
Florida International University
FIU Digital Commons

FIU Electronic Theses and Dissertations University Graduate School

5-21-2013

iGrooving: A Generative Music Mobile
Application for Runners
Daniel J. Lepervanche
daniel.lepervanche@gmail.com

DOI: 10.25148/etd.FI13080519
Follow this and additional works at: https://digitalcommons.fiu.edu/etd

Part of the Composition Commons, Music Performance Commons, and the Other Music
Commons

This work is brought to you for free and open access by the University Graduate School at FIU Digital Commons. It has been accepted for inclusion in
FIU Electronic Theses and Dissertations by an authorized administrator of FIU Digital Commons. For more information, please contact dcc@fiu.edu.

Recommended Citation
Lepervanche, Daniel J., "iGrooving: A Generative Music Mobile Application for Runners" (2013). FIU Electronic Theses and
Dissertations. 941.
https://digitalcommons.fiu.edu/etd/941

https://digitalcommons.fiu.edu/?utm_source=digitalcommons.fiu.edu%2Fetd%2F941&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.fiu.edu/etd?utm_source=digitalcommons.fiu.edu%2Fetd%2F941&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.fiu.edu/ugs?utm_source=digitalcommons.fiu.edu%2Fetd%2F941&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.fiu.edu/etd?utm_source=digitalcommons.fiu.edu%2Fetd%2F941&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/519?utm_source=digitalcommons.fiu.edu%2Fetd%2F941&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/1128?utm_source=digitalcommons.fiu.edu%2Fetd%2F941&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/524?utm_source=digitalcommons.fiu.edu%2Fetd%2F941&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/524?utm_source=digitalcommons.fiu.edu%2Fetd%2F941&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.fiu.edu/etd/941?utm_source=digitalcommons.fiu.edu%2Fetd%2F941&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:dcc@fiu.edu

FLORIDA INTERNATIONAL UNIVERSITY

Miami, Florida

iGROOVING:

A GENERATIVE MUSIC MOBILE APPLICATION FOR RUNNERS

A thesis submitted in partial fulfillment of

the requirements for the degree of

MASTER OF MUSIC

by

Daniel Jose Lepervanche

2013

 ii

To: Dean Brian Schriner
 College of Architecture and the Arts

This thesis, written by Daniel Jose Lepervanche, and entitled iGrooving: A Generative
Music Mobile Application for Runners, having been approved in respect to style and
intellectual content, is referred to you for judgment.

We have read this thesis and recommend that it be approved.

Joel Galand

Jacek Kolasinski

Paula Matthusen

Jacob Sudol, Major Professor

Date of Defense: May 21, 2013

The thesis of Daniel Jose Lepervanche is approved.

Dean Brian Schriner

College of Architecture and the Arts

Dean Lakshmi N. Reddi

University Graduate School

Florida International University, 2013

 iii

© Copyright 2013 by Daniel Jose Lepervanche

All rights reserved

 iv

DEDICATION

 I would like to dedicate this to my son, Lucas. May this accomplishment testify

that dreams do come true. You must love what you do, work hard and smart, and have

integrity. Also I wish to dedicate this to Leonor, Gabriela, Jose, and Flor. You are my

pillars, my motivators, my dream-team, my inspiration, and my unconditional support

group. Thank you for believing in me, helping me achieve my dreams, and letting me fly

higher. One Love!

 v

ACKNOWLEDGMENTS

First and foremost I wish to thank God for all of the blessings in my life, for

always putting me in the right place and the right time, and for always guiding, protecting

and providing. I wish to thank my parents, Leonor, Jose and Flor for bringing me into

this world, raising me and shaping me into the man I am today. I wish to thank my wife

and son, Gabriela and Lucas, for inspiring, motivating and pushing me to be better

everyday, you are the fuel that drives me. I would also like to thank my siblings:

Adriana, Arturo, Alejandro, Carolina, Cesar, Gustavo, and Eduardo, for always being

there. I wish to deeply thank Paula Matthusen, Jacob Sudol, Orlando Garcia, Jacek

Kolasinski, Joel Galand, Adam Drisin, Brian Schriner, Kristine Burns, and Juraj Kojs for

playing key roles in the development of this project, as mentors, committee members,

advisors, faculty, and friends. I would also like to thank all of the programmers who

allowed me to use their codes and contributed tremendously to this project: Peter de

Tagyos, Yohann Taieb, Frank Hernandez, and Christopher Rivera. I also thank Preeya

Disyanan of The Golden Triangle for allowing to come into her store to record her

Tibetan instruments. Also thanks to Luis Arturo Mora for allowing me to use his

photograph of the FLEA ensemble. Finally, I wish to thank Meg Galvis from the FIU’s

School of Music’s main office for the endless support and friendship.

 vi

ABSTRACT OF THE THESIS

iGROOVING:

A GENERATIVE MUSIC MOBILE APPLICATION FOR RUNNERS

by

Daniel Jose Lepervanche

Florida International University, 2013

Miami, Florida

Professor Jacob Sudol, Major Professor

 iGrooving is a generative music mobile application specifically designed for

runners. The application’s foundation is a step-counter that is programmed using the

iPhone’s built-in accelerometer. The runner’s steps generate the tempo of the

performance by mapping each step to trigger a kick-drum sound file. Additionally,

different sound files are triggered at specific step counts to generate the musical

performance, allowing the runner a level of compositional autonomy. The sonic elements

are chosen to promote a meditative aspect of running. iGrooving is conceived as a

biofeedback-stimulated musical instrument and an environment for creating generative

music processes with everyday technologies, inspiring us to rethink our everyday notions

of musical performance as a shared experience. Isolation, dynamic changes, and music

generation are detailed to show how iGrooving facilitates novel methods for music

composition, performance and audience participation.

 vii

TABLE OF CONTENTS

CHAPTER PAGE

 I. INTRODUCTION………………………………………………………….…1
 Inspirations……………………………………………………………………1
 Purpose………………………………………………………………………..4

 II. HISTORICAL AND RESEARCH BACKGROUND………………......…..10
 Biofeedback in Music…………………………...…………………………...10
 Algorithmic Composition and Generative Music ….………….………...….15

III. MUSICAL AESTHETIC AND STRUCTURE…………………..…………19

 IV. APPLICATION DEVELOPMENT………………………………...……….24
 Programming in iOS…………………………………………………......….24
 iGrooving’s Code…………..………………………………………………..29

V. CONCLUSION……………………………………………………………...34

 BIBLIOGRAPHY…………………………………………………………………36

 APPENDICES - Objective-C code for iGrooving…...……………………………40

 viii

LIST OF FIGURES

FIGURE PAGE

1. The FIU Laptop & Electronic Arts (FLEA) Ensemble performing during
Art Basel 2010 (image by Luis Arturo Mora)………………………………………….…5

2. The FIU Laptop & Electronic Arts (FLEA) Ensemble performing
L.gamelan.D at the SEAMUS 2011…………………………………………………...…..8

3. Performance of bright planes from euphonious hammers: the story
of a sound installation that became a composition at FIU Spring 2010…………...……...9

4. Nayla Mehdi and Jaclyn Heyen (Not in the picture) performing
YouGrooving (Heartbeat version) 2009……………………………………………….....11

5. Different ranges of Tibetan singing bowls (left) and a
set on Tingshas (right)………………………………………..……………………….…20

6. Tibetan bell and dorje………………………………………….……………………..20

7. iGrooving’s prototype in Pro Tools.……...………………………………….……….23

8. Computer screenshot of iGrooving and the simulator……………………….…...…..25

9. iGrooving’s code: Accelerometer, step count, automatic start and
kick drum trigger (Appendix B)…………………………………………………...…….30

10. iGrooving’s code: Sound file triggers and behavior (Appendix B)….…………..….31

11. iPhone’s screenshot of iGrooving………….....……………………………….....….32

 1

I. INTRODUCTION

Inspirations

 As a composer and technologist, I am compelled to explore new media and

aesthetics in music composition and performance in order to refine my compositional

style. iGrooving is a generative music mobile application for runners that primarily

stems from my interest in the concepts of biofeedback and generative music.

Biofeedback uses physiological processes to manipulate an external medium; for

example, a human’s brainwaves might be used to control a wheelchair’s movement. The

concept of generative music embraces self-organizing musical compositions with set

parameters that may or may not receive additional input from a performer or user.

 In earlier research, I explored biofeedback as a means of performance and

composition by treating the heartbeat as an instrumentalist or controller and the audience

as a composition’s sonic material (Lepervanche 2009). I revisited commonly held

notions regarding the essence of music, specifically focusing on how our physicality

relates to music, how performers interpret it, and how our human bodies are—in a

sense—living musical compositions. This research led to my personal philosophical

discovery that, without the performer and audience as separate entities, a composition

ceases to be a shared experience in the performance context. iGrooving goes further,

collapsing not only the performer and audience but also the composer into one.

 My use of biofeedback owes much to Alvin Lucier’s Music for Solo Performer, a

pioneering work that uses brainwaves to generate sound. In this work, the performer’s

 2

brainwaves “are amplified enormously and routed through loudspeakers to vibrate

sympathetically a battery of percussion instruments” (Lucier & Margolin, 1982). The

sounds arise when the performer produces a specific pattern of brainwaves, namely alpha

waves, which occur when one enters a non-visualizing or deeply relaxed state. In

iGrooving I also explore the correlation of a relaxed state—more specifically, a sort of

meditative state induced by running—and generative sound production; however in my

work, instead of brainwaves, loudspeakers, and percussion, I use a runner’s steps trigger

prerecorded sounds.

