
Florida International University
FIU Digital Commons

FIU Electronic Theses and Dissertations University Graduate School

3-26-2013

Leakage Temperature Dependency Aware Real-
Time Scheduling for Power and Thermal
Optimization
Vivek Chaturvedi
Florida International University, vchaturv@fiu.edu

DOI: 10.25148/etd.FI13042337
Follow this and additional works at: https://digitalcommons.fiu.edu/etd

Part of the Electrical and Computer Engineering Commons

This work is brought to you for free and open access by the University Graduate School at FIU Digital Commons. It has been accepted for inclusion in
FIU Electronic Theses and Dissertations by an authorized administrator of FIU Digital Commons. For more information, please contact dcc@fiu.edu.

Recommended Citation
Chaturvedi, Vivek, "Leakage Temperature Dependency Aware Real-Time Scheduling for Power and Thermal Optimization" (2013).
FIU Electronic Theses and Dissertations. 870.
https://digitalcommons.fiu.edu/etd/870

https://digitalcommons.fiu.edu/?utm_source=digitalcommons.fiu.edu%2Fetd%2F870&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.fiu.edu/etd?utm_source=digitalcommons.fiu.edu%2Fetd%2F870&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.fiu.edu/ugs?utm_source=digitalcommons.fiu.edu%2Fetd%2F870&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.fiu.edu/etd?utm_source=digitalcommons.fiu.edu%2Fetd%2F870&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/266?utm_source=digitalcommons.fiu.edu%2Fetd%2F870&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.fiu.edu/etd/870?utm_source=digitalcommons.fiu.edu%2Fetd%2F870&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:dcc@fiu.edu

FLORIDA INTERNATIONAL UNIVERSITY

Miami, Florida

LEAKAGE TEMPERATURE DEPENDENCY AWARE REAL-TIME

SCHEDULING FOR POWER AND THERMAL OPTIMIZATION

A dissertation submitted in partial fulfillment of the

requirements for the degree of

DOCTOR OF PHILOSOPHY

in

ELECTRICAL ENGINEERING

by

Vivek Chaturvedi

2013

To: Dean Amir Mirmiran
College of Engineering and Computing

This dissertation, written by Vivek Chaturvedi, and entitled Leakage Temperature
Dependency Aware Real-Time Scheduling for Power and Thermal Optimization, hav-
ing been approved in respect to style and intellectual content, is referred to you for
judgment.

We have read this dissertation and recommend that it be approved.

Raju Rangaswami

Jean H. Andrian

Cheng-Xian Lin

Nezih Pala

Gang Quan, Major Professor

Date of Defense: March 26, 2013

The dissertation of Vivek Chaturvedi is approved.

Dean Amir Mirmiran
College of Engineering and Computing

Dean Lakshmi N. Reddi
University Graduate School

Florida Internatinal University, 2013

ii

c© Copyright 2013 Vivek Chaturvedi.

All Rights Reserved.

iii

DEDICATION

I would like to dedicate this Doctoral dissertation to my dearest mother Mrs. Sharda

Chaturvedi and loving father Late Mr. J.P. Chaturvedi. Without their love, under-

standing, support, and encouragement, the completion of this endeavor would never

have been possible.

iv

ACKNOWLEDGMENTS

First and foremost, I would like to thank God Almighty for giving me the strength

and patience to accomplish my dream of getting a Ph.D degree.

Next, I would like to express my deepest gratitude to my advisor Dr. Gang Quan.

I feel fortunate and blessed to have an advisor like Dr. Quan, who gave me constant

guidance, personal attention, suggestions and endless encouragement during the last

four years of my doctoral study. I truly admire his perseverance, depth of knowledge

and strong dedication to students and quality research. Dr. Quan’s thoughts and

suggestions have not only helped me to complete this dissertation successfully, but

have also helped me to overcome several personal problems. I am thankful to him for

his patience and support.

I also want to take this opportunity to thank Dr. Quan’s family for being warm

and welcoming.

I am very grateful to my Ph.D. committee members: Dr. Jean H. Andrian, Dr.

Nezih Pala, Dr. Cheng-Xian Lin and Dr. Raju Rangaswami for their thoughtful

insights and suggestions in improving my dissertation. I am extremely proud to have

such a wonderful and knowledgeable people serving on my dissertation committee.

I want to give my heartfelt thanks to Dr. Adrian Nunez-Aldana, Dr. Nazanin

Mansouri, Dr. Shangping Ren and Mr. Soroush Shakib for their endless encourage-

ment and support in accomplishing my career objectives.

I am thankful to the staff of ECE department at FIU, specially to Mrs. Maria

Benincasa, Mrs. Pat Brammer and Mrs. Ana Saenz for their great commitment to

student services.

Next, I would like to thank my lab mates at ARCS lab for creating a wonderfully

collaborative and enriching work environment filled with fun and laughter. I am

confident that our friendship and cooperation will go a long way.

v

God blessed me with some wonderful friends, who are my solid support system.

I am very thankful to them for providing me with unconditional love, support and

care. I greatly value your friendship and I deeply appreciate your faith in me.

Finally, and above all, I want to thank my family for their unlimited love, faith,

encouragement, blessings and prayers. My life-long gratitude go to my dearest mother

Mrs. Sharda Chaturvedi and my loving father late Mr. J.P. Chaturvedi for all the

love and affection they have showered upon their children. My parents are my true

inspiration. I want to thank my brother Mr. Rajeev Chaturvedi and sister Mrs.

Mamta Tripathi for being a great wall of support and motivation in my life. I am

thankful to my brother-in-law Mr. Satish Tripathi and sister-in law Mrs. Megha

Chaturvedi for their care and encouragement. Lastly, I want to express my deepest

love for my nieces Vilina and Manavi for filling my life with their angelic presence.

vi

ABSTRACT OF THE DISSERTATION

LEAKAGE TEMPERATURE DEPENDENCY AWARE REAL-TIME

SCHEDULING FOR POWER AND THERMAL OPTIMIZATION

Vivek Chaturvedi

Florida International University, 2013

Miami, Florida

Professor Gang Quan, Major Professor

Catering to society’s demand for high performance computing, billions of transis-

tors are now integrated on IC chips to deliver unprecedented performances. With

increasing transistor density, the power consumption/density is growing exponen-

tially. The increasing power consumption directly translates to the high chip tem-

perature, which not only raises the packaging/cooling costs, but also degrades the

performance/reliability and life span of the computing systems. Moreover, high chip

temperature also greatly increases the leakage power consumption, which is becom-

ing more and more significant with the continuous scaling of the transistor size. As

the semiconductor industry continues to evolve, power and thermal challenges have

become the most critical challenges in the design of new generations of computing

systems.

