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ABSTRACT OF THE DISSERTATION 

THROUGH WAFER 3D VERTICAL MICRO-COAXIAL PROBE FOR HIGH FREQUENCY 

MATERIAL CHARACTERIZATION AND MILLIMETER WAVE PACKAGING SYSTEMS 

by 

Justin Boone 

Florida International University, 2013 

Miami, Florida 

Professor Shekhar Bhansali, Major Professor 

This work presents the development of an in-plane vertical micro-coaxial probe using bulk 

micromachining technique for high frequency material characterization. The coaxial probe was 

fabricated in a silicon substrate by standard photolithography and a deep reactive ion etching 

(DRIE) technique. The through-hole structure in the form of a coaxial probe was etched and 

metalized with a diluted silver paste. A co-planar waveguide configuration was integrated with 

the design to characterize the probe. The electrical and RF characteristics of the coaxial probe 

were determined by simulating the probe design in Ansoft’s High Frequency Structure Simulator 

(HFSS). The reflection coefficient and transducer gain performance of the probe was measured 

up to 65 GHz using a vector network analyzer (VNA). The probe demonstrated excellent results 

over a wide frequency band, indicating its ability to integrate with millimeter wave packaging 

systems as well as characterize unknown materials at high frequencies.  

 The probe was then placed in contact with 3 materials where their unknown permittivities 

were determined. To accomplish this, the coaxial probe was placed in contact with the material 

under test and electromagnetic waves were directed to the surface using the VNA, where its 

reflection coefficient was then determined over a wide frequency band from dc-to -65GHz. Next, 

the permittivity of each material was deduced from its measured reflection coefficients using a 

cross ratio invariance coding technique. The permittivity results obtained when measuring the 
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reflection coefficient data were compared to simulated permittivity results and agreed well. These 

results validate the use of the micro-coaxial probe to characterize the permittivity of unknown 

materials at high frequencies up to 65GHz.   
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CHAPTER 1 

INTRODUCTION 

1.1 High Frequency Material Characterization for Microwave Electronics 

 The responses of materials to electromagnetic fields are determined by the displacement 

of free and bounded electrons and by the orientation of their atomic moments (magnetic fields) 

[1]. Furthermore, by applying microwave signals to materials under test, electrical properties of 

these materials can be determined at higher frequencies [2]. As a result, characterizing materials 

properties at high frequencies using microwave methods has a long history dating back to the 

early 1950’s and has now been used in a variety of applications ranging from communication 

devices to military satellite services such as: antennas, micro-sensor systems, ground penetrating 

radars (GPR), printed circuit board (PCB) applications, etc [3-8]. In recent years, the 

development of high-speed, high-frequency circuits and systems require complete understanding 

of materials functioning at high frequencies [1]. Additionally, as communication and broadband 

technologies rapidly evolve, traditional FR-4 materials may no longer behave well in the high 

frequency range due to the increase in signal loss and transmission delays [3]. These numerous 

aspects make the characterization of materials properties at high frequencies an important field of 

study in microwave electronics. Figure 1.1 illustrates the concept of material characterization 

using microwave methods [9]. 
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Figure 1.1 Illustration of High Frequency Material Characterization using Microwave Methods. 

1.2 Current Methods of Microwave Material Characterization 

 Microwave methods for materials characterization generally fall into two categories: 

non-resonant methods and resonant methods. Figure 1.2 (a) and (b) illustrates examples for the 

two methods of material characterization at microwave frequencies. Non-resonant methods are 

often used to get general knowledge of electromagnetic properties over a frequency range [10]. 

Resonant methods are used to get accurate knowledge of dielectric properties at a single 

frequency or several discrete frequencies [11]. The two methods are also often used in 

combination for complete accuracy. By modifying the general knowledge over a certain 

frequency range obtained from the non-resonant method with the accurate knowledge at several 

frequencies obtained from the resonant method, accurate knowledge of materials properties over 

a frequency range can be obtained. However, this work is focused on the non-resonant method 

due to the increasing demand for determining the electromagnetic properties of materials at high 

frequencies over a wide bandwidth.   
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Figure 1.2 Example illustrations of (a) Open Circuit Reflection Method [1](Non-Resonant) and  
(b) Split Resonator Method [12] (Resonant) for microwave material characterization. 

1.2.1 Non-Resonant Methods 

 The non-resonant methods for microwave material characterization consist of reflection 

and transmission/reflection. In the reflection method, electromagnetic waves are directed to a 

material under test (MUT), and its properties are deduced from the reflection coefficient at a 

defined reference plane. In the transmission/reflection method, the material under test is placed in 

a piece of transmission line and its properties are deduced from the reflection of the material and 

transmission through the material. Under the reflection method either the permittivity or 

permeability of a material can be determined; whereas in the reflection/transmission method both 

permittivity and permeability can be deduced. Only the reflection coefficients of the MUT’s in 

this work were deduced; therefore the reflection method was utilized.  

 To determine the reflection coefficient of a MUT, researchers have developed the use of 

coaxial probes [13, 14]. These probes consist of an inner diameter made of a conductor and an 

outer diameter made of a dielectric. A final outer conductor is also used which surrounds the 

outer dielectric and acts as a ground connection. Figure 1.3 shows an example of a coaxial probe 

being used for high frequency material characterization. In this approach, the coaxial probe is 

placed on the MUT and the reflection coefficient is determined by applying a signal to the inner 
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conductor from a microwave source. Although this probe method does provide an ease of 

measurement and durability when applied to rough surfaces due to its non-invasive approach, it 

has produced the need for improvement in several different aspects. For example, reducing the 

size of the probe can increase the frequency range of characterization, but can create extreme 

fabrication issues on the device. Other areas suggest the need for improvement of the probes 

when determining the properties of a material over larger surface areas; which would increase the 

need for larger input/output ratios of coaxial probes within a device structure [15].  Another 

important aspect is the high cost for current material characterization methods; which requires 

companies to pay an expensive rate for each measurement taken due to the high cost of 

equipment. These areas of improvement introduces the need to develop a low-cost coaxial probe 

on the micro/nano scale, that can be easily fabricated, capable of producing high I/O ratios, and 

compatible with commercial devices. In addition, designing the probe to also be used in 

millimeter wave packaging systems introduces its dual capabilities for a variety of future 

commercial application. A detailed overview on different coaxial probe techniques used for high 

frequency material characterization is presented in the next chapter.   

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.3 Illustration of Coaxial Probe being used for high frequency material characterizations.  
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1.3 Goals and Objectives 

 The primary objective of this research work is to develop through wafer 3D Vertical 

Micro-Coaxial Probe for high frequency material characterization and millimeter wave packaging 

systems. The following goals were identified as being pertinent to achieving the objective. 

 (a) To determine a suitable model and design for the vertical micro-coaxial probe. A 

probe design has to be developed based on the calculated RF specifications for its selected range 

of frequency. To function at high frequencies, the electrical length of the probe should be kept as 

short as possible. 

 (b) To simulate the behavior and RF characteristics of the coaxial probe. The reflection 

coefficient and transducer gain of the coaxial probe has to be simulated over the desired 

frequency band using a software simulator. Understanding the RF performance of the probe will 

provide more accurate measurements of the unknown materials. 

 (c)  To fabricate the micro-coaxial probe using standard photolithography techniques. In 

order to fabricate the probe, processing techniques will be used such as: Deep Reactive Ion 

Etching, Photolithography, Electron Beam Deposition, and a novel metallization process. 

 (d)  To perform RF characterization of probe by determining its signal transmission 

capabilities – The reflection coefficient and transducer gain of the probe has to be measured using 

microwave methods and instrumentation. The measurement setup will include a probe station, 67 

GHz coplanar waveguide probes, a V-band cable, and a vector network analyzer. These results 

will verify the probes ability to be used as vertical transitions and integrated with millimeter wave 

packaging systems.     

 (e) To integrate the micro-coaxial probe with unknown high frequency materials for 

characterization. In order to determine the permittivity of the unknown materials, the probe has to 

be coupled to the materials and its reflection coefficients can be deduced from measuring. Once 
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the reflection data of the materials are determined, the permittivity of the unknown materials is 

extracted using a cross-ratio variance method.   

  To accomplish the aforementioned goals, a 3D vertical micro-coaxial probe with an 

inner and outer diameter of 100µm and 300µm was designed in a 300 µm thick silicon substrate. 

Ansys’s High Frequency Structure Simulator (HFSS) [16] was used to model and design the 

coaxial probe. HFSS was also used to simulate the RF characteristics and electrical behavior of 

the probe; where the reflection coefficient and transducer gain was evaluated from dc-to-67 GHz 

with a center frequency at 60 GHz. The fabrication of the coaxial probe was achieved using 

standard photolithography techniques; while the metallization of the probe was accomplished by 

implementing a novel via filling process. Additionally, a high frequency measurement setup was 

used verify the probes signal transmission abilities and to measure the reflection data of the 

unknown materials.  

1.4 Dissertation Organization 

 A brief overview of material characterization followed by a theoretical background of 

coaxial probes and simulation, fabrication, and measurement techniques for high frequency 

material characterization is presented in detail.  

 In Chapter 2, a detailed background study on high frequency characterization of various 

materials is discussed and the current state of the art for coaxial probes is presented in Chapter 3. 

In addition, the need for an improved coaxial probe design that can characterize materials at 

higher frequencies that includes dual capabilities is addressed.   

 In Chapter 4, the model and the design of the probe are presented; including the theory, 

simulation, and fabrication of the coaxial probe. The actual probe design and fabrication 

techniques used in this research are discussed in detail. This chapter also discusses in detail the 
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RF characterization of the probe including its reflection coefficient and transducer gain using a 

high frequency setup. 

 Chapter 5 describes the application of the micro-coaxial probe with unknown materials 

for high frequency characterization, including the design and explanation of how materials will be 

characterized using the coaxial probe. The data interpretation of reflection measurements using 

the cross ratio invariance technique is also discussed in this chapter along with the simulation 

results of the probe in contact with chosen materials. It also describes the material 

characterization measurement setup and reports the final results on the measured reflection 

coefficient of the materials and the extracted permittivity. 

 Chapter 6 concludes the research work by summarizing the development of the vertical 

micro-coaxial probe and provides suggestions for future direction of the through wafer probe for 

material characterization and high frequency packaging applications.    

  

  

  

  

   

 

 

 

 

 

 

 



8 
 

CHAPTER 2 

BACKGROUND OF LITERATURE 

 The concept of using coaxial probes in contact with a variety of materials to characterize 

its electrical properties at high frequencies has been highly investigated in the past due to the 

concept of using probes in a non-invasive method [17]. More specifically, this approach has been 

advantageous in the development of broadband methods used to determine the permittivity of 

materials at microwave frequencies. Furthermore, this approach of material characterization has 

led to major research advancements in areas such as: biological tissue characterization, soil 

characterization, food material characterization, and high frequency material characterization [18-

21]. By integrating an open-ended coaxial probe with various tissues and materials, the 

permittivity of these materials are determined and then used for the development of future 

commercial applications. This chapter provides detailed descriptions of coaxial probes being used 

to characterize different materials for a variety of applications.       

2.1 Coaxial Probes for Biomedical Material Characterization 

 In the past, researchers have developed a continuing interest in methods for measuring 

the permittivity of biological materials at high frequencies. In particular, the characterization of 

biological tissues and human blood and epidermis at microwave frequencies, has been in high 

demand as a means to improve diagnosis, detection, and treatment of hazardous cells such as 

breast cancer [22]. Additionally, knowing the dielectric properties of these biological tissues can 

be critical for biomedical applications in determining its interaction with electromagnetic waves.          

 For example, in previous work, researchers used a coaxial probe for broadband 

microwave characterization of biological tissues in animals and humans [23]. In this work to 

determine the permittivity, the technique required using distilled water as a reference material. 

This design utilized an open-ended coaxial line with an outer diameter of 1.45 mm for measuring, 
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and the MUT was placed on the probe tip for an in vivo approach. Next, the probe system was 

calibrated using the standard open, short, and load to remove all reflections present in the cable 

over a broad frequency range from 2-to-18 GHz. Then the reflection coefficient of the cable was 

measured to normalize the system, followed by the calibration of Methanol and distilled water. 

After calibration, the researchers measured commercial beef and chicken materials to demonstrate 

the sensitivity of the system prior to testing biological tissues. Lastly, the complex permittivity of 

normal and malignant breast tissues from the human body were measured between 2 and 18 GHz 

and then compared to results obtained by previous researchers. The complex permittivities of 

normal tissues from animals were also measured in this work. Their results confirmed that the 

measurement technique was successful when compared to other researchers; however, some 

discrepancies were seen at lower frequencies due to the potential porosity in the normal biological 

substance. More importantly, the researchers developed a cost effective, non-invasive and easy to 

use technique for diagnostic and therapeutic applications of microwaves in biomedicine [23]. 

With this advancement, the researchers produced a fast detecting technique that accurately 

differentiated between the dielectric properties of normal and cancerous biological tissues.        

 In [24], researchers analyzed an open-ended coaxial line as a sensor for in vivo 

measurements of the complex permittivity of biological substances. This method integrated the 

coaxial probe as a sensor with a computer-controlled network analyzer to offer a convenient and 

accurate measurement technique. The coaxial probe used in their design was selected with an 

outer diameter of 0.83 cm and was placed in contact with the MUT in a non-destructive manner. 

Next, to improve the accuracy of the reflection coefficient measurements, the coaxial line sensor 

was calibrated using a standard error correction procedure [25]. For the probe to be compatible 

with in vivo measurements, the ground plane surrounding the line opening had to be eliminated. 

This was accomplished placing a flexible metal foil at the end of the line, backed by a thick piece 

of rubber slab. In this work, distilled water and methanol were also measured as references to 
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evaluate their method and to estimate any uncertainties in permittivity data. Then, the researchers 

measured the biological tissues of a female feline (cat) under anesthesia from 10 MHz to 1 GHz. 

For measuring purposes, various tissues of the cat were surgically exposed such as: skeletal and 

smooth muscle, liver, kidney, spleen, and pancreas. Results from the obtained permittivities 

agreed well when compared with reference data. With this design, researchers were able to 

develop a high speed measurement method for the permittivity of biological tissues, which 

assisted in the future determination of energy deposition in living subjects. This discovery was 

essential in evaluating effective and controllable induction of local hyperthermia in the treatment 

of cancer [24].       

 Previous researchers have also studied the dielectric properties of freshly excised normal 

and diseased breast tissue specimens using open ended coaxial probes [26]. This work 

investigated the sensing volume of two flange-free coaxial probes with diameters of 2.2 mm and 

3.5 mm. Both probes were analyzed for low and high-water-content tissue using standard liquids 

that demonstrated permittivities similar to breast tissues. These tissues were characterized using 

the coaxial probes in a conventional in vivo approach over a microwave frequency range from 1-

to-20 GHz. Rather than used traditional solid breast tissue specimens, modeled liquid tissue 

stimulants such as ethanol, methanol, and deionized water represented low, intermediate, and 

high values of expected permittivities for breast tissues. To reduce error levels from the measured 

reflection coefficients of the modeled tissues, an innovative graphical technique was used based 

on Cole-Cole diagrams. Researchers discovered that tissue specimens with thicknesses of at least 

3.0 mm yielded the most accurate measurements with the 3.58-mm-diameter probe. Furthermore, 

the 2.2-mm-diameter probe demonstrated the most accurate measured results when the specimen 

thickness was at least 1.5 and 5 mm, respectively. These results revealed that for each probe 

design, between 1-20 GHz, the above mentioned specimen thicknesses should be used in order to 

eliminate permittivity errors greater than 10% [26]. Therefore, by employing radio waves or 
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microwaves to detect the electrical properties of breast tissues via coaxial probes, an even faster 

and more accurate method to detect the low and high-water-content of a variety of biological 

tissues was developed. Improving this technology has lead to a more positive approach for the 

treatment of breast cancer cells. 

 In other work, the electrical characterization of human blood using an open ended coaxial 

line was investigated to improve the interaction with biological tissues for diagnosis [27]. This 

method utilized an equivalent electrical circuit model to represent the coaxial line for measuring. 

The circuit model was designed to be equivalent to an open ended coaxial probe with inner and 

outer radii of 1.5 mm and 5 mm respectively. The filling of the probe was chosen to be Teflon, 

with a dielectric constant of 2.1 and a characteristic admittance of 0.02S. This circuit mainly 

included capacitances which represented the fringing field effects in the material used to fill the 

line and in the biological tissue. First, the circuit performance was investigated in regards to 

frequency and permittivity and then used to measure the performances of human blood from 1 

MHz-to-1 GHz. The results obtained when analyzing the behavior of the circuit model revealed 

the highest error of percentage on the permittivity of the tissues would be 16%. For the 

conductivity of the tissues, the highest precision level was 8% respectively. This established the 

variance in the data that might have been seen when characterizing the tissues. Next, the elements 

of the electrical equivalent circuit were determined using reference liquids such as water, 

methanol, ethanol, and glycerol. Later, measurements were made on fresh heparined human blood 

(8000 units per 20ml) at 21˚C using the open ended coaxial line [27]. Results agreed well with the 

model and demonstrated that precise measurements of dielectric parameters of human blood 

could be made using the coaxial line with minimal percentage error from 1 MHz-to-1 GHz. These 

results assisted in the improvement of consistently measuring biological tissues and liquids of 

human blood at microwave frequencies. 
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 Other advancements in biological tissue characterization using open ended coaxial probes 

included broadband permittivity measurements of human epidermis (the epidermis: the outer skin 

layer) [28]. In this approach, a 1 mm diameter coaxial probe was used to help increase 

measurement bandwidth and to enhance the spatial resolution. This probe dimension allowed the 

human epidermis to be characterized using microwave measurements up to 110 GHz. Using HP 

vector network analyzers the measurement system was first calibrated based on cross-ratio 

transformation with three standard materials: distilled water, methanol, and air. Researchers then 

used pork to discriminate the permittivities between muscle tissue and fat tissues. To improve the 

accuracy of the measured tissues, the influence of sample thickness was then studied, where it 

revealed that the sample thickness should at least be double the length of the coaxial probe. 

Lastly, the skin permittivity of a human palm and wrist were measured using the 1 mm coaxial 

probe up to 110 GHz. Both parts of the skin were completely dried for measurements and a total 

of 10 measurements were taken for the palm and wrist, to provide mean values. Their results 

revealed that a higher permittivity was obtained for the human wrist than the palm; although, the 

main difference between the material data was due to their water content and the thickness of the 

epidermis, which was revealed using a Cole-Cole parameter method. The achieved results helped 

predict that in order to measure the permittivity of a biological tissue thinner than 1mm a coaxial 

probe with reduced dimensions is recommended. This work helped explain the reasons for high 

water content in cells that exist beneath thin epidermis of the wrist and palm skin, which further 

advanced research for determining the electrical properties of these biological tissues for 

diagnosis.                            

2.2 Coaxial Probe for Permittivity of Food Materials 

 Research advancements have also been made when using the coaxial probe to determine 

the permittivity or dielectric properties of food materials. Determining these electrical 
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characteristics proved to be important to investigate these materials when they were exposed to 

electromagnetic fields during microwave cooking, other RF processes, and microwave dielectric 

heating [29]. In this work, characterizing these food materials was accomplished using an open-

ended coaxial-line probe combined with sample temperature control equipment. By integrating 

the probe with the temperature equipment, researchers were able to measure the permittivities of 

liquids, semisolid, and pulverized food materials as a function of frequency and temperature. The 

permittivities of these materials were measured over a wide frequency range up to 10 GHz from 

5˚C to 100˚C using a Hewlett Packard dielectric probe. Each sample was placed in a stainless 

steel sample cup, 18.95mm inside diameter and 19mm deep, which controlled the temperature of 

the materials. Next, the permittivities of a homogenized macaroni and cheese dinner, ground 

whole wheat, and apple juice where measured. The measured results revealed diverse frequency 

and temperature dependent behavior of the food materials. Furthermore, determining the 

electrical behavior of these materials, proved to be valuable for further investigations on the 

influence different forms of water had on food materials, when measurements were taken over 

wider ranges of frequency and temperature.                 

2.3 Coaxial Probe for Soil Permittivity Measurements  

 Another important area of research where coaxial probes have proven to be useful is in 

determining the permittivity of ground soil, which has been vital for many applications such as 

precision agriculture [30], geophysics [31], and subsurface sensing [32]. By removing soil 

samples from the ground and conducting reflectance measurements, researchers are able to 

determine accurate permittivities at relatively shallow depths.     

 For example, in previous work, researchers used an in-situ approach with a novel probe 

design to measure the complex permittivity of soils without removing the samples from the 

ground [33]. In this method, by eliminating the removal of the soils from the ground, researchers 
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were able to reduce sample preparation time, cost, and errors due to changes in the soil density. 

To accomplish this, a pilot hole with a diameter of 1 inch was created in the soil using an auger, 

and a coaxial probe with the same diameter, was then inserted into the hole at the desired depth to 

measure the permittivity. To calibrate the measurement system, a cross-ratio invariance technique 

was used, which required determining the dielectric properties of three known standard materials 

prior to measuring the soil samples. During calibration however, a thin water layer formed over 

the soil due to the depth of the hole. This affected the calibration because when the probe was 

placed at the bottom of the hole, additional reflections appeared from the water layer. To prevent 

this error, the coaxial opening was placed to the side of the probe were the side wall of the soil 

which did not have any water present, was measured. Next, the permittivities of soil samples were 

determined using the coaxial probe from 10 MHz to 1 GHz. The dielectric constant of the soil 

was determined when a sample was taken inside the small 1-2 inch bored hole. The results 

revealed that by implementing an improved calibration method, the accuracy of the extracted soil 

permittivity values improved as well. This improved system can be important for future 

developments in ground material characterization. 

 In other efforts, a novel in-situ coaxial probe, created using multi-conductor transmission 

line, was used to measure the electric and magnetic properties of Hawaiian volcanic soil for 

ground penetrating radar (GPR) applications in a broadband frequency range from 50 MHz to 1 

GHz [34]. The probe was first made by combining two monopole antennas with parasitic 

elements, into one device to achieve reflection and transmission measurements. The TEM 

transmission line inside the probe consisted of five conducting rods, two ground plates, and two 

coaxial feed connectors. The center conductors of both coaxial connectors were coupled by a 

metal rod with a diameter of 1/8 inch. Unlike traditional calibration methods for an in-situ 

measurement approach, the probe system then used the S-parameters from sample free and loaded 

devices to reduce any reflection errors during measuring. Next, soil samples collected at a typical 
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volcanic red soil are in Oahu, Hawaii were completely dried, and prepared for measuring. A 

vector network analyzer was then connected to the two-port probe to measure the reflection of the 

materials over the broad frequency range. Following the reflection measurements, the S-

parameters of the soil were converted into complex permittivity values using a unique post 

processing algorithm. Lastly, the measurement technique and post processing algorithm were 

both verified and evaluated by numerical simulations, which verified the permittivity results 

obtained from the volcanic samples. By developing a successful measuring technique combined 

with a unique processing algorithm to characterize soil materials, advancements have been made 

that will assist in the investigation of underground environments and objects.     

