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ABSTRACT OF THE DISSERTATION 

DEVELOPMENT OF SAFETY PERFORMANCE FUNCTIONS FOR 

SAFETYANALYST APPLICATIONS IN FLORIDA 

by 

Jinyan Lu 

Florida International University, 2013 

Miami, Florida 

Professor Albert Gan, Major Professor 

In 2010, the American Association of State Highway and Transportation Officials 

(AASHTO) released a safety analysis software system known as SafetyAnalyst.  

SafetyAnalyst implements the empirical Bayes (EB) method, which requires the use of 

Safety Performance Functions (SPFs).  The system is equipped with a set of national 

default SPFs, and the software calibrates the default SPFs to represent the agency’s safety 

performance.  However, it is recommended that agencies generate agency-specific SPFs 

whenever possible.  Many investigators support the view that the agency-specific SPFs 

represent the agency data better than the national default SPFs calibrated to agency data.  

Furthermore, it is believed that the crash trends in Florida are different from the states 

whose data were used to develop the national default SPFs.  

In this dissertation, Florida-specific SPFs were developed using the 2008 

Roadway Characteristics Inventory (RCI) data and crash and traffic data from 2007-2010 

for both total and fatal and injury (FI) crashes.  The data were randomly divided into 

two sets, one for calibration (70% of the data) and another for validation (30% of the 

data).  The negative binomial (NB) model was used to develop the Florida-specific SPFs 
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for each of the subtypes of roadway segments, intersections and ramps, using the 

calibration data.  Statistical goodness-of-fit tests were performed on the calibrated 

models, which were then validated using the validation data set.  The results were 

compared in order to assess the transferability of the Florida-specific SPF models.   

The default SafetyAnalyst SPFs were calibrated to Florida data by adjusting the 

national default SPFs with local calibration factors.  The performance of the 

Florida-specific SPFs and SafetyAnalyst default SPFs calibrated to Florida data were then 

compared using a number of methods, including visual plots and statistical 

goodness-of-fit tests.  The plots of SPFs against the observed crash data were used to 

compare the prediction performance of the two models.  Three goodness-of-fit tests, 

represented by the mean absolute deviance (MAD), the mean square prediction error 

(MSPE), and Freeman-Tukey R2 (R2
FT), were also used for comparison in order to 

identify the better-fitting model.  The results showed that Florida-specific SPFs yielded 

better prediction performance than the national default SPFs calibrated to Florida data. 

The performance of Florida-specific SPFs was further compared with that of the 

full SPFs, which include both traffic and geometric variables, in two major applications 

of SPFs, i.e., crash prediction and identification of high crash locations.  The results 

showed that both SPF models yielded very similar performance in both applications.  

These empirical results support the use of the flow-only SPF models adopted in 

SafetyAnalyst, which require much less effort to develop compared to full SPFs. 
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CHAPTER 1 

INTRODUCTION 

1.1. Background 

Traffic crashes are a major problem throughout the world, causing fatalities, 

physical injuries, property damage, and highway congestion.  In the United States alone, 

around 40,000 fatalities and two million injuries are reported each year, costing the nation 

an estimate of over $200 billion in damages (NHTSA, 2008).  A reduction in highway 

traffic crashes has thus been a priority for highway agencies over the past few decades. 

The roadway safety management process has played an important role in the 

nation’s efforts to continue to improve highway traffic safety.  The analysis process 

generally includes six major steps (Richard et al., 2010): (1) identification of high crash 

locations (HCLs), (2) diagnosis of safety problems at specific sites, (3) selection of 

countermeasures at specific sites, (4) economic appraisal for countermeasures under 

consideration, (5) priority rankings of improvement projects, and (6) evaluation of safety 

effectiveness of implemented countermeasures. 

Among the six steps, identification of HCLs, also commonly referred to as 

network screening, is considered the most crucial step in the entire roadway safety 

management process.  This step could be performed using either traditional methods 

like crash frequencies and rates, or advanced methods that use the empirical Bayes (EB) 

or full Bayes (FB) approach.  Although traditional methods have minimal data 

requirements, they are fraught with several issues, limitations, and biases, including the 

well-recognized regression-to-the-mean (RTM) bias.  This bias may cause locations 

with a high amount of crashes due to random fluctuations in crash occurrences to be 
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flagged erroneously for safety improvements; thus, reducing the cost-effectiveness of 

safety programs.  The EB method adjusts for the RTM bias by comparing the safety 

performance of a specific site to several reference sites.  This approach requires the use 

of Safety Performance Functions (SPFs). 

An SPF is a mathematical model that describes the relation between crash 

frequency and measure of exposure.  In network screening, SPFs are used with the EB 

method to calculate the expected crash frequency by considering both the observed and 

the predicted crash frequencies.  Traditionally, SPFs relate crash occurrence to both 

roadway geometric characteristics (e.g., lane width, shoulder width, horizontal and 

vertical curvatures, etc.) and traffic characteristics (e.g., traffic volume and speed limit) 

for specific roadway types.  These SPFs are referred to as full SPFs.  In the full model, 

the predicted crash frequency is a function of both traffic and geometric characteristics, 

as follows: 

NPredicted = exp (α + β × ln(AADT) + β1X1 + β2X2 + … + βnXn)          (1-1) 

where 

NPredicted  = predicted crash frequency per mile per year; 

AADT = annual average daily traffic; 

X1, X2,…, Xn  = n roadway geometric variables; and 

α, β, β1, β2, …, βn = regression coefficients of the intercept, ln (AADT) variable,     

and n geometric variables.   

One main problem with full SPFs is that the independent variables might subject 

to correlation.  In order to avoid the correlation problem, a new approach that links 

crash occurrence to traffic volume alone for specific roadway types is increasingly being 
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accepted.  These SPFs, called simple SPFs or traffic SPFs, take the following functional 

form: 

NSimple SPF = exp (α + β × ln(AADT))                     (1-2) 

where 

NSimple SPF = predicted crash frequency per mile per year as a function of traffic 

alone, 

AADT = annual average daily traffic, and 

α, β = regression coefficients.  

The Highway Safety Manual (HSM) adopts simple SPFs, which were generated 

using sites with “base conditions”.  In other words, the sites utilized to generate base 

SPFs have similar “base” roadway characteristics.  To account for the impacts of 

geometric conditions that are different from the base conditions, Crash Modification 

Factors (CMFs) are applied to the simple SPF in predicting the crash frequency:  

NPredicted = NSimple SPF ×CMF1×CMF2×…×CMFn               (1-3) 

where  

NPredicted = predicted crash frequency per mile per year, and 

CMF1, CMF2,…, CMFn = crash modification factors for n geometric conditions. 

Thus, CMFs are simply multiplicative factors that are applied to adjust the predicted 

crash frequency obtained from the simple SPF for the effects of individual roadway 

geometric conditions such as lane width and shoulder width.  A geometric condition that 

matches the base condition is assigned a CMF of 1.00.  A geometric condition that 

results in the increase of the base crashes will have a CMF of greater than 1.00.  On the 

other hand, a geometric condition that results in the decrease of the base crashes will have 
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a CMF of less than 1.00.  For example, if the base lane width is 12 feet, a CMF of 1.1 

for 11-feet lanes would mean that using 11-foot lanes can be expected to increase the 

crashes by 10% on average, as compared to those of 12-foot lanes. 

Similar to the HSM, SafetyAnalyst, a safety analysis software system released by 

the American Association of State Highway and Transportation Officials (AASHTO) in 

2010, also adopts simple SPFs.  However, the SPFs used in SafetyAnalyst are generated 

using all sites, irrespective of base conditions.  In summary, consideration of base 

conditions while generating SPFs is a major difference between the HSM and 

SafetyAnalyst. 

1.2. Research Needs 

To perform the step of network screening in the roadway safety management 

process, SafetyAnalyst implements the EB method, which is data intensive, requiring the 

use of SPFs.  SafetyAnalyst is equipped with a set of national default SPFs, and the 

software calibrates the default SPFs to represent the agency’s safety performance.  

Agencies are recommended to generate agency-specific SPFs whenever possible.  Many 

investigators support the view that the agency-specific SPFs represent the agency data 

better than the national default SPFs calibrated to agency data.  Furthermore, it is 

believed that the crash trends in Florida are different from the states whose data were 

used to develop the national default SPFs.  

SafetyAnalyst uses a very detailed classification of the road network, dividing 

segments, intersections, and ramps into 17, 12, and 16 subtypes, respectively.  Table 1-1 

lists the categories of SPFs included in SafetyAnalyst.  Furthermore, SafetyAnalyst is 

equipped with SPFs for all of the subtypes for both total and fatal and injury (FI) crashes.  
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Thus, Florida-specific SPFs should be developed for both total and FI crashes for all 

roadway subtypes in SafetyAnalyst for which data are available. 

1.3. Research Objective  

The objective of this dissertation research is to develop Florida-specific SPFs for 

different roadway categories, including roadway segments, intersections, and ramps, in 

SafetyAnalyst for applications in the roadway safety management process.  Accordingly, 

the specific tasks of this dissertation are to: 

1. develop Florida-specific SPFs for different types of roadways and assess the 

performance of the models;  

2. calibrate the SafetyAnalyst default SPFs to Florida data; 

3. compare the performance of the two SPFs (i.e., Florida-specific SPFs vs. 

SafetyAnalyst default SPFs calibrated to Florida data);  

4. apply Florida-specific SPFs for crash prediction performance and identification of 

high crash locations; and 

5. explore an alternative method that uses the clustering algorithm in segmentation 

for identification of high crash locations. 
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Table 1-1 Categories of SPFs in SafetyAnalyst  
Roadway Segments-SPFs for Specific Site Subtypes 

- Rural 2-lane roads 
- Rural multilane undivided roads 
- Rural multilane divided roads 
- Rural freeways-4 lanes 
- Rural freeways-6+ lanes 
- Rural freeways within interchange area-4 lanes 
- Rural freeways within interchange area-6+ lanes 
- Urban 2-lane arterial streets 
- Urban multilane undivided arterial streets 
- Urban multilane divided arterial streets 
- Urban one-way arterial streets 
- Urban freeways-4 lanes 
- Urban freeways-6 lanes 
- Urban freeways-8+ lanes 
- Urban freeways within interchange area-4 lanes 
- Urban freeways within interchange area-6 lanes 
- Urban freeways within interchange area-8+ lanes 

Intersections-SPFs for Specific Site Subtypes 
- Rural three-leg intersection with minor-road STOP control 
- Rural three-leg intersection with all-way STOP control 
- Rural three-leg intersection with signal control 
- Rural four-leg intersection with minor-road STOP control 
- Rural four-leg intersection with all-way STOP control 
- Rural four-leg intersection with signal control 
- Urban three-leg intersection with minor-road STOP control 
- Urban three-leg intersection with all-way STOP control 
- Urban three-leg intersection with signal control 
- Urban four-leg intersection with minor-road STOP control 
- Urban four-leg intersection with all-way STOP control 
- Urban four-leg intersection with signal control 

Ramps-SPFs for Specific Site Subtypes 
- Rural diamond off-ramp 
- Rural diamond on-ramp 
- Rural parclo loop off-ramp 
- Rural parclo loop on-ramp 
- Rural free-flow loop off-ramp 
- Rural free-flow loop on-ramp 
- Rural free-flow outer connection ramp 
- Rural direct or semi direct connection 
- Urban diamond off-ramp 
- Urban diamond on-ramp 
- Urban parclo loop off-ramp 
- Urban parclo loop on-ramp 
- Urban free-flow loop off-ramp 
- Urban free-flow loop on-ramp 
- Urban free-flow outer connection ramp 
- Urban direct or semi direct connection 
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1.4. Organization  

The rest of the dissertation is organized as follows.  Chapter 2 provides a 

comprehensive review of the existing SPFs, the segmentation methods, and the high 

crash location identification process.  Chapter 3 presents the methodology used in this 

research to achieve the stated objective.  Chapter 4 describes the data acquisition and 

processing.  Chapter 5 is devoted entirely to the development of Florida-specific SPFs 

for applications of SafetyAnalyst.  Chapter 6 compares the performance of the 

Florida-specific SPFs and SafetyAnalyst default SPFs calibrated to Florida data.  

Chapter 7 presents two applications of Florida-specific SPFs, i.e., the crash prediction 

and the identification of high crash locations.  Finally, Chapter 8 draws conclusions, 

summarizes the main contribution, and provides recommendations for future research. 
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CHAPTER 2 

LITERATURE REVIEW 

2.1. Introduction 

This chapter reviews past research efforts associated with the development and 

application of SPFs.  Section 2.2 introduces a safety analysis software system known as 

SafetyAnalyst.  An extensive review of the literature on the existing SPFs, existing 

segmentation methods, and high crash location identification process are subsequently 

provided in detail.  Sections 2.3 and 2.4 provide a comprehensive review of studies 

about SPFs, including full and simple SPFs, respectively, for various roadway types.  

Section 2.5 is a review of segmentation methods, an essential step for developing SPFs.  

Section 2.6 presents the network screening methods for identifying high crash locations, 

one of the main applications of SPFs.  A summary is provided in the last section to 

highlight the necessity of conducting this research. 

2.2. SafetyAnalyst 

In 2010, the AASHTO released a safety analysis software system known as 

SafetyAnalyst.  SafetyAnalyst is a cooperative effort by the Federal Highway 

Administration (FHWA), 27 participating states in the U.S., and interested local agencies.  

SafetyAnalyst “provides state-of-the-art analytical tools for use in the decision-making 

process to identify and manage a system-wide program of site-specific improvements to 

enhance highway safety by cost-effective means” (FHWA, 2010).  SafetyAnalyst uses a 

set of default SPFs developed using available data for four states, which include 

California, Minnesota, Ohio, and Washington.  
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SafetyAnalyst is a state-of-the-art analytical tool for making system-wide safety 

decisions.  The software provides a suite of analytical tools to identify and manage 

system-wide safety improvements by incorporating all of the steps in the roadway safety 

management process.  It incorporates the EB approach for network screening.  It also 

includes many modules and can act as a complete “safety toolbox” for traffic safety 

agencies.  The modules in SafetyAnalyst include (FHWA, 2010):  

1. Network Screening Module: It identifies and ranks sites with potential for safety 

improvements.  

2. Diagnosis and Countermeasure Selection Module: The diagnosis module is used 

to diagnose the nature of safety problems at specific sites.  The countermeasure 

selection module assists users in selecting countermeasures that reduce crash 

frequency and severity at specific sites. 

3. Economic Appraisal and Priority Ranking Module: The economic appraisal 

module performs an economic appraisal of a specific countermeasure or several 

alternative countermeasures for a specific site, while the priority ranking module 

provides a priority ranking of sites and proposed improvement projects based on 

the benefit and cost estimates determined by the economic appraisal tool. 

4. Countermeasure Evaluation Module: The countermeasure evaluation module has 

the capability to conduct before/after evaluations of implemented safety 

improvements. 

SafetyAnalyst includes four tool components.  They are the Data Management 

Tool, the Analytical Tool, the Administration Tool, and the Implemented Countermeasure 

Tool.  Together, they can perform the complete roadway safety management process.  

The Data Management Tool is used to import, post-process, and calibrate data.  The 

Analytical Tool is used to perform analysis of the data.  All of the modules of 

SafetyAnalyst discussed earlier can be performed with this tool.  The Administration 
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Tool is used to perform a variety of tasks, such as adding and removing data items (with 

an exception of mandatory data elements).  Data recording of various data elements’ 

attributes can also be performed.  This tool also provides access to the national default 

SPFs used within the software, which can be replaced with agency-specific SPFs, 

whenever available.  Furthermore, diagnostic questions and countermeasures can also be 

edited within this tool. 

In summary, SafetyAnalyst is a suite of software tools that implement the 

advanced EB method and automate all of the steps of the roadway safety management 

process.  Even though its data requirements are rigorous, once the data are imported, the 

analysis procedures are relatively easy, requiring minimum statistical expertise.  

The EB approach requires either site-specific SPFs or default SPFs calibrated to 

local data.  The SPFs available in the HSM were generated using sites with a set of base 

conditions such as those with 12 feet lanes.  As these base SPFs were generated using 

other states’ data, they needed to be calibrated to represent local agencies’ safety trends.  

The HSM recommends generating calibration factors for each subtype at least once every 

2-3 years using data from 30-50 sites where a total of 100 crashes occur per year.  On 

the contrary, the default SPFs used in SafetyAnalyst were generated using all sites, 

regardless of base conditions.  Similar to the HSM, SafetyAnalyst uses a calibration 

factor to account for differences between the default SPFs and the agencies’ safety 

performance.  This calibration factor is calculated as the ratio of observed to predicted 

crashes for all sites.     

In the EB approach, CMFs are used in two instances: to account for the variations 

in base conditions, and to select and evaluate countermeasures.  Since the SPFs in the 
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HSM were generated using sites with base conditions, deviation of the target sites from 

predefined base conditions must be addressed using CMFs.  Furthermore, CMFs are 

used to evaluate the performance of one countermeasure over the other, and therefore 

play a vital role in selecting and evaluating countermeasures, as well as in benefit-cost 

analysis.  In SafetyAnalyst, CMFs are only used for countermeasure selection and 

evaluation, as SPFs to be used with SafetyAnalyst were generated without accounting for 

base conditions.  

2.3. Full SPFs 

The HSM (2010) defines SPFs as regression models for estimating the predicted 

average crash frequency of individual roadway sections or intersections.  There are two 

main types of SPFs: full SPFs and simple SPFs.  A review of the full SPFs for roadway 

segments and intersections is presented in the following sections. 

2.3.1. Roadway Segments 

2.3.1.1 Arterials 

The mathematical relationships between crashes and roadway geometric design 

features (lane width, shoulder width, horizontal curvature, vertical grade, etc.) are 

discussed in many studies.  As summarized in the National Cooperative Highway 

Research Program (NCHRP) Report 197 (1978), multiple linear regression models were 

employed frequently in establishing the relationship between crashes and geometric 

features.  However, the undesirable outcome of using a multiple linear regression model 

was evidenced by the following studies.  For example, results from multiple linear 

regression models used by Zegeer et al. (1990) showed that more than half of the 
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roadway sections had no crashes during the observed period.  Jovanis and Chang (1986) 

discussed that the distribution of crash occurrences is positively skewed, and that the 

underlying normal distributional assumption for linear regression is not a good 

approximation for investigating this relationship. 

In contrast to multiple linear regression models, the Poisson regression models 

have become widely used for modeling crashes and influencing factors.  Joshua and 

Garber (1990) provided Poisson regression models to establish mathematical 

relationships between truck crashes on rural highways and traffic and geometric variables 

in the state of Virginia.  The length of each roadway segment was restricted to a 

maximum of two miles.  All of the selected sites were grouped into three environments 

by roadway configurations and traffic volumes: Environment I (primary highways, 

undivided, four-lane and two-lane, with AADT less than 15,000); Environment II 

(primary highways, divided, four-lane, with AADT less than or equal to 15,000); and 

Environment III (Interstate/ primary highways, divided, four-lane, with AADT more than 

15,000).  The prediction model for Environment I, II, and III are given in Equations 

(2-1) to (2-3) below, respectively: 

Crashes/year = 0.015237×(SCR)0.0577×(AADT)0.5024×(TPERCNT)0.5731     (2-1) 

Crashes/year = 9×10-8×(SCR)0.0471×(AADT)1.4358×(TPERCNT)1.5232×(SEGLEN)0.3826 (2-2) 

Crashes/year = 0.001465×(CCR)0.0336×(AADT)0.7086×(TPERCNT)0.2064× 
(SEGLEN)0.3318×(SPDIFSQ)0.0475                      (2-3) 

 

 

 



 

13 
 

where 

SCR     = slope change rate, 

AADT     = average annual daily traffic, 

TPERCNT  = truck percentage,       

SEGLEN  = segment length, 

CCR  = curvature change rate, and 

SPDIFSQ  = speed difference. 

These models indicated that the slope change rate, AADT, truck percentage and speed 

differences between trucks and non-trucks influenced the crash occurrence.  However, 

these models did not consider any exposure (AADT or segment length) for the crash 

occurrence, which leads to the conclusion that the crash frequency would be zero if any 

of the variables’ values were equal to zero (e.g., crashes would occur on a roadway 

section without slope changes). 

Miaou et al. (1992) presented empirical relationships obtained through Poisson 

regression analyses, relating the truck crashes with key highway geometric design 

variables by using a data source administered by the FHWA, from the Highway Safety 

Information System (HSIS).  The descriptions of the HSIS database are available in a 

study by Miaou et al. (1991).  In the aforementioned study, four models were developed 

using different horizontal curvature and vertical grade measures.  The following model 

is an example of these types of models, for rural interstate highways based on the data 

from 1985 to 1987, cited as such: 

Crashes = exp(-14.6833+0.044691X1+0.172513X2+0.162218X3+0.03859X4)    (2-4) 
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where 

       1X  = AADT, 

       2X  = horizontal curvature, 

       3X  = vertical grade, and 

       4X  = deviation from ideal shoulder width. 

The final model suggested that AADT, horizontal curvature, and vertical grade were 

significantly correlated with truck crash occurrences, but that shoulder width had 

comparably less correlation.  Due to the use of the exponential form in the model, it did 

not predict zero crashes when the variables’ values were equal to zero.  Accordingly, it 

was found to be more reasonable than the Joshua and Garber models cited above.   

Maher and Summersgill (1996) indicated the weaknesses and technical difficulties 

in the application of the pure Poisson model, such as the low mean value problem, 

overdispersion, the disaggregation of data over time, the uncertainty of predictions, 

random errors in the flow estimates, and aggregation of predictions.  Given these 

shortcomings, they emphasized that the technique of generalized linear models (GLMs) 

with Poisson error structure offered the most appropriate approach for data analysis.   

A known limitation in applying the Poisson regression model is that the variance 

is restrained to be equal to the mean of the dataset (Dean, 1989).  However, unlike the 

property of the most common count-data modeling approach, the variance of the crash 

counts for crash frequency exceeds the mean.  Therefore, “when overdispersed data are 

present, the Poisson regression model will result in biased and inconsistent parameter 

estimates, which in turn could lead to erroneous inferences regarding the factors that 
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determine crash frequencies” (Lord and Mannering, 2010).  In a study by Hadi et al. 

(1995), tests for overdispersion were conducted to decide whether Poisson or Negative 

binomial (NB) regression should be used for model development.  Roadway segments 

from the state of Florida’s roadway system were used in the study.  Models were 

developed for each of nine highway categories for total number of crashes, fatal crashes, 

and injury crashes, respectively.  The nine highway categories are two-lane rural, 

four-lane rural divided, two-lane urban undivided, four-lane urban undivided, four-lane 

urban divided, six-lane urban divided roadway segments, four- and six-lane rural, 

four-lane urban, and six-lane urban freeways.  One result showed that increasing lane 

width, median width, and/or shoulder width were effective in reducing crashes, 

depending on the highway type. 

Miaou (1994) evaluated and compared the performance of Poisson, zero-inflated 

Poisson (ZIP), and NB regression models in establishing the relationship between truck 

crashes and the geometric design of road sections.  The HSIS data were used to estimate 

the performance of these models, and unknown parameters were estimated by maximum 

likelihood (ML).  It was recommended that if the overdispersion of crash frequency data 

was found to be moderate or high, the ZIP or NB regression models should be 

considered.   

The ZIP regression model was considered when the data were characterized by a 

significant amount of zeros.  Qin et al. (2004) used ZIP to estimate crash predicting 

models for crash types (single-vehicle, multi-vehicle same direction, multi-vehicle 

opposite direction, and multi-vehicle intersecting) as a function of AADT, segment length, 

speed limit, and roadway width for roadway segments in the state of Michigan using 
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crash and roadway characteristics data from HSIS.  They concluded that, as opposed to 

the relationship between crashes and segment length for all crash types, the relationship 

between crashes and AADT is non-linear and varies by crash type. 

The NB model is an extension of the Poisson model that was created to overcome 

possible overdispersion in the data.  Overdispersion occurs when the crash data variance 

is greater than the mean.  The NB distribution contains two parameters; the mean μ and 

the dispersion parameter α or its inverse (1/α), with the dispersion parameter used to 

capture the extra-variation observed in the crash data.  Miaou (1996) found that the 

dispersion parameter α can be used as a measure of goodness-of-fit.  Wood (2005) also 

used the dispersion parameter to estimate the confidence intervals for the Poisson mean 

and gamma mean.  Furthermore, Park and Lord (2008) used simulation to adjust the 

maximum likelihood estimate of the NB dispersion parameter, where simulation 

scenarios were used to develop a relationship between the estimated and the true 

dispersion parameters.  Finally, Zhang et al. (2007) used the bootstrapped maximum 

likelihood method to estimate the dispersion parameter of the NB model for analyzing 

crash data. 

