
Florida International University
FIU Digital Commons

FIU Electronic Theses and Dissertations University Graduate School

4-22-2013

Using Procedural Audio to Control an Algorithmic
Composition that is Controlled by a Computer
Game
Brian del Toro
bdelt001@fiu.edu

DOI: 10.25148/etd.FI13080501
Follow this and additional works at: https://digitalcommons.fiu.edu/etd

Part of the Music Commons

This work is brought to you for free and open access by the University Graduate School at FIU Digital Commons. It has been accepted for inclusion in
FIU Electronic Theses and Dissertations by an authorized administrator of FIU Digital Commons. For more information, please contact dcc@fiu.edu.

Recommended Citation
del Toro, Brian, "Using Procedural Audio to Control an Algorithmic Composition that is Controlled by a Computer Game" (2013).
FIU Electronic Theses and Dissertations. 894.
https://digitalcommons.fiu.edu/etd/894

https://digitalcommons.fiu.edu/?utm_source=digitalcommons.fiu.edu%2Fetd%2F894&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.fiu.edu/etd?utm_source=digitalcommons.fiu.edu%2Fetd%2F894&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.fiu.edu/ugs?utm_source=digitalcommons.fiu.edu%2Fetd%2F894&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.fiu.edu/etd?utm_source=digitalcommons.fiu.edu%2Fetd%2F894&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/518?utm_source=digitalcommons.fiu.edu%2Fetd%2F894&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.fiu.edu/etd/894?utm_source=digitalcommons.fiu.edu%2Fetd%2F894&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:dcc@fiu.edu

FLORIDA INTERNATIONAL UNIVERSITY

Miami, Florida

USING PROCEDURAL AUDIO TO CREATE AN ALGORITHMIC COMPOSITION THAT

IS CONTROLLED BY A COMPUTER GAME

A thesis submitted in partial fulfillment of

the requirements for the degree of

MASTER OF MUSIC

by

Brian del Toro

2013

ii

To: Dean Brian Schriner
 College of Architecture and the Arts

This dissertation, written by Brian del Toro, and entitled Using Procedural Audio to Control an
Algorithmic Composition that is Controlled by a Computer Game, having been appointed in
respect to style and intellectual content, is referred to you for judgment.

We have read this dissertation and recommend that it be approved.

Orlando Garcia

James Webb

Jacob Sudol, Major Professor

Date of Defense: April 22, 2013

The dissertation of Brian del Toro is approved.

Dean Brian Schriner

College of Architecture and the Arts

Dean Lakshmi N. Reddi

University Graduate School

Florida International University, 2013

iii

DEDICATIONS

To Amy, the girl I love.

To my grandfather William, who always said, "don't work too hard!"

To my parents Catherine and Jorge who let me stay up, as late as I wanted, playing video games.

iv

ABSTRACT OF THE THESIS

USING PROCEDURAL AUDIO TO CREATE AN ALGORITHMIC

COMPOSITION THAT IS CONTROLLED BY A COMPUTER GAME

by

Brian Del Toro

Florida International University, 2013

Miami, Florida

Professor Jacob Sudol, Major Professor

 The purpose of this project is to create a game audio engine based on procedural audio. I

designed an audio engine in the visual programming language Max/MSP that I call High Score.

High Score receives data from a game that I designed in the game development program

Unity3D. The data that it receives controls an algorithmic composition that serves as the musical

score of the game as well as several processes that synthesize various sound effects in the game.

This approach to game audio proves to be very flexible and offers new aesthetic possibilities for

game music and sound design.

v

TABLE OF CONTENTS

CHAPTER PAGE

I. INTRODUCTION..1

II. HISTORY OF PROCEDURAL AUDIO..3
 The Rise of Data-Driven Audio...4

III. CURRENT STATE OF PROCEDURAL AUDIO..6

 Procedural Audio Advantages..7
 The Adoption of Procedural Audio..8

IV. UNITY3D &
MAX/MSP..10

Max/MSP..11
Communication Between the Game and Audio Engine...12

V. AUDIO ENGINE..14

Synthesis Layer………...14
Mapping Layer………..29

VI. INTERACTIVITY AND NONLINEARITY………..34

VII. CONCLUSION………..36

BIBLIOGRAPHY………..38

APPENDIX………..39

vi

LIST OF FIGURES

FIGURE PAGE

1. Screen Shot of the Game..11

2. A Basic FM synthesis model...15

3. "FMpolysimple" sub-patch..16

4. Parameters of the "boots" instrument..17

5. "Synth1map" sub-patch...18

6. "Instrumentation" sub-patch..19

7. Interpolated waveform oscillator...20

8. "FMpolylegato" sub-patch...21

9. "FM1" sub-patch..22

10. "Melodysynth" instrument...23

11. "Chordsynth" instrument...24

12. White vs. Pink noise demonstration...26

13. Water sound module..27

14. Fire sound module..28

15. Footstep sound module..29

16. "Synthmap2" sub-patch...30

17. "Playeractivity" sub-patch...31

18. "Networking" sub-patch...33

1

I. Introduction

 An audio engine is a program responsible for triggering sound effects caused by events in

a game, changing music based on game states, and even changing effect parameters or signal

routing chains according to player input. In most current audio engines, all of the sounds and

music are pre-recorded files. Andrew Farnell refers to this as the "data model of game audio." 1

There are two main reasons that the data model is the prevailing approach to game audio.