2.4 Coaxial Probe for High Frequency Material Characterization 

 Additionally, research studies have also been done in the past on the characterization of 

materials at high frequencies [35, 36]. With the need to determine the electrical properties of 

materials at microwave frequencies increasing, the ability to generate high frequency data on 

these samples have became a critical asset for RF designers and microwave products [37]. 

Characterizing these materials provides information on its temperature tolerance, humidity level, 

thickness, dielectric constant, and attenuation [38]. Furthermore, being able to measure the 

dielectric constants of various materials as the frequency range increases, has improved material 

functionality in applications such as broadband circuit designs, electronic device modules, and 

micro-electro-mechanical systems sensors.  

 To accomplish this, researchers have again used a coaxial probe as a method to determine 

the electrical properties of materials. For example, an open-ended coaxial probe was used to 

conduct non-destructive measurements on the complex permittivity and permeability of 

microwave absorbing materials [39]. Researchers used a new frequency-varying method, in 

which the frequency was varied to measure the reflection coefficient and then to extract its 
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permittivity. The probe had a diameter of 1.22 mm and consisted of a flange on the end which 

was used to contact the microwave absorbing sheets. To remove any frequency responses in the 

test setup, the cross-ratio transformation technique was implemented where the probe system was 

calibrated using a short-open-liquid calibration procedure. In this process, distilled water was 

used as a liquid during calibration. The calibration results were then verified by measuring the 

permittivity of a non-magnetic methanol liquid. Following this, the feasibility of the frequency-

varying method was tested by measuring the permittivity of two radar absorbing sheets over a 

broad frequency range from dc-to-20 GHz. The results proved that the frequency-varying method 

was successful when measuring the electrical properties of the microwave absorbing materials 

over a broad frequency range. The success of this study was of vital importance for applications 

that needed to determine the permittivity of magnetic materials such as ferrite.     

 In summary, using coaxial probes to characterize materials in areas such as biological 

tissues, food characterization, soil material characterization, and high frequency material 

characterization have been investigated and reported. The success of these studies has led to 

advance development in early cancer cell detection, identifying behavior of food materials when 

exposed to electromagnetic fields, soil materials for GPR applications, and material 

characterization for RF and microwave products.  

 However, this work is mainly focused on using coaxial probes to characterize materials at 

high frequencies, which will be used in a variety of applications ranging from communication 

devices to military satellite services such as: antennas, micro-sensor systems printed circuit board 

(PCB) applications. By applying a microwave signal to the material surface, the electrical 

properties of each material were determined at high frequencies. The method in this work differs 

from those mentioned in the above sections, because majority of the coaxial probes used to 

measure material permittivities were commercially designed and consisted of lengths and 

diameters in the millimeter range. The 1.2mm probe diameter prevented the probe systems from 
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measuring beyond 30 GHz, limiting its frequency range of operation. Furthermore, the wide 

coaxial structure reduced the probing surface area of the material when attempting to measure its 

electrical behavior. The coaxial probe presented in this work however, was designed in low-cost 

silicon substrate on a micrometer scale in terms of its length and inner and outer diameters. By 

reducing the size of the probe, the frequency range of detection increased tremendously, reaching 

nearly 65 GHz. Additionally, this allowed multiple devices to be fabricated on a single substrate 

and then used to measure the reflection coefficient of materials at several locations on the surface. 

This provided a more accurate determination of the materials since its average reflection 

coefficient values over the entire surface were being used to extract the permittivity. The next 

chapter discusses in detail, vertical coaxial probes previously designed on a micrometer scale that 

operate at high frequency levels.   
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CHAPTER 3 

CURRENT STATE OF THE ART 

 Several vertical coaxial probes have been designed over the past years, as researchers 

have implemented them in multi-level packaging systems as interconnects and/or transitions. The 

purpose of the probes in these systems is to successfully transmit RF signals from one package 

layer to the next. In doing this, the probe device allows the systems to maintain electrical 

connection in between layers. However, the design of a vertical coaxial probe for use as an 

interconnect/transition as well as a device to characterize materials at high frequencies, has yet to 

be investigated.  

3.1 Previous Coaxial Probe Designs 

 For example, a vertical quasi-coaxial structure was designed for 3-D packages using 

anodized aluminum substrates [40] as shown in Figure 3.1. In this paper, researchers designed a 

3-D coaxial structure to evaluate its high frequency performance up to 25 GHz. The design 

included a coax made of 200µm thick anodized aluminum within a 500µm thick aluminum 

substrate as the dielectric, and copper as the conductor. The dimensions of the coax included an 

inner diameter of 300µm and outer diameter of 1mm with a depth of 150µm. This design 

however, did not include metal on the outer surface of the aluminum. To properly connect the 

input signal from port 1 directly to port 2, a microstrip-to-coaxial via hole transition was used, 

which avoided any wire bonding or lead line. The device included two microstrip lines attached 

to the center metal of the coax and served as the input and output ports. It is important to note that 

both the coaxial vias and the microstrip lines were formed using electroplating. The design also 

included a microstrip line on an additional bottom aluminum substrate, which was used to 

properly transmit an RF signal between ports. This bottom microstrip line was then connected to 
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port 1 and 2 using solder balls, whereas the top and bottom substrate layers were connected using 

flip-chip bonding and conductive epoxy.  

 

 

 

 

 

 

Figure 3.1 Illustration of quasi-coaxial structure designed for multilayer packaging applications  
[40]. 

 The measured results in this work ranged from 0.1-to-25 GHz and the reflection 

coefficient along with the transducer gain of the device was determined. A result comparison was 

done between the design dimensions mentioned earlier and an inner and outer diameter of 300µm 

and 1.2mm. The results demonstrated that the coaxial structure with the smallest inner diameter 

had a better transducer gain (-0.75dB) but exhibited poor reflection coefficient (-12.4dB). 

Although the results proved to be sufficient for packaging use, the device did not reach a high 

frequency level for signal transmission and was not compatible for use in material 

characterization. Also, the use of solder balls, flip-chip bonding, and epoxy created the need for 

thermal compression on the substrate which may have damaged the surface and reduce the device 

performance. Therefore, a vertical coaxial device that could avoid these design issues would be 

critical for this area of work.    

 Previous work has also demonstrated the design of a vertical coaxial probe integrated in a 

bulk silicon wafer [41]. In this work, a 3D coaxial probe was designed on a 150µm thick silicon 

substrate and evaluated up to 80 GHz. To reduce the diameter ratio of the probe, 
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benzocyclobutene (BCB), a polymer, was included in the silicon substrate and used as the 

dielectric material which included an outer diameter of 240µm. The inner diameter was made of 

gold to reduce metal losses and was 75µm. The coax structure had a characteristic impedance of 

44 Ohms which corresponded to a diameter ratio of 3.2. A 12µm layer of BCB was also added on 

the top side of the substrate as well as a layer of gold. The gold layer was placed over the entire 

top side of the substrate and not within the coaxial center. This layer was used to include the 

microstrip line on top of the probe which was designed to transmit an electromagnetic signal, and 

served as the ground conductor for the coaxial structure. The figure below shows the vertical 

coaxial probe design used in this work.       

 

 

 

 

 

 

 

Figure 3.2 Vertical coaxial probe with integrated BCB polymer material as dielectric [41]. 

 The results demonstrated a transducer gain less than -0.2dB up to 80 GHz and a reflection 

coefficient less than -15dB over the entire frequency range from dc-to-80 GHz. These results 

were excellent proving the ability to transmit an RF signal successfully; however, the data was 

only simulated and not measured. The device was in the process of being fabricated, but without 

the measured data, the performance of this device is only an estimation of its full capability. 

Furthermore, the design was not fully a coax because the researchers used a thin layer of gold on 

top of the surface as an outer conductor.      
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 Additionally, previous researchers have also used a novel flip chip approach to develop a 

vertical coaxial probe [42]. Figure 3.3 shows the flip-chip probe design which was used to 

integrate with packaging systems as interconnects. This work included the use of C-shaped 

ground bump pads to complete the desired coaxial structure. The design consisted of a substrate 

and a chip with separate gold C-shaped ground bump pads and wall thicknesses of 50µm at a 

height of 30µm, which were used for ground connections. The substrate was made of a 254µm 

thick Alumina layer and the chip material was gallium arsenide with a thickness of 100µm. The 

two C-shaped ground bump pads included 50µm gold inner conductors which provided the 

signal, and an outer conductor of 120µm. The C-shaped ground bumps were then placed in 

opposite directions of one another to ensure full ground and signal connection, which formed the 

vertical coaxial structure.  Both the chip and the substrate included coplanar waveguide (CPW) 

lines that were used during measuring to determine its performance at high frequencies. The 

width of the CPW lines were 50µm and the gap distance was 24µm for the substrate and 34µm 

for the chip. Port 1 of the model was probed at the CPW feed of the substrate and port 2 was at 

placed at the feed line of the chip, which provided S-parameter measurements for the structure. 

The inner to outer conductor ratio of 5 served as the best performance of the system 

demonstrating a reflection coefficient better than -25dB and a transducer gain less than -0.4dB up 

to 40 GHz.     
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Figure 3.3 Novel vertical coaxial probe design used for flip-chip interconnect applications [42]. 

 Although results demonstrated the probe having good signal transmission abilities, 

however, the thermo-compression method used during bonding caused deformation in the bump 

designs. This included a reduction in the bump height and a shift in the inner and outer conductor 

radii. These discrepancies played a major role on the operating frequency range of the probe 

which only reached up to 40 GHz.  

 Furthermore, a vertical coaxial probe design with an integrated wire bond approach was 

developed in [43] for system-in-package applications up to 20 GHz. In this work, the system was 

designed to interface with standard wire bond pad configurations and included a coaxial inner 

diameter of 79µm and outer diameter of 254µm. The inner conductor consisted of silver-plated 

copper clad steel with an insulating layer of polytetrafluoroethylene, while the outer conductor 

was created with a solid tubular layer of copper. Researchers designed two topologies for the 

coaxial cables; placing them adjacent from one another and stacked on top of one another. The 

top and bottom silicon substrates included sets of metal coplanar trace lines (ground-signal-

ground). The center lines served as the signal trace and the two outer lines served as the ground 

traces. The silicon substrates included etched trenches in front of the traces which held the coaxial 

cables in contact with the coplanar lines. The outer metal of the cables were then etched back to 
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allow the center metal to stick out for center line connection. The outer metal then connected with 

the outer ground trace lines within the trench. The wire bonds were then used to connect the 3 

trace lines together on both of the stacked and side by side silicon substrates. However, the 

stacked topology required the coaxial cables to be curved under in order to make a good electrical 

connection. Figure 3.4 below shows the vertical coaxial probe designs used in this work with 

integrated wire bonding.     

 

 

 

 

 

 

Figure 3.4 Three-dimensional vertical coaxial probe designs used for system-in-package  
applications. (a) Stacked dies and (b) Adjacently placed dies [43]. 

 The design was able to achieve a transducer gain of less than -0.7dB from 0-to-20 GHz 

and a reflection coefficient less than -23dB; which demonstrated good behavior compared to 

traditional wire bond techniques. However, in order to connect the inner conductor to the signal 

trace line, and to connect the outer conductor to the ground trace lines, an epoxy was used. This 

could have reduced the performance of the system because the strength of the connection was not 

very reliable due to the connection method; which prevented the device from behaving even 

better. Furthermore, losses present in the cable from bending the line for substrate connection, as 

well as losses in the wire bonding technique reduced the operating frequency of the device, 

causing it to perform well only up to 20 GHz.  



24 
 

 As an improvement to previously designed coaxial probes, in this work, a low-cost 

through-wafer vertical micro-coaxial probe has been developed. This design includes a coaxial 

probe designed in a 300µm thick high resistivity silicon substrate. The use of this substrate 

allowed the probe to be design and fabricated at a lower cost than previous work, while 

increasing its ability to easily integrate with commercial devices by utilizing a well known 

dielectric. To reduce the propagation of first order modes, the probe was designed with an inner 

and outer diameter of 100µm and 300µm, corresponding to a 1:3 inner/outer diameter ratio. 

Although the dimensions of the probe are of similar size when compared to the previous designs, 

however, by reducing the component size on the silicon surface, the coaxial probe achieved a 

higher density of I/O connections than most. By introducing more coaxial probes on the surface, 

the signal transmission quantity of the probe increased. Most importantly, this reduction in 

component size allowed the probe to operate a higher frequency range with successful 

transmission abilities up to 65 GHz, while surpassing that of previous designs. Furthermore, 

unlike previous work where thermo-compression and/or solder bonding were required, this work 

eliminates the need for that process by implementing coplanar waveguide (CPW) feeds on both 

sides of the substrate; allowing the coaxial probe to be removable and re-used for simultaneous 

connections on multiple devices. The elimination of these processes has prevented the coaxial 

probe from experiencing any deformation in the design topology, as well as providing it with a 

strong resistance to structural failure. Lastly, while all of the coaxial probes mentioned above 

where designed to be used as interconnects/transitions in multi-level packaging systems, the 

micro-coaxial probe in this work was designed to characterize materials unknown materials at 

high frequencies as well as integrate with packaging technologies. The table below provides a 

comparison between previous coaxial probe designs and the micro-coaxial probe in this work. 
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Table 3.1 Comparison of Previous Coaxial Probe Designs  

References Probe Dimensions 
(Diameter) 

Frequency Range Application 

[40] Inner: 300µm 
Outer: 1mm 

Length: 500µm 

dc-to-25GHz 3D Packaging Technologies 

[41] Inner: 75µm 
Outer: 240µm 

Length: 150µm 

dc-to-80GHz 
(simulated) 

MM-Wave 3D Integration 
Technologies 

[42] Inner: 50µm 
Outer: 120µm 

Length: 254µm 

dc-to-40GHz Flip Chip Interconnects 

[43] Inner: 79µm 
Outer: 254µm 

Length: 549µm 

dc-to-20GHz System-in-Package (SiP) 
Applications 

Our Design [44] Inner: 100µm 
Outer: 300µm 

Length: 300µm  

dc-to-65GHz High Frequency Material 
Characterization Packaging 
Systems (Dual Application) 

 From the chart, it can be seen that the dimensions of the probe design presented in this 

work are comparable to those of previous designs. However, our probe design does surpass the 

frequency range of operation for majority of the designs with the exception of [41]; which was 

designed to operate up to 80GHz but only provided simulated data for verification. Therefore, it’s 

still difficult to determine its limitations of operation. Most importantly, the design in this work is 

not only to be used in high frequency packaging systems, but mainly to characterize materials at 

high frequencies. This micro-coaxial probe design was a contribution to the current state of the art 

because it included a dual application which enhanced the capabilities of previous designs. The 

table below shows the advantages and disadvantages of the previous coaxial probe designs 

compared to those of this work.  
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Table 3.2 Advantage and Disadvantage Comparison of Probe Designs 

References Advantages Disadvantages 

[40] Novel embedded anodized aluminum design. 
Easier and cost effective fabrication method. 

Good signal transmission abilities. 

Performance decreased beyond 
10Ghz. 

Large design reduced operating 
frequency range and density of I/O 

connections. 
[41] Short length and high frequency range of 

operation. 
Cost effective materials. 

Good signal transmission up to 80GHz. 

Not verified w/measured data. 
Difficult fabrication method due to 
multiple materials being integrated. 

 
[42] Novel vertical coax flip-chip design. 

Small coax structure increased I/O 
connections. 

Fairly high operating frequency. 

Thermo-compression during bonding 
caused deformation in device 

geometry and reduced performance. 

[43] Novel stacked and adjacent die-to-die design. 
Increased signal speeds for SiP applications. 

Can easily integrate in packages. 

Long design reduced operating 
frequency range. 

Required use of epoxy to make 
connection. 

Topology reduced I/O connection on 
surface. 

Our Design 
[44]  

Novel design flushed in silicon. 
Dual functionalities. 

Easier fabrication method and cost effective. 
High frequency range of operation. 

Miniaturized coax provided higher density of 
I/O connections.  

Can integrate with all commercial packaging 
applications. 

Signal transmission ability needs 
improvement. 

Probe length reduced operating 
frequency range. 

  

3.2 Impact of Metal Mining for Micro-Coaxial Probe 

 As mentioned earlier, the micro-coaxial probe in this work is made of two well known 

metals: silver and gold. Although these metals were specifically chosen because of their 

reputation as good conductors, a more detailed investigation must be included on the impact these 

metals have on the environment and on people (social). The direct impact of these metals on the 

community comes from the small-scale mining (SSM) industry. It has been discovered that 

several health and safety problems arise in the environment, which impact human life due to low-

tech operations that are employed by unskilled and poverty-stricken workers [45]. These 

problems include areas such as: excessive pollution, chemical contamination, inadequate mine 

safety, and disease [46-48]. For example, several gold mining sites globally have significantly 
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impacted environmental pollution in communities due to acid mine drainage from waste rock 

dumps and piles, being 3 times the amount in Australia and 1.5 times in Canada [49]. In addition, 

the release of green house gas emissions has also become a major environmental issue for gold 

mining due to the extensive use of fossil fuels such as diesel; which typically release about 21.7 

kgCO2-e/t ore or about 11.5tCO2-e/kg Au [49]. As a means for improvement, in recent years, 

mining industries have used environmental indicators such as the Life Cycle Assessment (LCA) 

to assess their performance, which allows them to evaluate their environmental performance 

associated with their process and helps support decision making [50]. However, from a social 

perspective, mining these metals brings employment, land rent, royalties, and has provided 

educational facilities and development projects for the community; but also brings hazardous 

diseases that directly affect the people [51]. These effects from both an environmental and social 

perspective are discussed in detail in the following sections.        

3.2.1 Environmental Impact  

 To many residents, mining is viewed as a very dangerous activity which is accompanied 

by even more risky environmental impacts. Although residents in urban areas are considered the 

largest consumers of mining in the country, their view of mining in this aspect is the strongest 

[52]. People in rural communities however, view mining as an alternative source of employment 

and welcome it more than others. However, all residents believe that if mining is located in the 

community, it should be practiced in a healthy environment with everyone sharing equal benefits. 

To accomplish this goal, three fundamental considerations must be included: the environmental 

impacts should not pose unacceptable risk to associated communities; the mining company and 

the community must be transparent and effective with communications; and mine development 

must bring a complete benefit to the community [53]. In doing this, citizens must be willing to 

share their opinions in areas that directly affect their futures, which can help mining companies 

avoid sustainability risk of both their operations and the community. It’s also important that when 
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mining companies include the community in planning, development, and operation and post-

closure, they select a diverse group to ensure all aspects of the group is covered [53]. 

Nevertheless, mining companies eventually pose problems for communities when these factors 

are overlooked. 

 In most countries with flourishing small-scale gold mining industries, the most significant 

problem reported by the community was mercury (Hg) pollution due to complications in mineral 

contamination. For example, in 1999, the U.S. Department of Health and Human Services 

recognized mercury as a main global contaminant known to cause deleterious neurological, 

developmental and other health effects [54]. This Hg contamination occurs as a result of a process 

known as amalgamation; where mercury is applied to gold-aggregated sediment and then burned 

in open air, resulting in the release of inorganic mercury into the environment [55]. This then 

transforms the mercury into toxic methylmercury, which is deadly to plant and aquatic life, and 

harmful to human health. Furthermore, it is one of the few pollutants that cause human death due 

to food contamination, and based on studies in 1992, it was estimated that over 1,400 humans 

died from Hg poisoning while over 20,000 were afflicted in the last 40 years; equaling mortality 

rates ranging from 7% to 11% [56]. Therefore, the seriousness of Hg contamination has led to 

more advanced studies aiming to control this emission issue, which has resulted in a decrease in 

global Hg inputs to the environment. For instance, in the early 1970’s estimates of anthropogenic 

Hg emissions ranged from 10,000 to 30,000 t.yr-1; however, in the late 1980’s emission estimates 

decreased to 6,000 to 13,500 t.yr-1, indicating the impact of effective Hg control policies [56]. 

Another important problem reported is environmental degradation in small-scale mining because 

it requires a continuous amount of pitting and trenching. This causes an abundant of forest tracts 

to be removed while rivers are diverged in search for ore. When this occurs, most of the 

excavated land is not broken properly and it results in potholed landscapes, which poses a risk to 

people and homes in nearby communities due to possible landslides and the development of large 
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sink holes. Lastly, there is also a major problem with the declining health and safety of industry 

workers due to poor environmental conditions such as poor ventilation, lightning, hygiene and 

sanitation, and excess dust in shafts [45]. This is because workers are more willing to place 

themselves in a higher degree of personal risk in order to maximize profits; which bring a higher 

pay grade and a more hopeful sense of employment security. For example, underground mine 

workers face extreme risk because of poor ventilation and roof supports, which result in cave-ins 

and fires ignited by lanterns.           

 Therefore, major efforts must be made to improve the environmental management of 

mining practices across the country. Without improvement, the industry will continue to seem 

detrimental to further development needed to sustain a healthy environment. It will take 

assistance from both the community and government to control the situation before it becomes 

unsolvable.     

3.2.2 Social Impact  

 The type of impact that mining these metals have on the people is both a positive and 

negative viewpoint when related to the community. While SSM does provide an abundance of 

jobs in developing communities and make significant contributions to educational projects, it 

does however create an extremely unsafe environment for people living in these rural areas. In 

most cases, these sites are responsible for wide spreads of waterborne diseases due to the 

excessive trenching and pit construction [57]. This occurs because minimal reclamation is done 

on site, allowing water to accumulate in potholes and ditches, which becomes contaminated and 

serves as breeding grounds for disease carrying mosquitoes. Furthermore, due to the lack of 

women rights, females are continuously overworked and underpaid in most poverty stricken 

countries [58]. Most importantly however, the exploitation of child labor is the biggest issue that 
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mining industries are faced with today. Where conditions are the most sever, children are more 

likely to become involved in SSM activities; while educational opportunities are limited.  

 Consequently, although mining industries has the ability to assist with the development 

of small areas, it also puts the people directly in the path of harmful diseases and unlawful 

working conditions. To reduce the environmental and social impacts of mining these metals in 

communities, an extreme amount of preparation has to be done at a very fast pace. For this work, 

developing a method to recycle the metals being used (silver and gold), would assist in reducing 

the amount of drilling and trenching taking place in mining communities.  

