additional CH and NH2 group of CTOP. Typically, frequency 
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range for N-H group is 3300-3500cm-1 and that of C-H is 2700-3300cm-1. CTOP 

absorption on the surface of MNPs was further verified using fluorescent-based 

detection method. The Alexa flour 610 succinimidyl (NHS) esters were used for 

tagging of this peptide. The NHS ester mediated bonding is most efficient and 

convenient way to attach fluorophores to amine‑containing (R‑NH2) molecules 

such as peptides, proteins, or amine‑modified nucleic acids. The stability of 

amide bonds formed in the reaction is as good as that of peptide bonds. Thus, 

selective linking of fluorophores to peptides opens window for many purposes 

such as quantification, imaging, etc. As shown in figure 15, significant fluorescent 

intensity were detected on the MNPs which were immobilized with dye tagged 

peptide. Simultaneously, dye-exposed or non-exposed MNPs showed no trace of 

fluorescent activity. This suggests that CTOP could successfully be immobilized 

on the surface of MNPs.      

             

 

 

 

Figure 15: Fluorescent-based 

CTOP binding verification: 

Immobilization of red fluorescent 

dye tagged CTOP on MNPs 

emits fluorescence while MNPs 

without CTOP shows no 

fluorescence. 
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 4.4. Time kinetics and binding isotherm of CTOP to MNPs:   

Data presented in the figure16A and 16B, shows the time kinetics and 

percent direct binding of CTOP to MNPs. We found a significant binding of CTOP 

to magnetic nanoparticles. The MNPs were dispersed in Tris-EDTA buffer (pH 

7.4) and mixed with CTOP. The mixture was incubated in tube rotator at room 

temperature and supernatant were collected at different time points from 5-240 

minutes (Figure 16A). The unbound fraction of CTOP present in supernatant was 

quantified by HPLC. The difference between the total CTOP added and unbound 

CTOP was used to calculate the amount of CTOP bound to the MNPs. Maximum 

binding was achieved at about 5 minutes of incubation which remained 

unaffected till 4 hour of experimental duration. After the time kinetics of binding 

was optimized, the CTOP binding efficiency was estimated by using different 

ratios (Weight/Concentration),1:0.16, 1:0.33, 1:0.66, 1:1, and 1:1.33 of MNPs 

and CTOP, respectively. Data presented in Figure 16B show the adsorption 

isotherm of CTOP on MNPs. The result obtained from three independent 

experiments indicates a maximum binding efficiency of about 140 µg CTOP per 

mg of MNPs. It should be noted that time kinetics and loading efficiency 

significantly affect the drugs sustainability and safe dosing. This eventually 

influences drugs bioavailability. The sustainable binding of CTOP on MNPs for 

over four hours is in accordance to our hypothesis where, under the non-invasive 

magnetic influence, drug delivery to the target could be maximized before it 

leaches out of the nanocarrier.      
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Figure 16: (A). Time kinetics of CTOP binding onto MNPs. (B). Binding isotherm for CTOP on 

MNPs. 

 

4.5. Functional efficiency of MNPs bound CTOP:  

4.5.1. Inhibition of morphine-induced peripheral pathogenesis: 

Exposure of morphine has been shown to modulate functions of various 

immune cells such as phagocytes, T cells, dendritic cells, etc. (Eisenstein and 

Hilburger, 1998; Messmer et al., 2006; Rivera-Amill et al., 2010; Saurer et al., 

2006; Wang et al., 2008). It significantly alters the expression of cytokines, 

chemokines, etc. and induces apoptosis in both peripheral and neuronal cells.  

Studies from our lab (Nair et al., 1988) have shown that morphine exposure 

causes significant induction of apoptosis in PBMCs. Though different kinds of 

opioid receptors exist, morphine exerts its effect through the μ opioid receptor. 

Therefore, use of a μ opioid receptor antagonist could prevent the morphine-

induced effect and may provide significant therapeutic benefits. We used D-Pen-

Cys-Tyr-DTrp-Orn-Thr-Pen-Thr-NH2 (CTOP), which is a highly selective and 

(A) (B) 
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potent μ receptor antagonist and remains impenetrable through the Blood Brain 

Barrier (BBB). To compare the efficiency of MNPs bound CTOP with that of free 

CTOP, PBMCs were treated with morphine and its effect on apoptosis induction 

was analyzed using flow-cytometry (Figure 17).  Annexin-V is the indicator 

protein of the earliest events in apoptosis. As expected, more than 80% of 

PBMCs were found to be Annexin-V positive when they were treated with 

morphine (figure 17C and 17F). This effect was significantly reversed when cells 

were treated with free or MNPs bound CTOP.  

 
 
Figure 17: Flow-cytometry to evaluate the efficacy of MNPs bound CTOP on morphine induced 

apoptosis in PBMCs: MNP bound CTOP (E) possess parallel efficacy to that of free CTOP (D) in 

suppressing the apoptosis induced by morphine (C). 
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Number of Annexin-V positive cells was reduced approximately by 50% 

upon treatment with free CTOP and only 32% cells were found Annexin-V 

positive. Similarly, MNPs-bound CTOP exerted equivalent apoptosis inhibition 

efficiency and nearly 24% cells were found Annexin-V positive in this case. 

Untreated or only MNPs treated cells showed near zero or insignificant induction 

of apoptosis. Thus, our result suggests that efficacy of CTOP upon its binding to 

MNPs is preserved. 

4.5.2. Inhibition of morphine-induced neuronal pathogenesis:   

Morphine crosses the BBB and believed to suppress CNS immune 

responses by various mechanisms. It inhibits or downregulates various 

inflammation-suppressing chemokines and cytokines such as macrophage 

inflammatory protein, interleukin-8 etc (Mahajan et al., 2002).  Also, morphine 

have been shown to induce apoptosis in various CNS cells such as microglia, 

astrocytes, neurons, etc. (Goswami et al., 1998; Yin et al., 1999; Hu et al., 2005). 

All these immune-inhibitory effect of morphine could influence neuro-

inflammation leading to neuropathogenesis. In fact, deregulation of chemokine or 

cytokine expression in CNS cells is a hallmark phenomenon associated with 

neuronal degeneration. As such, morphine is putatively believed to acts 

synergistically as a co-factor in neuropathogenesis. In particular, morphine has 

been shown to synergize the HIV infection associated neurocognitive disorders 

where spinal architecture of neuronal cells is significantly altered (Atluri et al., 

2013). Figure 18 shows altered spinal morphology of neuroblastoma cells upon 

morphine treatment. This alteration of spinal architecture may negatively affect 
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the synaptic plasticity during morphine exposure. Spine morphology play 

important role in maximizing the effectiveness of the synaptic transmission 

leading to cognitive modulation. Neuronal adaptation pattern is differentially 

regulated during opioid addiction (Simonato, 1996) and cause rapid development 

of tolerance, physical and psychological dependence. These opioid-dependence 

associated disorders could significantly be diminished by supplementation of 

anti-opioid agents which may prevent opioid-induced pathogenesis. However, 

current treatments to alleviate the action of opioids are less effective at CNS 

level, basically due to impermeability of therapeutic molecules across blood-brain 

barrier. As a first step towards our hypothesis in developing MNPs-based 

nanoformulations of anti-opioid agents, we analyzed the efficiency of MNPs 

bound CTOP in preventing the morphine induced inhibition of spinal density as a 

sign of neuronal degeneration (Figure 19).  

 
Figure 18: Confocal microscopy to evaluate the efficacy of MNPs bound CTOP on morphine induced 

neuropathogenesis: Free (E) and MNP bound CTOP (F) prevents the morphine induced spinal degradation 

in neuroblastoma cells, SK-N-MC (B).  
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As shown in figure19B, morphine treated cells showed a spinal density of 

0.24±0.07 per µm2, whereas the same in untreated cells were approximately 1 

per µm2 (P<0.0001). This significant decrease in morphine-induced spinal density 

is prevented upon CTOP treatment. Both free and MNPs-bound CTOP showed 

equivalent efficiency in checking the spinal degeneration (Figure 19; 18E and 

18F).   Cells with free CTOP and MNPs bound CTOP showed an average spine 

density of 1.04±0.18 and 0.84±0.30 per µm2 respectively. These values were 

comparable to that of untreated cells; however significantly higher than that of 

morphine treated cells only (P<0.0001). Treatment of MNPs alone in cells 

exposed or non-exposed to morphine (figure19; 18 C and 18B.) did not alter the 

spinal density.  Thus, our result suggests that, similar to their efficacy in 

Figure 19: Spinal density (No. 

of spines/µm dendritic length) 

of SK-N-MC showing 

morphine induced spinal 

degeneration and effect of 

Free and MNP bound CTOP 

on prevention of this 

degradation.  
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suppressing apoptosis induction in PBMCs, MNPs bound CTOP possesses 

parallel effect to that of free CTOP in preserving the neuropathogenesis.   

4.5.3. Inhibition of morphine-induced neuronal pathogenesis during HIV 

infection: 

As discussed previously, opioids act in synergy with HIV viral proteins and 

cause greater immunosuppression. Regions of brain with higher opioid receptors 

such as striatum and hippocampus have been shown to possess increased viral 

titers (Nath et al., 2000; 2002; Hauser et al., 2005) which lead to faster 

neuropathogenesis. As such, we analyzed the efficiency of MNPs-bound CTOP 

in preventing the additive neuro-degeneration of morphine during HIV infection. 

As reported previously from our laboratory (Atluri et al., 2013), HIV infections 

lead to severe loss of spinal architecture in neuroblastoma cells (Figure 20B). In 

compare with uninfected cells where spinal density was approximately 1 per µm2, 

HIV infections reduce the spinal density to 0.35±0.17 per µm2 (P<0.0001) and, 

though not significant, it goes further down to 0.30±072 per µm2 when exposed to 

morphine during infection (figure20B, 20C; 21). To analyze the efficacy of our 

MNP-CTOP nanoformulation in prevention of morphine-induced additive 

neuropathogenesis, morphine exposed, HIV infected cells were treated with 

MNPs bound CTOP. As shown in figure 20D and 21, this significantly prevented 

the spinal degeneration. The spinal density significantly went up to 0.74±078 per 

µm2 in compare to HIV infection (P<0.0002) or co-treatment of morphine with 

infection (P<0.0001) (Figure 21).  



88 
 

 

Figure 20: Confocal microscopy to evaluate the efficacy of MNPs bound CTOP on morphine and 

HIV co-infection induced neuropathogenesis: MNP bound CTOP (D) prevents the spinal 

degradation in HIV-infected, morphine co-treated neuroblastoma cells, SK-N-MC.  

 

            

Upregulation of μ opioid receptor and associated alteration in the 

expression of pro- and antiapoptotic molecules, cytokines, and chemokines is a 

common phenomenon during the HIV infection and opioid exposure (Peterson et 

Figure 21: Spinal density (No. 

of spines/µm dendritic length) 

of SK-N-MC showing 

morphine and HIV co-

infection induced spinal 

degeneration and effect of 

MNP bound CTOP on 

prevention of this 

degradation.  

19µm 19µm 

19µm 19µm
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al., 1994; Rojavin et al., 1993; Zhang et al., 2005; Beltran et al., 2006; El-Hage et 

al., 2005). Apoptosis due to treatment with HIV-1 pathogenic protein gp120 and 

morphine in μ-opioid receptors deficient mice gets lowered significantly in 

compare with the wild types (Moorman et al., 2009). The magnetic 

nanoformulations carrying μ-opioid receptor antagonist, CTOP, could possibly 

block this receptor and, thus, in turn, may minimize the neuro-pathogenesis 

exacerbated due morphine co-treatment and/or HIV infection.  Therefore, as our 

result suggests (Figure19-21), higher spinal density in HIV infected and morphine 

co-treated neuronal cells, upon exposure of MNP bound CTOP, should be a 

natural outcome than cells where no CTOP was supplied. This further, supports 

our hypothesis in developing MNPs-based nanoformulations of anti-opioid agent. 

4.5.4. Cytotoxicity of MNPs-bound CTOP:    

          

Any exposure of external insults in the body, particularly when a sensitive 

organ such as brain is targeted, must be validated for its cytotoxic effect.  It has 

been suggested that doses of MNPs within the permissible limit have non-

significant safety concerns and are biodegradable (Jain et al., 2008). We 

Figure 22:  Percent cell 

viability of PBMCS and SK-

N-MC cells 48 hrs post-

treatment with MNPs and 

MNP-CTOP 

nanoformulations.    
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examined the nonspecific cytotoxicity of MNPs with and without CTOP to PBMCs 

and SK-N-MCs.  Our results showed that MNPs was neither cytotoxic to PBMCs 

nor to SK-N-MCs up to 48 hours of experimental treatments (Figure 22). The 

unaffected percent cell viability due to treatments of MNP with or without CTOP 

compared to untreated cells indicates their safe use as nanocarrier for drug 

deliver. 

 

4.6.  BDNF adsorption on MNPs surface:               

   

 

BDNF absorption on the surface of MNPs was determined using 

fluorescent-based detection method. As explained for the CTOP tagging, the 

Alexa flour 610 succinimidyl (NHS) esters were used for tagging of this protein. 

Fluorescent tagging is mediated by amide boding between dye and 

amine‑containing (R‑NH2) moiety on proteins.  This stable tagging provides 

could be used for many purposes such as quantification, imaging, etc. Significant 

Figure 23: Fluorescent-based 

BDNF binding verification: 

Immobilization of red fluorescent 

dye tagged BDNF on MNPs 

emits fluorescence while MNPs 

without BDNF shows no 

fluorescence. 
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fluorescent intensity was detected on the MNPs which were immobilized with dye 

tagged BDNF (Figure 23). Simultaneously, dye-exposed or non-exposed MNPs 

showed no trace of fluorescent activity. This suggests that BDNF could 

successfully be immobilized on the surface of MNPs.    

4.6.1.  Time kinetics and binding isotherm of BDNF to magnetic 

nanoparticles:   

Several in-vitro and in-vivo studies demonstrate magnetically guided drug 

targeting (Alexiou et al., 2006; Lubbe et al., 1996). Here we characterize binding 

isotherm and kinetics of BDNF on MNPs, which is essential for determination of 

drugs sustainability on carrier and their safe dosing and bioavailability as well. 

The nanoformulation of MNP carrying BDNF was prepared by using different 

ratios of MNP and BDNF (1:0.05, 1:0.01, 1:0.015, 1:0.02, 1:0.025, 1:0.03, 1:0.35) 

in TE buffer (pH 7.4).  

 

The BDNF ELISA was performed to calculate the binding efficiency (µg 

BDNF /mg of magnetic nanoparticles) at different MNPs to BDNFs ratios. MNPs 

Figure 24: Binding isotherm of 

BDNF on MNPs: Ratios of 1:0.05, 

1:0.01, 1:0.015, 1:0.02, 1:0.025, 

1:0.03, and 1:0.35 of MNP and 

BDNF were incubated for 3 hrs 

binding. Binding efficiency (µg 

BDNF/mg MNP) was measured by 

BDNF ELISA.    
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bound BDNF were separated from the binding reaction mixture using magnetic 

force and unbound fraction of BDNF present in supernatant was quantified. The 

difference between the total BDNF added and unbound BDNF was used to 

calculate the binding isotherm of MNPs-BDNF binding. As shown in figure24, a 

maximum binding efficiency of 177 µg of BDNF per mg of MNP is achieved in 3 

hours of binding-reaction time. This corresponds to approximately 70% 

immobilization efficiency of BDNF on MNPs, suggesting an efficient and effective 

binding. Thus, similar to use of CTOP-magnetic nanoformulations, BDNF-

nanoformulations are also in accordance to our hypothesis and could be used for 

targeted brain delivery under the non-invasive magnetic influence.    

 

4.7.  Apoptosis inhibition efficiency of MNPs bound BDNF in leukocytes:   

The mechanism of programmed cell death in apoptosis is triggered by a 

variety of internal and external stimuli. It could lead to sever pathological features 

such as those defined in case of certain inflammatory diseases of the brain and 

CNS infections (Kaul et al., 2001). Opioids are known to induce apoptosis in all 

types of cells including lymphocytes and neuronal cells (Nair et al, 1997; Yin et 

al., 1999; Singhal et al., 1998; goswami et al., 1998; Singhal et al., 1999; Freier 

and Fuchs, 1993; Fuchs and Pruett, 1993), mainly through the caspase-3 

activation. Thus, inhibitors of caspase-3 activity can rescue cells from the 

apoptotic cycle (Xia et al., 2010). In particular, use of such factor in addition to μ 

opioid receptor antagonist could be of therapeutic benefit in treatment of opiate 

addiction. Neurotrophic factor, BDNF is a class of such apoptosis-inhibitors which 
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acts by blocking caspase-3 activity. As such, apoptosis-inhibition efficacy of 

MNP-BDNF nanoformulations was evaluated. Here again, morphine was used as 

agent for the apoptosis induction in lymphocytes.  

 

Figure 25: Flow-cytometry to evaluate the efficacy of MNPs bound BDNF on morphine induced 

apoptosis in PBMCs: (A). % Annexin-v positive cells showing apoptosis-inhibition effect of 

different concentration of BDNF upon morphine treatment. (B). % Annexin-v positive cells 

showing apoptosis-inhibition effect of MNPs- BDNF nanoformulations upon morphine treatment. 

(C). Representative histogram showing Annexin-v expression upon different treatments. 

Camptothecin is an established apoptosis inducer and serves as positive control.  