In this dissertation, we addressed the power/thermal issues from the system-level

perspective. Specifically, we sought to employ real-time scheduling methods to op-

timize the power/thermal efficiency of the real-time computing systems, with leak-

age/temperature dependency taken into consideration. In our research, we first ex-

plored the fundamental principles on how to employ dynamic voltage scaling (DVS)

techniques to reduce the peak operating temperature when running a real-time ap-

plication on a single core platform. We further proposed a novel real-time scheduling

method, “M-Oscillations” to reduce the peak temperature when scheduling a hard

vii

real-time periodic task set. We also developed three checking methods to guarantee

the feasibility of a periodic real-time schedule under peak temperature constraint. We

further extended our research from single core platform to multi-core platform. We

investigated the energy estimation problem on the multi-core platforms and developed

a light weight and accurate method to calculate the energy consumption for a given

voltage schedule on a multi-core platform. Finally, we concluded the dissertation with

elaborated discussions of future extensions of our research.

viii

TABLE OF CONTENTS

CHAPTER PAGE

1 Introduction 1
1.1 Semiconductor Industry and Moore’s Law 1
1.2 The Rising Power Consumption and Its Challenges 4
1.3 The Temperature Issues . 5
1.4 Research Goal and Contributions . 9
1.5 Structure of the Dissertation . 10

2 Background and Related Work 12
2.1 Real-Time Systems and Computing 12

2.1.1 Real-Time Systems . 13
2.1.2 Real-Time Scheduling . 14

2.2 Power Minimization . 16
2.2.1 Power Dissipation in CMOS ICs 16
2.2.2 Power Minimization Methodologies 20

2.3 Temperature Minimization . 24
2.4 Power/Thermal Aware Scheduling . 27

2.4.1 Scheduling Solutions for Dynamic Power reduction 27
2.4.2 Scheduling for Overall Power Reduction with Constant Leakage 28
2.4.3 Thermal Aware Scheduling . 29
2.4.4 Power/Thermal Aware Scheduling with Temperature Sensitive

Leakage Power . 30
2.5 Conclusions . 32

3 Fundamentals of Leakage Aware Real-Time DVS Scheduling for Peak Tem-
perature Minimization 33
3.1 Related Work . 34
3.2 System Model Definitions . 36

3.2.1 Task Model . 36
3.2.2 Processor Model . 36
3.2.3 Power Model . 37
3.2.4 Thermal Model . 38

3.3 The Empirical Studies . 39
3.4 Peak Temperature Minimization Within a Specified Interval 47
3.5 Peak Temperature Minimization at the Stable State 54
3.6 Summary . 61

4 M-Oscillations : A Scheduling Technique for Peak Temperature Minimization 62
4.1 Related Work . 62
4.2 The System Models . 64
4.3 Scheduling for Peak Temperature Reduction 67

ix

4.4 Experiments and Results . 73
4.4.1 Performance Evaluation . 73
4.4.2 Performance Evaluation on a Practical Simulation Platform . 76

4.5 Summary . 81

5 Feasibility Analysis for Temperature-Constraint Hard Real-Time Periodic
Tasks 83
5.1 Related Work . 84
5.2 Preliminary . 86
5.3 The Leakage Oblivious Feasibility Analysis 89
5.4 The Leakage Conscious Feasibility Analysis 92

5.4.1 Simplifying the leakage/temperature dependency 93
5.4.2 Checking the Temperature at the End of First Hyperperiod . 94
5.4.3 Checking the Temperature Safe Modes 95
5.4.4 The Necessary and Sufficient Condition 98
5.4.5 Further Discussions . 103

5.5 Experiment . 105
5.5.1 Leakage Model Validation . 105
5.5.2 The Performance of Feasibility Conditions 108
5.5.3 The Impacts of Different Leakage Models 113

5.6 Conclusion . 114

6 Energy Minimization in Multi-Core Processor Systems 116
6.1 Related Work . 117
6.2 Preliminary . 119

6.2.1 Processor and Task Model . 119
6.2.2 Power Model . 120
6.2.3 Thermal Model . 121

6.3 Energy Formulation for Multi-Core Systems 122
6.4 Experimental validation . 126

6.4.1 Experimental Set-Up . 126
6.4.2 Accuracy Analysis . 127
6.4.3 Time Efficiency Analysis . 130

6.5 Energy-Minimization Scheduling Methods 131
6.6 Conclusions . 135

7 Conclusions and Future Works 136
7.1 Summary . 136
7.2 Future Work . 138

REFERENCES 145

VITA 157

x

LIST OF FIGURES

FIGURE PAGE

Figure 1.1 Trend Predicting Transistor Counts and Uncontrolled Power
Consumption [24] . 3

Figure 1.2 Technology Scaling Trends [24] 3

Figure 1.3 Projected Electricity in Data centers [7] 5

Figure 1.4 Power Consumption Trend [65] 8

Figure 1.5 Projected Electricity in Data centers [7] 8

Figure 2.1 A CMOS Inverter Circuit [95] 17

Figure 2.2 Types of Leakage Current in MOS [95] 19

Figure 2.3 A Logic Restructuring Example [95] 22

Figure 2.4 Power Gating Circuit [95] . 23

Figure 2.5 Using RC Network to Model a Processor’s Heat Transfer [119] 25

Figure 3.1 Different Speed Schedules: (a) The Dip Schedule; (b) The
Hump Schedule; (c) The Constant Schedule; (d) The Step-
Down Schedule; (e) The Step-Up Schedule. 40

Figure 3.2 The Peak Temperatures by Different Schedules Within a Given
Interval . 41

Figure 3.3 Peak Temperatures at the Stable Status by Different Schedules 44

Figure 3.4 Leakage Power Consumptions Calculated using Different Leak-
age Models under Different Temperatures and Supply Voltages 46

Figure 3.5 Peak Temperature . 50

Figure 3.6 Peak Temperature . 52

xi

Figure 3.7 The Constant-Speed Schedule and a Step-Down Schedule within
a Given Interval. 53