Sawalha (2002) collected the crash data of 58 arterials from the cities of 

Vancouver, Canada, and Richmond, Virginia, for years 1994 through 1996, and 

generated a prediction model using the NB method.  Crashes that occurred at signalized 

intersections were not included in this sample.  The collected crash data consisted of 

crash locations, severities, and crash types, as well as the light, weather, and road 

conditions at time of crash.  The model form is adopted from the following: 
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where 

      L  = section length, 

      V  = section annual average daily traffic, 

      jx    = any of m variables additional to L and V, and 

      jbaaa ,,, 210  = model parameters. 

The roadway sections were divided into segments between consecutive signalized 

intersections.  The geometric data considered were segment length, number of lanes, 

number of driveways, number of bus stops, number of crosswalks, median types, land use, 

etc.  This crash prediction model was one of the strongest, as it demonstrated a robust 

goodness-of-fit.  

Various studies have been conducted on the relationship between crash 

occurrences and relative variables for specific roadway facilities and characteristics using 

the NB regression model.  Based on the NB regression, Bowman et al. (1995) generated 

vehicle crash models for different median types (raised median, two-way-left-turn 

median, and undivided cross section) in urban and suburban unlimited access arterials.  

The prediction ratio plots derived from the data displayed a relatively equal distribution 

of predicted vehicle crashes.  The prediction models further showed that the raised curb 

and undivided cross-section models had the largest deviation, while the two-way-left-turn 

median had the smallest.  The number of signalized intersections was not included in the 

models because it was not as significant as the other independent variables.  Moreover, 

crash prediction models for roads with minor junctions at both single and 
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dual-carriageway roads in urban and rural areas in the United Kingdom were developed 

by Mountain et al. (1996).  This study, which used the NB regression model based on 

data for 3,800 km of highway, included more than 5,000 minor junctions.  Furthermore, 

safety analysis employing the NB regression model, in addition to the aforementioned 

research, can also be found in many other references (Anastasopoulos and Mannering, 

2009; Abdel-Aty and Radwan, 2000; Sawalha and Sayed, 2006). 

2.3.1.2 Freeways 

Crash prediction models for freeways have been deemed important since the 

1990s, although there were few related studies beforehand.  Persaud and Dzbik (1993) 

developed the generalized linear crash prediction models.  Their studies showed that the 

crash patterns on freeway sections during congested periods differ from that during 

uncongested periods.  Resende and Benekohal (1997) calibrated the multiple linear 

crash prediction models for rural freeways based on the ratio of volume to capacity.  

The result showed that the capacity was the crucial variable in the model. 

Kraus et al. (1993) explored the relationship between crashes and variables, 

including geometric features, time of day, and traffic flow rate by developing a non-linear 

prediction model for urban freeway sections.  Khan et al. (1999) also developed a 

non-linear regression model, but focused on the relationship between crash severities and 

traffic volume and segment length.  Traffic volume, topological characteristics, and 

weather conditions were considered independent variables by Konduri and Sinha (2002) 

in a crash prediction model they developed using a non-linear modeling approach. 

Garber and Ehrhart (2000) developed mathematical relationships that describe the 

combined influence that traffic and geometric characteristics have on crash occurrences.  
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The data of this study were obtained from roadways in the state of Virginia, with speed 

limits of 55 or 65 mph.  Three types of models, i.e., linear regression, robust regression, 

and multivariate ratio of polynomials, were developed using the variables of traffic flow, 

speed, lane width, and shoulder width.  The variables 2R  and minimum AIC were used 

as standards for selecting the best-fitted models.  For example, the best-fitted model for 

freeway with a 65-mph speed limit is: 

Ln(CRASHRATE) = (2629.7-0.4×SD2)-(5.4E-04)×SD4-2254323.0×(1/FPL2)+4.5× SD2×  
(1/FPL2)-(5.4E+08)×[(1/FPL2)]2-510.7×SQRT(MEAN)+(5.2E-02)×
SD2×SQRT(MEAN)+224565.2×(1/FPL2)×SQRT(MEAN)+24.7×[S
QRT(MEAN)]2                                       (2-6) 

where 

  CRASHRATE  = crash rate, 

  SD    = standard deviation of speed, 

  FPL  = flow per lane, and 

  MEAN   = mean speed.  

Although complex, these models showed the relationship between crash rates and the 

independent variables of standard deviation for speed, mean speed, and flow per lane.  

These models also showed that the crash rate is not solely determined by only one 

independent variable, but by a complex interaction of multiple independent variables. 

Several new ideas and techniques were used in the safety analysis of freeways.  

Golob et al. (2004) assessed the freeway safety in terms of crash types, locations, and 

severities by using a clustering method.  Lord et al. (2005) studied the 

crash-flow-density and crash-flow-V/C ratio relationships for rural and urban freeway 

segments located both downtown and outside of Montreal, in Quebec, Canada.  These 

results showed that single- and multi-vehicle crashes should be separated in the 
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processing of modeling.  The prediction model using vehicle density and V/C ratio as a 

covariate, thus offered a better characterization of each crash. 

Machine learning refers to a system capable of the autonomous acquisition and 

integration of knowledge.  This capacity to learn from experience, analytical 

observation, and other means results in a system that can improve its own performance.  

Machine learning has increasingly received more attention from transportation 

researchers as a promising technique in safety analysis.  Employed by Chang and Chen 

(2005) to analyze freeway crash frequency, the classification and regression tree (CART) 

is one of the most widely applied data mining techniques.  The results indicated that the 

traffic volume and precipitation variables were the key determinants for freeway crash 

frequencies. 

Pande and Abdel-Aty (2006) used both historical crash and real-time traffic 

parameters obtained from loop detectors to calibrate the neural network (NN) models to 

predict the occurrence of lane-change-related freeway crashes.  The results indicated 

that these models may be applied for identifying real-time traffic conditions prone to 

lane-change-related crashes.  Relative studies of the NN model on freeways are found in 

several references (Cheu and Ritchie, 1995; Chang, 2005; Kononov et al., 2008).  

Abdel-Aty et al. (2004) also applied another machine learning method, the matched 

case-control logistic regression, for predicting freeway crashes based on loop detector 

data. 

In addition to safety analysis on freeways, the machine learning technique is also 

widely used in other roadway facilities and fields related to traffic safety.  For example, 

Kuhnert et al. (2000) employed logistic regression, CART, and Multivariate Adaptive 
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Regression Splines (MARS) to analyze motor-vehicle injury data.  Karlaftis and Golias 

(2002) applied hierarchical tree-based regression (HTBR) to analyze the effects of road 

geometric and traffic characteristics on crash rates for rural two-lane and multilane roads.  

Haleem et al. (2010) fitted and compared the NB and MARS models by using data 

collected on unsignalized intersections in Florida.  Their results showed that MARS is a 

promising technique for predicting crashes, especially for continuous response variables. 

2.3.2. Intersections 

Crashes commonly occur at intersections, which may be due to both design 

characteristics and the fact that entry by a vehicle from one roadway could be expected to 

result in conflicting movements with a vehicle entering from opposite roadways.  Severe 

crashes tend to occur within the intersection buffer because left-turn and angle collisions 

are the most frequent crash types at intersections.  Thus, it is important to identify the 

methods that can assess the effects that geometric, traffic flow, traffic control, 

environmental, and operational characteristics have on traffic crashes at intersections 

(Abdel-Aty and Keller, 2005).   

Various models were developed to study the relationship between crashes at 

intersections and influencing factors.  Bauer and Harwood (2000) applied multiple 

linear regression analysis in developing crash prediction models for at-grade intersections 

in California, using three years of crash data (1990 to 1992), as well as geometric design, 

traffic control, and traffic volume data from a database provided by the California 

Department of Transportation (Caltrans).  Five types of intersections were modeled: 

rural four-leg stop-controlled intersections, rural three-leg stop-controlled intersections, 

urban four-leg stop-controlled intersections, urban three-leg stop-controlled intersections, 
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and urban four-leg signalized intersections.  The multiple linear regression was used for 

urban four-leg stop-controlled and signalized intersections, while Poisson and NB 

regression were used for the remaining types. 

The advantage of using Poisson and NB regression models over the multiple 

linear regression models has been confirmed by previous investigations.  Several studies 

(Poch and Mannering, 1996; Sayed and Rodriguez, 1999; Harnen et al., 2003; and Salifu, 

2004) presented the empirical relationships obtained through the Poisson regression 

analyses and/or NB techniques, relating the crashes with traffic flow, traffic control, and 

key highway geometric design variables.  The results indicated that roadway geometric, 

vehicular, and operational features had an effect on crash frequency.  Therefore, those 

factors that significantly affect crashes should be given more attention in crash analyses 

at intersections (Nambuusi et al., 2008). 

In addition to widely used Poisson and NB regression models, the machine 

learning technique was also used in crash analysis at intersections.  Lau et al. (1989) 

introduced the crash prediction models for urban intersections based on the CART 

technique, which is used to group crashes based on crash and intersection types by 

splitting the data into branches on a tree diagram.  The prediction model involved three 

levels: Level 1, Generation of the base model; Level 2, Grouping intersections by CART; 

and Level 3, Adjustment by Crash History.  This technique can be used to obtain the 

number of crashes for each injury severity, as well as the number of crashes for each 

intersection type. 

Various techniques were used to assess the goodness-of-fit of different models, 

including the deviance, the Chi-square statistic, the adjusted R-square, and the pseudo 
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R-square (likelihood ratio index).  It was difficult to compare the goodness-of-fit among 

the models because different measures were used, and the fitted models had different 

objectives (Nambuusi et al., 2008). 

2.4. Simple SPFs 

Simple SPFs, also called traffic SPFs, are mathematical models that link crash 

occurrence to traffic volume at specific roadway types.  The simple SPFs take the form 

of an NB model, as adopted in the HSM.  For simple SPFs, a set of AMFs is applied for 

prediction purposes to adjust from base conditions to prevailing conditions. 

2.4.1. Roadway Segments 

2.4.1.1 Arterials 

Persaud (1992) developed an SPF using the data from 1988 to 1989 for rural 

two-lane roads in Ontario, Canada.  The functional form used is shown as follows:  

Crashes/km/year = a × (AADT/1000)b                                   (2-7) 

The regression coefficients a and b are given in Table 2-1.  

Table 2-1 Regression Coefficient Estimates  
 Total Crashes Fatal and Injury Crashes 

Lane 
width 

<6.1 m <6.1 m >6.1 m >6.1 m <6.1 m <6.1 m >6.1 m >6.1 m 

Shoulder 
width 

<1.8 m >1.8 m >1.8 m <1.8 m <1.8 m >1.8 m >1.8 m <1.8 m 

b 0.733 0.892 0.892 0.733 0.783 0.971 0.971 0.783 
a 0.00287 0.00096 0.00069 0.0025 0.00067 0.00018 0.00012 0.00054 

 
Using data on two-lane rural roads in State of New York for the period of 1971 

through 1987, Hauer (1994) developed the following SPF to estimate total crashes, 

excluding crashes at intersections: 

Crashes/km/year = 0.00244 × (AADT)0.776                    (2-8) 
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Using the 1988 and 1989 data for urban two-lane roads in Ontario, Canada, 

Persaud (1992) developed the following SPF:  

Crashes/km/year = 0.00369 × (AADT)0.72                    (2-9) 

Persaud (1992) further developed the SPF below using the 1988 and 1989 data for 

multi-lane roads with no full access control in Ontario, Canada:  

 Crashes/km/year = a × (AADT) b                         (2-10) 

2.4.1.2 Freeways 

Persaud (1991) presented a method for estimating the underlying crash potential 

on freeways.  The method first used NB regression models to produce an initial estimate 

of a segment’s crash potential on the basis of its traffic.  This estimate was then refined 

by being combined with the segment’s crash count, using an EB procedure.  The NB 

prediction model is as follows: 

Crashes=0.6278×L×(AADT/1000)1.024                      (2-11) 
where 

      L   = segment length, and 

      AADT = the annual average daily traffic. 

The author emphasized that the geometric features were not considered in the prediction 

model because these variables occurred with remarkable consistency on freeways with 

higher design criteria.  The precision of the model, therefore, would not be improved 

with additional variables.      

Persaud (1992) developed the SPF shown below for freeways based on the 1988 

and 1989 data from Ontario, Canada.  The regression coefficients a and b are given in 

Table 2-2. 
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    Crashes/km/year = a × (AADT) b                               (2-12)             
    
Table 2-2 Regression Coefficient Estimates  

Crash Type Number of Lanes a b 

Total 4 0.0000474 1.155 
Total >4 0.0000978 1.113 

Fatal + Injury 4 0.0000206 1.136 
Fatal + Injury >4 0.0000122 1.212 

 
Huang et al. (1991) developed the following two SPFs for total and fatal and 

injury crashes, respectively, based on data from California freeways:  

Total crashes = 0.65 + 0.666 × Million Vehicle Miles             (2-13) 
 
Fatal + Injury crashes = 0.166 + 0.263 × Million Vehicle Miles         (2-14) 

Kiattikomol et al. (2008) generated regression models for crash prediction on 

interchange and non-interchange segments for urban freeways on a planning level.  The 

impacts of interchanges on freeways were discussed, and prediction models were 

generated for interchange segments and non-interchange segments, respectively.  For 

example, the models used for Tennessee freeways are as follows: 

For non-interchange segments: 

21 bb )AADT()L(aN =                                  (2-15) 

For interchange segments with four lanes: 

21 bb )AADT()L(N =                                   (2-16) 

where 

  N  = expected number of crashes in a three-year period, 

  AADT = annual average daily traffic (vehicles per day), 

  L  = segment length (miles), and  

 21 b and,b,a = estimated parameters. 
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Freeway segments are characterized by the presence of interchange areas.  

Traditionally, there are two approaches of analyzing freeway interchange areas with 

respect to their mainline counterparts.  The first approach is to consider both freeway 

mainlines and interchange areas as one entity while developing SPFs (Kraus et al., 1993; 

Tegge and Ouyang, 2007; Kononov and Allery, 2004; Persaud and Dzbik, 1993; and 

Konduri and Sinha, 2002).  For example, one of the known methods is to develop SPFs 

using freeway segments identified from the center of one interchange to the next (Persaud 

and Dzbik, 1993; Konduri and Sinha, 2002).  

The second approach is to consider the freeway mainlines and interchange 

influence areas as two separate entities in the analysis, as recommended by SafetyAnalyst 

(2010).  Very few previous studies on freeways have considered interchange influence 

area as a specific analysis category.  For example, Kiattikomol et al. (2008) developed 

planning level prediction models on interchange and non-interchange segments (i.e., 

basic freeway segments) for the states of North Carolina and Tennessee.  In their study, 

it was concluded that the models for interchange and non-interchange freeway sections 

should be developed separately.  Lu et al. (2012) also emphasized that interchange 

influence areas should be considered a separate category instead of developing freeway 

SPFs, regardless of the influence of interchanges, as the crash performance of freeway 

sections with interchange influence areas is different from that of basic freeway mainline 

segments. 

2.4.2. Intersections 

Lau et al. (1989) used the 1986 through 1988 data for signalized intersections 

from the state of California to develop SPFs for intersections.  Separate models were 
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developed for fatal, injury, and PDO crashes, and three levels of estimation were used, 

given the availability of information for the intersections.  At level 1, the following three 

SPFs were used if the volume of traffic entering an intersection is known: 

Fatal Crashes/year = 0.018                              (2-17)             

Injury Crashes/year = 0.61856 + 0.16911 × Million Entering Vehicles    (2-18) 

PDO Crashes/year = 4.6029 + 0.5142 × Million Entering Vehicles    (2-19) 

If further information is available about an intersection, such as design and 

control characteristics, proportion of cross street traffic, and environmental features, then 

level 2 estimates were used.  At level 2, intersections were classified by group, and a 

“group constant” was added to the value estimated by the SPFs in Equations (2-17), 

(2-18), and (2-19).  Groups were separated by fatal, injury, and PDO crashes. Level 3 

was used when the individual crash history of an intersection was available, in addition to 

the information for levels 1 and 2.  An important point to note is that level 3 was based 

on EB, and the results represent future safety estimates of existing intersections.  

Moreover, Lau et al. (1989) used a four-legged urban signalized intersection with AADT 

of 49,000 and 10,000 for major and minor streets, respectively.  All approaches in this 

investigation were two-lane, and the signal control was a pre-timed cycle with permitted 

left turns.  The design speed was 50-54 mph.  

McDonald (1953) used data from rural unsignalized intersections located on 

divided highways to develop the following SPF: 

 Crashes/year = 0.000783 × (AADTmajor)
0.455 × (AADTminor)

0.633         (2-20)         

Using the HSIS data from 1985 to 1987 for 125 rural unsignalized intersections in 

the state of Minnesota, Bonneson and McCoy (1993) developed the following SPF: 
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Crashes/year = 0.000379 × (AADTmajor)
0.256 × (AADTminor)

0.831           (2-21)           

Webb (1955) used data from 96 signalized intersections on high-speed rural state 

roadways in State of California.  The following SPF was developed: 

Crashes/year = 0.00703 × (AADTmajor)
0.51× (AADTminor)

0.29              (2-22)            

Using the HSIS data for rural signalized intersections, Bonneson et al. (1993) 

developed the following SPF: 

Crashes/year = 0.00703 × (AADTmajor)
0.7213 × (AADTminor)

0.3663         (2-23)   

McGee et al. (1989) developed the following crash rates in Table 2-3 using data 

from urban unsignalized intersections in the cities of Seattle, Milwaukee, Rapid City, and 

Madison. 

Table 2-3 Crash Rate (Crashes/Million Entering Vehicles)  
Major 
street 
AADT 

Minor street AADT 

100 300 500 700 900 1250 2000 

250 2.19 2.09 2.01 1.99 2.03 1.72 1.22 
750 1.06 1.44 1.53 1.57 1.58 1.49 1.14 
1250 0.73 1.15 1.25 1.31 1.34 1.36 1.09 
1750 0.64 0.92 1.12 1.26 1.19 1.17 0.91 
2500 0.53 0.73 0.90 1.02 1.04 0.99 0.88 
3500 0.43 0.57 0.69 0.80 0.83 0.81 0.75 

 
Using data on urban signalized intersections of one-way streets in Philadelphia, 

Persaud et al. (1995) developed the SPF, as follows:  

Crashes/year = a × (AADTmajor)
b × (AADTminor)

c                  (2-24)  

the regression coefficients a, b, and c are shown in Table 2-4. 
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Table 2-4 Regression Coefficient Estimates  

Parameters 
Crash Types 

Right-angle and Turn Rear-end Pedestrian 
a 0.0002037 0.0002099 0.0009039 
b 0.5941 0.6758 0.5150 
c 0.354 0 0 

 

2.4.3. Ramps 

Jovanis and Chang (1986) used Poisson regression to model the relationship 

between crash frequency, traffic volumes, and weather conditions.  A more general form 

of the Poisson regression and NB models was later used to explore the relationship 

between crash frequencies, daily traffic, and highway geometric design variables (Miaou, 

1994; Le and Porter, 2012).  In the NB model, the expected number of crashes of type i 

on segment j is expressed as: 

µij = E(Yij) = exp[(βxj+ln(Lj)]                            (2-25) 

where 

   µij = the expected number of crashes of type i on segment j, 

   β = regression coefficients estimated with maximum likelihood that quantify 

   the relationship between E(Yij) and variables in X,  

 xj = a set of traffic and geometric variables characterizing segment j, and 

   Lj = length of segment j. 

Parajuli et al. (2006) developed simple SPFs with the following form for ramps 

considering AADT to be the only independent variable:  

Crashes/year = a×(AADT)b×e(length)                   (2-26) 

where   

AADT    = annual average daily traffic volume (vehicles per day),  
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Length    = ramp length in mile, and 

a, b      = regression coefficients. 

2.5. Segmentation 

An essential step in generating an SPF is to divide the roadway into individual 

segments.  The usual approach is to divide road sections into segments of variable 

length according to roadway features (Geyer et al., 2008; Vogt and Bared, 1998).  This 

is a desirable feature, as it allows a specific level of crash statistics to be associated with a 

uniform set of roadway conditions.  The advantage of this method is that each divided 

segment has a set of unique attributes.  However, if a large number of attributes are 

included, the method could quickly result in many short segments that are more 

vulnerable to random crash fluctuations.  On the other hand, attributes such as number 

of lanes and shoulder width, which often occur with high consistency along freeways and 

expressways, may result in very long segments.  In addition, locations with high crash 

rates, due to changes in a geometric attribute, such as changing from three lanes to two 

lanes, may not be detected because the crashes are split between two segments that the 

variable-length method created as a result of the change in the number of lanes (Zhong et 

al., 2007). 

Other studies have used a fixed length (Shankar et al., 1995) to divide roadway 

sections.  Using this method, roadway sections are divided into non-overlapping 

segments of a constant length.  For example, a 0.3-mile segment was used in a study in 

the state of New York by Geyer (2008).  Many states (e.g., Kansas) used pre-determined 

segments, which are defined by jurisdiction boundaries (Geyer, 2008).  Although the 

fixed-length method is simple, there is potential for the correlation between crash 
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occurrence and roadway characteristics to be ignored, as different values of the same 

attribute may be aggregated into one segment, or in the case of a roadway section, the 

section with the unchanged attribute value may be divided into two segments. 

 A newer method for dividing segments is through clustering.  Despite its 

promise in reducing the heterogeneity in crash data (Wong and Chung, 2008), it has not 

been extensively applied for roadway segmentation.  Fraley and Raftery (2002) argued 

that clustering is based on maximizing the similarity between in-cluster elements, and the 

dissimilarity between inter-cluster elements.  Xu and Wunsh (2005) indicated that 

clustering has been applied in vast fields, ranging from engineering (machine learning, 

pattern recognition, mechanical engineering), computer sciences (web mining), medical 

sciences (biology, microbiology), social sciences (sociology, psychology), and economics 

(marketing). 

Depaire et al. (2008) used the latent class clustering method for segmenting traffic 

crashes.  The authors segmented the data into clusters representing specific crash types.  

They concluded that the clustering revealed the effect of a single independent variable, 

which differed for different traffic crashes.  Karlaftis and Tarko (1998) argued that 

clustering methods are considered a useful tool to segment crash data, thereby rendering 

the modeled data homogeneous.  The first attempt to use Fisher’s clustering method 

(Fisher, 1958) for roadway segmentation can be found in Zhong et al. (2007).  They 

indicated that this specific clustering concept could be used to divide the roadway 

sections for generating a crash prediction model.  They then used the crash frequency 

per mile distributed along the roadway as their clustering index.  Zhong et al. found that 

the crash frequency of each segment obtained by this method could better follow a 
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probability distribution, which should help improve the calibration of crash prediction 

models. 

Other applications of Fisher’s technique can be found in Xu (2005), and Wang 

and Tong (2009).  Xu (2005) applied this technique to detect abnormal fluctuations of 

temperature based on grouping the boiler pipe temperature, which is a set of ordinal 

samples.  The same technique was applied by Wang and Tong (2009) to estimate the 

priority of road sections for maintenance based on specific road pavement indices. 

Apart from being a clustering method in general, Fisher's algorithm is designed 

for situations in which the data points are ordered (Cappelli et al. 2005), or in other words, 

in which the sample sequence will not be disrupted during the clustering process.  The 

units of roadway section can be considered a set of ordered samples, while crash 

frequency or crash severity can be considered the crash indices.  The units of 

neighboring sections with similar crash indices are integrated into the same segment, 

while those with an obvious difference in crash indices are assigned separate segments.  

As crashes directly reflect the geometric, vehicular, and operational characteristics of 

roadways where crashes occur, it is possible to measure the influence of these 

independent variables (geometric, vehicular, and operational characteristics) on the 

dependent variable (e.g., crash frequency) and, thus, improve the precision of the SPF 

calibration (Zhong et al. 2007).  

2.6. Identification of High Crash Locations  

Various network screening methods have been used to identify high crash 

locations.  Among these methods, crash frequency (Zegeer, 1986) is the simplest.  In 

this method, locations are ranked by descending crash frequency.  Those with more than 
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a predetermined number of crashes are classified as high crash locations.  While this 

simple method has limited data requirements, it does not account for exposure (e.g., 

traffic volume) and threshold (HSM, 2000).  This has led to the use of the crash rate 

method (Morin, 1967), which attempts to account for the difference in crash experience 

due to traffic exposure.  However, this method may result in the selection of low-volume 

sites that have relatively few crashes.  The frequency-rate method (Laughland et al., 

1975) was introduced in an attempt to correct the shortcomings of both methods.  This 

method first ranks the location by crash frequency and removes those with less than a 

certain number of crashes.  The remaining locations are re-ranked using crash rates; 

those with less than a certain crash rate are then removed, leaving locations that are 

assured of having a minimum crash frequency and crash rate. 

Examples of other methods used include the equivalent property damage only 

(EPDO) method (Donnell and Mason, 2004), and rate quality control method (Stokes and 

Mutabazi, 1996; Norden et al., 1956).  The EPDO method compares the relative 

importance of crashes that result in property damage with that of fatal and injury crashes.  