3.2.3 Designing Coaxial Probe with Recyclable Metals  

 To eliminate the amount of adverse environmental and social issues that mining has over 

its life cycle, devices such as the one in this research must be designed for end-of-life; having the 

ability to be disassembled and recycled with a design that can be used over an extended period of 

time. This end-of-life design concept was adopted from Principle 11 of The 12 Principles of 

Green Engineering which states, “Products, processes, and systems should be designed for 

performance in a commercial “afterlife” [59].” In this strategy, next-generation designs are 

encouraged in its early stages, to be based on recovered components with known properties, 

reducing the need for acquiring and processing raw materials. By incorporating this commercial 

process into this initial design, the processes, products, and systems can be recycled and reused as 

functional components at their highest value level [59]. This concept would also immediately 

reduce the amount of trenching and digging needed for manufactures, by developing products 

using remanufacturing and refurbished metals. This can be accomplished by doing the following: 

(1) using recyclable metals in the current market; (2) avoiding polluting elements that interfere 

with the recycling process; (3) avoiding threaded metal inserts in plastic; and (4) avoiding plated 

metals [60]. By addressing these ways to possibly reuse metals in the coaxial probe device, it 
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would extend its projected lifetime, decrease the need for virgin metals, and consequently 

decrease the need for a new product [61].      
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CHAPTER 4 

DESIGN AND RF CHARACTERIZATION OF MICRO-COAXIAL PROBE 

 Proper modeling has to be done to determine the RF characterization of a coaxial probe, 

the electromagnetic distribution within the inner and outer coax, and the impedance at the device 

input. The modeling and design of the micro-coaxial probe presented in this chapter were done 

using HFSS. The finite element method solver provided simulation results on the electromagnetic 

distribution and the RF behavior of the coaxial probe. Using coplanar waveguide feeding 

mechanisms, the reflection coefficient and transducer gain of the probes were evaluated over a 

wide frequency band. In this frequency range, the probes needed to demonstrate excellent signal 

transmission between two ports. The verification of the probes was extremely important for 

implementation in the high frequency material characterization presented in Chapter 4 and future 

packing systems applications. Thus, in this chapter the modeling, simulation, fabrication, and 

characterization of the probes are presented.  

4.1 Modeling of Micro-Coaxial Probes for RF Characterization  

 As mentioned above, the key to successfully characterizing materials at high frequencies 

is the ability to utilize a miniature open ended coaxial probe to determine their RF performance. 

Doing this provides the electrical properties of materials at low and extremely high frequencies. 

To ensure the best coaxial performance, it is recommended that a high resistive material be used 

as the outer dielectric to reduce substrate losses and surface wave propagation [62]. For this 

reason, this coaxial probe was designed flush in a high-resistive (3,000 Ωcm) 300µm thick silicon 

substrate to surround the probe in a low-loss environment. This material was also chosen due to 

its low-cost and easy integration abilities with commercial applications. Figure 4.1 illustrates the 

3D model of the vertical micro-coaxial probe flushed in the silicon substrate.  
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 The inner conductor of the micro-coax, which provides the signal to the system, was 

made of silver. The outer conductor was also made of silver at 150µm width and was used as a 

metal ground to complete the probes metal/dielectric/metal topology. This particular metal was 

chosen because of its high level of conductivity which easily allows the flow of electrical current, 

generating an efficient RF signal flow. The ground width had to be optimized in order to achieve 

accurate signal transmission. By adjusting the radius of the outer conductor layer, the probes can 

operate at V-band frequencies.  

Figure 4.1 3D Vertical Micro-Coaxial Probe flush through silicon substrate.  

4.2 Coaxial Probe Design Theory 

 When using silicon as a dielectric however, the inner/outer coaxial ratio must be carefully 

determined to avoid frequency limitations and to achieve desired performance. These frequency 

limitations are due to the propagation of TEnm modes which are caused by the probes circular 

waveguide structure. The first higher order mode to propagate in the coax is the TE11; where n=1 

refers to the number of circumferential variations and m=1 refers to the number of radial 
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variations. Within the probe, this mode then becomes the dominant circular waveguide mode to 

appear [63]. To reduce the propagation of this mode, the ratio of the coaxial probe has to be 

significantly reduced. In this case, the coax was designed with an inner and outer diameter of 

100µm and 300µm. This ratio was chosen because HFSS simulation results proved the micro-

coax achieved proper signal transmission through the desired extremely high frequency band. The 

inner/outer conductor ratio was also determined in order to calculate the characteristic impedance 

of the coaxial probe. This impedance takes into account not only the fixed dielectric ratio but also 

the dielectric constant of the known material; which in this case was silicon.  According to [41], 

the equation below can be used to determine the characteristic impedance of a coaxial line with a 

known dielectric constant. Corresponding to a 1:3 inner/outer diameter ratio within a silicon 

dielectric, characteristic impedance (Zo) of 19.3Ω was calculated for the micro-coaxial probe: 

          

          (4.1) 

 

where εr is the dielectric constant of silicon, Rout is the radius of the outer dielectric, and Rin is the 

radius of the inner conductor. In this equation, a dielectric constant of 11.7 was used to represent 

high resistivity silicon. The value that is calculated from the characteristic impedance equation is 

important as it demonstrates a mismatch that can occur between the source used during measuring 

and the coaxial probe. Although the characteristic impedance of the coaxial probe is lower than 

that of the 50Ω source impedance, it is not guaranteed that it will create signal loss due to its 

electrical length. In order to reduce the possible impedance mismatch, it is suggested that the 

electrical length of the probe be kept as short as possible [64]. This length is mainly controlled by 

the depth and effective wavelength of the coaxial probes. Since this probe was designed flush in a 

silicon substrate, the thickness of the substrate helped determine the depth of the coaxial device.  

 For this reason, a substrate thickness of 50µm was originally chosen for this work, but 

had to be changed to 300µm because of its ease of fabrication and metallization. Using this 
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physical length (thickness) and the effective wavelength of silicon at 60 GHz, its electrical length 

was then determined. Using Equation 2 below, an electrical length of 72˚ was calculated for the 

micro-coaxial probe. This length however, is not as short as preferred, but due to issues and 

limitations that arose during the metallization of the probes, it was chosen as a more feasible 

thickness.   

 

                      (4.2) 

 

In the equation above, d represents the physical length of the coax and λeff is the effective 

wavelength of silicon at 60 GHz. A center frequency of 60 GHz was chosen for the micro-coaxial 

probe due to its ability to possibly integrate with a 60 GHz passive millimeter wave antenna in 

future work. The effective wavelength of the probe is extremely important because it takes into 

account not only the substrate of use at this frequency, but also the complex surface impedance of 

the metal [65]. This determination allows the probes to respond better at higher frequencies due to  

         

               

           (4.3) 

 

its shorter wavelengths. The equation below was used to calculate the effective wavelength of 

silicon to be 1.5mm at its center frequency. In this equation c represents the speed of light in free 

space, f is the center frequency, and εr is the dielectric constant of silicon.  

 While increasing the electrical length of the probe did improve its metallization abilities, 

however, it reduced the overall input impedance of the coaxial system. As stated before, the 

coaxial probes characteristic impedance was 19.3Ω which was mismatched to the source 

impedance but was minimized by implementing a short length. However, when the probes are 

connected to the 50Ω vector network analyzer (VNA) using a length of 300µm, the overall input 

impedance of the coaxial probes is expected to decrease due to impedance mismatching, which 
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reduces the performance of the entire system causing major signal losses to occur. The figure 

below illustrates an equivalent circuit model of the coaxial probe with its given length, connected 

to a 50Ω load.  

 

 

 

 

 

  

 

Figure 4.2 Equivalent Circuit Model of Coaxial Probe connected to 50Ω load. 

Typically, the closer the device under test is matched to the source impedance, the more accurate 

the results. From the equivalent circuit model shown above, Equation 4 below was used to 

calculate the input impedance of the coaxial probe when connected to a 50Ω load. 

       

               (4.4) 

 

Where Zo is the characteristic impedance of the transition (19.3Ω) and ZL is the 50Ω load, an 

input impedance of 10 Ω was calculated. This calculated value was not purely real and extremely 

low compared to the source impedance, and increased the probability of losses being present at 

the input. This created a major concern for the RF performance of the coaxial probe because 

major losses could reduce the operational bandwidth of the probe. However, it was decided to 

design the probe with a length of 300µm and determine its performance using HFSS results.  

4.3 Coplanar Waveguide Addition to Micro-Coaxial Probes 

 In order to perform RF characterization on the micro-coaxial probe in this work, an 

efficient feeding mechanism was used to achieve minimal loss during measuring. For this reason, 

Coplanar Waveguide (CPW) lines were implemented in this design to make a proper connection 
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with the coaxial structure and to measure its RF performance. Figure 4.3 illustrates the CPW line 

integration with the vertical micro-coaxial probes that will be used for RF characterization. These 

lines are being widely used today due to their ability to provide electrical contacts for high 

frequency MMIC applications [66]. Their ground-signal-ground (G-S-G) topology made of a 

conductive metal allows electrical current to pass through its signal line and is then connected to 

the device to measure its RF performance.  

 The key to designing the proper CPW lines for a device is being able to control the 

capacitance that exist between the signal and ground lines. This gap distance is mostly based on 

the thickness of the substrate being used, the width of the signal line, and the frequency of 

operation. Controlling these factors is critical to achieve a characteristic impedance of 50Ω. 

Usually, as the thickness of the substrate decreases, so does the gap distance of the CPW lines; 

and the opposite applies for an increased substrate thickness. The width of the signal line is also 

important in achieving the desired 50Ω match because it is designed for a chosen center 

frequency; which is a constant that helps establishes the initial gap distance. Considering all of 

the above mentioned design characteristics enhances the probability of having minimal losses 

when transmitting a signal throughout a device.  

   

 

 

 

 

 

 

 

 

 

Figure 4.3 3D Vertical Micro-Coaxial Probe with CPW Line Integration for RF Characterization  
and inset of bottom side CPW feed with additional bridge connection. 
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 In order to characterize the Micro-Coaxial probe between two ports, CPW lines were 

integrated at the top and bottom of both the center and outer conductors as shown in the above 

image. The width of the signal lines were 100µm and the ground lines were 160µm. The signal 

lines were connected to the center conductor and transmitted the RF signal, and the ground lines 

provided a reference for the outer conductor. However, to account for the open circuit that 

appeared in the outer conductors, silver bridges were implemented to complete top and bottom 

ground connections. The gap distance between the signal and grounds line was optimized to 

control the capacitance, and 5µm provided the best results over the desired frequency band. The 

CPW line configuration was carefully designed to match 50 Ω avoiding any impedance 

mismatching with the wave ports during simulation. By matching the CPW lines to 50Ω wave 

port, the lines matched the impedance of the 50Ω load shown in the equivalent circuit model. 

This allowed the coaxial probes to have minimal losses present at the integration of the coaxial 

system and the source during measuring.  

4.4 Vertical Micro-Coaxial Probe Simulation 

 By implementing CPW lines at both ports, G-S-G probes can be used to measure micro-

coaxial probes performance. The return loss, transducer gain, and electromagnetic distribution 

within the probe, will be used to for its RF characterization. The conditions used in the simulation 

setup (boundary conditions and wave ports) are shown in Figure 4.4 (a) below, followed by the 

reflection coefficient results of the probe results in Figure 4.4(b). In Figure 4.4 (a) it can be seen 

that a radiation box was used for the boundary conditions of the probe simulation. The probe 

simulation was excited using two wave ports placed at the edges of the radiation box for accurate 

results.   
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Figure 4.4 Micro-Coaxial Probe Simulation. (a) Conditions and (b) Reflection Coefficient results. 

 The simulated results indicate that the probe has a reflection coefficient lower than -10dB 

from dc-to-65 GHz. Results also show a resonance near 60 GHz which is due to the probe length 

being close to a λ/4 or 90˚. This was achieved because when the probe was designed, a center 

frequency of 60 GHz was chosen with a length of ~70˚ as mentioned above; which allowed the 
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reflection behavior to resemble that of a λ/4 design. With this performance, this proves that the 

probe is well matched to 50Ω over a wide band and will have minimum reflected power at port 1. 

This is true because S11 measures the RF signal seen at port 1, received from port 1. Therefore, 

the reflection coefficient data is much lower than 0dB over the frequency band, indicating that the 

signal is being fully transmitted from port 1 and not reflecting back. The above results prove that 

this probe can provide accurate measurement results when used for high frequency material 

characterization up to roughly 70 GHz. The data also shows that it can be successfully integrated 

as multi-layer transitions for mm-wave packaging systems up to 65 GHz. This probe also has a 

resonant frequency at ~58 GHz, which is important for future use as a measuring device for the 

passive 60 GHz antenna as mentioned in earlier chapters. The figure below illustrates the 

transducer gain obtained during simulation. 

 

 

 

 

 

 

 

 

 

 

Figure 4.5 Simulated Transducer Gain for the Vertical Micro-Coaxial Probe. 

  The results above indicate that the probe achieved a transducer gain of less than -0.8dB 

from dc-to-65 GHz and -0.4dB at 60 GHz. This proves that the probe has excellent signal 

transmission over a wide frequency range by having minimal reflections present at port 1 and 

receiving maximum signal at port 2. This is the case because S21 measures the RF signal seen at 
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port 2, received from port 1. Therefore, the transducer data is as close to 0dB as possible, 

indicating that most of the signal transmitted from port 1 is being received at port 2 without any 

losses. The closer the transducer gain is to zero, the better the coaxial probe will perform. It is 

also important to observe the electromagnetic behavior within the coax as the signal is being 

transmitted. This observation was also done using the HFSS software. The EM distribution within 

the probe is shown below in Figures 4.6 (a) and (b). 

 

     

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 4.6 Simulated electromagnetic distribution. (a) Along the coaxial probes signal lines and 

(b) Inside the Micro-Coaxial Probe. 
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 The illustrations above demonstrate the E-fields traveling within the electric field of the 

coax and CPW lines. The ports provide the excitation of current, allowing it to travel through the 

coax from one signal line to the next. The lighter colored regions indicate maximum E-fields 

through the transmission lines. These lines are behaving as inductors and the gaps in between the 

CPW lines produce capacitance. The focus of the electromagnetic field however, is within the 

coaxial region as shown in Figure 4.6 (b). To verify the necessity of the bridge gap in the coaxial 

conductor, a surface stress analysis was performed on the micro-coaxial structure without the 

opening in the conductor using COMSOL. The simulated results from the stress analysis are 

shown in Figure 4.7 below.   

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.7 Surface stress simulation on coaxial probe structure. 
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 The figure above shows that when a force was applied on the structure, majority of the 

stress occurred on the substrate areas surrounding the coaxial probe. This proved that when the 

force was applied to the device, the coaxial area collapsed within the silicon surface due to a lack 

of support between the through holes and the substrate. Without the conductor gap, the through 

holes fell through the surface and presented the need of a base to rest on. This analysis proved 

that by creating a gap between the conductor, the probe would be able to properly rest in the 

substrate. The figure below is an ADS equivalent circuit model of the micro-coaxial probe. 

 

 

 

 

 

 

 

 

Figure 4.8 Basic equivalent circuit model of the vertical Micro-Coaxial Probe. 

 In this model, the first inductor (L1) represents the CPW signal lines included on the top 

and bottom surface of the transition. Inductor L2 is the inductance within the inner conductor of 

the coax. This inductance also has resistance due to the resistivity of the conductor being used. 

Lastly, the capacitance in the circuit models the capacitance existing between the inner conductor 

and the outer dielectric.   

4.4.1 Effect of Varying Probe Outer Coaxial Diameter 

  Although the dimensions of the design presented in the earlier section was chosen, 

several variations in the outer coaxial region were considered to in order to achieve maximum 

performance. This specific region of the design is critical because by adjusting the outer diameter 
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of the coax, its characteristic impedance will change, causing a change in the impedance 

matching with the rest of the system during measuring. When this happens, the additional CPW 

lines connected to the probe will have a different impedance value at the interface. This variation 

in dimension is also important because it affects the presence of the dielectric in the design which 

can drastically change the behavior of the device due to the adjustment of the outer/inner 

diameter ratio. These variations include a frequency shift in the overall bandwidth and a change 

in the reflection coefficient and transducer gain. Since this variation in diameter has a large 

impact on the performance of the system, several different dimensions must be simulated to 

determine which adjustments provide the optimum results.  

 As mentioned in previous sections, the outer diameter of the coax was chosen to be 

300µm. However, to perform this study, the inner diameter of the coax remained constant at 

100µm while the outer diameters of the coax were changed to 200µm, 250µm, 350µm, and 

400µm, where their reflection coefficients and transducer gain were determined. The diameter 

variation was chosen to be every 50µm because at the micron level, the coaxial probe will 

demonstrate a change in its RF characteristics when a minimal adjustment is made to the outer 

diameter. The figure below illustrates the behavior of the coaxial probe when adjustments to the 

outer coaxial area were made. 
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Figure 4.9 Simulated Reflection Coefficients of coaxial probe when adjusting coax outer  
diameter. 

 From the figure above it can be seen that when adjusting the dimension of the outer 

diameter, it directly impacts the reflection coefficient of the device. It is important to note that the 

reflection values at dc are greater than 0dB making them non-physical. At dc, the reflection 

coefficient should be low and could have been affected due to a simulation issue. The results 

indicate that the outer diameter of the coax can be used to optimize the reflection coefficient 

response. This proves that as the dimensions of the outer diameter are decreased from its original 

300µm size, the reflection coefficient value is reduced. This indicates that while increasing the 

outer coaxial diameter, impedance mismatching will began to occur within the probe because 

some of the RF signal seen at port 1 is being reflected back, which reduces the overall power 

transmission of the device. This caused the reflected signal to reach above -10dB over majority of 

the frequency spectrum, which reduced the bandwidth of the device. A reflection coefficient of -

10dB represents 90% signal transmission and is the marker used in simulation to represent the 

most accurate conditions prior to measuring. 

 However, when the diameter of the coax was increased from its original 300µm size, the 

reflection coefficient response did improve. When the diameter was increased to 350µm and 
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400µm, the probe demonstrated good signal transmission to the opposite port, having minimal 

reflections seen at port 1. This performance also allowed the reflection data to remain under -

10dB over nearly the entire frequency band which increased the overall bandwidth of the device. 

The table below shows the change in overall bandwidth of the probes when the outer diameter of 

the coax was increased/decreased from its original 300µm topology. 

 

Table 4.1 Overall Bandwidth Performances with Change in Probe Outer Diameter  

Outer Diameter of Coaxial 
Probe (µm) 

Bandwidth of Frequency 
Response  

200 dc-to-8 GHz and 65-to-70 GHz 

250 dc-to-10 GHz and 55-to-70 GHz 

300 dc-to-66 GHz (null at 30 GHz) 

350 dc-to-67 GHz 

400 dc-to-70 GHz 

 

 The table above proves that when increasing the outer diameter above 300µm, the overall 

bandwidth of the device was nearly extended across the entire frequency band. However, it can 

be seen that when the dimensions are decreased, the reflection coefficient rises above the -10dB 

level over a large portion of the frequency band, allowing them to only be functional at a few 

frequencies. This is critical because this adjustment would reduce the commercial integration 

abilities of the probe by operating at specific levels versus being useful over an entire band of 

frequencies.  

 The transducer gain of the probe was also investigated when the same adjustments were 

made to the outer diameter of the coax. This simulated data was equally critical to the device 

performance as was the reflection coefficient data. This is true because if the probe is 

demonstrating excellent signal transmission from port 1, it is important that the entire signal is 

received at port 2. If this signal is not being properly received at port 2, it will immediately be 
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reflected back to port 1, reducing the overall performance of the probe. The simulated transducer 

gain data when the outer diameter of the coax was adjusted is shown in Figure 4.10 below. 

 

 

 

 

 

 

 

 

 

 

 Figure 4.10 Simulated Transducer Gain of coaxial probe when adjusting coax outer diameter.  

 The results from the above transducer gain study, ignoring the non-physical simulation 

artifacts observed near DC frequencies due to convergence issues, also proved that when the 

outer diameter of the coax was decreased, it reduced the performance of the transmitted signal. 

As mentioned earlier, when analyzing the transducer gain performance of the probe, the closer the 

data is to 0dB the better because this means that the entire signal is being received at port 2 from 

port 1, having minimum reflections present. When the outer dimensions were reduced from its 

original 300µm value, the transducer gain decreased significantly, reaching values between -2 dB 

and -4 dB through nearly the entire frequency spectrum. These results did improve near the 60 

GHz and 70 GHz range, but a notable amount of signal loss can be expected at lower frequency 

levels. However, when the coax diameter was increased, results indicate that excellent signal 

transmission can be expected due to the transducer gain data ranging between 0dB and -1.5dB at 

best. Although substantial signal loss can be seen at very low frequencies such as dc-to-2 GHz, 

full propagation is still achieved up to 70 GHz.  
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 Following this parametric study of adjusting the outer diameter of the coaxial probe, one 

can assume that the best device performance can be achieved by increasing the outer diameter to 

~ 400µm. However, although results support this argument, by providing the maximum amount 

of signal transmission over the widest frequency band, this reduction in outer conductor diameter 

would cause a significant increase in fabrication issues. Most importantly, increasing the diameter 

of the outer coax, would inversely decrease the diameter of the outer conductor; creating a more 

narrow circumference to be filled during the metallization process. Trying to metalize such a 

narrow area could create a less dense fill and increase the risk of the coaxial holes not being filled 

through the entire wafer. Therefore, it should be again noted that the processing and device 

fabrication presented in the sections to follow were done for the coaxial probe with an outer 

diameter of 300µm. 

4.5 Processing Techniques for Device Fabrication 

The fabrication process of the micro-coaxial probes mainly involved photolithography as well as 

electron beam deposition. The brief description below gives an overview of the techniques used 

to develop the micro-coaxial probes.  

4.5.1 Photolithography  

 Photolithography (also termed “optical lithography”) is a process that utilizes ultraviolet 

(UV) light to transfer geometric patterns from a photomask to the surface of a substrate [67]. This 

process, however, involves several steps that the substrate must undergo before any metallization 

or depositions can occur. These steps include wafer cleaning, photoresist application, soft baking, 

mask alignment, exposure and developing, and hard baking [68]. The lithography tool used in this 

work was the Karl Suss Mask Aligner and is shown in Figure 4.11 below.  
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Figure 4.11 Image of Karl Suss Mask Aligner tool used during photolithography. 

A brief overview of each step in the photolithography process is presented below: 

 (a) Wafer Cleaning and Applying Photoresist: This is the initial step in the 

photolithography process. The substrates in use are thoroughly cleaned to remove any particulate 

matter from the  surface. Then photoresist is applied to the surface of the substrate using a 

technique known as “Spin Coating,” which forms a thin layer on the wafer.   

 (b) Soft Baking: Soft Baking is performed once the photoresist has been applied to the 

surface. This step removes most of the solvents that appear in the photoresist coating. The 

photoresist then becomes photosensitive, allowing the UV light to penetrate through. 

 (c) Mask Alignment and Exposure: This is one of the most important photolithography 

processing steps. The spin coated wafer is loaded into the mask aligner and the “photomask” is 

placed on a holder chrome side facing up. The mask is aligned with the wafer and then the pattern 

is transferred onto the wafer surface using high-intensity ultraviolet light. Every mask that 

follows  the first one must be aligned to that of  the previous pattern. 

 (d) Development: During this process, the wafer is submerged in a developer solution 

which removes photoresist from areas that were exposed to the ultraviolet light. The areas that 
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were protected by the mask remain on the substrate after development. If negative resist is used 

however, the removal of the photoresist is inverted, leaving the areas that were exposed to 

ultraviolet on the wafer and removing those that were not. 

 (e) Hard-Baking: This is the final step of the photolithography process. This step is used 

to harden the photoresist on the wafer surface and to improve adhesion. 

