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ABSTRACT OF THE DISSERTATION 

INTRASPECIFIC RELATIONSHIPS IN PARACALANUS QUASIMODO 

[CALINOIDEAE] AND TEMORA TURBINATA [CALINOIDEAE] ALONG THE 

SOUTHEASTERN COAST OF THE UNITED STATES 

by 

Richard Yen-Ching Chang 

Florida International University, 2013 

Miami, Florida 

Timothy Collins, Major Professor 

Paracalanus quasimodo and Temora turbinata are two calanoid copepods prominent in 

the planktonic communities of the southeastern United States. Despite their prominence, 

the species and population level structure of these copepods is yet unexplored. The 

phylogeographic, temporal and phylogenetic structure of P. quasimodo and T. turbinata 

are examined in my study. Samples were collected from ten sites along the Gulf of 

Mexico and Florida peninsular coasts. Three sites were sampled quarterly for two years. 

Individuals were screened for unique ITS-1 sequences with denaturing gradient gel 

electrophoresis. Unique variants were sequenced at the nuclear ITS-1 and mitochondrial 

COI loci. Sampling sites were analyzed for pairwise community differences and for 

variances between geographic and temporal groupings. Genetic variants were analyzed 

for phylogenetic and coalescent topology. Paracalanus quasimodo is highly structured 

geographically with populations divided between the Gulf of Mexico, temperate Atlantic 

and subtropical Atlantic, in addition to isolation by distance. No significant differences 

were detected between the T. turbinata samples. Both P. quasimodo and T. turbinata are 
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stable within sites over time and between sites within a sampling period, with two 

exceptions. The first was a pilot sample from Miami taken two years prior to the general 

sampling whose community showed significant differences from most of the other Miami 

samples. Paracalanus quasimodo had a positive correlation of Fst with time. The second 

was high temporal variability detected in the samples from Fort Pierce. Phylogenetically, 

both P. quasimodo and T. turbinata were in well supported, congeneric clades. 

Paracalanus quasimodo was not monophyletic, divided into two well-supported clades. 

Temora turbinata variants were in one clade with insignificant support for topology 

within the clade and very little intraspecific variation. Paracalanus quasimodo and T. 

turbinata populations show opposite trends. Paracalanus quasimodo occurs near shore 

and shows population structure mediated by hydrological features and distance, both 

geographic and temporal. The phylogeny shows two deeply divergent clades suggestive 

of cryptic speciation. In contrast, T. turbinata populations range further offshore and 

show little geographic or temporal structure. However, the low genetic variation detected 

in this region suggests a recent bottleneck event. 
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CHAPTER I 

INTRODUCTION 

 

The genetic structure of populations can provide insight into the history and 

population dynamics of a species as well as practical information for management. 

Spatial variation in allele frequencies has been used to detect vicariance events 

(Schneider-Broussard et al. 1998; Craig et al. 2004; Satoh et al. 2004), patterns of 

expansion (Caudill and Bucklin 2004; Gil et al. 2004; Mobley et al. 2010; Chen and Hare 

2011), and evolutionary bottlenecks (Ball and Chapman 2003). Understanding the history 

of populations and patterns of population subdivision is critical for defining evolutionary 

significant units and drafting adequate conservation strategies (Lankford et al. 1999; Gold 

et al. 2002; Chiswell et al. 2003). Several studies have examined population structure in 

marine organisms inhabiting the southeastern United States coast, relating life history, 

mobility, habitat continuity and hydrography to genetic diversity and distribution (Hare 

and Avise 1996; Garcia-Rodriguez et al. 1998; Schneider-Broussard et al. 1998; Bagley 

et al. 1999; Lankford et al. 1999; Schizas et al. 1999; Broughton et al. 2002; Gold et al. 

2002; Herke and Foltz 2002; Ball and Chapman 2003; McMillen-Jackson and Bert 2004; 

Mobley et al. 2010). However, no study has investigated the influence of life history and 

the currents on population structure across the Gulf of Mexico (GoM) and the northwest 

Atlantic Ocean. A comprehensive study is required to understand the patterns of gene 

flow in marine organisms with a planktonic life stage in the southeastern United States. 

Dispersal influences population subdivision, with greater dispersal leading to less 

structured populations because of exchange of alleles. High mobility in at least one life 
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stage facilitates gene flow, as is seen in vermilion snapper, Rhomboplites aurorubens, in 

the GoM and the South Atlantic Bight (Bagley et al. 1999) and king mackerel, 

Scomberomorus cavalla, in the GoM and the Atlantic Ocean (Broughton et al. 2002; 

Gold et al. 2002). Rhomboplites aurorubens is a reef fish with planktonic eggs and 

larvae, and S. cavalla is highly mobile as an adult. Species with high dispersal potential 

are likely to exhibit low levels of population differentiation even across purported 

biogeographic barriers (McMillen-Jackson and Bert 2004; but see Burton and Lee 1994; 

Edmands 2001). In contrast, limited dispersal reduces the frequency that individuals from 

geographically distant populations interbreed, leading to population subdivision through 

limited gene flow. 

The copepod Acartia tonsa may be an example of the effects of limited dispersal. 

The primarily estuarine habitat used by A. tonsa reduces the migration rate as a 

consequence of the difficulty of surviving the journey between habitats. Gulf and Atlantic 

populations of A. tonsa are genetically distinct (Caudill and Bucklin 2004), but the 

sampling regime was insufficient to determine whether this was a result of isolation by 

distance or biogeographic barriers. The latter is likely as a large proportion of genetic 

types found in the Gulf were rare in the Atlantic samples (Caudill and Bucklin 2004). 

Many marine organisms undergo a planktonic stage that increases their dispersal 

range (Hoskin 1997). Species can be planktonic throughout their life, during particular 

life stages or only for certain periods of the day. Dispersal potential increases with 

plankton residence times (McMillan et al. 1992; Kirkendale and Meyer 2004). 

Planktonic residence times alone are, however, insufficient to predict rates of 

gene flow. Habitat continuity can also influence population structure. Manatees are 
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restricted to coastal habitats with abundant vegetation and freshwater; they show a 

population structure attributed to discontinuous habitat (Garcia-Rodriguez et al. 1998). 

Pink shrimp populations are homogenous between the GoM and the Atlantic, attributed 

to high gene flow facilitated by a continuous habitat distribution along south Florida 

(McMillen-Jackson and Bert 2004). In contrast, white shrimp have more stringent habitat 

requirements (McMillen-Jackson and Bert 2004), resulting in significant genetic 

differences between Gulf and Atlantic populations (Ball and Chapman 2003). However, 

whether oceanic or estuarine, habitat does not appear to affect penaeid population 

structure in the absence of biogeographic barriers (Benzie 2000). 

In contrast to penaeid shrimp, other species exhibit population structure despite 

dispersal potential and habitat continuity. Geographically proximate populations of the 

tide pool harpacticoid copepod Tigriopus californicus show high divergence in 

mitochondrial alleles (Burton and Feldman 1981; Edmands 2001; Burton et al. 2007). 

Allele frequencies in American Oyster (Crassostrea virginica) populations shift from 

Gulf to Atlantic haplotype dominance at Cape Canaveral (Hare and Avise 1996). The 

shift in alleles is attributed to the subtropical to temperate ecotone along the central and 

northeast coasts of the Florida peninsula and to local hydrography (Hare and Avise, 

1996). The ghost shrimp, Callichirus islagrande, exhibits heterogeneity between 

populations on both regional to smaller scales of 10s of kilometers (Bilodeau et al. 2005).  

The forces driving larval movement can result in retention of gametes rather than 

wide dispersal. Bluehead wrasse populations, Thalassoma bifasciatum, at St. Croix, US 

Virgin Islands, were found to recruit primarily from retained young rather than from 

immigration (Swearer et al. 1999). A model of larval dispersal based on Lagrangian 
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drifters off the Chilean coast and on simulations found sources and sinks on scales of less 

than 10 km (Aiken et al. 2007), which indicates that populations can be isolated from 

their near neighbors. The population structure of the ghost shrimp C. islagrande in the 

northeastern GoM supports this model as it exhibits significant genetic differentiation 

(Bilodeau et al. 2005). An extreme case of isolation occurs in the tide pool inhabiting 

copepod, Tigriopus californicus, where populations separated by only hundreds of meters 

are genetically distinct (Edmands 2001). 

Comparing the phylogeography of copepods in the GoM and the northwest 

Atlantic will provide insight into the mechanisms influencing gene flow within this 

region. Currents (Hare and Avise 1996), life history (Kirkendale and Meyer 2004; Lee 

and Boulding 2009) and habitat continuity (Garcia-Rodriguez et al. 1998; McMillen-

Jackson and Bert 2004) have been named as factors influencing population structure 

within geographic regions and across biogeographic barriers. Assessing patterns of 

genetic type distribution in species that differ in life history will help deduce how 

currents and life history interact to affects gene flow. 

In addition to geographic patterns, populations may exhibit temporal patterns over 

the course of mere months. The haplotype frequencies of A. tonsa appear to change 

between sampling years (Caudill and Bucklin 2004). The difference may have been an 

artifact of the sampling regime, yet is suggestive that migration can have a significant 

effect even in resident populations. Should this be, wide dispersing plankton may exhibit 

phylogeographic changes over short temporal periods as populations rove between 

locations. 
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Dispersal range should be affected by life history. Zooplankton limited to coastal 

habitats have theoretically limited dispersal. Paracalanus quasimodo are calanoid 

copepods that fall under this category, found primarily in the neritic zone. Ubiquitous 

plankton have a greater probability of high gene flow. Their ability to exist from coastal 

to open ocean habitats allows them to be entrained in long-distance currents such as the 

Florida Current and the Gulf Stream. Temora turbinata, a calanoid copepod, is one such 

ubiquitous species. 

The predominant currents along the tropical to subtropical coasts of the American 

continent provide a planktonic vector for gene flow.  The Caribbean Current either 

merges into the Florida Current (FC) or the Gulf Loop Current (LC) when it passes 

through the Strait of Yucatan, between the Yucatan Peninsula and Cuba.  The FC sweeps 

along the southern edge of the Florida Keys and feeds into the Gulf Stream flowing north 

along the northeast American coast.  The LC, instead, travels north through the GoM and 

veers east between 26°N and 28°N, then south as it nears the continental shelf.  At this 

point, the LC either merges into the FC or it completes the circle and flows back into its 

northward component.  There are occasional vectors towards the western Gulf, either 

along the Yucatan Peninsula or further north along the LC.  Particles entrained in the 

western Gulf have little opportunity to be carried to the eastern Gulf; hydrographic eddies 

in the western Gulf limit the frequency of eastern vectors moving particles into the LC 

(Tomczak and Godfrey 1994). 

The present study will examine gene flow in copepods with different habitat 

ranges in the Gulf of Mexico and along the coasts of the Florida peninsula. Both 

Paracalanus quasimodo and Temora turbinata occur in the neritic zone, but T. turbinata 
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can survive further offshore. The nuclear internal transcribed spacer region 1 (ITS-1) and 

the mitochondrial Cytochrome Oxidase subunit 1 (COI) loci will be examined for 

nucleotide polymorphisms. The sampled communities will be examined for geographic 

and temporal structure, and the phylogeny of the genetic variants will provide insight on 

the intraspecific relationships. 
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CHAPTER II 

GEOGRAPHIC POPULATION STRUCTURE IN PARACALANUS QUASIMODO 

[CALINOIDEAE] AND TEMORA TURBINATA [CALINOIDEAE] ALONG THE 

SOUTHEASTER COAST OF THE UNITED STATES 

 

Introduction 
 

Phylogeographic studies can provide insights about the factors shaping variation 

within species, as well as the process of species origination. Patterns of genetic variation 

over a species range can be used to detect, among others, ecologically significant 

population boundaries and connectivity between sites. In addition, proper management of 

commercial and endangered species requires knowledge of reproductive population 

boundaries (Garcia-Rodriguez et al. 1998; Bagley et al. 1999; Lankford et al. 1999; Gold 

et al. 2002; Kovach et al. 2010; Saillant et al. 2010; Vinas et al. 2010) and the degree of 

gene flow between discrete populations (Broughton et al. 2002; Ball and Chapman 2003). 

Genetic distribution and diversity also provide hints to a species evolutionary history, 

such as population expansions (Mobley et al. 2010) and evolution of populations divided 

by geographic shifts (Schneider-Broussard et al. 1998). Comparisons of population 

structure in conspecific taxa gauge the strength of barriers to gene flow and connectivity. 

(Lambert et al. 2003; McMillen-Jackson and Bert 2003; Larsson et al. 2010). My study 

aims to investigate phylogeographic patterns in the southeastern US by examining the 

population structure of two copepod species, Paracalanus quasimodo and Temora 

turbinata. 



 11

Both deep and recent histories of gene flow create the observed geographic 

patterns of the present. Whether as gametes, spores, eggs, larvae or adults, mobility in 

reproductive units is key to gene flow and connectivity, and plankton have limited 

autonomous mobility. A planktonic life stage, whether obligate or meroplankton, is 

important in dispersal of, and maintaining connectivity between, marine populations 

(Yeung et al. 2001; Barber et al. 2002; Hare and Walsh 2007; Watson et al. 2010; Paz-

Garcia et al. 2012). Though some marine taxa can travel long distances as adults to breed, 

particularly pelagic fish (Broughton et al. 2002), many mobile adults remain close to 

where they settled as juveniles, and sessile organisms have no other mode of long 

distance dispersal (Hare and Avise 1996; Domingues et al. 2010). 

Phylogeographic studies in the southeastern United States (US) have examined 

population structure in diverse marine taxa. Some species are panmictic, with one 

breeding population spanning the entire region and little evidence of genetic partitioning 

(vermilion snapper, Rhomboplites aurorubens, Bagley et al. 1999; king mackerel, 

Scomberomorus cavalla, Broughton et al. 2002, Gold et al. 2002; brown shrimp, 

Farfantepenaeus aztecus, McMillen-Jackson and Bert 2003; pink shrimp, F. duorarum, 

McMillen-Jackson and Bert 2004). Many more species have multiple breeding 

populations in the southeast US. 

For genetically structured populations, five general patterns have been observed 

in the southeast US. One common pattern is a split between the Gulf of Mexico (GoM) 

and the Atlantic (American oyster, Crassostrea viginica, Hare and Avise 1996; West 

Indian manatee, Trichechus manatus, Garcia Rodriguez et al. 1998; Atlantic croaker, 

Micropogonias undulates, Lankford et al. 1999; EuryTemora affinis Lee 2000; longfin  
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Figure 1: General marine phylogeographic boundaries in the southeastern United States. 
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squid, Loligo pealei, Herke and Foltz 2002; Acartia tonsa Caudill and Bucklin 2004; 

Figure 1). A second has a division between the western GoM and a combined eastern 

GoM/Atlantic (arrow squid, Loligo plei, Herke and Foltz 2002; white shrimp Litopenaeus 

setiferus, McMillen-Jackson and Bert 2003, but see Ball and Chapman 2003). The third 

returns to the division between the GoM and the Atlantic with an additional sub-tropic 

population (Lee and O’Foighil, 2004). A fourth is similar to the previous with GoM, sub-

tropic and Atlantic populations, but introduces an additional division between the eastern 

and western GoM (Gracilaria tikvahiae, Gurgel et al. 2004). Finally, there is regional and 

local structure independent of ocean basins (Microarthridion littorale, Schizas et al. 

1999; dusky pipefish, Syngnathus floridae, Mobley et al. 2010). Although some of the 

studies have only one sampling site in a purportedly isolated region, the differences found 

are sufficient to indicate the presence of structure over the range of the respective taxa. 

At a basic level, currents may influence patterns in population structure (Roberts, 

1997) with additional factors and interactions contributing to diverse phylogeographic 

patterns. Hydrographic (Lee et al., 1994; Limouzy-Paris et al. 1997; Olascoaga 2010), 

atmospheric (Feichter et al., 2008; Smith, 2009) and geographic factors influence oceanic 

and local current directions and velocities. The strongest currents off the southeastern US 

coasts are the Loop Current in the GoM, which becomes the Florida Current and the Gulf 

Stream (Figure 2). However, tidal currents perpendicular to the shore, along shore 

counter currents and eddies are also present, which complicates prediction of the path of 

a plankter. Behavior, such as vertical migration and the timing thereof, influence which 

currents carry plankton, thus whether and how far they disperse or how well they 

maintain their geographic position (Criales et al., 2006; Aiken et al., 2007). 
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Paracalanus quasimodo and Temora turbinata are epipelagic species, but P. 

quasimodo is strictly coastal with a limited latitudinal distribution while T. turbinata 

occurs both along coasts and in oceanic waters of the tropics and subtropics over most of 

the globe, except the east Pacific (Owre and Foyo, 1967; Boltovskoy 1999). Despite the 

differences in global distribution, P. quasimodo and T. turbinata inhabit the same waters 

in the GoM and the Atlantic coast of the Florida peninsula. However, as T. turbinata 

ranges further offshore than P. quasimodo, T. turbinata will encounter the stronger 

currents typically found beyond the continental shelf more frequently than will P. 

quasimodo. Comparing P. quasimodo and T. turbinata population structures will 

demonstrate how connectivity changes in the southeast US with different degrees of 

dispersal potential. 

Although there is no definite correlation between mobility and patterns of 

population structure in previous studies, there is a general association between greater 

mobility and more homogenous population structure in the southeast US (Herke and 

Foltz 2002). As a consequence of the differences in potential mobility, we hypothesized 

that P. quasimodo would have more structured populations than T. turbinata. To test the 

hypothesis, the two copepod species were sampled across the GoM and the Atlantic coast 

of the Florida peninsula. Sampled populations were tested for connectivity and gene flow 

restrictions to detect which, if any, were isolated. They were further analyzed for broader 

geographic patterns of isolation-by-distance (IBD), genetic variant clustering and 

hierarchal, regional variation. 
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Materials and Methods 

 

Collection 

For the purposes of the present study, we assumed that a sampling site represented 

a population. Samples were collected from ten sites around the Gulf of Mexico and the 

Florida peninsula (Table 1, Figure 2). The majority of the samples were collected 

between November 2007 and January 2008, the exceptions being the Lu samples in 

August of 2006, an earlier FP sample in September of 2007 and the IM samples in 

September of 2008. With the exception of Lu and LW, samples were collected by ten-

minute surface tows with both a 150μm and 366μm mesh nets; Lu and LW samples were 

collected with five vertical hauls with a 150μm mesh net beginning 5m below the surface. 