Recordings provide a high degree of realism that would otherwise be difficult to achieve

procedurally and have a fixed computational "cost" in terms of memory and processing power.

 My project stems from a less common approach: the synthesis of both sound effects and

music based on real-time game parameters and player input. This approach is best described as

procedural audio, where procedural is defined as: “Relating to or comprising memory or

knowledge concerned with how to manipulate symbols, concepts, and rules to accomplish a task

or solve a problem.” 2 Procedural methods offer new solutions to the creative, technical and

economic problems that game audio faces, while also presenting a new aesthetic framework for

generating music and sounds.

 In my thesis, I will describe a procedural-based audio engine called High Score that I

designed in Max/MSP. High Score communicates with a game that I designed using the game

development program Unity3D. Data sent from the game to Max/MSP controls the parameters

of an algorithmic composition and triggers sound effects synthesized in real time.

 1 Andrew Farnell, Designing Sound (Cambridge: MIT Press, 2010), 318.

 2 "Procedural." Merriam Webster Online Dictionary.2013.(accessed January 15, 2013)

2

II. History of Procedural Audio

 Procedural audio precedes the current data driven model of game audio. An examination

of early video game sound technology reveals a period of rapid innovation in the synthesis of

music, sound effects and speech, fueled by the success of arcades and home video game

consoles. A classic example of an early arcade game that linked gameplay to music is Space

Invaders (Midway, 1978), which according to Karen Collins "set an important precedent for

continuous music, with a descending four tone loop of marching alien feet that sped up as the

game progressed." 3

 In the earliest game consoles and arcade terminals, Programmable Sound Generator

(PSG) chips such as Bob Yannes' Sound Interface Device (SID), featured in the Commodore 64,

synthesized sound effects and music in real time.4 According to Collins, "Most PSGs were

subtractive synthesis chips" which were used in both home and arcade consoles.5 Subtractive

synthesis is a method that employs filters to attenuate or remove specific frequency components

of a timbrally rich sound. PSG chips were used well in to the mid-1990's, appearing in major

video game consoles such as the NES and Super NES. However, other methods were also

developed.

 3 Karen Collins, Game Sound: An Introduction to the History, Theory, and Practice of Video
Game Music and Sound Design (Cambridge: MIT Press, 2008), 12.

 4 Karen Collins, "Loops and Bloops," Soundscapes vol.8 (February 2006):
http://www.icce.rug.nl/~soundscapes/VOLUME08/Loops_and_bloops.shtml
(accessed January 15, 2013).

 5 Collins, Game Sound, 10.

3

 The major factor that drove the early procedural approach to game audio was the limit on

memory available at the time. For example, 5.25" Floppy disks, a common format for

Commodore 64 games, only provided 170 kilobyte (kB) of storage, of which music data

synthesized by the Yannes' SID might normally occupy between 5 and 10 kB.6

 In his article The Synthesis of Complex Spectra by means of Frequency Modulation, John

Chowning first described FM synthesis as a method for the simulation of acoustic instruments.7

The Sega Genesis, released in 1988, was a hugely successful home console that featured the

YM2616, an FM synthesis chip by Yamaha as well as a simple digital sampler.8 Composers and

sound designers took advantage of the Genesis' capabilities, producing realistic sound effects and

continuous music that eschewed the simple looped melodies of the previous generation of

consoles in favor of more intricate scores.

The Rise of Data-Driven Audio

 When the Nintendo Entertainment System (NES) made its debut in the United States in

1985, it boasted a "custom-made five-channel PSG chip." 9 Whereas the first four channels held

synthesizer channels, the fifth channel was a primitive sampler that could play speech or

recorded sound effects.10 By 1995, digital audio was the predominating technology in game

 6 Collins, Loops and Bloops

 7 John Chowning, "The Synthesis of Complex Spectra by means of Frequency Modulation,"
Journal of the Audio Engineering Society 21, no.7 (September 1973)

 8 Collins, Game Sound, 40
 9 Collins, Game Sound, 25

 10 ibid, 25

4

audio. The Sega Saturn, Nintendo 64 and Sony Playstation consoles were all capable of playing

increasingly realistic recorded sounds.

 Since then, the data model has dominated the game audio industry. Nearly any modern

computer available today, including video game consoles, desktops, laptops, tablets and mobile

phones can play multiple channels of standard CD quality audio. There is no further need to

point out the many advances in computer technology over the last twenty years that led to this

situation. It suffices to say that there is currently little to no fundamental distinction between

audio quality or production methods in computer games and that of any other medium such as

television or film.