This method considers crash severity, but also does not account for traffic exposure and 

threshold.  The rate quality control method has been commonly used in practice.  It 

compares the observed crash rate at each site with a critical crash rate for similar 

locations.  Sites that have crash rates greater than the critical crash rate are identified as 

high crash locations.  This method considers exposure and provides the statistical 

reliability level.  

While these existing methods may differ in their approaches, all share the same 

problem of not accounting for the RTM bias.  Also known as a “regression artifact” or 
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“selection bias,” the RTM bias is a statistical phenomenon that may lead to the 

identification of locations with high crashes due merely to random fluctuations in crash 

numbers.  The EB method (Shen and Gan, 2003; Hauer, 1997) was introduced as a way 

to account for the RTM bias associated with the traditional network screening methods.  

The EB method adjusts for the RTM bias by making use of the crash information from 

reference sites, which is measured through an SPF.  As noted previously, an SPF is most 

effective when calibrated to local conditions. 

2.7. Summary 

In this chapter, a comprehensive literature review was conducted to investigate 

the development of SPFs and its applications.  The purposes of the review are to 

understand the current status of the research area, identify the pending problems to be 

solved, determine the objectives, and form the research framework and tasks for this 

dissertation.  The major findings of the literature review are summarized below. 

With the recent release of advanced safety analysis tools, including SafetyAnalyst, 

various states are trying to assess the need for developing agency-specific SPFs. Even 

though SafetyAnalyst provides national default SPFs calibrated to local agency data, it is 

believed that the use of state-specific SPFs might better identify problematic sites. 

The literature review extensively highlighted various studies addressing SPFs.  

Numerous methods and techniques were employed by both researchers and agencies to 

establish the relationship between traffic crashes and highway geometric variables, traffic 

characteristics, and environmental factors.  However, the models used for calibrating 

SPFs were varied based on specific cases, and thus had limited applicability.  The most 

recently released safety analysis tool of SafetyAnalyst remedies this limitation by 
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providing the SPFs for specified roadway types in a standardized form, at the national 

level.  It is recommended to recalibrate the agency SPFs based on local data, following 

the criteria and techniques provided therein.  In order to better represent local crash 

experience in this dissertation, the local SPFs, specifically reflective of Florida’s 

conditions, were calibrated in this research. 

Among all categories in SafetyAnalyst, freeways within interchange influence 

areas were in need of special discussion.  Although there was evidence that the crash 

frequency for freeways within interchange influence areas was significantly different 

from basic freeway segment, the two types of segments were not analyzed separately.  

Very few previous studies have discussed the process of separation of interchange 

influence areas from basic freeway segments.  Lack of accepted guidance on the 

definition of an interchange influence area and difficulty in obtaining roadway inventory 

databases with information associated with the start and end mileposts or the interchange 

length are two main reasons that this has not been done.  Considering the fact that traffic 

flow characteristics for interchange influence areas and basic freeway segments are 

considerably different, developing separate models for these two categories is clearly 

needed.  

The applications provided by SPFs were discussed, including developing crash 

prediction models and identifying high crash locations.  Crash prediction models and the 

identification of high crash locations are closely related to the precision of SPFs.  High 

crash locations are sites that experienced an abnormally high number of crashes when 

compared to similar sites.  Various network screening methods have been used to identify 

high crash locations.  While these existing methods may differ in their approaches, they 
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all share a common limitation, i.e., they do not account for the RTM bias.  The EB method 

was introduced as a way to account for the RTM bias.  The EB method adjusts for the 

RTM bias by making use of the crash information, not only from the treatment site, but 

also from reference sites.  The crash information from the reference sites is measured 

via a SPF.   

Roadway segmentation is an essential step in the SPF calibration.  The 

traditional approach is to divide roadway sections into segments of variable length 

according to roadway features, or of a fixed length.  This chapter also introduced and 

provided a clustering method developed by Fisher as a way to improve existing 

segmentation methods for both SPF calibration and screening process, for the purpose of 

identifying high crash locations.  
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CHAPTER 3 

METHODOLOGY 

3.1. Introduction 

This chapter describes the methodology applied in this dissertation research.  

The first step involves the acquisition of the crash and geometric data.  The crash data 

are extracted from the Florida Department of Transportation’s (FDOT) Crash Analysis 

Reporting (CAR) system, and the geometric data are extracted from the Roadway 

Characteristics Inventory (RCI) database.  Both sets of data are then imported into a 

program called Dynamic Segmentation (DySeg), which was developed in-house at the 

Lehman Center for Transportation Research (LCTR) at Florida International University.   

An essential step in calibrating an SPF is the segmentation of roadway sections.  

DySeg is able to perform roadway segmentation based on fixed and variable 

length.  During the segmentation process, crashes associated with each segmented 

facility (segment or intersection) are summarized.  The program produces an output 

file that contains both roadway and crash information.  This output data set is then used 

to develop SPFs.  In addition, an alternative segmentation method based on Fisher’s 

clustering algorithm is examined in this step to improve the development of SPFs, for the 

purpose of identifying high crash locations.  The segmentation methods are described in 

Section 3.2. 

The main objective of this dissertation is to develop Florida-specific SPFs for 

different roadway types in SafetyAnalyst.  The SPF functional forms for both roadway 

segments and intersections through the use of NB models are introduced in Section 3.3.  

Calibration factor, which is used for calibrating the national default SPFs to Florida data, 
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is also described in this section.  Assessment of the performance of SPFs was performed 

by several goodness-of-fit tests, as shown in Section 3.4.  Also included are the 

overdispersion parameter, the cumulative residuals (CURE) plot, the mean square error 

(MSE), the mean absolute deviance (MAD), the mean square prediction error (MSPE), 

and the Freeman-Tukey R2 coefficient (R2
FT).   

Section 3.5 presents the EB method and the potential for safety improvements 

(PSI), which are applied to the process of identifying HCLs in SafetyAnalyst, utilizing an 

SPF that combines the crash history data of a treated site with the predicted crash frequency 

of similar reference sites. 

3.2. Segmentation 

In this step, the roadway is divided into individual sites consisting of homogenous 

roadway segments and intersections.  Intersections are discrete entities.  For 

intersections in this research, the prediction model estimates both the crashes that occur 

within the limits of an intersection and intersection-related crashes that occur on the 

intersection legs located 250 feet from the center.  For roadway segments, there are three 

methods for segmentation: variable length, fixed length, and Fisher’s clustering method.  

The limitations and strengths of the three methods were discussed in the literature review. 

3.2.1. Fixed Length and Variable Length 

The fixed-length method consists of roadway sections that are divided into 

segments of equal length.  The variable length method consists of roadway sections that 

are divided into homogeneous segments of variable lengths, with the segment length 

defined by any change in the geometric or traffic characteristics.  For example, if there 



 

39 
 

is a change in the shoulder width, median width, number of lanes, or other related 

characteristics, a new segment is defined.  Figure 3-1 shows how such segments are 

created using this method. 

 

Figure 3-1 Variable Length Segmentation Method 

3.2.2. Fisher’s Clustering Method 

A clustering method based on a grouping strategy developed by Fisher (1958) is 

applied to improve the shortcomings of existing segmentation methods.  Fisher’s 

algorithm is designed for situations in which the data points are ordered.  The units of 

roadway section can be considered as a set of ordered samples, while crash frequency or 

crash severity can be considered as crash indices.  The units of neighboring section with 

similar crash indices are integrated into the same segment, while those with an obvious 

difference in crash indices are assigned separate segments.  As crashes directly reflect 

the geometric, vehicular, and operational characteristics of roadways where crashes occur, 

it is possible to measure the influence of these independent variables (geometric, 

vehicular, and operational characteristics) on the dependent variable (e.g., crash 

frequency) and, thus, improve the precision of the SPF calibration.  If a roadway 

attribute (e.g., shoulder width) has more than one value within the same divided segment, 
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the weighted average method is implemented to estimate the final value.  Specifically, 

the final weighted average value is estimated, taking into account the attribute value and 

the length it occupies within the segment.  

In Fisher’s clustering method, n21 x,,x,x ⋅⋅⋅  are assumed to be ordered samples 

(total crash frequency in each unit of neighboring roadway section in this research).  

The n samples are divided into k groups and { } ( )njixxx jii ≤≤≤⋅⋅⋅+ 1,,, 1  represents one 

of these groups. 

For Fisher’s algorithm, “squared distance” is used to measure the within-group 

difference, as follows: 

            ( ) ( )
=

−=
j

il

2
ijl xxj,iD                                (3-1) 

where lx  is the characteristic of interest used for grouping, ijx  is the average of 

j1ii x,,x,x + , and D is the sum of squares within groups in the sense of the variance 

analysis (also called squared distance).  The smaller the squared distance, the smaller 

the within-group difference is. 

Assuming the function p(n,k): {i1,i1+1,…,i2-1}, {i2,i2+1,…,i3-1},…, {ik,ik+1,…,n}, 

Fisher's clustering groups n ordered samples into k mutually exclusive subsets ( nk ≤ ) by 

minimizing the sum of squared distance D for each group, as shown in the following 

objective function: 
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where ( )1i,iD 1jj −+  is the squared distance for the jth group ( kj1 ≤≤ ). 
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 Using Equation (3-2), a set of recursion formulas can be derived to obtain the 

optimal division.  The optimal division for dividing n samples into two groups (k=2) 

(i.e., the optimal 2-division) is: 

      ( )[ ] ( ) ( ){ }n,jD1j,1Dmin2,npf
nj2

+−=
≤≤

                         (3-3) 

The optimal division for dividing n samples into three groups (k=3) (i.e., the 

optimal 3-division) is: 

( )[ ] ( )[ ] ( ){ }n,jD2,1jpfmin3,npf
nj3

+−=
≤≤

                       (3-4) 

Based on Equations (3-3) and (3-4), the general formula for the optimal k-division 

(i.e., the optimal division for dividing n samples into k groups) is: 

( )[ ] ( )[ ] ( ){ }njDkjpfknpf
njk

,1,1min, +−−=
≤≤

                    (3-5) 

Figure 3-2 shows an example on how to obtain the optimal division.  In this 

figure, three samples (n=3) are required to be divided into two groups (k=2).  Following 

the method mentioned above, the squared distances D for each potential division are 

calculated.  The division with the smaller sum of squared distance (i.e., D1) is the 

optimal division. 

To obtain the optimal k subset, the process is repeated until the difference between 

the current optimal (k+1)-division, i.e., f [p (n, k+1)], and the previous optimal k-division, 

i.e., f [p (n, k)], is less than a small value, and the resulting k value in the final iteration is 

treated as the optimal number of subsets. 
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Figure 3-2 Sample Data Illustrating Fisher’s Clustering Method 

3.3. Model Development 

After segmentation, SPFs for different categories can be developed.  Analysis is 

performed on both total and FI crashes.  The NB model is used to develop the SPFs. 

3.3.1. Negative Binomial (NB) Models 

The NB, or Poisson-gamma regression model is the most widely used method in 

predicting crash frequency.  The characteristics of crash frequency, specifically that it 

follows a gamma distribution and that the variance of the crash counts exceeds the mean, 

determine the priority of the NB regression when generating a crash prediction model.  

The formula for the expected crash number is given below (Miaou, 1994): 

 )xexp( iii εβλ +=                                    (3-6) 

where )exp( iε  is a gamma distributed error term with mean 1 and variance α.  The 

addition of this term allows the variance to differ from the mean as 2
iiVar αλλ += , 

where α is the overdispersion parameter.  The Poisson regression model is a limiting 

5.0=  
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model of negative binomial regression models as α approaches zero.  The probability 

function of NB distribution is shown as follows: 
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where  

)x(Γ  = gamma function, and 

iy   = number of crashes per period for roadway segment i . 

The likelihood function results from the probability function, as shown: 
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The advantage of this technique is that the NB model can overcome the 

possibility of overdispersion in crash frequency data, which generally follows a gamma 

probability distribution. 

3.3.2. SPF Functional Form for Roadway Segments and Ramps 

Roadway segments and ramps shared the same functional form.  The SPF 

functional form for roadway segments and ramps is as follows: 

N predicted = ea× AADT b                                 (3-9) 

To generate regression models, Equation (3-9) is rewritten as: 

       ))ln(exp( AADTbaN predicted ×+=                         (3-10) 

where 

Npredicted = predicted crash frequency per mile per year, 

AADT = annual average daily traffic volume (vehicles per day), and 
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a, b = regression coefficients. 

The overdispersion parameter, which indicates the statistical reliability of the SPF, 

was used to account for dispersion in the data.  The closer the overdispersion parameter 

is to zero, the more statistically reliable the SPF.  The goodness-of-fit statistic, 

Freeman-Tukey R2 coefficient (R2
FT), was used to assess NB regression performance.  

Calibration of the default SPFs was performed by multiplying the default SPFs by 

a “calibration factor”, C, as follows: 

             



=

sitesAll

sitesAll

crashespredicted

crashesobserved
C

 

 

 

 
                      (3-11) 

As shown in Equation (3-11), the calibration factor is calculated as the ratio of the 

total observed crashes to total predicted crashes obtained from the default national SPFs.  

Note that “All sites” in the equation refers the reference sites within a specific category.  

Moreover, the calibration factor, C, is not needed if a local jurisdiction chooses to 

calibrate its own SPFs as the local safety trends are inherently addressed in the 

coefficients per Equation (3-10).   

3.3.3. SPF Functional Form for Intersections 

The model form similar to the model used to generate default SPFs (used within 

SafetyAnalyst) was used to generate Florida-specific SPFs for intersections: 

    N predicted = ea× AADT major
b × AADT minor

c     
                      (3-12) 

For regression modeling, Equation (3-12) is rewritten as: 

))AADTln(c)AADTln(baexp(N orminmajorpredicted ×+×+=       (3-13) 

where 
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 N predicted = predicted target crash frequency per intersections per year, 

 AADT major = average annual daily traffic volume on the major-road approaches, 

 AADT minor = average annual daily traffic volume on the minor-road approaches, 

and 

      a, b, c = regression coefficients that are estimated from the available data. 

3.4. Model Tests 

Several goodness-of-fit measures were used to assess the performance of SPFs, 

including the overdispersion parameter, CURE plot, MSE, MAD, mean MSPE, and 

Freeman-Tukey R2 coefficient.    

CURE plot is used to assess how well predictions fit the data over the full range 

of an independent variable.  In this method documented by Hauer and Bamfo (1997), 

the cumulative residuals, which are defined as the cumulative differences between the 

observed crashes and predicted crashes for each site, are plotted in increasing order of 

AADT.  Well-fitted models are identified by the cumulative residuals that oscillate 

around 0 and fall within two standard deviations (+2σ and -2σ boundaries). 

The MSE is applied to the calibration data (Young and Park, 2012).  The MSE is 

typically a measure of model error associated with the calibration data (Washington et al., 

2005).  The following equation shows the formula of MSE: 

 
2

)(
1  −
−

=
ii predictedobserved NN

pn
MSE                             (3-14) 

where  

 n  = number of sites in the calibration dataset, 

 p  = number of parameters in the statistical model, 
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iobservedN   = observed crash frequency for site i, and 

ipredictedN   = predicted crash frequency for site i. 

To assess the significant prediction performance, two evaluation criteria, the 

MAD and the MSPE, are applied to the validation (prediction) data.  The two criteria 

are respectively defined in the equations below (Haleem et al., 2010; Li et al., 2008): 

 −=
ii predictedobserved NN

n

1
MAD                                  (3-15)              

2

predictedobserved )NN(
n

1
MSPE

ii −=                               (3-16)             

where 

 n  = number of sites in the prediction dataset, 

iobservedN   = observed crash frequency for site i, and 

ipredictedN   = predicted crash frequency for site i. 

MAD is used to estimate the prediction deviation, while MSPE is employed for 

determining the variance of the difference between predicted and observed results.  The 

prediction performance is better if the values of MAD and MSPE are smaller.  MSPE 

can be compared with the MSE to check for over-fitted models (MSPE > MSE) or 

under-fitted models (MSPE < MSE) (Young and Park, 2012). 

The Freeman-Tukey R2 coefficient generally describes how good the model fit is, 

where a higher value indicates a good fit and vice-versa.  Fridstrom et al. (1995) 

discussed this statistic in detail.  The R2 for the Freeman-Tukey transformed variables 

is: 
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In Equation (3-17), the variance stabilizes transformation of the variable yi:  

 1yyf iii ++=                                 (3-18) 

The statistic is approximately normally distributed with mean: 

1ŷ4 ii +=φ                                     (3-19) 

The deviation is estimated by the corresponding residual: 

iii fê φ−=                                       (3-20) 

where 

yi = observed crashes at site i, 

iŷ  = mean of observed crashes at sites similar to site i, and 

f  = average of fi for sites considered. 

3.5. Identification of High Crash Locations 

The EB method calculates the weighted average of the crash history of a site and 

the predicted crash frequency of similar reference sites (calculated using an SPF). 

Existing studies that have used the EB method for network screening include Persaud et 

al. (1999), Hauer et al. (2002), and Elvik (2007).  The expected crash frequency is 

calculated as the weighted average of predicted and observed crash frequencies: 

N expected = w × N predicted + (1-w) × N observed                                       (3-21) 

where 

N expected  = expected crash frequency at the treatment site, 

N predicted  = predicted crash frequency based on an SPF,  
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N observed  = observed crash frequency at the treatment site, and 

w = weighting factor that is estimated based on the following equation: 

 ××+
=

years
study
all

predicted )LN(ODP1

1
w                           (3-22)             

where 

ODP = overdispersion parameter estimated from the associated SPF, and 

L  = segment length in miles. 

The ranking of HCLs is based on the PSI (FHWA, 2010; Gan et al., 2012), which 

is calculated as the difference between the expected and predicted crash frequencies.  

 An illustration of the EB method and PSI is shown in Figure 3-3.  The 

predicted crash frequency (Npredicted) based on the fitted SPF on similar sites is plotted 

against the observed crash frequency (Nobserved) on treatment sites.  Depending on a 

weighting factor w, the expected crash frequency, Nexpected, can take on a number between 

Npredicted and Nobserved.  Note that w can range between 0 and 1.  The higher the w value, 

the closer the value of Nexpected to Npredicted, and vice versa.  PSI is thus the difference 

between Nexpected and Npredicted. 

 

Figure 3-3 Illustration of the EB Method and PSI 
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3.6. Summary 

This chapter proposed a complete methodology used in this dissertation research.  

The methodology is composed of four parts: segmentation, model development, model 

tests, and identification of high crash locations. 

Segmentation is an essential step in data preparation for developing the SPFs. 

Three segmentation methods were described in this chapter: fixed length, variable length, 

and Fisher’s clustering algorithm.  According to SafetyAnalyst, SPFs are developed for 

homogenous segments of variable length.  Thus, variable length was used as the 

segmentation method for developing Florida-specific SPFs in this research.  In addition, 

an alternative segmentation method based on Fisher’s clustering algorithm is examined in 

this step to improve the development of SPFs for the purpose of identifying high crash 

locations.     

Florida-specific SPFs are developed using NB models.  Several goodness-of-fit 

tests were then used to assess the performance of the SPFs, including the overdispersion 

parameter, CURE plot, MSE, MAD, MSPE, and R2
FT. 

The SafetyAnalyst default SPFs are calibrated to Florida data using calibration 

factors.  The performance of the two models (i.e., Florida-specific SPFs and 

SafetyAnalyst default SPFs calibrated to Florida) is then compared by using several 

goodness-of-fit tests, such as MAD, MSPE, and R2
FT.   

The EB method, which requires the use of SPFs, is employed in identifying high 

crash locations, which is a main application of the development of SPFs. 
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CHAPTER 4 

DATA PREPARATION 

4.1. Introduction 

This chapter describes the data preparation of different roadway types for 

developing SPFs.  Section 4.2 presents the data acquisition and the requirement of 

sample size for the calibration process.  Sections 4.3, 4.4, and 4.5 present the data 

processing steps and provide the summary statistics for roadway segments, intersections, 

and ramps, respectively.  Section 4.6 provides an alternative method that uses the 

clustering algorithm in segmentation for identifying high crash locations. 

4.2. Data Acquisition 

Four years of crash data, from 2007 to 2010, were extracted from FDOT’s CAR 

system.  Other geometric, roadway, and traffic data were obtained from FDOT’s RCI 

database.  

Several requirements must be met during the calibration of SPFs.  As 

recommended in SafetyAnalyst, crash data should be provided for a minimum of three 

years.  For this research, although crash data from years 2000 through 2010 are 

available, only four of these years were considered for the purpose of minimizing the 

effects related to changes in external factors.  The CAR database records the crash 

information about roadway ID, crash location, date, time, crash type, number of fatalities 

and/or injuries, number of vehicles involved, roadway surface conditions, weather 

conditions, and lighting conditions.  Crash severity (fatal, injury, and property damage 

only (PDO)) can be derived from the number of fatalities or injuries.  Since crash 
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records of fatal and injury are known to be more accurate than that of PDO, the 

Florida-specific SPFs were developed for both total crashes and the sum of fatal and 

injury crashes. 

As recommended by HSM (2010), for each facility type, the desirable minimum 

sample size for the calibration data set is 30 to 50 sites, and the entire group of calibration 

sites should represent a total of at least 100 crashes per year.  For those categories in 

SafetyAnalyst, of which the sample sizes were insufficient in Florida to accurately estimate 

regression coefficients, SPFs may not be specifically developed due to lack of data.  The 

processed data for each subtype were divided into two datasets of 70% and 30% for 

calibration and validation to be described in Chapter 5, respectively.     

4.3. Roadway Segments 

4.3.1. Interchange Influence Areas 

According to the SafetyAnalyst user’s manual (2010), interchange influence area 

is defined as shown in the schematic sketch of Figure 4-1.  The interchange influence 

area of a particular interchange mainly covers the length of the freeway section extending 

approximately 0.3 miles upstream of the gore point of the first exit/entrance ramp, to 

approximately 0.3 miles downstream of the gore point of the last entrance/exit ramp on 

the same interchange.  The area between two successive interchange influence areas is 

defined as basic freeway segment.   
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Figure 4-1 Interchange Influence Area 

SafetyAnalyst categorizes freeways based on area type, number of lanes, and 

presence of interchange influence area (IIA).  Therefore, IIA is a required data variable.  

However, interchange influence areas were not explicitly identified within the roadway 

inventory database.  Therefore, the separation of interchange influence areas from the 

freeways segments was performed first.  Identification and segregation of interchange 

influence areas was performed in GIS using the following steps:  

1. Geometric Data Acquisition: Geometric data for freeways and all access ramps 

were extracted from roadway shapefiles maintained by FDOT.  

2. Interchange Influence Area Identification: A 0.3-mile buffer for each ramp of the 

interchange was created, and the overlapped buffers were dissolved.  The 

dissolved buffer areas were considered interchange influence areas.  

3. Milepost Estimation: The milepost of each crossing point between the dissolved 

buffer and the connected freeway basic segment was estimated.  In this step, the 

dissolved buffer layer and the freeway layer were intersected (see Figure 4-2).  

The coordinates of all points within each intersected line, along with the two 



 

53 
 

newly identified endpoints of each intersected line, were recalculated.  Figures 

4-3(a) and (b) show original and newly identified segments, respectively.  

4. Basic Freeway Segments and Freeways within Interchange Influence Area 

Identification: Interchange influence areas were identified by spatially comparing 

the coordinates of original freeway segments and coordinates of the previously 

identified interchanges.  Roadway characteristics databases, constituting of 

roadway ID and the beginning and ending mileposts of segments, were created for 

freeway basic segments and freeway segments within IIA. 

 

Figure 4-2 Freeways with Interchange Influence Area 
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(a) Original Segment 

 

(b) Intersect Area 

Figure 4-3 Estimation of Milepost of the Intersecting Point 

4.3.2. Roadway Segmentation 

The Dynamic Segmentation (DySeg) program was used to divide the road 

network into segments.  DySeg can dynamically divide the roadway sections based on 

several categories, including equal length segments, uniform segments with unique 

attributes, or according to the specified range of segment lengths, desired roadway 

features and crash types, and can also compute the crash number associated with each 

roadway segment.  Figure 4-4 shows the screen capture of the RCI user interface for 

specifying the input for geometric variables.  Figure 4-5 shows the general user interface 

of DySeg for specifying the crash years, location, and severity. 

e 
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Figure 4-4 DySeg RCI User Interface 

 

Figure 4-5 DySeg General User Interface 
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The RCI database is used to store, process, and report physical and administrative 

data on the Florida state highway system.  Physical features, surface data features, and 

traffic monitoring site features are included in this database.  In this research, the 

attributes for segmentation were selected based on their significance on crash occurrence.  

Table 4-1 shows the attributes used for segmentation. 