Figure 3.8 Stable Temperature for Step-Down and Step-Up Schedule . . 57

Figure 3.9 Stable Temperature for Step-Up and Constant-Speed Schedule 57

Figure 3.10 Step-Up Schedules Ŝ2(s2, s3) and Ŝ3(s2, s4) for a Real-Time
Periodic Task. 60

Figure 4.1 A Two-Speed Schedule that Uses Speed s1 for t1 Time Units
and Speed s2 for t2 Time Units. t1 + t2 = 1. 67

Figure 4.2 A Two-Speed Schedule that Uses Speed s2 for t1 Time Units
and Speed s1 for t2 Time Units. t1 + t2 = 1. 68

Figure 4.3 A Two-Speed Schedule and Its Corresponding M-Oscillations
Schedule. 70

Figure 4.4 Feasibility Comparison Between the M-Oscillations Scheme
and the Reactive Two-Speed Scheme under Different Maxi-
mum Temperature Constraints 74

Figure 4.5 Average Maximum Temperature Comparison Between the M-
Oscillations Scheme and the Reactive Two-Speed Scheme . . 76

Figure 4.6 Conceptual Flow Diagram of the Simulator Platform Set-Up 78

Figure 4.7 Temperature Pattern Running a Traditional Constant Speed
Schedule . 79

Figure 4.8 Temperature Pattern Running a M-Oscillations with m = 100 80

Figure 4.9 Temperature Pattern Running a M-Oscillations with m = 1000 80

Figure 4.10 Temperature Pattern Running a M-Oscillations with m = 10000 80

Figure 5.1 Since the slope for the linear function y = −a((C0+C1Tmax)) ·
v + bTmax is less than zero, there is only one cross point for
function y = −a((C0 + C1Tmax)) · V + bTmax and function
y = aC2V

3. So Equation 5.27 has only one real root. [104] . 97

xii

Figure 5.2 A speed schedule within 2 hyperperiods. 98

Figure 5.3 The Leakage Power Consumptions Based on Different Leakage
Models. 107

Figure 5.4 Success Rate Under Different Maximal Temperature (deadline-
period ratio = 0.3) . 110

Figure 5.5 Success Rate Under Different Deadline-Period Ratio. (Tmax =
50oC) . 110

Figure 5.6 Success Rate Under Different Initial Temperature(above am-
bient temperature). (Tmax = 50oC and deadline-period ratio
= 0.1) . 111

Figure 5.7 Success Rate Under Different Initial Temperature(above am-
bient temperature). (Tmax = 50oC and deadline-period ratio
= 0.5) . 112

Figure 5.8 Success Rate Under Different Initial Temperature(above am-
bient temperature). (Tmax = 50oC and deadline-period ratio
= 0.9) . 113

Figure 5.9 Feasible Task Sets Based on Different Leakage Models Under
Different Temperature (deadline-period ratio=0.3) 115

Figure 6.1 Illustration for thermal phenomena on multi-core system . . 121

Figure 6.2 Experimental Parameters . 126

Figure 6.3 Accuracy Analysis, Compared with the Numerical Method
Under ts = 0.01 . 128

Figure 6.4 Time Efficiency Analysis, Normalized with Our Method . . . 130

Figure 6.5 Thermal Aware Task Allocation on 3X3 Platform 131

Figure 6.6 Normalized System Energy (J) on 3x3 Multi-Core Platform . 133

Figure 6.7 Normalized System Energy (J) on 2x3 Multi-Core Platform . 133

Figure 6.8 ETA-EM vs TATA-EM on 3x3 Multi-Core Platform 134

xiii

Figure 7.1 source [65] . 139

Figure 7.2 A 3D Stacked Multi-core Architecture 142

Figure 7.3 Peak Temperature Dynamics on each Core, CASE 1 143

Figure 7.4 Peak Temperature Dynamics on each Core, CASE 2 144

Figure 7.5 Peak Temperature Dynamics on each Core, CASE 3 144

xiv

LIST OF TABLES

TABLE PAGE

Table 2.1 Duality Between Thermal and Electrical Quantities 24

Table 4.1 Equilibrium Speeds & Corresponding Maximum Temperatures 74

Table 4.2 The Different Supply Levels and Corresponding Frequencies . 77

Table 5.1 Processor parameters and constants for Model LKT&V 107

Table 7.1 HotSpot Parameters and Floorplan 141

xv

CHAPTER 1

Introduction

In merely past two decades, microprocessor performance has grown 1000-fold deliver-

ing unprecedented computing capabilities [24]. The advancement in microprocessor

performance has largely be driven by the continuous scaling of the transistor fea-

ture size that facilitates exponential transistor integration capacity (doubling every 2

years, Moore’s law). However, with increasing transistor density, the power density in

the microprocessors has also grown exponentially, doubling every three years [118, 22].

Moreover, the exponentially increasing power consumption results in a dramatic in-

crease in the chip operating temperature [118].

The exponential increase in the power consumption and the soaring chip temper-

ature creates enormous challenges put hurdles not only to the design of the future

computing systems but also to the associated economic (low cost computing) and

green computing (environment protection) goals. New power/thermal aware method-

ologies and techniques to combat the power/thermal issues becomes essential. In this

chapter, we first present the overview on the current technology trends, emphasizing

on the motivation behind our research work. Next, we define our research problem

and our contributions. Finally, we present the structure of this dissertation.

1.1 Semiconductor Industry and Moore’s Law

The semiconductor industry has shown an evolutionary expansion in terms of sophis-

ticated computing technologies and economic growth. Today, its a $2 trillion industry

in US, impacting socioeconomic growth of human population around the world [88].

The remarkable growth of electronic systems has largely driven by so called “Moore’s

law” [91]. According to Moore’s law, the number of transistors integrated on a single

chip will double approximately every 18 months [91, 88, 46], delivering exponentially

1

improved performance in new generations of computing systems. Moore’s prediction

of exponential increase in transistor density with every generation will continue to

be so, atleast in the near future [88]. The attainment of integration density objec-

tive has been catalyzed by the foundation of transistor scaling laid by Dennard et

al. in 1974 [43, 24]. For the past 50 years, with other technological advances (e.g.

fabrication, architecture, micro-architecture, testing etc.), Moore’s law coupled with

transistor size scaling has resulted in consistent exponential performance gains [46].