Surface tows were conducted along transects beginning ten miles offshore to inshore with 

one tow at the beginning, middle and end of the transect. Samples were named by 

location followed by the three-digit number of the storage bottle. 

Excepting PA and IM, samples were immediately preserved in 95% ethanol. The 

PA samples were preserved in 60% isopropanol, chilled with dry ice, transported in a 

cooler with blue ice and transferred to 95% ethanol upon return to the laboratory. The IM 

samples were preserved in 60% ethanol for transport and transferred to 95% ethanol upon 

return. Selected individuals were identified to species by dichotomous keys (Owre and 

Foyo 1967; Boltovskoy 1999). 
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Table 1: Sampling sites, sample size, number of variants and coordinates for Paracalanus 
quasimodo and Temora turbinata. FP072 = Fort Pierce 072; FP 091 = Fort Pierce 091; IM = Isla 
Mujeres; Ja = Jacksonville; LW = Louisiana West; Lu = Louisiana; Mi = Miami; PC = Panama City; PA = 
Port Aransas; SK = Summerland Key; Ta = Tampa 

 P. quasimodo T. turbinata 
Site n #v Latitude/Longitude n #v Latitude/Longitude 
FP072 40  6 N27º49.396 W97º02.602 n/a n/a n/a  
FP091 65 14 N27º26.960 W80º05.025 39  9 N27º26.960 W80º05.025 
IM 39 10 N21º17     W86º46 38  9 N21º19     W86º47 
Ja 40  3 N30º23.477 W81º12.867 38 11 N30º23.477 W81º12.867 
LW 40  5 N29º19.524 W93º25.044 40  5 N29º19.524 W93º25.044 
Lu 59  7 N29º02.508 W90º31.314 38  6 N28º51.444 W90º27.816 
Mi 40  4 N25º54.001 W80º07.521 40  5 N25º54.001 W80º07.521 
PC 39 10 N29º59.172 W85º47.214 16  6 N30º07.305 W85º44.734 
PA 40  8 N27º49.396 W97º02.602 40  5 N27º41.555 W96º57.026 
SK 39  4 N24º33.746 W81º27.597 39  7 N24º33.746 W81º27.597 
Ta 40  2 N27º44.087 W82º51.913 40  9 N27º44.087 W82º51.913 

 

 
Figure 2: Sampling sites and major currents in the southeast United States. The dotted 
line represents a coastal countercurrent. FP=Fort Pierce, IM=Isla Mujeres, 
Ja=Jacksonville, Lu=Louisiana, LW=Louisiana West, Mi=Miami, PC=Panama City, 
PA=Port Aransas, SK=Summerland Key, Ta=Tampa. Map base modified from Google 
Earth.  
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DNA Extraction 

Forty individuals each of Paracalanus quasimodo and Temora turbinata were 

selected from site samples with two exceptions. Sixty P. quasimodo were selected from 

the Lu sample as part of a prior feasibility study (data not shown). The first 40 FP091 P. 

quasimodo formed an anomalous community, thus forty additional P. quasimodo were 

selected from this sample to confirm the variant distribution. Only 38 and 16 T. turbinata 

were found in the Lu and PC samples, respectively. Individual copepods were transferred 

directly from ethanol to a 1.5l microcentrifuge tube. Extractions were conducted with 

the MasterPure DNA extraction kit (Epicentre, Madison, WI) following manufacturer’s 

protocols and stored in 50l of UV sterilized, micropore filtered, deionized water at 

–80C. DNA concentration was quantified on a DyNA Quant 200 spectrophotometer 

(Hoefer) and varied between 3nM and 30nM. 

 

PCR-Denaturing Gradient Gel Electrophoresis (PCR-DGGE) 

Denaturing gradient gel electrophoresis is a useful tool for screening multiple 

populations with a large sampling size for genetic variation (Abrams and Stanton, 1992; 

LaJeunesse, 2001). Because of its sensitivity to nucleotide changes, DGGE has been used 

to describe microbial assemblages (Schauer et al., 2000; Diez et al., 2001; Martin et al., 

2006; Rigonato et al., 2012) and screen for Symbiodinium lineages within cnidarians 

(LaJeunesse and Trench, 2000; LaJeunesse 2001). The potential to detect one base pair 

(bp) changes between individuals facilitates the process of sorting intraspecies 

polymorphisms. The nuclear internal transcribed spacer I (ITS-1), located between the 

18s and 5.8s genes, was chosen because, as it is a non-encoding region, this locus has a 
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potentially high mutation rate (LaJeunesse and Trench, 2000; LaJeunesse, 2001; 

LaJeunesse and Pinzon, 2007). 

The ITS-1 region was amplified with the primers ITS-1f (Coleman et al. 1994, 

Table 2) with the GC clamp added to the 5’ end of the sequence and ITS-1r (Schizas et 

al. 1999). The PCR reactions were run as quantitative reactions in lieu of sacrificing PCR 

product to check for successful amplification through electrophoresis. Amplifications 

were run in 10l PCR reactions composed of 5l iQ SybrGreen 2x (BioRad, Hercules, 

CA), 0.5l ITS-1r (0.5 M final concentration), 0.5l ITS-1fCol with GC clamp (1 M 

final concentration), 1l DNA extract (0.3 nM to 3 nM final concentration), and 3l 

nuclease free water. 

The ITS-1 primer pair produced amplicons of approximately 320bp in length. The 

thermal profile for the reactions was: 95°C (5 min), 10 touchdown cycles beginning with 

95-60-72°C for 20-20-60s with a 0.5°C drop in the annealing temperature per cycle, 25 

cycles of 95-55-72°C for 20-20-60s and a final extension at 72°C for 10 minutes in a 

DNA Engine Opticon 2 (MJ Research). 

The optimal urea gradient for parallel DGGE was determined to be 30-50%. The 

gels were run in aquaria (C.B.S. Scientific, Del Mar, CA) of TAE buffer at 65°C for 18 

hours at 90 volts. To confirm that these were ITS-1 sequences, the brightest lower bands 

from the three dominant variants were cut from the DGGE gel, eluted in 500 l of water 

for 24 hours, cleaned with the Wizard® SV Gel and PCR Clean-up System (Promega, 

Madison, WI), re-amplified and prepared for sequencing with BigDye terminator, ver 3.1 

(Applied Biosystems, Grand Island, NY). 
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Table 2: Primer sequences. 
Primer Name Sequence 
GC Clamp CGC CCG CCG CGC CCC GCG CCC GTC CCG CCG CCC CCG CCC 
ITS-1f GGG ATC CGT TTC CGT AGG TGA ACC TGC 
ITS-1r ATC GAC CCA TGA GCC GAG TGA TC 
LCOI-1490 GGT CAA CAA ATC ATA AAG ATA TTG G 
LCOI-1490c GGT CAT GTA ATC ATA AAG ATA TTG G 
LCOI-1528P GTT AGC AGG AGC TTG ATC AG 
HCOI-2198 TAA ACT TCA GGG TGA CCA AAA AAT CA 
HCOI-2198Par TAG ACT TCA GGA TGT CCA AAG AAT CA 
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Sequencing 

Polymorphic sequences can change the DGGE banding pattern between 

individuals with the same dominant genetic variant. However, the dominant variant 

provides strong evidence of the evolutionary history in an organism (LaJeunesse and 

Pinzon, 2007). Thus, ten individuals from each sample site were selected for DNA 

sequencing on the basis of DGGE variants. Where possible, at least one of each variant 

present at a sample site was selected. The nuclear ITS-1 and mitochondrial cytochrome 

oxidase I (COI) regions were amplified. The ITS-1 primers were the same as that for 

DGGE analysis, minus the GC clamp. Standard Folmer COI primers (LCOI-1490 and 

HCOI-2198) were unable to amplify a majority of the Paracalnus quasimodo samples 

and a large number of the Temora turbinata. Modified Folmer primers (LCOI-1490c and 

HCOI-2198Par) were designed based on whole copepod mitochondrial sequences found 

in GenBank worked well with T. turbinata, but were only moderately successful with P. 

quasimodo. A COI primer was designed specifically for P. quasimodo (LCOI-1528p), 

which began 38bp downstream of LCOI-1490, and was paired with HCOI-2198Par to 

sequence the remaining P. quasimodo. 

The PCR amplifications were conducted in a PTC-200 DNA Engine (MJ 

Research) with Promega GoTaq® Flexi reagents. Reactions were composed of 2l of 5x 

Buffer, 0.6l of 25mM MgCl2 (1.5mM final concentration), 0.5l each of forward and 

reverse primers (0.5M, ITS-1 primers, and 1.0M, COI primers, final concentration), 

0.2l of 10 M dNTPs (0.2M final concentration), 0.2l of 2.5U/l DNA Polymerase 

(0.05U/l final concentration) and 2 to 5l of DNA (0.6-6nM to 1-10nM final 

concentration) with nuclease free water added to make a final volume of 10l. The higher 
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concentration of DNA was used when the lower concentration resulted in low 

amplification. 

Three l of PCR product were ran on an 0.8% agarose gel to determine whether 

the amplification was successful. The PCR products were then cleaned with ExoSap 

(Affymetrix, Santa Clara, CA) following manufacturer’s protocols. Cleaned products 

were prepared for sequencing with BigDye terminator, ver 3.1 (Applied Biosystems, 

Grand Island, NY) for both forward and reverse strands in a PTC-200 DNA Engine (MJ 

Research). The 10l cycle sequencing reaction mix was composed of 0.5l of 1.87M 

primer (0.935 M final concentration), 2-4l of amplified product, depending on gel 

band intensity (2l if the band was bright, otherwise 4l), 2l of 5x sequencing buffer, 

1l of BigDye v3.1 and the rest with double distilled deionized water. The reaction cycle 

was 15 seconds at 95ºC, 10 seconds at 50ºC and 4 minutes at 60ºC, repeated 35 times. 

Products were sequenced in an AB 3100 Genetic Analyzer (Applied Biosystems, Grand 

Island, NY) at the Florida International University DNA Core. Several sequences were 

unreadable due to contamination or, in the case of ITS-1, the presence of multiple 

sequence varieties. Samples where standard sequencing failed were cloned with a TOPO 

TA cloning kit for sequencing (Invitrogen, Grand Island, NY) following the 

manufacturer’s protocols. 

Sequences were edited and reconciled in FinchTV (Geospiza, Seattle, WA), 

trimmed in BioEdit (Hall, 1999) and aligned with ClustalW (Larkin et al., 2007) through 

BioEdit. A consensus sequence was constructed in BioEdit for each variant with multiple 

sequences. All polymorphic sites were marked as such, even if the alternate nucleotide 

was represented in only one sequence. Individuals were designated as separate variants 



 22

when the concatenated sequences were different. Thus, variants could be identical in 

either ITS-1 or COI, but not both. 

 

Analysis 

Population comparisons and Mantel tests were conducted in Arlequin 3.5 

(Excoffier and Lischer 2010) with sequence data. Pairwise Fst comparisons were 

conducted to determine whether there was significant restriction in gene flow between 

sites. Pairwise comparisons were run with 99,999 permutations. A Bonferroni correction 

for multiple tests was applied to the results of the pairwise comparisons. Mantel tests 

examined the data for evidence of isolation-by-distance (IBD; Barber et al. 2002). The Fst 

matrices produced by the Fst pairwise comparisons were tested against three distance 

matrices: straight-line distances between sites, chord distances from Ja to SK, then 

straight line to all other sites and chord distance along the southeast US coast. Straight-

line distances were the shortest lines between sites. Chord distances were calculated by 

adding straight-line distances of adjacent sites (e.g., the chord distance from FP to SK 

would be the sum of the straight line distances from FP to Mi and from Mi to SK). IM 

distances were the same for the second and third distance matrices. 

Genetic data was converted into numerical sequences with GenAlEx 6.41 (Peakall 

and Smouse, 2006) in preparation for cluster analysis by Structure 2.3.3 (Hubisz et al., 

2009). Cluster analysis groups the variants into populations by similarity and  the 

distribution of the populations within and between sites can be examined for geographic 

patterns. Analysis was set to a 60,000 MCMC chain with a 10,000 step burn-in period. 

Both alpha and lambda values were inferred by Structure. The number of populations (K) 
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was set for 1 through 10, with  20 replicate runs for each K. The results were analyzed 

with Structure Harvester (Dean and vonHoldt, 2012) to determine the most likely value 

for K. 

Analyses of molecular variance were used to test whether sites were part of 

distinct geographic regions. AMOVAs were run in Arlequin 3.5 (Excoffier and Lischer, 

2010) with the maximum number of permutations (99,999) with three sets of a priori 

groups found in other taxa. The first set was a single population. The second set separated 

sites between the GoM and the Atlantic. The third set had GoM, Atlantic and subtropical 

groups. Because the P. quasimodo population composition of FP091 was inconsistent 

with all other samples collected from FP over a two year period (data not shown), this 

sample was excluded from the P. quasimodo AMOVA analyses. 
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RESULTS 

 

Of the 500 Paracalanus quasimodo and 374 Temora turbinata DNA extractions, 

498 and 368 individuals were successfully amplified for DGGE, respectively. The eluted 

DGGE bands were confirmed to be ITS-1 sequences. Euchatea ramina was 

morphologically similar to P. quasimodo, but had a distinct ITS-1 sequence. P. 

quasimodo genetic variants 26 and 38 were removed from analysis as a BLAST search 

returned a 99% similarity to Euchatea ramina (Accession HM045386.1). There were a 

total of 37 P. quasimodo and 27 T. turbinata variants. The greatest number of P. 

quasimodo variants was found at FP, with 14 variants, and the least number of variants 

were found at Ta, with two. The greatest and least numbers of T. turbinata variants were 

found at Ja, with 11 variants, and PA, LW, and Mi, with 5 variants, respectively. The 

variant proportions from the December P. quasimodo sample for FP (FP 091) differed 

widely from  the other FP samples (data not shown), thus an earlier sample from 

September (FP 072) was added to the analyses. 

 

Paracalanus quasimodo 

The most frequent variants were one, two and three, followed by variants 21, 22 

and 23 (Figure 3). Pairwise comparisons indicate restricted gene flow between most of 

the sampling sites (Table 3). ITS-1, COI and concatenated sequences shared the pattern 

of no significant restrictions in gene flow detected between LW, Lu, Ta and Ja and 

between SK, Mi and FP (Table 3). Additional connections were found depending on the 

sequence. For ITS-1, there was no significant restriction between Ja and FP 072. For 
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Figure 3: Paracalanus quasimodo population composition. The most abundant genetic variants are labeled by number and the rare 
variants were grouped into O1 and O2 for populations one and two, respectively. 
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Table 3: Fst pairwise comparisons for Paracalanus quasimodo.  Fst values are below the 
diagonal. Probabilities are above the diagonal. Probabilities in bold remained significant 
with a Bonferroni correction. - = not significant; * = p < 0.05; ** = p < 0.01; *** = p < 0.001 

ITS-1 
 PA LW Lu PC Ta SK Mi FP091 FP072 Ja IM 
PA 0 *** *** *** *** *** *** * *** *** *** 
LW 0.606  0 - *** - *** *** *** * - *** 
Lu 0.644 -0.019  0 *** - *** *** *** * - *** 
PC 0.274  0.179  0.206 0 *** *** *** ** *** *** *** 
Ta 0.609 -0.005  0.002 0.182 0 *** *** *** * - *** 
SK 0.559  0.164  0.158 0.156 0.167  0 - *** - ** *** 
Mi 0.571  0.232  0.226 0.177 0.217 -0.005 0 *** * *** *** 
FP091 0.064  0.344  0.389 0.084 0.348  0.293 0.305 0 *** *** *** 
FP072 0.595  0.081  0.069 0.174 0.065  0.031 0.054 0.330 0 - *** 
Ja 0.600 -0.003 -0.007 0.175 0.009  0.088 0.147 0.336 0.023 0 *** 
IM 0.492  0.353  0.366 0.186 0.381  0.141 0.197 0.234 0.281 0.297 0 

COI 
PA082 0 *** *** *** *** *** *** - *** *** *** 
LW032 0.664  0 - *** - ** *** *** * - *** 
Lu022 0.697 -0.020  0 *** - ** *** *** * - *** 
PC099 0.337  0.173  0.200 0 *** ** *** ** *** *** ** 
Ta105 0.674 -0.001  0.004 0.183 0 ** *** *** - - *** 
SK085 0.615  0.087  0.084 0.133 0.088 0 - *** - * *** 
Mi089 0.624  0.167  0.168 0.150 0.142 0.003 0 *** - ** *** 
FP091 0.049  0.473  0.515 0.133 0.486 0.411 0.425 0 *** *** *** 
FP072 0.649  0.068  0.065 0.157 0.050 0.009 0.021 0.454 0 * *** 
Ja097 0.666 -0.012 -0.013 0.179 0.002 0.053 0.133 0.475 0.053 0 *** 
IM134 0.533  0.275  0.291 0.150 0.325 0.160 0.244 0.318 0.269 0.254 0 

Concatenated 
PA082 0 *** *** ** *** *** *** * *** *** *** 
LW032 0.245 0 - * - *** *** *** ** - *** 
Lu022 0.240 -0.019 0 * - *** *** *** ** - *** 
PC099 0.080 0.0529 0.048 0 * ** *** *** - - *** 
Ta105 0.267 -0.010 -0.005 0.056 0 *** *** *** * - *** 
SK085 0.171 0.191 0.173 0.086 0.191 0 - ** - ** *** 
Mi089 0.228 0.290 0.270 0.147 0.273 0.009 0 *** * *** *** 
FP091 0.028 0.227 0.218 0.078 0.250 0.078 0.142 0 *** *** *** 
FP072 0.169 0.093 0.080 0.026 0.074 0.022 0.053 0.115 0 - *** 
Ja097 0.213 -0.010 -0.014 0.033 -0.001 0.117 0.212 0.178 0.045 0 *** 
IM134 0.350 0.518 0.490 0.397 0.560 0.265 0.381 0.230 0.402 0.448  
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COI, comparisons between Mi and FP 072, Ta and FP 072 and PA and FP 091 were not 

significant. For the concatenated sequences, no significant restrictions in gene flow were 

detected between PC and Ja and between PC and FP 072. After applying a Bonferroni 

correction for multiple tests, a majority of the gene flow restrictions between sites 

remained significant (Table 3). In addition to local structure, both ITS-1 and COI follow 

an IBD gradient, but there was no significant correlation with the concatenated sequences 

(Table 4; Figure 4). 