  4.5.2 Electron Beam Deposition 

     Metal evaporation on a substrate can be done using various methods such as thermal and 

E-beam techniques. During an E-beam deposition, a target metal is bombarded with an  

electron beam that is given off by a charged tungsten filament under high vacuum. This electron 

beam causes atoms from the metal to transform into a gaseous phase; wherein these atoms 

precipitate into a solid form, coating everything in the chamber with a thin layer of metal [69]. 

Figure 4.12 below shows an example of the deposition technique. In this work, we have used E-

beam deposition to form the CPW lines on the micro-coaxial probe. Figure 4.13 illustrates the 

actual instrument used to deposit the desired metal.    

 

 

 

 

 

 

 

 

Figure 4.12 Illustration of E-beam Deposition technique [70]. 
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Figure 4.13 Actual E-beam instrument used in this work.  

 In this deposition technique, the target metal metals were chrome and gold. These metals 

were bombarded by the e-beam and deposited on the silicon surface by applying current to the 

electrodes within the chamber. The current is slowly increased to avoid any damaging of the 

target crucible. A crystal sensor is also located in the vacuum chamber which serves as a 

thickness monitor, and verifies the amount of metal deposited on a thin layer.    

4.6 Fabrication of Vertical Micro-Coaxial Probes 

 The vertical micro-coaxial probes were fabricated using the photolithography techniques 

describe in the before mentioned section. Figure 4.14 illustrates the steps involved in fabricating 

the micro-coaxial probes.  
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Figure 4.14 Fabrication process sequence for the vertical micro-coaxial transition. (a) Si 
substrate, (b) SiO2 grown on the substrate, (c) Photoresist deposited for patterning, (d) Pattern 

transfer by photolithography, (e) Removal of SiO2 layer for etching and coaxial vias formed using 
deep reactive ion etching, (f) Metallization of holes, (g) Pattern transfer for CPW lines, and (i) 

CPW line metal deposition. 

4.6.1 Formation of Coaxial Through Holes  

 The above probes were realized on a 2” and 300μm thick silicon substrate. Initially, the 

silicon substrate was thermally oxidized on both sides to grow a 1μm thick SiO2 layer. This 

oxidation process was required on the substrate because it served as an etch protective layer to the 

photoresist during the formation of the through holes. Following the oxide growth process, a 

photolithography step was performed to pattern the coaxial configuration on the substrate. Using 

the Laurel Spinner, the substrate was spin coated with photoresist AZ 4620 (10 μm) on the front 
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side at 500rpm for 10 seconds with an acceleration of 50; followed by an additional spin step at 

1000rpm for 60 seconds with an acceleration of 50. This is a very thick resist that has excellent 

adhesion and provides excellent coating properties. Following resist coating, the wafer was soft 

baked for 20 minutes at 100°C.  After baking, a 24-hour rehydration process was included in 

preparation for silicon etching that followed. This was necessary because thick resist films (10 

μm range) require several hours for rehydration, whereas thinner films (3 μm) completely 

rehydrate after seconds. Furthermore, with insufficient rehydration, the resist keeps water 

depleted and reveals a significantly lower development rate as compared to the rehydrated top 

layer [68]. Therefore, rehydrating the wafer ensured a smooth development stage. Using a 

photomask, the wafer was then exposed with the mask pattern for 13 seconds at 25mw/cm2 on the 

Karl Suss mask aligner. The wafer was then placed in a developer solution (AZ 400K 1:4) for 4-5 

minutes. After developing the pattern, the substrate was hard baked for 30 minutes at 100°C. This 

step allowed the photoresist to harden and remain on the silicon surface the duration of dry 

etching.  

 Next, through holes were formed in the silicon substrate using Bosch process for deep 

reactive ion etching (DRIE) [71]. To accomplish the silicon etching, an Alcatel AMS 100 SDE 

was used. The DRIE recipe used in this process was: etch step-- SF6 at 300 sccm with 3 seconds 

cycle; passivation step—C4F8 at 200 sccm and O2 at 20 sccm with 1.4 seconds cycle; pressure—

5.25×10-1 mTorr; source generator power—2400 W; substrate holder power—used in pulsed 

mode, high cycle at 90 W for 20 ms, low cycle at 0 W for 80 ms; substrate holder He pressure—

9.75×10-3 mTorr. In this process, the wafer was cooled down to -15°C and the 300 μm deep vias 

where then etched through for 30 minutes; which converted to an etch rate of 10μm/min. During 

this etching process, the through holes were formed and the photoresist remained on the silicon 

surface on the remaining substrate areas. The resist provided a protective layer for the excess 
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silver paste that is present during the metallization process. The figures below illustrate front and 

backside images of the micro-coaxial probe post DRIE. 

 

 

 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4.15 Microscopic images of micro-coaxial probe post through-hole DRIE. (a) Front side  
and (b) Backside. 

 It can be seen in the front side image that due to the DRIE process small areas of the 

photoresist were slightly burnt, which produced tiny black dots on the surface. These dots 

however, did not play a major effect on the filling process of the holes. Also, in Figure 4.15 (b), a 

glossy discoloration on the surface of the silicon may appear which is bonding oil that was used 

to secure the wafer to the 2 inch holder. If enough oil is not applied, the topside of the wafer will 
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burn completely, damaging the devices. The only disadvantage of the oil was the difficulties of 

trying to remove it from the surface. This caused a minor issue in future processing steps and will 

be discussed in later sections.  

4.6.2 Through-Hole Metallization Process  

 After the holes were etched through, a metallization step was performed to fill them with 

silver paste. This was achieved using diluted silver paste and a sharp razor blade which coursed 

the metal into the miniature hole. In this process, a thick amount of silver paste was applied to the 

silicon surface and the razor blade was swept across the holes, evenly distributing the metal inside 

the formed through holes. This step was performed repeatedly to ensure that the metal was being 

filled not only through the holes, but also along the edges within coaxial structure. The surface 

resistance of the paste was also studied over a 5-day period to ensure it would not have an effect 

on the signal transmission abilities of the coaxial probe. During the study, it was verified that the 

paste maintained a surface resistance value between 1.2 and 1.3Ohms proving it had no effect on 

the behavior of the probe. Once this filling was complete, the substrate was submerged in 

acetone, removing the remaining photoresist and the silver paste from the surface.  Figures 4.16 

(a) and (b) below illustrate front and backside Scanning Electron Microscope (SEM) images of 

the micro-coaxial probe following the metallization of the holes using the diluted silver paste. To 

verify the holes were completely filled through the silicon substrate, a cross-section of the coaxial 

probe can be seen in the SEM image in Figure 4.17.  
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Figure 4.16 SEM images of micro-coaxial probe post through-hole metallization. (a) Front side  
and (b) Backside.  
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Figure 4.17 Cross-section SEM image of micro-coaxial probe post through-hole metallization.  

In the cross-section view above, it can be seen that the inner and outer coaxial conductors are 

filled through the depth of the substrate, creating the 3-dimensional probe structure. This image 

was captured by simply dicing the probe directly down the center of its architecture, allowing a 

side profile view of both conductors.  

4.6.3 Fabrication of CPW Lines  

 Next, an additional photolithography step was performed to pattern the CPW 

configuration lines on the top and bottom side of the substrate. The wafer with metalized through 

holes was spin coated with NR9-3000PY negative photoresist at 1000 rpm for 30 seconds at 20 

acceleration and then soft baked for 1 minute at 150°C. This is a very thin resist with a fast 

developing time and works well during liftoff process. The original recipe was modified however, 

to allow even distribution of the resist across the surface, which helped prevent a poor 

development and deposition. Next, the wafer was exposed using the Karl Suss mask aligner for 

23 seconds at 25mw/cm2 and hard baked for 1 minute at 100°C. The wafer was then developed in 
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RD6 for 10 seconds. This developer time had to be reduced due to the unbalanced surface within 

the coaxial structure, which caused for an additional negative resist layer to be applied. Following 

this lithography process, an electron beam evaporator was used to deposit the metal on the CPW 

line patterns. First a chrome (Cr) layer of ~15nm was deposited at a rate of 0.3A/sec and acted as 

an adhesion layer for the top gold (Au) layer. The Au layer had a thickness of ~300nm and was 

deposited at a rate of 2A/sec. Finally, a liftoff process was performed by placing the substrate in 

acetone overnight which removed the remaining Au from the silicon surface. It is important to 

note that this entire process was repeated to include the CPW lines on the backside of the wafer. 

Figure 4.18 (a) and (b) illustrates front and backside microscopic images of the fabricated micro-

coaxial probes with gold CPW lines.             
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Figure 4.18 Microscopic images of fabricated micro-coaxial probe with gold deposited CPW  
lines. (a) Front side and (b) Backside. 

4.7 RF Characterization Setup and Substrate Orientation 

 The RF characterization of the coaxial probe is a very crucial part of this work. When the 

device demonstrates excellent signal transmission at low and high frequencies and over a wide 

bandwidth, it verifies its use for a two-fold application. These characterization results indicate the 

frequency range that the probe can operate in when used in millimeter wave packaging systems. 

Furthermore, demonstrating a good reflection coefficient will provide more accurate 

measurements on the unknown materials.  

 There are several device components that were used to perform the required RF 

characterization of the coaxial probe. Figure 4.19 illustrates test setup utilized during the 

characterization of the micro-coaxial probe.  
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Figure 4.19 Illustration of Test Setup used for RF Characterization of Micro-Coaxial Probe. 

 The measurement setup in the figure above demonstrates all equipment used during RF 

characterization. The fabricated micro-coaxial probe (DUT) was first placed on a probe station 

that contain ports 1 and 2. Each port was then connected to ground-signal-ground (CPW) pitch 

probes which are used to characterize the device. Next, V-band cables, capable of measuring up 

to 67 GHz, where connected from the 2 ports of the vector network analyzer (VNA), to the ports 

located on the probe station. Lastly, a calibration was performed on the probe-to-cable connection 

to eliminate any parasitic effects that may affect the measurement results. This calibration 

removes nearly all of the signal loss present from the VNA ports to the tip of the ground-signal-

ground pitch probes.   

 The sections below provide brief descriptions of each RF component used in the 

characterization test setup: 

Cascade Microtech Probe Station: 

 The micro-coaxial probes were characterized using the Cascade Microtech probe station 

shown in Figure 4.20. This is a highly-precise manual probe system for wafers and substrates that 
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supports a wide variety of systems such as device characterization, submicron probing, mm-Wave 

and sub-THz measurements, etc [72]. Its stable platen is designed to accommodate up to sixteen 

different positions. 

 

 

 

 

 

 

 

 

Figure 4.20 Cascade Microtech Probe Station used during micro-coaxial RF characterization.  

 The devices were probed during measuring using the Micromanipulator High Frequency 

Picoprobes shown in Figure 4.21 [73]. These probes include ground-signal-ground tip 

configuration suitable for CPW feeds, and a pitch distance of 150μm. The probes were also 

passive, not requiring any power supply and are suitable for frequency from dc up to 67GHz.  

 

 

 

 

 

 
 
 
 
 
 
 

Figure 4.21 Micromanipulator High Frequency Picoprobes with ground-signal-ground tip  
configuration used to connect to CPW feed. 
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 The reflection coefficient and transducer gain were determined using an Anritsu 37397 

VNA shown in Figure 4.22(a) which is capable of measuring up to 64 GHz and communicated 

via computer. This communication was achieved by connecting an IEEE 10833B GPIB cable 

[74] to the appropriate computer port. V-band cables were also used to connect the VNA to the 

probe tip to convey the measured data and are shown in Figure 4.22(b) below. 

 

  

 

 

 

 

 

 
 
 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4.22 RF Components used to determine reflection coefficient and transducer gain of 
micro-coaxial probe. (a) Anritsu 37397 Vector Network Analyzer and (b) High Frequency V-

band Cable. 
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4.7.1 V-Band Cable Calibration  

 In order to eliminate any signal losses present in the V-Band cable, a CS-5 calibration 

was performed on ports 1 and 2. This allowed the VNA to collect data directly from the devices, 

by shifting the reference plane to the edge of the probe tips. Figure 4.23 below shows each 

calibration standard that was measured which included a short, open, load, and thru, also known 

as “SOLT.” Once these standards were measured, the losses in the cable were de-embedded to the 

reference plane of the devices. 

 

  

 

 

 

 

 

 

 

Figure 4.23 CS-5 Calibration Standards used for v-band cables. (a) Short, (b) Open, (c) Load, (d)  
Thru. 

 The short standard consists of two gold lines that behave as inductors, whereas the opens 

have two gaps in between the gold lines which allow capacitance to flow through. The load 

includes two 100Ω resistors in parallel between the lines which are equal to 50Ω a piece. Lastly, 
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the thru standard consists of thick open lines that enable ports 1 and 2 to be probed at the same 

time and connected together via an RF signal.   

4.7.2 Additional Substrate Alignment for Bottom CPW Lines 

 To determine the reflection coefficient and transducer gain of the micro-coaxial probes, a 

two-port measurement was performed. The probes at port 1 were easily connected to the devices; 

however, port 2 was impossible to reach. This is true because the CPW lines for port 2 were 

located on the backside of the silicon substrate, which prevented them from being probed during 

measuring. To accommodate for measurements at port 2, an additional silicon substrate was used 

to extend the CPW lines on the bottom of the original substrate. However, getting the CPW lines 

on both substrates aligned properly became another issue. To properly measure the coaxial probe 

without any losses present from the CPW line integration, the lines on the backside of the top 

substrate needed to be carefully aligned to those on the additional substrate. This was achieved by 

designing two mask layers using AutoCAD [75]: the first mask layer included “local” alignment 

marks (individual circles) which surrounded the coaxial probe on the top substrate. These local 

marks were then etched through the substrate and served as windows that allowed a visual to the 

alignment marks on the additional substrate. Following this, another mask layer was included on 

the additional substrate which served as “bottom” alignment marks (cross hairs). These mask 

layers were then integrated by aligning the cross hairs of the “bottom” layer to the circles of the 

“local” layer. Once these layers were aligned, this verified that the CPW lines were properly 

aligned to one another and measurements could be made with minimum signal loss present in 

between lines. These masks layers allowed the coaxial probe to be measured using both ports. 

Figure 4.24 below illustrates the two mask layers used to align the CPW lines on the top and 

bottom substrate.  
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Figure 4.24 Illustration of Mask design with “local” and “bottom” layer alignment marks. 

From the image above it can be seen that when the two substrates are integrated together, a clear 

window will be present allowing the two marks to be properly aligned to one another. 

 Prior to finalizing the above mentioned mask design the original simulations were 

optimized to ensure the micro-coaxial probe would behave properly when the additional substrate 

was integrated. These simulations were also performed using HFSS, which helped determine any 

additional losses that could be present as the RF signal traveled through the coaxial signal lines to 

the CPW signal lines. By introducing a sandwich type configuration to the device, the risk of 

undesirable propagation increases; this is due to the thickness of the silicon substrate being used 

at high frequencies. The figure below illustrates the design layout of the vertical micro-coaxial 

probe substrate integration. It should be noted that the additional substrate consisted of the same 

CPW dimensions as the original, with a thickness of 300µm. 
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Figure 4.25 Layout of 3D Vertical Micro-Coaxial Probe Integrate with additional substrate for  
CPW alignment. 

 The figure above shows that by extending the CPW lines on the additional substrate, the 

measurement at port 2 can be achieved. The simulated response of the reflection coefficient and 

transducer gain for the substrate integration is shown in Figures 4.26 (a) and (b). The results are 

compared to the original simulations and indicate signal loss at some frequency levels which was 

expected. The losses from the reflection coefficient are mainly present in the device in the range 

from 20 GHz to 40 GHz and beyond the 60 GHz range. This discovery does affect the behavior 

of the coaxial probe in some extent but mainly in the application of millimeter wave packaging 

systems. However, this does not indicate that the device will not function in this range of 

frequency when measured or when used for high frequency device characterization; it simply 
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means that it will not achieve maximum performance near that particular spectrum, ultimately 

limiting its range of performance.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4.26 Simulated response of micro-coaxial probe following substrate integration (vs.  
original). (a) Reflection Coefficient (Fig. 4.9) and (b) Transducer Gain (Fig. 4.10). 

 The transducer gain presented in the figure above was also compared to the original 

simulations and indicates additional losses that may be present at high frequencies when 

integrating the coaxial device with the additional substrate. Aside from the region near DC 
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frequencies where non-physical simulation artifacts are dominant, the signal decreases from the 

original near the -2dB range between 20 GHz and 50 GHz but improves near 60 GHz. These 

results indicate that integrating the substrates can impact the behavior of the probe when used in 

packaging systems, but not as much when characterizing materials. It is important to note 

however, that when integrating the probe with commercial packaging applications, the use of an 

additional substrate will be eliminated and maximum device performance can be successfully 

recovered. 

 Figure 4.27 below illustrates a microscopic image of the additional substrate with the 

CPW line extension and “bottom alignment marks that will be used integrate the substrates. The 

image shows the same identical gold CPW lines patterned on the additional substrate as those that 

were patterned on the top substrate. 

  

 

 

 

 

 

 

 

 

 
Figure 4.27 Microscopic image of additional substrate with gold patterned extended CPW lines  

and “bottom” alignment marks used for integration. 

A microscopic image of the top substrate with etched local alignment holes can be seen in Figure 

4.28. These holes were also etched using the DRIE recipe described in previous sections, and 



69 
 

were aligned to the cross hair marks on the bottom substrate which contained the extended CPW 

lines for measuring. 

 

 

 

 

 

 

 

 
 

Figure 4.28 Microscopic image of top substrate with etched local alignment holes used to align  
with bottom cross hairs. 

 

 

 

 

 

 

 

 

 
Figure 4.29 Microscopic image of substrate integration with top local alignment holes and bottom  

cross hairs used to extend CPW lines for RF characterization. 

The figure above illustrates the two substrates (top and bottom) being integrated in order to 

access port 2 during the RF characterization. It can be seen that the local holes on the top 
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substrate were aligned to the cross hair marks on the bottom substrate. This alignment served as 

verification that the extended CPW lines on the bottom substrate were nearly aligned to the CPW 

lines on the backside of the top substrate.  

4.8 Micro-Coaxial Probe Characterization and Data Analysis 

 After properly integrating and aligning the substrates, RF characterization was performed 

on the coaxial probe. Measurements were performed over a wide frequency range from dc-to-65 

GHz. The reflection coefficient and transducer gain of several micro-coaxial probes were 

measured to get more accurate results. Probe results were compared to the simulated responses 

obtained during substrate integration because both substrates were included during analysis.  

 The measured results of the micro-coaxial probes are shown in Figures 4.30 (a) and (b). 

When measuring the reflection coefficient, most of the probes seem to demonstrate good results 

compared to simulations with more than -10dB loss difference at high frequencies from 

approximately 15 GHz-to-57 GHz. At lower frequencies (dc-to-10 GHz) however, majority of the 

signal received from port 1 was reflected back and passed the -10dB mark, which demonstrates a 

poor signal transmission. Probes 2 and 3 provided the best results with reflection coefficients 

greater than -15dB over 20 GHz bandwidth; only decreasing less than -10 dB at 40, 50, and 60 

GHz. Probes 1 and 4 had good reflection as well but did not sustain performance over a wide 

frequency range.  
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Figure 4.30 Measured results of micro-coaxial probe vs. simulated response with substrate  

integration. (a) Reflection Coefficient and (b) Transducer Gain (Fig. 4.10). 

 The measured results for the transducer gain of the coaxial probes are shown in Figure 

4.30 (b) above. It can be seen that all four probes behaved well from dc-to-40 GHz, 

demonstrating less than -1.5 dB which was very close to the simulated results. This proves that 

the probes have good signal transmission between the two ports and would provided minimal loss 
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when integrated with other multi-layer high frequency devices. Beyond 40 GHz however, the 

probes performance began to decrease nearly reaching -2 dB of transducer gain. This behavior 

did not agree well with simulation, where the transducer gain increased to nearly -0.5 dB from 

50-to-65 GHz. This was a critical discovery because it altered the probes signal transmission 

abilities at higher frequencies. Since the probe was specifically designed to behave well over a 

wide range of high frequencies, further studies were conducted to determine the cause of the 

degrading signal. 

 During the substrate alignment, it was discovered that even when the local holes are 

centered with the bottom cross hairs, a slight misalignment still occurred. This is due to the fact 

that while the probes were being measured, the top substrate shifted slightly because of the 

pressure of applied from the CPW probes. This minor shift caused the CPW lines on the backside 

of the top substrate and additional substrate to misalign by about 2-3µm, which is perceived to be 

what created the discrepancy between the measured and simulated data. To verify this 

assumption, an additional simulation was performed for the transducer gain when the two 

substrates were slightly misaligned. The figure below illustrates the transducer gain response 

when the top and additional substrates were simulated with a 2-3µm misalignment.    
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Figure 4.31 Simulated transducer gain (Fig. 4.10) of micro-coaxial probe with additional 
substrate misalignment. 

 The results above illustrate the probe response with the substrate misalignment compared 

to the probe’s first integration simulation data. From the results it can be seen that, aside from the 

region near DC frequencies where non-physical simulation artifacts are dominant, by misaligning 

the additional substrate with the top substrate, the transducer gain decreased a bit more as it 

approached higher frequencies. This is occurred because as the signal was transmitted from port 1 

to port 2, the slight misalignment between the sets of CPW lines created a significant amount of 

losses through the deposited metal which consequently impacted the device performance. These 

results verified the theory that a substrate misalignment occurred during the measuring of the 

coaxial probes. The simulated misalignment and measured data comparison can be seen in Figure 

4.32 below.  
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Figure 4.32 (as stated in 4.10) Measured results of micro-coaxial probe compared with additional 
substrate integration and misalignment. 

 The figure above shows the measured probe data compared to the substrate integration 

and misaligned simulated results. It can be seen that the measured data did agree with the 

misaligned simulated results by decreasing at higher frequencies. The measured results now 

closely resemble the behavior obtained during the misalignment simulation at high frequencies; 

therefore, it was determined that the variance between the integrated simulation and measured 

data was due to a misalignment with both substrates. However, possible voids in the through 

holes following the paste metallization could have also caused the measured probe results to 

differ from simulated. Additionally, the gap in the ground conductor where the bridge was located 

may have also caused the difference in results, due to the coaxial structure being open and 

vulnerable to unwanted capacitances.      