5

III. Current State of Procedural Audio

 Two concepts central to games and game audio are interactivity and nonlinearity.11

Collins defines interactive audio as "sound events that react to the player's direct input" and uses

the term nonlinear to refer to "the fact that games provide many choices for players to make and

that every gameplay will be different."12

 Procedural audio precisely addresses these two issues in games. One of the things that

procedural methods aim to achieve is an accurate model of the behavior of sounds. In the data

model, the playback of a sound file corresponds to an event in a game. This often leads to

simple and repetitive interactions between the player and the sound environment of the game.

By designing a game such that the audio engine has access to more information about an event

than merely when it happened, a higher level of interactivity and player immersion in the game

can be achieved. Procedural audio also accounts for nonlinearity by creating models for sounds

that respond to a wide range of player interactions.

 11 Collins, Game Sound, 3.

 12 ibid, 4.

6

Procedural Audio Advantages

 Farnell lists five advantages to procedural audio: deferred form, default forms, variety,

variable cost and dynamic level of audio detail.13 Deferred form refers to an exploratory type of

sound design where sound design is done inside the game, by adjusting the various parameters of

a sound model according to player input. Default forms are one of the most attractive concepts

in procedural audio: the idea that sound models that are derived from existing physics models

that can generate acceptably realistic sounds by default, only requiring fine tuning from a sound

designer once they are in place. Variety is perhaps the first and most obvious advantage.

Procedurally generated sounds can be designed such that they never exactly repeat, much like no

two acoustic sounds are ever exactly the same. Variable cost refers to the computational cost of

performing a particular action. For example, two audio files of the same size and quality will

always have the same computational cost. However, some procedural models are

computationally more efficient, or "cheaper," than others. Dynamic level of audio detail refers to

a process that analyzes what is perceptually relevant to the player. This process deactivates or

modifies sound models as less detail is required, therefore taking advantage of the model's

variable cost.

 13 Farnell, Designing Sound 321.

7

The Adoption of Procedural Audio

 One of the major factors preventing the widespread use of procedural audio and

algorithmic composition in games is the lack of integrated software. Game development

software such as Unity3D offer limited controls over audio implementation. For example, the

most common approach in Unity3D and other game development programs is to trigger the

playback of a sound via an in-game event. In this case, music is simply started at the beginning

of a level and programmed to loop endlessly. More robust audio "middleware" programs such as

Wwise and FMod allow complex playback, basic randomization of sounds and some mapping of

musical parameters to in-game data. These programs are intended to help sound designers create

sophisticated audio engines without having to manually code them. What these middleware

programs lack is any general platform for integrating procedural audio.

 One company, Audiogaming, is pioneering the use of procedural audio with software that

can be integrated into existing middleware programs. These procedural models synthesize a

range of sounds within a particular category such as: motors, footsteps, gestures, wind, rain and

fire.14 However, by providing realistic synthesized physical models that can be recorded, they

still facilitate the data-driven approach to sound design. Two other experiments in procedural

audio include Game Audio Framework (GAF), developed by the CNAM/CEDRIC laboratory in

Paris,15 and Robert Hamilton's UDKOSC, that is currently being developed at the Center for

 14 www.audiokinetic.com
 15 Olivier Veneri, Stephane Gros and Stephane Natkin, "Procedural audio for Games with GAF,"
cedric.cnam.fr.http://cedric.cnam.fr/index.php/publis/article/view?id=1568 (accessed May 25, 2011)

8

Computer Research and Acoustics at Stanford.16 GAF consists of a custom-built programming

language called GAFScript that handles the creation of sound "objects" and communication

between an audio engine and game. UDKOSC uses a message protocol called Open Sound

Control (OSC) to send messages from the game development program Unreal Development Kit

to any program that can receive OSC messages such as the audio programming environments

Max/MSP, PD, or Super Collider.

 16 Robert Hamilton, "UDKOSC," CCRMA Wiki.https://ccrma.stanford.edu/wiki/UDKOSC
(accessed September 9, 2012)

9

IV. Unity3D and Max/MSP

 Unity3D is a game engine that allows the development of games for multiple platforms. I

chose to build my game in Unity3D for a number of reasons. Most importantly, Unity3D has a

simple workflow for creating, positioning and modifying game objects in a manner that requires

minimal scripting experience. Unity3D users have access to a large library of free game assets

such as textures, 3d models, animations, particle effects and sound effects. Creating the

networking portion of the game, however, did require some C# scripting. This was done in

Unity3D's Integrated Development Environment (IDE), Monodevelop (IDEs are computer

programs that facilitate the writing, modification and execution of computer code). The

integration of Unity3D and Monodevelop allows Unity3D's large library of assets to be modified

with custom-written code, which was an important part of creating a communication network

between the game and audio engine.