Structure Harvester indicated that there were two populations of P. quasimodo in 

the southeast US. Under K=2, Structure clustered the major variants, variants 1, 2 and 3, 

and the rare variants 4 through 18, 36, and 40 in one population (Table 5). With the 

exception of variant 52, the remaining variants clustered in the second population. 

Variant 52 identified with different populations depending on which locus was examined: 

population one with ITS-1 and the concatenated sequences and population two with COI. 

The majority of population two was found in the Gulf (Figure 5), although 53% (19/36) 

of FP091 came from population two. 

The AMOVA detected significant variation between populations (Table 6). 

Separating populations into GoM and Atlantic groups results with no significant variation 

among the groups, but highly significant variation among the populations within the 

groups, which does not support a division between the GoM and Atlantic. As Structure 

indicated that there were two populations, and there was a large genetic divergence 

between populations one and two, sites with a larger proportion from population two 

were excluded from the following AMOVAs. Under these conditions, AMOVA detected 

significant variation between GoM and the Atlantic. However, there was also significant 
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Table 4: Mantel tests for isolation-by-distance. 
Straight Line Partial Chord Chord 

Species Loci p R2 p R2 p R2 
P. quasimodo ITS-1 0.011* 0.290 0.038* 0.125 0.038* 0.125 
 COI 0.025* 0.249 0.035* 0.133 0.034* 0.139 
 Concatenated 0.077 0.117 0.270 0.011 0.304 0.005 
T. turbinata ITS-1 0.495 0.001 0.540 0.001 0.572 0.003 
 COI 0.041* 0.107 0.026* 0.131 0.022* 0.150 
 Concatenated 0.357 0.002 0.352 0.002 0.359 0.001 
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Figure 4: Scatter plots of Fst versus distance with a least squares regression line. As 
straight-line distance, partial chord and chord distances resulted in the same probabilities 
in the Mantel test, only the partial chord plots are shown here. a) P. quasimodo ITS-1; b) 
P. quasimodo COI; c) P. quasimodo concatenated; d) T. turbinata ITS-1; e) T. turbinata 
COI; f) T. turbinata concatenated. Significant correlations at  = 0.5 are denoted by an 
asterisk (a, b and e). 
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Table 5: Paracalanus quasimodo variant clusters as designated by Structure. 
Variant 

Locus 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 
ITS-1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 
COI 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 
Concatenated 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 

Variant 
 20 21 22 23 25 28 31 32 33 34 35 36 37 38 40 44 50 51 52 
ITS-1 2 2 2 2 2 2 2 2 2 2 2 1 2 2 1 2 2 1 1 
COI 2 2 2 2 2 2 2 2 2 2 2 1 2 2 1 2 2 1 2 
Concatenated 2 2 2 2 2 2 2 2 2 2 2 1 2 2 1 2 2 1 1 
 

 
Figure 5: Structure bar plot of inferred ancestry of P. quasimodo from ITS-1 sequences. 
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Table 6: AMOVA results. PA, LW, Lu, PC, Ta and IM comprise the Gulf sites. SK Mi, 
FP and Ja comprise the Atlantic sites. SK and Mi were removed from the Atlantic group 
to form the subtropics group. PA, PC and IM were not included in the population one 
analysis, as there was a large proportion of population two at these sites. T. turbinata 
results were similar for both loci and when the loci were combined. ns = p > 0.05; * = p < 
0.05; ** = p < 0.01; *** = p < 0.001 
Source of  Sum of Variance Percentage of 
variation df squares components variation F index p 

Paracalanus quasimodo ITS-1 
One population 
Among populations 9 1637.192 4.21703 38.05 Fst=0.38052 *** 
Within populations 406 2787.336 6.86536 61.95 
Gulf and Atlantic 
Among groups 1 203.269 0.12197 1.09 Fct=0.01095 ns 
Within groups 8 1433.923 4.15274 37.28 Fsc=0.37690 *** 
Within populations 406 2787.336 6.86536 61.63 Fst=0.38372 *** 
Population 1 Gulf and Atlantic 
Among groups 1 58.053 0.33188 9.54 Fct=0.09543 ns 
Within groups 5 42.045 0.12779 3.67 Fsc=0.04062 ** 
Within populations 292 881.254 3.01799 86.78 Fst=0.13218 *** 
Population 1 Gulf, Subtropics and Atlantic 
Among Groups 2 88.296 0.13009 12.48 Fct=0.12479 * 
Within Groups 4 11.801 -0.00158 -0.05 Fsc=-0.00053 ns 
Within populations 292 881.254 3.01799 87.57 Fst=0.12433 *** 

Paracalanus quasimodo COI 
One population 
Among populations 9 2049.664 5.30026 39.22 Fst=0.39218 *** 
Within groups 405 3326.916 8.21461 60.78 
Gulf and Atlantic 
Among groups 1 260.256 0.18644 1.37 Fct=0.01371 ns 
Within groups 8 1789.408 5.20192 38.24 Fsc=0.38772 *** 
Within populations 405 3326.916 8.21461 60.39 Fst=0.39612 *** 
Population 1 Gulf and Atlantic 
Among groups 1 49.684 0.26673 5.66 Fct=0.05660 ns 
Within groups 5 49.477 0.13264 2.81 Fsc=0.02984 * 
Within populations 291 1255.091 4.31303 91.53 Fst=0.08475 *** 
Population 1 Gulf, Subtropics and Atlantic 
Among groups 2 74.434 0.32500 6.94 Fct=0.06942 * 
Within groups 4 24.727 0.04386 0.94 Fsc=0.01007 ns 
Within populations 291 1255.091 4.31303 92.12 Fst=0.07878 *** 

Paracalanus quasimodo concatenated 
One population 
Among populations 9 29.131 0.07105 19.46 Fst=0.19458 *** 
Within groups 405 119.103 0.29408 80.54 
Gulf and Atlantic 
Among groups 1 3.891 0.00375 1.02 Fct=0.01022 ns 
Within groups 8 25.239 0.06907 18.83 Fsc=0.19020 *** 
Within populations 405 119.103 0.29408 80.15 Fst=0.19847 *** 
Population 1 Gulf and Atlantic 
Among groups 1 5.916 0.03386 10.40 Fct=0.10399 ns 
Within groups 5 4.353 0.01409 4.33 Fsc=0.04828 ** 
Within populations 291 80.808 0.27769 85.28 Fst=0.14725 *** 
Population 1 Gulf, Subtropics and Atlantic 
Among groups 2 8.723 0.04160 12.93 Fct=0.12926 * 
Within groups 4 1.547 0.00256 0.79 Fsc=0.00913 ns 
Within populations 291 80.808 0.27769 86.28 Fst=0.12926 *** 

Temora turbinata ITS-1 
Among populations 9 3264 0.00175 0.58 Fst=0.00581 ns 
Within groups 357 106.684 0.29883 99.42 
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variation among populations within the groups, indicating unresolved structure. When the 

two southern populations of the Atlantic, SK and Mi, were set in their own group, there 

was significant variation between the three groups, but no significant variation within the 

groups. 

 

Temora turbinata 

T. turbinata showed a pattern that suggested panmixia. All significant restrictions 

in gene flow occurred between LW and PA, PC and Ja (Table 7). Significant restrictions 

between LW and Ja were consistent across the three sequence analyses. Additional 

significant restrictions were detected between LW and PC with ITS-1, between LW and 

FP091 with COI and between LW and PA and LW and FP091 with the concatenated 

sequences. However, none of the restrictions in gene flow between pairs remained 

significant after applying the Bonferroni correction. A Mantel test with COI pairwise Fst 

values showed a significant IBD correlation (Table 4), but no such correlation was 

detected with either ITS-1 or the concatenated sequences. There were no significant 

hierarchal differences detected by AMOVA (Table 6). 

Structure Harvester suggests two, three and three populations for ITS-1, COI and 

concatenated sequences, respectively (Table 8; Figure 6).  However, populations one, two 

and four from the COI analysis coincided with population one from the ITS-1 and 

concatenated data, thus they are henceforth referred to as population A. The patterns from 

the three analyses are similar, with minor variations; populations one and A dominate.  
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Table 7: Fst Pairwise comparisons for Temora turbinata.  Fst values are below the 
diagonal. Probabilities are above the diagonal. - = not significant; * = p < 0.05; ** = p < 0.01; *** = p < 
0.001 

ITS-1 
 PA LW Lu PC Ta SK Mi FP Ja IM 
PA  0 - - - - - - - - - 
LW  0.042  0 - * - - - 0.052 * - 
Lu -0.018  0.013  0 - - - - - - - 
PC -0.002  0.121  0.004  0 - - - - - - 
Ta -0.004  0.011 -0.006  0.056  0 - - - - - 
SK -0.015  0.016 -0.013  0.032 -0.015  0 - - - - 
Mi  0.007 -0.003 -0.003  0.061 -0.007 -0.016  0 - - - 
FP -0.014  0.041 -0.014 -0.010  0.001 -0.009  0.006  0 - - 
Ja -0.004  0.066 -0.004 -0.029  0.024  0.010  0.025 -0.018 0 - 
IM  0.015 -0.005 -0.002  0.054 -0.000 -0.005 -0.017 -0.000 0.014 0 

COI 
 PA LW Lu PC Ta SK Mi FP Ja IM 
PA  0 - - - - - - - - - 
LW -0.004  0 - - - - - * ** - 
Lu -0.012 -0.009  0 - - - - - - - 
PC  0.001  0.040 -0.004  0 - - - - - - 
Ta  0.011  0.028  0.002 -0.018  0 - - - - - 
SK -0.002  0.011  0.005  0.003  0.012 0 - - - - 
Mi -0.008  0.024  0.013 -0.024  0.014 0.004 0 - - - 
FP  0.017  0.047  0.018 -0.034 -0.001 0.016 0.002  0 - - 
Ja  0.035  0.062  0.031 -0.027 -0.006 0.022 0.018 -0.017  0 - 
IM  0.013  0.030  0.016 -0.023 -0.006 0.001 0.001 -0.015 -0.017 0 

Concatenated 
 PA LW Lu PC Ta SK Mi FP Ja IM 
PA 0 - - - - - - - - - 
LW 0.033 0 - ** - - - * ** - 
Lu -0.017 0.009 0 - - - - - - - 
PC -0.001 0.103 0.002 0 - - - - - - 
Ta -0.000 0.015 -0.004 0.034 0 - - - - - 
SK -0.012 0.015 -0.009 0.024 -0.007 0 - - - - 
Mi 0.003 0.004 0.001 0.037 0.000 -0.010 0 - - - 
FP -0.008 0.040 -0.006 -0.017 0.000 -0.003 0.002 0 - - 
Ja 0.007 0.064 0.007 -0.028 0.014 0.014 0.023 -0.016 0 - 
IM 0.014 0.005 0.003 0.0288 -0.002 -0.003 -0.011 -0.006 0.003 0 
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Table 8: Temora turbinata variant clusters as designated by Structure. ‘A’ is a 
combination of clusters 1 and 2. ‘B’ is a combination of 1, 2 and 3. ‘C’ is a combination 
of 2 and 3. 

        Variant 
Locus 1 2 3 4 5 6 9 12 13 15 16 17 19 21 22 23 24 26 
ITS-1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 
COI A A A B 3 3 3 3 3 2 3 3 3 3 B 3 3 3  
Concatenated 1 2 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 

  Variant 
 27 28 29 30 31 33 
ITS-1 3 3 3 3 3 3 
COI 3 3 C 3 3 3  
Concatenated 3 3 3 3 3 3 

 

 

 

 
Figure 6: Structure bar plot of inferred ancestry of T. turbinata from ITS-1 (a), COI (b) 
and concatenated (c) sequences.
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DISCUSSION 
 

Paracalanus quasimodo and Temora turbinata population structures differ greatly 

around the Gulf of Mexico. Paracalanus quasimodo shows a high degree of gene flow 

restriction while T. turbinata appears to be near panmixia. The contrast between the 

homogeneous distribution of T. turbinata and the structured distribution of P. quasimodo 

supports observations of diminished gene flow in taxa limited to near shore habitats 

(Herke and Foltz, 2002). Taxa with greater habitat restrictions, proximity to shore in this 

case, are less likely to encounter suitable habitat (McMillan-Jackson and Bert, 2004). P. 

quasimodo enters an inhospitable environment should it drift too far from shore, 

restricting dispersal to near shore currents. Alongshore advection is slower than can occur 

in the primary currents, thus limiting dispersal range. 

Despite limited dispersal potential in P. quasimodo, the connections between LW, 

Lu, Ta, FP072 and Ja demonstrate gene flow between sites separated by over 1000km. 

With significant restrictions between sites separated by less than 200km, some factor 

must enable connectivity between these sites. Similar environments at LW, Lu, Ta, FP 

and Ja may support concerted adaptation, but significantly restricted gene flow to similar 

sites suggests that the environment is not the driving force behind the similar genetic 

signatures. The lack of significant gene flow restrictions between FP, on the border 

between subtropical and temperate zones, and Ja, a temperate site, and SK and Mi, 

subtropical sites, suggests a latitudinal gradient. However, PA and PC show significantly 

restricted gene flow to LW, Lu, Ta, FP and Ja, but are at roughly equivalent latitudes. 

Another shared factor is proximity to an estuary with PC and Mi as the discrepant sites. 
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A degree of gene flow between sites is necessary, as environment cannot fully 

explain the similarity between sites. Gene flow likely occurred between the Gulf and 

Atlantic sites across the Suwannnee Strait, prior to the Miocene. Though the strong 

currents through the strait (Popenoe et al. 1987) could sweep plankton from the Gulf to 

Atlantic coast, it is unlikely for the populations to maintain the similar genetic profile 

without continuous gene flow for over five million years. Without continuous gene flow, 

speciation would likely occur, as has occurred in marine taxa with longer generation 

times whose populations were divided by the closing of the Suwannee strait (Bert, 1986; 

Bert and Harrison, 1988; Schneider-Broussard et al., 1998; Drumm and Kreiser 2012). 

Considering that some degree of migration occurs between the western and 

eastern GoM, as supported by the presence of both genetic clusters at PA and PC, yet P. 

quasimodo populations have developed distinct, genetic signatures across permeable 

hydrographic barriers, LW, Lu, Ta, FP and Ja likely experience continued gene flow 

across the geographic barrier of the Florida peninsula. A possible scenario is the close 

proximity the connected sites have to the primary GoM and Atlantic currents. Lu and Ta 

are relatively close to the Gulf Loop Current, which eventually becomes the Gulf Stream, 

passing FP and Ja. Louisiana West is directly downstream of Lu via the Mississippi River 

plume (Schiller et al., 2011) and surface currents (Chu et al. 2005), thus, individuals from 

Lu could easily drift to LW (Johnson et al. 2009). 

The population structure patterns of P. quasimodo and the regional currents 

indicate that the population at Lu has a large influence on Florida populations. Isla 

Mujeres is the site furthest upstream of the primary currents in this study, yet there are 

significant gene flow restrictions to all other sites. Depending on whether the Loop 
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Current intrudes into the northern GoM or veers directly into the Florida current, either 

Lu or SK would be the next population downstream of IM. The Loop Current entrains 

water from the Mississippi River plume (Schiller et al. 2011), thus Lu will influence the 

composition of downstream populations. Olascoaga (2010) found that passive drifters 

released in the Mississippi River plume have the potential to reach all of the downstream 

sites of this study. 

The Mississippi river plume flows west from the river mouth and the currents can 

carry particles to the Texas coast (Olascoaga 2010), but there is a genetic break that 

isolates PA P. quasimodo from the other sampled sites. Bilodeau et al. (2005) found the 

same partition in populations of the beach ghost shrimp Callichirus islagrande and 

suggested that the Louisiana Chenier Plain as the dividing point. The near shore currents 

in the region are not amenable to longitudinal transport of particles across the plains. 

A hydrographic barrier associated with current vectors like the one at the Chenier 

Plain is unlikely to have caused restricted gene flow detected between Lu and SK and Mi. 

No significant reductions in gene flow were detected between SK and Mi and FP. As Mi 

and FP do not share a connection with ITS-1 or the concatenated sequences prior to 

Bonferroni corrections, SK likely influences the downstream sites. With a potential rate 

of 160cm/s (Johns et al., 1999), the Florida Current can carry particles from SK to Mi in 

1.5 days, thus, any changes in the population at SK can quickly affect the Mi population. 

Two bodies of water influence SK, a unique situation in this study. To the south, 

there is the Florida Channel and the Florida Current. To the north is Florida Bay. 