 Another influence on my work is David Rosenboom’s On Being Invisible II

(Hypatia Speaks to Jefferson in a Dream), a self-organizing opera that incorporates brain

waves. “The sequencing of this work’s nonlinear narrative content…and the structure of

accompanying electronic sounds all result from a similar analysis of the brainwaves of

two performers. Consequently, the form of the opera cannot be known in advance”

(Rosenboom, 2003). For iGrooving, I rely on the runner’s steps to attain a steady rhythm

and on the manner in which one’s steps trigger sound files to generate the musical

performance and composition.

Also informing my work is Eduardo Reck Miranda’s research on brainwaves and

musical systems, which explores how the thoughts of the user have the potential to

control a musical system. Reck’s Brain Computer Interfacing (BCI) systems are

primarily designed to allow the brainwaves to generate musical content. Describing the

biofeedback processes in this work, Reck notes that “[the] spectral information [of the

brainwaves] is used to activate generative music rules to compose music on the fly, and

the signal complexity is used to control the tempo of the music” (Miranda & Brouse,

 3

2005). Similarly, in iGrooving a runner controls the tempo and the time at which the

different sound files are triggered via his or her steps. The final biofeedback work that

informs my thesis is Pauline Oliveros’ Adaptive Use Musical Instruments (AUMI), a

“software interface [that] enables students who have very limited controlled (voluntary)

movement or other types of impairments to independently engage in making music”

(Oliveros, 2012). Likewise, iGrooving allows everyone capable of running—regardless

of whether one has musical training or not—to engage in the music-making experience.

Mobile phone applications that influenced my graduate research include Bbcut, Con:cat

and iGendyn by composer and programmer Nick Collins (Collins, 2013). The versatility,

programming creativity, and intuitive design displayed in these applications inspired me

to find a way to use the iPhone’s programmable features, such as the accelerometer, to

generate music. I drew more, however, from the mobile phone applications Bloom and

Scape by the composer and sound-artist Brian Eno and the musician and software

designer Peter Chilvers (Eno, 2012). Bloom’s user-friendliness and intuitive design

captivated me as I used it to soothe my newborn child. Moreover Eno and Chilver's

approach to a generative music that features minimalist tendencies and drone structures

inspired the overall musical aesthetic in iGrooving.

Finally, I have been inspired by Brian Eno’s descriptions of generative music,

which Nick Collins defines as "a more rigid description of algorithmic music that

happens to produce [an audio] output in real time" (Collins, 2008). To expand on this

definition, generative music is a system that uses mathematical or logical structures, with

or without external inputs, to create ever-changing music.

 4

Purpose

 "[We] only have three parts for people involved in live performances. Henry
Flynt, one of [La Monte] Young’s Fluxus cohorts, identifies the division of labour as:

a) The author of the score, the composer.
b) Those who realize the score, the performers.
c) Those who witness the performance—usually from massed seating.

As Flynt pointed out, experimental compositions challenge such distinctions” (Sun, 2006).

I wanted to create an application that primarily questions the roles of the

composer, performer, audience, and their relationships as a shared experience in live

musical performance. In iGrooving a runner becomes the co-composer, performer, and

audience in an isolated musical event. As a result, the runners react to his or her

performance as an audience member. This allows the runner to make some

compositional decisions that will affect the performance and overall sonic outcome.

Because this feedback process occurs in an isolated situation, it challenges common

notions of composer, performer, and audience’s roles. iGrooving stimulates self-

awareness; this type of musical performance becomes a shared experience with the self,

challenging my previous view that the performer and audience needed to be separate

entities in order for a composition to exist as a shared experience.

With iGrooving, I also propose an alternate way of understanding and defining

musical instruments. This interest comes in part from my experiences as a founding

member of the Florida International University Laptop & Electronic Arts (FLEA)

ensemble, as well as from my research on other experimental ensembles such as the

 5

Princeton Laptop Orchestra (PLOrk), the Stanford Laptop Orchestra (SLOrk), and the

Stanford Mobile Phone Orchestra (MoPhO).

Figure 1. The FIU Laptop & Electronic Arts (FLEA) Ensemble performing during Art Basel 2010

(image by Luis Arturo Mora)

 These ensembles, by incorporating non-acoustic instruments and controllers such

as laptops, mobile devices, and custom-made electronic devices, challenge the traditional

conception of a musical instrument as something that uses acoustic means to produce

sound, replacing it with something much broader or more nebulous. In spite of this

radical position, these ensembles perform music that can be just as formal and organized

as that of traditional ensembles and that ranges from improvised to precisely notated

music (Scheinin, 2008). These new types of unconventional orchestras are still maturing;

their creators “hope to establish some continuity with [their] newly developing

performance practice so that [they] do not have to 'reinvent the wheel' each year and so

 6

[they] can reach higher levels of skill and familiarity” (Smallwood, Trueman, Cook, &

Wang, 2008).

Some new electro-acoustic music attempts—in ways that I find compelling and

suggestive for my own work—to refine the use of laptop computers or electronic devices

so that they might gain broader legitimacy, recognition, and use. For example, PLOrk's

members have discussed issues arising from the formalization of laptop orchestras, such

as how "composers working on pieces for a laptop orchestra have the choice to embrace

the given laptop interface as an instrument, or to find ways of providing more suitable

control mechanisms for making sound, depending on the kind of instrument they are

designing" (Smallwood, Trueman, Cook, & Wang, 2008). Interestingly, ensembles such

as PLOrk, SLOrk, and MoPhO have addressed this issue by progressively designing and

incorporating gestural devices more often than the laptop interface.

Thus , PLOrk has “a collection of interfacing devices and sensors that can be

integrated into any of the meta-instruments to provide physical control of expression.

These include off-the-shelf keyboards, percussion pads, and knob/slider controllers, but

also custom interfaces using sensors such as accelerometers, pressure pads (using force-

sensing-resistors), proximity sensors, light sensors, and so on” (Smallwood, Trueman,

Cook, & Wang, 2008). More recently there have even been groups like MoPhO that use

mobile devices such as the iPhone as their only musical instrument (Wang, Essl, &

Penttinen, 2008).

The accessibility, intuitive design, and programmable features of mobile devices make

the iPhone an excellent choice for this thesis project. For groups like MoPho, “Apple’s

iPhone has been an enabling technology to more fully consider mobile phones as meta-

 7

instruments for gesture driven music performance.” (Wang, Essl, & Penttinen, 2008).

Indeed, mobile devices have become so prominent and integrated with our everyday lives

that they can be easily ignored as music-making entities and become a quasi-natural

extension of the human body.

My works mirror this progressive implementation, first of gestural devices and

then of mobile devices. Four of my works, L.gamelan.D, bright planes from euphonious

hammers: the story of a sound installation that became a composition, YouGrooving, and

iGrooving, demonstrate this personal compositional progression. In these works I have

often aimed to inform the audience of the relationship between the performers,

technology, and the music performed.

 For example, my composition for laptop ensemble, L.gamelan.D, demonstrates

some of the performer’s active role in sound production. At the beginning of the work

the performers tap piezo-electric contact microphones that they place inside their pants’

pockets or on the floor. The performers use this tapping to make sounds that are first

heard in real time and, later, make up the sampled material for the rest of the

performance. By solely featuring this tapping on contact microphones at the beginning of

the work, I provide a clear visual element that informs the audience about the performer’s

active role and how it relates to the sound world. Figure 2 shows a performance where

the FLEA ensemble uses this visual reference.

 8

Figure 2. The FIU Laptop & Electronic Arts (FLEA) Ensemble performing L.gamelan.D at the

SEAMUS 2011 Conference

 My interactive audio-visual composition shown in Figure 3, bright planes from

euphonious hammers: the story of a sound installation that became a composition,

explores an interactive relationship between the performer, computer, lights, and color.

In this composition, a score instructs any number of instrumentalists and vocalists to play

any pitched sound while collectively searching for an agreeable groove. After playing

this groove for a few minutes, they must transition to a new groove and repeat this

transition and grooving process as often as desired until they agree to finish the

composition at an appropriate time. Specific musical pitches are mapped on to different

lights, which turn on only when the corresponding pitch sounds. Figure 3 shows colored

lights that also correspond to real-time audio digital signal processes, such as reverb and

delay, that an autonomous laptop applies to the overall sound world.

 9

Figure 3. Performance of bright planes from euphonious hammers: the story of a sound installation that

became a composition at FIU, Spring 2010

The relationship and interaction of music, lights, and effects intends to inform the

audience of the relationship between the instrumentalists and vocalists, and the audio-

visual world. Moreover, by automating how the laptop and technology functions, I focus

the audience away from the technological means for creating the relationship and,

instead, towards the relationship itself.

 In contrast to my previous works, and most other works by other artists that

incorporate biofeedback and generative processes, iGrooving requires the performer or

user—in this case, a runner—to interact with the mobile application alone. As a result,

the musical performance becomes an isolated event that only the user experiences. By

creating this situation, I explore the following questions that relate to the use of the

application: What is a musical instrument? Does this application shatter the notion of

musical performance as a shared experience? Can the roles of composer, performer, and

audience be successfully combined? And, finally, can the use of biofeedback and

generative music in iGrooving be a positive addition to the running experience?