 I based my game on an example called "Unity3D Island Demo", that contains all of the

basic assets I knew would be required: terrain textures, plant and water objects as well as scripts

for character motor control and "mouse look." Mouse look is simply a script that allows a player

to look around by moving the mouse. My game embodies a typical computer game style

commonly known as a "First Person Shooter." The player controls a character from a first person

perspective and moves using the computer keyboard: W to move forward, A to step left, S to

move backward, D to step right and Space Bar to jump. The mouse is used to look up and down,

as well as to turn the character left or right. I also added a script allowing the player to shoot a

cube as a primary means of interacting with the environment. Figure 1 shows a screen shot from

the game that I designed that communicates with High Score.

10

Figure 1 shows the icon representing the player in the game and its field of view.

Max/MSP

 Max/MSP is a programming language specifically designed for dealing with audio. What

separates Max/MSP from typical text-based programming languages is its visual interface.

Programming in Max/MSP involves graphical "objects" which perform specific functions.

These functions range from simple ones such as adding two numbers to complex ones such as

managing multiple instances of entire programs written in Max/MSP. Programs are written by

connecting these objects with lines referred to as "patch cords," and/ programs written in

Max/MSP are therefore called "patches." "Sub-patches" are Max/MSP patches that are

embedded inside other patches. A typical Max/MSP patch vaguely resembles a flowchart in

which data generally moves from top to bottom. Max/MSP's functionality can be enhanced with

user-made objects that are called "externals." For example, High Score uses an external called

"sadam.updreciever" to receive data sent by Unity3D. "Sadam.udpReceiver" listens for

11

messages that are broadcast on the local network. This object was created by Adam Siska, and is

freely available on his website as part of his "Sadam" collection of externals.17

 Communication between the Game and Audio Engine

 One of the major hurdles to implementing my audio engine was finding a way to send

data from Unity3D to Max/MSP. I ultimately chose to send the data using a networking protocol

known as User Datagram Protocol (UDP). UDP is a method of sending messages, known as

datagrams, between computers or computer applications. David P. Reed first defined UDP in

the form of a Request for Comments (RFC) in 1980.18 RFCs are documents that, upon review

from the Internet Engineering Task Force (IEFT), can be adopted as internet standards.

 In Unity3D, a script titled "UDPNetworkmanager" sends data that it receives from other

scripts within Unity3D, namely "UDPmove" and "Csharpshoot" (see appendix for C# scripts).

UDPmove transmits the player's location on the game map as XYZ coordinates. Csharpshoot

transmits the message "bullet" whenever the player shoots a cube. These scripts convert a string

of text such as "bullet" in to a byte array. A byte array is a container for any kind of data,

reduced to its binary form. UDPNetwork manager then broadcasts the byte array on the local

network that is designated by the IP address 127.0.0.1, port 80. For easier separation of data

streams, the data for turning the audio engine on and off is sent on port 81. An IP address is the

 17 Adam Siska, "Sadam Library," Hungarian Computer Music Foundation
http://sadam.hu/en/software (accessed October 30, 2012)

 18 Jonathan Postel and David P.Reed."User Datagram Protocol" Internet Engineering Task Force Request
for Comments 768, (August 1980)

12

address of a particular device on a network. By using the loopback address 127.0.0.1 a computer

can send messages to itself. This method of sending datagrams from one application to another

on the same computer allows Unity3D to control Max/MSP without having it integrated in to its

own software architecture.

 The game that I developed is a very simple one that serves only to demonstrate some of

the possible applications of a procedural audio engine. In the game a single player can explore

his or her nearby surroundings. As the player gets closer to sound sources such as water or fire,

they will hear procedurally generated sounds emanating from them. The player can interact with

these sound sources by throwing cubes at them. Exploring the map drives an algorithmic

composition that reacts to the player's activity level and position on the map. A more detailed

description of how High Score reacts to the player's actions is presented in Section V.

13

V. Audio Engine

 High Score has two main components or "layers": the synthesis layer, where sound is

actually produced, and the mapping layer, where data received from Unity3D is interpreted as

control data for various sub-systems such as instruments and sound design modules. Following a

detailed description of both layers I provide an explanation of the interaction between the player

and audio engine.

Synthesis Layer

 The synthesis layer is comprised of two distinct frequency modulation (FM) synthesizers

named “Synth1” and “Synth2” that can both perform complex musical textures thanks to a

system of managing polyphonic voices in Max/MSP. The built-in “poly~” object manages the

instantiation and termination of multiple copies of the same sub-patch, which is crucial in

designing a polyphonic synthesizer. As mentioned above, in Max/MSP a sub-patch is a

collection of objects that have been "encapsulated" and visually represented as a single object.

 Synth1 contains a poly~ sub-patch titled "FMpolysimple" (Figure 2 below).

FMpolysimple generates percussive sounds for the musical portion of the engine and any other

sounds that can be synthesized from frequency modulation using sine waves only.