 

To check whether BDNF activity is retained after immobilization by direct 

binding to MNP, we evaluated and compared the efficiency of MNPs bound 
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BDNF to that with free BDNF (Figure 25). As expected, morphine treatment 

significantly (10-7M) induced apoptosis in PBMCs (55%) in compare with 

untreated cells (p=0.006) (Figure 25A). We found that pre-treatment of BDNF 

could prevent the morphine-induced apoptosis in dose dependent manner. The 

optimum response was achieved at 50ng/ml (p=0.019) and thus, same 

concentration was used for our further experimentation. Our results confirmed 

that morphine induces apoptosis in PBMC, and this effect was reversed by free 

BDNF. Similarly, morphine-induced apoptosis was also reversed upon treatment 

with MNP-BDNF nanoformulations (p=0.014; figure 25B and 25C). Cells were 

also treated with camptothecin which serves as positive control for apoptosis 

induction (figure 25C).  This suggests that binding of MNP did not interfere with 

the enzymatic activity of BDNF. These results showed that BDNF efficiently 

bound to MNPs and that bound form is as effective as that of free unbound 

BDNF in suppressing the apoptosis induced by morphine. 

 

4.8.  Efficacy of MNPs bound BDNF in Astrocytes: 

4.8.1. Modulation of CREB expression in Astrocytes:  

CREB play vital role in many neuronal-based responses such as memory 

and amnesia (Bourtchuladze et al., 1994; Bernabeu et al., 1997; Taubenfeld et al., 

1999; Cammarota et al., 2000; Viola et al., 2000). Increased CREB phosphorylation 

has been shown to involve in memory consolidation (Jie luo et al., 2013).CREB 

mediated activities also functions as connecting bridge between opioid-induce 

secondary messenger systems and consequent alterations in gene expression 
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during opioid exposure. As such, decreased phosphorylation of CREB has been 

noticed due to morphine-induced stimulation of opioid receptor (Mahajan et al., 

2005). In this context, BNDF could exert beneficial therapeutic molecules 

because it assist in long-term memory formation, mainly via the activation of 

CREB in a time-dependent manner (Kwon et al., 2011; Alonso et al., 2005). 

Therefore, study was carried out to evaluate the ability of MNP-BDNF to 

modulate the morphine induced CREB expression in human brain astrocytes. 

   

Figure 26: Trans-accumulation index (TAI) showing CREB expression: (A). TAI showing effect of 

Free BDNF and MNPs-BDNF nanoformulations on CREB expression. CREB expression is 

significantly upregulated either upon free or MNPs bound CTOP treatments. (B). TAI showing 

effect of Free BDNF and MNPs-BDNF nanoformulations on morphine mediated inhibition of 

CREB expression.   

 
 As shown in figure 26A, treatments of BNDF significantly upregulates 

CREB expression (TAI= 2.4±0.25, p=0.033).  Similarly, MNPs bound BDNF 

resulted in a TAI value of TAI=2.43±0.27 (p=0.007). Thus, these comparable 

CREB expressions support our hypothesis that, irrespective of nanoformulations 

use for peripheral or neuronal cells, free and MNPs bound BDNF possess equal 

(A) (B) 
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efficacy. Further, BDNF nanoformulations were tested for its ability to suppress 

the morphine-induced effect in astrocytes. As expected, in consistent with 

previous reports (Mahajan et al., 2005), morphine resulted in significant 

downregulation of CREB (TAI=0.533±0.03; p=0.0004; Figure 26B). When 

morphine exposed cells were pre-treated either with free or bound BDNF, 

downregulation of CREB expression was significantly reversed. Free and MNPs-

bound MNPs resulted in TAI values of 1.25±0.03 (p=0.008) and 1.253±0.06 

(p=0.03) respectively (Figure 26B). This further suggests that nanoformulation 

could be used to alleviate morphine induced effects in CNS related problems.  

4.8.2. Inhibition of neuronal pathogenesis: 

Studies have shown that drug addiction alters the function of the neuronal 

circuit which includes changes in neuronal plasticity and synaptic transmitter 

release (Sarti et al., 2007; Frankfurt et al., 2011; Nestler, 2001). In the same line, 

morphine administration produces a persistent decrease in dendrite length and 

dendritic spine in neurons of different brain regions such as nucleus accumbens, 

visual cortex, sensory cortex, etc (Li et al., 2007; Robinson and Kolb, 1999). Here 

again, BDNF treatment has been reported to increase dendrite numbers 

(Bramham and Messaoudi, 2005; Chapleau et al, 2008). Therefore, we tested 

the ability of our nanoformulation to facilitate the neuroprotective efficacy in 

maintaining the dendrite spine density. Here also, morphine treatment resulted in 

decreased spine density(0.055±0.02 per µm2; p< 0.002) in compare to untreated 

groups (Figure 27A and 27B). This significant decrease in morphine-induced 

spinal density is prevented upon BDNF treatment. Both free and MNPs-bound 
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BDNF showed equivalent efficiency in preventing the morphine induced spinal 

degeneration (Figure 27B).  

 

 

    

Figure 27: Efficacy of MNPs bound BDNF 

on morphine induced neuropathogenesis: 

Confocal microscopy showing effect of 

free and MNP bound CTOP on 

prevention of morphine induced spinal 

degradation in neuroblastoma cells, SK-

N-MC. (B) Spinal density (No. of 

spines/µm dendritic length) of SK-N-MC 

showing morphine induced spinal 

degeneration and effect of Free and MNP 

bound BDNF on prevention of this 

degradation.   

(A) 

(B) 
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Pre-treatment of MNPs bound BDNF resulted in an average spine density of 

0.258±0.09 per µm2 (p=0.007). Our result suggests that, similar to their efficacy 

in suppressing morphine-induced apoptosis in PBMCs, BDNF nanoformulations 

possesses comparable effect to that of free BDNF in preserving the 

neuropathogenesis.    

 

4.9. Cytotoxicity of MNPs-bound BDNF:     

  

One of the major concerns while using nanomaterials in medicine is that of 

potential toxicity. As such, evaluation of cell viability is important for the 

nanoparticle application in medicine. We examined the nonspecific cytotoxicity of 

MNPs with and without BDNF to PBMCs.  Our results showed that MNPs 

possess insignificant toxicity for PBMCs. Approximately 95% cells were found 

live (Figure 28), in both, MNPs and MNPs-BDNF treatments. This unaffected 

percent cell viability suggests their safe use as nanocarrier for drug deliver. In the 

same line, based upon in vivo studies, it has been suggested that doses of MNPs 

within the permissible limit have non-significant safety concerns and are 

biodegradable (Jain et al., 2008).  

Figure 28:  Percent cell 

viability of PBMCS 48 hrs 

post-treatment with MNPs 

and MNP-BDNF 

nanoformulations.    
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4.10.  Characterization of MNPs-based liposomal nanocarriers:   

Magnetite (Fe3O4) is the most commonly used magnetic nanoparticles in the 

field of biomedicine, mainly due to its biocompatibility.  In accord with the basics 

of nanotechnology, MNPs of different sizes, ranging from a few up to tens of 

nanometers, have been extensively investigated for disease diagnosis and 

target-specific improved drug delivery. Generally drugs are either directly 

immobilized on the MNPs surface or tethered via coating of organic/inorganic 

surfactants such as PEG. In either case, attached drugs are exposed to external 

environment and possess threat of rapid decomposition due to metabolic 

(enzymztic mainly) activity of peripheral circulation (blood) before it could reach 

to target. Thus, an approach to protect drugs from exterior must be devised for 

advancement of MNPs-based drug delivery. Recently, a hybridization strategy 

where MNPs is encapsulated in liposomes termed “Magneto-liposome (ML)”, has 

emerged as a possible solution. 

 

4.10.1. Characterization of ultrasmall magnetic nanoparticles:    

Potential application of ML-based drug delivery across blood-brain barrier 

(BBB), in CNS, is very limited. In the wake of CNS sophisticacy, an ideal drug 

delivery carrier should co-incorporate maximum drug bioavailability with minimum 

waste constituent. One way this could be achieved is by increasing the 

encapsulation potential of liposomes with no affect on overall ML size. Higher 

loading density of MNPs in liposomes would require synthesis of smallest 

particles in the nanometer range  suitable for the targetting and drug-
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bioavailablity.  Particles of >10 nm can sustain in the the systemic circulation; 

however, that of lesser size lost due to permeability of vascular endothelium and 

prohibits drugs to reach target-site.    

There are several methods to synthesize Fe3O4 nanoparticles such as co-

precipitation, microemulsion, high temperature decomposition, oxidation of 

magnetite, etc. (Sun et al., 2004; Frascione et al., 2012; Jayapaul et al., 2011; ). 

Co-precipitation is regarded as one of most efficient, circumstance friendly and 

cost-effective way to prepare MNPs on nanoscale. This method mainly uses two 

different approaches to reduce ferrous ion from FeCl3 - either by Na2SO3 or 

FeSO4. The later approach results in formation of rod shaped nanoparticles of 

over 30 nm.  Liposomal encapsulation of particles of this shape and size will 

have a greater impact on the overall size of MLs and may not be suitable for 

delivery across many physiological barriers such as BBB, stomach epithelial, etc. 

Most importantly, it may significantly downgrade the colloidal stability of MLs in 

the peripheral circulation. The Na2SO3-based reduction approach possesses 

advantage in producing round MNPs with smaller size, probably due to the gentle 

reduction ability from Na2SO3 in aqueous medium. Maghemite (Fe2O3) is the 

primary product of this reduction reaction which is further oxidized under acidic 

condition resulting in Fe3O4 nanoparticles. As determined by TEM, ultrasmall 

magnetite nanoparticles of 7-10 nm possessing excellent dispersion property in 

aqueous medium could be synthesized by this approach (Figure. 29A). The 

nano-sized particles possess remarkably higher specific surface area which 

improves drug loading ability and dissolution rate influencing the bioavailability. 
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These particles could also manipulate and target at the subcellular organelles 

levels. The crystal structure of synthesized magnetite particles was confirmed by 

X-ray diffraction spectroscopic measurement (Figure 29B). The X-ray spectrum 

consists of magnetite-specific peaks which correspond to 220, 311, 400, 511, 

and 440 planes.  

 

Figure 29: Characterization of ultrasmall magnetite nanoparticles:  a) TEM image showing MNPs 
of 7-10 nm. b) XRD spectrum showing magnetite-specific characteristics plane. 

 

Magnetic hysteresis loops for these particles, which displayed strong 

magnetic property, were measured between +1200 to − 1200 Oersted (Oe). As 

shown in figure 30A, the nanoparticles exhibit a superparamagnetic behavior with 

no coercivity and remanence at room temperature. The superparamagnetism can 

be utilized for simultaneous monitoring and quantitation of MNPs distribution 

specific or nonspecific to various tissues. Thus, quantitation of localization of 

MNPs associated drugs could be possible using techniques like magnetic 

resonance imaging (MRI) and magnetometery due to variation in the surface 



102 
 

charge of naked and drug-bound nanoparticles leading a way for determining the 

site-specific optimal or suboptimal drug-dosing. Distribution of charge on the 

surface of synthesized MNPs was determined by measuring the zeta-potential at 

different pH level of dispersion solution (Figure 30b). Interestingly, with pH values 

changing from acidic to basic, zeta potential of MNPs alternated from positive 

charge of +26 mV at pH 4.75 to negative charge of -23 mV at pH 8.5.The 

isoelectric point of MNPs was determined at ~7.1 pH. We noticed that content of 

dispersion solution also affects the surface charge of MNPs. As such, in Tris-

EDTA buffer (pH 7.4), MNPs displayed zeta potential of approximately -21 mV 

which is nearly equivalent to that obtained in H2O with pH 8.5 (-23 mV).    

 

Figure 30: a) Magnetic hysteresis loop of MNPs showing no coercivity and remanence at 

room temperature suggests its superparamagnetic behavior. b) Surface charge of MNPs 

varies according to pH values of suspension solution.  

  

Charge on the surface of Fe3O4 particles is developed due to its 

amphoteric property in aqueous media.  Acting as Lewis acid, at the hydrated 

solid/water interface, magnetite adsorb/coordinate water or hydroxyl group and 
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gets H+/OH- ions along it surface. These ions can be replaced by other organic 

or organic anion, form hydrogen bond, and adsorbs proton or cations. This could 

allow direct immobilization of various biomolecules/molecules on MNPs surface 

via  hydrogen bonding, hydrophobic interaction, and electrostatic repulsion (Peng 

et al., 2004; Yu et al., 2013). Also, the surface charge of magnetic nanoparticles 

could be converted either to positive or negative with different kinds of coating 

such as, the polyelectrolyte coating, silica coating, etc. (Ding et al., 2007; Gittins 

et al., 2001; Chen et al., 2008).  

 

4.10.2. Characterization of ML nanocarriers:   

As stated earlier, greatest challenge towards the successful application of 

MNPs in drug delivery is protection of associated drugs from enzymztic 

decomposition of blood circulation. Naked MNPs also interact with various 

plasma/serum proteins which could significantly affect the potential outcome of 

its applications in other drug-related and unrelated biological uses such as target 

specificity, MR imaging, etc. Although liposomal encapsulation of MNPs is looked 

upon as potential solution of these concerns, physiological integrity and stability 

of magneto-liposomal colloids needed to be addressed for their effective 

manipulation. Additionally, ways to maximize the target-reachability must be 

incorporated in the nano-formulated carrier. It has been suggested that 

modifications such as PEGlyation of liposomal surface could improve the 

inherent poor stability of conventional liposomes. Also, liposomal surface can be 

engineered for active targeting by applying surface charge modifications and/or 
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conjugation of antibodies/ligands specific to cells or tissues. Here, we used 

PEGylated lipid, DSPE-PEG, for liposome formulation. The PEG in this lipid is 

tethered to the hydrophilic head of phospholipid bilayer; thus, upon liposomal 

formulation PEG will be extended outside from the surface. In addition to provide 

colloidal stability, PEGylation prevents liposome-induced immunogenicity and 

could also reduce their uptake by reticuloendothelial system resulting in improved 

plasma circulation time and increased bioavailability to reach the target (Suri et 

al., 2007; Peng et al., 2012).  

To maximize the reachability of nanocarrier to the target i.e. in this case 

transportation across BBB, we embedded transferrin, a ligand for the HBMVECs 

specific transferrin receptor, on the surface of PEGylated ML. Presence of MNPs 

and BBB specific receptor’s ligand on the same carrier will synergize the 

transmigration across BBB. While MNPs will influence the movement in the brain 

under external magnetic force, presence of ligand will add to this effect by  

providing uptake-specificity for BBB cells (in this case for HBMVECs). The ML 

possessing such dual targeting mechanisms could be epitomized for many other 

target-oriented deliveries. We further expanded the multifunctionality of ML by 

making it fluorescent. This was achieved by adding green fluorescent tagged 

phosphatidylethanolamine, namely CFPE, in the liposomal formulation mixture. 

Fluorescent addition to ML could serve as a tool for nanocarrier associated 

pharmacokinetics study such as quantification of cellular uptake or entrapment, 

tracking localization in tissues, etc. More importantly, co-incorporation of 

fluorescent in the MNPs-based nanocarrier provides two different imaging 



105 
 

options, MNPs-based imaging such as MRI and magnetometery and fluorescent-

based imaging. We believe that easy availability of fluorescent-based imaging 

technique will widen the use of ML as convenience and cost-effective tools in the 

targeted-drug delivery. Nonetheless, MNPs could always be available for 

targeted delivery and more powerful imaging, such as MRI, could be applied as 

per necessity.  

 

Figure 31: Characterization of magnetic-liposomes (MLs): a) Dynamic laser scattering 

(DLS) measurement of hydrodynamic size distribution of MLs. Average diameter size of 

this nanoformulation was approximately 130 nm. b) TEM image of ML nanocarriers 

containing MNPs (black dots) supports the size of MLs as determined by DLS 

measurement.  

 

Size of PEGylated magneto-liposomal nanocarriers formulated using 

extrusion technique was determined by DLS (Figure 31A) and further TEM was 

performed to verify this formulation (Figure 31B). As evident from both figures, 

the average diameter size of this nanoformulation was approximately 130 nm. 

Encapsulation of MNPs into the liposomes have been proved to be difficult task 
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and a maximum of 15% EE have been shown earlier (Deng et al., 2012).  We 

here report EE of 60.0% which could possibly be attributed to the ultrasmall sized 

MNPs. In the same line, TEM image shows that the ML formulation is filled with 

ultrasmall MNPs. Nonetheless, EE of ultrasmall MNPs in liposome can be 

manipulated by changing the ratio of particles with liposomes during the 

formulation process. Higher MNPs content may significantly improve the contrast 

enhancement effect of MRI. Larger sized MNPs have been previously used due 

to their MR contrast enhancement effect (Qiao et al., 2012; Jun et al., 2005); 

however, in view of transportability across BBB, smaller MNPs as small as 10 nm 

may provide better pliantness to the liposomes which, in addition to their use as 

MRI, could remarkably influence its transendothelial extravasation under external 

non-invasive magnetic influence. More importantly, higher EE i.e. more no of 

MNPs in a liposome will provide higher per unit loading surface area resulting in 

significantly higher per unit drug loading efficiency of ML nanocarriers. 

Furthermore, it is challenging to maintain the mono-dispersibility of the 

nanocarriers. It becomes even more important in view of their potential 

application in targeted drug delivery. Although PEGylation add to the colloidal 

stability and assist in maintaining the liposomal mono-dispersion, incubation 

temperature during the formulation process plays a vital role. We achieved highly 

mono-dispersed liposomes using an incubation- and extrusion- temperature of 

~40oC which is higher than the thermogravimetric analysis points for all lipids. 