 10

II. HISTORICAL AND RESEARCH BACKGROUND

Biofeedback in Music

 Biofeedback uses “electronic monitoring of a normally automatic bodily function

in order to train someone to acquire voluntary control of that function” (“Biofeedback,”

2013). When used in music composition, tracking biofeedback signals offers a new

realm of possibilities for music composition. These signals can be tracked by the use of

different types of interfaces and sensors.

 The use of biofeedback in music has three main components: the physiological

body function, the interface or sensor used to translate this function into sound or music,

and the feedback loop that attempts to train the user to control said function and relate it

to the resultant sound or music. For example, the electrical activity of firing neurons in

the brain, also known as brainwaves, can be a physiological body function. One could

then use an electroencephalography (EEG) sensor to translate this activity into music.

Finally, the feedback loop is the performer’s attempt to control his brainwaves in light of

their sonic translation. Beyond this, it is important to note that use of biofeedback in

music is in direct contrast to conventional types of performance practices where

performers use parts of the body over which hey can have much greater conscious

control, such as their arms, fingers, and lungs.

 My composition YouGrooving exemplifies a biofeedback work. Here the

physiological bodily function is the heartbeat, digitally captured by a stethoscope

connected to a lavalier condenser microphone. In YouGrooving the heartbeats have two

 11

purposes—they are the sampled sonic content for the live performance, and they trigger

multiple sound files. A separate performer controls the second purpose—the translation

component of the biofeedback process—by processing the heartbeats’ sound through a

resonance filter to find the average loudest amplitude of each heartbeat’s "thump" and to

generate an amplitude threshold. In performance this separate performer fine-tunes the

threshold so that every time the heartbeat "thumps," one of the multiple sound files

sounds. The different heart rates, as well as the incredibly difficult task of consciously

controlling one's own heart rate, provide subtle elements of unpredictability, which affect

the composition. For YouGrooving I prefer a larger performance group, yielding a

thicker polyrhythmic texture and subtle tempo changes. Looking beyond my thesis, I

would like to similarly develop iGrooving for an ensemble.

Figure 4. Nayla Mehdi and Jaclyn Heyen (not in the picture) performing

YouGrooving (Heartbeat version) 2009

 Corresponding to the heartbeat in YouGrooving, the runner’s steps in iGrooving

determine when various audio samples sound. This brings elements of randomness and

 12

unpredictability to iGrooving’s performance and composition. For example, the runner

might encounter several unforeseen and unpredictable factors such as difficult terrain,

obstacles, exhaustion, and bad weather.

 To explore biofeedback further as a means of musical expression and as a

performance practice, I will discuss two innovative works—Alvin Lucier’s Music for

Solo Performer and the AUMI interface by the Deep Listening Institute led by Pauline

Oliveros. In order to explain the choices I made for iGrooving, I focus on two issues

involved in using biofeedback to create and perform music, namely, the control of

biological mechanisms and the interface used to track these functions.

 In a video-recorded excerpt of a 1977 performance of Music for Solo Performer

(1965) (Osterreich, 1977), Lucier begins the performance by entering a calm state while

the assistant attaches EEG electrodes to his forehead and a ground electrode to his left

hand. Lucier then reaches over the signal amplifier with his left hand to gauge a desired

level at which the brain signals will be amplified so that the percussive instruments will

sympathetically vibrate with the speakers. Lucier first demonstrates to the audience how

the performance works by closing his eyes. This action stimulates the fluctuation of his

brain signals, which are then amplified through loudspeakers that cause percussive

instruments to sympathetically vibrate. Lucier repeats this informative gesture a couple

of times. His brainwaves then seem challenging to control as he makes several attempts

to close his eyes with his right hand in order to achieve the necessary non-visualizing

state. About six minutes into the excerpt, Lucier finally creates some steady brainwaves

 13

and, as a result, different percussive instruments shake and rattle to create a rich

polyrhythmic texture.

 In this work, the interface used to translate the brain waves into sound poses a

number of challenges. The intricate use of EEG electrodes, a multichannel amplifier,

multiple loudspeakers, and a complex percussion set-up make this interface time-

consuming to construct and the composition difficult to realize. Beyond this, as the

performance discussed above demonstrates, it can be hard to produce the correct brain

waves during a performance. This is potentially frustrating for the performer and can

lead to long periods of no sonic activity.

 In contrast, AUMI by Pauline Oliveros is a user-friendly interface that nearly

anyone can use. The interface has primarily been used for children with physical

disabilities to create a space for them to be part of the music-making process.

The Adaptive Use Musical Instruments software interface enables the user to play sounds
and musical phrases through movement and gestures [and] attempts to make musical
improvisation and collaboration accessible to the widest possible range of individuals.
This approach also opens up the possibility of learning more about the relations between
ability, the body, creativity and improvisation (Oliveros, 2013).

 The AUMI is designed with computers that have video capabilities in mind;

therefore, the programmers write the computer code to create video tracking as the initial

point of communication with the music-making component of the software and computer.

With this video tracking, users of AUMI can choose any part of their body, such as their

nose, as the tracking point and then use their facial movements to drag the tracking point

across the screen and thereby trigger different sound files. In this way, the movement of

specific components on one’s own body becomes the physiological bodily function in

 14

AUMI, while the video tracking and software are the interfaces that translate this function

into music.

 Because AUMI has primarily been used for children with physical disabilities, it is

in constant development to adapt to the various users’ abilities. Its next steps include

developing an iPad application and incorporating Musical Instrument Digital Interface

(MIDI). MIDI is protocol that allows multiple electronic instruments, computers and

musical devices to communicate with each other. The use of MIDI would allow the

AUMI users to compose music with the aid of other music production software.

 Unlike Music for Solo Performer, AUMI features an easily accessible and

intuitive interface that uses a biological mechanism one can instantaneously control

voluntarily. Moving one's nose over a split-screen is obviously more straightforward

than controlling one's brain waves. Similarly, iGrooving incorporates a voluntarily

controllable biological mechanism—the runner's step rate. By exercising control over

their pacing, runners can make decisions on how their biological mechanisms affect the

feedback loop component in a biofeedback composition. To me, an interesting factor in

iGrooving, is that—although we have considerable voluntary control of our steps—we

don’t usually train them to produce musical results. Since the EEGs, EKGs and EMGs

sensors used in some of the compositions explained above can be intricate in nature,

cumbersome and costly, I decided to choose the widely available iPhone as the

translating interface for iGrooving. Owing to the intuitive nature of mobile devices,

using the iPhone as a biofeedback interface could potentially be as natural as making a

phone call.

 15

Algorithmic Compositions and Generative Music

At their most basic form, algorithms are step procedures to solve a problem or to

calculate a solution. Their use in music composition is traceable at least as far back as

the eleventh century:

The idea of generating music algorithmically is not new. The earliest recorded work was
by the Italian monk Guido D’Arezzo in 1026. Demand for his Gregorian chants was so
high that he devised a system to systematically create them from liturgical texts. Mozart,
Haydn, and C.P.E. Bach had an interest in generative music; Mozart invented [a]
Musikalisches Würfelspiel (“musical dice game”), which involved using dice to decide
which of a set of pre-defined musical phrases came next in the piece (Worth & Stepney
2005).

Nevertheless, algorithms became far more prominent with the development of

computers during the mid-twentieth century. Composers and music researchers of the

computer era started using these tools to search for new musical aesthetics and to react to

or model previous styles in the evolution of music. Computers provided new sonic

materials and tools that allowed composers to explore and formalize new sounds and

compositional approaches (Roads, 1996). For example, MUSICOMP, started by Lejaren

Hiller and Leonard Isaacson, was a pioneering algorithmic composition software that

opened the way for many composers and programmers (Wooller, Brown, Miranda, Berry,

& Diederich, 2005). In the 1950s, Hiller and Isaacson used this program to realize a set

of Markov Chains to construct works such as the Illiad Suite (1956) that primarily imitate

earlier classical musical idioms, such as tonal four-part choral writing. Meanwhile,

composer Iannis Xenakis’ “particular interest [was] in creating complex musical textures

[and] us[ing] stochastic functions to organize the general characteristics of these large-

scale entities” (Harley, 1995). In contrast to the more formal and musicological

 16

experiments of Hiller and Isaacson, Xenakis’ computer-generated algorithmic

compositions such as ST/4 and ST/10 (1956–62) made greater use of indeterminacy,

giving a perceptual priority to chance operations.

In essence, one can describe algorithmic music compositions as works that use a

computer or other mathematical means “with the aid from various formalisms, such as

random number generation, rule-based systems, and various other algorithms” (Alpen,

1995). Not all algorithmic compositions use random processes. For example, in his

algorithmic-generated compositions, Tom Johnson “allows his music to be completely

deterministic and predictable, a product of little mathematical machines” (Johnson,

1998).

Like Tom Johnson's works, iGrooving solely uses deterministic algorithm

procedures. The program maps the runner’s steps to a kick drum sample. In addition, the

steps trigger twelve different sound files at predetermined step counts. All sounds

besides the kick drum, once instantiated, loop until the performance concludes. The

runner has complete autonomy to start the performance, establish the tempi used, and

trigger the remaining sound files. In contrast to Tom Johnson’s deterministic algorithmic

scores, however, this autonomy can result in drastically different realizations. For

example, if the runner runs below a step count of 700 steps, only three sound files out of

twelve are triggered. Furthermore, the runner has the autonomy to establish the length of

the performance. Since the probability of running at an exactly perfect cadence more

than once is so low, the likelihood that a specific compositional realization will happen

only once directs the focus towards the present moment.