Although the Keys provide a physical barrier, the many channels between the Keys 

provides a net flow from Florida Bay to the Florida Channel (Pitts, 2002; Smith, 2009), 
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resulting in a mix of water with origins from Florida Bay, the GoM and the Florida Keys 

(Willemsen, 2005). Under normal conditions, hydrographic features and weak cross shelf 

transport restrict transport into Florida Bay from passive drifters originating in the GoM 

(Criales et al., 2006; Hare and Walsh, 2007; Olascoaga, 2010). Isolation from the GoM 

and a low degree of mixing from the north are ideal conditions for developing a 

genetically distinct population. Mixing with such a population may be responsible for the 

distinctive population found at SK, which spreads to Mi. Such a shift in population 

composition is seen in the scorched mussel (Lee and O’Foighil, 2004). Sampling between 

the Florida Keys and Tampa is required to determine whether Florida Bay populations 

also influence P. quasimodo community composition south of the Florida Keys. A third 

scenario is that SK and Mi belong to a subtropical population similar to the scorched 

mussel, Brachidontes exustus, (Lee and O’Foighil, 2004). The influence of populations 

from the Bahamas and Cuba are unknown and should be examined in future studies. 

In both composition and Fst pairwise comparisons, FP is intermediate to SK and 

Ja. FP is in a mixing zone between north Atlantic Florida and south Florida populations. 

The large swath of coast running from Mi to Georgia was identified as a region where 

Atlantic and Gulf of Mexico variants of Crassostrea virginica, the American oyster, 

intermix (Hare and Avise, 1996). The Florida Current and Gulf Stream transports 

particles from SK towards FP (Figure 2; Roberts, 1997). Countercurrents along the 

Atlantic coast will transport passive drifters from Ja towards FP inshore of the Gulf 

Stream (Hare and Walsh, 2007). The population composition of FP, intermediate to SK 

and Ja, supports FP as a mixing zone (Figure 3). 
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Although IM borders the Yucatan Strait, the Caribbean gateway into the Gulf of 

Mexico, there are significant restrictions in gene flow to all the downstream populations. 

Variant 1, the dominant variant at IM, does not appear in either PC or in Ta, the two sites 

in one of the most isolated regions of this study (Olascoaga 2010). The reduction in 

variant 1 proportions at other sites suggests several scenarios, one of which is that variant 

1, whether through low original frequency or environmental factors, is unsuccessful at 

maintaining a presence over the west Florida shelf. An alternate scenario is that the 

presence of variant 1 is primarily maintained by migrants originating from IM. Lu is the 

closest site to IM should the Loop Current intrude into the northern Gulf, and when the 

Loop Current veers directly east into the Florida current, the Florida Keys provide the 

closest coasts. The additional time required to reach Ta and PC may be too great for 

migrants from IM. 

With a few exceptions, Temora turbinata were collected from the same sample of 

a site transect as P. quasimodo. Unlike P. quasimodo, T. turbinata appears to be near 

panmixia. Although Structure Harvester suggests multiple populations, all purported 

populations were represented in the majority of the sites. If there are multiple 

populations, they range beyond, and overlap in the southeast United States. 

Louisiana West was the only site that showed significant restrictions in gene flow 

to multiple sites, although these restrictions were no longer significant after Bonferroni 

corrections. All other sites that showed significant restrictions were reciprocal to LW. 

Situated in an area with low mixing (Olascoaga 2010) with a phylogeographic break 

between the Louisiana and Texas shelf (Bilodeau et al., 2005), LW is likely a planktonic 

sink. Population composition and drifter patterns (Olascoaga, 2010) indicate that PC is 
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also a sink. Although LW and PC still receive migrants from other populations, as sinks, 

they would have minimal influence on how the species evolves in the region and begin to 

develop a distinct community. Ja does not have obvious hydrographic barriers that would 

retard gene flow, but this is the geographically furthest site from LW, so the restricted 

gene flow can be attributed to IBD. 

 

 

CONCLUSIONS 

Paracalanus quasimodo and Temora turbinata populations overlap throughout 

the SE United States. However, T. turbinata range further offshore than P. quasimodo. 

Different degrees of access to strong currents and habitat restrictions produce different 

patterns of population structure. The near shore P. quasimodo exhibited greater 

restriction in gene flow between sites than the oceanic T. turbinata. While both showed 

evidence of IBD, T. turbinata was nearly panmictic, but P. quasimodo population 

structure cannot be explained by distance alone. Though plankton with a wide habitat 

range, such as T. turbinata, can overcome hydrographic barriers in the southeastern US, 

the current patterns shape the population structure of taxa restricted to coastal habitats. 
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CHAPTER III 

TEMPORAL STABILITY IN POPULATIONS OF TWO COPEPOD SPECIES 

(PARACALANUS QUASIMODO [CALINOIDEAE] AND TEMORA TURBINATA 

[CALINOIDEAE]) ALONG THE SOUTH EASTERN FLORIDA COAST 

 

Introduction 

 

Phylogeographic studies typically sample a population one time, an implicit 

assumption of temporal stability, with changes occurring over evolutionary time. 

Relatively few phylogenetic or phylogeographic studies have sampled populations of a 

species repeatedly over time. In those studies that resampled, some populations are 

temporally stable (Ball and Chapman 2003; Lambert et al.2003; Kovach et al. 2010), 

while the genetic signature of other populations change (Smolenski et al. 1993; Purcell et 

al. 1996; Cook et al. 2007; Larsson et al. 2010; Horne et al. 2012). Populations that 

undergo detectable change are generally a minority among temporally stable populations 

across a species range (Cook et al. 2007; Calderon et al. 2012). The present study aims to 

examine the phylogeographic structure of Paracalanus quasimodo and Temora turbinata 

combined with temporal sampling to determine the stability of populations within a site 

and of the relationships between sites. 

The majority of temporal studies to date have focused on genetic monitoring, 

examining populations for evidence of genetic drift, indicating critical reductions in the 

effective breeding population, or for changes in the genetic signature of a population due 

to anthropogenic and environmental pressures. Most studies find that the populations are 
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stable and resilient to stressors such as population decline exacerbated by harvesting 

pressure (Cuveliers et al. 2011; Van Doornik et al. 2011). However, some species show a 

significant change in genetic signature over the course of the study, whether over 

generations (Larsson et al. 2010) or over seasons (Dunton et al. 2012). These genetic 

monitoring studies generally focus on one population and do not address 

phylogeographic relationships between populations. 

Phylogeographic studies delve into the biological and geographic history of a 

species. Examining species across their ranges can detect isolation and connectivity 

between populations (Broughton et al. 2002; Ball and Chapman 2003). Isolated 

populations may develop novel variants that have the potential for speciation, if this had 

not already occurred (Bert 1986; Bert and Harrison 1988; Craig et al. 2004). In the 

practical view of natural resource management, phylogeographic studies are used to 

determine the range and the aforementioned connectivity between populations, which can 

aid in MPA delineation and determining management regions (Bagley et la. 1999; 

Broughton et al. 2002; Gold et al. 2002; Kovach et al. 2010; Lankford et al. 1999; Vinas 

et al. 2010). Population patterns can also reveal past vicariant history. 

More temporal sampling in phylogeographic studies is needed in order to evaluate 

the degree of short-term variability within populations (Horne et al. 2012), as most 

studies to date are limited in the numbers of temporal samples (Purcell et al. 1996; 

Lambert et al. 2003; Cook et al. 2007; Horne et al. 2012), or the numbers of sites sampled 

(Smolenski et al. 1993; Ball and Chapman 2003; Calderon et al. 2012). Purcell (1996) 

demonstrates how populations of the same species undergo different pressures resulting 
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in varied changes in genetic identity. Thus, it cannot be assumed that all populations are 

temporally stable or unstable based on a limited number of sampling sites. 

Species with planktonic larval stages may be especially subject to short-term 

temporal variation. A shift in the local current pattern can facilitate the exchange of novel 

genetic variants between formerly separated populations (Calderon et al. 2012). Despite 

the large number produced, low survivorship of planktonic larvae reduces the effective 

population size, amplifying the impact of successful breeders on the genetic signature of 

the following generation (Hedgecock 1994; Lee and Boulding 2009). The genetic 

composition will change significantly should a  minor genetic variant succeed in this 

sweepstake recruitment. Though major vectors remain, on average, constant, local 

hydrographic features can change or acute disturbances, like cyclonic activity, can alter 

dispersal patterns between generations (Calderon et al. 2012). Major recruitment events 

may change populations, especially following severe disturbances (Paz-Garcia et al. 

2012) or throughout cyclical extinction and colonization events (Lambert et al 2003). 

By examining populations at geographically adjacent sites, it should be possible 

to determine if populations are stable over time or, should they change, the degree 

upstream sites influence downstream populations. Communities in train of the currents 

should be directly sampled, whether by periodic sampling while adrift or frequent 

sampling at a fixed point within the current. Such a study can address whether the 

communities along the path of major currents are genetically homogeneous or if they are 

geographically structured. An alternate scenario, particularly for species occurring further 

from shore, is nomadic populations that inhabit a specific parcel of water in the currents 

rather than a geographic location. Like two objects on a conveyor belt, two populations 
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are nomadic relative to a fixed, geographic point, but separated by a constant distance 

along the current path; both populations will pass through a hypothetical point ‘A,’ but at 

different times. Here, time at location, rather than geography, separates the populations. 

Isolation occurs because it is difficult for individuals to travel upstream or downstream 

relative to their natal population. 

The present study examines populations of two copepod species, Paracalanus 

quasimodo and Temora turbinata, at three locations along the southeast Florida coast. 

The coastal P. quasimodo is expected to show less of a temporal gradient than T. 

turbinata, which has a higher dispersal potential (Lambert et al. 2003). To test for 

temporal stability, sites were sampled quarterly over a period of two years and examined 

for temporal patterns within and among sites. Within site comparisons were performed to 

determine whether there were temporal variations and patterns supporting resident or 

nomadic populations. Among-site patterns were examined for connectivity between sites 

and whether changes in a population will affect downstream sites.  
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MATERIALS AND METHODS 

 

Collection 

For the purposes of this study, we assumed that a sampling site represented a 

population. Samples were collected from three sites off the Atlantic coast of the Florida 

peninsula (Table 1, Figure 1), repeated quarterly from 2007 to 2008. Weather permitting, 

quarterly sampling was conducted over three consecutive days, beginning with SK and 

ending with FP. Two samples from a 2005 pilot study were included, one from SK and 

one from Mi. Samples were collected by ten-minute surface tows with both a 150μm and 

366μm mesh nets. Surface tows were conducted along transects beginning ten miles 

offshore to inshore with one tow at the beginning, middle and end of the transect. 

Samples were named by a two-digit abbreviation for the quarter, the year and then the 

site. Samples were immediately preserved in 95% ethanol. Species were identified by 

dichotomous keys (Owre and Foyo 1967; Boltovskoy 1999). 

 

DNA Extraction 

Forty individuals each of Paracalanus quasimodo and Temora turbinata were 

selected from each site sample with two exceptions. Sixty P. quasimodo were selected 

from the 2005 SK and Mi samples as part of a feasibility study (data not shown). The first 

40 Fa07-FP P. quasimodo formed an anomalous community, thus forty additional P. 

quasimodo were selected to confirm the variant distribution. The Su07-Mi sample 

captured few of the two target species with only 10 P. quasimodo and 6 T. turbinata. 

Individual copepods were transferred directly from ethanol to a 1.5l microcentrifuge 
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Table 1: Sampling sites, year and quarter collected, sample size and coordinates for 
Paracalanus quasimodo and Temora turbinata. T. turbinata samples from fall 2008 were 
combined from two tows. SK = Summerland Key; Mi = Miami; FP = Fort Pierce 

 Paracalanus quasimodo    Temora turbinata 
Site Year Quarter n Latitude/Longitude n Latitude/Longitude 
SK 2005 Summer 60 N24º32.95  W81º21.792 
 2007 Winter   39 N24º35.469 W81º28.559 
 2007 Spring   34 N24º33.643 W81º27.629 
 2007 Fall 40 N24º33.746 W81º27.597 39 N24º33.746 W81º27.597 
 2008 Winter 40 N24º35.487 W81º28.540 39 N24º32.117 W81º26.180 
 2008 Spring 40 N24º35.437 W81º28.692 
 2008 Summer 40 N24º35.5   W81º28.5 
 2008 Fall 40 N24º36.509 W81º29.071 38 N24º36.509 W81º29.071 
      N24º35.516 W81º28.621 
Mi 2005 Spring 54 N25º51     W79º56.25 
 2007 Winter   34 N25º54.591 W80º07.517 
 2007 Spring 39 N25º54.053 W80º06.026 40 N25º54.053 W80º06.026 
 2007 Summer 10 N25º53.775 W80º06.438 06 N25º53.775 W80º06.438 
 2007 Fall 40 N25º53.887 W80º06.636 40 N25º53.887 W80º06.636 
 2008 Winter 40 N25º53.786 W80º06.541 40 N25º53.786 W80º06.541 
 2008 Spring 40 N25º53.803 W80º06.600 
 2008 Summer 40 N25º53.964 W80º01.979 39 N25º53.870 W80º06.414 
 2008 Fall 40 N25º54.130 W79º56.104 36 N25º54.130 W79º56.104 
FP 2007 Winter   37 N27º28.013 W80º18.427 
 2007 Spring 40 N27º27.071 W80º04.978 39 N27º27.047 W80º15.019 
 2007 Summer 40 N27º27.009 W80º04.997 38 N27º27.007 W80º10.998 
 2007 Fall 66 N27º26.960 W80º05.025 39 N27º26.960 W80º05.025 
 2008 Winter 40 N27º27.094 W80º15.042 38 N27º27.210 W80º11.156 
 2008 Summer 37 N27º26.838 W80º05.067 37 N27º26.997 W80º10.924 
 2008 Fall 40 N27º26.965 W80º15.016 

 

 
Figure 1: Sampling sites along the southeast Florida coast. 
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tube. Extractions were conducted with the MasterPure DNA extraction kit (Epicentre, 

Madison, WI) following manufacturer protocols and stored in 50l of UV sterilized, 

micropore filtered, deionized water at –80C. DNA concentration was quantified on a 

DyNA Quant 200 spectrophotometer (Hoefer) and varied between 3nM and 30nM. 

 

PCR-Denaturing Gradient Gel Electrophoresis (PCR-DGGE) 

The ITS-1 region was amplified with the primers ITS-1f (Coleman et al. 1994; 

Table 2) with the GC clamp added to the 5’ end of the sequence and ITS-1r (Schizas et 

al. 1999). The PCR reactions were run as quantitative reactions in lieu of sacrificing PCR 

product to check for successful amplification through electrophoresis. Amplifications 

were run in 10l PCR reactions composed of 5l iQ SybrGreen 2x (BioRad, Hercules, 

CA), 0.5l ITS-1r (0.5 M final concentration), 0.5l ITS-1fCol with GC clamp (1 M 

final concentration), 1l DNA extract (0.3 nM to 3 nM final concentration), and 3l 

nuclease free water. 

The ITS-1 primer pair produced amplicons of approximately 320bp in length. The 

thermal profile for the reactions was: 95°C (5 min), 10 touchdown cycles beginning with 

95-60-72°C for 20-20-60s with a 0.5°C drop in the annealing temperature per cycle, 25 

cycles of 95-55-72°C for 20-20-60s and a final extension at 72°C for 10 minutes in a 

DNA Engine Opticon 2 (MJ Research). 

The optimal urea gradient for parallel was determined to be 30-50%. The gels 

were allowed to run in aquaria (C.B.S. Scientific, Del Mar, CA) filled with 20L of TAE 

buffer at 65°C for 18 hours at 90 volts. To confirm that these were ITS-1 sequences, the 

brightest lower bands from the three dominant variants were cut from the DGGE gel, 



 54

Table 2: Primer sequences. 
Primer Name Sequence 
GC Clamp CGC CCG CCG CGC CCC GCG CCC GTC CCG CCG CCC CCG CCC 
ITS-1f GGG ATC CGT TTC CGT AGG TGA ACC TGC 
ITS-1r ATC GAC CCA TGA GCC GAG TGA TC 
LCOI-1490 GGT CAA CAA ATC ATA AAG ATA TTG G 
LCOI-1490c GGT CAT GTA ATC ATA AAG ATA TTG G 
LCOI-1528P GTT AGC AGG AGC TTG ATC AG 
HCOI-2198 TAA ACT TCA GGG TGA CCA AAA AAT CA 
HCOI-2198Par TAG ACT TCA GGA TGT CCA AAG AAT CA 
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eluted in 500 l of water for 24 hours, cleaned with the Wizard® SV Gel and PCR Clean-

up System (Promega, Madison, WI), re-amplified and prepared for sequencing with 

BigDye terminator, ver 3.1 (Applied Biosystems, Grand Island, NY). 

 

Sequencing 

Polymorphic sequences can change the DGGE banding pattern between 

individuals with the same dominant genetic variant. However, the dominant variant 

provides strong evidence of the evolutionary history in an organism (LaJeunesse and 

Pinzon, 2007). Thus, ten individuals from each sample site were selected for DNA 

sequencing based on DGGE variants. When possible, at least one of each variant present 

at a sample site was selected. The nuclear ITS-1 and mitochondrial cytochrome oxidase I 

(COI) regions were amplified. ITS-1 primers were the same as that for DGGE analysis, 

minus the GC clamp. Standard Folmer COI primers (LCOI-1490 and HCOI-2198) were 

unable to amplify a majority of the Paracalnus quasimodo samples and a large number of 

the Temora turbinata. Modified Folmer primers (LCOI-1490c and HCOI-2198Par) were 

designed using whole copepod mitochondrial sequences found in GenBank worked well 

with T. turbinata, but only had moderate success with P. quasimodo. A COI primer 

tailored for P. quasimodo (LCOI-1528p), which began 38bp downstream of LCOI-1490, 

was paired with HCOI-2198Par to sequence the remaining P. quasimodo. 

The PCR amplifications were conducted in a PTC-200 DNA Engine (MJ 

Research) with Promega GoTaq® Flexi reagents. Reactions were composed of 2l of 5x 

Buffer, 0.6l of 25mM MgCl2 (1.5mM final concentration), 0.5l each of forward and 

reverse primers (0.5M, ITS-1 primers, and 1.0M, COI primers, final concentration), 
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0.2l of 10 M dNTPs (0.2M final concentration), 0.2l of 2.5u/l DNA Polymerase 

(0.05u/l final concentration) and 2 to 5l of DNA (0.6-6nM to 1-10nM final 

concentration) with nuclease free water added to make a final volume of 10l. The higher 

concentration of DNA was used when the lower concentration resulted in low 

amplification. 