Table 4-1 Attributes in RCI for Segmentation  
 Attribute Description Unit Illustrative Snapshot 

1 NOLANES Number of lanes  

2 SURWIDTH Surface width ft 

3 FUNCLASS 
Functional 
classification 

 

4 MAXSPEED Maximum speed limit mph 

5 MEDWIDTH Median width ft 
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6 SHLDTYPE Shoulder type  

7 SLDWIDTH Shoulder width 
ft 
 

8 ISLDWDTH Inside shoulder width 
ft 
 

9 URBSIZE Urban size  

10 RDACCESS Access control type  

11 SECTADT Section ADT   

Note: For freeways and undivided arterial streets, the attribute “road side (ROADSIDE)” has to 
be considered because the geometric and operational features might vary on each side of the 
roadway. 

 
Table 4-1 displays four categorical variables: functional classification, shoulder 

type, urban size, and roadway access.  The associated levels for each variable are briefly 

discussed herein.  There are 12 levels for the functional classification (FUNCLASS) 

variable, as documented in the 2009 RCI Field Handbook (the numbers are RCI codes): 

• 01 – Rural principal arterial - interstate  
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• 02 – Rural principal arterial - other  

• 06 – Rural minor arterial  

• 07 – Rural major collector 

• 08 – Rural minor collector 

• 09 – Rural local 

• 11 – Urban principal arterial - interstate 

• 12 – Urban principal arterial - other freeways and expressways 

• 14 – Urban principal arterial - other 

• 16 – Urban minor arterial 

• 17 – Urban collector 

• 19 – Urban local  

For the purpose of calibrating the freeway SPFs, the codes “01” and “11” will be 

used for data screening.  For calibrating the expressway SPFs, the codes “02,” “12,” or 

“14” can be used with some caution, since these codes might also include arterials.  This 

will be taken into consideration in the next data preparation procedure. 

The shoulder type attribute (SHLDTYPE) has nine levels, as follows (the 

numbers are RCI codes): 

 0 – Raised curb – no shoulder exists 

 1 – Paved with or without striping – including bike slots 

 2 – Paved with warning device – raised or indented strips 

 3 – Lawn 

 4 – Gravel/Marl 
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 5 – Valley gutter (not a barrier) 

 6 – Curb and gutter 

 7 – Other  

 8 – Curb with resurfaced gutter 

The urban size (URBSIZE) attribute has five levels, as follows (the numbers are 

RCI codes): 

 1 – Rural 

 2 – Small urban – 5,000:49,999 population 

 3 – Small urbanized – 50,000:199,999 population 

 4 – Large urbanized – 200,000:499,999 population 

 5 – Metropolitan – 500,000 or more population 

To differentiate between rural and urban facilities, the rural facilities will only 

include the code “1,” while the urban facilities will include “2,” “3,” “4,” or “5.” 

The roadway access (RDACCESS) attribute has three levels, as follows (the 

numbers are RCI codes): 

 1 – Full control – interstate, turnpike or similar road with all access via 

grade-separated interchanges  

 2 – Partial control – some grade-separated interchanges and some direct access 

roads or driveways  

 3 – No access control – non-grade-separated interchanges  

For calibrating the freeway and expressway SPFs, the roadway access should be 

only full control or partial control (mostly full control).  For calibrating the arterials, the 

roadway access should be mostly non-access controlled (code “3”).  
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4.3.3 Data used for Roadway Segments 

Crash and traffic data from the years 2007 to 2010 and roadway inventory data 

from 2008 was used to develop Florida-specific SPFs.  Table 4-2 provides the summary 

statistics of segments used to generate SPFs based on segment subtypes identified in 

SafetyAnalyst.  As mentioned previously, the data for each subtype were divided into 

two datasets of 70% and 30% for calibration and validation in Chapter 5, respectively.   

Table 4-2 Summary Statistics of Roadway Segments   

Category 
Total Length 
of Segments 

(miles) 
# of Sites 

Crash Data (2007-2010) 

Total 
Crashes 

Fatal and 
Injury 

Crashes 

Rural 
2-lane Roads 3257.44 2408 15703 9610 

Multilane Undivided Roads* 9.80 37 118 63 

Multilane Divided Roads 1189.03 1048 11432 6630 

Basic Freeway 
Segment 

4 Lanes 442.86 264 6222 3587 

6+ Lanes 181.73 101 2400 994 
Segments within 
Interchange 
Influence Area 

4 Lanes 49.70 156 717 423 

6 Lanes 38.38 69 502 228 

Urban 
2-lane Arterial Streets 802.71 2038 17643 9695 
Multilane Undivided Arterial 
Streets 

63.23 245 3562 1801 

Multilane Divided Arterial 
Streets 

2473.98 6923 124154 63563 

One-way Arterial Streets 126.72 433 5319 1989 

Basic Freeway 
Segment 

4 Lanes 319.26 375 8592 4223 

6 Lanes 198.118 272 10317 4694 

8+ Lanes 42.28 75 2229 1010 

Segments within 
Interchange 
Influence Area 

4 Lanes 280.58 620 11210 5404 

6 Lanes 263.71 558 27115 11851 

8+ Lanes 125.46 330 25748 12311 

* sample size was insufficient to accurately estimate regression coefficients 
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4.4. Intersections 

Compared to segments, the data requirements to generate intersection SPFs are 

more rigorous.  One of the required variables that allow SafetyAnalyst to divide 

intersections into subtypes is traffic control type; however, it is not available in the details 

required in the RCI database.  Due to data constraints, SPFs were developed for only 

four types of signalized intersections (rural and urban, with three-leg and four-leg each).  

At this point, analysis of unsignalized intersections is not possible due to the lack of 

detailed data on traffic control type in the RCI.  The 2008 RCI data were used to 

identify signalized intersections.  In addition to intersection-related crashes, those that 

occurred either at an intersection or within 250 feet from the center of an intersection 

were included in the analysis, as illustrated in SafetyAnalyst.  

Figure 4-6 illustrates the steps followed to process the data.  The first step 

involves identification of locations of signalized intersections.  The location data was 

extracted from FDOT’s Geographic Information System - Traffic Signal Location 

database.  In this database, a signalized intersection is represented by a set of roadway 

IDs associated with corresponding mileposts of one of the roadways that cross the 

intersection.  Generally, the set of roadway ID and milepost used to represent an 

intersection belongs to the major road, compared to minor roads.  A GIS-aided process 

was then used to merge the location information with geographical coordinates.  By 

using geographical coordinates, information of minor roads was linked to the 

corresponding intersection.  During this process, all roadways crossing the intersection 

were summarized.  This data set was then joined with AADT, leg-count, functional class, 

and crash data.  The output data was used to generate Florida-specific SPFs for 
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signalized intersections. 

 

Figure 4-6 Data Processing Framework 

Unsignalized intersections could not be analyzed due to the following reasons: 

• data limitations in the RCI database,  

• fewer number of all-way stop-controlled intersections, and  

• unavailability of AADT data for minor approaches, since most of these 

approaches are located on local roads. 

Florida-specific SPFs were developed for only four subtypes: rural, urban, and 

three-leg and four-leg intersections.  Table 4-3 shows the summary statistics of 

signalized intersections used to generate SPFs.   

   



 

63 
 

Table 4-3 Summary Statistics of Signalized Intersections  

Area Type Category # of Sites 
Crash Data (2007-2010) 

Total Crashes Fatal and Injury Crashes 

Rural 
Three-Leg 88 1,781 866 
Four-Leg 111 3,877 1,736 

Urban 
Three-Leg 314 11,471 4,783 
Four-Leg 641 39,517 16,400 

 

4.5. Ramps 

SPFs were developed for different types of ramps.  SafetyAnalyst categorizes 

ramps into 16 subtypes, based on ramp type and configuration.  However, it was 

observed that Florida’s classification of ramps is different from the SafetyAnalyst’s 

classification.  Table 4-4 lists the ramp configurations used in SafetyAnalyst, and in 

Florida.  To analyze the maximum number of ramps, SPFs for ramps were generated 

based on the classification used in Florida.  

Table 4-4 Ramp Subtypes in SafetyAnalyst vs. in Florida’s RCI Database 
Ramp Configuration  

in SafetyAnalyst 
INTERCHG (Type of Interchange) Variable in 
Florida RCI Database 

1 – Diamond  
2 – Parclo loop  
3 – Free-flow loop  
4 – Free-flow outer connection  
5 – Direct or semi-direct connection  
6 – C-D road or other connector  
0 – Other  
99 – Unknown  

01 – Diamond 
02 – Partial Diamond 
03 – Trumpet 
04 – Y Intersection 
05 – 2 Quadrant Cloverleaf or Partial Cloverleaf 
06 – 4 Quadrant Cloverleaf with Collector Road 
07 – 4 Quadrant Cloverleaf 
08 – Direct Connection Design 
09 – Other 

 
Off-ramp and on-ramp information is incomplete in the RCI database.  Therefore, 

the first step in data processing dealt with this classification.  A Visual Roadway 

Inventory Collection System (VRICS) program developed by the LCTR at FIU was used 

to collect on-ramp and off-ramp information.  Figure 4-7 shows the screen capture of the 

VRICS user interface. 
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Figure 4-7 VRICS User Interface 

A GIS-aided process was used to merge functional classification with ramp type 

information.  The data set was then joined with AADT, crash data, and the off-ramp or 

on-ramp information extracted from VRICS.  The output data was used to generate 

Florida-specific SPFs for ramps. 

Crash and traffic data for the years 2008 to 2010, as well as processed ramp data 

for 2008, were used to develop Florida-specific SPFs for ramps.  Traffic data is 

complete only for the year 2010.  Therefore, AADT is assumed to be the same for the 

earlier years (i.e., 2008 and 2009).  Table 4-5 provides the summary statistics of ramps 

used to generate SPFs.   
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Table 4-5 Summary Statistics of Ramps   

Category 
Total Length 
of Segments 

(miles) 

# of  
Ramps 

Crash Data (2008-2010) 
Total 

Crashes 
Fatal and Injury 

Crashes 
Rural 

Diamond 
off-ramp 27.99 74 262    113 

on-ramp 27.68 73 134     71 

Partial Cloverleaf  
(Parclo Loop) * 

off-ramp 7.03 20 101     41 

on-ramp 7.23 20 33     12 

Urban 

Diamond 
off-ramp 167.41 389 5143  2372 

on-ramp 151.35 382 2117   978 

Partial Diamond 
off-ramp 59.87 148 1152   516 

on-ramp 54.47 134 1122   474 

Trumpet* 
off-ramp 15.54 30 190     93 

on-ramp 12.28 26 108    46 

Partial Cloverleaf off-ramp 91.35 200 1887   805 

(Parclo Loop) on-ramp 92.35 204 1304   634 

Direct Connection* 21.92 33 285    111 

* sample size was insufficient to accurately estimate regression coefficients 
 

4.6. Advanced Segmentation for Identifying HCLs 

4.6.1. Introduction 

This section introduces the application of a clustering method, developed by 

Fisher (1958), to roadway segmentation, in place of the traditional fixed-length and 

variable-length segmentation methods, so as to improve the calibration of SPFs for 

identifying high crash locations.  The clustering approach helps reduce crash 

heterogeneity for within-group elements by grouping roadway segments with similar 

crash distributions into homogeneous groups. 

In this research, crash frequencies distributed in each unit of neighboring roadway 

sections (0.01 mile) are seen as ordered samples, and are expected to be grouped into k 

segments.  The neighboring section units with similar total crash frequency are grouped 
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into the same segment, while those with high crash frequency differences are assigned to 

separate segments.  As aforementioned, Fisher’s clustering method avoids the 

shortcomings of existing techniques used for segmentation by taking into account the 

crash characteristics.  It expands on studies using Fisher’s clustering and applying this 

method to roadway segmentation to calibrate SPFs, which are then used together with the 

EB method to identify high crash locations.   

Figure 4-8 shows the advantage of this approach in the screening process of 

identifying high crash locations relative to the commonly used sliding window method.  

As shown in Figure 4-8 (a), the EB network screening method is applied to each segment 

divided by Fisher’s clustering approach, and the segments with higher EB-adjusted crash 

rates are classified as high crash locations. 

Figure 4-8 (b) shows the sliding window method.  A window of a specified 

length moves along the road section, from beginning to end, in increments of a specified 

size.  The selected screening technique (EB method in this research) is applied for each 

window, with segments ranked according to the most critical window (HSM, 2010).  

The sliding window is the most widely used screening method for segments, yet its 

weakness lies in the fact that the window size is constant; thus, high crash locations and 

their rankings will differ when different window sizes are selected.  For example, for the 

eighth sliding window “W8,” the use of a window size with a smaller range (e.g., 0.1-mile) 

can identify this site as hazardous, but a 0.3-mile window size would conceal this fact 

because the average crash frequency is considered in the window.  Also, the sites (W1, 

W2, and W3) within the same roadway facility exhibit similar crash frequency.  However, 

because of the small window size, they are assigned to different sections and ranked on 
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different levels.  In fact, the first 0.7-mile segment could be roughly considered to be 

one entity if the window size is set at 0.7 miles or larger. 

As aforementioned, Figure 4-8 (a) attempts to screen the roadway sections based 

on the segment divided by Fisher’s clustering, which overcome the shortcomings of the 

sliding window method.  In short, segmentation using Fisher’s clustering method could 

potentially yield, not only more accurate SPFs, but also a more precise screening process 

for identifying high crash locations. 

 
(a) Site Screening by Fisher’s Clustering Method 
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(b) Site Screening by Sliding Window Method 

Figure 4-8 Comparison of Two Screening Methods 

4.6.2. Data and Model 

An 88.6-mile stretch of the Interstate-95 (I-95) freeway in the South Florida 

region was selected as the study area.  This region traverses three counties: Miami-Dade, 

Broward, and Palm Beach, in order from south to north.   

The freeway stretch was divided into segments using three methods.  For the 

variable length method, the freeway was divided into homogeneous segments of variable 

lengths, with the segment length defined by any change in the geometric or traffic 

characteristics.  For example, if there is a change in the shoulder width, median width, 

number of lanes, AADT, or other related characteristics, a new segment is defined.  A 

fixed 0.5-mile segment was used for the fixed-length method.  For Fisher’s clustering 
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method, the segmentation was evaluated based on the crash frequency distribution along 

the freeway, where the optimum segment length and number of segments were 

determined by aggregating sections with similar distributions within the same segment.  

 The data of the 71.3-mile section in Broward and Palm Beach counties were 

used for SPF calibration, while the data for the remaining 17.3-mile section in 

Miami-Dade were used for validation and prediction.  As a test case, rear-end crashes 

were used in the analysis because this crash type occurred with the greatest frequency.  

Summary statistics for the variable-length, fixed-length, and Fisher’s clustering methods 

used in the datasets for both calibration (Broward and Palm Beach counties) and 

prediction (Miami-Dade County) are shown in Table 4-6. 

Table 4-6 Summary Statistics for Three Segmentation Methods 
Calibration Data in Broward and Palm Beach (71.3 miles) 

Segmentation 
Method 

Number of 
Segments 

Total Segment 
Length (mile) 

Min. Segment 
Length (mile) 

Max. Segment 
Length (mile) 

Variable length 471 

71.3 

0.002 1.024 

Fixed length 142 0.500 0.500 

Fisher’s clustering 209 0.050 1.950 

Prediction Data in Miami-Dade (17.3 miles) 

Segmentation 
Method 

Number of 
Segments 

Total Segment 
Length (mile) 

Min. Segment 
Length (mile) 

Max. Segment 
Length (mile) 

Variable length 121 

17.3 

0.002 2.000 

Fixed length 34 0.500 0.500 

Fisher’s clustering 54 0.050 1.350 

 
After using the three segmentation techniques to divide the 71.3-mile freeway 

stretch along Broward and Palm Beach counties, each method was examined to 

determine whether it could outperform the others, so as to select a better method that 
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would yield a better SPF.  This was accomplished by fitting an NB model to rear-end 

crashes. 

There were seven variables measured in the modeling procedure: the natural 

logarithm of AADT, natural logarithm of the segment length, right shoulder width, inside 

(left) shoulder width, median width, percentage of trucks, and speed limit.  These 

variables are believed to have an impact on rear-end crashes, with those employed 

resembling other studies that analyzed rear-end crash counts (e.g., Haleem et al. 2010).  

There was almost no significant variation in the shoulder width variable throughout the 

stretch, nor was there significant variation in the speed limit (mostly 105 km/h or 65 

mph).  Other variables, such as lane width, could not be used since the average lane 

width was set at approximately 312 feet throughout the stretch.  The three NB models 

are shown in Table 4-7. 

Table 4-7 Rear-end NB Crash Frequency Models for Segmentation Methods 
 
Variable Description 

Variable Length Fixed Length Fisher’s Clustering 
Estimate 

(Standard 
Error) 

P-Value
Estimate 

(Standard 
Error) 

P-Value
Estimate 

(Standard 
Error) 

P-Value

Intercept -7.7310 
(2.1441) 

0.0003
-4.6615 
(4.0681) 

0.2519 
-16.9474    
(4.5857) 

0.0002

Natural logarithm of 
AADT 

0.4705 
(0.1686) 

0.0052
0.6496 

(0.3302) 
0.0491 

1.3767 
(0.3647) 

0.0002

Natural logarithm of 
segment length 

0.8737 
(0.0455) 

<0.0001 N/S *  
0.4703 

(0.0647) 
<0.0001

Inside shoulder width -0.0432 
(0.0104) 

<0.0001
0.0789 

(0.0204) 
0.0001 

-0.0494 
(0.0198) 

0.0126

Median width -0.0113 
(0.0036) 

0.0019 N/S  N/S 

Truck percentage 
N/S  N/S  

0.0780 
(0.0329) 

0.0178

Dispersion (d) 0.8700 (0.0869) 0.5721 (0.0682) 1.2106 (0.1124) 
Pseudo R-square 
(likelihood ratio index) 

0.084 0.011 0.035 

* N/S = Not significant 
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In Table 4-7, the signs of the coefficients are almost identical for the three 

methods (except for the inside shoulder width variable).  There is a significant increase 

in rear-end crashes by increasing AADT, as rear-end crashes always occur at high traffic 

volumes, or congested situations.  This is consistent with other studies (Wang and 

Abdel-Aty 2006; Haleem et al. 2010).  There is also a significant increase in rear-end 

crashes with the increase of segment length.  This could be due to the probability of a 

greater volume of vehicles being included for relatively large segments and, thereby, 

resulting in a higher rear-end crash risk, as is consistent with findings by Abdel-Aty et al. 

(2009). 

An intuitive finding from the NB models for the variable length and Fisher’s 

clustering segmentation is that rear-end crashes may be reduced by increasing the left 

shoulder width near the median.  The relatively large shoulder width could act as a 

rear-end crash-prevention method for any vehicle about to hit the leading vehicle in the 

lane beside the median.  In other words, the following driver could easily avoid 

rear-ending the lead vehicle by turning into wider inside-shoulder areas.  An interesting 

finding is that an increase in the median width is associated with a reduction in rear-end 

crashes.  This is more common with vehicles traveling in the leftmost lanes, as these 

vehicles could avoid rear-end crashes by diverting to the wider medians. 

An expected finding is that rear-end crashes increase by increasing truck 

percentage in the fleet.  The NB model shows that increasing the truck percentage by 1% 

increases rear-end crashes by e0.0780 (1.08) times.  This increase could be due to the 

vertical and horizontal obstruction caused by trucks in the vicinity of vehicles.  
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As previously discussed, the performance assessment of the fitted NB models was 

performed on the 17.3-mile stretch in Miami-Dade after segmenting it based on the same 

division methods.  The plot of the observed versus predicted crashes for each of the 

three models is shown in Figure 4-9.  From the three plots in the figure, it is obvious that 

the NB model with Fisher’s clustering, in which the observed and predicted rear-end 

crashes are well-matched, performs much better than the other two models.  

Furthermore, to assess the prediction performance of the three models, the MAD and 

MSPE values for the three models are shown in Table 4-8.  The table shows 

significantly lower MAD and MSPE values for the clustering-based model, resulting in 

the potential to improve the SPF calibration, compared to the variable- and fixed-length 

model, which came in second and third, respectively. 

   
     (a) Variable Length Segmentation        (b) Fixed Length Segmentation 
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    (c) Fisher’s Clustering Segmentation 

Figure 4-9 Observed vs. Predicted Crash Frequency from Three NB Models 

Table 4-8 Prediction Performance of Three NB Models for I-95 
NB Models MAD MSPE 

Variable-length segmentation 14.17 633.27 
Fixed-length segmentation  50.66 6076.23 
Fisher’s clustering segmentation  6.73 87.42 

 For further validation, the same clustering-based technique was applied to two 

other freeway facilities in Florida, including an 80.5-mile stretch of I-75 in the Tampa 

area, and a 66.5-mile stretch of I-4 in the Orlando area in Florida.  Tables 4-9 and 4-10 

compare the MAD and MSPE results from the three methods for the two facilities, 

respectively.  The results show that the clustering method produced significantly 

better-fitted SPFs than those produced by either the variable or the fixed-length method. 

Table 4-9 Prediction Performance of Three NB Models for I-75 
NB Model MAD MSPE 

Variable-length segmentation 5.02 33.92 
Fixed-length segmentation  5.93 44.22 
Fisher’s clustering segmentation  2.66 10.37 

 
Table 4-10 Prediction Performance of Three NB Models for I-4 

NB Model MAD MSPE 
Variable-length segmentation 9.06 177.13 
Fixed-length segmentation  13.30 268.34 
Fisher’s clustering segmentation  8.92 149.41 
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4.6.3. High Crash Locations 

In this section, the superior clustering-based SPF is applied to identify high 

rear-end crash locations.  The study area was a 17.3-mile stretch of I-95 in Miami-Dade 

County.  The screening sites were the same non-overlapping segments that were divided 

by Fisher’s clustering method.  

 Using the EB method, the expected rear-end crash frequency for each of the 54 

screening sites was estimated by accounting for the corresponding observed and 

predicted frequencies.  The weighting factor was estimated from the over-dispersion 

parameter, which was 1.2106 in this research.  Table 4-11 shows the ranking and 

specific areas of the top ten high rear-end crash locations along the 17.3-mile stretch.  

The zero-mile post is the start point of I-95, and the mile post increases from south to 

north until the end of the 17.3 miles of Miami-Dade County.  The beginning and ending 

mile posts shown are relative to the zero-mile post (start point of the study area).  

Furthermore, Figure 4-10 shows the locations with high rear-end crashes.  These 

locations correspond to the known congested sections with stop-and-go traffic, a 

condition susceptible to rear-end crashes. 
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Table 4-11 Top Ten HCLs on the 17.3-mile Stretch of I-95 

Rank 
Beginning 

Mile 
Post 

Ending 
Mile 
Post 

Segment 
Length 
(mile) 

Expected
Crash 
Count 

Expected 
Crash 

Count per 
Mile 

Expected 
Crash 

Count per 
Kilometer 

1 4.35 4.45 0.10 29.9 299.1 185.7 
2 11.35 11.55 0.20 27.0 135.0 83.9 
3 10.00 10.40 0.40 53.8 134.5 83.5 
4 3.95 4.30 0.35 38.7 110.6 68.7 
5 16.10 16.3 0.20 18.1 90.5 56.2 
6 0.80 0.95 0.15 13.5 90.0 55.9 
7 5.75 5.95 0.20 17.7 88.5 55.0 
8 3.40 3.95 0.55 48.0 87.3 54.2 
9 8.50 9.35 0.85 65.6 77.2 47.9 
10 5.40 5.70 0.30 22.3 74.3 46.2 

 

4.7. Summary 

This chapter described the data preparation of all roadway types for developing 

SPFs.  Florida-specific SPFs were developed using the 2008 RCI data and four years of 

crash data (from 2007 to 2010), for both total and FI crashes.  
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Figure 4-10 HCLs on the 17.3-mile Stretch of I-95 in Miami-Dade 
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As per the predefined subtypes used in SafetyAnalyst, roadway segments were 

divided into 17 site subtypes based on area type, functional classification, and number of 

lanes.  Summary statistics were provided to develop Florida-specific SPFs.   

The data requirements used to generate intersection SPFs are rigorous, compared 

to roadway segments.  The traffic control type, an important required variable in 

SafetyAnalyst for dividing intersections into subtypes, is not available in the RCI database.  

Thus, SPFs for unsignalized intersections cannot be developed due to the lack of detailed 

data on traffic control type.  Therefore, SPFs were developed for only four types of 

signalized intersections (rural and urban, with three-leg and four-leg each).   

SafetyAnalyst classifies ramps into 16 subtypes.  However, Florida has 

completely different ramp classifications from SafetyAnalyst.  Therefore, SPFs for 

ramps were generated using Florida-specific subtypes.  