Homogenous size of ML nanocarriers was attained by using polycarbonate filter 

membrane of different pore-size (400 nm/200 nm/ 100 nm) during the extrusion 
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process. Notably, molar concentration ratio of DSPE-PEG used during the 

formulation process was controlled within 10%, a critical micelles concentration 

limit above which PEG influence the micelles formation. The formulated ML was 

subjected to DLS for measurement of zeta potential which showed near neutral 

charge of -0.8±0.2 mV on the surface of this nanocarrier. Thus, possibility of 

charge-mediated cellular uptake of ML will be minimized in the peripheral 

circulation i.e. external magnetic force will remain the only controlling force of this 

nanocarrier for effective movement up to the target area. In order to provide more 

established BBB specificity to this nanocarrier, transferrin was conjugated on its 

surface. Transferrin is one of rare proteins which have free access across the 

intact BBB and carry essential nutrients into the brain. Transferrin conjugation on 

ML surface was confirmed by spectrophotometry (Figure 32).  

 

 

Similar to the previous study of Xu et al (2008), spectra of transferrin 

conjugated magnetic-liposomes showed rise of the optical density peak in the 

transferrin-specific wavelength range.  It should be noted that inclusion of less 

Figure 32: Characterization of transferrin 

conjugation to MLs: spectra of transferrin 

conjugated MLs shows rise of the optical 

density peak in the transferrin-specific 

wavelength range.                                              
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than 10% of PEG in formulation mixture results in homogenous PEGylation 

rather than forming thick corona which was noticed in the work of Gao et al 

(2006). The shielding effect of thick PEG corona may cause improper ligand bind 

and also may prevent proper interaction of ligand to the receptor. In other hand, 

the homogenous embedding of 2000 Da PEG on the ML surface may have 

negligible or zero interference in the interaction of 80 kDa transferrin and its 

cellular receptors. Similarly, homogenous transferrin distribution should not affect 

the original objective of PEG in providing colloidal stability. As determined by 

DLS, Transferrin conjugation to the ML surface neither has significant effect on 

its hydrodynamic size nor did it affect the surface charge distribution.  

   

4.10.3. Physiological sustainability of ML nanocarriers:   

The formulated ML nanocarriers were assessed for its sustainability in the 

physiological equivalent temperature and circulation.  Nanocarriers suspended in 

the PBS were incubated in 37oC for up to 30 hours and their size was measured 

at different time points using the DLS.  As shown is figure 33A, size of these 

formulations remained unchanged. Similarly, fluorescent intensity emitted from 

equal amount of ML carriers was constant through-out the incubation period 

(Figure 33A). It should be noted that fluorescent integration in ML improves its 

multifunctionality such as easy manageable quantification and visualization of 

carriers during experimental settings. This was achieved by adding green 

fluorescent tagged lipid, namely CFPE, in the liposomal formulation mixture. 

Sustainability of these carriers was further evaluated in the in vitro closed 
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circulation system which consists of a bidirectional, self-priming peristaltic 

capillary pump. A schematic of this pump is shown in figure 33B. Here also, both, 

the structural integrity and fluorescent intensity of ML nanocarriers remained 

unaffected through 120 equivalent blood-circulations of experimental settings 

(Figure 33D). Fluorescent intensity study together with the DLS measurement 

shows that the formulated ML nanocarriers could sustain its structural integrity in 

the simulated blood circulation and physiological temperature for considerable 

amount of time. This suggests toward the possible use of fluorescent ML 

nanocarriers for in vivo drug delivery and optical imaging. Nanocarriers were also 

looked for their storage durability at 4oC for around one month. Again, constant 

diameters were determined throughout the storage period (Figure 33C). Also, as 

expected, hydrodynamic difference between the diameter of transferrin 

conjugated or unconjugated liposomes remained less than 10 % throughout the 

storage time.  Nonetheless, it is worth mentioning that the colloidal stability and 

optical properties of the ML nanocarriers remained unaffected due Transferrin 

conjugation. This suggests that these ML nanocarriers possess longer storage 

stability and drugs loaded on these carriers could have minimum leaching effect. 

In fact, consistent florescent intensity either during exposure of physiological 

temperature, peristaltic circulation or storage implies towards minimum leakage 

from formulated ML nanocarriers.  Larger size MNPs (35 nm) were also tested 

for encapsulation in the liposomes. However, stability and precipitation remained 

an issue because ML could sustain in suspension for not more than couple of 

hours.    
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Figure 33: Characterization of MLs sustainability: a) Florescent intensity (black) and 

average diameter (Blue) of ML nanoformulations incubated at 37oC. It suggests that 

structural integrity and fluorescent intensity of ML nanocarriers remained unaffected up 

to 30 hrs of experimental period. b) Schematic of in vitro closed circulation system: The 

bidirectional, self-priming peristaltic capillary pump simulates physiological equivalent 

blood-circulation. c) Florescent intensity (black) and average diameter (Blue) of ML 

nanoformulations after various round of in-vitro circulations. It suggests that structural 

integrity and fluorescent intensity of ML nanocarriers remained unaffected up to 120 

circulations of experimental period. d) Average diameter (Blue) of ML nanoformulations 

in storage at 40C suggests its structural integrity up to 28 days of experimental duration.  
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4.11. Transmigration of ML nanocarriers across BBB:   

The BBB transmigrability of the ML nanocarriers was evaluated using an 

in vitro human BBB model. As described previously by Gandhi et al. (2010), the 

BBB model was established in a bi-compartmentalized transwell where HBMECs 

and HAs were grown to confluency on the upper chamber and underside of lower 

chamber respectively. The intactness of grown BBB was determined by TEER 

values. A TEER value of ~200 ohms/cm2 in compare to the control (non-cultured 

wells) is considered consistent with the formation of intact BBB. Following the 

TEER determination, fluorescent ML nanocarriers were subjected to different 

wells either in presence or absence of external magnetic force.  As shown in 

Table 3, initial TTER values of all treatment groups were close to standard 200 

ohms/cm2. As expected, significantly higher transmigration of ML nanocarriers 

were detected across BBB due to exposure of external magnetic force (Figure 

34A and 34B). Incorporation of fluorescent in the ML nanocarrier was used for 

quantification of its transmigration from apical to basolateral layers in the BBB 

model. Transferrin conjugated ML nanocarriers in presence of external magnetic 

force (Force) showed higher transmigration than nanocarriers which lacks 

external force (No force).  Approximately 2-3 folds (100% vs 30-50%) increased 

transmigration was achieved and this continued till 16 hrs of experimental period. 

It could possible that magnetic force may allow transient change in BBB 

permeability resulting in increased transendothelial extravasation of ML 

nanocarriers. Magnetic force induced increased BBB permeability has been 

reported earlier in few studies. Working with the Fe3O4-PEG nanocarriers, Qiao 
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et al (2012) showed an alteration in BBB permeability after 4 hrs of exposure. 

Similarly, treatment of polysorbate derived nanoparticles resulted in sharp 

increase in permeability from 4-7 hrs and accordingly TEER values were 

reversed from less to high [Rempe et al., 2011]. 

 

 

Figure 34: a) Relative transmigration of ML nanocarriers in the presence and absence of 

external magnetic force across in vitro BBB. b) Percentile transmigration of nanocarriers 

at different time.  
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In our study, TEER values of BBB remain closer to the standard 200 

ohms/cm2 both at the beginning and end of experimental period, suggesting 

unaffected integrity of BBB due to exposure of different nanoformulations (Table 

3).  

 

Table 3: Transendothelial electrical resistance (TEER) values of the in vitro BBB model 

before and after treatment ML nanocarriers in the presence and absence of external 

magnetic force  

 

The transmigration pattern of nanocarriers was further verified by 

measuring the iron concentration. Triton mediated liposomes breaking results in 

release of encapsulated and/or uptaken Fe3O4 which is exposed to ammonium 

thiocyanate following oxidation via ammonium persulfate. Quantification of 

resulting iron-thiocyanate emits red color at 490 nm gives concentration of Fe3O4 

uptaken by BBB cells. As evident from figure 35, consistent with the 

transmigrability, higher iron concentration was found when external magnetic 

force was used. This supports our observation that external magnetic force may 

result in increased accumulation of ML nanocarriers at the BBB causing higher 

transendothelial extravasation and/or receptor-mediated transmigration.   
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4.12. Cytotoxicity of ML nanocarriers:   

Percent viability of astrocytes and HBMVE cells remains unaffected due to 

treatments of our nanocarriers (Figure 36). In the same line it has been 

suggested that doses of MNPs within the permissible limit have non-significant 

safety concerns and are biodegradable (Jain et al., 2008). This suggests that ML 

nanoformulations possess required potential to be used as carrier for drug deliver 

across BBB.   

  

Figure 35:  The Fe3O4 content in lower 

chamber post-transmigration. 

Figure 36:   Percent cell viability 

of primary endothelial cells and 

astrocyte cells 24 and 48 hrs 

post-treatment with different 

concentration of ML nanocarriers. 
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4.13.  BBB transmigration and efficiency of BDNF nanoformulations:   

 We evaluated the ability of MNPs-BDNF nanoformulations to cross the 

BBB. As stated previously, free or MNPs bound BDNF were added to the apical 

chamber of an established in vitro BBB model and transmigration was influenced 

by applying external magnetic force beneath the lower chamber. The result 

obtained by BDNF ELISA for the sample collected from the basal chamber show 

that approximately 73% of the MNP bound BDNF was able to transmigrate 

across BBB (Figure 37A). This corresponds to 3.5 folds higher transmigration 

than free BDNF. Our results suggest that transmigration ability of BDNF across 

BBB increased significantly when MNPs were used as carriers. Again, we 

verified the integrity of BBB and as demonstrated previously, the BBB remained 

undamaged. A TEER reading of 280.4 and 276.5 were obtained respectively for 

pre- and post-transmigration (Figure 37B).   

  

Figure 37:   (A). Percentage 

transmigration of free and 

MNP-BDNF nanoformulations. 

(B). TEER values of the in vitro 

BBB model before and after 

treatment of free and MNP-

BDNF nanoformulations.  



116 
 

 Furthermore, we studied whether transmigrated BDNF retains functional 

efficiency or not? As such, CREB expression in the astrocytes on the basal side 

of BBB was quantified.  Consistent with the transmigration ability, we found that 

treatment with BDNF alone did not induce any change in CREB expression in 

astrocytes in the basal side. In contrast, treatment with MNP-BDNF showed an 

upregulation of CREB (TAI=1.67±0.12; p=0.007, figure 38). This result confirmed 

that unlike free BDNF, BDNF bound to MNP is able to cross BBB and is effective 

in its function.   Since astrocytes of established in vitro BBB model remains in 

direct contact of media from lower chamber, it is expected that transmigrated 

BDNF in the lower chamber will exert its effect on these cell.  In the same line, 

magnetic drug targeting of anticancer drugs to treat brain carcinoma has already 

been reported (Chertok et al., 2008). Thus, targeted delivery of BDNF in brain 

through an effective carrier such as MNPs would provide significant therapeutic 

benefits for treatment drug addiction and/or neuroAIDS.  

  

Figure 38:     Trans-accumulation 

index (TAI) showing effect of Free 

BDNF and MNPs-BDNF 

nanoformulations on CREB expression 

in Astrocytes across BBB.     CREB 

expression is significantly upregulated 

upon treatment of MNP-BDNF 

nanoformulation which suggest 

effective transmigration of BDNF 

across BBB via nanocarrier.  
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5. Summary:   

As stated by President Nixon in 1971, drug abuse is America’s number one 

enemy. In fact, drug abuse is a serious global problem which speeds up the 

spread of many blood-borne diseases including HIV. Considering the high-

intensity of affected populations, lack of treatment, and unrepairable social costs 

associated with the drug abuse and HIV infection, it is quintessential to develop 

better strategies for their preventions.  In this dissertation I investigated a novel 

MNPs-based drug delivery system for delivery of anti-addiction, and 

neuroprotective drugs across the BBB. It is anticipated that the active from of 

these drugs could be delivered across BBB. Successful delivery of anti-addiction 

agents e.g. CTOP (an opioid antagonist) may reduce the addictive effect of 

abusive drugs and block the synergistic neurotoxicity during HIV infection. 

Similarly, delivery of neuroprotective agent, brain derived neurotropic factor 

(BDNF), could be of therapeutic benefit in the treatment of both, drug addiction 

and HIV infection. Further, ultrasmall magnetic nanoparticles was synthesized 

and loaded into PEGylated liposome which could provide nanoplatform for 

enhanced BBB transmigration of drugs. Drugs bound to naked MNPs may either 

be decomposed due to metabolic activity of peripheral circulation (blood) or be 

cleared or entraped by reticuloendothelial systems (liver, stomach, gut, lymphoid, 

etc.) before it reach to the brain. In this contrext, magnetized-liposome (liposomal 

encapsulation of MNPs bound drugs) is advantageous in many ways: (a) 

Liposomes coating protects drugs from metabolic insults of blood circulation and 

reduces their uptake by liver, stomach, gut, lymphoid, etc. This remarkably 
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improves the stability and bioavailability of drugs in body. (b) Magnetized 

liposomes can be easily transported across BBB under influence of external 

magnetic force. (c) While drugs attached with MNPs are encapsulated in the 

liposomal core, additional free drugs can also be supplemented on the liposomes 

wall (phospholipid bilayers). Thus, per unit drug-loading efficiency of magnetized 

nanocarrier is enhanced. 

Our developed nanocarriers seem to deliver improved level of 

therapeutics in the brain which is the common target organ for both HIV and drug 

abuse. It is expected that using our innovations, suppression of pathogenesis in 

drug addicted and HIV patients could be significantly improved and, in turn, it 

may add to achieve near-normal life expectancy for treated individuals. Thus, 

transfer of this strategy in clinical settings may be beneficial for these major 

social problems. A proposed model of drug delivery via magnetic nanocarriers 

has been shown in figure 39. Importantly, this strategy could be applied to other 

brain diseases leading to a healthier lifestyle.  Many brain diseases such as 

Huntington’s, Epilepsy, Stroke, Parkinson’s, Alzheimer’s, Multiple Sclerosis, 

Brain Tumors, etc. remain untreated, mainly due to impenetrability of drug or 

existing drug-delivery techniques across BBB. Thus, our magnetic nanocarriers 

could have universal applicability for drug-targeting in the brain in a  non-invasive 

manner for many brain diseases. Additionally, magnetic field generated by MNPs 

under the influence of magnetic force could stimulate inactivated neurons in 

Parkinson’s, Alzheimer’s Stroke, etc. MNPs could also be used for imaging via 

MRI which can tell about pathological conditions and its progression.  Thus, 
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MNPs could be developed as a polypharmacological technique where it could 

simultaneously deliver drugs, diagnose pathological progression, and stimulate 

degenerating neurons in various brain diseases.   

 

 

Figure 39: Proposed shcematic of magnetic nanoparticles based drugs delivery across BBB. 
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6. Future directions  

Based on the in vitro observations we assume that, under the influence of 

external magnetic force, drugs loaded magnetic nanocarriers in the form of 

magnetized-liposomes can either directly transport across the BBB. As such, 

magnetic hybrid nanoformulations (magnetized-liposomes) seem to be more 

practical nanovehicles for drug delivery to the brain and its applicability in animal 

model must take place. It will allow knowing the feasibility of our developed 

nanocarrier to go across the BBB in the physiological relevance condition. 

Following completion of work on mouse model, its applicability in monkey model 

must be evaluated; success of which may lead to the clinical applications of our 

developed nanocarriers (figure 40).  It is expected that using our innovations, 

suppression of pathogenesis in drug addicted and HIV patients could be 

significantly improved and, in turn, it may add to achieve near-normal life 

expectancy for treated individuals. Thus, transfer of this strategy in clinical 

settings may be beneficial for these major social problems. Importantly, this 

strategy could be applied to other brain diseases leading to a healthier lifestyle. 

   
 Figure  40. Schematic of future work with nanoformulations from in vitro study to the clinical trial 
(Googleimages). 
 



121 
 

 

7. References:  

1. Abbott N.J.,  Rönnbäck L.,  Hansson E. (2006) Astrocyte-endothelial 
interactions at the blood-brain barrier. Nat. Rev. Neurosci. 7:41–53. 
 

2. AIDSinfo-NIH (2012), HIV and Its Treatment – FDA-Approved Anti-HIV 
Medications: 
http://aidsinfo.nih.gov/contentfiles/ApprovedMedstoTreatHIV_FS_en.pdf 

 
3. Albright A.V., Shieh J.T., O'Connor M.J., Gonzalez-Scarano F. (2000) 

Characterization of cultured microglia that can be infected by HIV-1. J 
Neurovirol. 6:S53–S60. 

 
4. Alexiou C., Schmid R.J., Jurgons R., Kremer M., Wanner G., Bergemann 

C., Huenges E., Nawroth T., Arnold W., Parak F.G. .(2006) Targeting cancer 
cells:  magnetic nanoparticles as drug carriers. Eur Biophys.J 35: 446-450. 
 

5. Al-Ghananeem A.M., Saeed H., Florence R., Yokel R.A., Malkawi A.H. (2010) 
Intranasal drug delivery of didanosine-loaded chitosan nanoparticles for brain 
targeting; an attractive route against infections caused by aids viruses. J Drug 
Target.18:381–388. 

 
6. Allen T.M., Sapra P., Moase E., Moreira J., Iden D. (2002) Adventures in 

targeting. J Liposome Res.12:5–12. 
 