 In summary, several through wafer 3D micro-coaxial probes were designed flushed in a 

silicon substrate. The probes were designed to operate at high frequencies and simulated using 

HFSS. The fabrication techniques were identified and the probes were developed using 

photolithography. The probe vias were filled with silver paste using a novel approach and the 

CPW lines were fabricated using e-beam deposition. Finally, the probes were measured to 
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determine their reflection coefficient and transducer gain response. Results confirmed that the 

probes had good behavior when transmitting a RF signal between two ports. These results 

verified that the micro-coaxial probe can successfully be integrated in millimeter wave packaging 

technologies as high frequency transitions. By eliminating the need for thermal or compression 

bonding, the probes present a low-cost and durable design that can produce high input/output 

ratios that are ideal for commercial products. 
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CHAPTER 5 

MICRO-COAXIAL PROBE INTEGRATION FOR HIGH FREQUENCY MATERIAL 

CHARACTERIZATION 

 The characterization of materials electrical properties at high frequencies using a coaxial 

probe are determined when the unknown material comes in contact with the probe device [34, 76, 

77]. This contact provides the unknown material with microwave signals that helps determine its 

electromagnetic fields; which are then used to deduce the reflection coefficient of the material at 

a defined reference plane. To accomplish the above mentioned characterization, the micro-coaxial 

probe in this work was integrated with unknown materials to determine their electrical properties 

over a broadband at high frequencies. Following the measurement, a data interpretation method 

was implemented in order to determine the permittivity of the unknown material. The 

interpolation method will be discussed in detail in the upcoming sections. This chapter includes a 

detailed description of the micro-coaxial probe’s integration with specific materials, the method 

of data interpretation for determining permittivity, high frequency characterization setup, and a 

comparison of simulated to measured results.             

5.1 Probe Integration Modeling with Unknown Materials 

 In Chapter 4, the micro-coaxial probe was introduced and to verify its ability to measure 

materials, RF characterization was performed and discussed in detail. In this chapter, the same 

probe was used to characterize unknown materials at high frequencies. As mentioned earlier, the 

inner conductor of the micro-coax, which provides the signal to the system, was made of silver. 

The outer conductor was also made of silver at 150µm width and was used as a metal ground to 

complete the probes metal/dielectric/metal topology. To reduce the propagation of higher order 

modes, the coax was designed with an inner and outer diameter of 100µm and 300µm. 
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 The integration of the coaxial probe with the material for characterization has several 

factors that play a major role in getting accurate results. When the probe is placed in contact with 

the unknown material, electromagnetic waves are directed to the material under study using a 

VNA and the permittivity of the MUT is deduced from its measured reflection coefficient. [78-

80]. Additionally, when measuring the electrical properties of materials at high frequencies, the 

thickness of those being measured begin to influence the permittivity measurements if they are 

not chosen properly. In [28], it is recommended that the material under study be thicker (double) 

than the length of the probe to prevent it from influencing any permittivity measurements. 

Therefore, all materials used in this work were chosen to be 1.3mm. The first 3 materials used in 

this work were: Rogers 3006 and 3010 High Frequency Laminates [81], and a Rogers FR-4 

laminate sheet [82]; and were known materials used to calibrate the measurement system. These 

materials were chosen due to their use in applications up to 77 GHz, which surpasses the 

frequency range chosen for this work. Known materials were necessary because in order to 

determine the permittivity of an unknown material using its measured reflection coefficient data, 

materials with known electrical properties needed to be included in the data interpretation system. 

This interpretation system will be discussed in further detail in the next section. Following the 

selection of the 3 known materials, Silicon [83] and Polydimethylsiloxane (PDMS) [84] were 

chosen as the unknown materials to be characterized due to their increasing demand in high 

frequency applications. Figure 5.1 below illustrates an example of the micro-coaxial probe being 

integrated with an unknown material for high frequency characterization. 
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Figure 5.1 Model of 3D Micro-Coaxial Probe being integrated with a bulk unknown material and  
used as a characterization device. 

5.2 Data Interpretation Using Cross-Ratio Invariance Coding Technique 

 Researchers in the past have used various codes and techniques to determine the 

permittivity of unknown materials when measuring its reflection coefficient data [85-92]. These 

techniques consist of numerous variables and equations that allow the permittivity of materials to 

be determined at high frequencies when measured in contact using a coaxial probe. Nevertheless, 

this research used a cross ratio invariance coding technique [93]; which utilized theoretical 

equations and a material calibrated system to deduce the permittivity of unknown materials using 

its measured reflection coefficients. This method was chosen because it consisted of stationary 

formulas for open-ended coaxial lines terminated by a semi-infinite medium on a ground plane. 
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Since the materials were measured using a micro-coaxial probe, these theoretical equations were 

implemented to determine the permittivity. 

 After implementing the cross-ratio coding technique, the permittivities of the unknown 

materials were determined using the following process: The measurement system was first 

calibrated by measuring the reflection of 3 known materials; which as mentioned previously, 

were Rogers 3006 and 3010 high frequency laminates, and a Rogers FR-4 laminate sheet. These 

materials were all chosen to be 1.3mm thick to avoid any propagation through the surface, which 

would alter the reflection data and ultimately the permittivity results also. Next, the aperture 

admittance of these values were calculated and they denoted as Y1, Y2, and Y3 in the system 

calibration equation below [94]: 

   

            (5.1)

            

In the equation above, Γ1, Γ2, and Γ3 represent the measured reflection coefficients of the 3 known 

materials. The reflection coefficient of the unknown material being characterized is then 

measured and denoted as Γs in the equation above. Using the calibrated standards, the equation is 

then solved for Ys, the admittance of the unknown material. Lastly, the permittivity of the 

unknown material is determined by solving for ε* in the quasi-static approximation for the 

aperture admittance of an open-ended coaxial line terminated in a semi infinite-medium [94]: 

   

  

                                               (5.2)      

  

Where a and b are the inner and outer radii of the coax and µo is the permeability of free space. 

The admittance of the unknown material Ys=YL, the angular frequency of the electromagnetic 

fields is represented by ω, and I1 and I2 are constants. The equation is finally solved for the 
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complex permittivity of the unknown material which is represented by ε*, and can also be written 

as the equation below [95]: 

         (5.3) 

 

Where ε’ represents the real part of the materials permittivity and ε’’ represents the imaginary. It 

is important to note that the above equations were solved in detail and the permittivity of each 

unknown material was deduced using the coding technique in [96]. The entire coding technique is 

shown in Appendix C.        

5.3 Characterizing of Known Materials – Simulated Reflection Coefficients 

 In this work, the fabricated CPW lines on the top and bottom side of the micro-coaxial 

probe were used to determine the reflection data from the known and unknown MUT’s. By 

bringing the bottom CPW lines in contact with the MUT, the reflection coefficient of that 

material over a wide frequency range was determined. Firstly, the reflection coefficients (real and 

imaginary) of the 3 known materials were simulated when in contact with the micro-coaxial 

probe using HFSS. This simulation was performed because it provided an expected data range for 

each known material, which helped verify that the micro-coaxial probe was successfully 

integrated and in contact with the MUT during measuring. Without performing these simulations, 

the materials under test would be measured using the coaxial probes and it would be difficult to 

determine if their reflection coefficient results were realistic prior to inputting the data in the 

cross-ratio code. The figures below illustrate the real and imaginary simulated reflection 

coefficients of the 3 known materials. As mentioned earlier, each material simulated in contact 

with the micro-coaxial probe, had a thickness of 1.3mm to improve the accuracy of results.  

 It is important to mention that any known and unknown materials with simulated 

reflection values greater than 1 at lower frequencies, demonstrated non-physical data due to 

simulation errors that occurred when the probe was placed in contact with the materials. These 

'''*  j
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errors could mainly be contributed to the fact that the mesh solution in the simulation was 

converging with the following settings: converged passes-2, minimum passes-5, maximum 

passes-20, and maximum deltaS-0.02. Therefore, the cause of this non-physical behavior could be 

due to the need to adjust the convergence criteria to allow the simulation to properly calculate the 

mesh solution for each adaptive pass. Another possibility is that the properties in the simulation 

software for each material may have created reflection issues with the probe at low frequencies, 

causing an error in the data solution. Perhaps editing these material properties could have reduced 

the amount of reflections present when in contact with the coaxial probe. Also, the thickness of 

each characterized material could have created issues for the simulated data set. Although a bulk 

thickness of ~1mm was chosen, this could have been an issue for some of the results. 
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Figure 5.2 Simulated results of micro-coaxial probe characterizing the Rogers FR-4 laminate  
sheet at high frequencies. (a) Real Part and (b) Imaginary Part. 
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Figure 5.3 Simulated results of micro-coaxial probe characterizing the Rogers 3006 laminate  
board at high frequencies. (a) Real Part and (b) Imaginary Part. 
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Figure 5.4 Simulated results of micro-coaxial probe characterizing the Rogers 3010 laminate  

board at high frequencies. (a) Real Part and (b) Imaginary Part. 

 During simulation, each known material was placed in contact with the micro-coaxial 

probe and the reflection coefficient was determined. The results above show the real and 

imaginary reflection obtained for each material at high frequencies. The results were evaluated 

over a wide frequency range from dc-to-70 GHz and revealed that at lower frequencies from dc-

to-10 GHz, the probe had discrepancies with determining the imaginary part of the reflection of 

some materials. This was highly due to the fact that the micro-coaxial probe itself behaved like a 

shorted device at the same frequency range; which disrupted its characterizing abilities at that 

particular point. These simulated results provided ideal values for the materials real and 

imaginary parts, and will be used to verify accuracy of the measured results. Furthermore, 

simulating the reflection coefficients of the known materials allowed the results to be 

implemented in the cross-ratio variance code as known reflection standards, and the simulated 

permittivity of the unknown materials (PDMS and Silicon) were then determined.    
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5.4 Verification of Known Materials Permittivity Value      

 Prior to deducing the simulated permittivity values of the unknown materials, the 

permittivity of the chosen 3 known materials needed to be measured to ensure they matched with 

the data given in the specification sheet. Figure 5.5 illustrates the 3 known materials that were 

used in the cross-ratio coding technique as calibration standards.  

 

Figure 5.5 Known materials used in the cross-ratio coding technique as calibration standards. (a)  
Rogers FR-4 Laminate Board, (b) Rogers 3006 Laminate Sheet, and (c) Rogers 3010 Laminate  

Sheet. 

 In the data sheet, each material was given a specific permittivity value across a high 

frequency range under normal operating conditions. These measured values were to be verified, 

and then included in the coding technique with the simulated reflection coefficients of the same 3 
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known materials. By including the measured calibration standards and their simulated reflection 

coefficients in the invariance coding technique, the permittivity of the unknown materials could 

then be deduced. The materials were measured using a HP 85070B Dielectric Probe Kit. This 

system was first calibrated using air, an RF short, and diluted water. It is important to note that 

the probe measuring system only operated up to 14 GHz, therefore the permittivity values could 

only be verified up to that range of frequency. The measured permittivity results of the 3 known 

materials are shown in the figures below. The figures include the real and imaginary parts of the 

materials complex permittivity.   
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Figure 5.6 Measured permittivity of Rogers FR-4 Laminate board. (a) Real Part and (b)  
Imaginary Part. 

 Figure 5.6 above illustrates the measured complex permittivity of the Rogers FR-4 board 

up to 14 GHz. Results demonstrated the permittivity starting near 4.5 at ~2GHz and then 

decreasing to about 4.2 as it approached the 14 GHz limit. These results agreed well with the 

permittivity provided in [82], which referenced a value of 4.2 up to ~45 GHz. Figure 5.7 (a) and 

(b) below shows the measured complex permittivity results for the Rogers 3006 high frequency 

laminate.      
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Figure 5.7 Measured permittivity of Rogers 3006 High Frequency Laminate. (a) Real Part and (b)  

Imaginary Part. 

 The figure above illustrates the Rogers 3006 laminate sheet demonstrating a permittivity 

value near 6.6 at lower frequencies and reaching a constant level between 6 and 6.1 at higher 

frequencies. These results were a little lower than the referenced value of 6.5 [81], but did 

measure within a measurement error of +/-5%. The slight alteration in the measured results 

compared to the permittivity given in the specification sheet could be due to human skin 

interacting with the reflected materials. This contact between the MUT and the epidermis caused 

a slight disruption in the probe determining its true permittivity; causing the data to be lower.    
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Figure 5.8 Measured permittivity of Rogers 3010 High Frequency Laminate. (a) Real Part and (b)  

Imaginary Part. 

 The figure above demonstrates the measured permittivity for the Rogers 3010 high 

frequency laminate. The results indicate that the MUT has a permittivity near 11 at lower 

frequencies and then decreases near 10.1 at higher frequencies. These results were also somewhat 

lower than the specification sheet which referenced a value of 11.2 at high frequencies [81]. 

Again, due to the holding mechanism of the MUT when being measured using the probe system, 

the human skin (epidermis) caused some reflection issues with the material. To prevent this minor 

error, a metal plate was placed under the MUT to eliminate human contact with the materials. 

However, this attempt reduced the permittivity values of all materials, making them nearly 

undetectable. Therefore, the results provided above were used and implemented in the coding 

technique as the known calibration standards.   

5.5 Characterization of Unknown Materials - Simulated Results 

 Once the permittivity’s of the 3 known materials were measured and their reflection 

coefficients were simulated, the data was then implemented in the invariance coding technique. 

The measured permittivity values served as 3 calibration standards in the code, and the simulated 

reflection coefficient values were used as reflection standards in the technique. Using these 
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values, the permittivity of the unknown materials were evaluated based on simulated reflection 

coefficient results.    

5.5.1 Reflection Coefficient Simulation of Unknown Materials 

 Using the known simulated reflection values and measured calibration standards, the 

permittivity of the unknown materials was determined. Before deducing the unknown 

permittivities using the standards data, the reflection coefficient of each unknown material needed 

to be simulated when in contact with the micro-coaxial probe as shown in Figure 5.1. The micro-

coaxial probe was placed in contact with the MUT and its reflection coefficient was evaluated 

from dc-to-70 GHz. The unknown MUT’s were also simulated with the same thickness of 1.3mm 

as the known materials. Again, this value was chosen because it was suggested that the MUT be 

at least twice the length of the probe; which in this case was 300 µm. Following the simulation, 

the reflection data of the unknown material was implemented in the code as the permittivity to be 

found. The figure below illustrates the simulated reflection coefficient results for the unknown 

material PDMS.   
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Figure 5.9 Simulated reflection coefficients of PDMS. (a) Real Part and (b) Imaginary Part. 

 The results above show the simulated results for the reflection coefficients of the 

unknown material PDMS. The real and imaginary parts of the data are shown over a wide 

frequency range up to 70 GHz. These results served as a reference for the unknown material prior 

to actually measuring its reflection coefficient. By simulating the reflection coefficient of PDMS, 

expected results were obtained and utilized in the permittivity calculations. The same simulation 

was performed on the unknown material Silicon over a wide frequency range from dc-to-70 GHz, 

and its reflection coefficient was determined. Figure 5.10 below shows the simulated reflection 

coefficient results for Silicon at high frequencies. Again, reflection coefficient values greater than 

1 obtained following simulation were contributed to the several errors mentioned in previous 

sections. 
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Figure 5.10 Simulated reflection coefficients of Silicon. (a) Real Part and (b) Imaginary Part. 

 The results above show the simulated reflection results of the unknown material Silicon, 

evaluated over a broad frequency range. It is important to note again that the simulated reflection 

values at low frequencies were non-physical possibly due to the material properties of Silicon in 

the software and/or results of the mesh convergence. Results demonstrate that from dc-to-10 

GHz, the coaxial probe had trouble determining the reflection coefficient of Silicon which caused 
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inconsistencies in the data. This is again mainly due to the probe behaving as a shorted device at 

lower frequencies, which altered the reflectance results when characterizing the unknown 

material. However, the data started to level off and behave much better beyond the 10 GHz mark 

and at higher frequencies. This is true because at higher frequencies, the micro-coaxial probe 

itself achieved its best performance, which allowed the materials reflection to be easily 

determined.      

5.5.2 Permittivity of Unknown Materials Using Simulated Reflection Coefficients 

 After the simulated reflection coefficients of the unknown materials were obtained, they 

were then inputted in the cross-ratio invariance coding technique to deduce its permittivity. This 

was done by using the measured permittivity values of the 3 known materials as measured 

calibration standards. By measuring the exact permittivities of these materials, it assisted in 

improving the accuracy of the results. Next, the simulated reflection coefficients of the 3 known 

materials were placed in the coding technique and served as simulated calibration standards 

closely related to the unknown materials. As mentioned earlier, the known materials were chosen 

in advanced due to their use in high frequency applications up to 77 GHz. Lastly, the simulated 

complex permittivity of the Silicon and PDMS was determined using the 3 known standards. This 

permittivity was not the actual value of the unknown materials, but served as a great base value 

for what was expected from the invariance coding technique that was used. Following obtaining 

the simulated permittivity values, it was then easier to determine the range of error when 

compared to the real permittivity. The figure below shows the deduced complex permittivity of 

PDMS when using the simulated reflection coefficient results and the measured calibration 

standards in the coding technique.        
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Figure 5.11 Simulated complex permittivity of PDMS using cross-ratio invariance coding  
technique. (a) Real Part and (b) Imaginary Part. 
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 The figure above shows the complex permittivity results for PDMS when using the 

simulated reflection coefficient results in the cross-ratio invariance coding technique. In Figure 

5.11 (a), it can be seen that the permittivity begins at a value of ~4.8 at dc and begins to decrease 

to 4.3 near 10 GHz. Once it approached higher frequencies, it continued to decrease to 3.9 at 30 

GHz and then to 3.7 at 40 GHz. This patterned continued through the entire range of frequency 

up to 70 GHz and achieved a final value of 3.6. The imaginary part of the permittivity is shown in 

Figure 5.11 (b) and it demonstrated a permittivity of 0.31 at dc and decreased to 0.27 at 10 GHz. 

As it approached higher frequencies, it decreased near 0.26 at 30 GHz, and then eventually 

leveled to 0.26 and 0.25 from 40 GHz-to-70 GHz.   
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Figure 5.12 Simulated complex permittivity of Silicon using cross-ratio invariance coding  
technique. (a) Real Part and (b) Imaginary Part. 

 In Figures 5.12 (a) and (b) above, the complex permittivity results for Silicon are shown 

when using the simulated reflection coefficient results in the cross-ratio invariance coding 

technique. The results indicated that the permittivity (real part) initially had a value between 9 

and 10 from dc-to-10 GHz. The permittivity then increased as the higher frequency levels were 

reached; demonstrating a value of 10.2-10.7 from 20 GHz-to-50 GHz. After the 50 GHz range, 

the permittivity appeared to demonstrate a constant value of ~10.8 up to 70 GHz. Although the 

results only cover up to 70 GHz, it can be seen that the permittivity will eventually reach a 

constant value of 11 up to nearly 100 GHz. The results in Figure 5.12 (b) show the imaginary part 

of the permittivity, and it can be seen that it reached a value of 0.53 at dc and eventually 

decreased to 0.47 at 10 GHz. The data also shows that as it surpasses the 10 GHz mark, it reduces 

to a value of 0.45 at 30 GHz, 0.39 at 50 GHz, and levels off to 0.38 at 70 GHz. These values 

seemed steady after the 30 GHz level and proved that a more constant curve can be expected as 

the frequency level of characterization increases.        
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5.6 Characterization of Unknown Materials - Measured Results 

 In the previous section, the permittivity of the unknown materials PDMS and Silicon 

were determined using the simulated reflection coefficients of the 3 known materials and their 

measured calibration standards; along with the simulated reflection coefficients of the unknown 

materials. However, in this section, the permittivity of the unknown materials was determined by 

actually measuring the reflection coefficients of the 3 known materials and of the unknown 

materials (Silicon and PDMS). The measured calibration standards of the 3 known materials that 

were used in the previous section were also used in determining the permittivity of the unknown 

materials in this section. The difference in the coding technique when determining the 

permittivity of PDMS and Silicon in this section is that all reflection coefficient data implemented 

in the code was measured instead of simulated. It is important to note that the reflection 

coefficients of the known and unknown materials needed to be measured in order to deduce its 

permittivity over the desired range of frequency.  

    

5.6.1 Material Characterization Setup 

 Similar to the measurement setup shown in Chapter 4, the high frequency material 

characterization was performed using the layout illustrated in Figure 5.13. The fabricated micro-

coaxial probe was first placed on the Microtech probe station that contained 2 ports; however, 

only port 1 was necessary for the reflection measurements. Port 1 on the probe station was then 

connected to the ground-signal-ground CPW pitch probes using the high frequency V-band cable. 

Next, the V-band cable, capable of measuring up to 67 GHz, was connected from the CPW pitch 

probes to port 1 of the VNA. Then, a calibration was performed on the probe-to-cable connection 

using a CS-5 calibration kit to eliminate any parasitic effects that may affect the measurement 

results. Finally, the MUT was placed on the chuck of the probe station, and the micro-coaxial 
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probe was placed directly on top; making complete contact for high frequency material 

characterization. The reflection coefficients of each material (known and unknown) were then 

determined.  

 

 

 

 

 

 

 

 

 

 

 

Figure 5.13 Illustration of Test Setup used for High Frequency Material Characterization. 

5.6.2 Measured Reflection Coefficients of Known Materials 

 The reflection coefficients of the 3 known materials were first measured using the setup 

shown above. Each material was characterized over a wide frequency range from dc-to-70 GHz. 

It is important to note however, that the VNA only reached 65 GHz; therefore, the data shown 

beyond 60 GHz are expected results. The measured reflection coefficient results for Rogers FR-4 

laminate board are shown in the figure below. The reflection coefficient of the Rogers board was 

also measured using the standard 150µm pitch probes to validate the accuracy of micro-coaxial 

probes and is also shown in the figure below.    
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Figure 5.14 Measured reflection coefficients of Rogers FR-4 laminate board. (a) Real Part, (b)  
Imaginary Part, (c) Real Part with CPW probes, and (d) Imaginary Part with CPW probes. 

 The figure above illustrates the measured reflection coefficients for the FR-4 board 

compared to the simulated results. In both the measured and simulated results, the MUT was 

placed directly in contact with the micro-coaxial probe. During testing, four probes were 

measured to characterize the MUT at high frequencies. In Figure 5.14 (a), it can be seen that 

reflection values ranged between 1 and 0.1 from dc-to-25 GHz for all four probes. The results 
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continued between these values over the entire range of frequency. The results for the imaginary 

part demonstrated values between 0.1 and 0.9 from dc-to-20 GHz, and then decreases to ~0.1 

while approaching the 70 GHz mark. These results however, differ from the simulated results by 

a factor of 0.5 for the real, and 0.6 for the imaginary part. This indication was mainly due to the 

simulation errors that occurred at low frequencies which eventually matriculated across the entire 

band impacting results at higher frequencies. The fact that the material was resting on the metal 

chuck could have also played a factor in the achieved results. Although the measured data was a 

bit off when compared to the simulated results, this material was only a measured standard used 

to in the code as a calibration standard; which means it slightly altered the final deduced 

permittivity of the unknown materials. The results in Figures 5.14 (c) and (d) show the measured 

results using the micro-coaxial probes compared to those when using the CPW probes. The 

comparison indicates a large difference at low and high frequencies for the real and imaginary 

parts, verifying that when the CPW probes were used the reflection data was not as accurate as 

the micro-coaxial probe results. This difference in reflection data could lead to an incorrect 

permittivity determination due to the lack of accuracy in the calibration standard data. Therefore, 

the micro-coaxial probe measurement would provide the highest level of accuracy for deducing 

the unknown permittivities. Figure 5.15 shows the real and imaginary measured reflection 

coefficients for Rogers 3006 High Frequency Laminates.  
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Figure 5.15 Measured reflection coefficient of Rogers 3006 High Frequency Laminate Sheet. (a)  
Real Part and (b) Imaginary Part. 