Transistor scaling would not cause power consumption problem if the supply volt-

age could be scaled down accordingly. The idealistic theory of transistor size scaling

rules that with every generation transistor dimensions should be reduced by 30%

(0.7X) keeping electric fields constant, shrinking area by 50%, doubling transistor

density and increasing performance by 40% (0.7X delay reduction, or 1.4X frequency

increase). The electric field is kept constant by reducing supply voltage by 30% re-

sulting in 50% power reduction per transistor [43, 24]. However, with the transistor

design paradigm shifting to the deep sub-micron domain (DSM), the idealistic scaling

theory ceases to hold valid anymore. Though the density of transistors’ continues to

increase exponentially for performance gains, the slow scaling of the supply voltage

due to stringent threshold voltage constraint has resulted in the exponential increase

in the power density of microprocessor systems.

As an example, in Figure 1.2, we can see the projected exponential scaling of the

feature size from 45nm to 8nm during the course of 8 years. The frequency and supply

voltage scaling (Vdd) on the other hand is expected to scale with slower pace in the

future, particularly Vdd scaling getting flat after 2014 (node < 20nm) [24, 46]. As

a result, the power consumption has been increasingly exponentially with transistor

density as illustrated in Figure 1.1.

2

Figure 1.1: Trend Predicting Transistor Counts and Uncontrolled Power Consump-
tion [24]

Figure 1.2: Technology Scaling Trends [24]

3

1.2 The Rising Power Consumption and Its Challenges

The tremendous increase in the transistor integration density has contributed to an

exponential increase in power demands. As depicted in Figure 1.1, on a 300mm2 die,

more than 100 billion transistors (logics + memory) are integrated today, seeking

tremenodus power consumption demands (300 watts) in the near future [23]. The

exponential increase of the power consumption brings two significant challenges in

front of the designers of the electronic systems: (1) how to provide the enough supply,

and (2) how to deal with the heat dissipated by the systems. These issues are critical

for both battery-operated portable devices and high performance power-rich systems.

For the first challenge, computation devices with limited power sources have strin-

gent constraints on power consumption. Recently times, there has been a tremendous

shift in the market for personal computing, with a rapid and widespread demand for

highly sophisticated portable/mobile devices like laptops, mobile phones, music play-

ers etc. For example, every four in ten Americans owns a portable MP3 player [116, 1]

and mobile phones are the fastest growing electronic product ever [116, 45]. Portabil-

ity in these devices put essential restrictions on the size, weight and power. Power is

particulary important, as these portable devices largely depend upon the battery-life

to deliver high performance. As the computation complexity is growing with a rapid

rate demanding higher power/energy supply, the much slower growth in battery ca-

pacity (3 - 7%/year) poses a critical limitation in front of the designers [107, 118]. As

the mobile devices are growing pervasive, energy efficiency is a critical design metric

for these these energy-constrained architectures [116, 141].

Power consumption has also become increasingly critical for power-rich platforms

such as data centers. Data centers and server systems play an important role in

today’s cyber infrastructure. Government organizations, hospitals, share markets,

IT companies etc., all depend upon data centers for their daily business activities.

4

Figure 1.3: Projected Electricity in Data centers [7]

Data center power consumption accounts for 1.5 - 2% of the total electricity usage in

the USA, costing nearly $4.5 billion [7]. The U.S. Environmental Protection Agency

(EPA) predicts that energy consumption in data centers will exceed 100 billion kWh

in 2011 [7](depicted in Figure 1.3), causing the federal governments electricity cost for

servers and data centers to be nearly $740 million annually by 2011. Evidently, the

need for power/energy efficient methods are of critical importance in contemporary

and futuristic computing environment.

1.3 The Temperature Issues

A significant part of the power consumption consumed by the system is converted

to heat. Therefore, the exponentially increasing power consumption results in the

dramatic increase in chip temperature. Managing temperature in advanced micropro-

cessors has become a severe challenge for computing system architects and designers.

The escalating heat has directly led to high cooling/packaging costs in micropro-

cessors (1-3 dollar/watt [119]). With more compact devices and non-uniform heat

distribution (hotspots) on the chips’ surface, traditional air-cooling methods have be-

come inadequate [98]. New cooling solutions like liquid cooling, micro-channel cooling

5

etc [120, 110] are studied for cost-effective heat removal. The severity of thermal prob-

lems is highlighted by Intel’s acknowledgement of hitting a “thermal wall” [90]. When

studying the temperature management in data centers, the numbers are striking. As

shown in Figure 1.5, the cooling cost in data centers has grown 400% in the last 10

years, and this is expected to rise with the same rate in the future. Moreover, it

is also reported that for 1 watt of computing, half to one watt has to be consumed

just for cooling [18, 25]. The expensive cooling methods in data centers are now a

serious threat to economic problems, leading to the “economic meltdown of Moore’s

Law” [25].

High chip temperature not only increases the cooling/packaging costs, but also

adversely affects the life-span and reliability of a device. The increase in chip tem-

perature increases the rate of life-time fault processes, like electromigration, time-

dependent dielectric breakdown, stress migration and thermal cycling [21, 20, 142].

Though there are several formulations of different type of fault processes, in gen-

eral reliability can be modeled by using the Arrhenius equation [61, 136, 21], i.e.

MTF = MTF0e
Ea
KbT , where MTF is the mean-time-to-failure of a system, and T

is the operating temperature. From this equation we can see that a device’s mean-

time-to-failure decreases exponentially with increasing operating temperature. Based

on this, Yeh et.al [135] observed that a 10oC rise in the temperature can result in

50% reduction of the system life span. Moreover, rising temperature has a negative

impact on system reliability. For instance each 15oC rise in the temperature can add

approximately 10 -15% circuit delay [111]. This causes various timing anomalies and

spurious transitions in digital systems.

High temperature also increases leakage power consumption substantially. With

continuous scaling of semiconductor technology, the transistor device size has al-

ready entered the deep sub-micron era (feature size < 90nm). As transistor size

6

becomes smaller and smaller, the temperature leakage dependency becomes stronger

and stronger. High temperature increases the leakage power consumption, which

further contributes to the overall power consumption. This positive feedback loop

between the overall power consumption and the temperature is a serious threat to

design of modern computing systems. This is particularly true as the leakage power

consumption has now become a significant contributor to the overall power consump-

tion of the system. As shown in Figure 1.4, the leakage power consumption will

increase dramatically in the near future. It is catching up and even surpassing the

dynamic power consumption [65]. It is shown by Liao et al. [77] that when changing

the temperature from 65oC to 110oC, the leakage power can increase as much as

38% for processors using the 65nm technology. Moreover, a 10oC rise in temperature

above 35oC can result in an increase of 126% in the leakage current [111].