The last section explored Fisher’s clustering method as an improved method for 

segmentation for the calibration SPF, for use in high crash location identification.  This 

method avoids the shortcomings of traditional division methods (fixed and variable 

length) by dividing segments into homogeneous clusters while accounting for specific 

crash characteristics.  Furthermore, to expound upon the methodological research and 

increase the benefits derived from its application, the same method was used in the site 

screening process while applying the EB approach, which succeeded in identifying sites 

with promise for improvement.  This method cannot be used for developing SPFs for 

the purpose of predicting crash frequency because the crash data are required for 

segmentation during the data processing.    
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CHAPTER 5 

MODEL DEVELOPMENT  

5.1. Introduction 

As mentioned in Chapter 1, the main objective of this research is to develop 

Florida-specific SPFs to be applied with SafetyAnalyst.  In Chapter 3, the methodology 

of the proposed models for developing SPFs was described.  This chapter describes the 

development of Florida-specific SPFs for every proposed roadway subtype described in 

Chapter 4.  The Statistical Analysis Software (SAS) was used to calculate the 

coefficients and corresponding overdispersion parameters for each subtype, using the 

calibration data.  The p-value, overdispersion, and CURE plot were used to test the 

significance, reliability, and goodness-of-fit of the models.  The statistical 

goodness-of-fit tests provided in Chapter 3 were then performed on both the calibration 

and validation to assess the performance of the SPFs developed.   

5.2. Roadway Segments 

Using calibration data, Florida-specific SPFs were developed for each of the 17 

categories of segments, for both total crashes and FI crashes.  Table 5-1 shows the 

coefficients and corresponding overdispersion parameters for each of the SPFs, 

specifically for freeways.  In Table 5-1, parameters for all models were statistically 

significant at the 0.01% level, except for the intercept term (α) for the urban (8+)-lane 

basic freeway segment subtype, which had a p-value of about 0.2%.  The overdispersion 

parameter was used to account for dispersion in the data.  The closer the overdispersion 

parameter is to zero, the more statistically reliable the SPF.  As shown in Table 5-1, the 
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overdispersion values for all categories were less than 1, and most of the values were 

lower than 0.5, which means the overdispersion parameters were close to zero, and the 

corresponding Florida-specific SPFs were reliable.  Furthermore, in order to determine 

which model is more reliable, the overdispersion will be compared to Florida-specific 

SPFs and SafetyAnalyst default SPFs for each category in Chapter 6.  The model with a 

lower overdispersion is preferred to a model with higher overdispersion (Washington et 

al., 2005). 

Table 5-1 Florida-Specific SPFs for Freeways  

Category Severity

Coefficient 
 

Over- 
dispersion 
Parameter α P-Value β P-Value 

Urban 
4-Lane Basic Freeway 
Segments 

Total -9.372 <0.0001 1.086 <0.0001 0.633 
FI -10.745 <0.0001 1.144 <0.0001 0.565 

4-Lane Segments 
within Interchange 
Influence Area 

Total -11.656 <0.0001 1.302 <0.0001 0.355 

FI -12.143 <0.0001 1.281 <0.0001 0.310 

6-Lane Basic Freeway 
Segments 

Total -13.407 <0.0001 1.458 <0.0001 0.645 
FI -14.548 <0.0001 1.487 <0.0001 0.611 

6-Lane Segments 
within Interchange 
Influence Area  

Total -15.088 <0.0001 1.602 <0.0001 0.364 

FI -15.820 <0.0001 1.595 <0.0001 0.307 

(8+)-Lane Basic 
Freeway Segments 

Total -6.847 0.0019 0.907 0.0002 0.725 
FI -7.239 0.0015 0.872 <0.0001 0.707 

(8+)-Lane Segments 
within Interchange 
Influence Area  

Total -5.430 0.0003 0.791 <0.0001 0.520 

FI -7.544 <0.0001 0.903 <0.0001 0.445 

Rural 
4-Lane Basic Freeway 
Segments 

Total -11.412 <0.0001 1.238 <0.0001 0.233 
FI -11.024 <0.0001 1.145 <0.0001 0.213 

4-Lane Segments 
within Interchange 
Influence Area 

Total -10.572 <0.0001 1.184 <0.0001 0.312 

FI -10.467 <0.0001 1.119 <0.0001 0.244 

(6+)-Lane Basic 
Freeway Segments 

Total -11.522 <0.0001 1.234 <0.0001 0.231 
FI -13.991 <0.0001 1.379 <0.0001 0.168 

(6+)-Lane Segments 
within Interchange 
Influence Area  

Total -11.610  0.0003 1.273 <0.0001 0.316 

FI -12.063 0.0002 1.244 <0.0001 0.249 
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Figures 5-1 to 5-5 plot the cumulative residuals of total and FI crashes, as a 

function of AADT, for urban and rural basic freeway segments and interchange influence 

areas.  As noted in these figures, the solid blue line is the cumulative residuals; the 

shorter red dash line and the longer green dash line represent the two standard deviations 

(+2σ and -2σ boundaries), respectively.  Figures 5-1 and 5-2 indicate that for urban 

4-lane and 6-lane freeway segments and interchange influence areas, the Florida-specific 

models are well-fitted as the cumulative residuals oscillate around 0 and do not stray 

beyond the ±2σ boundaries.  The cumulative residuals in Figure 5-3, especially the 

cumulative residual of total crashes for urban (8+)-lane freeway segments, as shown in 

Figure 5-3 (a), occasionally stray beyond the ±2σ boundaries.  In the CURE plots, urban 

(8+)-lane freeways produced the worse results when compared to urban 4-lane and 6-lane 

freeways, which are similar to the earlier results based on the p-value and the 

overdispersion values (the overdispersion values for urban (8+) -lane freeway segments 

are relatively higher than that for other categories).  In Figures 5-4 and 5-5, some bias is 

apparent in the plots of several categories, specifically in Figures 5-4 (c) and (d), as well 

as Figures 5-5 (a) and (c).  In these plots, the line of cumulative residuals consistently 

drifts below 0, and is indicative of a model that consistently overestimates the crash count.  

However, the overall fit to the data is still preferable, especially considering other 

statistical measures, including the p-value and the overdispersion parameter.  
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(a) Total Crashes on Urban 4-Lane Freeway Segments 

 
(b) FI Crashes on Urban 4-Lane Freeway Segments 

 
(c) Total Crashes on Urban 4-Lane Freeway Interchange Areas 

 
(d) FI Crashes on Urban 4-Lane Freeway Interchange Areas 

 

Figure 5-1 CURE Plots for Urban 4-Lane Freeways  
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(a) Total Crashes on Urban 6-Lane Freeway Segments 

 
(b) FI Crashes on Urban 6-Lane Freeway Segments 

 
(c) Total Crashes on Urban 6-Lane Freeway Interchange Areas 

 
(d) FI Crashes on Urban 6-Lane Freeway Interchange Areas 

 

Figure 5-2 CURE Plots for Urban 6-Lane Freeways  
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(a) Total Crashes on Urban (8+)-Lane Freeway Segments 

 
(b) FI Crashes on Urban (8+)-Lane Freeway Segments 

 
(c) Total Crashes on Urban (8+)-Lane Freeway Interchange Areas 

 
(d) FI Crashes on Urban (8+)-Lane Freeway Interchange Areas 

 

Figure 5-3 CURE Plots for Urban (8+)-Lane Freeways  
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(a) Total Crashes on Rural 4-Lane Freeway Segments 

 
(b) FI Crashes on Rural 4-Lane Freeway Segments 

 
(c) Total Crashes on Rural 4-Lane Freeway Interchange Areas 

 
(d) FI Crashes on Rural 4-Lane Freeway Interchange Areas 

 

Figure 5-4 CURE Plots for Rural 4-Lane Freeways  
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(a) Total Crashes on Rural 6-Lane Freeway Segments 

 
(b) FI Crashes on Rural 6-Lane Freeway Segments 

 
(c) Total Crashes on Rural 6-Lane Freeway Interchange Areas 

 
(d) FI Crashes on Rural 6-Lane Freeway Interchange Areas 

 

Figure 5-5 CURE Plots for Rural (6+)-Lane Freeways  
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Comparisons of goodness-of-fit tests were performed on both the calibration and 

validation data for freeways, as shown in Table 5-2.  The purpose of this comparison is 

to assess the transferability of the Florida-specific SPF models, which were developed 

using the calibration data, to the validation data (Young and Park, 2012).  The values of 

MSE and MSPE are similar in magnitude, particularly for models of urban 4-lane and 

6-lane, and rural 4-lane freeway segments and interchange influence areas, implying that 

the validation data fit the model similar to the calibration data (Washington et al., 2005).  

In most cases, the R2
FT coefficients are a slightly higher for the calibration data than that 

for the validation data.  This could be due to the smaller sample size in the validation 

data than in the calibration data (Young and Park, 2012).  For MSE, MSPE, and MAD, 

lower values are preferable to higher values; for R2
FT, higher values indicate a better fit.  

However, it is difficult to assess if the values of MSE, MSPE, and MAD are higher or 

lower since there are no reference values of comparison.  In Chapter 6, the values of 

these goodness-of-fit measures will be compared for Florida-specific SPFs and 

SafetyAnalyst default SPFs calibrated to Florida data, so as to determine the best-fitted 

SPFs for different roadway categories in Florida.       

 
 
 
 
 
 
 
 
 
 
 
 
 



 

87 
 

Table 5-2 Goodness-of-Fit Tests for Freeways 

Category Severity
Calibration Data (70%) Validation Data (30%) 

MSE R2
FT MAD MSPE R2

FT 
Urban 

4-Lane Basic Freeway 
Segments 

Total 31.87 0.378 3.12 31.64 0.318 
FI 11.92 0.402 1.88 10.21 0.311 

4-Lane Segments 
within Interchange 
Influence Area 

Total 27.30 0.455 3.05 25.74 0.402 

FI 10.05 0.541 1.09 8.19 0.456 

6-Lane Basic Freeway 
Segments 

Total 25.88 0.433 3.06 25.90 0.339 
FI 8.77 0.447 1.05 8.12 0.324 

6-Lane Segments 
within Interchange 
Influence Area 

Total 51.09 0.505 3.75 49.82 0.486 

FI 13.96 0.512 2.19 13.25 0.444 

(8+)-Lane Basic 
Freeway Segments 

Total 115.08 0.060 6.35 94.91 0.052 
FI 26.64 0.087 2.88 19.90 0.114 

(8+)-Lane Segments 
within Interchange 
Influence Area 

Total 38.63 0.294 3.27 36.94 0.232 

FI 12.12 0.257 2.00 11.37 0.248 

Rural 
4-Lane Basic Freeway 
Segments 

Total 122.08 0.231 7.83 120.61 0.210 
FI 21.14 0.156 2.90 20.92 0.144 

4-Lane Segments 
within Interchange 
Influence Area 

Total 135.23 0.247 8.01 133.33 0.252 

FI 27.56 0.178 3.09 27.43 0.181 

(6+)-Lane Basic 
Freeway Segments 

Total 229.71 0.267 8.57 192.78 0.234 
FI 31.68 0.204 3.10 28.55 0.214 

(6+)-Lane Segments 
within Interchange 
Influence Area 

Total 301.66 0.167 9.33 257.48 0.162 

FI 38.72 0.185 3.18 32.85 0.203 

 
Table 5-3 shows the coefficients and corresponding overdispersion parameters for 

each of the SPFs for urban arterial streets and rural roads.  In Table 5-3, the coefficients 

for the rural multilane undivided road category were unavailable because the sample size 

could not produce an accurate estimation.  For other categories of urban arterial streets 

and rural roads shown in Table 5-3, parameters for all models were statistically 

significant at the 0.01% level, except for the intercept term (α) in the multilane undivided 

arterial streets subtype, which had a slightly higher p-value.  In Table 5-3, the 



 

88 
 

overdispersion values associated with Florida-specific SPFs for every category were low, 

which means the Florida-specific SPFs were reliable. 

Table 5-3 Florida-Specific SPFs for Urban Arterial Streets and Rural Roads  

Category Severity 
Coefficient Over- 

dispersion 
Parameter α P-Value β P-Value 

Urban 

2-lane Arterial Streets 
Total -5.480 <0.0001 0.788 <0.0001 0.757 
FI -6.035 <0.0001 0.778 <0.0001 0.677 

Multilane Undivided 
Arterial Streets 

Total -4.520 0.0031 0.759 <0.0001 0.736 
FI -3.577   0.0094 0.584 <0.0001 0.568 

Multilane Divided 
Arterial Streets 

Total -7.062 <0.0001 0.939 <0.0001 0.667 
FI -7.783 <0.0001 0.940 <0.0001 0.561 

One-way Arterial 
Streets 

Total -3.151   0.0003 0.612 <0.0001 0.822 
FI -2.912   0.0007 0.467 <0.0001 0.815 

Rural 

2-lane Roads 
Total -6.829 <0.0001 0.862 <0.0001 0.488 
FI -7.267 <0.0001 0.848 <0.0001 0.486 

Multilane Undivided 
Roads  

Total - - - - - 
FI - - - - - 

Multilane Divided 
Roads 

Total -5.213 <0.0001 0.673 <0.0001 0.461 
FI -5.799 <0.0001 0.671 <0.0001 0.428 

 
Figures 5-6 to 5-9 illustrate the CURE plots for urban arterial streets and rural 

roads.  As noted in these figures, the solid blue line represents the cumulative residuals; 

the shorter red dash line and the longer green dash line represent the two standard 

deviations (+2σ and -2σ boundaries), respectively.  Figures 5-7 and 5-9 show that for 

urban and rural multilane arterial streets, the models fluctuate around the horizontal axis 

and lie between the ±2σ boundaries, which are an indication of well-fitted models.  In 

Figures 5-9 (a) and (b), the cumulative residuals consistently drift upwards in the plots of 

rural 2-lane roads, which indicate that the model underestimated the crash count.  In 

Figure 5-6, for urban 2-lane arterial streets, most of the cumulative residuals of both total 

crashes and FI crashes exceed the ±2σ boundary.  In Figure 5-8, the cumulative residual 
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of FI crashes for urban one-way arterial streets consistently drifts above 0, which shows 

that the model consistently underestimates the crash count.  From the CURE plots, 

urban 2-lane and one-way arterial streets produced the worse results when compared with 

other categories, which is similar to the earlier results based on the overdispersion values 

(the overdispersion values for the two subtypes are relatively higher than that for other 

categories).   

 
(a) Total Crashes on Urban 2_Lane Arterial Streets 

 
(b) FI Crashes on Urban 2_Lane Arterial Streets 

 

Figure 5-6 CURE Plots for Urban 2-Lane Arterial Streets 
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(a) Total Crashes on Urban Multilane Undivided Arterial Streets 

 
(b) FI Crashes on Urban Multilane Undivided Arterial Streets 

 
(c) Total Crashes on Urban Multilane Divided Arterial Streets 

 
(d) FI Crashes on Urban Multilane Divided Arterial Streets 

 

Figure 5-7 CURE Plots for Urban Multilane Arterial Streets 
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(a) Total Crashes on Urban One-Way Arterial Streets 

 
(b) FI Crashes on Urban One-Way Arterial Streets 

 

Figure 5-8 CURE Plots for Urban One-Way Arterial Streets 

Comparisons of goodness-of-fit tests were performed on both the calibration data 

and validation data for urban arterial streets and rural roads.  Table 5-4 shows the results 

of the comparisons.  For the models for urban divided arterial streets, rural divided roads, 

and rural 2-lane roads, the values of MSE and MSPE are very similar, which represents a 

high level of transferability of the developed models using the calibration data to the 

validation data.  The same goes for freeways: the R2
FT coefficients are slightly higher 

for the calibration data than that for the validation data on both urban arterial streets and 

rural roads, which most of the time, may be the result of the relatively smaller sample 

size in the validation data than the calibration data.   
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(a) Total Crashes on Rural 2-Lane Roads 

 
(b) FI Crashes on Rural 2-Lane Roads 

 
(c) Total Crashes on Rural Multilane Divided Roads 

 
(d) FI Crashes on Rural Multilane Divided Roads 

 

Figure 5-9 CURE Plots for Rural Roads 
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Table 5-4 Goodness-of-Fit Tests for Urban Arterial Streets and Rural Roads 

Category Severity
Calibration Data (70%) Validation Data (30%) 
MSE R2

FT MAD MSPE R2
FT 

Urban 

2-lane Arterial Streets 
Total 288.31 0.195 10.67 275.12 0.160 

FI 91.17 0.161 6.02 91.94 0.124 
Multilane Undivided 
Arterial Streets 

Total 125.10 0.143 7.11 121.05 0.130 
FI 32.22 0.157 3.05 30.41 0.119 

Multilane Divided 
Arterial Streets 

Total 57.04 0.294 5.24 57.47 0.295 
FI 19.63 0.278 2.07 18.92 0.220 

One-way Arterial 
Streets 

Total 126.37 0.112 7.31 123.44 0.094 
FI 35.79 0.126 3.23 35.16 0.107 

Rural 

2-lane Roads 
Total 102.77 0.275 6.35 102.55 0.288 

FI 25.78 0.228 2.90 25.09 0.230 
Multilane Divided 
Roads 

Total 95.36 0.281 6.14 94.36 0.244 
FI 23.55 0.253 2.55 23.18 0.207 

 

5.3. Intersections 

Florida-specific SPFs were developed for each of the four categories of signalized 

intersections, for both total crashes and FI crashes.  Table 5-5 shows the coefficients and 

corresponding overdispersion parameters for each of the SPFs for urban and rural 

signalized intersections.  Most of the model parameters of urban signalized intersections 

were found to be statistically significant at the 0.01% level, while the coefficients of 

major AADT (β1) and minor AADT (β2) had fewer higher p-values for rural signalized 

intersections.  This result is likely due to the smaller sample size for rural signalized 

intersections than urban signalized intersections.  However, these parameters still meet 

the requirement of the significance level.  In Table 5-5, the overdispersion parameters 

for the four categories of signalized intersections were low (most of the overdispersion 

parameters were less than 0.5), which means the Florida-specific SPFs were reliable. 
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Table 5-5 Florida-Specific SPFs for Intersections  

Category Severity 
Coefficient Over- 

dispersion 
Parameter α P-Value β1 P-Value β2 P-Value 

Urban 

3-Leg 
Total -9.589 <0.0001 0.725 <0.0001 0.453 <0.0001 0.404 
FI -8.354 <0.0001 0.605 <0.0001 0.360 <0.0001 0.310 

4-Leg 
Total -8.877 <0.0001 0.740 <0.0001 0.404 <0.0001 0.457 
FI -9.104 <0.0001 0.674 <0.0001 0.408 <0.0001 0.349 

Rural 

3-Leg 
Total -9.376 <0.0001 0.664 0.0003 0.495 0.0012 0.515 
FI -9.784 <0.0001 0.640 0.0007 0.488 0.0027 0.468 

4-Leg 
Total -7.143 <0.0001 0.488 0.0074 0.481 0.0021 0.440 
FI -6.770 <0.0001 0.351 0.0076 0.505 0.0028 0.436 

 
Figures 5-10 and 5-11 show CURE plots for urban 3-leg signalized, urban 4-leg 

signalized, rural 3-leg signalized, and rural 4-leg signalized intersections, based on both 

total and FI crashes.  As noted in the figures, the solid blue line is the cumulative 

residuals, and the shorter red dash line and longer green dash line represent the two 

standard deviations, respectively.  The figures show that for all four categories, the 

cumulative residuals of Florida-specific SPFs are confined within the two standard 

deviations along the entire range of major AADT. Among the four categories, for urban 

signalized intersections, the cumulative residuals oscillate above and below 0, which 

indicates a well-fitted model.  For rural signalized intersections, some bias is apparent in 

the plots, which is indicative of a model over- or under-estimating the predicted number 

of crashes for a consistent period. This may be due to the smaller sample size for rural 

intersections; however, the overall fit to the data is still considered good. 
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(a) Total Crashes on Urban 3-Leg Signalized Intersections 

 
(b) FI Crashes on Urban 3-Leg Signalized Intersections 

 
(c) Total Crashes on Urban 4-Leg Signalized Intersections 

 
(d) FI Crashes on Urban 4-Leg Signalized Intersections  

 

Figure 5-10 CURE Plots for Urban Intersections  
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(a) Total Crashes on Rural 3-Leg Signalized Intersections 

 
(b) FI Crashes on Rural 3-Leg Signalized Intersections 

 
(c) Total Crashes on Rural 4-Leg Signalized Intersections 

 
(d) FI Crashes on Rural 4-Leg Signalized Intersections  

 

Figure 5-11 CURE Plots for Rural Intersections  
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Comparisons of goodness-of-fit tests were also performed between the calibration 

data and the validation data for signalized intersections.  Table 5-6 shows that the values 

of MSE and MSPE calculated from calibration and validation data are similar in 

magnitude. The Freeman-Tukey R2 coefficients are slightly higher for the calibration data 

than that for the validation data in most cases.  These results for signalized intersections 

are the same as that for roadway segments mentioned in the previous section.  

Table 5-6 Goodness-of-Fit Tests for Intersections 

Category Severity
Calibration Data 
(70%) 

Validation Data (30%) 

MSE R2
FT MAD MSPE R2

FT 
Urban 

3-Leg 
Total 30.68 0.431 3.13 30.04 0.414 

FI 9.50 0.387 1.06 8.73 0.362 

4-Leg 
Total 38.18 0.485 3.25 37.20 0.450 

FI 10.22 0.469 1.17 9.95 0.427 
Rural 

3-Leg 
Total 192.47 0.347 8.21 187.14 0.287 

FI 26.77 0.384 3.09 26.26 0.356 

4-Leg 
Total 57.36 0.633 5.61 54.25 0.643 

FI 14.20 0.602 2.18 13.69 0.583 
 

5.4. Ramps 

Florida-specific SPFs were developed for each category of ramps, for both total 

crashes and FI crashes.  As mentioned earlier, the ramp classification in Florida is 

different from the default classification used in SafetyAnalyst.  Therefore, the 

Florida-specific SPFs of only the following subtypes were developed:  diamond ramps 

for both rural and urban areas, urban partial diamond ramps, and urban partial cloverleaf 

ramps.  The sample size of urban trumpet ramps, urban direct connections, and rural 

partial cloverleaf ramps was inadequate; the sample size could not accurately estimate 

regression coefficients.  Table 5-7 shows the coefficients and corresponding 
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overdispersion parameters for each of the SPFs for ramps.  In Table 5-7, parameters for 

all models were found to be statistically significant.  The overdispersion parameter was 

used to account for dispersion.  A model with a lower value of the overdispersion 

parameter is more reliable than that with a higher overdispersion parameter.  In Table 

5-7, the overdispersion parameters associated with Florida-specific SPFs for rural ramps 

were lower than that for urban ramps; however, the overall magnitude for urban ramps is 

still preferable. 

Table 5-7 Florida-Specific SPFs for Ramps  

Category Severity 
Coefficient Over- 

dispersion 
Parameter α P-Value β P-Value 

Urban Diamond 

Off-ramp 
Total -2.700 0.0004 0.574 <0.0001 0.815 
FI -3.286 <0.0001 0.554 <0.0001 0.749 

On-ramp 
Total -3.419 0.0002 0.561 <0.0001 0.971 
FI -4.402 <0.0001 0.582 <0.0001 1.063 

Urban Partial Diamond 

Off-ramp 
Total -3.768 0.0006 0.633 0.0011 1.002 
FI -4.105 0.0009 0.594 0.0015 0.987 

On-ramp 
Total -7.398 <0.0001 1.044 <0.0001 1.776 
FI -7.304 <0.0001 0.941 <0.0001 1.749 

Urban Partial Cloverleaf (Parclo Loop) 

Off-ramp 
Total -3.059 0.0007 0.581 <0.0001 0.919 
FI -4.416 <0.0001 0.633 <0.0001 0.808 

On-ramp 
Total -5.223 <0.0001 0.774 <0.0001 0.718 
FI -6.453 <0.0001 0.832 <0.0001 0.770 

Rural Diamond 

Off-ramp 
Total -5.280 <0.0001 0.823 <0.0001 0.634 
FI -5.299 0.0005 0.727 0.0002 0.605 

On-ramp 
Total -8.287 <0.0001 1.103 <0.0001 0.419 
FI -10.069 <0.0001 1.247 <0.0001 0.362 

 
CURE plots (Figures 5-12 to 5-15) were also performed for ramps.  As noted in 

the figures, the solid blue line represents the cumulative residuals, and the shorter red 

dash line and longer green dash line represent the two standard deviations, respectively.  

Figures 5-12 to 5-15 show that for most of the subtypes, the Florida-specific models are 
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good-fitted since the cumulative residuals fluctuate around 0 and fall within the ±2σ 

boundaries for the entire range of AADT.  The cumulative residuals in Figures 5-12 (a) 

and (d), 5-13 (c), 5-14 (a), as well as 5-15 (a) and (c), show that some bias is apparent in 

the plots. This is indication of a model that consistently underestimates crash counts, but 

the overall fit to the data is still acceptable, especially considering other statistical 

measures like the overdispersion parameter.   

Comparisons of goodness-of-fit tests were also performed on both the calibration 

data and the validation data for ramps.  Table 5-8 displays the results of these 

comparisons.  The values of MSE and MSPE are similar in magnitude, particularly for 

models of urban partial diamond and urban partial cloverleaf ramps, implying that the 

validation data fit the model similar to the calibration data.  The R2
FT coefficients are 

slightly higher for the calibration data than that for the validation data in most cases, 

which could be due to the smaller sample size in the validation data than in the 

calibration data.  These results for ramps are the same as that for roadway segments and 

intersections.  