FMpolysimple is a basic implementation of FM synthesis with four parameters: carrier

frequency, harmonicity ratio, an envelope for changing the frequency modulation over time, and

an amplitude envelope.

14

 In FM synthesis, the frequency of a signal called the "carrier" is affected by a

"modulator" signal. If the change in the modulator's frequency over time is slow enough for

humans to perceive, it appears more or less as a form of vibrato, a rapid fluctuation in pitch.

Once the modulating signal's frequency is high enough, the carrier's pitch ceases to sound like it

is fluctuating and the carrier acquires a different timbre that corresponds to the frequency of the

modulator. The frequency of the modulator is often calculated or defined by the harmonicity

ratio when it is a multiple of the carrier frequency. The amplitude of the modulating signal is

referred to as the depth of modulation.

Figure 2 shows a basic FM model and its parameters, located within FMpolysimple

 Inside of FMpolysimple, these parameters are received as one list of values that are

separated into sub-lists – that correspond to the aforementioned envelopes – and single values

that correspond to the carrier frequency and harmonicity ratio (Figure 3 below).

15

Figure 3 shows the section of FMpolysimple that receives and processes parameter lists

 Parameters for this synthesizer are generated in another part of the main patch titled

"FM1" that contains four different sub-instruments. While each sound is actually a single note in

a strict sense, the repeated use of similar percussive timbres are limited to a certain range that

approximates the behavior of a simple drum kit. The ranges for each instrument's parameters are

located in a sub-patch named for the general sound that instrument makes. For example, the

parameters for the lowest sounding instrument in FM1 are located in "boots" (Figure 4 below).

The other instruments are "cats", "tss", and "chk", respectively.

16

Figure 4 A list of random parameters is generated each time "boots" is activated. The

parameters are randomized within a particular range so that each instrument maintains a unique

identity while changing slightly with each "hit."

 A process that lies closer to the mapping layer of the engine activates each instrument in

FM1. A master clock called “transport” controls the timing of musical events in Max/MSP.

When active, objects that are linked to the transport by the use of a special time notation are

synchronized. In the mapping section for Synth1 (Figure 5 below), metronomes that are linked

to the transport activate the instruments discussed above.

17

Figure 5 Each instrument in Synth1 is linked to a metronome, shown here in the sub-patch

"Synth1map."

 These metronomes can run at rates that correspond to subdivisions of the main pulse

emitted by the transport. A random number that corresponds to a metronome rate is sent from a

table on every beat of this main pulse. Each table is essentially a random number generator,

where each point has an X and Y value. An X value is output from the table based on

probability set by its corresponding Y value. This selection process drives the semi-random

rhythm generator that activates the percussive instruments in Synth1. Finally, each instrument's

metronome can be turned on and off via a similar table (Figure 6 below). This higher-level

control over the instrumentation is tied directly to the mapping layer of the audio engine.

18

Figure 6 These tables store the probability values that determine whether or not instruments in

the synthesis layer are active.

 Synth2 is based on a similar FM synthesis model as Synth1 with some modifications.

Synth2 contains a poly~ sub-patch titled "FMpolylegato". At the heart of FMpolylegato, and

distinct from the simpler form of Synth1 is an oscillator that interpolates between a triangle and

rectangle waveform (Figure 7 below). This oscillator functions by summing a triangle

waveform with the difference of triangle and rectangle waveforms. This oscillator immediately

gives Synth2 a distinct sound from Synth1 and allows far more control in shaping timbre and, to

the author's knowledge, is a completely novel way of generating FM tones. Two independently

controlled oscillators with this interpolation feature serve as the carrier and modulating signal.

The interpolation is controlled by a value ranging from 0 to 1, where 0 outputs a triangle wave, 1

outputs a rectangle wave and any value in-between outputs an interpolated waveform, such that

0.5 would be a waveform which is half way between the shape of a triangle and rectangle wave.

19

Figure 7 The interpolated waveform shown here is exactly half way between a triangle and

rectangle waveform.

 Parameters for attack, decay, sustain, and release (ADSR) modify the modulation depth

for Synth2 over time. In addition, Synth2 has a parameter called "ramp" that defines the time it

takes to glide between notes. This means that FMpolylegato (Figure 8 below) has a total of ten

parameters: carrier frequency, carrier waveform value, modulator frequency, modulator

waveform value, depth of modulation, ramp time between notes, attack, decay, sustain of the

modulation depth and the amplitude envelope.

20

Figure 8 Each instance of FMpolylegato represents one voice in Synth2.

 Like Synth1, each note is stored as a list of parameters that can be adjusted

instantaneously. Two sub-instruments that are located in the sub-patch FM2 (Figure 9 below)

and named for their generic musical functions, "chordsynth" and "melodysynth" generate

parameters for Synth2.

21

Figure 9 The Chordsynth and Melodysynth instruments are both located in the sub-patch FM2.

Each parameter list sent to Synth2 generates a new instance of FMpolylegato with those

parameters.