7. Almeida S.M., Letendre S., Ellis R. (2006) Human immunodeficiency virus 
and the central nervous system. Braz J Infect Dis. 10:41-50. 

 
8. Alonso M., Bekinschtein P., Cammarota M., Vianna M.R., Izquierdo I., 

Medina J.H. (2005) Endogenous BDNF is required for long-term memory 
formation in the rat parietal cortex. Learn Mem 12: 504-510. 

 
9. Alyaudtin R.N., Reichel A., Löbenberg R., Ramge P., Kreuter J., Begley D.J. 

(2001)  Interaction of poly(butylcyanoacrylate) nanoparticles with the blood–
brain barrier in vivo and in vitro. J. Drug Target. 9 209–221. 

 
10. Amyere M., Mettlen M., Van Der Smissen P., Platek A., Payrastre B., Veithen 

A., Courtoy P.J. (2002) Origin, originality, functions, subversions and 
molecular signalling of macropinocytosis. Int J Med Microbiol 291: 487-494. 

 
11. An, S.F. and Scaravilli, F (1997) Early HIV-1 infection of the central nervous 

system. Arch Anat Cytol Pathol , 45 (2-3) 94 - 105.  
 

12. Antinori A., Arendt G., Becker J.T., Brew B.J., Byrd D.A., Cherner M., Clifford     
D.B., Cinque  P., Epstein L.G., Goodkin   K.,   Gisslen   M.,   Grant     I., 



122 
 

Heaton    R.K., Joseph J., Marder K., Marra C.M., McArthur J.C., Nunn M., 
Price R.W., Pulliam L., Robertson K.R., Sacktor N., Valcour V., Wojna V.E. 
(2007) Updated research nosology for HIV-associated neurocognitive 
disorders .  Neurology. 69:  1789 – 1799 . 

 
13. Arnaiz B., Martínez-Ávila O., Falcon-Perez J.M., Penadeś S. (2012) Cellular 

Uptake of Gold Nanoparticles Bearing HIV gp120 Oligomannosides. 
Bioconjugate Chem. 23 (4): pp 814–825 

 
14. Athanasiou K.A., Agarwal A., Muffoletto A., Dzida F.J., Constantinides G., 

Clem M. (1995) Biomechanical properties of hip cartilage in experimental 
animal models. Clin Orthop Relat Res. 316:254–266. 

 
15. Atluri V. S. R.,  Pilakka-Kanthikeel S.,  Reddy P. V. B.,  Yndart A.,  Nair. 

(2013). Human Synaptic Plasticity Gene Expression Profile and Dendritic 
Spine Density Changes in HIV-Infected Human CNS Cells: Role in HIV-
Associated Neurocognitive Disorders (HAND). PLOS ONE (2013), Volume 8 
(4): e61399.  
 

16. Bae, Y. and Kataoka, K. (2009) Intelligent polymeric micelles from functional 
poly(ethylene glycol)-poly(amino acid) block copolymers  Advanced Drug 
Delivery Reviews. 61:768-784. 

 
17. Balaji N., Meera Sheriffa Begum K.M., Anantharaman N., Uddin M. S. (2009) 

Adsorption and desorption of L-Phenylalanine on nano-sized magnetic 
particles, J. Eng. Appl. Sci. 4(8): 39-44. 

  
18. Batrakova E.V., Li S., Alakhov V.Y., Miller D.W., Kabanov A.V., (2003) 

Optimal structure requirements for pluronic block copolymers in modifying P-
glycoprotein drug efflux transporter activity in bovine brain microvessel 
endothelial cells, J. Pharmacol. Exp. Ther. 304: 845–854.  

 
19. Batrakova E.V., Li S., Miller D.W., Kabanov A.V. (1999) Pluronic P85 

increases permeability of a broad spectrum of drugs in polarized BBMEC and 
Caco-2 cell monolayers, Pharm. Res. 16:1366–1372. 

 
20. Batrakova E.V., Gendelman H.E., Kabanov AV. (2011) Cell-mediated drug 

delivery. Expert Opin Drug Deliv.8:415–433. 
 

21. Batrakova E.V., Li S., Reynolds A.D., Mosley, R.L., Bronich T.K., Kabanov 
A.V., Gendelman H.E. (2007) A macrophage-nanozyme delivery system for 
Parkinson's disease. Bioconjug Chem.18(5):1498–506.  

 
22. Bawarski, W.E., Chidlowsky, E., Bharali, D.J., and Mousa, S.A. (2008) 

Emerging nanopharmaceuticals, Nanomedicine: Nanotechnology, Biology 
and Medicine.4: 273-282 

 



123 
 

23. Behr J-P. (1997) The Proton Sponge: a Trick to Enter Cells the Viruses Did 
Not Exploit CHIMIA. International Journal for Chemistry.51(1):34–6. 

24. Beltran J. A., Pallur A., Chang S. L. (2006) HIV-1 gp120 up-regulation of the 
mu opioid receptor in TPA-differentiated HL-60 cells. International 
Immunopharmacology. 6(9):1459–1467.  
 

25. Bernabeu R., Bevilaqua L., Ardenghi P., Bromberg E., Schmitz P., Bianchin 
M., Izquierdo I., Median J.H. (1997) Involvement of hippocampal 
cAMP/cAMP-dependent protein kinase signaling pathways in a late memory 
consolidation phase of aversively motivated learning in rats. Proc Natl Acad 
Sci 94: 7041-7046. 

 
26. Bestman-Smith J., Gourde P., D´esormeaux A., Tremblay M. J., and 

Bergeron M. G. (2000) Sterically stabilized liposomes bearing anti-HLA-DR 
antibodies for targeting the primary cellular reservoirs of HIV-1. Biochimica et 
Biophysica Acta. 1468(1-2):161–174. 

 
27. Betz A.L., Firth J.A., Goldstein G.W. (1980) Polarity of the blood-brain barrier: 

distribution of enzymes between the luminal and antiluminal membranes of 
brain capillary endothelial cells. Brain Res 192:17-28. 

 
28. Blume G., Cevc G. (2000) Molecular mechanism of the lipid vesicle longevity 

in vivo. Biochim Biophys Acta.1146:157–68. 
 

29. Boison D. (2009) Adenosine augmentation therapies (AATs) for epilepsy: 
prospect of cell and gene therapies. Epilepsy Res.85(2-3):131–41. 

 
30. Bourtchuladze R., Frenguelli B., Blendy J., Cioffi D., Schutz G., Silva A.J 

(1994) Deficient long-term memory in mice with a targeted mutation of the 
cAMP-responsive element-binding protein. Cell 79: 59-68. 

 
31. Boven LA, Middel J, Breij EC, Schotte D, Verhoef J, Soderland C, Nottet HS. 

(2000) Interactions between HIV-infected monocyte-derived macrophages 
and human brain microvascular endothelial cells result in increased 
expression of CC chemokines. J Neurovirol. 6:382–389. 

 
32. Bowman, M. C., Ballard, T. E., Ackerson, C. J., Feldheim, D. L., Margolis, D. 

M. and Melander, C. (2008) Inhibition of HIV fusion with multivalent gold 
nanoparticles J. Am. Chem. Soc. 130, 6896– 6897. 

 
33. Bramham C.R., Messaoudi E. (2005) BDNF function in adult synaptic 

plasticity: the synaptic consolidation hypothesis. Prog Neurobiol 76: 99-125. 
 

34. Briz, O., Macias, R.I.R., Vallejo, M., Silva, A., Serrano, M.A., Marin, J.J.G. 
(2003) Usefulness of liposomes loaded with cytos tatic bile acid derivatives to 
circum-vent chemotherapy res is tance of enterohepatic tumors. Mol. 
Pharmacol. 63: 742–750. 



124 
 

 
35. Brown J.M., Yamamoto BK. (2003) Effects of amphetamines on mitochondrial 

function: role of free radicals and oxidative stress. Pharmacol Ther. 99:45-53. 
 

36. Brownson E.A., Abbruscato T.J., Gillespie T.J., Hruby V.J., Davis T.P. (1994) 
Effect of peptidases at the blood brain barrier on the permeability of 
enkephalin. J Pharmacol Exp Ther 270:675-680. 

 
37. Brynskikh A.M., Zhao Y., Mosley R.L., Li S., Boska M.D., Klyachko 

N.L., Kabanov A.V., Gendelman H.E., Batrakova E.V. (2010) Macrophage 
delivery of therapeutic nanozymes in a murine model of Parkinson's 
disease. Nanomedicine (Lond). 5(3):379–96. 

 
38. Bummer P.M. (2004) Physical chemical considerations of lipid-based oral 

drug deliverysolid lipid nanoparticles, Crit. Rev. Ther. Drug Carrier Syst. 21 : 
1–20. 

 
39. Burdo T.H., Katner S.N., Taffe M.A., Fox H.S. (2006) Neuroimmunity, drugs 

of abuse, and neuroAIDS. Neuroimmune Pharmacol.1, 41–49. 
 

40. Butt, A.M., Jones, H.C., Abbott, N.J. (1990). Electrical-resistance across the 
blood-brain barrier in anesthetized rats - a developmental study. J. Physiol. 
429, 47-62. 

 
41. Cammarota M., Bevilaqua L.R., Ardenghi P., Paratcha G., Levi de Stein M., 

Izquierdo I, Medina JH. (2000) Learning-associated activation of nuclear 
MAPK, CREB and Elk-1, along with Fos production, in the rat hippocampus 
after a one-trial avoidance learning: abolition by NMDA receptor blockade. 
Brain Res Mol Brain Res 76: 36-46. 

 
42. Carvalho F.C., Mainardes R.M., Gremião M.P.D. (2011) Exploring the 

Nanotechnology-Based Drug Delivery Systems for AIDS Treatment. In: 
Kasenga, FH, editor. Understanding HIV/AIDS management and care – 
pandemic approaches in the 21st century. Intechweb.org; pp. 367-384. 

 
43. Castro-Nallar E., Perez-Losada M., Burton G.F., Crandall K.A. (2012) The 

evolution of HIV: Inferences using phylogenetics.  Molecular Phylogenetics 
and Evolution. 62: 777-792. 

 
44. Chapleau C.A., Carlo M.E., Larimore J.L., Pozzo-Miller L. (2008) The actions 

of BDNF on dendritic spine density and morphology in organotypic slice 
cultures depend on the presence of serum in culture media. J Neurosci 
Methods 169: 182-190. 

 
45. Chattopadhyay N., Zastre J., Wong H.L., Wu X.Y., Bendayan R. (2008)  Solid 

lipid nanoparticles enhance the delivery of the HIV protease inhibitor, 



125 
 

atazanavir, by a human brain endothelial cell line, Pharm. Res. 25 : 2262–
2271. 
  

46. Chaughule, R.S., Purushotham, S., Ramanujan, R.V. (2012) Magnetic 
Nanoparticles as Contrast Agents for Magnetic Resonance Imaging. 
Proceedings of the national academy of sciences, India Section A: Physical 
Sciences 82 (3):  25—268.  

 
47. Chen, F.H., Gao Q., Ni J.Z. (2008) The grafting and release behavior of 

doxorubincin from Fe3O4@SiO2 core–shell structure nanoparticles via an acid 
cleaving amide bond: the potential for magnetic targeting drug delivery. 
Nanotechnology 19(16): p. 165103. 

 
48. Cheng H., Kastrup C.J., Ramanathan R., Siegwart D.J., Ma M., Bogatyrev 

S.R., Xu Q., Whitehead K.A., Langer R., Anderson D.G. (2010) 
Nanoparticulate cellular patches for cell-mediated tumoritropic delivery. ACS 
Nano. 23:4(2):625–31. 

 
49. Chertok B., Moffat B.A., David A.E., Yu F., Bergemann C., Ross B.D., Yang 

V.C. (2008) Iron oxide nanoparticles as a drug delivery vehicle for MRI 
monitored magnetic targeting of brain tumors. Biomaterials. 29(4):487–496. 
 

50. Chomoucka J., Drbohlavova J., Huska D., Adam V., Kizek R., Hubalek J. 
(2010) Magnetic nanoparticles and targeted drug delivering, Pharmacological 
Research 62: 144-149. 

 
51. Chun T., Justement J., Moir S., Hallahan C., Maenza J., Mullins J., Collier A., 

Corey L., Fauci A. (2007) Decay of the HIV reservoir in patients receiving 
antiretroviral therapy for extended periods: implications for eradication of 
virus. Journal of Infectious Diseases. 195: 1762–1764. 

 
52. Chung, J.E., Yokoyama, M., Aoyagi, T., Sakurai, Y. and Okano, T. (1998) 

Effect of molecular architecture of hydrophobically modified poly (N-
isopropylacrylamide) on the formation of thermoresponsive core-shell micellar 
drug carriers. J. Control. Release. 53, 119-130. 

 
53.  Citi S., Sabanay H., Jakes R., Geiger B., Kendrick-Jones J. (1988) Cingulin, 

a new peripheral component of tight junctions. Nature 333:272-276. 
 

54. Conant K., McArthur J.C., Griffin D.E., Sjulson L., Wahl L.M., Irani D.N. 
(1999) Cerebrospinal fluid levels of MMP-2, 7, and 9 are elevated in 
association with human immunodeficiency virus dementia.Ann Neurol. 
46:391–398. 

 
55. Crone C., Christensen 0. (1981). Electrical resistance of a capillary 

endothelium. Journal of General Physiology. 77: 349-371. 
 



126 
 

56. Cubells J.F., Rayport S., Rajendran G., Sulzer D. (1994) Methamphetamine 
neurotoxicity involves vacuolation of endocytic organelles and dopamine-
dependent intracellular oxidative stress. J Neurosci. 14:2260-2271. 

57. D’Souza, S.S., DeLuca, P.P. (2006) Methods to assess in vitro drug release 
from injectable polymeric particulate systems. Pharm. Res. 23:460Y474. 
 

58. Davis L.E., Hjelle B.L., Miller V.E., Palmer D.L., Llewellyn A.L., Merlin T.L., 
Young S.A., Mills R.G., Wachsman W., Wiley C.A. (1992) Early viral brain 
invasion in iatrogenic human immunodeficiency virus infection. Neurology 
42:1736–39. 

 
59. Davson H., Segal M.B. (1996). The return of the cerebrospinal fluid to the 

blood: The drainage mechanism. In: Anonymous Physiology of the CSF and 
Blood-Brain Barriers. CRC Press: Boca Raton, pp 489 -523. 

 
60. Davson, H., Kleeman, C. R., Levin, E. (1961) Blood-brain barrier and 

extracellular space. J. Physiol. (Lond.)159. 
 

61. Dechy-Cabaret O., Martin-Vaca B., Bourissou D. (2004) Controlled ring-
opening polymerization of lactide and glycolide, Chem. Rev. 104: 6147–6176. 

 
62. Dehouck B., Dehouck M.P., Fruchart J.C., Cecchelli R. (1994) Upregulation 

of the low density lipoprotein receptor at the blood-brain barrier: 
intercommunications between brain capillary endothelial cells and astrocytes. 
J Cell Biol 126:465-473. 

 
63. Deng L., KE X., He Z., Yang D., Gong H., Zhang Y., Jing X., Yao J., Chen 

J.A. (2012) MSLN-targeted multifunctional nanoimmunoliposome for MRI and 
targeting therapy in pancreatic cancer. International Journal of Nanomedicine. 
7:5053-5065. 

 
64. Denker B.M., Nigam S.K. (1998) Molecular structure and assembly of the 

tight junction. Am J Physiol 274:F1-9. 
 

65. Desai, M.P., Labhasetwar, V., Amidon, G.L., Levy, R.J. (1996) 
Gastrointestinal Uptake of Biodegradable Microparticles: Effect of Particle 
Size Pharmaceutical Research, 13, 1838-1845.  

 
66. Desai, M.P., Labhasetwar, V., Walter, E., Levy, R.J., Amidon, G.L. (1997) 

The Mechanism of Uptake of Biodegradable Microparticles in Caco-2 Cells Is 
Size Dependent Pharmaceutical Research, 14, 1568-1573. 

 
67. Descamps L., Dehouck M.P., Torpier G., Cecchelli R. (1996) Receptor-

mediated transcytosis of transferrin through blood-brain barrier endothelial 
cells. Am J Physiol 270:H1149-1158. 

 



127 
 

68. Desormeaux A., Bergeron M.G. (1998)  Liposomes as drug delivery system: 
a strategic approach for the treatment of HIV infection, J. Drug Target. 6:1–
15.  

69. Destache C.J., Belgum T., Goede M., Shibata A., Belshan M.A. (2010) 
Antiretroviral release from poly(DL-lactide-co-glycolide) nanoparticles in 
mice. J Antimicrob Chemother. 65(10):2183–2187. 
 

70. Ding H., Yong K-T, Roy I., Pudavar H.E., Law W.C., Bergey E.J., Prasad P.N. 
(2007) Gold nanorods coated with multilayer polyelectrolyte as contrast 
agents for multimodal imaging. The Journal of Physical Chemistry C. 111(34): 
p. 12552-12557. 

 
71. Dou H., Destache C.J., Morehead J.R., Mosley R.L., Boska M.D., Kingsley 

J., Gorantla S., Poluektova L., Nelson J.A., Chaubal M., Werling J., Kipp J., 
Rabinow B.E., Gendelman H.E. (2006) Development of a macrophage-based 
nanoparticle platform for antiretroviral drug delivery. Blood. 5;108(8):2827–35. 