5.5. Summary 

In this chapter, Florida-specific SPFs for each of the subtypes of roadway 

segments, intersections and ramps, for both total crashes and FI crashes, were developed 

using calibration data.  The coefficients and corresponding overdispersion parameters of 

developed SPFs for each subtype were provided.  Parameters for all models were found 

to be statistically significant, and overdispersion parameters for all subtypes were low, 

which indicates that the Florida-specific SPFs were reliable. 
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(a) Total Crashes on Urban Diamond Off-Ramp 

 
(b) FI Crashes on Urban Diamond Off-Ramp  

 
(c) Total Crashes on Urban Diamond On-Ramp  

 
(d) FI Crashes on Urban Diamond On-Ramp  

 

Figure 5-12 CURE Plots for Urban Diamond Ramps  
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(a) Total Crashes on Urban Partial Diamond Off-Ramp 

 
(b) FI Crashes on Urban Partial Diamond Off-Ramp 

 
(c) Total Crashes on Urban Partial Diamond On-Ramp 

 
(d) FI Crashes on Urban Partial Diamond On-Ramp 

 

Figure 5-13 CURE Plots for Urban Partial Diamond Ramps  
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(a) Total Crashes on Urban Partial Cloverleaf Off-Ramp 

 
(b) FI Crashes on Urban Partial Cloverleaf Off-Ramp 

 
(c) Total Crashes on Urban Partial Cloverleaf On-Ramp 

 
(d) FI Crashes on Urban Partial Cloverleaf On-Ramp 

 

Figure 5-14 CURE Plots for Urban Partial Cloverleaf Ramps  
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(a) Total Crashes on Rural Diamond Off-Ramp 

 
(b) FI Crashes on Rural Diamond Off-Ramp 

 
(c) Total Crashes on Rural Diamond On-Ramp 

 
(d) FI Crashes on Rural Diamond On-Ramp 

 

Figure 5-15 CURE Plots for Rural Diamond Ramps  
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Table 5-8 Goodness-of-Fit Tests for Ramps 

Category Severity 
Calibration Data (70%) Validation Data (30%) 
MSE R2

FT MAD MSPE R2
FT 

Urban Diamond 

Off-ramp 
Total 163.25 0.142 8.05 150.20 0.073 

FI 12.38 0.176 2.26 10.85 0.140 

On-ramp 
Total 182.23 0.191 8.91 178.54 0.134 

FI 25.06 0.159 3.33 24.17 0.166 
Urban Partial Diamond 

Off-ramp 
Total 207.63 0.267 9.07 207.27 0.199 

FI 31.88 0.224 4.15 30.22 0.201 

On-ramp 
Total 153.35 0.261 8.23 158.07 0.234 

FI 12.49 0.230 2.78 11.33 0.218 
Urban Partial Cloverleaf (Parclo Loop) 

Off-ramp 
Total 47.32 0.275 5.83 44.92 0.249 

FI 9.15 0.263 1.37 8.53 0.233 

On-ramp 
Total 33.05 0.337 4.45 35.84 0.305 

FI 6.00 0.278 1.06 5.87 0.292 
Rural Diamond 

Off-ramp 
Total 140.18 0.381 7.62 131.01 0.281 

FI 10.73 0.290 1.85 9.02 0.236 

On-ramp 
Total 164.75 0.465 8.24 158.41 0.374 

FI 13.07 0.444 2.92 11.84 0.400 
 

In addition, for most of the subtypes, the Florida-specific models are good-fitted 

because the cumulative residuals oscillate around 0 and stay inside the ±2σ boundaries.  

The cumulative residuals for some subtypes sometimes consistently over- or 

under-estimate the crash count or stray beyond the ±2σ boundaries.  However, the 

overall fit to the data is still preferable, especially considering other statistical measures, 

such as the overdispersion parameter.  

Comparisons of goodness-of-fit tests were performed on both the calibration data 

and the validation data for all subtypes.  For most of the subtypes, the models present a 

high level of transferability, as the MSE and MSPE values are similar in magnitude.  

For most of the subtypes, the MSPE values are lower than the MSE values, signifying 

that the crash counts were not over-fitted by the regression models.  Generally, when 
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sample sizes are smaller in the validation data, the R2
FT coefficients are somewhat 

elevated in the calibration data.  For MSE, MSPE, and MAD, lower values are 

preferable to higher values since R2
FT, higher values indicate a better fit.  In order to 

determine the best-fitted SPFs for different categories in Florida the values of these 

goodness-of-fit measures will be compared for Florida-specific SPFs and SafetyAnalyst 

default SPFs calibrated to Florida data in Chapter 6.    
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CHAPTER 6 

MODEL COMPARISON  

6.1. Introduction 

The objective of this chapter is to compare the performance of the Florida-specific 

SPFs and SafetyAnalyst default SPFs calibrated to Florida data.  First, calibration factors 

were calculated as the ratio of the total observed crashes to total predicted crashes 

obtained from the default national SPFs for all roadway subtypes.  The Florida-specific 

SPFs were then compared to SafetyAnalyst default SPFs (both calibrated to Florida data and 

original default model) using a number of methods, including visual plots and statistical 

goodness-of-fit tests.  The plots of SPFs against the observed crash data were used to 

compare the prediction performance of the two models.  Three goodness-of-fit tests 

represented by MAD, MSPE, and Freeman-Tukey R2 were also used for comparison in 

order to identify the better-fitting model. 

6.2. Roadway Segments  

The model of SafetyAnalyst default SPFs calibrated to Florida data was estimated 

by adjusting the national default SPFs with calibration factors.  Calibration factors were 

calculated as the ratio of the total observed crashes to predicted crashes obtained from the 

national default SPFs.  Table 6-1 shows the two models (Florida-specific SPFs and 

SafetyAnalyst default SPFs calibrated to Florida data) for each category of freeways, for 

both total crashes and FI crashes, using the calibration data (70% of the data).  The 

“ODP” represents the overdispersion parameter; and “C” represents the calibration factor.  

As Table 6-1 shows, calibration factors, which are greater than 1, indicate that the 
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SafetyAnalyst default SPFs underestimate the crash frequency.  The calibration factors, 

which are less than 1, indicate that the SafetyAnalyst default SPFs overestimate the crash 

frequency. 

The overdispersion parameter, which indicates the statistical reliability of the SPF, 

was used to account for dispersion in the data.  The closer the overdispersion parameter 

is to zero, the more statistically reliable the SPF.  For urban 4-lane freeways (both 

segments and interchange influence areas) and urban 6-lane freeway interchange 

influence areas, the overdispersion values associated with Florida-specific SPFs are much 

lower than the corresponding default models, demonstrating that the Florida-specific 

SPFs are statistically more reliable.  The remaining categories have moderately higher 

overdispersion values.  

In addition, three SPFs (Florida-specific SPF, SafetyAnalyst default SPF, and 

SafetyAnalyst default SPF calibrated to Florida data) were plotted against the observed 

crash data for rural and urban freeways, for both total and FI crashes.  Figures 6-1 to 6-5 

show the plots of the predicted annual crash frequency per mile against AADT and 

observed crash frequency for all categories of freeways.  As noted in the figures, the 

plotted data points are the observed crash frequency based on Florida data.  The solid 

red line represents the Florida-specific SPF, the blue dash dot line represents the national 

default SPF used in SafetyAnalyst, and the green dash line represents the SafetyAnalyst 

default SPF calibrated to Florida data using a calibration factor. 
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Table 6-1 Florida-specific SPFs and SafetyAnalyst Default SPFs Calibrated to 
Florida Data for Freeways 

 Florida-Specific SPFs 
SafetyAnalyst Default SPFs 
Calibrated to Florida Data 

Category Severity
Coefficient 

ODP 
Coefficient 

ODP C α β α β 
Urban 

4-Lane Basic 
Freeway Segments 

Total -9.372 1.086 0.633 -7.850 1.000 0.990 0.514
FI -10.745 1.144 0.565 -8.820 1.020 1.150 0.561

4-Lane Segments 
within Interchange 
Influence Area 

Total -11.656 1.302 0.355 -11.230 1.300 0.810 0.651

FI -12.143 1.281 0.310 -12.890 1.380 0.790 0.793

6-Lane Basic 
Freeway Segments 

Total -13.407 1.458 0.645 -5.960 0.780 0.480 1.372
FI -14.548 1.487 0.611 -7.600 0.850 0.540 1.504

6-Lane Segments 
within Interchange 
Influence Area 

Total -15.088 1.602 0.364 -11.250 1.280 0.600 0.926

FI -15.820 1.595 0.307 -13.620 1.420 0.550 0.844

(8+)-Lane Basic 
Freeway Segments 

Total -6.847 0.907 0.725 -16.240 1.670 0.450 0.939
FI -7.239 0.872 0.707 -19.160 1.850 0.520 0.918

(8+)-Lane Segments 
within Interchange 
Influence Area  

Total -5.430 0.791 0.520 -26.760 2.580 0.520 0.667

FI -7.544 0.903 0.445 -25.630 2.420 0.530 0.625

Rural 
4-Lane Basic 
Freeway Segments 

Total -11.412 1.238 0.233 -6.820 0.810 0.170 1.027
FI -11.024 1.145 0.213 -8.820 0.890 0.160 1.856

4-Lane Segments 
within Interchange 
Influence Area 

Total -10.572 1.184 0.312 -7.760 0.970 0.150 0.638

FI -10.467 1.119 0.244 -8.860 0.960 0.240 1.212

(6+)-Lane Basic 
Freeway Segments 

Total -11.522 1.234 0.231 -8.280 0.940 0.090 1.087
FI -13.991 1.379 0.168 -10.250 1.030 0.090 1.054

(6+)-Lane Segments 
within Interchange 
Influence Area  

Total -11.610 1.273 0.316 -9.630 1.060 0.210 1.741

FI -12.063 1.244 0.249 -10.480 1.040 0.200 1.934

 
Figure 6-1 plots the SPFs for urban 4-lane freeways.  The observation made 

from the plots is that the predicted crash frequency is overestimated by SafetyAnalyst 

default models.  However, the plots of the default models calibrated to Florida data and 

Florida-specific SPFs share similarities for both basic segments and interchange areas.  

Therefore, either of the two models is recommended for urban 4-lane freeways. 
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(a) Total Crashes for Basic Segments       (b) FI Crashes for Basic Segments 

   
  (c) Total Crashes for Interchange Areas      (d) FI Crashes for Interchange Areas    

Figure 6-1 Observed Crashes and SPFs for Urban 4-Lane Freeways 

Figure 6-2 displays the SPFs for urban 6-lane freeways.  The plots show that 

Florida-specific SPFs better represent the observed crash data for basic freeway segments, 

while the default models calibrated to Florida data and Florida-specific SPFs show the 

similarities for freeway segments within interchange areas. 
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(a) Total Crashes for Basic Segments       (b) FI Crashes for Basic Segments 

   
  (c) Total Crashes for Interchange Areas     (d) FI Crashes for Interchange Areas    

Figure 6-2 Observed Crashes and SPFs for Urban 6-Lane Freeways 

Unlike the scenario for 4-lane and 6-lane freeways, the default models calibrated 

to Florida data and Florida-specific SPFs are different for (8+)-lane freeways in urban 

areas (both basic segments and interchange areas), as shown in Figure 6-3.  The 

differences in total and FI crash trends for both Florida-specific SPFs and calibrated 

default SPFs might be due to the complexity of traffic characteristics at these facilities.  
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In urban areas, 8+ lane freeways (both basic segments and interchange areas), 

Florida-specific SPFs with very low overdispersion parameters accurately represent 

observed crash data for both total and FI crashes.  Therefore, Florida-specific SPFs is 

recommended for urban 8-lane freeways, as opposed to using default SPFs calibrated to 

Florida data.  

   
(a) Total Crashes for Basic Segments      (b) FI Crashes for Basic Segments 

   
  (c) Total Crashes for Interchange Areas     (d) FI Crashes for Interchange Areas    

Figure 6-3 Observed Crashes and SPFs for Urban (8+)-Lane Freeways 
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Furthermore, Figures 6-1, 6-2, and 6-3, displayed at the same level of AADT, 

show the predicted crash frequency for segments within interchange influence areas as 

higher than that for basic freeway segments.  This is likely as a result of multiple 

conflict points due to the high tendency of weaving (merging and diverging) maneuvers 

within these interchange influence areas.  These results point to the importance of 

considering the interchange influence area as a separate category instead of developing 

freeway SPFs, regardless of the influence of interchanges. 

Figures 6-4 and 6-5 display the SPFs for rural freeways with 4 lanes and 6+ lanes, 

respectively.  The curves of default models calibrated to Florida data and 

Florida-specific SPFs are well matched, especially for interchange areas.  It can be 

concluded that, for these roadway types, there is no significant benefit in developing 

Florida-specific SPFs.  

In order to identify the better-fitted model, statistical goodness-of-fit tests were 

performed on the validation data for both Florida-specific SPFs and SafetyAnalyst default 

SPFs calibrated to Florida data, for comparison.  Three goodness-of-fit tests represented 

by MAD, MSPE, and R2
FT were used.  The results of the comparison are given in Table 

6-2.  The highlighted boxes identify the models that performed more effectively for each 

test.  It can be concluded from Table 6-2 that Florida-specific SPFs presented lower 

values for both MAD (other than urban (8+)-lane segments total crashes, rural (6+)-lane 

segments FI crashes, and rural (6+)-lane interchanges total crashes), and MSPE (other 

than urban 4-lane segments FI crashes, urban (8+)-lane segments FI crashes and rural 

4-lane segments total crashes).  The Florida-specific SPFs also presented higher R2
FT 

values (other than urban 6-lane interchanges FI crashes, rural 4-lane segments FI crashes 
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and rural (6+)-lane segments FI crashes) than the SafetyAnalyst default SPFs calibrated to 

Florida data.  Based on the results, for freeways, Florida-specific SPFs yielded better 

prediction performance than the SafetyAnalyst default SPFs calibrated to Florida data. 

   
    (a) Total Crashes for Basic Segments          (b) FI Crashes for Basic Segments    

   
  (c) Total Crashes for Interchange Areas     (d) FI Crashes for Interchange Areas    

Figure 6-4 Observed Crashes and SPFs for Rural 4-Lane Freeways 
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(a) Total Crashes for Basic Segments       (b) FI Crashes for Basic Segments 

 

   
  (c) Total Crashes for Interchange Areas     (d) FI Crashes for Interchange Areas    

Figure 6-5 Observed Crashes and SPFs for Rural (6+)-Lane Freeways 
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Table 6-2 Statistical Comparison for Freeways 

Category Severity
Florida-Specific SPFs 

SafetyAnalyst Default SPFs 
Calibrated to Florida Data 

MAD MSPE R2
FT MAD MSPE R2

FT 
Urban 

4-Lane Basic 
Freeway Segments 

Total 3.12 31.64 0.318 3.17 31.86 0.305
FI 1.88 10.21 0.311 1.92 10.17 0.284

4-Lane Segments 
within Interchange 
Influence Area 

Total 3.05 25.74 0.402 3.06 26.04 0.400

FI 1.09 8.19 0.456 1.14 8.55 0.454

6-Lane Basic 
Freeway Segments 

Total 3.06 25.90 0.339 3.10 26.32 0.304
FI 1.05 8.12 0.324 1.09 8.35 0.235

6-Lane Segments 
within Interchange 
Influence Area 

Total 3.75 49.82 0.486 3.87 49.88 0.445

FI 2.19 13.25 0.444 2.23 13.67 0.452

(8+)-Lane Basic 
Freeway Segments 

Total 6.35 94.91 0.052 6.30 101.42 0.039
FI 2.88 19.90 0.114 2.94 19.83 0.092

(8+)-Lane 
Segments within 
Interchange 
Influence Area 

Total 3.27 36.94 0.232 3.35 37.09 0.123

FI 2.00 11.37 0.248 2.21 11.93 0.188

Rural 
4-Lane Basic 
Freeway 
Segments 

Total 7.83 120.61 0.210 7.89 118.95 0.204

FI 2.90 20.92 0.144 3.15 29.33 0.151

4-Lane Segments 
within Interchange 
Influence Area 

Total 8.01 133.33 0.252 8.22 133.60 0.247

FI 3.09 27.43 0.181 3.67 29.64 1.177

(6+)-Lane Basic 
Freeway Segments 

Total 8.57 192.78 0.234 9.04 196.31 0.233
FI 3.10 28.55 0.214 3.02 29.08 0.226

(6+)-Lane 
Segments within 
Interchange 
Influence Area 

Total 9.33 257.48 0.162 9.27 257.58 0.134

FI 3.18 32.85 0.203 4.05 33.71 0.203

 
Table 6-3 shows the two models (Florida-specific SPFs and SafetyAnalyst default 

SPFs calibrated to Florida data) for each subtype of urban arterial streets and rural roads, 

for both total crashes and FI crashes, using the calibration data.  As mentioned 

previously, the “ODP” represents the overdispersion parameter, and “C” represents the 

calibration factor.   
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The overdispersion parameter, which indicates the statistical reliability of the SPF, 

was used to account for dispersion in the data.  The closer the overdispersion parameter 

is to zero, the more statistically reliable the SPF.  For urban roadway segments, 

Florida-specific SPFs are statistically more reliable when the overdispersion values 

associated with Florida-specific SPFs are much lower than the corresponding default 

models.  On the other hand, overdispersion values for some categories in rural roadway 

segments are slightly higher. 

Table 6-3 Florida-specific SPFs and SafetyAnalyst Default SPFs Calibrated to 
Florida Data for Urban Arterial Streets and Rural Roads 

 Florida-Specific SPFs 
SafetyAnalyst Default SPFs 
Calibrated to Florida Data 

Category Severity
Coefficient 

ODP 
Coefficient 

ODP CF α β α β 
Urban 

2-lane Arterial 
Streets 

Total -5.480 0.788 0.757 -7.160 0.840 4.400 3.125
FI -6.035 0.778 0.677 -8.840 0.890 4.540 5.353

Multilane Undivided 
Arterial Streets 

Total -4.520 0.759 0.736 -10.240 1.290 0.850 1.477
FI -3.577 0.584 0.568 -12.070 1.390 0.810 1.495

Multilane Divided 
Arterial Streets 

Total -7.062 0.939 0.667 -11.850 1.340 5.910 1.786
FI -7.783 0.940 0.561 -14.870 1.520 5.810 2.462

One-way Arterial 
Streets 

Total -3.151 0.612 0.822 -3.530 0.600 1.380 1.347
FI -2.912 0.467 0.815 -5.150 0.650 1.450 1.718

Rural 

2-lane Roads 
Total -6.829 0.862 0.488 -3.630 0.530 0.500 0.926
FI -7.267 0.848 0.486 -4.860 0.530 0.670 1.830

Multilane Undivided 
Roads  

Total - - - -3.170 0.490 0.530 - 
FI - - - -4.200 0.500 0.530 - 

Multilane Divided 
Roads 

Total -5.213 0.673 0.461 -5.050 0.660 0.320 0.967
FI -5.799 0.671 0.428 -7.460 0.720 0.090 3.111

 
In addition, three SPFs (Florida-specific SPF, SafetyAnalyst default SPF, and 

SafetyAnalyst default SPF calibrated to Florida data) were plotted against the observed 

crash data for rural and urban roadway segments for both total and FI crashes.  Figures 

6-6 to 6-11 show the plots of the predicted annual crash frequency per mile against 

AADT and observed crash frequency for each subtype of urban arterial streets and rural 
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roads.  As noted previously, the plotted data points are the observed crash frequency 

based on Florida data: the solid red line represents the Florida-specific SPF, the blue dash 

dot line represents the national default SPF used in SafetyAnalyst, and the green dash line 

represents the SafetyAnalyst default SPF calibrated to Florida data using a calibration 

factor. 

Figure 6-6 plots the SPFs for urban 2-lane arterial streets for both total crashes 

and FI crashes.  The shapes of the default models calibrated to Florida data and 

Florida-specific SPFs are quite similar.  Both models adequately represent observed 

crash data for both total and FI crashes.  Predictions are underestimated by 

SafetyAnalyst default models. 

   
 (a) Total Crashes                         (b) FI Crashes 

Figure 6-6 Observed Crashes and SPFs for Urban 2-Lane Arterial Streets 

Figures 6-7 and 6-8 display the SPFs for urban multilane undivided and divided 

arterial streets, respectively.  The observed crash data are well-represented by 

Florida-specific SPFs for both total and FI crashes.  On the other hand, SafetyAnalyst 

default models underestimate the predicted crash frequency.  SafetyAnalyst default 
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models calibrated to Florida data are closely matched with the Florida-specific SPFs; 

however, slight discrepancies remain.  Therefore, the development of Florida-specific 

SPFs is recommended, as opposed to using default SPFs calibrated to Florida data, for 

both urban multilane undivided and divided arterial streets. 

   
 (a) Total Crashes                         (b) FI Crashes 

Figure 6-7 Observed Crashes and SPFs for Urban Multilane  
Undivided Arterial Streets 

   
 (a) Total Crashes                         (b) FI Crashes 

Figure 6-8 Observed Crashes and SPFs for Urban Multilane  
Divided Arterial Streets 

Figure 6-9 shows that Florida-specific SPFs accurately represent urban one-way 

arterial streets, as well as observed crash data for both total and FI crashes.  Similarities 
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are found in the curves of default models calibrated to Florida data and calibrated Florida 

SPFs, primarily for total crashes.  Results show that predictions are underestimated by 

SafetyAnalyst default models.  

   

 (a) Total Crashes                       (b) FI Crashes 

Figure 6-9 Observed Crashes and SPFs for Urban One-Way Arterial Streets 

Figure 6-10 displays the SPFs for rural 2-lane roads for both total and FI crashes.  

As seen from the plots, it is difficult to say which model better represents the observed 

crash data.  However, it is obvious that SafetyAnalyst default models underestimate the 

crash frequency of fatal and injury crashes.  Figure 6-11 shows the SPFs for rural 

multilane divided roads.  Figure 6-11 (a) shows that the observed crash data are better 

represented by all three models for total crashes.  Similar to the SPFs for rural 2-lane 

roads, fatal and injury crashes are underestimated by the SafetyAnalyst default model. 
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  (a) Total Crashes                       (b) FI Crashes 

Figure 6-10 Observed Crashes and SPFs for Rural 2-Lane Roads 

   
(a) Total Crashes                        (b) FI Crashes 

Figure 6-11 Observed Crashes and SPFs for Rural Multilane Divided Roads 

The process used to identify the better-fitted model involved performing statistical 

goodness-of-fit tests on the validation data for both Florida-specific SPFs and 

SafetyAnalyst default SPFs calibrated to Florida data, for comparison.  Three 

goodness-of-fit tests were used, which were represented by MAD, MSPE, and R2
FT.  The 

results of the comparison are given in Table 6-4, of which the highlighted boxes identify 
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the models that performed more effectively for each test.  In Table 6-4, for most of the 

subtypes, Florida-specific SPFs presented lower values for both MAD (other than urban 

one-way arterial streets total crashes) and MSPE (other than urban multilane undivided 

arterial streets total crashes and rural 2-lane roads FI crashes); while they presented 

higher value for R2
FT (other than urban one-way arterial streets total and FI crashes, and 

rural 2-lane roads total crashes).  Based on the results shown in Table 6-4, 

Florida-specific SPFs yielded better prediction performance than the national default 

SPFs calibrated to Florida data. 

Table 6-4 Statistical Comparison for Urban Arterial Streets and Rural Roads 

Category Severity
Florida-Specific SPFs 

SafetyAnalyst Default SPFs 
Calibrated to Florida Data 

MAD MSPE R2
FT MAD MSPE R2

FT 
Urban 

2-lane Arterial 
Streets 

Total 10.67 275.12 0.160 11.25 329.64 0.145
FI 6.02 91.94 0.124 6.38 118.25 0.108

Multilane 
Undivided Arterial 
Streets 

Total 7.11 121.05 0.130 7.89 109.67 0.082
FI 

3.05 30.41 0.119 4.02 31.30 0.053

Multilane Divided 
Arterial Streets 

Total 5.24 57.47 0.295 5.33 57.56 0.279
FI 2.07 18.92 0.220 2.67 19.07 0.173

One-way Arterial 
Streets 

Total 7.31 123.44 0.094 7.25 131.12 0.102
FI 3.23 35.16 0.107 3.55 37.28 0.110

Rural 

2-lane Roads 
Total 6.35 102.55 0.288 6.80 104.49 0.293
FI 2.90 25.09 0.230 2.93 23.75 0.218

Multilane Divided 
Roads 

Total 6.14 94.36 0.244 6.51 95.33 0.237
FI 2.55 23.18 0.207 3.07 25.59 0.188

 

6.3. Intersections 

Florida-specific SPFs were developed for each of the four categories of signalized 

intersections by using calibration for both total and FI crashes.  Table 6-5 shows the 

coefficients and corresponding overdispersion parameters for each subtype of the two 

models (Florida-specific SPFs and SafetyAnalyst default SPFs calibrated to Florida data), 
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as well as the calibration factors of the default models.  For signalized intersections, the 

overdispersion parameters of both default SPFs and the corresponding Florida-specific 

models are low and very similar. 