Melodysynth (Figure 10 below) is an example of a basic algorithmic musical system. For every

beat of its corresponding metronome, a random number is sent to a table that defines a musical

scale set in the mapping layer (see "Mapping Later" section below). This value passes through

an additional process that decides whether or not to raise the note by one or two octaves. The

result corresponds to a MIDI note number and gets converted to a frequency value before

triggering the list of FM parameters generated by the mapping layer. Unlike instruments in

Synth1, parameters for melodysynth generally remain consistent between notes to approximate

the behavior of a melodic instrument.

22

Figure 10 Melodysynth generates melodies that are constrained to a musical scale stored in a

table. This scale is set by "masterscale," located in the mapping layer.

 Chordsynth (Figure 11 below) functions in a similar manner as melodysynth. For each

chord, a random value, plus up to three notes above it are sent to a process which ensures that

notes occur within one octave by using a modulo seven operation. Modulo is a mathematical

operation that output the remainder of a division. For example, eight divided by seven leaves a

remainder – or a modulo seven value – of one, therefore the note corresponding to number eight

actually corresponds to number one. This process creates a simple musical grammar that

produces chords that vary in quality, inversion and range. Each chord is also mapped to the scale

23

set by "masterscale" in the mapping layer (see "Mapping layer" below), producing a modal

progression of chords. Each of these note values then passes through the same octave

displacement processes as those in melodysynth.

Figure 11 Chordsynth generates four notes in rapid succession in the same way that

Melodysynth generates one note at a time.

 The final component of the synthesis layer is a collection of three self-contained sound

design modules for generating water, fire and footstep sounds. I based my sound design modules

on Andrew Farnell's models for synthesizing natural sounds from his book on procedural audio

24

Designing Sound.19 Each of the sound design modules in High Score is an attempt to synthesize

a sound type and, more important to the philosophy of procedural audio, the behavior of a natural

sound.

 Two of the modules are more complex, and each one has two possible states –

“unperturbed” and “perturbed.” In their "unperturbed" state, the modules behave as one would

expect: running water gently bubbles, fire hisses and crackles. When a player interacts with an

object in the game that is tied to a sound design module, he or she temporarily "perturbs" the

system, resulting in an interaction sound. The footstep module is the simplest and has only one

state in which it generates footstep sounds with random variations in pitch.

 The water sound module is made up of two components. A pink noise generator

produces the sound of water in the distance. In synthesis, noise generally refers to a sound that

contains a wide band of frequencies. White noise refers to such a sound, where all frequencies

have an equal amount of energy. Pink noise refers to a sound where the energy of a frequency

band is inversely proportional to the frequency (Figure 12 below).

 19 Farnell, Designing Sound, 407.

25

Figure 12 shows two sonograms of white and pink noise. A sonogram is a graph of frequency

over time, where the darkness of the graph corresponds to energy at that frequency. Notice that

the sonogram of pink noise is lighter at higher frequencies.

 In the water module a sine wave oscillator produces the sound of running water from

close up, as well as a splashing sound when the player shoots a cube at the water (Figure 13

below). A sine wave is the simplest component of a synthesized sound. A simple running water

sound is generated by rapidly changing the frequency of the oscillator. The range of random

frequencies that the oscillator has defines its state. This range is set in the mapping layer. The

unperturbed state of the water module refers to the range of 400 Hz to 600 Hz. When a player

shoots a cube at the water, this range is increased to 1200 Hz.

26

Figure 13 A pink noise generator and sine wave oscillator generate the component sounds of

running water in the water module.

 The fire sound module (Figure 14 below) is based entirely on filtering a single source of

white noise. Three sub-modules model the component sounds of a fire: "firehiss",

"firecrackling", and "fireroar". Firehiss generates a high-pitched and mostly continuous hiss that

is the result of the noise source passing through a high-pass filter. Firecrackling produces short

bursts of noise by rapidly changing the center frequency of a narrow range of frequencies

controlled by a filter. Fireroar produces a low, rumbling sound that is the result of the noise

source passing through a low-pass filter. By blending these three components, the sound of a

roaring fire can be reasonably approximated. The unperturbed state of the fire module is defined

by the behavior of the three sub-modules: a quiet but audible hiss, few crackles and a low-

pitched roar. When a player shoots a cube at a flame, the frequency of the hiss and roar, as well

as the amount of crackling all momentarily increase.

27

Figure 14 These three sub-modules make up the fire module. The player's position on the map,

proximity to the sound source and interaction (via shooting cubes) alters the behavior of the

modules.

 A simple footstep module is also included (Figure 15 below). Since the terrain of my

game consists entirely of grass, a short burst of white noise will suffice to approximate the sound

of a footstep on grass. This white noise passes through a filter whose center frequency is

randomized with each footstep. This avoids the repetitive nature of the typical "clip clop"

footstep and produces natural sounding movement.

28

Figure 15 The footstep module is activated only when the player is moving.