 17

 Historically, generative music succeeds algorithmic compositions. Generative

music uses mathematical or logical structures, with or without external inputs, to create

an ever-changing sonic result. Furthermore, “an algorithm tends toward being generative

when the resulting data representation has more general musical predisposition than the

input” (Wooller et al. 2005). Generative music directly stems from algorithmic

compositions, yet in generative music there are always different sonic outcomes, whereas

in algorithmic composition the outcomes can be potentially fixed. This is the main

difference that separates generative music from what I refer to in this essay as algorithmic

compositions.

 I consciously try to be less directly involved in predetermining all aspects of the

musical outcome. L.gamelan.D, bright planes from euphonious hammers: the story of a

sound installation that became a composition, and iGrooving provide clear examples of

this. As a composer, I bask in this relinquishment of control. As Brian Eno states, “if

you move away from the idea of the composer as someone who creates a complete image

and then steps back from it…[Composition becomes] putting in motion [a performance]

and letting it make the [composition] for you” (Eno, 1996).

iGrooving only works if a user is inputting data. For example, until the user starts

running and the first step gets counted, iGrooving will not produce sound. In contrast,

Bloom, by Brian Eno and Peter Chilvers, can generate music without receiving any input

from a user. The intuitive design and passive nature of Bloom allow the user to become

engulfed by the sound world. Almost game-like and simple, Bloom effectively allows

anyone to feel like part of the music-making experience. The interface of Bloom

 18

resembles a sideways keyboard that plays pitched decaying sounds whenever the user

touches the screen. Its design is intuitive—the higher on the screen one touches the

higher the pitch and vice-versa. The application then slowly repeats the patterns that the

user inputs. Bloom is also capable of being a stand-alone music box and, as such, can

play material by itself.

On the other hand, iGendyn, by Nick Collins, is a noisy synthesizer that uses

parameters such as the multi-touch capabilities of the iPhone’s screen and the

accelerometer. The user has the option of selecting multiple voices with five independent

touches. In addition, when the user tilts the phone, iGendyn makes probabilistic and

deterministic decisions or changes that affect the resultant sonic content. Like iGendyn,

iGrooving uses the accelerometer. However, in contrast to the configurability of

iGendyn, iGrooving uses the accelerometer solely as a step detector. I discuss this

feature in Chapter Four.

 19

III. MUSICAL AESTHETIC AND STRUCTURE

 The sound world of iGrooving combines Electronic Dance Music (EDM) with

subtle, sonic, meditative elements that slowly develop and repeat throughout the running

performance. EDM is typically repetitive and accumulative in nature, structured in

multiple layers that first progressively build upon each other and then get added or

subtracted to create a sense of movement and development. Beyond these structural

features, EDM makes extensive use of effects such as filter sweeps and multiple delays.

Artists such as Fat Boy Slim, Prodigy, Daft Punk, Rabbit in the Moon, Paul Oakenfold,

Mauro Picotto, and, most recently, Deadmaus5 and David Guetta have played an

influential role in the shaping of iGrooving’s musical structure.

 The primary sonic element that I drew from popular music like EDM is the sound

of the electronic kick drum. The other sonic elements I use include recordings of Tibetan

singing bowls, various tingshas, and a set of Tibetan bell and dorje. Tibetan singing

bowls are classified as standing bells. They can be played by rubbing the ring in a

circular motion with a wooden striker or by softly hitting the rim with the striker.

Tingshas are two small-pitched cymbals joined together by a strap or chain and usually

struck together to produce a high pure metallic tone similar to crotales. Figure 5 shows

five different sized Tibetan singing bowls and a set of tingshas. Figure 6 shows a Tibetan

bell and dorje.

 20

Figure 5. Different ranges of Tibetan singing bowls (left) and a set on tingshas (right)

Figure 6. Tibetan bell and dorje

 I recorded myself rubbing the edge and hitting the side of three different Tibetan

singing bowls with the striker; playing single hits and multiple consecutive hits of the

tingshas; and playing multiple consecutive hits of the Tibetan bell and dorje struck

together. I then catalogued these sound files in three sound banks: BOWL, HIT and

MHIT. Table 1 shows this cataloguing scheme. The BOWL sound files are the Tibetan

singing bowls played by rubbing the ring in a circular motion with the wooden striker;

the HIT sound files include tingshas struck against each other and Tibetan singing bowls

struck with the wooden striker; and the MHIT sound files include multiple hits of Tibetan

bell and dorje struck together, multiple hits of tingshas struck together, and multiple hits

 21

of Tibetan singing bowls struck with the wooden striker.

BOWL 1 TIBETAN SINGING BOWL

BOWL 2 TIBETAN SINGING BOWL

BOWL 3 TIBETAN SINGING BOWL

BOWL 4 TIBETAN SINGING BOWL

HIT 1 TIBETAN SINGING BOWL HIT

HIT 2 TINGSHA HIT

HIT 3 TIBETAN SINGING BOWL HIT

HIT 4 TINGSHA HIT

MHIT 1 TIBETAN BELL AND DOJRE MULTIPLE HIT

MHIT 2 TINGSHA MUTLIPLE HIT

MHIT 3 TIBETAN SINGING BOWL MULTIPLE HIT

Table 1. Sound files catalogue for iGrooving’s sonic content

 For iGrooving, the intention is that the runners listen to these sonic materials

passively as a subtle supplement to running. I also want the runner to focus on the

drum’s rhythms, the drone-like sounds of the Tibetan singing bowls, and—ultimately—

the overall minimalist sonic texture.

 For the sonic content I used a minimalist approach, favoring repetition, drones, and

slow development. I chose the Tibetan instruments because of their timbre, long sustain,

and drone-like and ritualistic implications. I was inspired by minimalist composers such

as La Monte Young and Steve Reich—among many others—in their use of drones and

 22

ritualistic repetitions of simple rhythmic patterns. For example, pieces by Steve Reich

that preceded and led up to Music for 18 Musicians, such as Music for Mallet

Instruments, Voices and Organ (Reich, 1987), included “mixing timbres, and mixing

very long-held tones” (Kim, 1999) by beautifully blending heavy rhythms with drones.

More relevant models that relate to iGrooving’s musical structure and aesthetic include

Steve Reich’s Drumming (Reich, 1971) and Philip Glass’s Music with Changing Parts

(Glass, 1994). For example, Reich’s Drumming develops without:

Unfolding melodies or evolving motivic processes in the context of the sort of
contrapuntally harmonic textures central to the common-practice tradition. It stays closer
to its roots than an extended-common-practice work of the same duration would do, and
generates a special kind of uninhibitedly hypnotic ecstasy…by keeping those common-
practice concepts of variety at bay. The trick is to create the effect of 'considerable
developments' in ways that would not have been thought considerable, or even
developmental, in the past—at least not when spread over '55 to 75 minutes' (Whittall,
2012).

 Philip Glass’s structures based on additive and subtractive rhythmic patterns also

influenced my research. In particular, I studied Music with Changing Parts, which

consists of “variations in timbre…sustained tones threading through the typical busy

texture of repeated patterns” (Bernard, 2003). Finally, La Monte Young’s and Terry

Riley’s studies in Indian music and Steve Reich’s studies in African music inspired my

choice to favor a drone-like sound world that demonstrates the influence of non-Western

music.

 To test and refine the sound world of iGrooving, I created the sonic prototype of the

resultant sound shown on Figure 7, using the digital audio workstation Pro Tools. Pro

Tools is a digital audio workstation that gives the user multiple functionalities, such as

 23

recording, music production and audio mixing. I used this prototype as a simulator to

adjust the potential musical outcomes so that I would not have to run every time I wanted

to test the application’s sound world.

Figure 7. iGrooving’s prototype in Pro Tools

 As the prototype in Figure 7 demonstrates, in a manner similar to many EDM

works, iGrooving is accumulative and repetitive in structure. Structurally, the trance-like

sonic world and steady beat of EDM aim progressively to complement and overshadow

the constant repetitive action running offers. Beyond this, my work differs from EDM in

that iGrooving does not rely on the near-perfect accuracy of a computer’s clock or

synthesized sounds but, instead, on the more organic rhythm of a runner as well as

sampled acoustic sounds. Aesthetically, I aim for the drone-like, meditative, and

ritualistic qualities of the sonic material to encourage the listener to focus on these

potentially ignored introspective aspects. With these materials and structure, it is my

goal that this musical quality in iGrooving sheds light on a corresponding meditative

quality in running.

 24

IV. APPLICATION DEVELOPMENT

Programming in iOS

 I developed iGrooving for the iPhone 4S. The programming platform for Apple’s

mobile devices is iOS and the programming language for iOS is Objective-C (Apple Inc.,

2013). Objective-C is derived from the standard computer programming language C.

Objective-C caters to mobile devices by allowing programmers access to additional

programmable elements. Some of these elements—called sensors—include the

accelerometer, gyroscope, proximity sensor, touch screen, and GPS. The accelerometer

“measures the linear acceleration of the device so that it can report its roll and pitch, but

not its yaw. Yaw, pitch and roll refer to the rotation of the device in three axes: X, Y, and

Z” (Allan, 2012). The gyroscope “is a rate-of-change device; as the phone rotates around

an axis, [it] allows [one] to measure the change in such rotations” (Allan, 2012). The

proximity sensor is “used by the device to turn the screen off when [one] puts the phone

to [one’s] ear to make a call” (Allan, 2012). Because of these programmable elements, it

was more advantageous to program iGrooving for the iPhone than a desktop or laptop

computer.