Furthermore, driven by the performance demands and energy constraints, proces-

sor architectures are evolving from 2D integration to 3D stacked integrated chips. In

3D designs multiple 2D chips are stacked vertically to achieve higher performance

and energy efficiency due to reduced interconnects’ lengths [19, 86]. However, in 3D

stacked chips, the impact of increased temperature grows many folds due to strong

thermal relation between vertically aligned neighbors. This strong thermal corre-

lation elevates the thermal issues by creating more hot spots [147]. Particularly,

as increasing temperature has strong relation with leakage power and reliability, it

is shown that 30% variation in process parameters can result up to 20X increased

leakage power [28].

From the above discussion, it is evident that there is an urgent need to develop new

and efficient methodologies to address power/thermal issues in computing systems.

In the next section, we present the problem which we address in this dissertation,

followed by a brief description of our contributions.

7

Figure 1.4: Power Consumption Trend [65]

Figure 1.5: Projected Electricity in Data centers [7]

8

1.4 Research Goal and Contributions

The power/thermal challenges have grown critical and imposed severe threats to the

realization of new generations of computing systems. The severity of the challenges

requires development of new power/thermal aware design solutions at every design

abstraction level, i.e. architecture, system, logic, circuit, device etc. In this disser-

tation, we address these issues from the system-level perspective. We want to study

the real-time scheduling techniques coupled with resource management capabilities

available in modern processors to optimize the power and the thermal efficiency of

the real-time computing systems.

Through our research, we have developed several solutions to address the power/thermal

issues, which are summarized as following:

1. We first explored fundamental principles on how to employ dynamic voltage

scaling (DVS) to reduce the peak operating temperature. We find that, for a

specific interval, a real-time schedule using the lowest constant speed is not nec-

essarily the optimal choice any more in minimizing the peak temperature. We

identify the scenarios when a schedule using two different speeds can outper-

form the one using the lowest constant speed. In addition, we find that, when

scheduling a periodic task set, the constant speed schedule is still the optimal

solution for minimizing the peak temperature when the temperature is at its

stable status. We formulate our conclusions into several theorems with formal

proofs.

2. Next, we studied the problem on how to minimize the peak temperature of a

processor when executing a periodic task set. In our research, we developed a

novel real-time scheduling method, “M-Oscillations” that can reduce the peak

temperature when scheduling a hard real-time periodic tasks set. We formally

proved the correctness of the proposed algorithm based on a processor model

9

that can effectively account for the leakage/temperature relationship. The pro-

posed M-Oscillations scheduling method can reduce peak-temperature of the

system up to 14oC, improving feasibility of given tasks set by maximum 20%.

3. We also studied feasibility checking problem for real-time periodic task sets un-

der the peak temperature constraint. We showed that the traditional scheduling

approach, i.e. to repeat the schedule that is feasible through the range of one

hyper-period, does not apply any more. We then developed new necessary and

sufficient conditions to check the feasibility of real-time schedules.

4. We further extended our research from single-core processor to a multi-core

platform. Different from the traditional numerical approach, we developed an

analytical method to calculate the overall energy consumption rapidly and accu-

rately. Our experiments show that the proposed method can achieve a speedup

of two orders of magnitude compared with the numerical method, with a rela-

tive error of no more than 0.1%. Based on our light weight energy estimation

method, we presented new energy minimization techniques based on different

task allocation methods and compared their efficiency in minimizing the overall

energy consumption of a multi-core system.

1.5 Structure of the Dissertation

This dissertation is organized as follows: We start by presenting pertinent background

of our research work and related work in Chapter 2. Chapter 3 presents several

fundamental theorems and properties in reducing peak temperature of a processor

system. A novel real-time scheduling method, “M-Oscillations” that can reduce the

peak temperature when scheduling a hard real-time periodic tasks set is introduced

in Chapter 4. In Chapter 5, we present a set of feasibility checking methods for a

hard real-time periodic tasks set to guarantee real-time constraints under maximum

10

temperature constraints. In Chapter 6, we present a novel method to calculate the

energy consumption efficiently and effectively for a given voltage schedule on a multi-

core platform, with the leakage/temperature dependency taken into consideration.

Finally, in Chapter 7, we conclude this dissertation and discuss the possible future

work of this research.

11

CHAPTER 2

Background and Related Work

In this chapter, we present pertinent background of our research and related work.

We begin our discussion with a general introduction to the basic concepts related

to the real-time systems and computing. Next, we discuss the power consumption

sources in the CMOS circuits, followed by a survey on power and thermal management

techniques at different design abstraction levels. Then, we present a literature review

on the existing power/thermal aware scheduling methods that are closely related to

this dissertation.

2.1 Real-Time Systems and Computing

Real-time systems are pervasive. They are adapted and implemented in several do-

mains of computing, like defense and space systems, communication systems, au-

tomotive systems, multimedia etc. Mostly hidden, real-time systems work in the

heart of various computing platforms and perform important services for humankind.

They reside in our cars controlling engine and brakes, in our TVs/games maintaining

undisrupted entertainment, in health monitoring devices like blood pressure machine

evaluating our fitness level, etc. With real-time systems finding utility in almost ev-

ery electronic device around us and performing some very crucial tasks, the reliability

and correctness of real-time systems becomes very important. It will be no exagger-

ation in identifying real-time computing and associated issues as the most important

research area in the development of computing systems. In this section, we discuss

some of the key concepts of real-time systems. We further discuss different problem

areas and published solutions related to real-time scheduling.

12

2.1.1 Real-Time Systems

In a real-time system the correctness of the system behavior depends not only on the

logical result of the computations, but also on the physical instant at which these

results are produced. A real-time system has to respond to an externally generated

stimuli within a specified time [81, 114]. In simple words, we can describe a real-

time system as a system that has a deadline. The violation of timing constraints in

real-time systems degrade the quality of service and in some cases may also result

in catastrophical accidents [81, 114]. Real-time systems can be broadly categorized

into hard real-time systems with hard timing constraint and soft real-time systems

that have some tolerance for timing lateness and may respond with decreased service

quality.