Table 6-5 Florida-specific SPFs and SafetyAnalyst Default SPFs Calibrated to 
Florida Data for Signalized Intersections 

 Florida-Specific SPFs 
SafetyAnalyst Default SPFs 
Calibrated to Florida Data 

Cate- 
gory 

Se- 
verity 

Coefficient 
ODP 

Coefficient 
ODP C α β1 β2 α β1 β2 

Urban 

3-Leg 
Total -9.589 0.725 0.453 0.404 -9.850 0.970 0.180 0.230 1.322
FI -8.354 0.605 0.360 0.310 -10.220 0.910 0.210 0.270 1.156

4-Leg 
Total -8.877 0.740 0.404 0.457 -3.470 0.420 0.140 0.320 1.628
FI -9.104 0.674 0.408 0.349 -5.110 0.490 0.160 0.300 1.404

Rural 

3-Leg 
Total -9.376 0.664 0.495 0.515 -6.570 0.660 0.200 0.330 0.941
FI -9.784 0.640 0.488 0.468 -7.830 0.750 0.140 0.500 1.197

4-Leg 
Total -7.143 0.488 0.481 0.440 -6.570 0.660 0.200 0.330 1.484
FI -6.770 0.351 0.505 0.436 -7.830 0.750 0.140 0.500 1.713

 
For each type of signalized intersection category, Florida-specific SPFs and 

SafetyAnalyst default SPFs calibrated to Florida data were plotted for both total and FI 

crashes.  Figures 6-12 to 6-15 plot the predicted annual crash frequency against AADT 

for major-road approaches. 

For signalized intersections, as indicated in the legend, lines with circles represent 

Florida-specific SPFs, and the lines with triangles represent default national SPFs 

calibrated to Florida data.  The blue line represents SPFs assuming AADT for 

minor-road approaches to be 1200 veh per day.  For rural intersections, the red and 

green lines represent SPFs assuming AADT for minor-road approaches to be 2300 and 

3500 veh per day, respectively.  For urban intersections, the red and green lines 

represent SPFs assuming AADT for minor-road approaches to be 4100 and 7800 veh per 

day, respectively. 
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(a) Total Crashes 

 
(b) FI Crashes 

  

Figure 6-12 SPFs for Urban Three-Leg Signalized Intersections 
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(a) Total Crashes 

   
(b) FI Crashes 

  

Figure 6-13 SPFs for Urban Four-Leg Signalized Intersections 
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 (a) Total Crashes 

 
            (b) FI Crashes 

 

Figure 6-14 SPFs for Rural Three-Leg Signalized Intersections 
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(a) Total Crashes 

  
(b) FI Crashes 

 

Figure 6-15 SPFs for Rural Four-Leg Signalized Intersections 



 

127 
 

Figure 6-12 illustrates the Florida-specific SPFs and the SafetyAnalyst default SPF 

calibrated to Florida data and developed for total and FI crash frequency for urban 

three-leg signalized intersections.  For both total crashes and FI crashes, the 

Florida-specific SPFs underestimate the predicted crash frequency when major AADTs 

are higher, while the predicted crash frequency is overestimated when major AADTs are 

lower. 

Figure 6-13 presents the Florida-specific SPFs and the SafetyAnalyst default SPF 

calibrated to Florida data and developed for total and FI crash frequency for urban 

four-leg signalized intersections.  For both total crashes and FI crashes, the 

Florida-specific SPFs overestimate the predicted crash frequency when both major and 

minor AADTs are higher, while the predicted crash frequency is underestimated when 

major AADTs are lower.  

Figure 6-14 displays the Florida-specific SPFs and the SafetyAnalyst default SPF 

calibrated to Florida data and developed for total and FI crash frequency for rural 

three-leg signalized intersections.  For both total crashes and FI crashes, the 

Florida-specific SPFs and the SafetyAnalyst default SPF calibrated to Florida data are 

closer and follow a very similar trend.  The Florida-specific SPFs underestimate 

predicted crash frequency, compared to the default SPFs calibrated to Florida data. 

Figure 6-15 shows the Florida-specific SPFs and the SafetyAnalyst default SPF 

calibrated to Florida data and developed for total and FI crash frequency for rural four-leg 

signalized intersections.  The Florida-specific SPFs underestimate the crash frequency 

for total crashes, as well as for FI crashes when major AADTs are higher, while the crash 

frequency is overestimated for FI crashes with lower AADTs on major streets. 
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The better-fitted model was found by performing statistical goodness-of-fit tests 

on the validation data for both Florida-specific SPFs and SafetyAnalyst default SPFs 

calibrated to Florida data, for comparison.  Three goodness-of-fit tests represented by 

MAD, MSPE, and R2
FT were used.  The results of the comparison are given in Table 6-6, 

and the highlighted boxes identify the models that performed more effectively for each 

test.  Florida-specific SPFs presented the lower values for MAD (other than rural 4-leg 

signalized intersections total crashes) and MSPE (other than rural 3-leg signalized 

intersections total and FI crashes).  The Florida-specific SPFs also presented higher R2
FT 

(rural 3-leg signalized intersections total crashes) than the SafetyAnalyst default SPFs 

calibrated to Florida data.  

Table 6-6 Statistical Comparison for Signalized Intersections 

Category Severity
Florida-Specific SPFs 

SafetyAnalyst Default SPFs 
Calibrated to Florida Data 

MAD MSPE R2
FT MAD MSPE R2

FT 
Urban 

3-Leg 
Total 3.13 30.04 0.414 3.26 30.23 0.342
FI 1.06 8.73 0.362 1.30 8.75 0.315

4-Leg 
Total 3.25 37.20 0.450 3.55 38.05 0.309
FI 1.17 9.95 0.427 1.45 9.96 0.363

Rural 

3-Leg 
Total 8.21 187.14 0.287 10.03 182.36 0.328
FI 3.09 26.26 0.356 3.37 24.08 0.345

4-Leg 
Total 5.61 54.25 0.643 5.60 55.72 0.592
FI 2.18 13.69 0.583 2.39 13.84 0.540

 
It can be concluded that Florida-specific SPFs yielded better prediction 

performance than national default SPFs calibrated to Florida data for rural and urban 

signalized intersections, except for total crashes of rural 3-leg signalized intersections. 

This could be because of the fewer number of rural 3-leg sites used to develop 

Florida-specific SPFs.  Thus, when there is a large sample size, Florida-specific SPFs 

are more accurately representative of Florida data than the national default SPFs 
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calibrated to Florida data.  Therefore, developing Florida-specific SPFs, as opposed to 

using default SPFs calibrated to Florida data, is recommended for urban signalized 

intersections and rural signalized intersections with a larger sample size. 

6.4. Ramp SPFs 

Florida-specific SPFs and SafetyAnalyst default SPFs calibrated to Florida data 

were developed respectively for each of the four categories of ramps, for both total 

crashes and FI crashes, using the calibration data.  The models are shown in Table 6-7.  

As mentioned earlier, the ramp classification in Florida is different from the default 

classification used in SafetyAnalyst.  Therefore, the SPFs of only the following subtypes 

were compared: diamond ramps for both rural and urban areas, and urban partial 

cloverleaf ramps.  The regression coefficients for urban direct connections are 

insignificant, while the sample size for urban trumpet ramps and rural partial cloverleaf 

ramps was insufficient; it did not accurately estimate regression coefficients. 

In addition, three SPFs (Florida-specific SPF, SafetyAnalyst default SPF, and 

SafetyAnalyst default SPF calibrated to Florida data) were plotted against the observed 

crash data for rural and urban ramps, for both total and FI crashes.  Figures 6-16 to 6-19 

display the plots of the predicted annual crash frequency per mile against AADT and 

observed crash frequency for all the available ramp categories.  As shown in these 

figures, the data points plotted are the observed annual crash frequency per mile, the solid 

red line symbolizes the Florida-specific SPF, the blue dash dot line plots the default SPF 

from SafetyAnalyst without applying the calibration factor, and the green dash line 

symbolizes the SafetyAnalyst default SPF calibrated to Florida data. 
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Table 6-7 Florida-specific SPFs and SafetyAnalyst Default SPFs Calibrated to 
Florida Data for Ramps 

 Florida-Specific SPFs 
SafetyAnalyst Default SPFs 
Calibrated to Florida Data 

Category Severity 
Coefficient 

ODP 
Coefficient 

ODP C α β α β 
Urban Diamond 

Off-ramp 
Total -2.700 0.574 0.815 -3.52 0.54 1.15 2.895
FI -3.286 0.554 0.749 -3.86 0.47 1.94 3.461

On-ramp 
Total -3.419 0.561 0.971 -8.20 1.03 1.21 2.104
FI -4.402 0.582 1.063 -7.99 0.86 0.69 3.313

Urban Partial Diamond 

Off-ramp 
Total -3.768 0.633 1.002

--- 
FI -4.105 0.594 0.987

On-ramp 
Total -7.398 1.044 1.776
FI -7.304 0.941 1.749

Urban Partial Cloverleaf (Parclo Loop) 

Off-ramp 
Total -3.059 0.581 0.919 -1.15 0.26 0.12 2.516 
FI -4.416 0.633 0.808 -3.68 0.53 0.67 1.197 

On-ramp 
Total -5.223 0.774 0.718 -5.59 0.82 0.97 0.925 
FI -6.453 0.832 0.770 -1.34 0.24 1.20 1.182 

Rural Diamond 

Off-ramp 
Total -5.280 0.823 0.634 -3.07 0.46 1.34 2.088
FI -5.299 0.727 0.605 -4.54 0.47 2.66 3.526

On-ramp 
Total -8.287 1.103 0.419 -2.16 0.19 1.86 3.045
FI -10.069 1.247 0.362 -8.12 0.86 0.98 3.137

 
Figure 6-16 displays the SPFs for urban diamond ramps (both on-ramp and 

off-ramp) for both total and FI crashes.  Crash data are well-presented by 

Florida-specific SPFs for urban diamond ramps when AADTs are lower.  On the other 

hand, SafetyAnalyst default models underestimate the crash frequency.  By adjusting 

SafetyAnalyst default models using the calibration factor, the curves become much closer 

to that of Florida-specific SPFs; however, slight discrepancies can still be found.  

Therefore, the development of Florida-specific SPFs, as opposed to using default SPFs 

calibrated to Florida data, is recommended for urban diamond ramps. 
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 (a) Total Crashes Off-Ramp                 (b) FI Crashes Off-Ramp 

   
(c) Total Crashes On-Ramp                (d) FI Crashes On-Ramp 

Figure 6-16 Observed Crashes and SPFs for Urban Diamond Ramps 

Figures 6-17 displays SPFs of urban partial diamond ramps.  These categories 

are not found among the 16 subtypes used by SafetyAnalyst.  Therefore, there are no 

SafetyAnalyst default SPFs to compare.  Florida-specific SPFs can be used to analyze 

this category of ramps.  
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(a) Total Crashes Off-Ramp               (b) FI Crashes Off-Ramp 

   
           (c) Total Crashes On-Ramp                (d) FI Crashes On-Ramp 

Figure 6-17 Observed Crashes and SPFs for Urban Partial Diamond Ramps 

Figure 6-18 displays the SPFs for urban partial cloverleaf ramps (both on-ramp 

and off-ramp) for both total and FI crashes.  The plots show that the total crashes for 

off-ramp are underestimated by the SafetyAnalyst default model.  As for FI crashes on 

off-ramps and total crashes on on-ramps, the observed crash data are equally 

well-represented by both the Florida-specific SPFs and the adjusted default models.  

Florida-specific SPFs are recommended for FI crashes on on-ramps, due to the variation 
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in the base shape of Florida-specific SPFs and the national default SPFs.  

      
(a) Total Crashes Off-Ramp                (b) FI Crashes Off-Ramp 

 

   
(c) Total Crashes On-Ramp               (d) FI Crashes On-Ramp 

Figure 6-18 Observed Crashes and SPFs for Urban Partial Cloverleaf Ramps 

Figure 6-19 displays the SPFs for rural diamond ramps (both on-ramp and 

off-ramp) for both total and FI crashes.  For off-ramp (both total and FI crashes), the 

default models calibrated to Florida data and Florida-specific SPFs are better matched 

than that for on-ramp crashes.  The on-ramp SPFs of default models calibrated to 

Florida data and Florida-specific SPFs are better matched for FI crashes than total crashes.  
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In addition, the SafetyAnalyst default models underestimate the crash frequency on rural 

diamond ramps. 

   
(a) Total Crashes Off-Ramp               (b) FI Crashes Off-Ramp 

   
(c) Total Crashes On-Ramp              (d) FI Crashes On-Ramp 

Figure 6-19 Observed Crashes and SPFs for Rural Diamond Ramps 

In order to identify the better-fitted model, statistical goodness-of-fit tests were 

performed on the validation data for both Florida-specific SPFs and SafetyAnalyst default 

SPFs calibrated to Florida data for comparison.  As mentioned earlier, the ramp 

classification in Florida is different from the default classification used in SafetyAnalyst.  

Therefore, the SPFs of only the following subtypes were compared: diamond ramps for 
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both rural and urban areas, and urban partial cloverleaf ramps.  Three goodness-of-fit 

tests represented by MAD, MSPE, and R2
FT were used.  The results of the comparison 

are given in Table 6-8, of which the highlighted boxes identify the models that performed 

more effectively for each test.  In Table 6-8, Florida-specific SPFs presented lower 

values for both MAD (other than urban and rural diamond on-ramp total crashes) and 

MSPE (other than urban diamond on-ramp total and FI crashes, urban partial cloverleaf 

off-ramp total crashes, and rural diamond on-ramp total crashes).  The Florida-specific 

SPFs also presented higher R2
FT values (other than urban diamond off-ramp total crashes).  

It can be concluded that Florida-specific SPFs yielded better prediction performance than 

the national default SPFs calibrated to Florida data for both rural and urban ramps.  

Even though the R2
FT values of both models are low, the Florida-specific SPFs are 

better-fitted. 

Table 6-8 Statistical Comparison for Ramps 

Category Severity
Florida-Specific SPFs 

SafetyAnalyst Default SPFs 
Calibrated to Florida Data 

MAD MSPE R2
FT MAD MSPE R2

FT 
Urban Diamond 

Off-ramp 
Total 8.05 150.20 0.073 8.12 162.50 0.078
FI 2.26 10.85 0.140 2.37 12.84 0.138

On-ramp 
Total 8.91 178.54 0.134 8.88 176.76 0.105
FI 3.33 24.17 0.166 3.76 22.52 0.084

Urban Partial Cloverleaf (Parclo Loop) 

Off-ramp 
Total 5.83 44.92 0.249 6.22 44.84 0.164
FI 1.37 8.53 0.233 1.58 9.02 0.217

On-ramp 
Total 4.45 35.84 0.305 5.11 37.19 0.299
FI 1.06 5.87 0.292 1.67 5.94 0.169

Rural Diamond 

Off-ramp 
Total 7.62 131.01 0.281 8.34 135.27 0.210
FI 1.85 9.02 0.236 1.87 11.78 0.185

On-ramp 
Total 8.24 158.41 0.374 7.79 155.37 0.178
FI 2.92 11.84 0.400 3.36 11.95 0.361
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6.5. Summary 

In this chapter, the model of SafetyAnalyst default SPFs calibrated to Florida data 

was first estimated by adjusting the national default SPFs via a set of calibration factors.  

The performance of the Florida-specific SPFs and SafetyAnalyst default SPFs calibrated 

to Florida data were then compared. 

The two models developed by using the calibration data were compared by 

overdispersion parameters and plots of SPFs against the observed crash data.  Statistical 

goodness-of-fit tests were performed on the validation data for both models for 

comparison, specifically in order to identify the better-fitted model.  Three 

goodness-of-fit tests represented by MAD, MSPE, and R2
FT were used.  In general, the 

values of MAD and MSPE for Florida-specific SPFs were lower than SafetyAnalyst 

default SPFs calibrated to Florida data, and the R2
FT results for Florida-specific SPFs 

were higher than SafetyAnalyst default SPFs calibrated to Florida data.  Overall, based 

on the comparison, Florida-specific SPFs more closely represent the Florida data than the 

national default SPFs calibrated to Florida data. 
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CHAPTER 7 

MODEL APPLICATIONS 

7.1. Introduction 

The roadway safety management process consists of two main applications of 

SPFs: crash prediction performance and identification of high crash locations.  In this 

chapter, Florida-specific SPFs for all roadway subtypes developed in Chapter 5 were 

applied in the crash prediction performance and identification of high crash locations.  

However, Florida-specific SPFs were developed using the simple SPF models in 

SafetyAnalyst.  The use of this traffic-only model in SafetyAnalyst may be questioned 

over the application of the traditional full SPFs for predicting crashes, as traffic might not 

be the sole predictor of crashes.  Hence, this chapter compared the simple SPFs 

provided in SafetyAnalyst with full SPFs in both the crash prediction and high crash 

location identification applications to determine if the two models yielded similar 

performance of crash prediction and network screening. 

7.2. Application Overview  

Florida-specific SPFs were developed using the simple SPF models in 

SafetyAnalyst.  The models were developed, and traffic was used as the sole predictor of 

crashes without accounting for variations in geometric conditions.  The SPF was a 

flow-only model calibrated by data from all sites irrespective of base conditions.  The 

use of the simple SPFs in SafetyAnalyst may be questioned over the application of the 

traditional, full SPFs for predicting crashes, as traffic might not be the sole predictor of 

crashes.  Hence, there is a need to examine whether the only-predictor, AADT, could 
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yield high prediction accuracy, when compared to the full SPFs, which consider multiple 

geometric and traffic predictors.   

The comparison focuses on two applications: crash prediction performance and 

identification of high crash locations with the greatest potential for safety improvement.  

In order to compare the prediction performance, full and simple SPFs were estimated 

using data collected in Florida.  Models are estimated for both total and FI crashes. The 

MAD and MSPE are used to assess and compare the prediction performance of the two 

models, and the variations in the rankings of HCLs using each model were examined. 

7.3. Data and models  

The urban 4-lane freeway interchange influence areas in Florida were used as 

examples to describe the comparison of the performance of the full and simple SPFs.  

The freeway sections were divided into homogeneous segments of variable lengths, with 

the segment length defined by any change in the geometric or traffic characteristics.  A 

total of 261 miles of freeway interchange areas were divided into 560 homogeneous 

segments.  During the four-year study period (from 2007-2010), the 560 segments 

experienced 11,792 total crashes, of which 5,714 were FI crashes. 

Four-fold cross-validation was chosen as the sampling method to divide the 

dataset into two groups: calibration and prediction.  This sampling approach was 

previously used in safety studies (e.g., Haleem and Abdel-Aty, 2012).  A simple 

explanation of the methodological approach of k-fold cross-validation is that the original 

dataset is randomly and equally divided into k subsets.  Of the k subsets, (k-1) subsets 

are used as training data, and the remaining subset is used as validation data for testing 

the model.  This process is then repeated k times, with each of the (k-1) subsets used 
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once as training data, and each of the k subsets used once as validation data.  The k sets 

of results are then averaged to produce an entire estimate.  The advantage of this method 

is that all observations are used for both training and validation, and each observation is 

used for validation exactly once.  In general, k is an unfixed parameter, and could be any 

number (Geisser, 1993). 

In this research, 560 roadway segment records were randomly and equally divided 

into four subsets of 140 records each; as a result, four groups were created.  In each 

group, three out of four subsets were combined as one dataset for calibration, and the 

remaining fourth subset was used for prediction.  Thus, in each of the four different 

groups, 420 and 140 records were available for calibration and prediction, respectively.  

This process of calibration and prediction was then repeated four times.  The average 

MAD and MSPE of all groups were then used to represent the mean prediction 

performance of the four groups. 

After the segmentation and the sample recombination using the four-fold 

cross-validation approach, full and simple SPFs were developed.  Analysis was 

performed on both total and FI crashes. 

The following nine variables are believed to have an impact on the safety 

performance of full SPFs, and are measured in the modeling procedure:  

• the natural logarithm of AADT  

• lane width 

• median width  

• outside (right) shoulder width  

• inside (left) shoulder width  
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• outside (right)shoulder type  

• inside (left) shoulder type  

• speed limit  

• percentage of trucks 

Table 7-1 shows the descriptive statistics of the abovementioned identified 

variables.  Lane width was consistent across all segments, and hence was not included in 

the model development process.  Shoulders were only paved on 4-lane freeways (either 

with or without warning devices).  The warning device shoulder type is one that 

includes safety features, such as rumble strips to warn drivers encroaching onto the 

shoulders.  Therefore, only two levels of paved shoulders were included while 

developing the full SPFs, where paved shoulders without warning devices were 

considered the baseline.  Table 7-2 shows the full NB models for total crashes and FI 

crashes for each sample group.  For example, the full SPF for total crashes in group 1 is:  

Npredicted  full SPF = exp (-10.401 + 1.188 × ln(AADT) + 0.025 × inside shoulder 
width - 0.316 × outside shoulder type) 

From Table 7-2, it is observed that there was no significant influence of median 

width, percentage of trucks, outside (right) shoulder width, and inside (left) shoulder type 

on crash frequency; hence, these variables were removed from the models.  In every 

group, there is a significant increase in both total and FI crashes, with an increase in 

AADT, as more crashes always occur at high traffic volumes, as in congested situations.  

This is consistent with other studies (e.g., Pilko et al., 2007; Chen, et al., 2009).  There 

is also an increase in crashes with the increase of the inside (left) shoulder width.  The 

reason could be that wider inside shoulders allow drivers to park or stop on the inside 
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shoulder next to the fast lane (along a two-lane per direction freeway), which could 

negatively impact safety. 

An interesting finding is that roadway segments with warning devices on the 

outside (right) shoulders are associated with less total and FI crashes, when compared to 

those without the warning device.  As expected, an increased number of total and FI 

crashes occurred along the segments with higher speed limits.  This result is supported 

by other studies (Vernon and Cook, 1999; Elvik, et al., 2004).  It is noted that the speed 

limit variable is significant in only one out of four groups, for both total and FI crashes.  