Mapping Layer

 Higher-level controls for both synthesizers are located in the Mapping layer. This layer

of the engine contains controls for turning sub-instruments within the synthesizers on and off,

adjusting the rate of instrument metronomes, setting parameters for each note, receiving data

from Unity3D, interpreting that data and adjusting global presets to reflect the current state of the

game.

29

 Before either synthesizer plays a note, a table for each sub-instrument decides whether or

not to activate a metronome for that instrument. These tables are located in a sub-patch titled

"instrumentation." Each table is updated every quarter note. This decision is made based on

probability values stored for two possible states that correspond to the metronome being on or

off.

 Tables for possible metronome rates for each instrument are located in the sub-patches

titled "Synth1map” and "Synth2map" (Figure 16 below).

Figure 16 Synthmap2 contains controls for Synth2. I composed the music of High Score by

adjusting these controls and saving the desired settings as a preset.

30

These tables' states can be stored as part of a global preset, that can be recalled or

interpolated between, depending on the game state. For example, when the game state is set to

"idle", all of the percussive instruments in Synth1 are disabled and the instruments in Synth2 are

set to slower metronome rates.

 The game state is determined entirely by the player's activity and proximity to a sound

source. Currently, only two player states are defined: idle and active. The activity level is

measured by querying the rate of change of the player's position on the map in the XZ plane (the

Y plane corresponds to height) once every second. This is done by timing the interval between

changes in the players X and Z position independently in a sub-patch titled "playeractivity"

(Figure 17 below).

Figure 17 The "change" object only reports changes in the data sent to it. The rate of change is

measured every 1000 milliseconds (every second).

 Since a player could conceivably move only in one plane (if they are moving in a

straight line), the rate of change is measured every 3.5 seconds. If both the X and Z positions

31

have not changed after 3.5 seconds, the message "idle" is sent to the mapping layer, where it

triggers an interpolation from the current global preset to preset 0. This interpolation occurs over

eight seconds, allowing the player time to notice that the music is responding to their inactivity.

If the player begins moving before preset 0 is reached, the message active is sent, causing an

interpolation back to the "active" setting, preset 1.

 When a player approaches a sound source in the game, a corresponding preset is

activated. Presets for sound sources diminish musical activity by adjusting instrument

metronome rates and lower the volume of Synth1 and Synth2. This action allows the sound

sources to come in to focus as important objects in the game. The volume of a sound module is

mapped to the distance from the player to the sound source. For example, in the water module

the sound of water in the distance generated by pink noise becomes audible when the player is

less than 100 units away and increases until the player is standing at the water's edge. The sound

of running water generated by a sine wave oscillator becomes audible when the player is less

than 75 units away and increases similarly. Once the player is standing close to the water or

walking around in it, the action of throwing a cube triggers a splash sound, generated by

momentarily increasing the range of random frequencies sent to the oscillator.

 Data sent from the various C# scripts in Unity3D (see Appendix) is received in a sub-

patch in Max/MSP titled "networking" (Figure 18 below). In Unity3D, a script titled

"UDPstartup" sends a stream of data corresponding to how long the game has been running, in

milliseconds. This same script sends a message "Unity3Dappclosed" when the game stops

running. These messages start and stop the audio engine and also reset and initialize the global

preset. Unity3D also sends the player's current position on the map from a script titled

"UDPmove". When the networking section of the engine receives this stream of data, it arrives

32

as a byte array that must be immediately converted to ASCII characters. This produces a list

such as "(256.0, 1.0, 229.0)" with quotations included. This list corresponds to the XYZ

coordinates of the player. Further manipulation of this list is required to remove the quotations,

parentheses, and to isolate each number from the list. The message "bullet" is sent from the

script titled "csharpshoot" whenever the player shoots a cube. Finally, the

"UDPnetworkmanager" script enables the overall communication between Unity3D and

Max/MSP.

Figure 18 The networking sub-patch receives and processes lists using Adam Siska's

sadam.udpReceiver object and the "regexp" object (allows the use of "regular expressions" for

text manipulation).

33

VI. Interactivity and Nonlinearity

 As mentioned above in Section III, two important concepts in games and game audio are

interactivity and nonlinearity. I incorporated these concepts into each of the musical and sound

design components of High Score.

 The sound design modules are the simplest elements in terms of interactivity and

nonlinearity. As explained in the previous chapter, the water and fire sound design modules

have an unperturbed state and a perturbed state that results from the player's interaction. The

footstep module provides a simple interaction and takes advantage of nonlinearity to produce

realistic results. The fire module is based on white noise, an entirely random signal. The water

module is based on the rapid succession of random frequencies produced by a sine wave. For

both the water and fire modules, nonlinearity is the key to modeling the behavior of natural

sounds.