Three l of PCR product were ran on an 0.8% agarose gel to determine whether 

the amplification was successful. PCR products were cleaned with ExoSap (Affymetrix, 

Santa Clara, CA) following manufacturer’s protocols. Cleaned products were sequenced 

with BigDye terminator, ver 3.1 Applied Biosystems, Grand Island, NY) for both forward 

and reverse strands in a PTC-200 DNA Engine (MJ Research). The 10l cycle 

sequencing reaction mix was composed of 0.5l of 1.87M primer (0.935 M final 

concentration), 2-4l of amplified product, depending on gel band intensity (2l if the 

band was bright, otherwise 4l), 2l of 5x sequencing buffer, 1l of BigDye v3.1 and 

double distilled deionized water to a total volume of 10l. The reaction cycle was 15 

seconds at 95ºC, 10 seconds at 50ºC and 4 minutes at 60ºC, repeated 35 times. The 

products were sequenced in an AB 3100 genetic analyzer (Applied Biosystems, Grand 

Island, NY) in the Florida International University DNA Core. Several sequences were 

unreadable due to contamination or, in the case of ITS-1, the presence of multiple 

sequence varieties. Samples where standard sequencing failed were cloned with a TOPO 

TA cloning kit for sequencing (Invitrogen, Grand Island, NY) following the 

manufacturer’s protocols. 
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Sequences were proofread in FinchTV (Geospiza, Seattle, WA), trimmed in 

BioEdit (Hall, 1999) and aligned with ClustalW (Larkin et al., 2007) through BioEdit. As 

ITS-1 is a non-coding region of the nuclear DNA, neither genotype nor haplotype are 

appropriate descriptors for unique sequences. The term ‘variant’ will be used as per 

LaJeunesse and Pinzon (2007) expanded to unique concatenated sequences. For example, 

should two sequences have identical ITS-1 sequences, yet have different COI sequences, 

or vice versa, they would be described as different variants. A consensus sequence was 

constructed in BioEdit for each variant with multiple sequences. All polymorphic sites 

were marked as such, even if the alternate nucleotide was represented in only one 

sequence. DGGE variants that were identical in both ITS-1 and COI sequences were 

grouped under the numerically lowest variant number. 

 

Analysis 

Population comparisons and Mantel tests were conducted in Arelequin 3.5 

(Excoffier and Lischer 2010) with sequence data. Pairwise Fst comparisons were 

conducted to determine whether there was significant restriction in gene flow over space 

and time. Pairwise comparisons were run with 99,999 permutations. A Bonferroni 

correction for multiple tests was applied to the results of the pairwise comparisons. 

Mantel tests examined the data for evidence of a temporal gradient similar to isolation-

by-distance (Barber et al. 2002), but with a matrix based on time rather than by distance. 

The Fst matrices produced by the Fst pairwise comparisons were tested against a temporal 

matrix of days between samples, with the spring 2005 Miami sample (02 May 2005) as 

day zero.  
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Genetic data were converted into numerical sequences with GenAlEx 6.41 

(Peakall and Smouse, 2006) in preparation for cluster analysis by Structure 2.3.3 (Hubisz 

et al., 2009). Cluster analysis groups the variants by similarity and the distribution of the 

clusters within and between sites can be examined for geographic patterns and temporal 

patterns. Analysis was set to a 60,000 MCMC chain with a 10,000 step burn-in period. 

Both alpha and lambda values were inferred by Structure. The number of clusters (K) 

was set for 1 through 10, with 20 replicate runs of each K. The results were analyzed with 

Structure Harvester (Dean and vonHoldt, 2012) to determine the most likely value for K. 

I used AMOVAs to test whether sites were independent and whether there was 

seasonal variation. The AMOVAs were run in Arlequin 3.5 (Excoffier and Lischer, 2010) 

with the maximum number of permutations (99,999) with four sets of a priori groups. 

The first set was a stable, single population. The second set separated samples by site. 

The third set grouped samples by sampling quarter (e.g. Spring 2007) and the fourth by 

season. 
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RESULTS 

 

Eight-hundred twenty-five of 850 Paracalanus quasimodo and 652 of 686 

Temora turbinata successfully amplified for DGGE with an additional 14 Euchatea 

ramina from Fa07-FP misidentified as P. quasimodo. Thirty-five variants were found in 

both P. quasimodo and T. turbinata. Paracalanus quasimodo was not found in any of the 

SK tows from winter 2007, spring 2007 and summer 2007, in Mi tows from winter 2007 

and in FP tows from winter 2007 and spring 2008. Temora turbinata was not found in the 

SK tows from summer 2007, spring 2008 and summer 2008, in Mi tows from spring 

2008 and in FP tows from spring 2008 and fall 2008. 

 

Paracalanus quasimodo 

After Bonferroni corrections, Sp05-Mi, Sp07-FP and Fa07-FP show a pattern of 

significant differences from the majority of other samples (Table 3; Figure 2). The Wi08-

FP and Sp08-Mi also have multiple differences, but were not significant after applying 

the Bonferroni corrections. Within the sampling quarters, the only site that showed 

significant restrictions from the others was FP from Spring and Fall 2007 and Winter 

2008 (Table 4). Fall 2007 was the only sample that remained significant after Bonferroni 

corrections. 

Within sites, no significant changes were detected in SK over the course of this 

study (Tables 5). At Mi, a high proportion of variant 3 differentiated the 2005 pilot 

sample all other Mi samples. The spring 2008 sample from Mi also shows significant 

differences, but only before the Bonferroni corrections. The genetic signature at FP  
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Table 3: Pairwise Fst comparisons between samples for Paracalanus quasimodo and 
Temora turbinata. Samples are named by a two-letter abbreviation for the quarter (Wi = 
Winter, Sp = spring, Su = summer, Fa = fall), the year and the site at which they were 
collected. Fst values for ITS-1 are below the diagonal; probabilities are above the 
diagonal. Pairs with three probability values are for ITS-1, COI and concatenated 
sequences, respectively, otherwise, the probabilities share the same degree of 
significance. P-values that remained significant after Bonferroni corrections are in bold. - 
= not significant; * = p < 0.05; ** = p < 0.01; *** = p < 0.001. 
 
Paracalanus quasimodo 
 Sp05-Mi Su05-SK Sp07-Mi Sp07-FP Su07-Mi Su07-FP Fa07-SK Fa07-Mi Fa07-FP Wi08-SK Wi08-Mi 
Sp05-Mi 0 *** *** - * *** *** *** *** *** *** 
Su05-SK 0.19194  0 - *** - - - - *** - - 

Sp07-Mi 0.17633 -0.01107  0 *** - - - - *** - - 

Sp07-FP 0.03045  0.1279  0.13693 0 - - *** *** *** *** ** 
Su07-Mi 0.13478 -0.0299 -0.05336 0.1115  0 - - - * - - 
Su07-FP 0.12885  0.0097  0.02494 0.04477  0.00255  0 - * *** * - 

Fa07-SK 0.20398 -0.015 -0.02085 0.1494 -0.04337  0.02215  0 - *** - - 

Fa07-Mi 0.31683  0.00596  0.03019 0.22848  0.03723  0.05303  0.00908  0 *** - - 

Fa07-FP 0.22738  0.10585  0.08898 0.21911  0.05551  0.13264  0.10618  0.1621 0 *** *** 
Wi08-SK 0.30609  0.00319  0.00924 0.2397  0.00679  0.06719 -0.00457 -0.01194 0.13205  0 - 
Wi08-Mi 0.23679 -0.0069  0.0163 0.14483  0.00855  0.00701  0.00264 -0.00796 0.12202  0.00842  0 
Wi08-FP 0.12207  0.01358  0.02103 0.06007 -0.00923 -0.00566  0.02439  0.06417 0.06976  0.06899  0.01031 
Sp08-SK 0.35145  0.02101  0.04165 0.27229  0.0526  0.08531  0.02111 -0.01676 0.16177 -0.01513  0.01088 
Sp08-Mi 0.40331  0.0492  0.08591 0.3171  0.1152  0.11596  0.05966 -0.00689 0.19899  0.00924  0.02532 
Su08-SK 0.25054 -0.00188 -0.01256 0.20323 -0.0321  0.05924 -0.0163  0.01384 0.10777 -0.01023  0.02064 
Su08-Mi 0.26984 -0.00349  0.01994 0.17522  0.01943  0.02125  0.00119 -0.01897 0.15731 -0.00078 -0.01833 
Su08-FP 0.32549  0.00728  0.01908 0.2521  0.02201  0.07293  0.00124 -0.01882 0.15013 -0.0229  0.00608 
Fa08-SK 0.19983 -0.01052 -0.02168 0.15312 -0.04827  0.03144 -0.02283  0.01929 0.10354  0.0009  0.01245 
Fa08-Mi 0.32079  0.0075  0.01678 0.25072  0.01745  0.0748  0.00061 -0.01483 0.13943 -0.02254  0.00815 
Fa08-FP 0.20555 -0.00586  0.00531 0.13215 -0.01215  0.0102 -0.00109  0.01148 0.10879  0.01427 -0.00592 
 
 Wi08-FP Sp08-SK Sp08-Mi Su08-SK Su08-Mi Su08-FP Fa08-SK Fa08-Mi Fa08-FP 
Sp05-Mi *** *** *** *** *** *** *** *** *** 
Su05-SK - - * - - - - - - 
Sp07-Mi - -/-/* ** - - - - - - 
Sp07-FP * *** *** *** *** *** *** *** ** 
Su07-Mi - - * - - - - - - 
Su07-FP - ** ** * - * - * - 
Fa07-SK - - * - - - - - - 
Fa07-Mi * - - - - - - - - 
Fa07-FP *** *** *** *** *** *** *** *** *** 
Wi08-SK **/*/** - - - - - - - - 
Wi08-Mi - - - - - - - - - 
Wi08-FP 0 ** *** */**/* - ** - ** - 
Sp08-SK 0.08986 0 - - - - - - - 
Sp08-Mi 0.12303 -0.01161 0 * - - * - * 
Su08-SK 0.05306 0.0155 0.05509 0 - - - - - 
Su08-Mi 0.03772 -0.00068 0.01425 0.01644 0 - - - - 
Su08-FP 0.07642 -0.02188 -0.00086 -0.00396 -0.00673 0 - - - 
Fa08-SK 0.02906 0.03006 0.07264 -0.01911 0.01155 0.00762 0 - - 
Fa08-Mi 0.07459 -0.01703 0.00353 -0.00607 -0.00231 -0.02463 0.00611 0 - 
Fa08-FP 0.01401 0.02784 0.05409 0.01463 -0.0001 0.01793 0.00495 0.01867 0 
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Table 3 (continued): Pairwise Fst comparisons between samples for Paracalanus 
quasimodo and Temora turbinata. 
 
Temora turbinata 
 Wi07-SK Wi07-Mi Wi07-FP Sp07-SK Sp07-Mi Sp07-FP Su07-Mi Su07-FP Fa07-SK Fa07-Mi Fa07-FP 
Wi07-SK 0 - - - - - - - - - - 
Wi07-Mi 0.02197 0 - - - - - - - - - 
Wi07-FP 0.02662 -0.00011 0 - - - - - - - - 
Sp07-SK 0.00784 0.00494 0.02553 0 - - - -/*/- -/*/- - - 
Sp07-Mi 0.02189 -0.01505 0.0188 -0.00922 0 - - - - - - 
Sp07-FP 0.02637 -0.0185 0.00025 0.00964 -0.01067 0 - - - - - 
Su07-Mi -0.03469 -0.04598 -0.091 -0.05298 -0.03597 -0.04635 0 - - - - 
Su07-FP -0.01729 0.00066 0.00893 0.00305 0.00472 0.00505 -0.04691 0 - - - 
Fa07-SK -0.0078 -0.00402 0.0194 -0.01248 -0.00898 0.00338 -0.03958 -0.01738 0 - - 
Fa07-Mi -0.01243 0.00465 0.00094 -0.01117 0.0039 0.00525 -0.07357 -0.01766 -0.01634 0 - 
Fa07-FP 0.02432 -0.01734 0.02206 -0.00445 -0.01708 -0.00543 -0.0319 0.00935 -0.00562 0.00839 0 
Wi08-SK 0.00046 0.09526 0.07731 0.06688 0.09233 0.09344 0.03301 0.01627 0.04065 0.0217 0.10088 
Wi08-Mi -0.0138 0.00666 0.01176 -0.01303 0.00194 0.01162 -0.06041 -0.01782 -0.02012 -0.02314 0.00634 
Wi08-FP -0.01557 0.00146 0.02473 -0.00957 -0.00467 0.007 -0.03501 -0.01878 -0.02219 -0.01548 -0.00183 
Su08-Mi 0.00822 -0.00114 -0.01297 0.00813 0.00808 -0.00304 -0.0802 -0.00303 0.00716 -0.00763 0.01158 
Su08-FP 0.07234 -0.00729 0.03034 0.01344 -0.00768 0.00177 -0.02518 0.04755 0.02611 0.03872 -0.01019 
Fa08-SK -0.0112 -0.00546 0.00747 -0.01017 -0.00644 0.00068 -0.05371 -0.02148 -0.02459 -0.02151 -0.00264 
Fa08-Mi 0.03909 -0.02395 0.00685 0.02224 -0.00897 -0.01501 -0.02857 0.01089 0.00452 0.01775 -0.01164 
 
 Wi08-SK Wi08-Mi Wi08-FP Su08-Mi Su08-FP Fa08-SK Fa08-Mi 
Wi07-SK - - - - **/-/** - - 
Wi07-Mi **/-/* - - - - - - 
Wi07-FP */-/* - - - - - - 
Sp07-SK */**/* - - - - - - 
Sp07-Mi **/*/** - - - - - - 
Sp07-FP **/*/** - - - - - - 
Su07-Mi - - - - - - - 
Su07-FP - - - - * - - 
Fa07-SK - - - - -/*/- - - 
Fa07-Mi - - - - */-/* - - 
Fa07-FP **/*/** - - - - - - 
Wi08-SK 0 - - * ***/**/*** - ** 
Wi08-Mi 0.0218 0 - - -/-/* - - 
Wi08-FP 0.02813 -0.02076 0 - -/-/* - - 
Su08-Mi 0.05418 0.00035 0.00741 0 - - - 
Su08-FP 0.16167 0.03869 0.03559 0.02888 0 - - 
Fa08-SK 0.03191 -0.02298 -0.02163 -0.00043 0.02868 0 - 
Fa08-Mi 0.1164 0.01985 0.01365 0.01224 -0.00367 0.00264 0 
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Figure 2: Proportions of Paracalanus quasimodo variants. Dominant variants are shown individually (cluster one: 1, 2, 3, 6; cluster 
two: 21, 22, 23, 26), while rare variants are grouped into O1 and O2 for populations one and two, respectively. Samples with 
patterns of pairwise significant restrictions after Bonferroni corrections are marked with an *. Samples with patterns of pairwise 
significant restrictions only before Bonferroni corrections are marked with a ~. Sample sizes are noted to the top right of their 
respective pie chart. 
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Table 4: Pairwise Fst comparisons for Paracalanus quasimodo and Temora turbinata by 
quarter sampled. Fst values for ITS-1 are below the diagonal; probabilities are above the 
diagonal. Pairs with three probability values are for ITS-1, COI and concatenated 
sequences, respectively, otherwise, the probabilities share the same degree of 
significance. P-values that remained significant after Bonferroni corrections are in bold. 
- = ns; * = p < 0.05; ** = p < 0.01; *** = p < 0.001. 
 
 Paracalanus quasimodo 
 Sp05-Mi   
Sp05-Mi 0   
    
 Fa05-SK   
Fa05-SK 0   
    
 Sp07-Mi Sp07-FP  
Sp07-Mi 0 ***  
Sp07-FP 0.13693 0  
    
 
 Su07-Mi Su07-FP  
Su07-Mi 0 -  
Su07-FP 0.00255 0  
    
 Fa07-SK Fa07-Mi Fa07-FP 
Fa07-SK 0 - *** 
Fa07-Mi 0.00908 0 *** 
Fa07-FP 0.10618 0.1621 0 
    
 Wi08-SK Wi08-Mi Wi08-FP 
Wi08-SK 0 - **/*/** 
Wi08-Mi 0.00842 0 - 
Wi08-FP 0.06899 0.01031 0 
 
 Sp08-SK Sp08-Mi  
Sp08-SK 0 -  
Sp08-Mi -0.01161 0  
    
 Su08-SK Su08-Mi Su08-FP 
Su08-SK 0 - - 
Su08-Mi 0.01644 0 - 
Su08-FP -0.00396 -0.00673 0 
    
 Fa08-SK Fa08-Mi Fa08-FP 
Fa08-SK 0 - - 
Fa08-Mi 0.00611 0 - 
Fa08-FP 0.00495 0.01867 0 

Temora turbinata 
 Wi07-SK Wi07-Mi Wi07-FP 
Wi07-SK 0 - - 
Wi07-Mi 0.02197 0 - 
Wi07-FP 0.02662 -0.00011 0 
    
 Sp07-SK Sp07-Mi Sp07-FP 
Sp07-SK 0 - - 
Sp07-Mi -0.00922 0 - 
Sp07-FP 0.00964 -0.01067 0 
    
 Su07-Mi Su07-FP  
Su07-Mi 0 -  
Su07-FP -0.04691 0  
    
 Fa07-SK Fa07-Mi Fa07-FP 
Fa07-SK 0 - - 
Fa07-Mi -0.01634 0 - 
Fa07-FP -0.00562 0.00839 0 
    
 Wi08-SK Wi08-Mi Wi08-FP 
Wi08-SK 0 - - 
Wi08-Mi 0.0218 0 - 
Wi08-FP 0.02813 -0.02076 0 
    
 Su08-Mi Su08-FP  
Su08-Mi 0 -  
Su08-FP 0.02888 0  
    
 Fa08-SK Fa08-Mi  
Fa08-SK 0 -  
Fa08-Mi 0.00264 0  
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Table 5: Pairwise Fst comparisons for Paracalanus quasimodo and Temora turbinata by 
sampling site. Fst values for ITS-1 are below the diagonal; probabilities are above the 
diagonal. Pairs with three probability values are for ITS-1, COI and concatenated 
sequences, respectively, otherwise, the probabilities share the same degree of 
significance. P-values that remained significant after Bonferroni corrections are in bold.   
- = ns; * = p < 0.05; ** = p < 0.01; *** = p < 0.001. 
 