 Apple provides a simulator whereby one can test certain parameters on the iPhone;

however, the accelerometer is a parameter that can only be tested on a mobile device. In

iGrooving, I use the accelerometer to create a step counter. A step counter is a device

that tracks when one takes a step and then counts how many steps one has taken since the

 25

first step. As explained above, iGrooving maps the step counter to the runner’s stride and

the playback of prerecorded sound files. Using the accelerometer to calculate a step

counter allowed me to start thinking about the relationship of steps counted versus time

elapsed. The direct translation of beats-per-minute (BPM) to steps-per-minute allowed

me to think musically when designing which step counts would trigger each sound file.

Figure 8. Computer screenshot of iGrooving and the simulator

 Figure 8 shows the beginning stages of iGrooving’s programming. The step

counter’s source code provides the foundation of iGrooving. In order to calculate a step

counter, one must first devise a way to detect steps. The step detector uses the

accelerometer to report if a movement surpasses a predefined threshold change in

movement. When a value surpasses the preset threshold, it reports a step or instance,

 26

which is then sent to a step counter. The musical elements are built around the step

detector and the steps counted. When the step detector creates an instance, the sound of

the kick drum is triggered. Specific step counts also trigger sound files that loop until the

performance concludes. Additionally, users have the option to reset all parameters and

start the performance over.

 iGrooving has three sections—a warm-up, a steady run, and a cool-down.

Following this structure and my experience with running I chose to trigger sound files at

intervals of 325 and 375 steps. A common running warm-up section at 130 beats-per-

minute should have a time interval of two and half minutes every 325 steps; a steady run

section at 150 beats-per-minute should have a time interval of two and half minutes every

375 steps; and a cool-down section at 130 beats-per-minute should have a time interval of

two and half minutes every 325 steps. Table 2 shows this timing scheme. Triggering

sound files at approximately every two and half minutes felt like a correct pace when I

was prototyping and testing iGrooving. Furthermore, I decided for aesthetic reasons that

the longer the runner runs the more active the performance should become. This creates

a progressively richer polyrhythmic experience that could potentially motivate the runner

to extend the performance. Currently, iGrooving has a limit of 4200 steps. I wish to

develop this further in successive versions.

 27

SECTION STEP COUNT SOUND FILE

A 1 BOWL_1

A 325 HIT_1

A 650 BOWL_2

B 975 HIT_2

B 1350 BOWL_3

B 1725 HIT_3

B 2100 BOWL_4

B 2475 HIT_4

B 2850 BOWL_1

C 3225 MHIT_1

C 3550 MHIT_2

C 3875 MHIT_3

Table 2. iGrooving’s sections and the step count-sound file relationship

 28

 The following text defines, in a step sequence, iGrooving’s basic algorithm:

ALGORITHM

1. The USER opens iGrooving and places the phone on the belt-band, puts

the headphones on, and makes sure the headphones are connected to the

audio jack in the iPhone.

2. The performance begins when the first step (STEP 1) is taken.

3. The TIMER starts when the performance begins.

4. A label displays the TIMER; another label displays the STEP COUNT.

5. Each STEP precisely triggers the KICK sound file.

6. Audio files get triggered, start looping, and overlap:

 - Section A: sound files get triggered every 325 STEPS

- Section B: sound files get triggered every 375 STEPS

- Section C: sound files get triggered every 325 STEPS

7. The USER has the option to START, STOP, and RESET the TIMER.

8. The USER has the option to RESET STEP COUNTER.

9. The USER has the option to RESET ALL parameters.

10. When the USER is done, they quit the application.

 29

KEY

 1. USER: the person using iGrooving.

 2. TIMER (label): displays the time in hours, minutes , and seconds.

 3. START (button): Start of the running exercise/performance (also

automated)

 4. STOP (button): Stops the TIMER.

 5. RESET TIMER (button): Resets the TIMER.

 6. STEP COUNT (label): Displays the runner’s step count.

 7. RESET STEP COUNTER: Resets the STEP COUNT.

 8. RESET ALL: Resets all parameters in the application.

iGrooving’s Code

 iGrooving’s foundations are a step detector and step counter. I chose these for their

ease of use, simplicity, and instantaneous feedback. The step detector provides the

feedback of steps, and these can be linked to time. I chose to rely solely on this method

rather than creating a separate controller such as a heart rate monitor that would have

been technically too complex and cumbersome for the running experience.

 Figure 9 is the main section of the accelerometer’s code and the features

programmed around it. This code demonstrates how the accelerometer detects a step,

how the steps are counted, how each instance triggers the kick drum sound file, and how

 30

the “Steps Count” label—a component of the Graphic User Interface (GUI)—displays the

steps counted.

// UIAccelerometerDelegate method, called when the device accelerates.
-(void)accelerometer:(UIAccelerometer *)accelerometer didAccelerate:(UIAcceleration
*)acceleration
{
 float xx = acceleration.x;
 float yy = acceleration.y;
 float zz = acceleration.z;
 float dot = (px * xx) + (py * yy) + (pz * zz);
 float a = ABS(sqrt(px * px + py * py + pz * pz));
 float b = ABS(sqrt(xx * xx + yy * yy + zz * zz));
 dot /= (a * b);
 if (dot <= 0.82)
 {
 if (!isSleeping)
 {
 isSleeping = YES;
 [self performSelector:@selector(wakeUp) withObject:nil afterDelay:0.3];
 numSteps += 1;

 if(numSteps == 1)
 {
 [self start];
 }
 self.stepCountLabel.text = [NSString stringWithFormat:@"%d",
 numSteps];

 [self CheckStepTriggers:numSteps];
 NSString *soundFilePath = [[NSBundle mainBundle]
 pathForResource:@"KICK" ofType:@"wav"];
 NSURL *soundFileURL = [NSURL fileURLWithPath:soundFilePath];
 player = [[AVAudioPlayer alloc] initWithContentsOfURL:soundFileURL
 error:nil];

 [player play];
 NSLog(@"%d steps", numSteps);
 }
 }
 px = xx; py = yy; pz = zz;
}

Figure 9 iGrooving’s code: Accelerometer, step count, automatic start and kick drum trigger (Appendix B)

 31

 Figure 10 displays an edited section of the code that shows how specific step counts

trigger sound files and the sound files’ behavior. In this code, names such as BOWL_1

and HIT_1 correspond to the audio files in Table 2.

-(void)CheckStepTriggers:(int)stepCount{
 switch (stepCount){
 case 1:
 [BOWL_1 play];
 break;
 case 325:
 [HIT_1 play];
 break;
 case 650:
 [BOWL_2 play];
 break;
 default:
 break;
 }
}
-(void)InitializeSoundClips{
 NSString *BOWL_1SoundPath = [[NSBundle mainBundle] pathForResource:@"BOWL_01"
ofType:@"wav"];
 BOWL_1 =[[AVAudioPlayer alloc] initWithContentsOfURL:[NSURL
fileURLWithPath:BOWL_1SoundPath] error:NULL];
 BOWL_1.delegate = self;
 BOWL_1.numberOfLoops = -1;
 BOWL_1.volume = 1;
 [BOWL_1 prepareToPlay];
 NSString *BOWL_2SoundPath = [[NSBundle mainBundle] pathForResource:@"BOWL_02"
ofType:@"wav"];
 BOWL_2 =[[AVAudioPlayer alloc] initWithContentsOfURL:[NSURL
fileURLWithPath:BOWL_2SoundPath] error:NULL];
 BOWL_2.delegate = self;
 BOWL_2.numberOfLoops = -1;
 BOWL_2.volume = 1;
 [BOWL_2 prepareToPlay];
 NSString *HIT_1SoundPath = [[NSBundle mainBundle] pathForResource:@"HIT_01"
ofType:@"wav"];
 HIT_1 =[[AVAudioPlayer alloc] initWithContentsOfURL:[NSURL
fileURLWithPath:HIT_1SoundPath] error:NULL];
 HIT_1.delegate = self;
 HIT_1.numberOfLoops = -1;
 HIT_1.volume = 1;
 [HIT_1 prepareToPlay];
}

Figure 10. iGrooving’s code: Sound file triggers and behavior (Appendix B)

 32

 In Objective-C, there are two main files where the programmer codes the

background processes—View Controller Header File and the View Controller

Implementation File. The programmer declares the main functions of the application in

the View Controller Header File. This section is where the programmer inserts the tools

needed for the program to function properly. These tools include any supporting material

implemented in the application, the actions’ parameters, and user interface elements, such

as buttons and labels. In iGrooving, the sound files are the supporting materials.

 In contrast, the View Controller Implementation File defines the application’s

behaviors, such as the rules, parameters, and actions taken by the application. In

iGrooving, these behaviors include how to detect the steps, how to count the steps, which

files to trigger at which step counts, and how each button and label behaves in the graphic

user interface (GUI). Figure 11 shows iGrooving’s GUI.