 A more abstract implementation of interactivity and nonlinearity exists within the

percussive instruments of Synth1. It is important to note that each instrument played by Synth1

exists only as a list of parameters. Every time a list Synth1 receives a list, it generates a note

with those parameters. By keeping the lists consistent within certain boundaries, each instrument

maintains its identity while subtly changing each time they are activated. This behavior struck

me as conceptually similar to acoustic percussive instruments that are never hit in exactly the

same way twice. I use this behavior to give an organic quality to sounds that are obviously

synthesized.

 In High Score, a player controls the overall musical texture in two ways. The player's

level of activity causes a gradual shift from the "active" music to the "idle" music or vice versa.

34

The player's position on the map defines what the active music is. Active music can be one of

three themes: traveling, fire or water. Each theme has a unique musical scale and unique

parameters for each synthesizer. The idle music is defined by slower metronome rates for all

instruments and long sustained notes for the instruments of Synth2, giving it a rich, lush texture.

The traveling theme is defined by faster metronome rates, more emphasis on the percussive

sounds of Synth1 and short percussive chords. The fire theme is defined by a melodic element

produced in Synth2 that alternates between extremely short, fast notes and longer slow notes. I

intended this melodic theme to mimic the random wavering and lapping of a flame. Sustained

chords that waver in pitch characterize the water theme. I designed this theme to mimic the

distortion of an image reflected in rippling water.

 I feel that these features highlight the most attractive prospect of procedural audio:

defining an alternative concept of "realism" within sound. While data-driven audio delivers

unparalleled realism in terms of the reproduction of recorded sound, procedural audio reproduces

the behavior of sound. These behaviors can serve to simulate natural sounds, as with the water

and fire sound design modules, or to generate musical material.

35

VII. Conclusion

 The implementation of both procedural audio and algorithmic composition is a choice to

apply a common philosophy to different aspects of a game audio engine. This philosophy stems

from the idea of emergent phenomena20, whereby the interactions of simple parts yield

unpredictable global behavior in a complex system. Games frequently exploit this kind of

phenomena by providing players with a complex set of simple rules, constraints and options for

solving problems. By combining procedural audio and algorithmic composition, the sonic

environment of a game can better reflect the interaction between the game and player.

 This approach may not be suitable for all situations, but represents what I hope is a new

frontier in a relatively new medium. An ideal approach would leverage the advantages of both

data-driven and procedural audio to create a realistic sound environment that responds

intelligently to player actions.

 In the future, I would like to design a similar system for use across mobile devices and

web browsers. I also envision helping design a manifestation of a data-flow programming

language such as Max/MSP that allows more flexibility than current applications being

integrated into audio middleware and game development platforms to facilitate the widespread

use of procedural audio and algorithmic composition. I chose to develop High Score using

Max/MSP and Unity3D because they are among the most commonly used tools in their

respective categories. By demonstrating a procedural audio engine made with these two

 20 Vince Darley, "Emergent Phenomena and Complexity." in Artificial life IV, ed.Rodney Brooks
and Pattie Maes 411-417.Cambridge, Mass: MIT Press, 1994.

36

programs, I hope to encourage others to explore the fascinating potentials of procedural

approaches to sound design and music.

37

Bibliography

Collins, Karen. "Loops and Bloops: Music of the Commodore 64" Soundscapes (February
2008), www.icce.rug.nl/~soundscapes/VOLUME08/Loops_and_bloops.shtml

———.2008. Game sound: An introduction to the history, theory, and practice of game
music and sound design. Cambridge, Massachusetts: MIT Press 2008.

Chowning, John M. 1973. "The synthesis of complex audio spectra by means of frequency
modulation." Journal of the Audio Engineering Society 21, no.7: 526.

Darley, Vince "Emergent Phenomena and Complexity." in Artificial life IV: proceedings
 of the Fourth International Workshop on the Synthesis and Simulation of Living Systems.
Edited by Rodney Brooks and Pattie Maes, Cambridge, Mass: MIT Press, 1994.

Farnell, Andrew. "An introduction to procedural audio and its application in computer
games." http://obiwannabe.co.uk/html/papers/proc-audio/proc- audio.html (accessed
9/4, 2012).

———.2010.Designing sound. Cambridge, Massachusetts: MIT Press.

Postel, Jonathan and David P.Reed. "User Datagram Protocol" Internet Engineering Task
Force Request for Comments 768, (August 1980)

38

Appendix

The following appendix is licensed under the Creative Commons Attribution‐NonCommercial‐
ShareAlike 3.0 Unported License. To view a copy of this license, visit
http://creativecommons.org/licenses/by‐nc‐sa/3.0/ or send a letter to Creative Commons, 444 Castro
Street, Suite 900, Mountain View, California, 94041, USA.

UDPstartup

39

UDPNetworkmanager

40

UDPmove

41

csharpshoot

	Florida International University
	FIU Digital Commons
	4-22-2013

	Using Procedural Audio to Control an Algorithmic Composition that is Controlled by a Computer Game
	Brian del Toro
	Recommended Citation

	Using Procedural Audio to Create an Algorithmic Composition that is Controlled by a Computer Game