 The figure above illustrates the results obtained when measuring the reflection coefficient 

of the Rogers 3006 high frequency laminate sheet using 4 micro-coaxial probes. The results show 

that the real part behaved very similar for all probes, demonstrating a resonance of -0.5 near 30 

GHz. The rest of the frequency band showed the measured results differing from the simulated by 
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a factor of nearly 0.6 and seeming to level off as it approached the 70 GHz range. For the 

imaginary part, the data nearly achieved very similar results crossing paths near a value of 0.2 at 

the 30 GHz and 50 GHz mark. The rest of the frequency band however, demonstrated a 

difference factor of about 0.4 between the measured and simulated results. The difference in the 

real and imaginary part is due to the capacitance between the material and micro-coaxial probe, 

and the metal chuck altering the reflection value of the material itself. Again, this material was 

used as a calibration standard in the coding technique and affected the results of the deduced 

permittivity of the unknown materials. The last known material was measured and the reflection 

coefficient data is provided in Figures 5.16 (a) and (b).    
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Figure 5.16 Measured reflection coefficient of Rogers 3010 High Frequency Laminate Sheet. (a)  
Real Part and (b) Imaginary Part. 

 The results for the measured reflection coefficient of the Rogers 3010 laminate sheet are 

shown in the figure above. The real part measurement demonstrated a few resonance values at 10, 

20 and 30 GHz. This material also showed the largest difference between measured and simulated 

data with a variance by a factor of nearly 0.9 for the real part, and 0.8 for the imaginary. The 

imaginary part however, begin to show similarities as it approached higher frequencies, and the 

real part decreased to a difference factor of ~0.2. The variance between measured and simulated 

data can be contributed to material reflectance, behavior of the probe, and surface waves that 

played a factor from resting on the metal chuck. This material was also used as a calibration 

standard, and therefore affected the deduced permittivity results of the unknown materials. As 

mentioned before, the measured reflection coefficient comparisons to simulated were a bit off, 

but this was due to the simulation error occurring at lower frequencies. Further discussion on the 

difference in the reflection coefficient data of the known materials is provided in section 5.7.   
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 Following the reflection coefficient measurements of the known materials, each data set 

was then implemented in the invariance coding technique where it replaced the simulated 

reflection coefficient values. Although four probes were used to measure each material, the probe 

data with the best performance on each material was used in the code.  

5.6.3 Measured Reflection Coefficients of Unknown Materials 

 Along with the measured reflection coefficients presented above, the unknown materials 

reflection coefficients were also measured using the same characterization setup. This was 

necessary because the 3 known materials reflection data served as the calibration standards to the 

invariance coding system, but the unknown materials reflection data also needed to be measured 

in order to deduce their permittivity. The figure below shows the measured reflection coefficient 

data (real and imaginary) for PDMS.   
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Figure 5.17 Measured reflection coefficient of Unknown material PDMS. (a) Real Part and (b)  
Imaginary Part. 

 In the figure above, the measured reflection coefficient data for PDMS is shown 

compared to the simulated results. The figure illustrates the real part of the reflection data slightly 

differing from the simulated data by a factor of ~ 0.5 at lower frequencies, and 0.8 as it 

approached higher frequencies. Four probes were again used to characterize the material and 

provided a reflection value of -0.2 to -0.9 from dc-to-30 GHz. As the curve approached higher 

frequencies, the reflection coefficient again increased to about -0.7 up to 50 GHz and leveled off 

near -1.5 while approaching the 70 GHz mark. In the imaginary data, the reflection data crosses at 

lower frequencies demonstrating very similar results. At higher frequencies, a difference factor of 

~0.5 can be seen between the measured and simulated data from 30-to-45 GHz. As it continued 

across the frequency spectrum, the data begin to closely resemble the behavior of the simulated 

values with a difference factor of only 0.3. The above results did not exactly resemble the 

simulated values, but the data will still be used and implemented in the coding technique; 

therefore, the slight difference in reflection values was addressed when the permittivity of the 
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unknowns were determined. Figures 5.18 (a) and (b) illustrates the real and imaginary measured 

reflection coefficient results for Silicon. In Figures 5.18 (c) and (d), the measurement sensitivity 

of a single probe (Probe 2) was investigated by showing the difference in results after the micro-

coaxial probe was placed in contact with Silicon multiple times simultaneously. This probe was 

chosen because it was in the best condition to be measured following the fabrication process.      
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Figure 5.18 Measured reflection coefficient of Unknown material Silicon. (a) Real Part and (b)  
Imaginary Part and Measurement Sensitivity of (c) Real Part and (d) Imaginary Part. 

 The results above show the measured reflection coefficient results for Silicon. Again, 

four probes were used to characterize the behavior of the material at high frequencies. The real 

part results demonstrated a reflection value of 0.2 to 0.8 from dc-to-25 GHz. This value then 

leveled of between 0.5 and 0.7 from 40 GHz-to-70 GHz. This revealed a difference factor from 

the simulated results of ~0.4-0.6 over the wide frequency range. For the imaginary part, the 

measured data demonstrated a value of 0-0.8 from dc-to-45 GHz; this value then decreased to 

~0.3 and 0.4 as it approached the 50-to-70 GHz range. These imaginary results revealed a 

difference factor of about 0.8 at lower frequencies but then decreased to ~ 0.2 from 50-to-70 
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GHz; while nearly crossing paths with the same value from 30-to-40 GHz. It is also important to 

note that the major difference between measured and simulated data from dc-to-8 GHz was again 

mainly due to the micro-coaxial probe’s device error during simulations at lower frequencies. 

Results in Figures 5.18 (c) and (d) indicate that following multiple measurements, for the real 

part, the largest difference factor was ~0.2; and as large as ~0.25 for the imaginary part. These 

results proved that the measured results varied after multiple attempts but not in significant value 

that would impact the deduced permittivity results.      

 After both the reflection coefficients of the known and unknown materials were 

measured, they were implemented as calibration standards in the cross-ratio coding technique 

where the unknown permittivity’s were then determined. 

5.7 Permittivity of Unknown Materials Using Measured Reflection Coefficients 

 Following the measuring of the known and unknown materials reflection coefficients, the 

data was then used in the cross-ratio invariance coding technique to determine the permittivity of 

the unknown materials. The most important aspect of deducing the permittivity was being able to 

determine these values at high frequency ranges; which in this case was deduced up to 70 GHz. 

The results were compared to those obtained when the permittivity of the unknown materials was 

found using the simulated reflection data. Figures 5.19 (a) and (b) illustrates the permittivity of 

PDMS that was deduced using the cross-ratio code technique.   
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Figure 5.19 Complex Permittivity of PDMS using measured reflection coefficients in cross-ratio  
invariance coding technique. (a) Real Part and (b) Imaginary Part. 

 The results from the deduced permittivity of PDMS are shown in the figure above, when 

using the measured reflection coefficient data in the coding technique. A permittivity comparison 

was made to the results obtained when using the simulated reflection coefficient data. In the real 

part, the permittivity started at a value of ~3.4 and then reached 4 as it approached 35 GHz. It 
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then continued to increase to 4.1 and 4.2 as it neared 50-60 GHz, while leveling off to 4.3 at 70 

GHz. These results differed from the simulated by a factor of 1 at lower frequencies, and then 

decreased to ~0.5 at higher frequencies. The imaginary part demonstrated a value of 0.15-0.18 

from dc-to-20 GHz, and then increased to 0.23 as it approached higher frequencies. At the higher 

frequency level, the results only differed from the simulated values by a minimum factor of 0.02; 

whereas at lower frequencies a maximum difference factor of 0.15 was achieved. These results 

were due to the before mentioned simulation errors that occurred at lower frequencies when the 

reflection coefficient of PDMS was evaluated. Since majority of the simulation errors were seen 

at frequencies up to ~8 GHz, and then slowly affected higher frequencies, the lower frequency 

range produced the largest difference factor between measured and simulated data. However, it 

can be seen that this error became less of an impact on the permittivity results as the curves 

approached higher frequencies, where the measured permittivity agreed well with the simulated.  

Therefore, the deduced permittivity was close to the simulated values as it approached higher 

frequencies which allowed for a successful determination of the unknown material.   

 The permittivity of Silicon was then determined by implementing the measured reflection 

coefficient data in the invariance coding technique. The figure below illustrates the deduced 

complex permittivity of Silicon at high frequencies using measured reflection data.  
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Figure 5.20 Complex Permittivity of Silicon using measured reflection coefficients in cross-ratio  
invariance coding technique. (a) Real Part and (b) Imaginary Part. 

 The above data shows the permittivity results for Silicon when using the measured 

reflection coefficient data in the coding technique. The data was compared to the results obtained 

when using the simulated reflection coefficient data in the coding technique. The results 

demonstrated the real part of the permittivity starting near a value of 17 and eventually decreasing 

to 12 as it approached 30 GHz. The curve then continued to decrease to approximately 11 as it 

neared the 70 GHz mark. The largest difference in this data from simulated results can be 

observed at lower frequencies (dc-to-15 GHz) by a maximum factor of 11; the difference factor 

however decreased and improved as it approached higher frequencies by reducing to a factor of 

nearly 0.7. Again, simulation errors that occurred at low frequencies when evaluating the 

reflection coefficient of Silicon caused the measured and simulated permittivity values to differ 

the most at the lower frequency range. The permittivity curves began to closely resemble at 

higher frequencies due to the simulation error having a reduced impact on the data as the 

frequency range increased. In the imaginary part, the behavior of the curve closely resembled that 

of the simulated data over the entire frequency range, where the largest difference factor obtained 

was 0.6; which was seen at low frequency levels close to dc.  
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 Overall, the permittivity of the unknown materials that were deduced using the measured 

reflection data represented values close to those obtained with simulated results. Although larger 

difference factors in the data was seen at lower frequencies, this was expected due to the 

simulation error that occurred when the probe was in contact with the materials. Other 

discrepancies in the data were due to the capacitance that appeared between the materials and the 

coaxial probes. This caused each of the materials to behave differently than if they were simply 

resting in free space.  Also, the metal chuck that the materials rested on during measuring also 

played a major role in determining accurate reflection data. Therefore, since the measured 

reflection data was slightly off from the simulated data, the deduced permittivity of each 

unknown was expected to differ. Lastly, after measuring the materials and finding the permittivity 

of the unknowns, it was realized that more accurate results could have been achieved if the 

permittivity values of the chosen calibration standards were closer to those of the unknown 

materials that were to be determined. This would have created a narrower calibration window for 

the unknown materials, and would have ultimately minimized any errors seen from their 

reflection coefficient data. However, in both cases, the permittivity values obtained could be used 

to determine the identity of each of the unknown materials if no other information was supplied.    

5.7.1 Comparison of Permittivity Results Using Code vs. Measured Permittivity  

 To verify the accuracy of the determined permittivity when using the measured reflection 

coefficient data in the code technique, the results were then compared to the actual measured 

permittivity of the unknown material. Using the dielectric probe kit described in section 5.4, the 

permittivity of PDMS and Silicon were measured up to 14 GHz. Again, the system was first 

calibrated using air, an RF short, and in diluted water. Following the calibration, each material 

was placed in contact with the probe setup and the permittivities were retrieved from the 

software. Figure 5.21 shows the measured complex permittivity results of PDMS (up to 14 GHz) 
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compared to those obtained when implementing the reflection data in the cross-ratio invariance 

coding technique.      

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
 



115 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5.21 Results obtained using cross-ratio coding technique compared to measured complex  
permittivity of PDMS. (a) Real Part and (b) Imaginary Part. 

 The figure above illustrates a comparison of the results obtained using the coding 

technique and when the unknown material was actually measured. Due to limitations of the 

dielectric probe kit, results obtained were only capable of reaching up to 14 GHz. For the real 

part, it can be seen that the actual measured permittivity of PDMS reached a value of 3.12 at 

lower frequencies but then decreased to ~3.01 as it approached higher levels. It can be assumed 

that the curved leveled off near the 15 GHz mark and beyond since those values were 

unattainable. Therefore, the reference value for PDMS was 3.01, which differed from the coding 

technique values by ~ 0.8. For the imaginary, the measured value started near 0.05 and leveled off 

near 0.18 as it approached higher frequencies. Therefore, with a referenced imaginary value of 

0.18, it differed from those values obtained using the coding technique by ~ 0.04.  
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 The comparison of measured permittivity to results obtained using the coding technique 

for Silicon is shown in the figure below.  
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Figure 5.22 Results obtained using cross-ratio coding technique compared to measured complex  
permittivity of Silicon. (a) Real Part and (b) Imaginary Part. 

 In the figure above, the permittivity comparison of results obtained when using the 

coding technique and when measuring Silicon are shown. Again, the limitation of measuring 

equipment only allowed the measured permittivity to be determined up to 14 GHz. The real part 

showed that the probe system had a difficult time getting an accurate measurement of the Silicon 

at lower frequencies, with a value that started at 45; which is way beyond the expected value of 

any known silicon substrate. Several attempts were made to re-calibrate the system and repeat the 

measurement, but the probe system generated the same results. As the frequency range increased, 

it decreased and leveled off at ~10.7-11, which was assumed to be the reference value of Silicon. 

The measured value of silicon at lower frequencies compared poorly to the results obtained in the 
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code with a difference factor as high as 28. This major difference was due to discrepancies with 

the probe system being able to make good contact with a silicon substrate. At higher frequencies 

however, the coding technique behaved well compared to the measured results, only 

demonstrating a difference factor of ~0.4. For the imaginary part, the value started at 1 over a 

lower frequency range, and decreased to 0.45 as it approached higher frequencies. Therefore, the 

reference value for the imaginary part of Silicon was assumed to be 0.45. The results obtained 

when using the coding technique compared well to these results at higher frequencies, 

demonstrating a difference factor of 0.03. At lower frequencies however, the difference factor 

was greater reaching a value of ~0.4. 

5.8 Coding Technique Difference Factor in Terms of Percentage Error 

 Lastly, the coding technique results for PDMS and Silicon using the simulated reflection 

coefficients were compared to those obtained using the measured reflection data. These results 

showed the difference factor between the simulated coding technique and the measured coding 

technique results of the unknown materials in terms of a percentage. Using the permittivity results 

above, the percent error was calculated for each difference factor at every 10 GHz of data over 

the entire frequency band up to 70 GHz. The equation below was used to calculate the percentage 

error between the coding technique results and the actual measured permittivity.  

      

           5.1 

 In Equation 5.1, the results obtained using the simulated cross-ratio coding technique 

represented the approximate value, and the actual measured data used in the coding technique 

represented the exact value. The tables below represent the difference factor in terms of 

calculated percentage error at each range of frequency for PDMS and Silicon.  
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Table 5.1 Difference Factor of PDMS in Terms of Percentage Error 

Frequency 
[GHz] 

Simulated Coding 
Technique 
(real/imag) 

Measured Coding 
Technique 
(real/imag) 

Difference 
Factor 

(real/imag) 

Percentage 
Error  

(real/imag) 
dc 4.8/0.31 3.4/0.14 1.4/0.17 41%/121% 

10 4.2/0.27 3.7/0.14 0.5/0.13 13.5%/93% 

20 4/0.26 3.9/0.19 0.1/0.07 2.6%/36.8% 

30  3.9/0.255 4/0.2 0.1/0.055 2.5%/27.5% 

40 3.8/0.252 4.1/0.21 0.3/0.042 7.3%/20% 

50 3.7/0.251 4.2/0.22 0.5/0.031 14%/14.1% 

60 3.65/0.25 4.25/0.23 0.6/0.02 14.11%/8.7% 

70 3.6/0.25 4.27/0.235 0.67/0.015 15.7%/6.4% 

 The table above shows the comparison of permittivity results obtained when using the 

simulated reflection coefficient data and the measured. The difference factor between the 

complex permittivity of PDMS at each frequency range is also shown. As seen above, once the 

difference factor was determined, the percentage error at each frequency range was then 

calculated. The results showed that for the real part of PDMS, the highest difference in percent 

error seen was at dc; this was again due to the micro-coaxial probe’s behavior at lower 

frequencies. The best percentage error was seen from 20-to-30 GHz, but also behaved well as it 

approached the highest frequency range. In the real part, a big difference in percent error can be 

seen from dc-to-20 GHz, due to micro-coaxial probe inaccuracies during measuring. The 

percentage error performance did increase however; as it reached the 70 GHz mark.  

 The difference factor in terms of calculated percentage error for Silicon is shown in Table 

5.2. From the table it can be seen that for Silicon, at majority of the frequency marks, the 

percentage error calculation proved that the measured and simulated coding technique results 

were closely related. For the real part, the largest percentage error was again seen at dc; reaching 

up to 50%. However, as it approached higher frequencies, an error as low as 1.8% was achieved, 

which demonstrated a good comparison between each set of data. The imaginary portion also 
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behaved very well across the wide frequency range. The highest percent error calculated was 

10.3% at dc; and actually achieved a 0% percentage error from 20-to-30 GHz. This meant that the 

simulated and measured coding results were actually identical at those specific points on the 

curve.     

Table 5.2 Difference Factor of Silicon in Terms of Percentage Error 

Frequency 
[GHz] 

Simulated Coding 
Technique 
(real/imag) 

Measured Coding 
Technique 
(real/imag) 

Difference 
Factor 

(real/imag) 

Percentage 
Error 

(real/imag) 
dc 8.8/0.52 17.5/0.58 8.7/0.06 49.7%/10.3% 

10 10/0.47 14/0.5 4/0.03 28.6%/6% 

20 10.8/0.46 13/0.46 2.2/0.0 16.9%/0% 

30  10.85/0.45 12/0.45 1.15/0.0 9.6%/0% 

40 10.9/0.45 11.7/0.44 0.8/0.01 6.8%/2.3% 

50 10.95/0.44 11.5/0.43 0.55/0.01 4.8%/2.3% 

60 10.97/0.44 11.3/0.42 0.33/0.02 2.9%/4.8% 

70 10.99/0.44 11.2/0.41 0.21/0.03 1.88%/7.3% 

5.9 Permittivity of Additional Unknown Material using Measured Reflection Coefficients 

 Following the development of the micro-coaxial probe flushed in silicon, the idea of 

attempting a parallel design using a Low temperature co-fired ceramic (LTCC) substrate was 

discussed. Although the design was not completed in this work, being able to determine its 

permittivity at high frequencies for the future probe design was critical. Therefore, the cross-ratio 

technique discussed in previous sections was also used to characterize the LTCC substrate that 

will be used to develop a micro-coaxial probe. The material under test was DuPont’s 951 Green 

Tape, which had a dielectric constant of 7.8 at 3 GHz according to specifications [97]; however, 

if the substrate is to be used to develop a micro-coaxial probe, the permittivity at higher 

frequencies up to 70 GHz needed to be determined. This material was made of a thin sheet 

material (250µm) and was then fired in an oven to form a thicker and durable substrate (660µm). 

This was done by cycling the oven temperature every 90 minutes at ~800˚C. By firing the LTCC 
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substrate, the material was made thicker than the length of the micro-coaxial probe, which was 

recommended to help prevent any wave disruptions from penetrating the surface. 

 To determine the permittivity of the LTCC substrate, the reflection coefficients of the 

material were first measured and then compared to the simulated results. The figure below 

illustrates the measured reflection coefficients of the LTCC substrate in comparison with the 

simulated results.    

    

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.23 Measured reflection coefficients of Unknown material LTCC compared to simulated  
results. (a) Real Part and (b) Imaginary Part. 
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 The results above show the measured reflection coefficient results compared to those 

simulated for LTCC. The real part demonstrated a reflection value of -0.1 to -0.3 from dc-to-25 

GHz. This value then increased to -0.2 as it approached 50 GHz. Once it passed 50 GHz, it 

continued to increase to nearly -0.1 up to 70 GHz. This revealed a difference factor from the 

simulated results of ~0.03 at lower frequencies and ~1 as it approached the higher range. For the 

imaginary part, the measured data demonstrated a value of -0.1 to -0.8 from dc-to-25 GHz; this 

value then increased to -0.5 as it approached 50 GHz. Once it passed 50 GHz, it continued to 

increase to -0.1 up to 70 GHz. These imaginary results revealed a difference factor of about 0.4 at 

lower frequencies but then increased to ~ 1.2 from 50-to-70 GHz. The variance in measured to 

simulated data is again mostly due to the simulation error that occurred at lower frequencies when 

the probe was in contact with LTCC. Next, since Probe 1 data resembled the simulated reflection 

coefficient results the closest, it was then used to deduce the permittivity of the MUT. Figure 5.24 

illustrates the complex permittivity of the LTCC substrate deduced using the cross-ratio technique 

at high frequencies.    
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Figure 5.24 Complex Permittivity of LTCC using measured reflection coefficients in cross-ratio  
Invariance coding technique. (a) Real Part and (b) Imaginary Part. 

 The above data shows the complex permittivity results for LTCC when using the 

measured reflection coefficient data in the coding technique. The data was compared to the 

results obtained when using the simulated reflection coefficient data in the coding technique. 

Results demonstrated that for the real part, the measured permittivity values agreed well with the 

simulated, with a difference factor of 0.5 from dc-to-35 GHz and then only increasing to 0.8 as it 

approached 70 GHz. The imaginary part however, demonstrated variance with a difference factor 

of ~0.5 at lower frequencies, which was caused by the simulation error, but then decreases to 0.2 

at higher frequencies as the errors begin to have less of an impact on the results. Lastly, the 

difference factors for the real and imaginary parts were utilized to determine the percent error at 

every 10 GHz. The error was calculated using the simulated permittivity as an approximate value, 

and the measured permittivity as the exact value. The table below shows the difference factor in 

terms of calculated percentage error for LTCC.    
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Table 5.3 Difference Factor of LTCC in Terms of Percentage Error 

Frequency 
[GHz] 

Simulated Coding 
Technique 
(real/imag) 

Measured Coding 
Technique 
(real/imag) 

Difference 
Factor 

(real/imag) 

Percentage 
Error 

(real/imag) 
dc 6.5/0.4 6.8/0.75 0.3/0.35 4.4%/46.6% 

10 7.2/0.45 7/0.7 0.2/0.25 2.8%/35.7% 

20 7.4/0.47 7.1/0.62 0.3/0.15 4.22%/24.2% 

30  7.6/0.48 7.1/0.6 0.5/0.12 7%/20% 

40 7.7/0.49 7.2/0.55 0.5/0.06 6.9%/10.9% 

50 7.8/0.495 7.2/0.5 0.6/0.005 9%/1% 

60 7.9/0.5 7.25/0.48 0.65/0.02 8.9%/4.2% 

70 8/0.5 7.25/0.42 0.75/0.08 10.3%/19% 

 The difference factor in terms of calculated percentage error for LTCC is shown in Table 

5.3 above. From the table it can be seen that for LTCC, the percentage error calculation proved 

that the measured and simulated coding technique results were somewhat related. For the real 

part, the largest percentage error was again seen at 70 GHz; reaching only 10%. At lower 

frequencies, an error as low as 2.8% was achieved, which demonstrated a good comparison 

between each set of data. The imaginary portion however, didn’t agree as well as the real part. 