Paracalanus quasimodo 
Summerand Key 
 Fa05 Fa07 Wi08 Sp08 Su08 Fa08 
Fa05  0  -  - -  - - 
Fa07 -0.015  0  - -  - - 
Wi08  0.003 -0.005  0 -  - - 
Sp08  0.021  0.021 -0.015 0  - - 
Su08 -0.002 -0.016 -0.010 0.016  0 - 
Fa08 -0.011 -0.023  0.001 0.031 -0.019 0 
 
Miami 
 Sp05 Sp07 Su07 Fa07 Wi08 Sp08 Su08 Fa08 
Sp05 0  *** *  ***  *** ***  *** *** 
Sp07 0.176  0 -  -  - **  - - 
Su07 0.135 -0.053 0  -  - *  - - 
Fa07 0.317  0.030 0.037  0  - -  - - 
Wi08 0.237  0.016 0.009 -0.008  0 -  - - 
Sp08 0.403  0.086 0.115 -0.007  0.025 0  - - 
Su08 0.270  0.020 0.019 -0.019 -0.018 0.014  0 - 
Fa08 0.321  0.017 0.017 -0.015  0.008 0.004 -0.002 0 
 
Fort Pierce 
 Sp07 Su07 Fa07 Wi08 Su08 Fa08 
Sp07 0  - *** * *** ** 
Su07 0.045  0 *** - * - 
Fa07 0.219  0.133 0 *** *** *** 
Wi08 0.060 -0.006 0.070 0 ** - 
Su08 0.252  0.073 0.150 0.076 0 - 
Fa08 0.132  0.010 0.109 0.014 0.018 0 
 
Temora turbinata 
Summerland Key 
 Wi07 Sp07 Fa07 Wi08 Fa08 
Wi07  0  -  - - - 
Sp07  0.008  0  -/*/- */**/* - 
Fa07 -0.008 -0.012  0 - - 
Wi08  0.000  0.067  0.041 0 - 
Fa08 -0.011 -0.010 -0.025 0.032 0 
 
Miami 
 Wi07 Sp07 Su07 Fa07 Wi08 Su08 Fa08 
Wi07  0  -  -  - - - - 
Sp07 -0.015  0  -  - - - - 
Su07 -0.046 -0.036  0  - - - - 
Fa07  0.005  0.004 -0.074  0 - - - 
Wi08  0.007  0.002 -0.060 -0.023 0 - - 
Su08 -0.001  0.008 -0.080 -0.008 0.000 0 - 
Fa08 -0.024 -0.009 -0.029  0.018 0.020 0.012 0 
 
Fort Pierce 
 Wi07 Sp07 Su07 Fa07 Wi08 Su08 
Wi07 0  -  -  - - - 
Sp07 0.000  0  -  - - - 
Su07 0.009  0.005  0  - - * 
Fa07 0.022 -0.005  0.009  0 - - 
Wi08 0.025  0.007 -0.019 -0.002 0 -/-/* 
Su08P 0.030  0.002  0.048 -0.010 0.036 0 
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shows multiple, significant changes over the course of this study. Fort Pierce shifted 

between variant 03 dominance to variant 01 dominance and an anomalous incursion of 

cluster two during Fall 2007. 

Structure 2.3.3 and Structure Harvester detected two P. quasimodo clusters (Table 

6; Figure 3). The first cluster dominated most of the samples and the second, centered in 

the Gulf of Mexico (data not shown), were found intermittently at low frequency. The 

exception was Fa07FP, where cluster two dominated. No members of cluster two were 

detected in the previous FP sample and the proportion of population two at FP decreased 

over time. However, variants from cluster two were detected in the last FP sample as 

well. AMOVA results were similar for both loci and the concatenated sequence. There is 

significant variation among and within populations, but no significant variation among 

groups (Table 7). Mantel tests on both loci and the concatenated sequence show a 

significant correlation between Fst and time (Table 8; Figure 4). Because the Mi sample 

from spring 2005 showed significant restriction from most other samples, the tests were 

ran again without the 2005 samples, which resulted in a weaker, but still significant, 

correlation. 

 

Temora turbinata 

Variant 01 was generally dominant in the populations, followed by 02 and 03 

(Table 6; Figure 5). Variant 03 proportions varied more than variant 02. Following 

Bonferroni corrections, there were no significant restrictions within quarters and sites 

(Tables 4 and 5). The only significant restriction was between Wi08SK and Su08FP for 
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Table 6: Genetic variant distribution between temporal samples.  
Paracalanus quasimodo 
   Cluster one    Cluster two 

1 2 3 6 O1 21 22 23 26 O2 
SK010Fa05 12 26 15 1 6 0  0  0  0  0 
Mi006Sp05  6  5 37 1 6 0  0  0  0  0 
Mi055Sp07 11 14 10 1 2 0  0  0  0  1 
FP057Sp07  1 12 26 0 1 0  0  0  0  0 
Mi070Su07  3  3  3 0 0 0  0  0  0  1 
FP072Su07  3 17 16 2 4 0  0  0  0  0 
SK085Fa07 11 17 10 1 1 0  0  0  0  1 
Mi089Fa07  8 24  7 0 1 0  0  0  0  0 
FP091Fa07  8  8  6 2 2 9 12 11 13 10 
SK108Wi08 11 21  5 1 3 0  0  0  0  0 
Mi113Wi08  5 21 10 0 1 2  1  0  0  0 
FP115Wi08  3 14 14 0 0 4  2  2  0  1 
SK118Sp08  9 24  4 0 1 0  0  0  0  2 
Mi123Sp08  7 27  3 0 2 0  0  0  0  1 
SK135Su08 13 17  7 0 0 0  0  0  0  3 
Mi139Su08  7 23 10 0 0 0  0  0  0  0 
FP143Su08 10 21  5 0 0 0  0  0  0  1 
SK147Fa08 12 16 10 0 0 0  0  0  0  2 
Mi152Fa08 11 22  5 0 0 0  1  0  0  1 
FP156Fa08  6 18 10 0 1 0  0  0  0  5 
 
Temora turbinata 

1 2 3 4 15 22 23 35 O 
SK037Wi07 28 5 1 0 1 0 1 0 4 
Mi043Wi07 18 6 5 0 0 0 1 0 5 
FP048Wi07 23 2 8 0 2 0 0 1 1 
SK051Sp07 20 5 0 1 5 0 0 0 3 
Mi055Sp07 21 8 3 0 2 1 0 0 5 
FP058Sp07 21 6 6 3 1 0 0 0 2 
Mi070Su07 4 0 1 0 1 0 0 0 0 
FP073Su07 26 6 3 0 0 0 0 1 2 
SK085Fa07 25 8 2 0 1 0 0 0 3 
Mi089Fa07 27 5 3 1 4 0 0 0 0 
FP091Fa07 20 8 3 0 2 1 2 0 5 
SK110Wi08 33 4 1 0 0 0 0 1 0 
Mi113Wi08 27 6 2 0 0 0 0 2 3 
FP114Wi08 25 7 1 0 0 0 0 1 4 
Mi141Su08 24 2 5 1 1 2 0 0 4 
FP146Su08 15 7 5 0 4 1 0 0 5 
SK147Fa08 25 7 3 0 1 0 0 0 2 
Mi152Fa08 19 8 7 0 0 0 0 0 2 
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Figure 3: Structure bar plots of inferred ancestry. (a) Paracalanus quasimodo from ITS-1 
sequences; COI and concatenated sequences have similar distributions. T. turbinata from 
ITS-1 (b), COI (c) and concatenated (d) sequences. 
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Table 7: AMOVA results for temporal variation. Four group structures were analyzed. 
The first was grouped as a single population, the second group by sampling site, the third 
by the quarter the samples were taken, and the third by season. For Paracalanus 
quasimodo, as ITS-1, COI and concatenated analyses result in the same significance 
pattern, only the ITS-1 results are shown. ns = p > 0.05; * = p < 0.05; ** = p < 0.01; *** = p < 
0.001 
 
Source of  Sum of Variance % of 
variation df squares components variation F index p 
Paracalanus quasimodo ITS-1 
 One population 
  Among populations  19  28.782  0.02892  8.06 Fst= 0.08060 *** 
  Within populations 802 264.583  0.3290 91.94 
 By Site 
  Among groups   2   4.001  0.00168  0.47 Fct= 0.00468 ns 
  Within groups  17  24.782  0.02774  7.72 Fsc= 0.07756 *** 
  Within populations 802 264.583  0.32990 91.81 Fst= 0.08188 *** 
 By quarter 
  Among groups   8  17.763  0.01251  3.48 Fct= 0.03478 ns 
  Within groups  11  11.019  0.01735  4.82 Fsc= 0.04998 *** 
  Within populations 802 264.583  0.32990 91.70 Fst= 0.08302 *** 
 By season 
  Among groups   3   3.538 -0.00218 -0.61 Fct=-0.00608 ns 
  Within groups  16  25.244  0.03057  8.53 Fsc= 0.08480 *** 
  Within populations 802 264.583  0.32990 92.08 Fst= 0.07924 *** 
Temora turbinata ITS-1 
 One population 
  Among populations  17   6.372  0.00233  0.79 Fst= 0.00794 0.0834 
  Within populations 634 184.332  0.29074 99.21 
 By Site 
  Among groups   2   1.310  0.00146  0.50 Fct= 0.00496 ns 
  Within groups  15   5.062  0.00130  0.44 Fsc= 0.00446 ns 
  Within populations 634 184.332  0.29074 99.06 Fst= 0.00940 0.0853 
 By quarter 
  Among groups   6   2.617  0.00100  0.34 Fct= 0.00489 ns 
  Within groups  11   3.756  0.00143  0.49 Fsc= 0.00489 ns 
  Within populations 634 184.332  0.29074 99.17 Fst= 0.00829 0.0833 
 By season 
  Among groups   3   1.371  0.00061  0.21 Fct= 0.00208 ns 
  Within groups  14   5.001  0.00186  0.63 Fsc= 0.00634 ns 
  Within populations 634 184.332  0.29074 99.16 Fst= 0.00841 0.0838 
Temora turbinata COI 
 One population 
  Among populations  17   3.143  0.00160  1.24 Fst= 0.01239 * 
  Within populations 633  80.572  0.12729 98.76 
 By Site 
  Among groups   2   0.224 -0.00040 -0.31 Fct=-0.00310 ns 
  Within groups  15   2.919  0.00188  1.46 Fsc= 0.01454 * 
  Within populations 633  80.572  0.12729 98.85 Fst= 0.01149 * 
 By quarter 
  Among groups   6   1.653  0.00152  1.18 Fct= 0.01180 0.0559 
  Within groups  11   1.490  0.00023  0.18 Fsc= 0.00181 ns 
  Within populations 633  80.572  0.12729 98.64 Fst= 0.01359 * 
 By season 
  Among groups   3   0.934  0.00096  0.74 Fct= 0.00744 0.0803 
  Within groups  14   2.210  0.00085  0.66 Fsc= 0.00667 ns 
  Within populations 633  80.572  0.12729 98.59 Fst= 0.01406 * 
Temora turbinata concatenated 
 One population 
  Among populations  17   6.675  0.00281  0.96 Fst= 0.00958 0.0516 
  Within populations 633 184.270  0.29111 99.04 
 By Site 
  Among groups   2   1.316  0.00137  0.47 Fct= 0.00467 ns 
  Within groups  15   5.359  0.00185  0.63 Fsc= 0.00630 ns 
  Within populations 633 184.270  0.29111 98.91 Fst= 0.01094 0.0509 
 By quarter 
  Among groups   6   2.840  0.00133  0.45 Fct= 0.00451 ns 
  Within groups  11   3.835  0.00162  0.55 Fsc= 0.00554 ns 
  Within populations 633 184.270  0.29111 99.00 Fst= 0.01003 0.049* 
 By season 
  Among groups   3   1.534  0.00089  0.30 Fct= 0.00301 ns 
  Within groups  14   5.141  0.00213  0.72 Fsc= 0.00726 ns 
  Within populations 633 184.270  0.29111 98.97 Fst= 0.01025 0.0505 



 69

Table 8: Mantel test results as p-values. 
 ITS-1 COI concatenated 
Paracalanus quasimodo 0.017915* 0.019099* 0.017874* 
Temora turbinata 0.315851 0.468501 0.342074 

 

 
Figure 4: Scatter plot of Fst versus time with a least squares regression line. As ITS-1, 
COI and concatenated plots for Paracalanus quasimodo and ITS- 1 and concatenated for 
Temora turbinata are nearly identical, only the ITS-1 plots for P. quasimodo and the ITS-
1 and COI plots for T. turbinata are shown. a) P. quasimodo ITS-1; b) P. quasimodo ITS-
1 without 2005 samples; c) T. turbinata ITS-1; d) T. turbinata COI. Significant 
correlations at  = 0.5 are denoted by an asterisk (a and b). 
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Figure 5: Proportions of Temora turbinata variants. Dominant variants are shown individually, while rare variants are grouped into 
‘O.’ Samples with patterns of pairwise significant restrictions after Bonferroni corrections are marked with an *. Samples with 
patterns of pairwise significant restrictions only before Bonferroni corrections are marked with a ~. Sample sizes are noted to the top 
right of their respective pie chart. 
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the ITS-1 and concatenated sequences. There were no significant changes at Mi over the 

course of this study.  

There were no significant correlations between Fst values and time (Table 8; 

Figure 4). Structure 2.3.3 and Structure Harvester detected three clusters with ITS-1, but 

only two with COI and concatenated sequences. All genetic clusters were present in all 

samples (Table 6; Figure 3). AMOVAs found no significant variation in ITS-1 sequences 

among groups, among populations within the groups and within populations (Table 7). 

AMOVAs of COI sequences grouped by sampling site found no significant variation 

among the sites, but populations within groups and individuals within populations varied 

significantly. AMOVAs of COI sequences grouped by quarter and season found low, but 

non-significant p-values among the groups, no significant variation among populations 

within the groups and significant variation within the populations. 
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DISCUSSION 

 

Both Paracalanus quasimodo and Temora turbinata populations show temporal 

fluctuations. The changes in the genetic signature of P. quasimodo populations occurs 

over both the long term of multiple generations over the course of this study and, in the 

case of FP, between sampling quarters. In general, T. turbinata populations were stable 

over the course of this study, but showed a seasonal component. 

Summerland Key and Mi appear to have stable, resident populations of P. 

quasimodo. Although upstream populations influence both sites, the populations do not 

undergo rapid changes over a quarterly timescale. The pairwise Fst values between the 

first sample, Sp05Mi, and most later samples, coupled with a correlation between Fst 

values and time, suggest a slow shift in composition. Assuming two generations per 

month (Paffenhofer and Gibson 1999) and a small effective population size, a significant 

shift in the genetic signature could occur within 48 generations (Larsson et al 2010). No 

significant variations in SK and Mi populations were detected when sampled two years 

apart, which supports the typical assumption in single site sample phylogeographic 

studies that the sites are stable and the relationships between sites are stable. 

However, the population at FP experienced large shifts in population composition 

over the period of this study. FP lies in the region identified as a mixing zone between 

Gulf and Atlantic marine populations (Hare and Avise 1996). The temporal instability 

may be a cycle of colonization from the Gulf and Atlantic populations or a continuous 

shift in population boundaries. However, this is only supposition as no known Atlantic 

populations were sampled to define the population composition. 
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The proportionate decline of cluster two at FP since the Fall 2007 sample suggests 

that this was a single, mass introduction of a foreign population. Although individuals 

from cluster two are occasionally found at SK and Mi, cluster two variants are more 

common in the Gulf of Mexico, and there was no significant difference between Fa07FP 

and a sample taken from Port Aransas (data not shown). The lower, but still relatively 

high, proportion of population two found at FP during the next quarter suggests that these 

variants were either unable to compete against population one variants or diluted by 

population one variants from the normal FP upstream sources. As the population shifts 

rapidly at FP, the latter is the more likely scenario. 

As cluster two variants do not persist at FP, they were likely introduced. Two 

possible sources are as ballast and as hurricane castaways. Cyclones in the northern 

hemisphere create net, eastward flow (Price et al. 1994). Hurricanes Erin and Humberto 

moved through the northwestern Gulf of Mexico in 2007 during the interim between 

sampling quarters, thus would disturb local current patterns and send particles into the 

eastern Gulf of Mexico, where they can then be transported to the Atlantic coast. 

However, entrainment of western Gulf populations into the Loop Current is tenuous as no 

other sites had signs of western Gulf influence. An alternative is transfer from PA to FP 

through ballast water. Many plankton can survive for short trips (Lavoie et al. 1999) and, 

even should a ship following ballast clearing protocol at sea to prevent invasion of alien 

species, the effectiveness of removing plankton from ballast tanks are dependent on the 

method used (Simard et al. 2010). However, sampling a community from a ballast 

transfer event so close to shore and by accident is unlikely. With the limited data 

available, explanations for the influx of cluster two variants are speculative. 
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Temora turbinata populations fluctuate less than those of P. quasimodo. Only two 

samples show significant restrictions in gene flow to other sites and sampling periods 

over the course of this study. However, as gene flow does occur to all other sampling 

sites and times, this significant pairwise comparison may be a result of sampling 

extremes within the natural population variation. Fort Pierce is in a mixing zone (Hare 

and Avise 1996), which may facilitate production of outlier populations. Summerland 

Key is along the path of anticyclonic gyres formed along the loop current (Lee et al. 

1994; Willemsen 2005), which can alter population composition by introducing novel 

variants or altering the proportion of variants. 