Simple SPFs were generated for urban 4-lane freeway interchanges.  Table 7-3 

shows the SPF models, along with their R2
FT and overdispersion values for each group, 

for both total and FI crashes.  For example, the simple SPF for FI crashes in group 4 is: 

Npredicted simple SPF = exp (-11.886 + 1.253 × ln (AADT)) 

In Table 7-3, the overdispersion values are low for both total and FI crashes, 

indicating that the simple SPFs are reliable.  Furthermore, the R2
FT of the full SPFs 

shown in Table 7-2 are relatively similar to those of the simple SPFs shown in Table 7-3 

for both total and FI crashes.  In short, the two models have comparable R2
FT values. 
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Table 7-1 Descriptive Statistics of Explored Variables 

Variable Descriptive Statistics 
4-Fold Group 

1 2 3 4
Number of total crashes  7630 9606 8894 9246
Number of fatal and injury crashes 3801 4713 4276 4433

Natural 
logarithm of 
AADT 

Minimum value 9.148 8.476 8.476 8.476
Maximum value 11.691 11.724 11.724 11.724
Average value 10.752 10.805 10.774 10.761
Standard deviation 0.448 0.480 0.496 0.457

Outside (Right) 
shoulder width 
(ft) 

Minimum value 3 3 3 4
Maximum value 20 25 25 25
Average value 9.514 9.781 9.755 9.950
Standard deviation 1.910 2.176 2.193 2.077

Inside (left) 
shoulder width 
(ft) 

Minimum value 2 2 2 2
Maximum value 20 17 20 20
Average value 5.690 5.598 5.588 5.581
Standard deviation 3.062 2.836 2.949 3.013

Lane width (ft) 

Minimum value 11.5 11.5 11.5 12
Maximum value 12.5 12.5 12.5 12.5
Average value 12.005 12.001 12.004 12.005
Standard deviation 0.069 0.055 0.065 0.049

Median width 
(ft) 

Minimum value 6 6 6 8
Maximum value 245 250 250 250
Average value 56.064 60.202 61.310 61.731
Standard deviation 28.153 33.639 34.207 31.946

Percentage of 
trucks 

Minimum value 1.64 1.64 1.64 1.90
Maximum value 34.86 34.44 34.86 34.86
Average value 10.838 11.188 11.688 11.889
Standard deviation 6.167 5.106 6.170 6.036

Speed limit 
 

% of speed limit ≥ 65 mph  29.0 35.0 38.6 42.4
% of speed limit < 65 mph 71.0 65.0 61.4 57.6

Outside (Right) 
shoulder type 

% of paved shoulder with 
warning device 

71.7 74.8 74.8 79.5

% of paved shoulder without 
warning device 

28.3 25.2 25.2 20.5

Inside (left) 
shoulder type 

% of paved shoulder with 
warning device 

71.0 74.3 75.5 78.6

% of paved shoulder without 
warning device 

29.0 25.7 24.5 21.4
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Table 7-2 Full SPFs for Total and FI Crashes 

Variable 

4-Fold Group 
1 2 3 4 

Estimate 
(Standar
d Error) 

P-Value 
Estimate 
(Standar
d Error) 

P-Value 
Estimate 
(Standar
d Error) 

P-Value 
Estimate 
(Standar
d Error) 

P-Value 

Total Crashes 

Intercept 
-10.401 
(0.892) 

<0.0001 
-10.390 
(0.760) 

<0.0001 
-11.863 
(0.756) 

<0.0001 
-11.278 
(0.785) 

<0.0001 

Ln AADT 
1.188 

(0.082) 
<0.0001 

1.173 
(0.069) 

<0.0001 
1.314 

(0.070) 
<0.0001 

1.279 
(0.072) 

<0.0001 

Inside (left) 
shoulder 
width 

0.025 
(0.012) 

0.0299 
0.044 

(0.011) 
<0.0001 

0.032 
(0.011) 

0.0028 N/S  

Speed limit 
N/S  

0.181 
(0.066) 

0.0063 N/S  N/S  

  Baseline      
Outside 
(Right) 
shoulder 
type 

-0.316 
(0.077) 

<0.0001 
-0.261 
(0.072) 

0.0003 
-0.261 
(0.071) 

0.0002 
-0.210 
(0.077) 

0.0060 

Baseline  Baseline  Baseline  Baseline  

Dispersion 
(d) 

0.382 
(0.031) 

0.309 
(0.026) 

0.310 
(0.026) 

0.322 
(0.027) 

R2
FT 0.533 0.214 0.374 0.405 

Fatal and Injury Crashes 

Intercept 
-11.824 
(0.978) 

<0.0001 
-11.039 
(0.862) 

<0.0001 
-12.669 
(0.824) 

<0.0001 
-11.630 
(0.846) 

<0.0001 

Ln AADT 
1.264 

(0.089) 
<0.0001 

1.174 
(0.078) 

<0.0001 
1.322 

(0.076) 
<0.0001 

1.239 
(0.077) 

<0.0001 

Inside (left) 
shoulder 
width 

N/S  
0.030 

(0.012) 
0.0119 

0.022 
(0.011) 

0.0373 N/S  

Speed limit 
N/S  

0.192 
(0.069) 

0.0053 N/S  N/S  

  Baseline      
Outside 
(Right) 
shoulder 
type 

-0.246 
(0.080) 

0.0020 
-0.244 
(0.076) 

0.0013 
-0.187 
(0.071) 

0.0085 
-0.135 
(0.076) 

0.0770 

Baseline  Baseline  Baseline  Baseline  

Dispersion 
(d) 

0.343 
(0.035) 

0.286 
(0.029) 

0.248 
(0.027) 

0.255 
(0.028) 

R2
FT 0.503 0.267 0.316 0.397 

* N/S = Not significant 
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Table 7-3 Simple SPFs for Total and FI Crashes 

4-Fold 
Group 

Coefficient 

ODP R2
FT α β 

Estimate P-Value Estimate P-Value 
Total Crashes

1 -11.906 <0.0001 1.321 <0.0001 0.406 0.574 
2 -11.123 <0.0001 1.253 <0.0001 0.340 0.307 
3 -12.597 <0.0001 1.382 <0.0001 0.332 0.347 
4 -11.621 <0.0001 1.296 <0.0001 0.328 0.381 

Fatal and Injury Crashes
1 -12.864 <0.0001 1.344 <0.0001 0.353 0.522 
2 -11.678 <0.0001 1.238 <0.0001 0.309 0.364 
3 -13.281 <0.0001 1.378 <0.0001 0.259 0.303 
4 -11.886 <0.0001 1.253 <0.0001 0.257 0.382 

 

7.4. Crash Prediction 

In this section, the prediction performance of the two models is compared. The 

plot of the observed versus predicted crashes for each model is generated.  There are 

four sets of plots representing the different groups.  Figure 7-1 shows one of the four 

sets (groups) as an example.  As noted in the figure, the red squares represent crash 

frequency predicted from full models, while the blue circles represent crash frequency 

predicted from simple models.  The red and blue lines in each plot are the exponential 

trend lines of the predicted crash frequency for full and simple models, respectively.   

The figures show that the trends and the predictions of the two models are similar.  
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            (a) Total crashes                (b) Fatal and Injury crashes 
 

Figure 7-1 Observed vs. predicted crash frequency for full and simple models 

As previously discussed, four sets of MAD and MSPE were estimated from the 

four groups.  Subsequently, the average MAD and MSPE of all groups were then used 

to represent the prediction performance.  The MAD and MSPE values for the two 

models for both total and FI crashes are shown in Table 7-4.  The table shows that the 

MAD and MSPE values for the two models for both total and FI crashes are quite similar.  

Table 7-4 Prediction of Full and Simple Models for Total and FI Crashes 
Prediction 
Performance 
Statistic 

Total crashes Fatal and Injury Crashes 

Full Model Simple Model Full Model Simple Model 

MAD 6.35 6.27 3.15 3.13 

MSPE 115.08 114.42 26.64 26.76 
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7.5. Identification of High Crash Locations 

In this section, the EB method is applied separately using the two models to 

identify high crash locations for both total and FI crashes.  The 560 segments, with 

11,792 total crashes and 5,714 FI crashes, were analyzed.  Using the EB method, the 

expected total and FI crash frequency for each of the 560 screening sites was estimated. 

The top 5% locations (28 sites) with the greatest PSI for both total and FI crashes were 

identified.  Interpretations of different methods to identify HCLs were also included in 

the study by Qin et al. (2010). 

Tables 7-5 and 7-6 show the ranking and HCLs identified using full and simple 

SPFs (with the EB approach) for total and FI crashes, respectively.  In the two tables, 

the predicted crashes for the full models (column 6 in Tables 7-5 and 7-6) and for the 

simple models (column 10) were estimated using Equations (1-1) and (1-2), respectively.   

Furthermore, the expected crashes (columns 7 and 11 in Tables 7-5 and 7-6) were 

estimated using the EB approach.  The PSIs in the tables were calculated as the 

difference between the expected and predicted crashes. 

It can be seen from Tables 7-5 and 7-6 that among the top ten HCLs categorized 

by the full SPFs, all sites are almost similarly identified by the simple SPFs.  The HCLs 

identified from both models are quite similar.  However, a mere comparison of the top 

10 or top 5% of HCLs identified using the two SPFs could be biased.  Extremely unsafe 

sites (i.e., sites with very high observed crashes and high PSI), regardless of the model 

used, will top the list.  In other words, some sites could be so unsafe that whichever 

model is chosen, they will be identified.  This issue may weaken the comparison of the 
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two models.  A statistical test was therefore applied to determine if there was a 

significant difference between the PSIs calculated using the full and the simple SPFs. 

The differences between the two sets of PSIs for all of the 560 sites estimated 

from the two models were tested and found to nearly follow a normal distribution.  The 

198 sites with non-negative PSIs were compared.  A paired t-Test with the following 

hypothesis was then performed on the resulting PSIs from the two models, as follows:  

H0: there is no difference in means between the two sets of PSIs (µ = µ0), 

H1: there are differences in means between the two sets of PSIs (µ ≠ µ0). 

Table 7-7 shows the results from the paired t-Test.  In this table, H0 is accepted 

since t of 0.367 is less than the two-tail critical t of 1.972, and the p-value of 0.714 is 

more than the alpha of 0.05.  Thus, there is sufficient evidence to support the conclusion 

that at a 5% significance level, there is no significant difference in the means between the 

two sets of PSIs.  In other words, the two models produce the same performance in the 

network screening process. 
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Table 7-5 Ranking of Top 28 HCLs for Total Crashes 

Roadway 
ID 

Begin 
Mile 
Post 

End 
Mile 
Post 

Segment 
Length 
(miles) 

Observed 
Crashes 
(crashes/ 

mile/year) 

Full Model Simple Model 
Predicted 
Crashes 
(crashes/ 

mile/year) 

Expected 
Crashes 
(crashes/ 

mile/year) 

PSI Rank 

Predicted 
Crashes 
(crashes/ 

mile/year) 

Expected 
Crashes 
(crashes/ 

mile/year) 

PSI Rank 

87470000 0.34 0.58 0.24 126.02 20.85 112.10 91.2 1 17.90 109.96 92.1 1 
87005000 3.83 4.34 0.51 95.24 39.44 93.14 53.7 2 34.15 92.65 58.5 2 
86471000 6.71 7.01 0.30 70.83 12.18 60.23 48.0 3 15.13 62.90 47.8 3 
72040000 12.79 12.93 0.14 75.00 19.72 62.47 42.8 4 18.64 62.61 44.0 4 
72270000 15.62 16.15 0.53 62.15 15.69 58.04 42.3 5 20.23 59.46 39.2 8 
87005000 6.39 6.54 0.15 70.75 22.78 62.02 39.2 6 16.96 59.01 42.1 5 
87075000 0.13 0.26 0.13 79.27 33.02 71.85 38.8 7 28.52 70.21 41.7 6 
75008000 4.96 5.12 0.16 80.30 36.98 75.25 38.3 8 34.56 74.97 40.4 7 
87471000 39.19 39.36 0.17 57.80 19.53 51.59 32.1 9 23.30 53.23 29.9 10 
87260000 1.87 2.01 0.14 67.57 31.01 62.28 31.3 10 26.76 60.98 34.2 9 
72090000 4.42 4.55 0.13 53.15 12.89 39.86 27.0 11 9.97 37.05 27.1 12 
87005000 2.03 2.21 0.18 57.18 27.45 53.29 25.8 12 23.65 52.27 28.6 11 
87021000 0.46 0.68 0.22 45.25 13.27 38.56 25.3 13 11.33 37.33 26.0 13 
93470000 32.81 32.97 0.16 45.45 15.68 39.44 23.8 14 15.89 39.83 23.9 14 
10075000 30.21 31.95 1.74 50.86 27.42 50.55 23.1 15 35.92 50.72 14.8 25 
14140000 4.54 5.12 0.58 38.89 16.67 37.19 20.5 16 19.67 37.71 18.0 17 
70220000 20.15 20.70 0.55 39.02 17.10 37.60 20.5 17 21.25 38.13 16.9 21 
72040000 12.20 12.58 0.38 35.52 12.16 31.99 19.8 18 11.12 31.85 20.7 15 
72040000 11.45 12.20 0.75 34.05 13.03 32.44 19.4 19 11.98 32.37 20.4 16 
55320000 8.88 9.12 0.24 35.27 12.23 30.32 18.1 20 14.20 31.47 17.3 19 
72001000 22.17 22.29 0.12 39.06 14.82 32.84 18.0 21 18.12 34.67 16.5 22 
75471000 0.86 0.98 0.12 41.67 17.59 34.95 17.4 22 18.64 35.59 16.9 20 
72040000 12.58 12.79 0.21 33.72 12.16 28.62 16.5 23 11.12 28.41 17.3 18 
75470000 23.34 23.74 0.4 31.73 13.23 29.66 16.4 24 15.98 30.32 14.3 26 
72001000 34.86 35.00 0.14 34.42 12.21 28.20 16.0 25 14.61 29.79 15.2 24 
10470000 3.55 4.10 0.55 31.88 15.52 30.51 15.0 26 16.41 30.67 14.3 27 
10002000 4.41 5.00 0.59 21.54 5.99 18.65 12.7 27 6.70 19.17 12.5 31 
72270000 11.47 12.06 0.59 26.41 13.35 25.18 11.8 28 14.04 25.39 11.4 34 
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Table 7-6 Ranking of Top 28 HCLs for FI Crashes 

Roadway 
ID 

Begin 
Mile 
Post 

End 
Mile 
Post 

Segment 
Length 
(miles) 

Observed 
Crashes 
(crashes/ 

mile/year) 

Full Model Simple Model 
Predicted 
Crashes 
(crashes/ 

mile/year) 

Expected 
Crashes 
(crashes/ 

mile/year) 

PSI Rank 

Predicted 
Crashes 
(crashes/ 

mile/year) 

Expected 
Crashes 
(crashes/ 

mile/year) 

PSI Rank 

75008000 4.96 5.12 0.16 59.09 17.42 48.27 30.8 1 16.64 48.05 31.4 1 
87005000 3.83 4.34 0.51 43.65 17.38 41.01 23.6 2 15.85 40.63 24.8 2 
87075000 0.13 0.26 0.13 48.78 14.63 36.74 22.1 3 13.31 35.56 22.2 3 
87470000 0.34 0.58 0.24 35.86 9.37 27.91 18.5 4 8.49 27.11 18.6 4 
87021000 0.46 0.68 0.22 32.81 6.05 21.49 15.4 5 5.45 20.59 15.1 5 
87005000 2.03 2.21 0.18 33.24 12.23 26.96 14.7 6 11.11 26.21 15.1 6 
86471000 6.71 7.01 0.3 26.67 6.27 19.56 13.3 7 7.30 20.74 13.4 7 
87471000 39.19 39.36 0.17 28.90 10.33 23.52 13.2 8 11.62 24.40 12.8 9 
87260000 1.87 2.01 0.14 32.09 13.76 26.14 12.4 9 12.52 25.35 12.8 8 
87005000 6.39 6.54 0.15 29.87 10.06 22.22 12.2 10 8.18 20.64 12.5 10 
14140000 4.54 5.12 0.58 21.37 8.43 19.17 10.7 11 9.49 19.61 10.1 11 
72090000 4.42 4.55 0.13 29.53 5.79 15.81 10.0 12 4.82 14.41 9.6 12 
70220000 20.15 20.70 0.55 19.96 9.46 18.67 9.2 13 10.58 18.95 8.4 14 
72270000 15.62 16.15 0.53 18.83 7.98 16.98 9.0 14 9.81 17.62 7.8 17 
79002000 23.30 23.88 0.58 16.41 5.75 14.49 8.7 15 6.23 14.74 8.5 13 
75471000 0.86 0.98 0.12 24.12 8.51 16.28 7.8 16 8.82 16.60 7.8 19 
72040000 11.45 12.20 0.75 15.35 6.42 13.98 7.6 17 5.84 13.87 8.0 16 
72292000 0.96 1.11 0.15 24.19 12.99 20.53 7.5 18 11.81 19.90 8.1 15 
70220000 40.98 41.50 0.52 16.67 8.25 15.45 7.2 19 9.15 15.70 6.6 22 
10470000 3.55 4.10 0.55 16.39 7.54 14.70 7.2 20 7.80 14.80 7.0 20 
55320000 8.88 9.12 0.24 17.63 6.17 13.00 6.8 21 6.86 13.66 6.8 21 
75008160 1.11 1.94 0.83 14.65 7.07 13.57 6.5 22 7.32 13.65 6.3 24 
87005000 6.54 7.03 0.49 17.86 10.06 16.53 6.5 23 8.18 15.98 7.8 18 
72001000 34.86 35.00 0.14 18.12 6.61 13.00 6.4 24 7.23 13.59 6.4 23 
75470000 10.41 10.60 0.19 17.76 8.44 14.39 6.0 25 8.50 14.59 6.1 27 
93470000 32.81 32.97 0.16 16.67 7.16 13.04 5.9 26 7.87 13.56 5.7 30 
72040000 12.20 12.58 0.38 14.08 5.99 11.80 5.8 27 5.43 11.61 6.2 26 
72292000 1.11 1.28 0.17 20.06 11.23 16.97 5.7 28 10.19 16.40 6.2 25 



 

150 
 

Table 7-7 Paired t-Test Results 
Statistic        Full Model Simple Model 

Mean 7.711675521 7.662571638 
Variance 121.4353987 126.3419956 
Observations 198 198 
Pearson Correlation 0.985904346  
Hypothesized Mean Difference 0  
df 197  
t Stat 0.367212125  
P(T<=t) one-tail 0.35692748  
t Critical one-tail 1.65262522  
P(T<=t) two-tail 0.71385496  
t Critical two-tail 1.972078988   

 

7.6. Summary 

The EB approach identifies high crash locations based on their PSI, calculated as 

the difference between expected and predicted crashes at the location.  The expected 

crash frequency is calculated as the weighted average of the observed and predicted crash 

frequencies.  The predicted crash frequency is calculated using an SPF, and depends on 

roadway geometric characteristics (such as lane width, shoulder width, horizontal and 

vertical curvatures, etc.) and traffic characteristics (such as traffic volume and speed 

limit).  

There are two main types of SPFs: simple and full.  The simple SPFs are 

developed using data from all sites regardless of base conditions, and consider traffic to 

be the sole predictor of crashes.  On the other hand, the full SPFs account for both traffic 

and geometric conditions.  The approach of using just the simple SPFs to predict crashes 

without accounting for changes in geometric conditions is questionable.  This chapter, 

therefore, focused on the comparison of crash prediction performance and the ranking of 

HCLs generated using the full and the simple SPFs.  
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Compared to freeways, simple SPFs are more widely recognized and used for 

arterial roads and intersections than full SPFs for the use of predicting crash performance.  

The HSM (2010) provides simple SPF functional forms for both arterial roads and 

intersections based on many previous researches.  However, the SPF functional form for 

freeways is not recommended in the first edition of the HSM.  Both full SPFs and simple 

SPFs were found to be widely used in previous studies.  Thus, freeways were used as 

examples to present the comparison of the performance of the full and simple SPFs in this 

research.  A total of 261 miles of urban 4-lane freeway sections within interchange 

influence areas in Florida were identified.  Four-year crash data from 2007-2010 were 

used in the analysis.  Four-fold cross-validation was chosen as the sampling method to 

divide the dataset into calibration and prediction groups.  Full and simple SPFs were 

developed using the NB regression method for both total and FI crashes.  The MAD and 

the MSPE were used to compare the prediction performance of the two SPFs, as well as 

the variations in the rankings of the HCLs identified (using the two SPFs).  

The results showed that the prediction performance of the simple SPF resembled 

that of the full SPF for both total and FI crashes on urban 4-lane freeway interchanges.  

Moreover, the lists of top HCLs generated using the two models were almost identical, 

and there is no significant difference between the PSIs in the network screening process 

when using the two models.  Besides urban 4-lane freeway interchanges, analysis on 

other subtypes of freeways in Florida came up with same results.  Thus, the results from 

this research show that simple models produce similar results, in spite of using AADT as 

the only predictor.  Both the simple and the full SPFs yield similar prediction 

estimations on freeways in Florida.   
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CHAPTER 8 

SUMMARY, CONCLUSIONS AND RECOMMENDATIONS 

8.1. Summary and Conclusions  

A comprehensive literature review was performed to investigate and assess the 

development of SPFs, as well as its applications.  SafetyAnalyst, a safety analysis 

software system, was introduced and discussed.  SafetyAnalyst uses a set of national 

default SPFs. Although these national default SPFs can be calibrated to reflect a state’s 

safety data, in order to better represent local safety performance, local agencies were 

encouraged to develop their own SPFs.  Two applications provided by SPFs, crash 

prediction and identification of high crash locations, were also discussed, and were found 

to be affiliated with the precision of SPFs.  As such, the main objective of this research 

was to develop Florida-specific SPFs to be used with SafetyAnalyst. 

Florida-specific SPFs were developed using RCI data from 2008, as well as crash 

and traffic data from 2007-2010, for both total and FI crashes.  The data were divided 

into two sets, one for calibration and another for validation.  In accordance with the 

structure of predefined subtypes used in SafetyAnalyst, roadway segments were divided 

into 17 site subtypes, based on area type, functional classification, and number of lanes.  

Compared to roadway segments, the data requirements to generate intersection 

SPFs are rigorous.  One of the required variables for SafetyAnalyst to divide 

intersections into subtypes is traffic control type, yet it is not available in the detail 

required in the RCI database.  Therefore, SPFs were developed for only four types of 

signalized intersections: rural and urban, with three-leg and four-leg each.  At present, 
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due to the lack of detailed traffic control type data, analysis of unsignalized intersections 

is not possible.  

SafetyAnalyst classifies ramps into 16 subtypes based on ramp configuration, 

ramp type, and area type.  This classification could not be used to generate 

Florida-specific SPFs, as Florida has completely different ramp classifications.  Instead, 

Florida-specific subtypes were used to generate SPFs for ramps.  

 Segmentation is an essential step in data preparation for developing the SPFs.  

Three segmentation methods were described in this chapter, including fixed-length, 

variable-length, and Fisher’s clustering algorithm.  According to SafetyAnalyst, SPFs 

are developed for homogenous segments of variable length.  Thus, variable length was 

used as the segmentation method for developing Florida-specific SPFs in this research.  

Moreover, in order to improve the development of SPFs that identify high crash locations, 

an alternative segmentation method was examined in this step that was based on Fisher’s 

clustering algorithm.   

The NB model was used to develop the Florida-specific SPFs for each of the 

subtypes of roadway segments, intersections and ramps, for both total crashes and FI 

crashes, using the calibration data.  Most of the model parameters were statistically 

significant, while some coefficients had fewer higher p-values, but were still found to be 

acceptable.  The overdispersion parameter is important in that it indicates the statistical 

reliability of the SPF; this parameter was used to account for dispersion in the data.  

Florida-specific SPFs were deemed reliable after observation of the overdispersion 

parameters for all subtypes were found to have low levels.  
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In addition, CURE plots for each subtype that showed total and FI crashes as a 

function of AADT were used to test the fit of the models.  For most of the subtypes, the 

cumulative residuals for the Florida-specific models fall within the ±2σ boundaries for 

the entire range of AADT.  The models fluctuate around zero on the horizontal axis, 

which is indicative of a well-fitted model.  The cumulative residuals for several 

subtypes sometimes will consistently over- or underestimate the crash count or stray 

beyond falling within the ±2σ boundaries.  However, the overall fit to the data is still 

preferable.  Statistical goodness-of-fit tests were performed on both the calibration data 

and the validation data for all subtypes.  The results were compared in order to assess 

the transferability of the Florida-specific SPF models, which were developed using the 

calibration data, to the validation data.   

 After the development of Florida-specific SPFs, the default SafetyAnalyst SPFs 

were calibrated to Florida data by adjusting the national default SPFs with local 

calibration factors.  The performance of the Florida-specific SPFs and SafetyAnalyst 

default SPFs calibrated to Florida data were then compared using a number of methods, 

such as visual plots and statistical goodness-of-fit tests.  In order to identify the 

better-fitted model, three goodness-of-fit tests represented by MAD, MSPE, and R2
FT 

were performed on the validation data for both models for comparison.  In most 

instances, Florida-specific SPFs presented lower values for both MAD and MSPE than 

SafetyAnalyst default SPFs calibrated to Florida data.  The Florida-specific SPFs also 

presented higher R2
FT results than SafetyAnalyst default SPFs calibrated to Florida data.  

Based on an overall comparison, Florida-specific SPFs yielded better prediction 

performance than the national default SPFs calibrated to Florida data.  In general, 
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observed data were found to be better represented by Florida-specific SPFs than the 

default calibrated SPFs.  However, this conclusion is dependent on the sample size.  

When fewer samples are available for a specific subtype, it is recommended to use the 

default calibrated SPFs. 

In the roadway safety management process, there are two main applications of 

SPFs: crash prediction performance and identification of high crash locations.  In this 

research, Florida-specific SPFs for all roadway subtypes developed were applied in crash 

prediction performance and identification of high crash locations.  In this case, however, 

the simple SPF models in SafetyAnalyst were used to develop Florida-specific SPFs.  

The use of this traffic-only model in SafetyAnalyst may be questioned over the 

application of the traditional full SPFs for predicting crashes, as traffic might not be the 

sole predictor of crashes.  Hence, this research compared the simple SPFs provided in 

SafetyAnalyst with full SPFs in both of these applications to determine if the two models 

yielded any similarities in the performance of crash prediction and network screening.  

The results showed that the two models yielded very similar performance of crash 

prediction and network screening.  This empirical result supports the use of the 

flow-only SPF model adopted in SafetyAnalyst, which requires much less effort to 

develop, compared to full SPFs. 

8.2. Recommendations  

Even though this dissertation has achieved the proposed research objective, the 

following areas require further research: 

• For applications of Florida-specific SPFs, future research could extend the 

comparison of the full models and the simple models to other facilities, such as 
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urban multilane arterials, which have more varying geometric conditions and may 

potentially produce more dissimilar outcomes. 

• Although the work conducted in this research has shown that Fisher’s clustering 

method is more appropriate than the traditional segmentation methods, it is worth 

noting that this method was solely limited to freeway segments and should not be 

generalized to other roadway segments, such as arterial streets.  Further research 

can extend the method to other locations, such as toll plazas and arterial corridors.  

Although the variables in this research have shown favorable model prediction 

performance, using more variables during the calibration procedure (e.g., 

interactions of two or more variables, as well as other relevant variables after 

segmentation) may further improve the results. 
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