The highest percent error calculated was 46.6% at dc; and reached values of 19% and 20% at 

higher frequencies. This discrepancy in the data was expected seeing that the measured reflection 

coefficient values were different than the simulated values. Although a slight variance is seen for 

the exact permittivity and the approximate, the material can still be determined using the achieved 

value from the coding technique. 

 In summary, the unknown materials that were characterized using simulated and 

measured reflection coefficient data were accurate enough to determine what material was 

actually under test. Using the cross-ratio coding technique allowed the reflection data to be 

collected and deduced into a permittivity value. By simulating the material in contact with the 

micro-coaxial probe first, reference values were obtained for the expected permittivity values of 
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the unknown materials. These reference values were then compared to the actual permittivity 

values obtained using the measured reflection coefficient results and agreed well with the 

expected results. After comparing the permittivity results, the difference factor between each data 

set was determined at every 10 GHz mark over the entire dc-to-70 frequency band. These values 

were then used to determine the difference between measured and simulated code technique 

results in terms of percentage error. Following the calculation of percentage error, it was observed 

that results were poor at the dc-to-20 GHz range for the real and imaginary parts of each material. 

However, as the frequency range increased, the results improved and began to agree well with 

each other. These results prove that the micro-coaxial probe can successfully determine the 

permittivity of unknown materials at high frequencies with the highest percentage error only 

reaching 49%.  

 

 

 

 

 

 

 

 

 

 

 

 



126 
 

CHAPTER 6 

CONCLUSIONS AND RECOMMENDATIONS FOR FUTURE RESEARCH 

 Through-wafer vertical micro-coaxial probes with inner and outer diameters of 100 and 

300µm were developed for high frequency material characterization and millimeter wave 

packaging systems. These probes were developed using standard photolithography techniques, 

deep reactive ion etching, and a one step e-beam lithography process. The probes through holes 

were metalized using a novel filling method that allowed silver paste to be coursed into the 

miniaturized holes. The signal transmission capabilities of the probes were evaluated from port-

to-port to verify their ability to characterize materials at high frequencies. 

 The signal transmission capability of several micro-coaxial probes was determined using 

high frequency RF characterization. By applying a signal (matched to 50 ohm) from the VNA 

directly to the micro-coaxial probes, their reflection coefficients from dc-to-70 GHz was 

measured using CPW pitch probe tips. The micro-coaxial probes demonstrated good signal 

transmission when the reflection coefficient was measured at port 1. At a center frequency of 60 

GHz, a reflection coefficient of -18dB was observed, and at lower frequencies, values as low as -

22dB were also obtained. An additional substrate was included on the bottom side of the coaxial 

probe which contained extended CPW lines used to verify its transducer gain capabilities. 

Following this, the coaxial probes demonstrated transducer gain less than -1.8dB over the entire 

range of frequency. Therefore, a three-dimensional micro-coaxial probe designed flush in silicon, 

capable of successful signal transmission at high frequencies, was developed for the first time. 

 In addition, the silicon based vertical micro-coaxial probes were used to characterize 

unknown materials at high frequencies by determining their permittivity using microwave 

measurements. Three known materials were chosen as calibration standards to be used in the 

cross-ratio invariance coding technique. The reflection coefficients of the 3 known materials were 

then measured and uploaded in the coding technique. The reflection coefficients of the unknown 
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materials were then measured and implemented in the code, where the permittivity of Silicon, 

PDMS, and LTCC was determined. The permittivity results from the measured reflection data 

was compared to results obtained when using the simulated reflection coefficients. When using 

several probes to characterize majority of the MUT’s surface, the measured results agreed well 

with the simulated for both materials; demonstrating a maximum percentage error of 15% for 

PDMS 17% for Silicon, and 10.3% for LTCC at high frequencies beyond 20 GHz.  

 As a result of using the vertical micro-coaxial probe to characterize materials at high 

frequencies and to transmit signals in millimeter wave packaging systems, the probe device 

demonstrated its excellent dual capabilities for a variety of future commercial application. 

Implementing it in high frequency multi-level packaging systems as interconnects/transitions, as 

well as integrating it with unknown materials to determine their permittivity, this work introduced 

a useful and cost effective silicon based two-fold application developed for the first time. By 

designing the micro-coaxial probe in a silicon substrate, the compatibility with other high 

frequency RF modules and such is highly increased.    

  6.1 Recommendations for Future Research 

 The vertical micro-coaxial probe demonstrated good results during testing and could be 

useful when implemented in both applications. However, some design issues that were discovered 

during fabrication could affect the behavior of the probe device in the future. For example, the 

CPW lines on the front and backside on the coaxial probe were designed with a 5µm gap between 

signal and ground. This caused major issues when the probes were fabricated because the through 

holes that were etched in the silicon substrate created a non-uniform surface which prevented the 

photoresist from being evenly distributed for the CPW line pattern. Therefore, when the CPW 

line pattern was developed, some areas in between the signal and ground lines were poorly 

covered with photoresist. This caused an immediate device shortage because following the gold 
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deposition of the lines, areas not covered with resists contained gold after liftoff. Although the 

resist spin recipe was adjusted to achieve the desired results, a slight adjustment to increase the 

CPW line gap distance would reduce fabrication issues. This adjustment can improve the 

reflection coefficient results obtained for the micro-coaxial probe. 

 The inclusion of the additional substrate to extend the CPW lines can also be altered to 

improve the probe’s signal transmission results, because the extended CPW lines were designed a 

little short of the required length. This was realized after the lines were fabricated and then 

integrated with the original substrate. It was then determined that even after dicing the micro-

coaxial probes into smaller components, the extended lines were barely reachable after the local 

holes and cross hairs were aligned to one another. This caused issues when trying to measure the 

s-parameters at port 2 because the additional substrate had to be slightly shifted to the left to 

create more contact area for the probes to land. During the shift, it was assumed that the CPW 

lines on the backside and the additional substrate were misaligned which reduced the signal 

transmission abilities of the micro-coaxial probe. Therefore, increasing the length of the extended 

CPW lines would improve the transducer gain performance. 

 The same micro-coaxial probes were used to characterize materials at high frequencies, 

and the permittivity results when using measured reflection data agreed well with the simulated 

data. However, the cross-ratio coding technique would have provided more accurate permittivity 

results if more known materials were used to calibrate the system. This would have created more 

data for the code to use when compiling the measured reflection coefficients, improving its 

overall accuracy. Also, the chosen known materials had permittivity values of 4.2, 6.5, and 10.2, 

which were not in the range of the unknowns. Therefore, to further improve the accuracy of the 

coding technique, the chosen known materials should have permittivity values that cover the 

permittivity range from highest to lowest of the unknown materials permittivity that is to be 

determined. Furthermore, when the unknown materials reflection coefficients were measured, 
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they were resting on a metal chuck, which also affected the outcome of the permittivity results. 

Reducing the contact of the measured materials with the chuck would have to be included to 

increase reflection accuracy. 

 Additionally, with the characterization of the LTCC material, more progress can be made 

to develop the parallel micro-coaxial probe design. By determining the permittivity of LTCC at 

high frequencies, it has helped improve the overall performance of the device by providing it with 

a more accurate description of the material to be used. Also, further studies can be done on 

replacing the silver paste with nano-silver to metalize the through-holes; which could provide a 

better metallic connection between the probe and CPW lines. Using this type of metal could allow 

its temperature to be optimized for curing at a low temperature. 

 Finally, with the development of the vertical micro-coaxial probe, it was discovered that 

in future work, it could also be used to characterize the behavior of a millimeter wave device; for 

example a high frequency antenna. The antenna that could be used for this work has been 

published and is a CPW-fed folded dipole slot with a center frequency of 60 GHz, and can be 

reviewed for further detail in Appendix D [98]. However, the CPW feed of the antenna needs to 

be redesigned into a circular coaxial feed in order to electrically connect with the coaxial probe. 

Thus, as a next step towards proving the vertical micro-coaxial probe can characterize millimeter 

wave passive devices, the probe has to be integrated with the 60 GHz folded dipole slot antenna 

and evaluated.  
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APPENDICES 



Appendix A: Process Flow for Fabrication of Micro-Coaxial Probe 

 Step 1: Substrate Cleaning  

  Rinse in DI water and N2 dry 

 Step 2: Photolithography 

  Layer 1- Coaxial Vias 

  Spin coat – HMDS; spin speed – 3000RPM; time – 30 seconds 

  Spin coat – AZ4620 positive photoresist; (1) spin speed – 500 RPM; time – 10 

 seconds; (2) spin speed – 1000 RPM; time – 60 seconds  

  Soft bake – Oven; T=100˚C for 20 minutes 

  Rehydration – Leave in open air for 24 hours 

  Expose – Karl Suss Mask aligner; 13 seconds exposure to UV at 25mW/cm2 

  Develop – AZ 400K 1:4 developer; Constant immersion developing at room 

 temperature for 4-5 minutes 

  Rinse in Di water and N2 dry 

  Pattern check: Optical Microscope 

  Hard bake – Oven; T=100˚C for 30 minutes 

 Step 3: Deep Reactive Ion Etching (DRIE) 

  Run oxide clean in the chamber to remove any debris from previous etching      

  Perform temporization in chamber and heat the substrate holder to -15˚C 

  Season the chamber by running the 30 minute silicon etching recipe that will be  

 used (should only need to run for 20 minutes) 

  Load sample onto substrate holder by applying fambling oil to backside for 

 bonding. 
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  Run 30 minute silicon etching recipe to etch 300µm deep through the silicon 

 substrate (etch rate ~10µm/min) 

  Through-hole check: Remove substrate from chamber and verify that etching is 

 complete using optical microscope. 

  Note: If etching is not complete, run silicon etching recipe again for 5 minutes 

 and remove substrate. 

 Step 4: Removal of fambling oil 

  Place substrate in Plasma reactive ion etcher with the side covered in fambling 

 oil facing up; Power – 200mW; Etch Time – 5 minutes   

 Step 5: Metallization of Coaxial Vias 

   Carefully rest substrate in one hand and apply diluted silver paste onto sharp 

 razor blade. Take razor blade and gently apply to surface of silicon substrate by sweeping 

 blade across the holes continuously, evenly coursing the paste into the formed through 

 holes. Repeat this process until silver paste can be seen leaking out of through holes from 

 the backside of the wafer. 

 Step 6: Removal of excess silver paste 

  Immerse substrate with filled through holes in Acetone until all photoresist 

 is removed. 

  Rinse in DI water and N2 dry 

 Step 7: Photolithography 

  Layer 2- Top side CPW Lines 
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  Spin coat – Futurrex 3000 PY negative resist; spin speed – 1000 RPM; time – 30 

 seconds 

  Soft bake – Hot plate; T=150˚C for 60 seconds 

  Expose – Karl Suss Mask aligner; 23 seconds exposure to UV light at 17mW/cm2 

and hard bake on hot plate; T=100˚C for 60 seconds  

  Develop – RD 6 developer; Immersion developing at room temperature for 17 

 seconds  

  Rinse in DI water and N2 dry 

  Pattern check: Optical Microscope 

 Step 8: Metal Deposition 

  Electron Beam – Cr and Au 

  Pressure – 5e-6 Torr, Current – .014 A and 0.15 A for Cr and Au, respectively; 

 Deposition rate – 0.3Ǻ/sec for Cr and 1.5Ǻ/sec for Au.   

 Step 9: Metal Lift-Off 

  Immerse the substrate in Acetone until all the unwanted metal peels off from the 

 substrate. 

  Rinse in DI water and N2 dry 

  Deposition pattern check: Optical Microscope 

 Step 10: Photolithography 

  Layer 3- Bottom side CPW Lines 

  Repeat step 7 

 Step 11: Metal Deposition (Bottom side CPW Lines) 

  Repeat step 8 

 Step 12: Metal Lift-Off (Bottom side CPW Lines) 

  Repeat step 9 
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 Step 13: Photolithography 

  Layer 4- Local Alignment Holes (Top Side) 

  Repeat step 2 

 Step 14: DRIE of Local Alignment Holes 

  Repeat step 3 

  Immerse substrate with etched local alignment holes in Acetone until all 

 photoresist is removed. 

  Rinse in DI water and N2 dry 
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Appendix B: Process Flow for Fabrication of Extended CPW Lines (Additional Substrate) 

 Step 1: Substrate Cleaning 

  Rinse in DI water and N2 dry 

 Step 2: Photolithography 

  Layer 1- Extended CPW Lines 

  Spin coat – Futurrex 3000 PY negative resist; spin speed – 1000 RPM; time – 30 

 seconds 

  Soft bake – Hot plate; T=150˚C for 60 seconds 

  Expose – Karl Suss Mask aligner; 23 seconds exposure to UV light at 17mW/cm2 

  Develop – RD 6 developer; Immersion developing at room temperature for 17 

 seconds 

  Rinse in DI water and N2 dry 

  Pattern check: Optical Microscope 

 Step 3: Metal Deposition 

  Electron Beam – Cr and Au 

  Pressure – 5e-6 Torr, Current – .014 A and 0.15 A for Cr and Au, respectively; 

 Deposition rate – 0.3Ǻ/sec for Cr and 1.5Ǻ/sec for Au.   

 Step 4: Metal Lift-Off 

  Immerse the substrate in Acetone until all the unwanted metal peels off from the 

 substrate. 

  Rinse in DI water and N2 dry 

  Deposition pattern check: Optical Microscope  
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Appendix C: Cross-Ratio Invariance Coding Technique Used to Deduce Permittivity of  
Unknown Materials (MATLAB) 

clear all  
clc 
close all 
format long 
  
t_total=tic; 
  
cmTOin =(1/(2.54*1e-2)); 
inTOcm=(2.54*1e-2); 
  
%% -------------radius of probe-------------------- 
b=150e-6; %outer rad or dia 
a=50e-6; %inner rad or diametr 
eps_c=11.7; %permmitivty of probe dielcetroc 
  
%% ------------------------------------------------ 
  
 %% -----------TAKE INTEGRALS---------------------------- 
  
%takes about 20 seconds for original I1 so.....DONT USE 
% F = @(phiP,rhoP,rho) (cos(phiP))./(rho.^2 + rhoP.^2 - 
2*rho.*rhoP.*cos(phiP)).^(1/2); 
% I1 = triplequad(F,pi/967,pi,a,b,a,b,[],@quadv);  
  
%use this I1 instead 
N=2; 
M=@(rho,rhoP) 
(pi/2).*[1+(1/(2)).^2.*((4.*rho.*rhoP)./((rho+rhoP).^2)).^2+... 
    (doublefact(2*N-
1)./(doublefact(2*N))).^2.*((4.*rho.*rhoP)./((rho+rhoP).^2)).^(2*N)+... 
    (doublefact(3*N-
1)./(doublefact(3*N))).^2.*((4.*rho.*rhoP)./((rho+rhoP).^2)).^(3*N)+... 
    (doublefact(4*N-
1)./(doublefact(4*N))).^2.*((4.*rho.*rhoP)./((rho+rhoP).^2)).^(4*N)+... 
    (doublefact(5*N-
1)./(doublefact(5*N))).^2.*((4.*rho.*rhoP)./((rho+rhoP).^2)).^(5*N)+... 
    (doublefact(6*N-
1)./(doublefact(6*N))).^2.*((4.*rho.*rhoP)./((rho+rhoP).^2)).^(6*N)+... 
    (doublefact(7*N-
1)./(doublefact(7*N))).^2.*((4.*rho.*rhoP)./((rho+rhoP).^2)).^(7*N)+... 
    (doublefact(8*N-
1)./(doublefact(8*N))).^2.*((4.*rho.*rhoP)./((rho+rhoP).^2)).^(8*N)+... 
    (doublefact(9*N-
1)./(doublefact(9*N))).^2.*((4.*rho.*rhoP)./((rho+rhoP).^2)).^(9*N)+... 
    (doublefact(10*N-
1)./(doublefact(10*N))).^2.*((4.*rho.*rhoP)./((rho+rhoP).^2)).^(10*N)+.
.. 
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    (doublefact(11*N-
1)/(doublefact(11*N))).^2.*((4.*rho.*rhoP)./((rho+rhoP).^2)).^(11*N)+..
. 
    (doublefact(12*N-
1)/(doublefact(12*N))).^2.*((4.*rho.*rhoP)./((rho+rhoP).^2)).^(12*N)+..
. 
    (doublefact(13*N-
1)/(doublefact(13*N))).^2.*((4.*rho.*rhoP)./((rho+rhoP).^2)).^(13*N)+..
. 
    (doublefact(14*N-
1)/(doublefact(14*N))).^2.*((4.*rho.*rhoP)./((rho+rhoP).^2)).^(14*N)+..
. 
    (doublefact(15*N-
1)/(doublefact(15*N))).^2.*((4.*rho.*rhoP)./((rho+rhoP).^2)).^(15*N)+..
. 
    (doublefact(16*N-
1)/(doublefact(16*N))).^2.*((4.*rho.*rhoP)./((rho+rhoP).^2)).^(16*N)+..
. 
    (doublefact(17*N-
1)/(doublefact(17*N))).^2.*((4.*rho.*rhoP)./((rho+rhoP).^2)).^(17*N)+..
. 
    (doublefact(18*N-
1)/(doublefact(18*N))).^2.*((4.*rho.*rhoP)./((rho+rhoP).^2)).^(18*N)+..
. 
    (doublefact(19*N-
1)/(doublefact(19*N))).^2.*((4.*rho.*rhoP)./((rho+rhoP).^2)).^(19*N)+..
. 
    (doublefact(20*N-
1)/(doublefact(20*N))).^2.*((4.*rho.*rhoP)./((rho+rhoP).^2)).^(20*N)]..
. 
    ./(rho+rhoP); %numerator is elliptic integral of 1st kind 
  
I1a=2*dblquad(M,a,b,a,b,[],@quadv); 
F1 = @(phiP,rhoP,rho) (cos(phiP)-1).*(rho.^2 + rhoP.^2 - 
2*rho.*rhoP.*cos(phiP)).^((1-2)/2); 
I1b = triplequad(F1,2.00585285,pi,a,b,a,b,[],@quadv); 
I1=I1a+I1b; 
  
  
G = @(phiP,rhoP,rho) (cos(phiP)).*(rho.^2 + rhoP.^2 - 
2*rho.*rhoP.*cos(phiP)).^((3-2)/2); 
I3 = triplequad(G,0,pi,a,b,a,b,[],@quadv); 
  
% I1=0.011408150843872; 
% I3=-3.699764668971378e-07; 
  
 %--------for 10 terms------------------ 
G2 = @(phiP,rhoP,rho) (cos(phiP)).*(rho.^2 + rhoP.^2 - 
2*rho.*rhoP.*cos(phiP)).^((2-2)/2); 
I2 = triplequad(G2,0,pi,a,b,a,b,[],@quadv); 
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G4 = @(phiP,rhoP,rho) (cos(phiP)).*(rho.^2 + rhoP.^2 - 
2*rho.*rhoP.*cos(phiP)).^((4-2)/2); 
I4 = triplequad(G4,0,pi,a,b,a,b,[],@quadv); 
  
G5 = @(phiP,rhoP,rho) (cos(phiP)).*(rho.^2 + rhoP.^2 - 
2*rho.*rhoP.*cos(phiP)).^((5-2)/2); 
I5 = triplequad(G5,0,pi,a,b,a,b,[],@quadv); 
  
G6 = @(phiP,rhoP,rho) (cos(phiP)).*(rho.^2 + rhoP.^2 - 
2*rho.*rhoP.*cos(phiP)).^((6-2)/2); 
I6 = triplequad(G6,0,pi,a,b,a,b,[],@quadv); 
  
G7 = @(phiP,rhoP,rho) (cos(phiP)).*(rho.^2 + rhoP.^2 - 
2*rho.*rhoP.*cos(phiP)).^((7-2)/2); 
I7 = triplequad(G7,0,pi,a,b,a,b,[],@quadv); 
  
G8 = @(phiP,rhoP,rho) (cos(phiP)).*(rho.^2 + rhoP.^2 - 
2*rho.*rhoP.*cos(phiP)).^((8-2)/2); 
I8 = triplequad(G8,0,pi,a,b,a,b,[],@quadv); 
  
G9 = @(phiP,rhoP,rho) (cos(phiP)).*(rho.^2 + rhoP.^2 - 
2*rho.*rhoP.*cos(phiP)).^((9-2)/2); 
I9 = triplequad(G9,0,pi,a,b,a,b,[],@quadv); 
  
G10 = @(phiP,rhoP,rho) (cos(phiP)).*(rho.^2 + rhoP.^2 - 
2*rho.*rhoP.*cos(phiP)).^((10-2)/2); 
I10 = triplequad(G10,0,pi,a,b,a,b,[],@quadv); 
  
G11 = @(phiP,rhoP,rho) (cos(phiP)).*(rho.^2 + rhoP.^2 - 
2*rho.*rhoP.*cos(phiP)).^((11-2)/2); 
I11 = triplequad(G11,0,pi,a,b,a,b,[],@quadv); 
  
G12 = @(phiP,rhoP,rho) (cos(phiP)).*(rho.^2 + rhoP.^2 - 
2*rho.*rhoP.*cos(phiP)).^((12-2)/2); 
I12 = triplequad(G12,0,pi,a,b,a,b,[],@quadv); 
  
G13 = @(phiP,rhoP,rho) (cos(phiP)).*(rho.^2 + rhoP.^2 - 
2*rho.*rhoP.*cos(phiP)).^((13-2)/2); 
I13 = triplequad(G13,0,pi,a,b,a,b,[],@quadv); 
  
G14 = @(phiP,rhoP,rho) (cos(phiP)).*(rho.^2 + rhoP.^2 - 
2*rho.*rhoP.*cos(phiP)).^((14-2)/2); 
I14 = triplequad(G14,0,pi,a,b,a,b,[],@quadv); 
  
G15 = @(phiP,rhoP,rho) (cos(phiP)).*(rho.^2 + rhoP.^2 - 
2*rho.*rhoP.*cos(phiP)).^((15-2)/2); 
I15 = triplequad(G15,0,pi,a,b,a,b,[],@quadv); 
  
G16 = @(phiP,rhoP,rho) (cos(phiP)).*(rho.^2 + rhoP.^2 - 
2*rho.*rhoP.*cos(phiP)).^((16-2)/2); 
I16 = triplequad(G16,0,pi,a,b,a,b,[],@quadv); 
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G17 = @(phiP,rhoP,rho) (cos(phiP)).*(rho.^2 + rhoP.^2 - 
2*rho.*rhoP.*cos(phiP)).^((17-2)/2); 
I17 = triplequad(G17,0,pi,a,b,a,b,[],@quadv); 
  
G18 = @(phiP,rhoP,rho) (cos(phiP)).*(rho.^2 + rhoP.^2 - 
2*rho.*rhoP.*cos(phiP)).^((18-2)/2); 
I18 = triplequad(G18,0,pi,a,b,a,b,[],@quadv); 
  
G19 = @(phiP,rhoP,rho) (cos(phiP)).*(rho.^2 + rhoP.^2 - 
2*rho.*rhoP.*cos(phiP)).^((19-2)/2); 
I19 = triplequad(G19,0,pi,a,b,a,b,[],@quadv); 
  