 
72. Dou H., Grotepas C.B., McMillan J.M.,  Destache C.J., Chaubal M., Werling 

J., Kipp J., Rabinow B., Gendelman H.E. (2009). Macrophage delivery of 
nanoformulated antiretroviral drug to the brain in a murine model of 
neuroAIDS. J Immunol. 2009 Jul 1;183(1):661–9. 

 
73. Douce V. Le, Janossy A., Hallay H., Ali S., Riclet R., Rohr O., Schwartz C. 

(2012) Achieving a cure for HIV infection: do we have reasons to be 
optimistic? Journal of Antimicrobial Chemotherapy. 67 (5): 1063-1074. 

 
74. Dutta T., Jain N.K. (2007) Targeting potential and anti-HIV activity of 

lamivudine loaded mannosylated poly(propyleneimine) dendrimers. Biochim. 
Biophys. Acta. 1770:681–686. 

 
75. Dzmitruk V., Shcharbin D., Pedziwiatr E., Bryszewska M. (2011). Dendrimers   

   in Anti-HIV Therapy, Advances in Nanocomposite Technology, Abbass   
 Hashim (Ed.), ISBN: 978-953-307-347-7. 

 
76. Eisenstein T.K., Hilburger M.E. (1998) Opioid modulation of immune 

responses: effects on phagocyte and lymphoid cell populations,” Journal of 
Neuroimmunology, vol. 83, no. 1-2, pp. 36–44. 
 

77. Elechiguerra J.L., Burt J.L., Morones J.R., Camacho-Bragado A., Gao X., 
Lara H.H., Yacaman M.J. (2005) Interaction of AgNPs with HIV-1. J 
Nanobiotechnology. 3:6. 

 
78. El-Hage N., Gurwell J. A., Singh I. N., Knapp P. E., Nath A., Hauser K. F. 

(2005) Synergistic increases in intracellular Ca2+, and the release of MCP-1, 
RANTES, and IL-6 by astrocytes treated with opiates and HIV-1 Tat. Glia 50, 
91–106. 
 



128 
 

 
79. Enting R.H., Hoetelmans R.M.W., Lange J.M.A., Burger D.M., Beijnen J.H., 

Portegies P. (1998) Antiretroviral drugs and the central nervous 
system.  AIDS.12:1941-1955. 
 

80. Escribano, E., Fernández-Pacheco, R., Valdivia, J. G., Ibarra, M. R., 
Marquina, C., Queralt, J. (2012) Effect of magnet implant on iron 
biodistribution of Fe@C nanoparticles in the mouse. Arch. Pharm. Res., 35, 
93-100. 

 
81. Ferris M.J, Mactutus C.F, Booze R.M. (2008) Neurotoxic profiles of HIV, 

psychostimulant drugs of abuse, and their concerted effect on the brain: 
current status of dopamine system vulnerability in NeuroAIDS. Neurosci 
Biobehav Rev.32:883–909.  

 
82. Fischer-Smith T., Rappaport J. (2005) Evolving paradigms in the 

pathogenesis of HIV-1-associated dementia. Expert Rev Mol Med. 7:1–26. 
 

83. Fishman J.B., Rubin J.B., Handrahan J.V., Connor J.R., Fine RE (1987) 
Receptor-mediated transcytosis of transferrin across the blood-brain barrier. J 
Neurosci Res 18:299-304. 

 
84. Frankfurt M., Salas-Ramirez K., Friedman E., Luine V. (2011) Cocaine alters 

dendritic spine density in cortical and subcortical brain regions of the 
postpartum and virgin female rat. Synapse 65: 955-961. 

 
85. Frascione, D., Diwoky C., Almer G., Opriessnig P., Vonach C., Gradauer 

K., Leitinger G., Mangge H., Stollberger R., Prassl R. (2012) Ultrasmall 
superparamagnetic iron oxide (USPIO)-based liposomes as magnetic 
resonance imaging probes. International Journal of Nanomedicine. 7(1): p. 
2349-2359. 
 

86. Freiberg S., Zhu X.X. (2004) Polymer microspheres for controlled drug 
release International Journal of Pharmaceutics. 282: 1-18. 

  
87. Freier D.O., Fuchs B.A. (1993) Morphine-induced alterations in thymocyte 

subpopulations of B6C3F1 mice. J Pharmacol Exp Ther 265: 81-88. 
 

88. Fuchs B.A., Pruett S.B. (1993) Morphine induces apoptosis in murine 
thymocytes in vivo but not in vitro: involvement of both opiate and 
glucocorticoid receptors. J Pharmacol Exp Ther 266: 417-423. 

 
89. Fujimura, R.K., Bockstahler, L.E., Goodkin, K., Werner, T., BrackWerner, R., 

Shapshak, P. (1996). Neuropathology and virology of HIV associated 
dementia. Rev. Med. Virol. 6, 141–150. 

 



129 
 

90. Furuse M., Sasaki H., Tsukita S. (1999) Manner of interaction of 
heterogeneous claudin species within and between tight junction strands. J 
Cell Biol 147:891-903. 

91. Galanzha E.I., Shashkov E.V., Kelly T., Kim J.W., Yang L., Zharov V.P. 
(2009) In vivo magnetic enrichment and multiplex photoacoustic detection of 
circulating tumor cells. Nature Nanotechnol 12:855–860. 

 
92. Gandhi N., Saiyed Z., Thangavel S., Rodriguez J., Rao K.V., Nair M.P. 

(2009). Differential effects of HIV type 1 clade Band clade C Tat protein on 
expression of proinflammatory and antiinflammatory cytokines by primary 
monocytes. AIDS Res Hum Retroviruses 25: 691–699. 

 
93. Gandhi N., Saiyed Z.M., Napuri J., Samikkannu T., Reddy P.V., Agudelo 

M, Khatavkar P, Saxena SK, Nair MP. (2010) Interactive role of human 
immunodeficiency virus type 1 (HIV-1) clade-specific Tat protein and cocaine 
in blood-brain barrier dysfunction: implications for HIV-1-associated 
neurocognitive disorder. J Neurovirol 16: 294-305.  

 
94. Gao X., Tao W., Lu W., Zhang Q., Zhang Y., Jiang X., Fu S. (2006) Lectin-

conjugated PEG-PLA nanoparticles: preparation and brain delivery after 
intranasal administration, Biomaterials 27: 3482–3490. 

 
95. Gao X., Wu B., Zhang Q., Chen J., Zhu J., Zhang W., Rong Z., Chen H., 

Jiang X. (2007) Brain delivery of vasoactive intestinal peptide enhanced with 
the nanoparticles conjugated with wheat germ agglutinin following intranasal 
administration, J. Control. Release. 121:156–167. 

 
96. Garcia P, Youssef I., Utvik J.K, et al. (2010) Ciliary neurotrophic factor cell-

based delivery prevents synaptic impairment and improves memory in mouse 
models of Alzheimer's disease. J Neurosci.  2:30(22):7516–27. 

 
97. Gaucher, G., Dufresne, M.H., Sant, V.P., Kang, N., Maysinger, D., and 

Leroux, J.C. (2005) Block copolymer micelles: preparation, characterization 
and application in drug delivery Journal of Controlled Release. 109: 169-188. 

 
98. Ghafouri M., Amini S., Khalili K., Sawaya B.E. (2006) HIV-1 associated 

dementia: symptoms and causes.Retrovirology. 3:28.  
 

99. Giri N., Shaik N., Pan G., Terasaki T., Mukai C., Kitagaki S., Miyakoshi N., 
Elmquist W.F. (2008) Investigation of the role of breast cancer resistance 
protein (Bcrp/Abcg2) on pharmacokinetics and central nervous system 
penetration of abacavir and zidovudine in the mouse. Drug Metab. Dispos. 
36:1476–1484. 
 

100. Gittins D.I., Caruso F. (2008) Tailoring the polyelectrolyte coating of metal 
nanoparticles. The Journal of Physical Chemistry B, 2001. 105(29): p. 6846-
6852. 



130 
 

 
101. Gonatas N.K., Stieber A., Hickey W.F., Herbert S.H., Gonatas J.O. (1984) 

Endosomes and Golgi vesicles in adsorptive and fluid phase endocytosis. J 
Cell Biol. 99:1379-1390. 
 

102. Gonzalez-Mariscal L., Betanzos A., Nava P., Jaramillo B.E. (2003) Tight 
junction proteins. Prog Biophys Mol Biol. 81: 1–44. 
 

103. (Googleimages), https://www.google.com/imghp?hl=en&tab=ii&authuser=0  
 

104. Goswami R, Dawson SA, Dawson G (1998) Cyclic AMP protects against 
staurosporine and wortmannin-induced apoptosis and opioid-enhanced 
apoptosis in both embryonic and immortalized (F-11kappa7) neurons. J 
Neurochem 70: 1376–1382. 
 

105. Gray F, Scaravilli F, Everall I, Chretien F, An S,et al. 1996. Neuropathology 
of early HIV-1infection. Brain Pathol. 6:1–15. 
 

106. Griffiths PD. A perspective on antiviral resistance. J Clin Virol. 2009;46:3–8. 
 

107. Gunaseelan S, Gunaseelan K, Deshmukh M, Zhang X, Sinko PJ. Surface 
modifications of nanocarriers for effective intracellular delivery of anti-HIV 
drugs. Adv Drug Deliv Rev. 2010;62(4–5):518–531. 
 

108. Gupta A., Zhang Y., Unadkat J.D., Mao Q. HIV protease inhibitors are 
inhibitors but not substrates of the human breast cancer resistance protein 
(BCRP/ABCG2) J. Pharmacol. Exp. Ther. 2004;310:334–341. 
 

109. Gupta, U., Jain, N.K., 2010. Non-polymeric nano-carriers in HIV/AIDS drug 
delivery and targeting. Non-polymeric nano-carriers in HIV/AIDS drug delivery 
and targeting. Adv. Drug Deliv. Rev. 62, 478–490. 
 

110. Hamilton R.D., Foss A.J., Leach L., (2007) ;Establishment of a human in 
vitro model of the outer blood-retinal barrier, J. Anat. 211- 707. 
 

111. Haorah J., Heilman D., Diekmann C., Osna N., Donohue T. M. Jr, Ghorpade 
A. and Persidsky Y. (2004) Alcohol and HIV decrease proteasome and 
immunoproteasome function in macrophages: implications for impaired 
immune function during disease. Cell Immunol. 229, 139–148. 
 

112. Haorah J., Knipe B., Leibhart J., Ghorpade A. and Persidsky Y. (2005) 
Alcohol-induced oxidative stress in brain endothelial cells causes blood–brain 
barrier dysfunction. J. Leukoc. Biol. 78, 1223–1232. 
 

113. Haskins J, Gu L, Wittchen ES, Hibbard J and Stevenson BR (1998) ZO-3, a 
novel member of the MAGUK protein family found at the tight junction, 
interacts with ZO-1 and occludin. J Cell Biol 141:199-208. 



131 
 

 
114. Hau V S, “Effect of peripheral inflammatory pain on the blood-brain barrier” 

the University of Arizona Electronic Theses and Dissertations.  
 

115. Hauser K. F., El-Hage N., Buch S., Berger J. R., Tyor W. R., Nath A., Bruce-
Keller A. J. and Knapp P. E. (2005) Molecular targets of opiate drug abuse in 
neuroAIDS. Neurotox. Res. 8, 63–80. 
 

116. Hauser KF, El-Hage N, Stiene-Martin A, Maragos WF, Nath A, et al. (2007) 
HIV-1 neuropathogenesis: glial mechanisms revealed through substance 
abuse. J Neurochem 100: 567–587.  
 

117. Hawkins, B. T. and T.P. Davis. The blood-brain barrier/neurovascular unit in 
health and disease. Pharmacological Reviews 57(2):173-185, 2005 
 

118. Hendriks JJ, Teunissen CE, de Vries HE, et al. Macrophages and 
neurodegeneration. Brain Res Brain Res Rev. 2005 Apr;48(2):185–95.  
 

119. Hirase T, Staddon JM, Saitou M, Ando-Akatsuka Y, Itoh M, Furuse M, 
Fujimoto K, Tsukita S and Rubin LL (1997) Occludin as a possible 
determinant of tight junction permeability in endothelial cells. J Cell Sci 110 
(Pt 14):1603-1613. 
 

120. Ho DD, Rota TR, Schooley R, Kaplan JC, Allan JD, Groopman JE, Resnick 
L, Felsenstein D, Andrews CA, Hirsch M (1985), Isolation of HTLV-III from 
cerebrospinal fluid and neural tissues of patients with neurologic syndromes 
related to the acquired immunodeficiency syndrome. N Engl J Med 313: 
1493-1497. 
 

121. Hofmann A, Wenzel D, Becher UM, Freitag DF, Klein AM, Eberbeck D, 
Schulte M, Zimmermann K, Bergemann C, Gleich B, Roell W, Weyh T, 
Trahms L, Nickenig G, Fleischmann BK, Pfeifer A (2009) Combined targeting 
of lentiviral vectors and positioning of transduced cells by magnetic 
nanoparticles. Proc Natl Acad Sci USA 106: 44–49. 
 

122. Holt JL, Kraft-Terry SD, Chang L (2012) Neuroimaging studies of the aging 
of HIV-1-infected brain. J Neurovirol,18 (4):291-302. 
 

123. Ikehara Y, Niwa T, Biao L, et al. A carbohydrate recognition-based drug 
delivery and controlled release system using intraperitoneal macrophages as 
a cellular vehicle. Cancer Res. 2006 Sep 1;66(17):8740–8. 
 

124. ILO (2012), http://www.unaids.org/en/aboutunaids/unaidscosponsors/ilo/. 
 

125. Izumikawa, S., Yoshioka, S., Aso, Y., and Takeda, Y. 1991, Preparation of 
poly(l-lactide) microspheres of different crystalline morphology and effect of 



132 
 

crystalline morphology on drug release rate  Journal of Controlled Release, 
15, 133-140. 
 

126. Jain S, Mishra V, Singh P, Dubey PK, Saraf DK, Vyas SP. RGD-anchored 
magnetic liposomes for monocytes/neutrophils-mediated brain targeting. Int J 
Pharm. 2003;261:43–55. 
 

127. Jain T.K., Reddy M.K., Morales M.A., Leslie-Pelecky D.L., Labhasetwar V., 
Biodistribution, clearance, and biocompatibility of iron oxide magnetic 
nanoparticles in rats. Mol Pharmacol, 5 (2008), pp. 316–327. 
 

128. Jain, K.K. 2008, Drug Delivery Systems: An Overview 437, 1-50 
 

129. Jayapaul, J., et al., FMN-coated fluorescent iron oxide nanoparticles for 
RCP-mediated targeting and labeling of metabolically active cancer and 
endothelial cells. Biomaterials, 2011. 32(25): p. 5863-5871. 
 

130. Jiménez, J.L., Clemente, M.I., Weber, N.D., Sanchez, J., Ortega, P., de la 
Mata, F.J., Gómez, R., García, D., López-Fernández, L.A., Muñoz-
Fernández, M.A. (2010). Carbosilane dendrimers to transfect human 
astrocytes with small interfering RNA targeting human immunodeficiency 
virus. BioDrugs, Vol. 24, pp. 331-343. 
 

131. Jin S.X., Bi D.Z., Wang J., Wang Y.Z., Hu H.G., Deng Y.H., 
Pharmacokinetics and tissue distribution of zidovudine in rats following 
intravenous administration of zidovudine myristate loaded liposomes, 
Pharmazie 60 (2005) 840–843.  
 

132. Johanson CE, Stopa E, McMillan PN (2011) The blood-cerebrospinal fluid 
barrier: structure and functional significance. In: Nag S (ed) The blood-brain 
and other neural barriers, vol 686. Springer, New York, p 101-131. 
 

133. Jones, M.C. and Leroux, J.C. 1999, Polymeric micelles - a new generation of 
colloidal drug carriers  European Journal of Pharmaceutics and  
Biopharmaceutics, 48, 101-111. 
 

134. Jun, Y.-w., et al., Nanoscale Size Effect of Magnetic Nanocrystals and Their 
Utilization for Cancer Diagnosis via Magnetic Resonance Imaging. Journal of 
the American Chemical Society, 2005. 127(16): p. 5732-5733. 
 

135. Jung N., Lehmann C., Rubbert A., Knispel M., Hartmann P., van Lunzen J., 
Stellbrink H.J., Faetkenheuer G., Taubert D. Relevance of the organic cation 
transporters 1 and 2 for antiretroviral therapy in HIV infection. Drug Metab. 
Dispos. 2008;36:1616–1623. 
 



133 
 

136. Kabanov A.V., Alakhov V.Y., Pluronic block copolymers in drug delivery: 
from micellar nanocontainers to biological response modifiers, Crit. Rev. 
Ther. Drug Carrier Syst. 19 (2002) 1–72. 
 

137. Kanmogne GD, Singh S, Roy U, Liu X, McMillan J, Gorantla S, Balkundi S, 
Smith N, Alnouti Y, Gautam N, Zhou Y, Poluektova L, Kabanov AV, Bronich 
T, Gendelman HE (2012) Mononuclear phagocyte intercellular crosstalk 
facilitates transmission of celltargeted nanoformulated antiretroviral drugs to 
human brain endothelial cells. International Journal of Nanomedicine, 
2012; 7: 2373–2388. 
 

138. Kaplan IM, Wadia JS, and Dowdy SF (2005) Cationic TAT peptide 
transduction domain enters cells by macropinocytosis. J Control 
Release 102: 247-253. 
 

139. Katragadda A, Bridgman R, Betageri G. Effect of liposome composition and 
cholesterol on the cellular uptake of stavudine by human 
monocyte/macrophages. Cell Mol Biol Lett. 2000;5:483–494. 
 