In general, a unit of work that is scheduled and completed by a computing system

is called a job, and a set of related jobs jointly executing some specific system function

is called as a task [81]. The job/task models used in real-time systems are very

important in characterizing the type of real-time computing system. A task can be

periodic or aperiodic.

Periodic vs Aperiodic: A periodic task is a sequence of jobs, with a minimum

length intervals between release times of two consecutive jobs. The tasks are invoked

at regular intervals following a deterministic pattern of time intervals. For example,

in air traffic control(ATC) system, the status of each aircraft is monitored using active

radars. These radars check the status periodically and update the ATC controller [81].

On the other hand, an aperiodic or sporadic task is a sequence of jobs with unknown

release times. These tasks are invoked in irregular pattern and the inter-arrival times

between consecutive jobs in such a task may vary widely. For instance, in a setting

of radar surveillance system, the system should be responsive to operators command

but not on the expense of task with hard deadline.

13

2.1.2 Real-Time Scheduling

In a real-time system the execution of every task requires computational and data

resources. The real-time scheduling is concerned with the allocation and management

of the resources to complete the assigned workload within the timing constraints.

Given a task set with necessary timing information, available system resource and

design constraints, the real-time scheduling answer the questions of when and where

the task should be executed in order to satisfy timing constraints, at the same time

other design metrics are optimized and never violated, e.g. energy, peak temperature

etc.

Over the past several decades real-time scheduling has been studied extensively to

address issues related to feasibility of task sets, performance optimization etc. for a

span of combinations of processor architectures and task models. Based on different

characteristics of applications, resource availability and system requirements, real-

time scheduling methods can be classified in several ways:

1. Priority-driven vs Non-Priority : In priority driven real-time scheduling meth-

ods at any scheduling decision time, the jobs with the highest priorities are

scheduled and executed on the available processors. Other commonly used

names for this approach are greedy scheduling, list scheduling and work-conserving

scheduling [81]. Some examples of priority-driven scheduling includes earliest

deadline first (EDF) scheduling, rate monotonic scheduling(RMS) etc [79]. On

the other hand in non-priority driven methods some policies like round-robin

are used to determine if the task should start executing or not [121].

Moreover, priority-driven algorithms can be further divided into fixed/static pri-

ority algorithms and dynamic priority algorithms. In fixed priority algorithms,

priorities of tasks are assigned during compile time and they remain unchanged

throughout the execution, e.g. RMS. A fixed-priority algorithm assigns the

14

same priority to all the jobs in each task. In contrast, a dynamic-priority algo-

rithm assigns different priorities to the individual jobs in each task. Hence the

priority of the task with respect to that of the other tasks changes as jobs are

released and completed [81], e.g. EDF algorithms.

2. Preemptive vs Non-Preemptive : If the execution of lower priority task is

stopped or preempt for a higher priority task then the scheduling scheme is

called as preemptive scheduling and non-preemptive otherwise. Preemptive or

non-preemptive scheduling of tasks is possible with static and dynamic schedul-

ing [10].

3. On-line vs Off-line : On-line algorithms makes scheduling decisions during run-

time. The parameters of each job become known to the on-line scheduler only

after the job is released. All priority-driven algorithms are considered on-line

scheduling techniques. In off-line scheduling, scheduling decisions are made

statically during compile time. This assumes parameters of all the tasks is

known a priori and builds a static schedule based on this [79].

Furthermore, real-time scheduling methods can be classified based on type of

underlying architecture, i.e. uniprocessor scheduling and multiprocessor scheduling.

When addressing scheduling problems on uniprocessors, a scheduler needs to deal

with when the task should be executed such that the entire workload is feasible. On

uniprocessor scheduling, work done by Liu and Layland [79] is of special interest and

great importance. In [79], Liu and layland proposed two priority-driven scheduling

algorithms i.e. a dynamic-priority scheduling named earliest deadline first(EDF) and

a fixed priority algorithm called rate monotonic scheduling (RMS). Both EDF and

RMS have been used extensively in the research domain as the underlying scheduling

policy for other design metrics optimization like energy minimization ([101, 149, 103]),

schedulability/feasibility analysis([5, 100]) etc.

15

In multiprocessor scheduling, the problem is not only to determine when a given

task executes but also where it executes. There are also issues related to availability of

necessary resources at the processor at which a task is scheduled to execute, contention

for communication across a network, etc. These issues make the problem substan-

tially harder to solve. There have been extensive researches published on real-time

scheduling for homogeneous/heterogenous multi-core systems [9, 8, 69, 74, 51, 47].

These scheduling algorithms can be largely categorized into three classes: the parti-

tioned approach (e.g. [9]), the global (or non-partitioned) approach (e.g. [8]) and the

semi-partitioned approach (e.g. [69, 74, 51, 47].

In the partitioned scheduling, each real-time task is assigned to a dedicated pro-

cessor. All instances from the same task will be executed solely on that particular

processor. In global scheduling, all jobs first enter a global queue, and thus each task

can be potentially executed on any processor. The semi-partitioned algorithms are

combination of previous two approaches, i.e. some tasks are assigned to a dedicated

processor, while rest can migrate among available resources.

2.2 Power Minimization

The CMOS technology has served as the leading solution and will continue to be

the primary solution for the foreseeable future in the design/fabrication of integrated

circuits. As the goal of this dissertation is to address power/thermal issues in CMOS

ICs, it is important to understand the basics of power dissipation in CMOS circuits.

2.2.1 Power Dissipation in CMOS ICs

There are mainly two sources of power consumption in a CMOS circuit, i.e. dynamic

power consumption and static/leakage power consumption.

Dynamic Power: The dynamic power dissipation is associated with the switch-

16

Figure 2.1: A CMOS Inverter Circuit [95]

ing of logic values in the circuit. This power component is essential to performing

useful logic operations and occurs during the charging/discharging of the load capac-

itor in MOS transistors, as in Figure 2.1 [95, 107]. It can be formulated as [107]:

Pdyn = α0−>1 ∗ CL ∗ V 2
dd ∗ f (2.1)

Where α0−>1 is the switching factor, Vdd represents the supply voltage, CL is the load

capacitance and f represents the clock frequency. Equation (2.1), implies the methods

and underlying fundamental principles in dynamic power reduction, such as reducing

activity (α0−>1), reducing the circuit complexity (CL), scaling the supply voltage(Vdd)

and/or adjusting the circuit speed (f). We can also notice that the impact of scaling

supply voltage to dynamic power can be significant as they share a quadratic relation.