The lack of restrictions between most sites and sampling periods indicates either 

recently segregated populations or one with a large range. The data support panmixia 

over recent separation. There is low genetic variation across the southeastern United 

States (data not shown). Larger populations where individuals are well mixed take longer 

to change through genetic drift, and the lack of significant correlation between Fst shows 

that there is no concerted change over the course of this study. There is no significant 

variation of ITS-1 within samples. Contrary to expectations, COI showed greater 

variation. However, the three sites did not vary significantly from each other, further 

supporting panmixia. 

Temora turbinata does not show a temporal correlation, but the COI sequences 

suggest seasonal variation. Although the p-values when grouped by quarter and by season 

are not significant, they are low (0.0559 and 0.0803, respectively). Further, contrary to 

grouping by site, there was no significant variation between the samples within the 

quarters and seasons. The lower p-value for grouping by quarter suggests that there is 
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also some annual fluctuation. There is too much variation in the P. quasimodo data to 

determine whether this species also has a seasonal component. 

 

 

CONCLUSION 

Despite the temporal correlation in P. quasimodo and the seasonal variation in T. 

turbinata, these copepods are more likely to have resident rather than nomadic 

populations. As such, snapshot phylogeographic studies are unlikely to be affected by 

temporal variation. Even with the short generation times of P. quasimodo and T. 

turbinata (Paffenhofer and Gibson 1999; Chisholm and Roff 1990), and the assumed 

lower effective population size of P. quasimodo because of distinct population signatures 

in the southeast US (data not shown), no significant restrictions were detected between 

the majority of the temporal samples. As most samples for phylogeographic studies are 

taken within the span of a few years and a majority of that research in the southeast 

United States is on commercial species that have generation times of at least one year, 

significant genetic shifts are unlikely to occur during the short span of a phylogeographic 

study. However, caution should be taken in known or suspected mixing zones as 

evidenced by the multiple changes in the FP population over two years. Seasonal 

variation may also occur at a sampling site in migratory species. Low quality habitats 

may also experience cycles of local extinction and re-colonization, resulting in large 

shifts in genetic composition between colonies. These factors must be taken in 

consideration before applying the assumption of temporal stability. 
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CHAPTER IV 

INTRASPECIFIC RELATIONSHIPS IN TWO CALANOID COPEPODS 

 

Introduction 

 

Paracalanus and Temora are prominent copepod genera in the coasts of the 

western Atlantic. Species from these genera dominate many planktonic communities 

(Bradford 1977; Lopes et al. 1999; Suarez-Morales and Gasca 2000a; Suarez-Morales 

and Gasca 2000b; Ara 2002; Dunbar and Webber 2003; Lester et al. 2008; Miyashita et 

al. 2009; Zhang et al. 2010; Hsiao et al. 2011; Lin et al. 2011). Despite their abundance, 

little is known regarding the evolutionary relationships within and between species. At 

the level of genera, only six of 18 Paracalanus species and three of  four Temora species 

have been reported in the western Atlantic. The present study examines the intraspecific 

relationships in one Paracalanus and one Temora species through the nuclear internal 

transcribed spacer one (ITS-1) and mitochondrial cytochrome oxidase one (COI) loci. 

The six Paracalanus species detected in the western Atlantic are P. aculeatus, P. 

denudatus, P. indicus, P. nanus, P. parvus, and P. quasimodo. P. aculeatus was reported 

in the Gulf of Mexico (Owre and Foyo 1967; Lopez-Salgado and Suarez-Morales 1998), 

Caribbean (Owre and Foyo 1967; Webber and Roff 1995; Suarez-Morales and Gasca 

1997), Jamaica (Dunbar and Webber 2003; Webber et al. 2005), western Atlantic (Owre 

and Foyo 1967) and along the coast of Brazil (Eskinazi-Sant’Anna and Bjornberg 2006; 

Neumann-Leitao et al. 2008).  P. denudatus was reported from the Bermudas 

(Paffenhofer and Mazzocchi 2003), P. indicus from southeast Brazil (Neumann-Leitao et 
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al. 2008) and P. nanus from the Bermudas (Paffenhofer and Mazzocchi 2003) and the 

Sargasso Sea (Andersen et al. 2011). P. parvus has been reported in Massachusetts Bay 

(Turner et al. 2000), Georges Bank (Cohen and Lough 1981) Brazil (Guenther et al. 

2008) and on the coasts between the Argentina and Uruguay border (Berasategui et al 

2006; Di Mauro et al 2009; Cepeda et al 2012). P. quasimodo has been reported in the 

Gulf of Mexico (Turner 1984a; Lester et al. 2008), in the Caribbean (Suarez-Morales and 

Gasca 1997) and on the coasts of Brazil (Lopes et al. 1999; Eskinazi-Sant’Anna and 

Bjornberg 2006; Neumann-Leitao et al. 2008; Dias and Bonecker 2009). 

Of the four Temora species, only T. stylifera and T. turbinata have been reported 

in the tropical and subtropical western Atlantic. T. stylifera has been reported in the Gulf 

of Mexico (Owre and Foyo 1967; Turner 1984b; Lopez-Salgado and Suarez-Morales 

1998; Lopez-Salgado et al. 2000), along the coast from the Gulf of St. Lawrence to the 

north shore of Venezuela (Owre and Foyo 1967), in the Sargasso Sea (Anderson et al. 

2011), in the Caribbean (Suarez-Morales and Gasca 1997), along the Brazilian coast 

(Lopes et al. 1999; Eskinazi-Sant’Anna and Bjornberg 2006; Neumann-Leitao et al. 

2008; Miyashita et al. 2009; Dias et al 2010) and in Jamaica (Webber and Roff 1995; 

Webber et al 2005). T. turbinata has been reported in the Gulf of Mexico (Owre and 

Foyo 1967; Thayer et al. 1983; Turner 1984b; Lopez-Salgado and Suarez-Morales 1998; 

Green and Dagg 1997; Lopez-Salgado et al. 2000; Lester et al. 2008), along the Atlantic 

coast from south of the Gulf of Maine to the north shore of Venezuela (Owre and Foyo 

1967), in the Sargasso Sea (Anderson et al. 2011), in the Caribbean (Suarez-Morales and 

Gasca 1997, 2000a, 2000b), Jamaica (Webber and Roff 1995; Dunbar and Webber 2003; 
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Webber et al. 2005) and along the coasts of Brazil (Lopes et al 1999; Eskinazi-Sant’Anna 

and Bjornberg 2006;  Dias and Bonecker 2009; Miyashita et al. 2009). 

The remaining species within Temora are T. longicornis and T. discaudata. 

Contrary to the tropical and subtropical range indicated by Boltovskoy (1999), T. 

longicornis has only been reported in temperate north Atlantic (Licandro et al. 2001; 

Manning and Bucklin 2005; Durbin and Casas 2006; Wishner et al. 2006; Kane 2007; 

Kane and Prezioso 2008; Turner et al. 2011). The T. longicornis range appears to begin 

where the T. turbinata range ends. Along the coasts of the American continent, T. 

discaudata inhabits the eastern Pacific (Palomares-Garcia and Gomez-Gutierrez 1996; 

Fernandez-Alamo et al. 2000; Lavaniegos et al. 2012), a region where T. turbinata is 

reported as absent (Boltovskoy 1999). 

Little is known of the molecular phylogeny of the Paracalanus and Temora 

genera. The position of Paracalanus and Temora within the calanoid copepod phylogeny 

is known only through Paracalanus parvus and Temora discaudata (Blanco-Bercial et al. 

2011b). Though marine copepod species have been analyzed for intraspecific 

relationships, none were either Paracalanus or Temora . Intraspecific divergences can 

reveal biogeographic barriers (Burton and Lee 1993; Hare and Avise 1996), genetic 

bottlenecks (Edmands 2011) and cryptic speciation (Knowlton 1993; da Costa 2011). We 

propose to examine the intra and interspecific phylogenetic relationships within P. 

quasimodo and T. turbinata by Bayesian and coalescent analyses. Intraspecific 

relationships will further be explored with minimum spanning networks (MSN). 
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MATERIALS AND METHODS 

 

Collection 

Samples were collected from ten sites around the Gulf of Mexico and the Florida 

peninsula between March 2005 and January 2009 (Table 1, Figure 1). Except for Lu and 

LW, samples were collected by ten-minute surface tows with both 150μm and 366μm 

mesh nets; Lu and LW samples were collected with five vertical hauls with a 150μm 

mesh net beginning 5m below the surface. Surface tows were conducted along transects 

beginning ten miles offshore to inshore with one tow at the beginning, middle and end. 

Samples were named by site followed by the three-digit number of the storage bottle. 

Excepting PA and IM, samples were immediately preserved in 95% ethanol. The PA 

samples were preserved in 60% isopropanol, chilled, transported in a cooler and 

transferred to 95% ethanol upon return to the laboratory. The IM samples were preserved 

in 60% ethanol for transport and transferred to 95% ethanol upon return.  

Selected individuals were first identified to species by dichotomous keys (Owre 

and Foyo 1967; Boltovskoy 1999). Once key features were identified, individuals were 

selected by morphological characteristics. For Paracalanus quasimodo, the 

characteristics were the lateral profile, pleiopod four morphology, particularly the 

serration along the distal edge, and pleiopod five morphology. For Temora turbinata, the 

characteristics were the dorsal and lateral profile, the caudal rami and pleiopods four and 

five. Samples were screened with DGGE and unique variants were chosen for 

sequencing. The term ‘variant’ will be used as per LaJeunesse and Pinzon (2007) 

expanded to unique concatenated sequences. Should two sequences have identical ITS-1 
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Table 1: Sampling sites and coordinates for Paracalanus quasimodo and Temora 
turbinata. Coordinates for FP, Mi and SK are approximate as multiple samples were 
taken from these sites. 

 P. quasimodo T. turbinata 
Site Latitude/Longitude Latitude/Longitude 
Fort Pierce N27º27  W80º05 N27º27  W80º05 
Isla Mujeres N21º17 W86º46 N21º19 W86º47 
Jacksonville N30º23.477 W81º12.867 N30º23.477 W81º12.867 
Louisiana West N29º19.524 W93º25.044 N29º19.524 W93º25.044 
Louisiana N29º02.508 W90º31.314 N28º51.444 W90º27.816 
Miami N25º54  W80º07.5 N25º54  W80º07.5 
Panama City N29º59.172 W85º47.214 N30º07.305 W85º44.734 
Port Aransas N27º49.396 W97º02.602 N27º41.555 W96º57.026 
Summerland Key N24º34  W81º27.5 N24º34  W81º27.5 
Tampa N27º44.087 W82º51.913 N27º44.087 W82º51.913 

 
 

 
Figure 1: Sampling sites and major currents in the southeast United States. The dotted 
line represents a coastal countercurrent. FP=Fort Pierce, IM=Isla Mujeres, 
Ja=Jacksonville, Lu=Louisiana, LW=Louisiana West, Mi=Miami, PC=Panama City, 
PA=Port Aransas, SK=Summerland Key, Ta=Tampa. Map base modified from Google 
Earth. 



 85

sequences, yet have different COI sequences, or vice versa, they would be considered 

different variants. A consensus sequence was constructed in BioEdit (Hall, 1999) for each 

variant with multiple sequences. All polymorphic sites were marked as such, even if the 

alternate nucleotide was represented in only one sequence. DGGE variants that were 

identical in both ITS-1 and COI sequences were grouped under the numerically lowest 

variant number. 

 

DNA Extraction 

Individual copepods were transferred directly from ethanol to a 1.5l 

microcentrifuge tube. Extractions were conducted with the MasterPure DNA extraction 

kit (Epicentre, Madison, WI) following manufacturer protocols and stored in 50l of 

deionized water at –80C. DNA concentration was quantified on a DyNA Quant 200 

spectrophotometer (Hoefer) and varied between 3nM and 30nM. 

 

PCR-Denaturing Gradient Gel Electrophoresis (PCR-DGGE) 

The ITS-1 region was amplified with the primers ITS-1f (Coleman et al. 1994, 

Table 2) with the GC clamp added to the 5’ end of the sequence and ITS-1r (Schizas et 

al. 1999). PCR reactions were run as quantitative reactions in lieu of sacrificing PCR 

product to check for successful amplification through electrophoresis. Amplifications 

were run in 10l PCR reactions composed of 5l iQ SybrGreen 2x (BioRad, Hercules, 

CA), 0.5l ITS-1r (0.5 M final concentration), 0.5l ITS-1fCol with GC clamp (1 M 

final concentration), 1l DNA extract (0.3 nM to 3 nM final concentration), and 3l 

nuclease free water. 
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Table 2: Primer sequences. 
Primer Name Sequence 
GC Clamp CGC CCG CCG CGC CCC GCG CCC GTC CCG CCG CCC CCG CCC 
ITS-1f GGG ATC CGT TTC CGT AGG TGA ACC TGC 
ITS-1r ATC GAC CCA TGA GCC GAG TGA TC 
LCOI-1490 GGT CAA CAA ATC ATA AAG ATA TTG G 
LCOI-1490c GGT CAT GTA ATC ATA AAG ATA TTG G 
LCOI-1528P GTT AGC AGG AGC TTG ATC AG 
HCOI-2198 TAA ACT TCA GGG TGA CCA AAA AAT CA 
HCOI-2198Par TAG ACT TCA GGA TGT CCA AAG AAT CA 
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The ITS-1 primer pair produced amplicons of approximately 320bp in length. The 

thermal profile for the reactions was: 95°C (5 min), 10 touchdown cycles beginning with 

95-60-72°C for 20-20-60s with a 0.5°C drop in the annealing temperature per cycle, 25 

cycles of 95-55-72°C for 20-20-60s and a final extension at 72°C for 10 minutes in a 

DNA Engine Opticon 2 (MJ Research). 

The optimal urea gradient for parallel DGGE was determined to be 30-50%. The 

gels were run in aquaria (C.B.S. Scientific, Del Mar, CA) of TAE buffer at 65°C for 18 

hours at 90 volts. To confirm that these were ITS-1 sequences, the brightest lower bands 

from the three dominant variants were cut from the DGGE gel, eluted in 500 l of water 

for 24 hours, cleaned with the Wizard® SV Gel and PCR Clean-up System (Promega, 

Madison, WI), re-amplified and prepared for sequencing with BigDye terminator, ver 3.1 

(Applied Biosystems, Grand Island, NY). 

 

Sequencing 

Polymorphic sequences can change the DGGE banding pattern between 

individuals with the same dominant genetic variant. However, the dominant variant 

provides strong evidence of the evolutionary history in an organism (LaJeunesse and 

Pinzon, 2007). Thus, ten individuals from each sample site were selected for DNA 

sequencing based on DGGE variants. Where possible, at least one of each variant present 

at a sample site was selected. The nuclear ITS-1 and mitochondrial cytochrome oxidase I 

(COI) regions were amplified. ITS-1 primers were the same as that for DGGE analysis, 

minus the GC clamp. Standard Folmer COI primers (LCOI-1490 and HCOI-2198) were 

unable to amplify a majority of the Paracalnus quasimodo samples and a large number of 
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the Temora turbinata. Modified Folmer primers (LCOI-1490c and HCOI-2198Par) were 

designed based on whole copepod mitochondrial sequences found in GenBank worked 

well with T. turbinata, but were only moderately successful with P. quasimodo. A COI 

primer was designed specifically for P. quasimodo (LCOI-1528p), which began 38bp 

downstream of LCOI-1490, and was paired with HCOI-2198Par to sequence the 

remaining P. quasimodo. 

The PCR amplifications were conducted in a PTC-200 DNA Engine (MJ 

Research) with Promega GoTaq® Flexi reagents. Reactions were composed of 2l of 5x 

Buffer, 0.6l of 25mM MgCl2 (1.5mM final concentration), 0.5l each of forward and 

reverse primers (0.5M, ITS-1 primers, and 1.0M, COI primers, final concentration), 

0.2l of 10 M dNTPs (0.2M final concentration), 0.2l of 2.5U/l DNA Polymerase 

(0.05U/l final concentration) and 2 to 5l of DNA (0.6-6nM to 1-10nM final 

concentration) with nuclease free water added to make a final volume of 10l. The higher 

concentration of DNA was used when the lower concentration resulted in low 

amplification. 

Three l of PCR product were ran on an 0.8% agarose gel to determine whether 

the amplification was successful. PCR products were then cleaned with ExoSap 

(Affymetrix, Santa Clara, CA) following manufacturer’s protocols. Cleaned products 

were prepared for sequencing with BigDye terminator, ver 3.1 (Applied Biosystems, 

Grand Island, NY) for both forward and reverse strands in a PTC-200 DNA Engine (MJ 

Research). The 10l cycle sequencing reaction mix was composed of 0.5l of 1.87M 

primer (0.935 M final concentration), 2-4l of amplified product, depending on gel 
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band intensity (2l if the band was bright, otherwise 4l), 2l of 5x sequencing buffer, 

1l of BigDye v3.1 and the rest with double distilled deionized water. The reaction cycle 

was 15 seconds at 95ºC, 10 seconds at 50ºC and 4 minutes at 60ºC, repeated 35 times. 

The products were sequenced in an AB 3100 Genetic Analyzer (Applied Biosystems, 

Grand Island, NY) at the Florida International University DNA Core. Several sequences 

were unreadable due to contamination or, in the case of ITS-1, the presence of multiple 

sequence varieties. Samples where standard sequencing failed were cloned with a TOPO 

TA cloning kit for sequencing (Invitrogen, Grand Island, NY) following the 

manufacturer’s protocols. Sequences were proofread in FinchTV (Geospiza, Seattle, 

WA), trimmed in BioEdit (Hall, 1999) and aligned with ClustalX 2.1 (Larkin et al., 

2007).  

 

Analysis 

Separate analyses were conducted for ITS-1, COI and concatenated sequences. 