140. Kaul M, Garden GA, Lipton SA (2001) Pathways to neuronal injury and 
apoptosis in HIV-associated dementia. Nature 410: 988-994. 
 

141. Khalil IA, Kogure K, Akita H, Harashima H. Uptake pathways and 
subsequent intracellular trafficking in nonviral gene delivery. Pharmacol Rev 
2006 Mar; 58(1):32–45. 
 

142. Kim D.H. and Martin D.C., Sustained release of dexamethasone from 
h\ydrophilic matrices using PLGA nanoparticles for neural drug delivery, 
Biomaterials 27 (2006) 3031–3037. 
 

143. Kim H.R., Andrieux K., Gil S., Taverna M., Chacun H., Desmaële D., Taran 
F., Georgin D., Couvreu P., Translocation of poly(ethylene glycol-co-
hexadecyl) cyanoacrylate nanoparticles into rat brain endothelial cells: role of 
apolipoproteins in receptor-mediated endocytosis, Biomacromolecules 8 
(2007) 793–799.  
 

144. Kim R.B., Fromm M.F., Wandel C., Leake B., Wood A.J., Roden D.M., 
Wilkinson G.R. The drug transporter P-glycoprotein limits oral absorption and 
brain entry of HIV-1 protease inhibitors. J. Clin. Invest. 1998;101:289–294. 
 

145. Kim S., Scheerer S., Geyer M.A., Howell S.B., Direct cerebrospinal fluid 
delivery of an antiretroviral agent using multivesicular liposomes, J. Infect. 
Dis. 162 (1990) 750–752. 
 

146. King GL and Johnson SM (1985) Receptor-mediated transport of insulin 
across endothelial cells. Science 227:1583-1586. 
 



134 
 

147. Kohori, F., Sakai, K., Aoyagi, T., Yokoyama, M., Sakurai, Y. and Okano, T. 
(1998) Preparation a characterization of thermally responsive block 
copolymer micelles compris-ing poly (N-isopropylacrylamide-β-DL-lactide). J. 
Con-trol. Release, 55, 87-98. 
 

148. Kondo, N., Iwao, T., Kikuchi, K.M., Shu, H., Yamanouchi, K., Yokoyama, K., 
Ohyama, K., and Ogyu, S. 1993, Pharmacokinetics of micronized, poorly 
water-soluble drug, HO-221, in exparimental animals  Biological and 
pharmaceutical bulletin, 16, 796-800. 
 

149. Koning, G. A.; Krijger, G. C. Targeted multifunctional lipid-based 
nanocarriers for image-guided drug delivery Anticancer Agents Med. 
Chem. 2007 7 425 440. 
 

150. Koukourakis M.I., Koukouraki S., Giatromanolaki A., Kakolyris S., 
Georgoulias V., Velidaki A., Archimandritis S., Karkavitsas N.N., High 
intratumoral accumulation of stealth liposomal doxorubicinin sarcomas—
rationale for combination with radiotherapy, Acta Oncol. 39 (2000) 207–211. 
 

151. Kozal MJ. Drug-resistant human immunodefiency virus. Clin Microbiol 
Infect. 2009;15(Suppl 1):69–73. 
 

152. Koziara, J.M., Lockman, P.R., Allen, D.D., and Mumper, R.J. 2003, In Situ 
Blood-Brain Barrier Transport of Nanoparticles  Pharmaceutical Research, 
20, 1772-1778. 
 

153. Kraft-Terry SD, Stothert AR, Buch S, Gendelman HE. (2010) HIV-1 
neuroimmunity in the era of antiretroviral therapy. Neurobiol Dis, 37:542-8. 
 

154. Kramer-Hammerle S, Rothenaigner I, Wolff H, Bell JE, Brack-Werner R. 
(2005), Cells of the central nervous system as targets and reservoirs of the 
human immunodeficiency virus. Virus Res.; 111:194–213.  
 

155. Krantz A. Red cell-mediated therapy: opportunities and challenges. Blood 
Cells Mol Dis.1997;23(1):58–68. 
 

156. Kreuter J. Nanoparticles as drug delivery systems. Encyclopedia of 
nanoscience and nanotechnology. 2004;7:161–180. 
 

157. Kuo Y.C. and Kuo C.Y., Electromagnetic interference in the permeability of 
saquinavir across the blood–brain barrier using nanoparticulate carriers, Int. 
J. Pharm. 351 (2008) 271–281. 
 

158. Kuo Y.C. and Su F.L., Transport of stavudine, delavirdine, and saquinavir 
across the blood–brain barrier by polybutylcyanoacrylate methyl methacrylate 
sulfopropyl methacrylate and solid lipid nanoparticles, Int. J. Pharm. 340 
(2007) 143–152. 



135 
 

 
159. Kuo Y.C. Chen H.H. (2006). Effect of nanoparticulate polybutylcyanoacrylate 

and methylmethacrylate-sulfopropylmethacrylate on the permeability of 
zidovudine and lamivudine across the in vitro blood-brain barrier. International 
Journal of Pharmaceutics, Vol. 327, pp. 160–69.   
 

160. Kuo Y.C. Su FL. (2007). Transport of stavudine, delavirdine, and saquinavir 
across the blood–brain barrier by polybutylcyanoacrylate, 
methylmethacrylatesulfopropylmethacrylate, and solid lipid nanoparticles. 
International Journal of Pharmaceutics, Vol. 340, pp. 143–152. 
 

161. Kwon M, Fernandez JR, Zegarek GF, Lo SB, Firestein BL BDNF-promoted 
increases in proximal dendrites occur via CREB-dependent transcriptional 
regulation of cypin. (2011) J Neurosci 31: 9735-9745. 
 

162. Kyrtatos PG, Lehtolainen P, Junemann-Ramirez M, Garcia-Prieto A, Price 
AN, Martin JF, Gadian DG, Pankhurst QA, Lythgoe MF. Magnetic tagging 
increases delivery of circulating progenitors in vascular injury. JACC 
Cardiovasc Interv. 2009; 2: 794–802. 
 

163. Costantino L., Tosi G., Ruozi B., Bondioli L., Vandelli M.A., Forni F., 
Colloidal systems for CNS drug delivery, in: H.S. Sharma (Ed.), Prog. Brain 
Res., 180, 2009, pp. 35–69. 
 

164. Lanao J.M., Briones E., Colino C.I., Recent advances in delivery systems for 
antiHIV1 therapy, J. Drug Target. 15 (2007) 21–36. 
 

165. Langer, R. 1976, Polymers for the sustained release of proteins and other  
macromolecules Nature, 263, 797-800. 
 

166. Lara H H,  Ixtepan-Turrent L,  Treviño E N G, Singh D K. (2011), Use of 
silver nanoparticles increased inhibition of cell-associated HIV-1 infection by 
neutralizing antibodies developed against HIV-1 envelope proteins. J 
Nanobiotechnology. 2011; 9: 38. 
 

167. Lara HH, Ayala-Nunez NV, Ixtepan-Turrent L, Rodriguez-Padilla C. Mode of 
antiviral action of AgNPs against HIV-1. J Nanobiotechnology. 2010;8:1. 
 

168. Lefèvre CT, Menguy N, Abreu F, Lins U, Pósfai M, et al. (2011) A Cultured 
Greigite-Producing Magnetotactic Bacterium in a Novel Group of Sulfate-
Reducing Bacteria. Science 334: 1720–1723. 
 

169. Letendre SL, Ellis RJ, Everall I, Ances, B, M., Bhatri, A., McCutchan, 
J.A. (2009), Neurologic complications of HIV disease and their treatment. Top 
HIV Med; 17: 46–56. 
 



136 
 

170. Li Y, Wang H, Niu L, Zhou Y (2007) Chronic morphine exposure alters the 
dendritic morphology of pyramidal neurons in visual cortex of rats. Neurosci 
Lett 418: 227-231. 
 

171. Liu Q, Shen Y, Chen J, Gao X, Feng C,  Wang L, Zhang Q and  Jiang X 
Nose-to-Brain Transport Pathways of Wheat Germ Agglutinin Conjugated 
PEG-PLA Nanoparticles. Pharm Res (2012) 29:546–558. 
 

172. Lopez J. A., González F., Bonilla F.A., Zambrano G., Gómez M. E. (2010) 
Synthesis and characterization of Fe3O4 magnetic nanofluid. Revista 
Latinoamericana de Metalurgia y Materiales 30 (1): 60-66 
 

173. Lossinsky AS, Shivers RR. Structural pathways for macromolecular and 
cellular transport across the blood-brain barrier during inflammatory 
conditions. Review. Histol Histopathol. 2004 Apr;19(2):535–64.  
 

174. Lubbe AS, Bergemann C, Huhnt W, Fricke T, Riess H, et al. (1996) 
Preclinical experiences with magnetic drug targeting: tolerance and efficacy. 
Cancer Res 56: 4694-4701. 
 

175. Luo, Jie · Phan, Trongha X · Yang, Yimei · Garelick, Michael G · Storm, 
Daniel R (2013). Increases in cAMP, MAPK activity, and CREB 
phosphorylation during REM sleep: implications for REM sleep and memory 
consolidation.The Journal of Neuroscience, 33 (15): 6460-6468.  
 

176. Immordino M. L., Dosio F., and Cattel L. (2006) Stealth lipsomes: review of 
the basic science, rationale, and clinical applications, existing and potential. 
Int. J. Nanomed. 1:297–315. 
 

177. Voinea M., E. Dragomir, I. Manduteanu, M. Simionescu, Binding and uptake 
of transferrin-bound liposomes targeted to transferrin receptors of endothelial 
cells, Vascul. Pharmacol. 39 (2002) 13–20. 
 

178. Amiji M.M., T.K. Vyas, L.K. Shah, Role of nanotechnology in HIV/AIDS 
treatment: potential to overcome the viral reservoir challenge, Discov. Med. 6 
(2006) 157–162. 
 

179. Maeda, H., Wu, J., Sawa, Y., Matsumura, Y. and Hori, K. (2000) Tumor 
vascular permeability and the EPR effect in macromolecular therapeutics:a 
review. J. Control. Re-lease, 65, 271-284. 
 

180. Mahajan S. D., Schwartz S. A., Shanahan T. C., Chawda R. P., and Nair M. 
P., “Morphine regulates gene expression of alpha- and beta-chemokines and 
their receptors on astroGlial cells via the opioid mu receptor,” The Journal of 
Immunology, vol. 169, pp. 3589–3599, 2002. 
 



137 
 

181. Mahajan SD, Schwartz SA, Aalinkeel R, Chawda RP, Sykes DE, et al. 
(2005) Morphine modulates chemokine gene regulation in normal human 
astrocytes. Clin Immunol 115: 323–332. 
 

182. Mahato, R.I. 2007, Pharmaceutical dosage forms and drug delivery -300. 
 

183. Makadia, Hirenkumar K.; Siegel, Steven J. 2011. "Poly Lactic-co-Glycolic 
Acid (PLGA) as Biodegradable Controlled Drug Delivery Carrier." Polymers 3, 
no. 3: 1377-1397. 
 

184. Makino, K. and Shibata, A. 2006, Chapter 2: Surface Properties of 
Liposomes Depending on Their Composition Volume 4, 49-77. 
 

185. Manjunath K. and Reddy J.S., Venkateswarlu V., Solid lipid nanoparticles as 
drug delivery systems, Methods Find. Exp. Clin. Pharmacol. 27 (2005) 127–
144.  
 

186. McArthur, J.C., Brew, B.J., Nath, A., (2005), Neurological complications of 
HIV infection. Lancet Neurol. 4 (9), 543–555.  
 

187. McGee B., Smith N., Aweeka F. (2006), HIV pharmacology: barriers to the 
eradication of HIV from the CNS, HIV Clin. Trials 7: 142–153.   
 

188. McNeil, S.E. 2005, Nanotechnology for the biologist J Leukoc Biol, 78, 585-
594. 
 

189. Mehnert W. and Mader K., Solid lipid nanoparticles: production, 
characterization and applications, Adv. Drug Deliv. Rev. 47 (2001) 165–196 
 

190. Menon LG, Kelly K, Yang HW, et al. Human bone marrow-derived 
mesenchymal stromal cells expressing S-TRAIL as a cellular delivery vehicle 
for human glioma therapy. Stem Cells. 2009 Sep;27(9):2320–30. 
 

191. Messmer D., Hatsukari I., Hitosugi N., Schmidt-Wolf I. G. H., and Singhal P. 
C., “Morphine reciprocally regulates IL-10 and IL-12 production by monocyte-
derived human dendritic cells and enhances T cell activation,” Molecular 
Medicine, vol. 12, no. 11-12, pp. 284–290, 2006.  
 

192. Meyer, O., Papahadjopoulos, D. and Leroux, J.C. (1998) Co- polymers of N-
isopropylacrylamide can trigger pH sensitivity to stable liposomes. FEBS Lett. 
421, 61-64. 
 

193. Minn A, Ghersi-Egea JF, Perrin R, Leininger B and Siest G (1991) Drug 
metabolizing enzymes in the brain and cerebral microvessels. Brain Res 
Brain Res Rev 16:65-82. 
 



138 
 

194. Mitra, S., Gaur, U., Ghosh, P.C. and Maitra, A.N. (2001) Tumour targeted 
delivery of encapsulated dextran doxorubicin conjugate using chitosan 
nanoparticles as carrier. J. Control. Release, 74, 317-323. 
 

195. MMWR (2001), The Global HIV/AIDS epidemic, 2001.  June 1; 50(21): 434-
456. 
 

196. Mohanraj, V.J. and Chen, Y. 2006, Nanoparticles-A review Tropical Journal 
of Pharmaceutical Research, 5, 561-573.  
 

197. Moorman J., Zhang Y., B. Liu, LeSage G., Chen Y., Stuart C., Prayther D, 
and Yin D. “HIV-1 gp120 primes lymphocytes for opioid-induced, beta-arrestin 
2-dependent apoptosis,” Biochimica et Biophysica Acta, vol. 1793, pp. 1366–
1371, 2009. 
 

198. Muller FJ, Snyder EY, Loring JF. Gene therapy: can neural stem cells 
deliver? Nat Rev Neurosci.2006 Jan;7(1):75–84. 
 

199. Muller R.H., Ruhl D., Runge S., Schulze-Forster K., Mehnert. Cytotoxicity of 
solid lipid nanoparticles as a function of the lipid matrix and the surface, 
Pharm. Res. 14 (1997) 458–462 
 

200. Muthana M, Scott SD, Farrow N, et al. A novel magnetic approach to 
enhance the efficacy of cell-based gene therapies. Gene 
Therapy. 2008;15:902–910. 
 

201. Bertrand N., P. Simard, J.C. Leroux, Serum-stable, long-circulating, pH-
sensitive PEGylated liposomes, Methods Mol. Biol. 605 (2010) 545–558. 
 

202. Nair, M.P., Pottathil, R., Heimer, E.P. and Schwartz, S.A. Immunoregulatory 
activities of human immunodeficiency virus (HIV) proteins: effect of HIV 
recombinant and synthetic peptides on immunoglobulin synthesis and 
proliferative responses by normal lymphocytes. Proc Natl Acad Sci U S A, 
1988. 85(17): 6498-502. 
 

203. Nair, MPN and Saiyed, Z (2011). Antiretroviral nanotherapies. In: The 
Neurology of AIDS, Third Edition. Eds: H.E. Gendelman, I.P. Everall, H.S. 
Fox, H.A. Gelbard, I. Grant, S.A. Lipton, S. Swindells. Oxford University 
Press, New York, 2011; pp 999-1004.  
 

204. Nath A, Anderson C, Jones M, Maragos W, Booze R, Mactutus C, Bell J, 
Hauser KF, Mattson M. “Neurotoxicity and dysfunction of dopaminergic 
systems associated with AIDS dementia,” Journal of Psychopharmacology, 
vol. 14, no. 3, pp. 222–227, 2000.  
 



139 
 

205. Nath A, Hauser KF, Wojna V, Booze RM, Maragos W, Prendergast M, Cass 
W, Turchan JT. Molecular basis for interactions of HIV and drugs of abuse. J 
Acquir Immune Defic Syn.2002;31:S62–S69. 
 

206. Nath A., Hauser K. F., Wojna V.,Booze R. M., Maragos W., Prendergast M., 
Cass W. and Turchan J.T “Molecular basis for interactions of HIV and drugs 
of abuse,” Journal of Acquired Immune Deficiency Syndromes, vol. 31, 
supplement 2, pp. S62–S69, 2002. 
 

207. Neff CP, Zhou J, Remling L, Kuruvilla J, Zhang J, Li H, Smith DD, Swiderski 
P, Rossi JJ, Akkina R. An aptamer-siRNA chimera suppresses HIV-1 viral 
loads and protects from helper CD4+ T cell decline in humanized mice. Sci 
Transl Med 3(66):66ra66, 2011. 
 

208. Nestler EJ (2001) Molecular basis of long-term plasticity underlying 
addiction. Nat Rev Neurosci 2: 119-128. 
 

209. Nijhuis M, van Maarseveen NM, Boucher CA. Antiviral resistance and impact 
on viral replication capacity: evolution of viruses under antiviral pressure 
occurs in three phases. Handb Exp Pharmacol.2009;189:299–320. 
 

210. Nolan D, Reiss P, Mallal S. Adverse effects of antiretroviral therapy for HIV 
infection: a review of selected topics. Expert Opin Drug Saf. 2005;4:201–18. 
 