17

Leakage power: The static power is associated with maintaining the logic values

of internal circuit nodes between the switching events. This type of power consump-

tion mostly comes from leakage power which occurs when the leakage current flows

through diodes or transistors. Such a power dissipation does not contribute to any

useful computation. Leakage power can be formulated as [107]:

Pleak = Ileak ∗ Vdd (2.2)

Where Ileak is the leakage current and Vdd is the supply voltage. In MOS transis-

tors (PMOS/NMOS), there are three main sources of leakage current, as shown in

Figure 2.2

1. Source/Drain Junction Leakage Current (ID) : The junction leakage occurs from

the source or drain to the substrate through the reverse-biased diodes when a

transistor is OFF. The magnitude of the junction leakage current depends on

the area of the drain diffusion and the leakage current density, which is in turn

determined by the process technology [95, 107].

2. Gate Direct Tunneling Leakage Current (IG) : The gate direct tunneling leakage

flows from the gate through the leaky oxide insulation to the substrate. Its

magnitude increases exponentially with the gate oxide thickness and supply

voltage [95, 107].

3. Sub-Threshold Leakage Current (ISUB) : The sub-threshold current is the drain-

source current of an OFF transistor. This is due to the diffusion current of

the minority carriers in the channel for a MOS device operating in the weak

inversion mode (i.e., the sub-threshold region). The magnitude of the sub-

threshold current is a function of the temperature, supply voltage, device size,

and the process parameters out of which the threshold voltage plays a dominant

18

Figure 2.2: Types of Leakage Current in MOS [95]

role [95, 107].

It has been studied that the leakage current due to subthreshold conduction (ISUB

and gate leakage current (IG) (see Figure 2.2) are the dominating component among

different types of leakage current [107, 95]. Following what, Liao et al. established a

complex relationship between the leakage current and the temperature and formulated

the leakage current as: [77],

Ileak = Is · (A · T 2 · e((α·Vdd+β)/T) + B · e(γ·Vdd+δ)), (2.3)

where Is is the leakage current at certain reference temperature and supply volt-

age, T is the operating temperature, Vdd is the supply voltage, A,B, α, β, γ, δ are

empirically determined technology constants. This model is used extensively in

several research work in developing theoretical framework for system level analy-

sis [35, 30, 66, 140, 106, 100]. This micro-architecture level modeling is very complex

and unwieldily to be implemented for system level analysis. Following which, Liu et

19

al. [84] demonstrated that within a temperature range using a piece-wise linear model

can accurately estimate leakage power consumption (within 1% relative error). More-

over, for a tighter temperature range linear models can be fairly accurate. Based on

this observation, a number of researches (such as [35, 48, 30]) adopted a simple tem-

perature/leakage dependency model that assumes the leakage current changes linearly

only with temperature. Quan et al. [104] introduced a more accurate and practical

linear model that is sensitive to both temperature and supply voltage (with 5% rel-

ative error). A detailed comparative study of different leakage models is presented

in [59].

2.2.2 Power Minimization Methodologies

As power consumption becoming more and more critical, research has been conducted

at various design abstraction levels, i.e. architecture level, system level, logic level,

circuit level and device level, targeting both dynamic power and leakage power con-

sumptions.

Dynamic Power Minimization: To reduce the dynamic power, techniques

that can help to reduce the factors formulated in Equation 2.1, namely capacitance,

supply voltage, frequency, and switching activity, have been developed at different

design abstraction levels:

• Dynamic Voltage and Frequency Scaling (DVFS/DVS): In general real-time sys-

tems are usually designed under the assumption of worst case execution time

(WCET). Since tasks rarely execute up to their WCETs, there are good oppor-

tunities for power and energy savings. DVFS (or DVS) is a method to provide

variable amount of energy for a task by scaling the operating voltage/frequency

at run-time (Vdd and f in Equation 2.1). With dynamic power having con-

vex relationship with supply voltage, this technique is one of the most effective

20

dynamic power reduction methodology [125]. Most modern processors today

are augmented with hardware blocks that allow changing the supply voltage

dynamically [134, 107, 95, 101].

• Clock Gating : Clock-gating is a well known High level (architecture/ RTL)

technique for reducing dynamic power consumption of the synchronous designs.

Clock power is a major component of total power consumption (about 40%),

which makes clock-gating a very important power saving technique. Several

work on low power design using different variation of clock gating are available

in literature [129, 89, 44]

• Logic Gate Restructuring : This is a logic-level strategy to attack the switch-

ing activity factor (α0−>1 in Equation 2.1) by improving the topology of the

logic network. The topology of a logic network can severely affect the power

dissipation. For example, in Figure 2.3, both chain and tree structure give

same output. However, the switching activity factor of chain structure is ob-

served to be less than the tree structure for random inputs [107]. Besides logic

gate restructuring, there are some other techniques like input reordering, path

balancing methods etc. which are used for reducing the switching activity by

either removing spurious transitions due to glitching/jitter or reducing delay in

intermediate nodes through reordering the input signals [107].

• Transistor Sizing : Transistor sizing is a circuit level technique that target

load capacitance (CL in Equation 2.1) of CMOS gates to minimize dynamic

power consumption. The rationale behind transistor sizing is that not every

transistor is required to be large (fast) for performance. This is a complex

method that involves caution and is implemented based on peformance/power

tradeoff factors [107]. Several research work on developing algorithms for better

21

Figure 2.3: A Logic Restructuring Example [95]

transistor sizing decisions are available in the literature [108, 37].

Leakage Power Minimization: Leakage power dissipation is becoming sub-

stantial in the modern CMOS VLSI circuits. It severely impact the design of the

future computing systems and is of vital importance. Due to the continuous scaling

of device sizes (Moore’s law), the voltage supply levels and threshold voltage of MOS

transistors are also scaling. Based on the leakage model discussed above, we now

present some of the effective leakage power minimization techniques

• Body Biasing: The leakage current can be reduced by reverse body biasing that

increases the threshold voltage of transistors in STANDBY modes [112, 95].

Due to reverse biasing, a transistor increases its threshold voltage. This results

in a decrease in the leakage current of the transistor. Because the threshold

voltage changes with the square root of the reverse bias voltage [107], a large

voltage may be necessary to get a small increase in the threshold voltage. As a

result, this method becomes less effective as the supply voltage is scaled down.