Figure 11. iPhone’s screenshot of iGrooving

 33

 iGrooving’s View Controller Header File’s source code is displayed in Appendix

A, and Appendix B shows iGrooving’s View Controller Implementation File. Since

iGrooving deals with audio material and building a GUI, the programmer imports and

declares the following frameworks and classes: UIKit, AudioToolbox, AVFoundation,

AVAudioPlayer. The core infrastructure of an iOS app is built from objects in the UIKit

framework. The objects in this framework provide all of the support for handling events,

displaying content on the screen, and interacting with the rest of the system. The

AudioToolbox framework provides interfaces for recording, playback, and stream

parsing. The AV Foundation framework provides an Objective-C interface for managing

and playing audio-visual media. An instance of the AVAudioPlayer class provides

playback of audio data from a file or memory (Apple Inc., 2013).

 34

V. CONCLUSION

 iGrooving is a generative music mobile application that comments on the definition

of musical instruments, musical performance as a shared experience, and the roles and

relationship of composer, performer, and audience. Beyond this, iGrooving’s performer

has some compositional autonomy and becomes the only audience member. This

situation proposes a new listening environment for compositions. Specifically, the

musical performance becomes a solipsistic experience, placing into question the concept

of musical performance as a shared experience.

 The generative music and biofeedback aspects of iGrooving allow the runner to

generate the tempi, determine when the remaining sound files get triggered, and choose

the length of the performance. Therefore, besides being the performer and audience, the

runner—in a sense—becomes a co-composer. In this way, each performance of

iGrooving has a very low probability of exact replication.

 I am confident that a mobile application that generates a musical composition with

steps is unprecedented. By combining all these elements, iGrooving helps push the

envelope of new music, performance practices, musical instruments, and our perceptions

of musical performance as a shared experience. Using generative processes, biofeedback,

and new media for musical expression has also allowed me to reevaluate my role in

creating music.

 Further developments in iGrooving will include ensuring that the application works

when the phone is on lock mode, that the audio output of the application can be recorded

from within the application, and that iGrooving can be played by an ensemble of runners.

 35

I also wish to develop iGrooving for commercial release and conference exposition. I

will work on fine-tuning the relationship of a desired running BPM with a musical reward

within the performance, thus informing the user when they reach the desired BPM. I will

also plan to make the user interface more intuitive and user-friendly. Finally, I will

further develop iGrooving in order to ask new questions, such as: Can a group of runners

collaborate and potentially play together musically as a running ensemble? Can the

performance be shared through social networks? And what is the experience when a non-

performing audience views a live-streamed performance of iGrooving?

 36

BIBLIOGRAPHY

Allan, A. (2012). Learning iOS Programming, 2nd ed. Sebastopol, CA: O’Reilly Media,

Inc.

Alpen, A. (1995). Techniques for Algorithmic Composition of Music. Paper, Hampshire

College.

Apple Inc. (2013). iTunes U. http://www.apple.com/education/itunes-u/ (accessed

December 10, 2012).

Apple Inc. (2013) Developer. https://developer.apple.com (accessed December 10,

20012).

Bernard, J. W. (2003). Minimalism, Postminimalism, and the Resurgence of Tonality in

Recent American Music. American Music 21(1), 112-133.

Boulanger, R., & Lazzarini, V. (2011). The Audio Programming Book. Cambridge,

Mass.: MIT Press.

Brown, A. R. (2005). Generative Music in Live Performance. Paper presented at the

Australasian Computer Music Conference. Brisbane, Australia, ACMA: 23-26.

Chechile, A. (2013). http://alexchechile.com/ (accessed December 10, 2009).

Collins, N. (2008). INFNO: Generating Synth Pop and Electronic Dance Music on

Demand. Paper, University of Sussex.

Collins, N. (2013). iPhone/iPad Apps. http://www.sussex.ac.uk/Users/nc81/
 iphone.html (accessed June 20, 2012).

Collins, N. (2009). Musical Form and Algorithmic Composition. Contemporary Music

Review 28(1), 103–114.

Collins, N. (2008). The Analysis of Generative Music Programs. Organized Sound: An
International Journal Of Music Technology 13(3), 237.

Collins, N. (2002) The BBCut Library. (Paper presented at the International Computer

Music Conference).

Cope, D. (1996). Experiments in Musical Intelligence. Madison, Wisconsin: A-R

Editions.

De Laubier, S. (1998). The Meta-Instrument. Computer Music Journal 22(1), 25-29.

 37

Eno, B. (2013). Generative Music. http://www.generativemusic.com (accessed June 20th,
2012).

Eno, B. (1996). Generative Music. Transcript of talk from Imagination Conference, San

Francisco. In Motion Magazine. http://www.inmotionmagazine.com/eno1.html.

Fung, J., Garten, A., & Mann, S. (2007). Deconcert: Bathing in the Light, Sound, and
Waters of the Musical Brainbaths. http://wearcam.org/icmc2007/
cr185882595172.pdf (accessed December 10, 2009).

Glass, P. (1994). Music with Changing Parts [CD Recording]. New York, NY:

Nonesuch.

Haas, L. F. (2003). Hans Berger (1873-1941), Richard Caton (1842-1926), and
 electroencephalography. (Neurological Stamp). Journal of Neurology,
 Neurosurgery and Psychiatry 74.1 9(1). Academic OneFile. Gale. Florida

International University
http://find.galegroup.com.ezproxy.fiu.edu/gtx/start.do?prodId=AONE&use

 rGroupName=flstuniv (accessed December 10, 2009).

Harley, J. (1995). Generative Processes in Algorithmic Composition: Chaos and Music.

Leonardo 28(3), 221-224.

Johnson, T. (1998). Automatic Music. (Paper presented at the Conference on Musical

Information ‘98 (JIM ‘98). La-Londe-les-Maures, France).

Kim, R. Y. (1999). From New York to Vermont: Conversation with Steve Reich.

Current Musicology, 345-366.

Lepervanche, D. (2009). Music of the Body: Biofeedback as a Method of Performance.

(Unpublished Senior Essay, Florida International University).

Lucier, A., & Margolin, A. (1982). Conversation with Alvin Lucier. Perspectives of New

Music 20(1/2), 50-58.

Lyon, E. http://www.sarc.qub.ac.uk/~elyon/ (last accessed December 9, 2009)

Miranda, E. R., & Brouse, A. (2005). Interfacing the Brain Directly with Musical

Systems: On Developing Systems for Making Music with Brain Signals.
Leonardo 38(4), 331-336.

Miranda, E. R., Roberts, S., & Stokes, M. (2004) On Generating EEG for Controlling

Musical Systems. Biomedizinische Technik 49(1), 75-76.

 38

Moore, K., & Sanders, L. Lucier, Alvin (b 1931). Grove Music Online.
 Oxford Music Online. http://www.oxfordmusiconline.com/subscriber/
 article/grove/music/47065 (accessed December 10, 2009).

Oliveros, P. (2013). Deep Listening Institute. http://deeplistening.org/site/adaptiveuse

(accessed June 20, 2012).

Osterreich, N. (1977). Music with Roots in the Aether. Perspectives of New Music 16(1),

214-228.

Reich, S. (1971). Drumming [CD Recording]. New York, NY: Nonesuch.

Reich, S. (1987). The Four Sections / Music for Mallet Instruments, Voices, and Organ

[CD Recording]. New York, NY: Nonesuch.

Roads, C. (1996). The Computer Music Tutorial. Cambridge, MA: MIT Press.

Rosenboom, D. (2003). Propositional Music from Extended Musical Interface with the

Human Nervous System. Annals of the New York Academy of Sciences 999,
263-271.

Scheinin, R. (2008, April 28). Laptop Orchestras Bridge the Distance. Mercury News

http://slork.stanford.edu/media/2008/rim-of- wire/mercury2008.4.28.html
(accessed October 29, 2012).

Society for Electro-Acoustic Music in the United States (2013). SEAMUS.

http://www.seamusonline.org/?page_id=5 (accessed January 28, 2013).

Sloboda, J. A., (Ed.). (1988). Generative Processes in Music: The Psychology of

Performance, Improvisation and Composition. Oxford: Clarendon Oxford, United
Kingdom.

Smallwood, S., Trueman, D., Cook, P. R., & Wang, G. (2008). Composing for Laptop

Orchestra. Computer Music Journal 32(1), 9-25.

Straebel, V. (2008). Technological Implications of Phill Niblock’s Drone Music, Derived

from Analytical Observations of Selected Works for Cello and String Quartet on
Tape. Organised Sound 13(3), 225-235.

Sun, C. (2006). The theatre of minimalist music: Analysing La Monte Young’s
"composition 1960 #7". Context, 37-50.
http://ezproxy.fiu.edu/login?url=http://search.proquest.com/docview/1465028?acco
untid=10901 (accessed March 13, 2013).

Supper, M. (2001). A Few Remarks on Algorithmic Composition. Computer Music
Journal 25(1), 48-53.

 39

Wang, G., Essl, G., & Penttinen, H. (2008). Do Mobile Phones Dream of Electric
Orchestras?. RILM Abstracts of Music Literature, EBSCOhost (accessed April 25,
2013).

Whittall, A. (2012). Music Reviews: The Reich Stuff. Musical Times 153, 119-120.

http://ezproxy.fiu.edu/login?url=http://search.proquest.com/docview/
 1266688383?accountid=10901 (accessed April 26, 2013).