211. Nowacek A, Gendelman HE. NanoART, neuroAIDS and CNS drug 
delivery. Nanomedicine (Lond)2009 Jul;4(5):557–74. 
 

212. Nowacek AS, McMillan J, Miller R, et al. Nanoformulated Antiretroviral Drug 
Combinations Extend Drug Release and Antiretroviral Responses in HIV-1-
Infected Macrophages: Implications for NeuroAIDS Therapeutics. 
 

213. Olivier J.C., Drug transport to brain with targeted nanoparticles, NeuroRx 2 
(2005) 108–119. 
 

214. Pan G., Giri N., Elmquist W.F. Abcg2/Bcrp1 mediates the polarized transport 
of antiretroviral nucleosides abacavir and zidovudine. Drug Metab. 
Dispos. 2007;35:1165–1173. 
 

215. Pan, Y.; Du, X.; Zhao, F.; Xu, B., Magnetic Nanoparticles for the 
Manipulation of  Proteins and Cells. Chem Soc Rev 2012, 41, 2912-2942. 
 

216. Pardridge WM. Blood-brain barrier delivery. Drug Discovery 
Today. 2007;12:54–61. 
 

217. Pardridge WM. Brain drug targeting: the future of brain drug development: 
Cambridge Univ Pr; 2001. 
 



140 
 

218. Pardridge WM. Drug transport in brain via the cerebrospinal fluid. Fluids 
Barriers CNS 2011;8(1):7. 
 

219. Park, J.H., Saravanakumar, G., Kim, K., and Kwon, I.C. 2010, Targeted 
delivery of low molecular drugs using chitosan and its derivatives Advanced 
Drug Delivery Reviews, 62, 28-41. 
 

220. Pawlowski NA, Kaplan G, Abraham E, et al. The selective binding and 
transmigration of monocytes through the junctional complexes of human 
endothelium. J Exp Med. 1988 Nov 1;168(5):1865–82.  
 

221. Pelkmans L, Kartenbeck J, and Helenius A (2001) Caveolar endocytosis of 
simian virus 40 reveals a new two-step vesicular-transport pathway to the ER. 
Nat Cell Biol 3: 473-483. 
 

222. Peng, A., et al., PEGylation of a Factor VIII–Phosphatidylinositol Complex: 
Pharmacokinetics and Immunogenicity in Hemophilia A Mice. The AAPS 
Journal, 2012. 14(1): p. 35-42. 
 

223. Peng, Z.G., K. Hidajat, and M.S. Uddin, Adsorption of bovine serum albumin 
on nanosized magnetic particles. Journal of Colloid and Interface Science, 
2004. 271(2): p. 277-283. 
 

224. Pereira M., Oliveira E. de, Garcion N.V., Benoit J.P., Couet W., Olivier J.C., 
Tissue distribution of indinavir administered as solid lipid nanocapsule 
formulation in mdr1a(+/+) and mdr1a (−/−) CF-1 mice, Pharm. Res. 22 (2005) 
1898–1905. 
 

225. Perelson AS, Essunger P, Cao Y.  (1997), Decay characteristics of HIV-1 
infected compartments during combination therapy.   Nature, 387:188-191. 
 

226. Persidsky Y., Heilman D., Haorah J., Zelivyanskaya M., Persidsky R., Weber 
G. A., Shimokawa H., Kaibuchi K. and Ikezu T. (2006) Rho-mediated 
regulation of tight junctions during monocyte migration across blood–brain 
barrier in HIV-1 encephalitis (HIVE). Blood 107, 4770–4780. 
 

227. Peterson P. K., Gekker G., Hu S., Anderson Wr, Kravitz F, Porotoghese PS., 
Balfour H. H., Jr. and Chao C. C. “Morphine amplifies HIV-1 expression in 
chronically infected promonocytes cocultured with human brain cells,” Journal 
of Neuroimmunology, vol. 50, no. 2, pp. 167–175, 1994. 
 

228. Peterson P. K., Gekker G., Schut R., Hu S., Balfour H. H., Jr. and Chao C. 
C. (1993) Enhancement of HIV-1 replication by opiates and cocaine: The 
cytokine connection. Adv. Exp. Med. Biol. 335, 181–188. 
 

229. Peterson P. K., Molitor T. W. and Chao C. C. (1998) The opioid-cytokine 
connection. J. Neuroimmunol. 83, 63–69. 



141 
 

 
230. Peterson PK, Gekker G, Hu S, Lokensgard J, Portoghese PS, and Chao CC 

(1999) Endomorphin-1 potentiates HIV-1 expression in human brain cell 
cultures: implication of an atypical μ-opioid 
receptor. Neuropharmacology 38: 273-278. 
 

231. Pilakka-Kanthikeel S., Atluri, V.S.R, Sagar V., and Nair, M., Targeted brain 
derived neurotropic factors (BDNF) delivery across the blood-brain barrier for 
neuro-protection using magnetic nano carriers: an in-vitro study. PLOS ONE 
(2013), Volume 8 (4): e62241. 
 

232. Pion, M., Serramia, M.J., Diaz, L., Bryszewska, M., Gallart, T., García, F., 
Gómez, R., de la Mata, F.J., Muñoz-Fernandez, M.Á. (2010).  Phenotype and 
functional analysis of human monocytes-derived dendritic cells loaded with a 
carbosilane dendrimer. Biomaterials, Vol. 31, pp. 8749-8758. 
 

233. Popescu MA, Toms SA. In vivo optical imaging using quantum dots for the 
management of brain tumors. Expert Rev Mol Diagn. 2006 Nov;6(6):879–90.  
 

234. Prior S., Gander B., Blarer N., Merkle H.P., Subira M.L., Irache J.M., 
Gamazo C., In vitro phagocytosis and monocyte–macrophage activation with 
poly(lactide) and poly(lactide-co-glycolide) microspheres, Eur. J. Pharm. Sci. 
15 (2002) 197–207. 
 

235.  Qiao, R., et al., Receptor-Mediated Delivery of Magnetic Nanoparticles 
across the Blood–Brain Barrier. ACS Nano, 2012. 6(4): p. 3304-3310. 
 

236. R. Mallipeddi, L.C. Rohan, Progress in antiretroviral drug delivery using 
nanotechnology, Int. J. Nanomedicine 5 (2010) 533–547. 
 

237. Rao KS, Reddy MK, Horning JL, et al. TAT-conjugated nanoparticles for the 
CNS delivery of anti-HIV drugs. Biomaterials. 2008;29:4429–38. 
 

238. Reddy LH, Vivek K, Bakshi N, Murthy RSR. Tamoxifen citrate loaded solid 
lipid nanoparticles (SLN™): preparation, characterization, in vitro drug 
release, and pharmacokinetic evaluation.Pharmaceutical Development and 
Technology. 2006;11(2):167–177. 
 

239. Reddy M.K. and Labhasetwar V., Nanoparticle-mediated delivery of 
superoxide dismutase to the brain: an effective strategy to reduce ischemia–
reperfusion injury, FASEB J. 23 (2009) 1384–1395. 
 

240. Reddy PVB, Pilakka-Kanthikeel S, Saxena SK, Saiyed Z, Nair, MP. (2012), 
Interactive Effects of Morphine on HIV Infection: Role in HIV-Associated 
Neurocognitive Disorder. AIDS Research and Treatment , 2012:Article 
ID 953678. 
 



142 
 

241. Rempe R., Cramer S., Huwel S., Galla H.J., Transport of Poly(n-butylcyano-
acrylate)nanoparticles across the blood–brain barrier in vitro and their 
influence on barrier integrity, Biochem. Biophys. Res. Commun. 406 (2011) 
64–69. 
 

242. Rempe, R., et al., Transport of Poly(n-butylcyano-acrylate) nanoparticles 
across the blood–brain barrier in vitro and their influence on barrier integrity. 
Biochemical and Biophysical Research Communications, 2011. 406(1): p. 64-
69. 
 

243. Resnick L., Berger J.R., Shapshak P., Tourtellotte W.W. (1988), Early 
penetration of the blood brain barrier by HIV. Neurology.;38:9-14. 
 

244. Resnick, L., diMarzo-Veronese, F., Schubbach, J., Tourtellotte, W. W., Ho, 
D. D., Muller, F., Shapshak, P., Vogt, M., Groopman, J. E., Markham, P. D. 
and Gallo, R. C. (1985), Intra blood brain barrier synthesis of HTLV-111 
specific IgG in patients with neurologic symptoms associated with AIDS or 
AIDS-related complex. New England Journal of Medicine, 313: 1498-1504. 
 

245. Reynolds JL, Law WC, Mahajan SD, Aalinkeel R, Nair B, Sykes DE, 
Mammen MJ, Yong KT, Hui R, Prasad PN, Schwartz SA. Morphine and 
galectin-1 modulate HIV-1 infection of human monocyte-derived 
macrophages. J Immunol. 2012;8:3757–3765. 
 

246. Reynolds JL, Law WC, Mahajan SD, Aalinkeel R, Nair B, Sykes DE, Yong 
KT, Hui R, Prasad PN, Schwartz SA. Nanoparticle Based Galectin-1 Gene 
Silencing, Implications in Methamphetamine Regulation of HIV-1 Infection in 
Monocyte Derived Macrophages. J Neuroimmune pharmacol. Sep 2012,  
7(3):673-85. 
 

247. Riddle EL, Fleckenstein AE, Hanson GR. Mechanisms of 
Methamphetamine-induced Dopaminergic Neurotoxicity. (2006), AAPS 
Journal. 8(2): E413-E418.   
 

248. Rivera-Amill V., Silverstein P. S., Noel R. J., Kumar S., and Kumar A., 
“Morphine and rapid disease progression in nonhuman primate model of 
AIDS: inverse correlation between disease progression and virus 
evolution,” Journal of Neuroimmune Pharmacology, vol. 5, no. 1, pp. 122–
132, 2010. 
 

249. Riviere C, Martina MS, Riviere C, et al. Magneting targeting of nanometric 
magnetic fluid loaded liposomes to specific brain intravascular areas: A 
dynamic imaging study in mice. Radiology.2007;244:439–448. 
 

250. Robinson TE, Kolb B (1999) Alterations in the morphology of dendrites and 
dendritic spines in the nucleus accumbens and prefrontal cortex following 



143 
 

repeated treatment with amphetamine or cocaine. Eur J Neurosci 11: 1598-
1604. 
 

251. Rogers T. J., Steele A. D., Howard O. M. and Oppenheim J. J. (2000) 
Bidirectional heterologous desensitization of opioid and chemokine receptors. 
Ann. N. Y. Acad. Sci. 917, 19–28. 
 

252. Rogers TJ. Immunology as it pertains to drugs of abuse, AIDS and the 
neuroimmune axis: mediators and traffic. J Neuroimmune Pharmacol 
2011;6:20–27. 
 

253. Rojavin M., Szabo I., Bussiere J. L., Rogers T. J., Adler M. W., and 
Eisenstein T. K., “Morphine treatment in vitro or in vivo decreases phagocytic 
functions of murine macrophages,” Life Sciences, vol. 53, no. 12, pp. 997–
1006, 1993.  
 

254. Rolfs A and Schuhmacher HC (1990), Early findings in the cerebrospinal 
fluid of patients with HIV-1 infection of the central nervous system. N Engl J 
Med 323:418-419. 
 

255. Ronaldson P.T., Persidsky Y., Bendayan R., Regulation of ABC membrane 
transporters in glial cells: relevance to the pharmacotherapy of brain HIV-1 
Infection, 
 

256. Roy, U, Balkundi S., McMillan, J., Gendelman, H.E. Nanoformulated 
Medicines. In: The Neurology of AIDS, Third Edition. Eds: H.E. Gendelman, 
I.P. Everall, H.S. Fox, H.A. Gelbard, I. Grant, S.A. Lipton, S. Swindells. 
Oxford University Press, New York, 2011; pp 987-998. 
 

257. Rumbaugh JA, Steiner J, Sacktor N, Nath A. Developing neuroprotective 
strategies for treatment of HIV-associated neurocognitive dysfunction. Futur 
HIV Ther 2008; 2: 271–280. 
 

258. S. Hu, W. S. Sheng, J. R. Lokensgard, and P. K. Peterson, “Morphine 
potentiates HIV-1 gp120-induced neuronal apoptosis,” Journal of Infectious 
Diseases, vol. 191, no. 6, pp. 886–889, 2005. 
 

259. Saiyed ZM, Parasramka M, Telang SD, Ramchand CN (2007) Extraction of 
DNA from agarose gel using magnetic nanoparticles (magnetite or Fe3O4). 
Anal Biochem 363: 288-290. 
 

260. Sarti F, Borgland SL, Kharazia VN, Bonci A (2007) Acute cocaine exposure 
alters spine density and long-term potentiation in the ventral tegmental area. 
Eur J Neurosci 26: 749-756. 
 



144 
 

261. Saurer T. B., Carrigan K. A., Ijames S. G., and Lysle D. T., “Suppression of 
natural killer cell activity by morphine is mediated by the nucleus accumbens 
shell,” Journal of Neuroimmunology, vol. 173, no. 1-2, pp. 3–11, 2006.   
 

262. Semete B, Kalombo L, Katata L and Swai H (2010), Nano-drug delivery 
systems: Advances in TB, HIV and Malaria treatment, Smart Biomol. 
Medicine, Edited by Ajay K. Mishra, Ashutosh Tiwari, and Shivani B. Mishra, 
Smar Biomol Medicine, VBSRI press, PP 15-52.  
 

263. Senyei A, Widder K, Czerlinski C. Magnetic guidance of drug carrying 
microspheres. J Appl Phys. 1978;49:3578–83. 
 

264. Sershen, S.R., Westcoot, S.L., Halas, N.J. and West, J.L. (2000) 
Temperature-sensitive polymer-nanoshell com-posites for photothermally 
modulated drug delivery. J. Biomed. Mater. Res., 51, 293-298. 
 

265. Shaik N, Pan G, Elmquist WF. Interactions of pluronic block copolymers on 
P-gp efflux activity: experience with HIV-1 protease inhibitors. J Pharm 
Sci. 2008;97(12):5421–5433. 
 

266. Shaik N., Giri N., Pan G., Elmquist W.F. P-glycoprotein-mediated active 
efflux of the anti-HIV1 nucleoside abacavir limits cellular accumulation and 
brain distribution. Drug Metab. Dispos.2007;35:2076–2085. 
 

267. Sharma A., Sharma U.S. (1997). Liposomes in drug delivery: progress and 
limitations. International Journal Pharmaceutics, Vol. 154, pp. 123–140. 
 

268. Sharma P., Garg S. (2010). Pure drug and polymer based nanotechnologies 
for the improved solubility, stability, bioavailability and targeting of anti-HIV 
drugs. Advanced Drug Delivery Reviews, Vol. 62, pp. 491–502.   
 

269. Shively L, Chang L, LeBon JM, Liu Q, Riggs AD, Singer-Sam J(2003) Real-
time PCR assay for quantitative mismatch detection. Biotechniques 34:498–
502. 
 

270. Siegel GJ, Agranoff BW, Albers RW, et al., editors. Basic Neurochemistry: 
Molecular, Cellular and Medical Aspects. 6th edition. Philadelphia: Lippincott-
Raven; 1999. Blood—Cerebrospinal Fluid Barrier. Available from: 
http://www.ncbi.nlm.nih.gov/books/NBK27998/ 
 

271. Simonato M. The neurochemistry of morphine addiction in the neocortex. 
Trends Pharmacol.Sci. 1996; 17, 410-415. 
 

272. Singer EJ, Valdes-Sueiras M, Commins D, Levine A (2010), Neurologic 
presentations of AIDS. Neurol Clin 28: 253–275. 
 



145 
 

273. Singhal PC, Kapasi AA, Reddy K, Franki N, Gibbons N, et al. (1999) 
Morphine promotes apoptosis in Jurkat cells. J Leukoc Biol 66: 650-658. 
 

274. Singhal PC, Sharma P, Kapasi AA, Reddy K, Franki N, et al. (1998) 
Morphine enhances macrophage apoptosis. J Immunol 160: 1886-1893. 
 

275. Skar H, Hedskog C, Albert J. (2011) HIV-1 evolution in relation to molecular 
epidemiology and antiretroviral resistance. Annals of the New York Academy 
of Sciences.1230:108-18. 
 

276. Smith DL, Pozueta J, Gong B, Arancio O, Shelanski M (2009) Reversal of 
long-term dendritic spine alterations in Alzheimer disease models. Proc Natl 
Acad Sci U S A 106: 16877–16882.  
 

277. Smith GH (2005) Opening statement of Senator Gordon H. Smith. Aging 
hearing: HIV over fifty, exploring the new threat. Senate Committee on Aging, 
Washington, DC, U.S. Government Printing Office. 
 

278. Sollner T, Bennett MK, Whiteheart SW, et al. A protein assembly-
disassembly pathway in vitro that may correspond to sequential steps of 
synaptic vesicle docking, activation, and fusion. Cell. 1993 Nov 5;75(3):409–
18.  
 

279. Soppimath, K.S., Aminabhavi, T.M., Kulkarni, A.R., and  Rudzinski, W.E. 
2001, Biodegradable polymeric nanoparticles as drug delivery devices 
Journal of Controlled Release, 70, 1-20.  
 

280. Spitzenberger T.J., Heilman D., Diekmann C., Batrakova E.V., Kabanov 
A.V., Gendelman H.E., Elmquist W.F., Persidsky Y., Novel delivery system 
enhances efficacy of antiretroviral therapy in animal model for HIV-1 
encephalitis, J. Cereb. Blood Flow Metab. 27 (2007) 1033–1042. 
 