An additional analysis was conducted with the COI sequences combined with copepod 

COI sequences from published studies and found in GenBank (Table 3). Caligus 

elongatus and Rhincalanus cornutus were excluded from this analysis as the first had 

high divergence due to its parasitic lifestyle and the identity of the latter was in question 

as the two sequences were widely separated in a preliminary examination. Sequences 

were analyzed for the best model in jModelTest 2.13 (Darriba et al. 2012) with default 

settings, testing 88 models. Phylogenetic analysis was conducted with MrBayes 3.2 

(Ronquist and Huelsenbeck 2003) with the model suggested by jModelTest 2.13. Models 

were run until the split frequencies fell below 0.01. Burnin was left at 25%. No ITS-1  
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Table 3: GenBank copepod COI sequences used for general copepod phylogeny analysis. 
Names have been modified to differentiate between multiple sequences for the same 
species. 
Name Accession # Publication 
Artemia franciscana DQ119645 Hou et al. 2006 
Acartia hudsonica EU016218 Durbin et al. 2008 
Acartia pacifica DQ071177 Ueda and Bucklin 2006 
Acartia tonsa EU016219 Durbin et al. 2008 
Calanus euxinus AY604518 Unal et al. 2006 
Calanus helgolandicus AY604520 Unal et al. 2006 
Calanus pacificus AF315013 Rocha-Olivares et al. 2001 
Calanus sinicus JF430043 Kozol et al. 2012 
Centropages abdominalis FJ602518 Bucklin et al. 2010a 
Centropages typicus EU016221 Durbin et al. 2008 
Chiridius armatus AY660604 Vestheim et al. 2005 
Clausocalanus arcuicornis B1 GU171291 Bucklin et al. 2010b 
Clausocalanus arcuicornis B2 GU171292 Bucklin et al. 2010b 
Clausocalanus arcuicornis B3 HQ150077 Blanco-Bercial et al. 2011b 
Clausocalanus arcuicornis h1to h43 JF279610 to JF279652 Blanco-Bercial et al. 2011a 
Clausocalanus furcatis EF554837 Bucklin and Frost 2009 
Clausocalanus jobei EF554836 Bucklin and Frost 2009 
Clausocalanus lividus B GU171293 Bucklin et al. 2010b 
Clausocalanus lividus h1 to h33 JF279653 to JF279685 Blanco-Bercial et al. 2011a 
Clausocalanus mastigophorus GU171296 Bucklin et al. 2010b 
Clausocalanus parapergens EF554835 Bucklin and Frost 2009 
Cletocamptus deitersi AF315009 Rocha-Olivares et al. 2001 
Cletocamptus helobius AF315014 Rocha-Olivares et al. 2001 
Centropages hamatus EU016220 Durbin et al. 2008 
Ctenocalanus citer FJ960446 Tobe et al. 2010 
Lucicutia flavicornis HQ150055 Blanco-Bercial et al. 2011a 
Nannocalanus minor B1 GU171285 Bucklin et al. 2010b 
Nannocalanus minor B2 GU171286 Bucklin et al. 2010b 
Nannocalanus minor B3 GU171287 Bucklin et al. 2010b 
Neocalanus cristatus B1 FJ602506 Bucklin et al. 2010a 
Neocalanus cristatus B2 FJ602507 Bucklin et al. 2010a 
Paracalanus parvus a HQ150069 Blanco-Bercial et al. 2011b 
Paracalanus parvus b KC594152 Jungbluth et al. (In Press) 
Paracalanus parvus c JF905687 unpublished 
Pareuchaeta norvegica AY660600 Vestheim et al. 2005 
Pontellina plumata B1 GU171322 Bucklin et al. 2010b 
Pontellina plumata B2 GU171323 Bucklin et al. 2010b 
Pontellina plumata B3 GU171324 Bucklin et al. 2010b 
Pontellina plumata B4 HQ150060 Blanco-Bercial et al. 2011b 
Pseudocalanus elongatus a AY604522 Unal et al. 2006 
Pseudocalanus elongatus b AY604523 Unal et al. 2006 
Pseudocalanus elongatus c HM770077 Holmborn et al. 2010 
Pseudocalanus elongatus d HM770078 Holmborn et al. 2010 
Pseudocalanus minutus a HM770075 Holmborn et al. 2010 
Pseudocalanus minutus b HM770076 Holmborn et al. 2010 
Pseudocalanus moultoni AF242842 Bucklin et al. 1999 
Pseudocalanus newmani AF242841 Bucklin et al. 1999 
Temora discaudata HQ150061 Blanco-Bercial et al. 2011b 
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Table 3 (continued): GenBank copepod COI sequences used for general copepod 
phylogeny analysis. 
Name Accession # Publication 
Undinula vulgaris B1 GU171332 Bucklin et al. 2010b 
Undinula vulgaris B2 GU171333 Bucklin et al. 2010b 
Undinula vulgaris B3 GU171334 Bucklin et al. 2010b 
Undinula vulgaris B4 GU171335 Bucklin et al. 2010b 
Undinula vulgaris J1 KC594158 Jungbluth et al. (In Press) 
Undinula vulgaris J2 KC594159 Jungbluth et al. (In Press) 
Undinula vulgaris J3 KC594160  Jungbluth et al. (In Press) 
Undinula vulgaris J4 KC594161  Jungbluth et al. (In Press) 
Undinula vulgaris J5 KC594162  Jungbluth et al. (In Press) 
Undinula vulgaris J6 KC594163  Jungbluth et al. (In Press) 
Undinula vulgaris J7 KC594164  Jungbluth et al. (In Press) 
Undinula vulgaris J8 KC594165  Jungbluth et al. (In Press) 
Undinula vulgaris J9 KC594166  Jungbluth et al. (In Press) 
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sequences within Paracalanus or Temora were available in GenBank, so the P. 

quasimodo ITS-1 phylogeny was left unrooted and  the Paracalanus variant 20 ITS-1 

sequence was used as the outgroup for T. turbinata. As the T. turbinata variants were all 

closely related, there is minimal risk of long branch attraction confounding the results. 

Paracalanus parvus (Accession HQ150069) was the outgroup for the P. quasimodo COI 

analysis. For the T. turbinata COI analysis, the outgroup was T. discaudata (Accession 

HQ150061). The concatenated outgroups were the COI sequence with missing data for 

the ITS-1 segment. 

Coalescent analyses were run in BEAST 1.7.5 (Drummond et al. In Press) 

following the same model as for the MrBayes analyses where possible. Other settings 

were left at default. All analyses were run for ten million generations, with the exception 

of the T. turbinata ITS-1 and concatenated sequences, which ran for 100 million and 20 

million generations. Runs were examined for a sufficiently large effective sample size 

with Tracer 1.5 (Rambaut and Drummond 2007). Bayesian and coalescent trees were 

edited in Mesquite 2.75 (Maddison and Maddison 2011). MSNs were calculated in 

Arlequin 3.5.1.2 (Excoffier and Lischer 2010). The resultant network was visualized and 

edited with HapStar 0.7 (Teacher and Griffiths 2011). 
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RESULTS 

 

Of 1,293 Paracalanus quasimodo and 902 Temora turbinata successfully 

screened by DGGE, 42 and 29 variants were detected, respectively. Variant 20 was not 

included in the previous total as the COI sequence had 99% similarity to a P. parvus 

sequence on GenBank (Accession AF474111, HQ150069 and KC594152). Average 

standard deviation of the split frequencies fell below 0.01 within one million generations 

for all P. quasimodo analyses. T. turbinata analyses ran for one, two and one million 

generations for ITS-1, COI and concatenated sequences, respectively. Analysis of the 

GenBank copepod COI sequences ran for 19 million generations with a  final split 

frequency of 0.009558. 

Paracalanus quasimodo variants were divided between two distinct clades 

(Figure 2) with little significant support for topology within the clades (Figures 3-5). 

With the exception of ITS-1 the Bayesian and coalescent analyses concluded with the 

same tree shape. The coalescent ITS-1 analysis places clade one, named such as it 

contains the most abundant variants, as a subset of clade two, whereas all other analyses 

of P. quasimodo support a distinct separation of the two clades. The divergence between 

clades one and two ranged from 17 to 21% in the concatenated sequences. All variants 

except for variant 52 fell in the same clades for the ITS-1, COI and concatenated 

analyses. Variant 52 was found in clade one with ITS-1 and in clade two with the COI 

and concatenated sequences. 

The MSNs reflect the phylogenetic trees, with two distinct clusters (Figures 6-8). 

The variants in the MSN clusters correspond with the clades. As with the phylograms,  
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Figure 2: Copepod phylogeny based on COI sequences. Excepting Paracalanus parvus, 
single species clades have been collapsed for brevity. Nodes with probabilities lower than 
0.9 have been collapsed. 
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Figure 3: Paracalanus quasimodo variant phylogeny based on ITS-1 sequences. The 
Bayesian phylogram is on the left and the coalescent phylogram is on the right. These 
trees are unrooted. Nodes with probabilities below 0.9 have been collapsed. 
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Figure 4: Paracalanus quasimodo variant phylogeny based on COI sequences. The 
Bayesian phylogram is on the left and the coalescent phylogram is on the right. Nodes 
with probabilities below 0.9 have been collapsed. 
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Figure 5: Paracalanus quasimodo variant phylogeny based on COI sequences. The 
Bayesian phylogram is on the left and the coalescent phylogram is on the right. Nodes 
with probabilities below 0.9 have been collapsed. 
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Figure 6: MSN of Paracalanus quasimodo ITS-1 variants and Paracalanus parvus (20). 
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Figure 7: MSN of Paracalanus quasimodo COI variants and Paracalanus parvus (20). 
Variants that touch have zero steps between them on the MSN. 
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Figure 8: MSN of Paracalanus quasimodo concatenated variants and Paracalanus 
parvus (20). 
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variant 52 is found in different clusters depending on the loci. The MSN for the 

concatenated sequences shows two clusters corresponding to the clades, with 100 steps 

between the closest two variants, variant 52 of clade one and variant 34 of clade two 

(Figure 8), with 10.9% difference between the two variants. The most steps between 

variants within clade one were 70 between variants 52 and 47 (7.7% divergence), two 

steps more than between variant 31 in clade two and 20, P. parvus (7.4% divergence). 

There were fewer steps between variants in clade one with ITS-1 and concatenated loci 

and in clade two with COI. P. parvus was located in the interior of the ITS-1 and COI 

MSNs. The most abundant variants, 1, 2 and 3 from clade one and 21, 22 and 23 from 

clade two (data not shown), were consistently at opposite ends of the networks. 

The nearest neighbor to T. turbinata was T. discaudata (Figure 2). Bayesian and 

coalescent analyses places all T. turbinata variants in one clade (Figure 9). The maximum 

separation between variants in the MSNs was one step (Figure 10). Sequence variations 

between the variants were minimal. The largest difference between concatenated variants 

was 2% between variants 3 and 17. Eighteen of the nineteen deviations between the two 

variants were due to single-nucleotide polymorphisms (SNPs) where the SNP on one 

variant was ambiguous two nucleotides, one of which was the same as on the other 

variant. For example, variant 3 had cytosine at position 26 while variant 17 was 

ambiguous with cytosine and guanine. The remaining difference was an indel at position 

285. Overall, there were 33 divergent sites in 995 bases. Two of the divergences were 

indels at position 285 and 286 and 31 were SNPs. Eleven of the SNPs were due to 

unambiguous nucleotides between at least two variants. 
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Figure 9: Temora turbinata variant phylogeny based on concatenated sequences. 
Excepting scale, the supported topology is identical for ITS-1, COI and concatenated 
sequences for both Bayesian and coalescent analyses. 
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Figure 10: MSNs of Temora turbinata (a) ITS-1, (b) COI and (c) concatenated variants. 
Variants that touch have zero steps between them on the MSN. 
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DISCUSSION 

 

Paracalanus quasimodo and Temora turbinata formed clades with congeneric 

species. P. quasimodo variants were divided into two highly divergent clades. T. 

turbinata variants formed a single clade with minimal differentiation between the 

variants. There was no significant support for intraclade topology in either species. 

The sequence divergence between the two P. quasimodo clades is greater than the 

intraspecific variation in many copepod species (Bucklin and Wiebe 1998; Bucklin et al. 

1999; Bucklin et al. 2003; Caudill and Bucklin 2004; Bucklin et al. 2010b; Blanco-

Bercial et al. 2011a; da Costa et al. 2011; Winkler et al. 2011). Although morphological 

misidentification is always a possibility, clade two is unlikely to be another Paracalanus 

species extant in the southeast United States. Despite variant 20, clade two is unlikely to 

be misidentified P. parvus, as both clade 2 and the P. parvus clade are well supported, 

and the divergence between clade two and P. parvus was greater than 8%. Similarly, 

clade two is unlikely to be the morphologically similar P. aculeatus as P. aculeatus was 

not detected in the samples with high proportions of clade two. There is also an 

approximate 12% divergence between clade two and P. aculeatus, as with P. aculeatus 

and P. parvus. 

The large divergence between clades one and two suggests cryptic speciation. 

Morphological stasis with genetic divergence has been discovered in numerous 

crustacean taxa (Knowlton 1986, 1993; Williams et al. 2001; Lee and Frost 2002; Chen 

and Hares 2011; da Costa 2011), and individuals from the two clades are 

indistinguishable by the dichotomous key produced by Boltovskoy (1999). However, the 
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position of clade two on the phylogenetic tree and the degree of sequence divergence, 

suggesting that clade two is closer related to P. parvus, argues against cryptic speciation. 

An alternate scenario is that clade one is P. quasimodo and clade two is an unknown 

species in the genera of Paracalanus. Finally, the divergence between clades one and two 

is within the unusual intraspecific variation of Tigriopus californicus (Burton and Lee 

1994; Burton et al. 2007), which demonstrates that it is possible for widely divergent 

clades to belong to the same species. A thorough morphometric analysis is required to 

determine whether clade two is morphologically identical to clade one, a different known 

species or a new species entirely. 

Paracalanus quasimodo variant 52 changes clades depending on the locus. In the 

MSNs, variant 52 is intermediate of clades one and two with concatenated sequences, 

identifies with clade one with ITS-1 and clade two with COI. The clade hopping with 

different loci indicates a hybrid individual rather than a genetic intermediate to the two 

clades. Variant 52 was collected from Panama City, where both clades were prominent 

(data not shown). If this is truly a hybrid, then clades one and two have not diverged to 

the point of reproductive exclusion. This suggests that the two clades are closer related to 

each other than to P. parvus and a possible case of cryptic speciation. However, whether 

P. quasimodo is able to hybridize with congeneric species has not been tested. 

The placement of variant 20 within the clade two cluster of the ITS-1 and COI 

MSNs suggests a close relationship between P. parvus and the taxa of clade two. 

Although the MSN from the concatenated loci placed variant 20 outside of the clade two 

cluster and P. parvus is well supported as a distinct clade, the gene history suggests that 
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the two groups are closely related. Although there is a marked separation from clade one, 

it is unclear whether clade two or P. parvus is the closer relative. 

The low level of genetic differentiation in T. turbinata and the star pattern in the 

MSNs are indicative of a population bottleneck. As T. turbinata occurs throughout the 

tropics and subtropics (Boltovskoy 1999), it is unlikely that the species had to retreat to 

refugia due to glaciation, as was required of more temperate species. However, glaciation 

would have reduced the T. turbinata range and provided an opportunity for range 

expansion at the end of the last ice age and the apparently panmictic distribution in the 

western Atlantic would be due to insufficient time for populations to differentiate.  

An alternative is that the presence of T. turbinata in the western Pacific is 

relatively new and the bottleneck is due to a founder event. Though reported to inhabit 

opposite ends of the earth, T. turbinata is not found in the eastern Pacific (Boltovskoy 

1999) and the only study reporting this species between the Chinese coast and the 

western Atlantic was off the west coast of India (Goswami and Padmavati 1996). T. 

turbinata may be absent from European and African coasts, or they may not have been 

reported. Should T. turbinata be absent from European and African coasts, then there is a 

large geographic break between populations, then the homogeneity within the southeast 

United States supports a recently introduced population. As the genetic signature of T. 

turbinata outside of the southeastern United States is unknown, leaving any conclusion 

regarding the origin of this species as mere conjecture. 
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CONCLUSION 

 

 Paracalanus quasimodo and Temora turbinata show opposite trends of 

divergence in the southeast United States. While P. quasimodo has two deeply divergent 

clades, T. turbinata has minimal diversity suggestive of a bottleneck. Both species 

require further sampling of distant populations to test whether these trends in molecular 

variation are local or a general characteristic of the respective species. 
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CHAPTER V 

CONCLUSIONS 

 

The population structure of Paracalanus quasimodo and Temora turbinata 

supports the paradigm that, generally, population structure increases with a decrease in 

dispersal potential. There were geographic and temporal differentiations in P. quasimodo 

samples that were not evident in the farther ranging T. turbinata. Further, P. quasimodo 

variants were divided between two, deeply divergent clades. Clade one was present 

throughout the sampling region, while, with the exception of one aberrant sample from 

Fort Pierce, clade two was prominent only in the samples from the Gulf of Mexico. 

As the P. quasimodo clades are sympatric, dispersal potential alone cannot 

explain the development of said clades. Clade two may have originated from the 

southwest Gulf of Mexico and were carried into the northern gulf to mix with clade one. 

Further sampling along the Mexican coast of the GoM would be required to test this 

hypothesis. An alternate hypothesis is that clade two is a cryptic species that was able to 

exploit a niche present in the GoM, but minimal or missing on the Atlantic coast. This 

would be an explanation for the inability of clade two to establish a successful colony at 

Fort Pierce despite the large influx detected in fall of 2007. 

Minimal variation in T. turbinata suggests a founder affect in a recently 

established colony or similar bottleneck. The low genetic variation would make it 

difficult to detect population structure, except in extreme cases. Thus, T. turbinata may 

be panmictic or it may be divided into populations similar to P. quasimodo, but with 

insufficient time for the populations to develop a distinct signature. An examination of T. 
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turbinata populations from other regions of the earth would provide further insight as to 

the intraspecific variation found in this species and whether this variation was anomalous. 
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