Wooller, R., Brown, A. R., Miranda, E. R., Berry, R., & Diederich, J. (2005). A

Framework for Comparison of Processes in Algorithmic Music Systems.
Proceedings of the Generative Arts Practice, Sydney, Australia. Creativity and
Cognition Studios Press, 109-124.

Worth, P., & Stepney S. (2005). Growing Music: Musical Interpretations of L-systems.
Applications of Evolutionary Computing, 545-550.

 40

APPENDICES

Objective-C code for iGrooving

APPENDIX A

View Controller Header File

#import <UIKit/UIKit.h>
#import <AudioToolbox/AudioToolbox.h>
#import <AVFoundation/AVFoundation.h>
#import <AVFoundation/AVAudioPlayer.h>

@interface ViewController : UIViewController <UIAccelerometerDelegate,
AVAudioPlayerDelegate>

{
 float px;
 float py;
 float pz;

 int numSteps;
 BOOL isChange;
 BOOL isSleeping;

 IBOutlet UILabel *viewTime;
 NSTimer *viewTimeTicker;

 NSTimer *soundsTimer;

 int timeSpent;

 AVAudioPlayer *playerPad;
 AVAudioPlayer *KickPlayer;
 AVAudioPlayer *BOWL_1;
 AVAudioPlayer *HIT_1;
 AVAudioPlayer *BOWL_2;
 AVAudioPlayer *HIT_2;
 AVAudioPlayer *BOWL_3;

 41

 AVAudioPlayer *HIT_3;
 AVAudioPlayer *BOWL_4;
 AVAudioPlayer *HIT_4;
 AVAudioPlayer *BOWL_1B;
 AVAudioPlayer *MHIT_1;
 AVAudioPlayer *MHIT_2;
 AVAudioPlayer *MHIT_3;

 BOOL activityHasStarted;

 IBOutlet UIButton *startButton;
 IBOutlet UIButton *stopButton;
 IBOutlet UIButton *resetTimerButton;
 IBOutlet UIButton *resetStepCounterButton;

}

@property (retain, nonatomic) IBOutlet UILabel *stepCountLabel;

- (IBAction)reset:(id)sender;
- (IBAction)stop;
- (IBAction)start;
- (IBAction)resetTimer;
- (IBAction)playSound;
-(IBAction)ResetAllPressed;

- (void) showActivity;

-(NSString*)GetPrettyTime;

@end

 42

APPENDIX B

View Controller Implementation File

#import "ViewController.h"

#define kUpdateFrequency 60.0

@implementation ViewController
@synthesize stepCountLabel;

BOOL isInvalid = false;

AVAudioPlayer *player;

- (IBAction)start
{
 if(activityHasStarted)
 return;

 activityHasStarted = YES;
 viewTimeTicker = [NSTimer scheduledTimerWithTimeInterval:1.0 target:self
selector:@selector(showActivity) userInfo:nil repeats:YES];

 isInvalid = false;

 //[player play];
 startButton.hidden = YES;
 stopButton.hidden = NO;
 resetTimerButton.hidden = YES;
 //resetStepCounterButton.hidden = YES;
}

- (IBAction)stop
{
 if (! isInvalid)
 {
 [viewTimeTicker invalidate];
 isInvalid = true;

 [self StopSoundClips];
 activityHasStarted = NO;
 resetTimerButton.hidden = NO;
 //resetStepCounterButton.hidden = NO;

 43

 }
}

- (IBAction)resetTimer
{
 viewTime.text = @"0:00:00";
 timeSpent = 0;
 activityHasStarted = NO;
 startButton.hidden = NO;
 stopButton.hidden = YES;
 //resetStepCounterButton.hidden = YES;
 resetTimerButton.hidden = YES;
}

- (IBAction)reset:(id)sender
{
 numSteps = 0;
 self.stepCountLabel.text = [NSString stringWithFormat:@"%d", numSteps];
}

- (IBAction)playSound
{
 //CFBundleRef mainBundle = CFBundleGetMainBundle();
 //CFURLRef soundFileURLRef;
 //soundFileURLRef = CFBundleCopyResourceURL(mainBundle, (CFStringRef)
@"PAD1", CFSTR ("wav"), NULL);
 //UInt32 soundID;
 //AudioServicesCreateSystemSoundID(soundFileURLRef, &soundID);
 //AudioServicesPlaySystemSound(soundID);
}

- (void) showActivity
{
 //int currentTime = [viewTime.text intValue];
 //int newTime = currentTime + 1;
 //viewTime.text = [NSString stringWithFormat:@"%d", newTime];
 viewTime.text = [self GetPrettyTime:timeSpent++];
}

- (void)didReceiveMemoryWarning
{
 [super didReceiveMemoryWarning];
 // Release any cached data, images, etc that aren’t in use.
}

 44

#pragma mark - View lifecycle

- (void)viewDidLoad
{
 [super viewDidLoad];

 // Enable listening to the accelerometer
 [[UIAccelerometer sharedAccelerometer] setUpdateInterval:1.0 / kUpdateFrequency];
 [[UIAccelerometer sharedAccelerometer] setDelegate:self];

 px = py = pz = 0;
 numSteps = 0;

 self.stepCountLabel.text = [NSString stringWithFormat:@"%d", numSteps];

 [self InitializeSoundClips];

 [UIApplication sharedApplication].idleTimerDisabled = YES;

 NSError *setCategoryErr = nil;
 NSError *activationErr = nil;
 [[AVAudioSession sharedInstance] setCategory: AVAudioSessionCategoryPlayback
error:&setCategoryErr];
 [[AVAudioSession sharedInstance] setActive:YES error:&activationErr];
}

- (void)viewDidUnload
{
 [self setStepCountLabel:nil];
 [super viewDidUnload];
 // Release any retained subviews of the main view.
 // e.g. self.myOutlet = nil;
}

- (void)viewWillAppear:(BOOL)animated
{
 [super viewWillAppear:animated];
}

- (void)viewDidAppear:(BOOL)animated
{
 [super viewDidAppear:animated];
}

- (void)viewWillDisappear:(BOOL)animated

 45

{
 [super viewWillDisappear:animated];
}

- (void)viewDidDisappear:(BOOL)animated
{
 [super viewDidDisappear:animated];
}

-
(BOOL)shouldAutorotateToInterfaceOrientation:(UIInterfaceOrientation)interfaceOrient
ation
{
 // Return YES for supported orientations
 return (interfaceOrientation != UIInterfaceOrientationPortraitUpsideDown);
}

// UIAccelerometerDelegate method, called when the device accelerates.
-(void)accelerometer:(UIAccelerometer *)accelerometer didAccelerate:(UIAcceleration
*)acceleration
{

 float xx = acceleration.x;
 float yy = acceleration.y;
 float zz = acceleration.z;

 float dot = (px * xx) + (py * yy) + (pz * zz);
 float a = ABS(sqrt(px * px + py * py + pz * pz));
 float b = ABS(sqrt(xx * xx + yy * yy + zz * zz));

 dot /= (a * b);

 if (dot <= 0.82)
 {
 if (!isSleeping)
 {
 isSleeping = YES;
 [self performSelector:@selector(wakeUp) withObject:nil afterDelay:0.3];
 numSteps += 1;

 // 2. the first step triggers the timer to start and the timer displays hours, minutes,
seconds and milliseconds
 if(numSteps == 1)
 {
 [self start];

 46

 }
 self.stepCountLabel.text = [NSString stringWithFormat:@"%d", numSteps];

 [self CheckStepTriggers:numSteps];

 //CFBundleRef mainBundle = CFBundleGetMainBundle();
 //CFURLRef soundFileURLRef;
 //soundFileURLRef = CFBundleCopyResourceURL(mainBundle, (CFStringRef)
@"KICK", CFSTR ("wav"), NULL);
 //UInt32 soundID;
 //AudioServicesCreateSystemSoundID(soundFileURLRef, &soundID);
 //AudioServicesPlaySystemSound(soundID);

 NSString *soundFilePath = [[NSBundle mainBundle]
pathForResource:@"KICK" ofType:@"wav"];
 NSURL *soundFileURL = [NSURL fileURLWithPath:soundFilePath];
 player = [[AVAudioPlayer alloc] initWithContentsOfURL:soundFileURL
error:nil];

 [player play];

 NSLog(@"%d steps", numSteps);

 }
 }
 px = xx; py = yy; pz = zz;
}

- (void)wakeUp
{
 isSleeping = NO;
}
- (void)dealloc
{
 [stepCountLabel release];
 [super dealloc];
}
#pragma pretty timer
-(NSString*)GetPrettyTime :(int)duration
{
 int hours = duration / 3600;
 int remainingMinutes = duration % 3600;

 int minutes = remainingMinutes / 60;
 int seconds = remainingMinutes % 60;

 47

 NSString *minutesString = [NSString stringWithFormat:@"%d", minutes];
 if(minutes < 10)
 minutesString = [NSString stringWithFormat:@"0%d", minutes];

 NSString *secondsString = [NSString stringWithFormat:@"%d", seconds];
 if(seconds < 10)
 secondsString = [NSString stringWithFormat:@"0%d", seconds];

 return [NSString stringWithFormat:@"%d:%@:%@",hours, minutesString,
secondsString];