G20 = @(phiP,rhoP,rho) (cos(phiP)).*(rho.^2 + rhoP.^2 - 
2*rho.*rhoP.*cos(phiP)).^((20-2)/2); 
I20 = triplequad(G20,0,pi,a,b,a,b,[],@quadv); 
  
G21 = @(phiP,rhoP,rho) (cos(phiP)).*(rho.^2 + rhoP.^2 - 
2*rho.*rhoP.*cos(phiP)).^((21-2)/2); 
I21 = triplequad(G21,0,pi,a,b,a,b,[],@quadv); 
%% ---------------------------------------------------- 
  
 %% -----------LOAD FILES S11 and Permittivty file -------------- 
% % freq = importdata('C:\Users\gradym\Documents\coax probe\1-19-12\s11 
data\DATA01.D1', ' ', 6); 
int = 1:126;  
Range_s11=int; 
Range=Range_s11; 
Range_perm=1:801; 
  
  
L1a=importdata('J:\PhD Research Under Shake Daddy\Antenna and Probe Sim 
and Meas Results\Micro-Coaxial Probe\Sim Probe Data\Characterizing 
Materials\Air.csv', ',', 1); 
  
freq=L1a.data(:,:); 
freq=freq(Range,1); 
freq2=linspace(min(freq),max(freq),801); 
w=2*pi.*freq2*1e9; 
  
Air1_1=L1a.data(:,:); %load s11 
  
L2a=importdata('J:\PhD Research Under Shake Daddy\Antenna and Probe Sim 
and Meas Results\Micro-Coaxial Probe\Sim Probe Data\Characterizing 
Materials\R03006m.csv', ',', 1); 
Styr1_1=L2a.data(:,:); %load S11 
  
 

L3a=importdata('J:\PhD Research Under Shake Daddy\Antenna and Probe Sim 
and Meas Results\Micro-Coaxial Probe\Sim Probe Data\Characterizing 
Materials\R03010m.csv', ',', 1); 
Tef1_1=L3a.data(:,:); %s11 
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L4a=importdata('J:\PhD Research Under Shake Daddy\Antenna and Probe Sim 
and Meas Results\Micro-Coaxial Probe\Sim Probe Data\Characterizing 
Materials\PDMSm.csv', ',', 1); 
Meas_1=L4a.data(:,:); %s11 
  
L1a=importdata('J:\Cal Standards2\measured perm\FR-4_1_a.s1p', ' ', 1); 
Air1_1p=L1a.data(:,:); %load permittivty 
L1b=importdata('J:\Cal Standards2\measured perm\RO3006_1_a.s1p', ' ', 
1); 
Tef1_1p=L1b.data(:,:); %load permittivty 
L2a=importdata('J:\Cal Standards2\measured perm\RO3010_1_a.s1p', ' ', 
1); 
Styr1_1p=L2a.data(:,:); %load permittivty 
    
%% -------random constants--------------------------- 
c=3e8; 
k = w./c; 
eps_0=8.854e-12; 
mu_0=4*pi*10^-7; 
eta=sqrt(mu_0/eps_0); 
k0=w*sqrt(mu_0*eps_0); 
% eps_c=2; 
Yo=2*pi/(log(b/a)*sqrt(mu_0/(eps_c*eps_0))); 
Zo=1./Yo; 
% Zo=50; 
% Yo=1/Zo; 
 %%---------------------------------------------------- 
 %% ---------------NAME REFS MEAS S11 and permittivty------------- 
%---------S11--------- 
Air1_1=Air1_1(Range,1)+j.*Air1_1(Range,2); 
Styr1_1=Styr1_1(Range,1)+j.*Styr1_1(Range,2); 
Tef1_1=Tef1_1(Range,1)+j.*Tef1_1(Range,2); 
Meas_1=Meas_1(Range,1)+j.*Meas_1(Range,2); 
  
pp1r = spline(freq,real(Air1_1)) 
yy1r = ppval(pp1r, linspace(min(freq),max(freq),801)); 
pp1i = spline(freq,imag(Air1_1)) 
yy1i = ppval(pp1i, linspace(min(freq),max(freq),801)); 
  
pp2r = spline(freq,real(Styr1_1)) 
yy2r = ppval(pp2r, linspace(min(freq),max(freq),801)); 
pp2i = spline(freq,imag(Styr1_1)) 
yy2i = ppval(pp2i, linspace(min(freq),max(freq),801)); 
  
pp3r = spline(freq,real(Tef1_1)) 
yy3r = ppval(pp3r, linspace(min(freq),max(freq),801)); 
 

pp3i = spline(freq,imag(Tef1_1)) 
yy3i = ppval(pp3i, linspace(min(freq),max(freq),801)); 
  
ppmr = spline(freq,real(Meas_1)) 
yymr = ppval(ppmr, linspace(min(freq),max(freq),801)); 
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ppmi = spline(freq,imag(Meas_1)) 
yymi = ppval(ppmi, linspace(min(freq),max(freq),801)); 
  
Air1_1=yy1r-j.*yy1i; 
Styr1_1=yy2r-j.*yy2i; 
Tef1_1=yy3r-j.*yy3i; 
Meas_1=yymr-j.*yymi; 
  
% -----REFS S11---------------- 
GamRef1=Air1_1; %real +j*imag 
GamRef2=Tef1_1;    %real +j*imag 
GamRef3=Styr1_1;   %real +j*imag 
  
%----MEASURED S11------------- 
GamMeas1 = Meas_1; %real +j*imag 
 
%---------permittivyty-------------- 
Air1_1p=Air1_1p(Range_perm,2)-j.*Air1_1p(Range_perm,3); 
Styr1_1p=Styr1_1p(Range_perm,2)-j.*Styr1_1p(Range_perm,3); 
Tef1_1p=Tef1_1p(Range_perm,2)-j.*Tef1_1p(Range_perm,3); 
  
%--------REFS permittivty----------------- 
epsRef1=Air1_1p.'; 
epsRef2=Styr1_1p.'; 
epsRef3=Tef1_1p.'; 
%% ---------------------------------- 
  
 %% --------CALCULATING ADMITTANCE EXPRESSION-------------------- 
%%----------for newtonral-------only 3 terms-------- 
const1= (1i.*w.*2)./((log(b/a))^2); 
const2= const1.*(w.^2).*mu_0./2; 
const3=(pi/12)*w.^4.*mu_0^(3/2).*((b^2-a^2)/(log(b/a))).^2; 
A=const3*eps_0.^(5/2);  
B=const2.*I3*eps_0.^2; 
C=const1.*I1*eps_0; 
%%------------------------------------- 
   
%%----------for newtonral_full-------10 terms-------- 
C0=(2.*w)./((log(b/a))^2); 
C1 = 1i.*I1.*w.^0.*mu_0^0.*eps_0^1; 
C3 =(1i.*I3.*w.^2.*mu_0^1.*eps_0^2)./(2*1); 
C5 =(1i.*I5.*w.^4.*mu_0^2.*eps_0^3)./(4*3*2*1); 
C7 =(1i.*I7.*w.^6.*mu_0^3.*eps_0^4)./(6*5*4*3*2*1); 
C9 =(1i.*I9.*w.^8.*mu_0^4.*eps_0^5)./(8*7*6*5*4*3*2*1); 
C11=(1i.*I11.*w.^10.*mu_0^5.*eps_0^6)./(10*9*8*7*6*5*4*3*2*1); 
 

C13=(1i.*I13.*w.^12.*mu_0^6.*eps_0^7)./(12*11*10*9*8*7*6*5*4*3*2*1); 
C15=(1i.*I15.*w.^14.*mu_0^7.*eps_0^8)./(14*13*12*11*10*9*8*7*6*5*4*3*2*
1); 
C17=(1i.*I17.*w.^16.*mu_0^8.*eps_0^9)./(16*15*14*13*12*11*10*9*8*7*6*5*
4*3*2*1); 
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C19=(1i.*I19.*w.^18.*mu_0^9.*eps_0^10)./(18*17*16*15*14*13*12*11*10*9*8
*7*6*5*4*3*2*1); 
C21=(1i.*I21.*w.^20.*mu_0^10.*eps_0^11)./(20*19*18*17*16*15*14*13*12*11
*10*9*8*7*6*5*4*3*2*1); 
C2=(I2.*w.^1.*mu_0.^(1/2).*eps_0^(3/2))./(1); 
C4=(I4.*w.^3.*mu_0.^(3/2).*eps_0^(5/2))./(3*2*1); 
C6=(I6.*w.^5.*mu_0.^(5/2).*eps_0^(7/2))./(5*4*3*2*1); 
C8=(I8.*w.^7.*mu_0.^(7/2).*eps_0^(9/2))./(7*6*5*4*3*2*1); 
C10=(I10.*w.^9.*mu_0.^(9/2).*eps_0^(11/2))./(9*8*7*6*5*4*3*2*1); 
C12=(I12.*w.^11.*mu_0.^(11/2).*eps_0^(13/2))./(11*10*9*8*7*6*5*4*3*2*1)
; 
C14=(I14.*w.^13.*mu_0.^(13/2).*eps_0^(15/2))./(13*12*11*10*9*8*7*6*5*4*
3*2*1); 
C16=(I16.*w.^15.*mu_0.^(15/2).*eps_0^(17/2))./(15*14*13*12*11*10*9*8*7*
6*5*4*3*2*1); 
C18=(I18.*w.^17.*mu_0.^(17/2).*eps_0^(19/2))./(17*16*15*14*13*12*11*10*
9*8*7*6*5*4*3*2*1); 
C20=(I20.*w.^19.*mu_0.^(19/2).*eps_0^(21/2))./(19*18*17*16*15*14*13*12*
11*10*9*8*7*6*5*4*3*2*1); 
  
%% ------------------------------------ 
  
 %% -------CALCULATE PERMITTIVITY---------------- 
  
% % % %%%-----------------3 standards-----FULL ADMITTANCE FORMULA------
------------ 
% % % % % 
[D]=Stand_3(A,B,C,epsRef1,epsRef2,epsRef3,GamMeas,GamRef1,GamRef2,GamRe
f3) 
% % % 
[D,Y1,Y2,Y3]=Stand_3_full(C0,C1,C2,C3,C4,C5,C6,C7,C8,C9,C10,C11,C12,C13
,C14,C15,C16,C17,C18,C19,C20,C21,epsRef1,epsRef2,epsRef3,GamMeas1,GamRe
f1,GamRef2,GamRef3) 
% % % x_guess=300+1i*400; errorNUM=1e-12; 
% % % % [x_new]=newtonral(A,B,C,D,x_guess,errorNUM); 
% % % 
[x_new,f,error]=newtonral_full2(C0,C1,C2,C3,C4,C5,C6,C7,C8,C9,C10,C11,C
12,C13,C14,C15,C16,C17,C18,C19,C20,C21,D,x_guess,errorNUM) 
% % % % x_new1=x_new; 
% % % plotfig(x_new,w) 
  
%%%%-----------------3 standards----------------------- 
% % 
[D]=Stand_3(A,B,C,epsRef1,epsRef2,epsRef3,GamMeas,GamRef1,GamRef2,GamRe
f3) 
[D,Y1,Y2,Y3]=Stand_3(A,B,C,epsRef1,epsRef2,epsRef3,GamMeas1,GamRef1,Gam
Ref2,GamRef3) 
x_guess=300+1i*400; errorNUM=1e-20; 
[x_new]=newtonral(A,B,C,D,x_guess,errorNUM); 
% 
[x_new]=newtonral_full(C0,C1,C2,C3,C5,C6,C7,C8,C9,C10,D,x_guess,errorNU
M) 
% plotfig(x_new,w) 
figure 
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plot(freq2,real(x_new)) 
title('freq vs real permittivyt') 
figure 
plot(freq2,-imag(x_new)) 
title('freq vs imag permittivyt') 
  
Get_Data=[freq2.' real(x_new) (-imag(x_new))] 
%% -------------------------- 
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Appendix D: CPW-Fed Folded Dipole Slot Antenna Used for Millimeter Wave Device  
Characterization 

D1. ANTENNA DESIGN 

D1.1 Antenna Layout  

 The layout of the folded dipole slot antenna is shown in Figure D1. The design and 

simulation of the antenna structure was performed using Agilent’s Momentum Electromagnetic 

Simulator, which combines full-wave and quasi-static electromagnetic solvers for antenna 

modeling. A high resistive silicon substrate with infinite surface area was assumed for simulation 

purpose.  

 

  

 

 

 

 

 

Figure D.1 Momentum layout of (a) 60 GHz slot antenna in membrane and (b) folded dipole  
antenna. 

 The dimensions of the ground plane are 2.2 λeff x 1.78 λeff or 3.2 mm x 2.6 mm; where λeff 

is the effective wavelength of silicon at 60 GHz. By adjusting these dimensions, the antenna can 

be scaled down to achieve resonance at higher frequencies. The slot antenna was designed 0.24  
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λeff (0.35 mm) x 0.63 λeff (0.9 mm) deep inside the ground plane to include the folded dipole 

structure (Figure D1a). The dimensions of the slot are 2.5 mm (1.7 λeff) long and 0.75 mm (0.5 

λeff) wide. These dimensions were chosen in the final design because they provided the best 

performance and allowed the antenna to resonate at 60 GHz. The slot was adjusted to match the 

input impedance to 50 Ω and to control the additional resonances that appeared at higher 

frequencies. Although this design was focused on a single frequency operation, additional 

resonances could also be achieved by changing the dimension for systems requiring multiband 

operations [19]. 

D1.2 Folded Dipole 

 Figure D1 (b) illustrates the layout of the folded dipole and its dimensions. The folded 

dipole structure was integrated in the slot to improve the bandwidth of the antenna. By designing 

the dipole to operate at 60 GHz and altering the dimensions of the slot, the radiation was 

compressed and the antenna achieved wideband performance. The dimensions of the dipole are 

L1 = 1.8mm, L2 = 0.8mm, W1 = .07mm, and W2 = 0.2mm; where W1 is the width of the dipole 

leg, W2 is the width of the dipole arm, and L1 and L2 is the length of the arm and leg. The V-

groove in the center of the dipole arm is 0.2mm in length at 45˚ angles. The groove was designed 

by adjusting its length and angle to achieve a wider bandwidth. The width of the dipole leg also 

served as the width of the CPW signal line. The length was adjusted to determine the optimal 

distance needed between the slot edge and the dipole arm; which allowed the signal to propagate 

through the dipole and not along the edges of the slot, as confirmed by the simulation results. 
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D1.3 CPW-to-CPW Line Transition 

 To reduce the propagation of surface waves present in the substrate at mm-wave 

frequencies, the antenna was fabricated on a 50 µm silicon membrane. This method helped 

improve the bandwidth and efficiency of the antenna. However, it developed the need for a CPW 

transition from a thicker part of the substrate to the membrane, in this case a 250 μm to 50 μm, to 

enable any device testing. Figure D2 illustrates the layout of the line transition. The CPW’s gap 

distance decreased as the substrate thickness changed from 250 μm to 50 μm, since the CPW 

dimensions are based on the thickness of the substrate. The dimensions of the feed line are G = 

37.3 µm and W = 70 µm, corresponding to a characteristics impedance of 50 Ω, where G is the 

gap distance between lines and W is the width of the signal line. The dimensions of the CPW in 

the membrane are G = 31.3 µm and W = 70 µm corresponding to a characteristics impedance of 

50 Ω. To account for the etch profile of the silicon membrane, the ground planes of the CPW line 

included a step topology as shown in Figure D2 to minimize the reflections present at the 

discontinuity. These reflections can give birth to higher order modes, which are undesirable at the 

measurement’s reference plane.  

 

 

 

 

 

 

Figure D.2 60 GHz elements on a 50 µm silicon membrane including folded dipole slot antenna  
with transition. 
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D2. Fabrication Methods 

 The folded dipole slot antennas were realized on a 4” and a 250 µm thick silicon 

substrate. Figure D3 illustrates the steps involved in fabricating the mm-wave antenna. Initially, 

silicon substrate was thermally oxidized to grow a 1 µm thick SiO2 layer. Since the oxidation 

layer was required only on the membrane etch side, the oxide layer was chemically etched on the 

other side. While the oxidized side provided as an etch protective layer during the 

micromachining process, the un-oxidized side served as the ground plane for the antenna. 

Following the oxide etch process, a photolithography step was performed to pattern the antenna 

and CPW configuration pads on the substrate. Then, a thin layer of chromium (Cr) and gold (Au) 

were deposited on the substrate. Cr was deposited with a thickness of ~ 30 nm and acted as an 

adhesion layer for the top Au (~300 nm) layer. After the contact pads were made, 

photolithography was performed on the backside of the substrate and windows were opened 

underneath the devices. The substrate was then subjected to a dry etching process, to micro-

machine the backside from 250 µm to 50 µm. Figure D4 (a) and (b) shows the microscopic image 

of the fabricated antenna and the membranes etched beneath the antenna in silicon, respectively. 
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Figure D.3 Schematic of the process sequence followed to develop the slot antenna on a silicon 
membrane. (a) Si substrate, (b) SiO2 grown on the substrate, (c) photoresist deposited for 

patterning, (d) Pattern transfer by photolithography, (e) Thermal evaporation and photoresist 
removal, (f) create a window and dry etch bulk silicon. 

 

 

 
 

 

 

 

 

Figure D.4 Schematic representing (a) a 60 GHz folded dipole slot antenna on silicon and (b) a  
view of the silicon membrane etched beneath the antenna structure. 

D3. MEASUREMENT TECHNIQUES AND RESULTS 

D3.1 Test Set-up 

 The antenna was measured using a Karl Suss PA200 probe station with 150 µm pitch 

probes. The reflection coefficient was determined using an Anritsu 37397 vector network  
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analyzer (VNA), capable of measuring up to 64 GHz. A V-band cable was used to connect the 

VNA to the probe station and to communicate the reflection data. The V-cable was calibrated 

using a CS-5 calibration kit.  

D3.2 Reflection Measurement 

 The simulated vs. measured reflection coefficient data of the antenna is illustrated in 

Figure D5. The figure shows that at 62 GHz, the antenna is well matched to 50Ω with a reflection 

coefficient of -45 dB. An additional resonance appeared at 55 GHz, which is contributed, to the 

antenna structure achieving multi-band operations. By minimizing the membrane thickness, 

additional surface waves were reduced and the antenna achieved a bandwidth of 25% at S11<-10 

dB; improving the performance of previous silicon micromachined antennas [17, 18]. The 

antenna operates over a wideband from 50 to 64 GHz, proving its ability to be used in WLAN 

and V-band frequency applications. The discrepancy between data can be contributed to a 

variance in membrane thickness and losses caused by surface waves present during measuring. 

 

 

 

 

 

 

 

 

 

 

 



158 
 

 

 

 

 

 

 

Figure D.5 (a) Measured vs. simulated reflection coefficient of the folded dipole slot antenna with 
CPW-to-CPW transition and (b) setup using high frequency absorber to separate the antenna from 

the metal chuck.  

 Figure D5 (b) shows the broadband absorber [20] used during measurement to reduce any 

wave disruptions caused by the antenna resting on the metal chuck of the probe station. The 

substrate was removed from the chuck by placing it on a lifted FR-4 board that included an air 

gap directly under the membrane. The absorber was then placed in between the membrane and 

chuck to close the gap. By creating space between the substrate and metal, the fabricated antenna 

operated at the desired frequency. 

D3.3 Effect of Eccosorb™ on Metal Chuck 

 When the antenna was measured directly on the metal chuck, its performance decreased 

causing it to resonate at a lower frequency. This occurred due to the effects of side lobes which 

surfaced as the antenna became vulnerable to wave disruption caused by the metal chuck. These 

side lobes forced the antenna to radiate with a lesser degree of accuracy and directivity. To ensure 

the antenna achieved maximum radiation, ECCOSORB™ HR-25 was recommended to eliminate 

all reflections produced by the metal chuck [21]. This broadband microwave absorber helped 

reduce interference between metals and eliminated all side lobes. Figure D6 below illustrates the  

variation in reflection co-efficient measurement of the antenna on the metal chuck as compared to 

the antenna 9645 ured with Eccosorb™. 
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Figure D.6 Measured reflection coefficient with and without eccosorb placed on the metal chuck. 

 It can be observed from Figure D6 that without the absorber, the antenna resonated at ~42 

GHz proving the metal disrupted the antennas behavior at high frequencies. However, when 

implementing the setup shown in Figure D5 (b), the frequency shifted from 42 to ~62 GHz. 

Therefore, by resting the antenna on a linear surface and placing the absorber directly under the 

antenna, a better impedance match at the desired frequency was achieved. 

D3.4 Radiation Pattern 

 The antenna’s radiation pattern was measured using a portable probe station. The 

fabricated antenna was fed by a 60 GHz Gunn oscillator, which provided the radiation source. 

The Gunn oscillator was operated using an external power source.  A standard horn antenna 

operating from 50 – 75 GHz was used as the receiving antenna. The horn antenna was connected 

to an Agilent 8565EC Spectrum Analyzer using a HP11970V harmonic mixer extending the 

frequency range of the spectrum analyzer from 50 to 75 GHz. A custom made semi-circular  

guiding fixture was used to track the radiation of the fabricated antenna from 0° to 180°, while 

supporting the receiving horn antenna and the mixer. The horn antenna was placed parallel to the 

antenna feed line to trace the co-polarized radiation pattern. The power received by the horn was 



160 
 

recorded in the spectrum analyzer at every 10°. Figure D7 below illustrates the setup used to 

measure the radiation pattern. The pattern was measured in an anechoic chamber but the image 

was taken outside of it for proper lighting.   

 

 

 

 

 

 

 

 

Figure D.7 Radiation pattern measurement setup used for folded dipole slot antenna. 

 Results obtained during the radiation pattern measurement are shown in Figure D8 

below. The measured results are in good agreement with those achieved during simulation. The  

maximum co-polarization magnitude achieved was -8 dB at 0° with a gain of 4.1 dBi. This 

pattern behaves as a dipole because the pattern achieves maximum radiation at 0˚ and drops off to 

minimum radiation on the antenna’s axis. However, the slight difference in magnitudes of the 

measured vs. simulated patterns is due to inaccuracies during the measuring setup which requires 

precise positioning of the receiving antenna and stability in the angle guiding structure.   
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Figure D.8 Measured vs. Simulated Co-Polarized E-plane radiation pattern (dB) of the 60 GHz  
antenna. 

D4. Conclusion 

 A 60 GHz CPW-fed folded dipole slot antenna micromachined on a 50 µm silicon 

membrane was presented. By fabricating the 60 GHz antenna on a thin substrate, the propagation 

of surface waves and dominating side lobes were reduced. The antenna provided excellent results 

by achieving a reflection coefficient of -45 dB with a bandwidth of 25% at -10 dB. The inclusion 

of a high frequency absorber (Eccosorb™) eliminated wave disruptions created by the metal 

surface. The antenna demonstrated an omnidirectional radiation pattern, which agreed well the  

behavior of a dipole antenna. These results indicate the antenna’s ability to be scaled down and 

used in extremely high frequency operations and integrate with current wireless networking 

systems. 
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