281. Sporer B, Paul R, Koedel U, Grimm R, Wick M, Goebel FD, Pfister HW. 
Presence of matrix metalloproteinase-9 activity in the cerebrospinal fluid of 
human immunodeficiency virus-infected patients. J Infect Dis. 1998;178:854–
857. 
 

282. Studeny M, Marini FC, Champlin RE, Zompetta C, Fidler IJ, Andreeff M. 
Bone marrow-derived mesenchymal stem cells as vehicles for interferon-beta 
delivery into tumors. Cancer Res. 2002 Jul 1;62(13):3603–8. 
 

283. Sun Y-k., Ma M., Zhang, Y. and Gu, N. (2004). Synthesis of nanometer-size 
maghemite particles from magnetite. Colloids and Surfaces A: 
Physicochemical and Engineering Aspects, 245(1–3): p. 15-19. 
 



146 
 

284. Sun, J., Li, Y., Liang, X-J., Wang, P.C. (2011). Bacterial Magnetosome: A 
Novel Biogenetic Magnetic Targeted Drug Carrier with Potential 
Multifunctions. Journal of Nanomaterials, 2011: Article ID 469031 
 

285. Suri SS, Fenniri H, Singh B (2007) Nanotechnology-based drug delivery 
systems. J Occup Med Toxicol 2: 16. 
 

286. Svenson S., Dendrimers as versatile platform in drug delivery applications, 
Eur. J. Pharm. Biopharm. 71 (2009) 445–462. 
 

287. Tamai I and Tsuji A (2000) Transporter-mediated permeation of drugs 
across the blood-brain barrier. J Pharm Sci 89:1371-1388. 
 

288. Taubenfeld SM, Wiig KA, Bear MF, Alberini CM (1999) A molecular correlate 
of memory and amnesia in the hippocampus. Nat Neurosci 2: 309-310. 
 

289. TheWorldBank(2012), 
http://www.unaids.org/en/aboutunaids/unaidscosponsors/theworldbank/. 
 

290. Thiele L, Merkle HP, Walter E. Phagocytosis and phagosomal fate of 
surface-modified microparticles in dendritic cells and macrophages. Pharm 
Res. 2003 Feb;20(2):221–8. 
 

291. Tombacz, E.; Majzik, A.; Horvat, Z. S.; Illes, E.  (2006) Magnetite in aqueous 
medium: Coating its surface and surface coated with it.  Romanian Reports in 
Physics, Vol. 58, No. 3, P. 281–286. 
 

292. Torchilin VP. Recent advances with liposomes as pharmaceutical 
carriers. Nat Rev Drug Discov.2005;4:145–160.  
 

293. Trivedi R, Kompella UB. Nanomicellar formulations for sustained drug 
delivery: strategies and underlying principles. Nanomedicine. 2010;5:485–
505. 
 

294. Tsuji A and Tamai II (1999) Carrier-mediated or specialized transport of 
drugs across the blood-brain barrier. Adv Drug Deliv Rev 36:277-290. 
 

295. UNAIDS (2010), Global Report: UNAIDS report on the global AIDS epidemic 
2010. 
 

296. UNAIDS (2012 a), Fact Sheet: Women, girls, gender equality and HIV.  
 

297. UNAIDS (2012b), Fact Sheet: Adolescents, young people and HIV.   
 

298. UNAIDS (2012c), World AIDS day report 2011.  
 



147 
 

299. UNAIDS/PCB (2009), HIV prevention among injecting drug users. In, 24th 
Meeting of the UNAIDS Programme Coordinating Board, Geneva, 
Switzerland 22-24 June 2009, UNAIDS/PCB(24)/09.9.Rev.1. 
 

300. UNESCO(2012), 
http://www.unaids.org/en/aboutunaids/unaidscosponsors/unesco/. 
 

301. UNODC(2012), 
http://www.unaids.org/en/aboutunaids/unaidscosponsors/unodc/. 
 

302. UNODCb (2012), World Drug Report 2012 (United Nations publication, Sales 
No. E.12.XI.1). 
 

303. Varatharajan L and Thomas SA. (2009), The transport of anti-HIV drugs 
across blood-CNS interfaces: summary of current knowledge and 
recommendations for further research. Antiviral Res; 82(2):A99–A109. 
 

304. Vella S, Palmisano L. The global status of resistance to antiretroviral 
drugs. Clin Infect Dis.2005;41(Suppl 4):S239–46.    
 

305. Vert M, Domurado D. Poly(ethylene glycol): protein-repulsive or albumin-
compatible? J Biomater Sci Polym Ed. 2000;11:1307–17.  
 

306. Viola H, Furman M, Izquierdo LA, Alonso M, Barros DM, et al. (2000) 
Phosphorylated cAMP response element-binding protein as a molecular 
marker of memory processing in rat hippocampus: effect of novelty. J 
Neurosci 20: RC112.  
 

307. Vitas et al., (1996) Effect of composition and method of preparation of 
liposomes on their stability and interaction with murine monocytes infected 
with Brucella abortus. Antimicrobial Agents and Chemotherapy 40(1) 146-
151. 
 

308. Vivithanaporn P, Gill MJ, Power C (2011). Impact of current antiretroviral 
therapies on neuroAIDS. Expert Rev. Anti-Infect. Ther. 9:371–374. 
 

309. Vyas T. K., Shahiwala A., Amiji M. M. (2008). Improved oral bioavailability 
and brain transport of saquinavir upon administration in novel nanoemulsion 
formulations.  International Journal of Pharmaceutics, Vol. 347, pp. 93–101. 
 

310. Vyas TK, Shah L, Amiji MM. Nanoparticulate drug carriers for delivery of 
HIV/AIDS therapy to viral reservoir sites. Expert Opin Drug Deliv. 
2006;3(5):613–628. 
 

311. Wang DD, Bordey A. The astrocyte odyssey. Prog 
Neurobiol. 2008;86(4):342–67. 
 



148 
 

312. Wang J., Barke R. A., Ma J., Charboneau R., and Roy S., “Opiate abuse, 
innate immunity, and bacterial infectious diseases,” Archivum Immunologiae 
et Therapia Experimentalis (Warsz), vol. 56, pp. 299–309, 2008.  
 

313. Weiss J., Theile D., Ketabi-Kiyanvash N., Lindenmaier H., Haefeli W.E. 
Inhibition of MRP1/ABCC1, MRP2/ABCC2, and MRP3/ABCC3 by nucleoside, 
nucleotide, and non-nucleoside reverse transcriptase inhibitors. Drug Metab. 
Dispos. 2007;35:340–344. 
 

314. Weksler B, Subileau E, Perriere N, Charneau P, Holloway K, et al. (2005) 
Blood-brain barrier-specific properties of a human adult brain endothelial cell 
line. The FASEB journal 19: 1872–1874. 
 

315. WHO (2012), http://www.unaids.org/en/aboutunaids/unaidscosponsors/who/. 
 

316. Wilson JK, Sargent JM, Elgie AW, Hill JG, Taylor CG. A feasibility study of 
the MTT assay for chemosensitivity testing in ovarian malignancy. British 
Journal of Cancer. 1990;62(2):189–194. 
 

317. Wiogo H.T. R., Lim M., Bulmus V., Gutierrez L., Woodward R. C., and Amal 
R. (2012), Insight into Serum Protein Interactions with Functionalized 
Magnetic Nanoparticles in Biological Media. Langmuir, 2012, 28 (9), pp 
4346–4356. 
 

318. Wolka AM, Huber JD and Davis TP (2003) Pain and the blood-brain barrier: 
obstacles to drug delivery. Adv Drug Deliv Rev 55:987-1006. 
 

319. Wong H.L., Rauth A.M., Bendayan R., Wu X.Y., Combinational treatment 
with doxorubicin and GG918 (Elacridar) using polymer-lipid hybrid 
nanoparticles (PLN) and evaluation of strategies for multidrug-resistance 
reversal in human breast cancer cells, J. Control. Release 116 (2006) 275–
284.  
 

320. Wong HL, Chattopadhyay N, Wu XY, Bendayan R. Nanotechnology 
applications for improved delivery of antiretroviral drugs to the 
brain. Advanced Drug Delivery Reviews. 2010;62(4–5):503–517. 
 

321. Wong HL, Wu XY and Bendayan R. 2012. Nanotechnological  advances for 
the delivery of CNS therapeutics. Adv Drug Deliv Rev, 64 (2012) 686–700. 
 

322. Woods SP, Moore DJ, Weber E, Grant I ( 2009): Cognitive neuropsychology 
of HIV-associated neurocognitive disorders.Neuropsychol Rev 19: 152–168. 
 

323. Wu, X., Yuan, G., Brett, C. M., Hui, A. C. and Giacomini, K. M.: Sodium 
dependent nucleoside transport in choroid plexus from rabbit. J. Biol. Chem. 
267: 8813–8818, 1992 
 



149 
 

324. Xia Y, Wang CZ, Liu J, Anastasio NC, Johnson KM (2010) Brain-derived 
neurotrophic factor prevents phencyclidine-induced apoptosis in developing 
brain by parallel activation of both the ERK and PI-3K/Akt pathways. 
Neuropharmacology 58: 330-336.  
 

325. Xu, G., et al., Bioconjugated quantum rods as targeted probes for efficient 
transmigration across an in vitro blood−brain barrier. Bioconjugate Chemistry, 
2008. 19(6): p. 1179-1185. 
 

326. Yin D, Mufson RA, Wang R, Shi Y (1999) Fas-mediated cell death promoted 
by opioids. Nature 397: 218. 
 

327. Yong Liu Y, , Niu T-S, Zhang L, Yang J-S (2010),  Review on nano-drugs. 
2(1): 41-48 . 
 

328. Yoo J-W (2012), Toward Improved Selectivity of Targeted Delivery: The 
Potential of  Magnetic Nanoparticles. Arch Pharm Res Vol 35, No 1, 1-2, 
2012. 
 

329. Yoo JY, Kim JM, Seo KS, et al. Characterization of degradation behavior for 
PLGA in various pH condition by simple liquid chromatography 
method. Biomed Mater Eng. 2005;15:279–88. 
 

330. Yoo, H.S., Lee, E.A. and Park, T.G. (2002) Doxorubicin- conjugated 
biodegradable polymeric micelles having acid-cleavable linkages. J. Control. 
Release, 82, 17-27. 
 

331. Yousif S, Marie-Claire C, Roux F, Scherrmann JM, Declèves X. 
(2007) Expression of drug transporters at the blood-brain barrier using an 
optimized isolated rat brain microvessel strategy. Brain Res 1134:1–11. 
 

332. Yu, S., et al., Magnetic and pH-sensitive nanoparticles for antitumor drug 
delivery. Colloids and Surfaces B: Biointerfaces, 2013. 103(0): p. 15-22. 
 

333. Zhang N. and Oppenheim J. J., “Crosstalk between chemokines and 
neuronal receptors bridges immune and nervous systems,” Journal of 
Leukocyte Biology, vol. 78, no. 6, pp. 1210–1214, 2005. 
 

334. Zhang X., Xie J., Li S., Wang X., Hou X., The study on brain targeting of the 
amphotericin B liposomes, J. Drug Target. 11 (2003) 117–122. 
 

335. Zhang Z, Feng SS. The drug encapsulation efficiency, in vitro drug release, 
cellular uptake and cytotoxicity of paclitaxel-loaded poly(lactide)-tocopheryl 
polyethylene glycol succinate nanoparticles.Biomaterials. 2006;27:4025–33. 
 



150 
 

336. Zhang, Zhiqi, "Blood-Brain Barrier in vitro Model: A Tissue Engineering 
Approach and Validation" (2010). FIU Electronic Theses and Dissertations. 
Paper 246. http://digitalcommons.fiu.edu/etd/246. 
 

337. Zhao Y, Haney MJ, Klyachko NL, et al. Polyelectrolyte complex optimization 
for macrophage delivery of redox enzyme nanoparticles. Nanomedicine 
(Lond) 2011 Jan;6(1):25–42. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



151 
 

VITA 
 

VIDYA SAGAR 
 
EDUCATION:  
 
2001-2005 Bachelor of Fisheries Science 
 College of Fisheries, Orissa University of Agriculture & 
 Technology, Berhampur, Orissa, India 
 
2005-2007 Masters in Fisheries Science (Nutrition & Biochemistry), 
 Central Institute of Fisheries Education, Mumbai, India          
 
2011-2012 Doctoral Candidate in Biology 
 Florida International University, Miami, Fl, USA                
 
2005         Diploma in Computer Science  

National Institute of Advanced Technology, Orissa, India  
 
 
PROFESSIONAL EXPERIENCE: 
 
2006-2007       Training program faculty 

 Central Institute of Fisheries Education, Kakinada Center,       
 Andhra Pradesh, India 

 
2007-2008 Research fellow 
 Central Institute of Fisheries Education, Mumbai, India  
 
2008-2013 Teaching assistant 

      Florida International University, Miami, Fl, USA                
 
GRANTS: 
 
 Student Summer Research Award 2011, MBRS-RISE Biomedical Research 

Initiative, Florida International University, Miami 
Project: “Sequestration of eukaryotic translation apparatus: Mechanism(s) utilized 
by Mammalian Reovirus (MRV) to shut off host translation”. 
 

 Student Summer Research Award 2013, MBRS-RISE Biomedical Research 
Initiative, Florida International University, Miami 
Project: “Magnetic nanoparticle-based targeted drug delivery for treatment of 
neuro-AIDS and drug addiction”. 

 
 
 



152 
 

PRESENTATIONS:  
 
 Vidya Sagar, Pilakka-Kanthikeel S. K., Priestap, H., Atluri, V.S.R, Ding, H., 

Khizroev, S., and Nair, M.P. Magnetic-nanoformulation of μ-opioid receptor 
antagonist (CTOP) for treatment of morphine-induced neuropathogenesis during 
HIV infection. Society of NeuroImmune Pharmacology-19th Scientific Conference, 
San Juan, Puerto Rico, April 3-6th, 2013. Journal of NeuroImmune 
Pharmacology, 8(2): 432-433. [Poster] 

 Hong Ding, Marisela Agudelo,  Sudheesh Pilakka-Kanthikeel, Rakesh Guduru, 
Vidya Sagar, Venkata Atluri, Samikkannu Thangavel, and Madhavan Nair. Dural 
mechanism enhanced blood-brain-barrier crossing by transferrin conjugated 
fluorescent magnetic liposomes. Society of NeuroImmune Pharmacology-19th 
Scientific Conference, San Juan, Puerto Rico, April 3-6th, 2013. Journal of 
NeuroImmune Pharmacology, 8(2): 414.  [Poster] 

 Raymond A. D., Agudelo, M., Yndart, A., Alturi, V., Pilakka, S., Pichili, V., Hong, 
D., Sagar, V., Thangavel, S., Rao, K.V.K., Powell, M.D., and Nair, M. Morphine 
and exosomal HIV-1 Nef: Potential roles in NeuroAIDS development. Health 
Disparity Conference, July 11th-13th, 2012, University of North Texas, Texas. 
[Poster] 

 Vidya Sagar and Kenneth E. Murray. The mammalian orthoreovirus bicistronic 
M3 mRNA initiates translation using a cap-independent scanning mechanism 
that does not require mRNA circularization. American Society for Virology- 30th 
Annual meeting-2011, Minneapolis, Minnesota, July 16-20th, Scientific program 
and abstracts; W28-3, pp 159. [Oral presentation] 

 Vidya Sagar and Kenneth E. Murray. The untranslated regions of the 
mammalian orthoreovirus (MRV) M3 transcript do not possess cis-acting 
sequences or structures necessary for translation. American Society for 
Microbiology-Florida Branch Annual meeting-2010, Islamorada, Florida, October 
9-10th, 2010. [Oral presentation]  

 
PEER-REVIEWED RESEARCH ARTICLES 
 
 M. Nair, R. Guduru, P. Liang, J. Hong, V. Sagar, and S. Khizroev, Externally-

controlled on-demand release of anti-HIV drug AZTTP using magneto-electric 
nanoparticles as carriers. Nature Communications (2013), 4: 1707. 

 Pilakka-Kanthikeel S. K., Atluri, V.S.R, Sagar V., and Nair, M., Targeted brain 
derived neurotropic factors (BDNF) delivery across the blood-brain barrier for 
neuro-protection using magnetic nano carriers: an in-vitro study. PLOS ONE 
(2013), Volume 8 (4): e62241. 

 Kumar Vikas, Sahu Narottam P., Pal Asim K., Kumar Shivendra, Sagar 
Vidya, Sinha Amit Kumar, Ranjan Jayant., 2010. Nucleic acid content changes of 
a tropical freshwater fish Labeo rohita fed gelatinized and nongelatinized starch 
diet. Journal of the World Aquaculture Society, 42(S2): 270-277. 

 Vidya Sagar, N. P. Sahu, A. K. Pal., K. K. Jain, G. Venugopal. 2009. Growth and 
digestive enzymes of Macrobrachium rosenbergii juveniles: Effect of different 
stock type and dietary protein level under the similar culture 
environment. Aquaculture Research, 40(12): 1383-1393.   


	Florida International University
	FIU Digital Commons
	7-3-2013

	Magnetic Nanoparticle-based Targeted Drug Delivery for Treatment of Neuro-AIDS and Drug Addiction
	Vidya Sagar
	Recommended Citation


	Magnetic Nanoparticle-based Targeted Drug Delivery for Treatment of NeuroAIDS and Drug Addiction