}
#pragma STEPS and TRIGGERS
-(void)CheckStepTriggers:(int)stepCount
{
 //1. triggering multiple audio files at different step counts and have them loop
throughout out the performance.
 /*STEPS and TRIGGERS
 STEP 1 - BOWL_1
 STEP 325 - HIT_1
 STEP 650 - BOWL_2
 STEP 975 - HIT_2
 STEP 1350 - BOWL_3
 STEP 1725 - HIT_3
 STEP 2100 - BOWL_4
 STEP 2475 - HIT_4
 STEP 2850 - BOWL_1
 STEP 3225 - MHIT_1
 STEP 3550 - MHIT_2
 STEP 3875 - MHIT_3*/

 switch (stepCount)
 {
 case 1:
 [BOWL_1 play];
 break;
 case 325:
 [HIT_1 play];
 break;

 case 650:
 [BOWL_2 play];
 break;

 48

 case 975:
 [HIT_2 play];
 break;

 case 1350:
 [BOWL_3 play];
 break;

 case 1725:
 [HIT_3 play];
 break;

 case 2100:
 [BOWL_4 play];
 break;

 case 2475:
 [HIT_4 play];
 break;

 case 2850:
 [BOWL_1B play];
 break;

 case 3225:
 [MHIT_1 play];
 break;

 case 3550:
 [MHIT_2 play];
 break;

 case 3875:
 [MHIT_3 play];
 break;

 default:
 break;
 }
}
-(void)InitializeSoundClips
{
 NSString *soundFilePathKick = [[NSBundle mainBundle]
pathForResource:@"KICK" ofType:@"wav"];
 NSURL *soundFileURLKick = [NSURL fileURLWithPath:soundFilePathKick];

 49

 KickPlayer = [[AVAudioPlayer alloc] initWithContentsOfURL:soundFileURLKick
error:nil];
 [KickPlayer prepareToPlay];

 NSString *soundFilePathPad = [[NSBundle mainBundle] pathForResource:@"PAD2"
ofType:@"wav"];
 NSURL *soundFileURLPad = [NSURL fileURLWithPath:soundFilePathPad];
 playerPad = [[AVAudioPlayer alloc] initWithContentsOfURL:soundFileURLPad
error:nil];
 playerPad.numberOfLoops = -1; //infinite
 [playerPad prepareToPlay];

 NSString *BOWL_1SoundPath = [[NSBundle mainBundle]
pathForResource:@"BOWL_01" ofType:@"wav"];
 BOWL_1 =[[AVAudioPlayer alloc] initWithContentsOfURL:[NSURL
fileURLWithPath:BOWL_1SoundPath] error:NULL];
 BOWL_1.delegate = self;
 BOWL_1.numberOfLoops = -1;
 BOWL_1.volume = 1;
 [BOWL_1 prepareToPlay];

 NSString *BOWL_2SoundPath = [[NSBundle mainBundle]
pathForResource:@"BOWL_02" ofType:@"wav"];
 BOWL_2 =[[AVAudioPlayer alloc] initWithContentsOfURL:[NSURL
fileURLWithPath:BOWL_2SoundPath] error:NULL];
 BOWL_2.delegate = self;
 BOWL_2.numberOfLoops = -1;
 BOWL_2.volume = 1;
 [BOWL_2 prepareToPlay];

 NSString *BOWL_3SoundPath = [[NSBundle mainBundle]
pathForResource:@"BOWL_03" ofType:@"wav"];
 BOWL_3 =[[AVAudioPlayer alloc] initWithContentsOfURL:[NSURL
fileURLWithPath:BOWL_3SoundPath] error:NULL];
 BOWL_3.delegate = self;
 BOWL_3.numberOfLoops = -1;
 BOWL_3.volume = 1;
 [BOWL_3 prepareToPlay];

 NSString *BOWL_4SoundPath = [[NSBundle mainBundle]
pathForResource:@"BOWL_04" ofType:@"wav"];
 BOWL_4 =[[AVAudioPlayer alloc] initWithContentsOfURL:[NSURL
fileURLWithPath:BOWL_4SoundPath] error:NULL];
 BOWL_4.delegate = self;
 BOWL_4.numberOfLoops = -1;

 50

 BOWL_4.volume = 1;
 [BOWL_4 prepareToPlay];

 NSString *HIT_1SoundPath = [[NSBundle mainBundle]
pathForResource:@"HIT_01" ofType:@"wav"];
 HIT_1 =[[AVAudioPlayer alloc] initWithContentsOfURL:[NSURL
fileURLWithPath:HIT_1SoundPath] error:NULL];
 HIT_1.delegate = self;
 HIT_1.numberOfLoops = -1;
 HIT_1.volume = 1;
 [HIT_1 prepareToPlay];

 NSString *HIT_2SoundPath = [[NSBundle mainBundle]
pathForResource:@"HIT_02" ofType:@"wav"];
 HIT_2 =[[AVAudioPlayer alloc] initWithContentsOfURL:[NSURL
fileURLWithPath:HIT_2SoundPath] error:NULL];
 HIT_2.delegate = self;
 HIT_2.numberOfLoops = -1;
 HIT_2.volume = 1;
 [HIT_2 prepareToPlay];

 NSString *HIT_3SoundPath = [[NSBundle mainBundle]
pathForResource:@"HIT_03" ofType:@"wav"];
 HIT_3 =[[AVAudioPlayer alloc] initWithContentsOfURL:[NSURL
fileURLWithPath:HIT_3SoundPath] error:NULL];
 HIT_3.delegate = self;
 HIT_3.numberOfLoops = -1;
 HIT_3.volume = 1;
 [HIT_3 prepareToPlay];

 NSString *HIT_4SoundPath = [[NSBundle mainBundle]
pathForResource:@"HIT_04" ofType:@"wav"];
 HIT_4 =[[AVAudioPlayer alloc] initWithContentsOfURL:[NSURL
fileURLWithPath:HIT_4SoundPath] error:NULL];
 HIT_4.delegate = self;
 HIT_4.numberOfLoops = -1;
 HIT_4.volume = 1;
 [HIT_4 prepareToPlay];

 NSString *MHIT_1SoundPath = [[NSBundle mainBundle]
pathForResource:@"MHIT_01" ofType:@"wav"];
 MHIT_1 =[[AVAudioPlayer alloc] initWithContentsOfURL:[NSURL
fileURLWithPath:MHIT_1SoundPath] error:NULL];
 MHIT_1.delegate = self;
 MHIT_1.numberOfLoops = -1;

 51

 MHIT_1.volume = 1;
 [MHIT_1 prepareToPlay];

 NSString *MHIT_2SoundPath = [[NSBundle mainBundle]
pathForResource:@"MHIT_02" ofType:@"wav"];
 MHIT_2 =[[AVAudioPlayer alloc] initWithContentsOfURL:[NSURL
fileURLWithPath:MHIT_2SoundPath] error:NULL];
 MHIT_2.delegate = self;
 MHIT_2.numberOfLoops = -1;
 MHIT_2.volume = 1;
 [MHIT_2 prepareToPlay];

 NSString *MHIT_3SoundPath = [[NSBundle mainBundle]
pathForResource:@"MHIT_03" ofType:@"wav"];
 MHIT_3 =[[AVAudioPlayer alloc] initWithContentsOfURL:[NSURL
fileURLWithPath:MHIT_3SoundPath] error:NULL];
 MHIT_3.delegate = self;
 MHIT_3.numberOfLoops = -1;
 MHIT_3.volume = 1;
 [MHIT_3 prepareToPlay];

}
-(void)StopSoundClips
{
 if([playerPad isPlaying])
 [playerPad stop];

 if([KickPlayer isPlaying])
 [KickPlayer stop];

 if([BOWL_1 isPlaying])
 [BOWL_1 stop];

 if([HIT_1 isPlaying])
 [HIT_1 stop];

 if([BOWL_2 isPlaying])
 [BOWL_2 stop];

 if([HIT_2 isPlaying])
 [HIT_2 stop];

 if([BOWL_3 isPlaying])
 [BOWL_3 stop];

 52

 if([HIT_3 isPlaying])
 [HIT_3 stop];

 if([BOWL_4 isPlaying])
 [BOWL_4 stop];

 if([HIT_4 isPlaying])
 [HIT_4 stop];

 if([BOWL_1B isPlaying])
 [BOWL_1B stop];

 if([MHIT_1 isPlaying])
 [MHIT_1 stop];

 if([MHIT_2 isPlaying])
 [MHIT_2 stop];

 if([MHIT_3 isPlaying])
 [MHIT_3 stop];

 KickPlayer.currentTime = 0;
 playerPad.currentTime = 0;
 BOWL_1.currentTime = 0;
 HIT_1.currentTime = 0;
 BOWL_2.currentTime = 0;
 HIT_2.currentTime = 0;
 BOWL_3.currentTime = 0;
 HIT_3.currentTime = 0;
 BOWL_4.currentTime = 0;
 HIT_4.currentTime = 0;
 BOWL_1B.currentTime = 0;
 MHIT_1.currentTime = 0;
 MHIT_2.currentTime = 0;
 MHIT_3.currentTime = 0;
}
-(IBAction)ResetAllPressed
{
 timeSpent = 0;
 numSteps = 0;
 viewTime.text = [self GetPrettyTime:timeSpent++];
 self.stepCountLabel.text = [NSString stringWithFormat:@"%d", numSteps];

}
@end

	Florida International University
	FIU Digital Commons
	5-21-2013

	iGrooving: A Generative Music Mobile Application for Runners
	Daniel J. Lepervanche
	Recommended Citation

	iGrooving: A Generative Music Mobile Application for Runners