• Power Gating : Power gating is an intuitive method to address leakage power

dissipation during device off-mode. It is implemented using one PMOS tran-

sistor and one NMOS transistor in series with the transistors of each logic

block to create a virtual ground and a virtual power supply as depicted in

Figure 2.4. During the STANDBY state of the circuit, the extra transistor

disconnect the gate from the ground, hence increasing threshold voltage. In

22

Figure 2.4: Power Gating Circuit [95]

practice, Dual CMOS or Multi-Threshold CMOS (MTCMOS) is used for power

gating [95, 70, 12]. The implementation of this technique is non-trivial, specially

for sequential circuits.

• Minimum Leakage Vector Method : The leakage current of a circuit is a strong

function of its input values. In [6], Abdollahi et al. leveraged on this fact to

reduce leakage current. They formulate the problem of finding the minimum

leakage vector (MLV) using a series of Boolean Satisfiability problems. The

solution vector was used to reduce leakage power by driving the circuit using

calculated input vector during STANDBYmode [95, 49]. This method is inferior

to power gating in terms of magnitude of leakage reduction, but is free from

any implementation difficulties [95, 49].

As previously discussed, controlling chip temperature is also an effective method

to reduce leakage power consumption.

23

2.3 Temperature Minimization

In managing thermal problems, thermal modeling is of critical importance to ex-

plore the large design space without expensive silicon prototypes [60]. Thermal

models facilitate accurate characterization of thermal stress, temporal and spatial

non-uniformities and application dependent behavior [119].

To study thermal-aware design techniques at the architectural-level, Skadron et

al. [4, 119] proposed an accurate and fast architectural-level thermal model called

“Hotspot”. The thermal modeling is based on the well known duality between the

heat transfer and the electrical current flow (as shown in Table 2.1),

Table 2.1: Duality Between Thermal and Electrical Quantities

Thermal Quantity Electrical Quantity

Power consumption: P (W) Current flow: I (A)

Temperature: T (oC) Voltage: V (V)

Thermal resistance: R (oC/W) Electrical resistance: R (Ω)

Thermal capacitance: C (J/oC) Electrical capacitance: C (F)

HotSpot models every power consuming smallest micro-architecture block of pro-

cessor as a node in an RC network. In this way, each functional unit on the chip is

represented by one or more nodes within the RC network 2.5. The HotSpot model

includes active layer, thermal interface layer, heat spreader layer and heat sink layer,

resulting in a three dimensional RC network. Based on this RC network and basic

circuit laws, a system of differential equation is established.

HotSpot uses fourth order Runge-Kutta method to solve this set of differential

equations to capture the thermal dynamics of microprocessors. The model has been

validated using finite element simulation. HotSpot has a simple set of interfaces and

hence can be integrated with most power-performance simulators [119]. The chief

24

advantage of HotSpot is that it is compatible with the kinds of power/performance

models used in the computer-architecture community, requiring no detailed design or

synthesis description.

Figure 2.5: Using RC Network to Model a Processor’s Heat Transfer [119]

Temperature Minimization Methodologies

Developing solutions for thermal related issues is not a straight forward effort, like

what we see in the power minimization techniques. One interesting fundamental of

the thermal issues is that even though technically temperature is a byproduct of

power consumption, but thermal management problems are distinctly different from

the power management issues [118]. In modern integrated circuits, heat dissipation is

not uniform on the chip creating several hot spots or high power density points. This

non-uniformity gets worse with increasing transistors density, non-uniform scaling of

supply voltage and increasing leakage power consumption.

As a result, an effective low-power technique may have little or no effect on oper-

ating temperature of the chip [118, 77, 106]. In fact, sometimes low power techniques

could result in the higher temperature due to smaller structures and limiting activ-

25

ity to a smaller area [60]. There is another one important difference between power

management and thermal management solutions, i.e. power management techniques

usually seek to reduce total chip power ignoring localized power densities, on the

other hand temperature management methods control local hot spots [60].

The traditional way to protect ICs from worst case heat dissipation is to depend

heavily on the rather expensive thermal package solutions (e.g. heat sink, fan, cold

plates etc.). However, with rising packaging costs and meagre chances of worst case

temperature to happen, this solution can be costly. Moreover, with processors evolv-

ing from single core to multi-core, conventional back-side heat removal strategies such

as air-cooled heat sink etc. are insufficient to provide better cooling.

Therefore, better cooling solutions like inter-tier liquid cooling, micro-channel

liquid cooling etc. are gaining lot of attentions for efficient heat removal. For instance,

in [120], an energy efficient dynamic inter-tier liquid cooling method is proposed,

that can achieve as much as 30% reduction in system level energy consumption. In

addition, any applications that dissipate more heat than package capacity, should

engage an alternative dynamic thermal management technique (DTM) [118].

Dynamic Thermal Management Approaches: In the recent years, dynamic

thermal management(DTM) has emerged as an interesting and very effective thermal

management scheme [119]. DTM allows an adaptive control on chip temperature

by dynamically applying forced (e.g. clock throttling) heat reduction when the chip

reaches a thermal emergency situation. It addresses the problem of higher thermal

packaging costs by allowing designers to use thermal packaging for some lower tem-

perature instead of high temperature due to peak power consumption.

A number of DTM approaches are proposed recently, such as task migration [78],

global clock gating [52], fetch toggling [26] and decode throttling [119]. Out of which,

task migration and clock gating are widely used in the temperature minimization.

26

2.4 Power/Thermal Aware Scheduling

The system-level scheduling techniques are very effective in addressing power/thermal

issues in microprocessors. In past two decades power/thermal aware scheduling meth-

ods have been studied extensively for both single core (e.g. [134, 64, 97, 127] etc.)

and multi-core architectures (e.g. [124, 36]etc).

2.4.1 Scheduling Solutions for Dynamic Power reduction

The early efforts in the real-time scheduling were focused on using DVS for reducing

the then dominant dynamic power consumption (e.g. [134, 64, 97] etc.). For instance,

addressing single processor architectures, Yao et al. [134] proposed an energy-optimal

off-line scheduling method with continuous speed levels. Employing this greedy al-

gorithm, Yao et al. proved that using lowest constant speed to complete the task

results in the minimum energy consumption. Ishihara et al. [64] extended this work

to discrete speed levels and proved that if this constant speed is not available then

using the two neighboring speeds will be the next optimal solution. Pillai et.al [97]

proposed a couple of on-line real-time DVS scheduling schemes that can guarantee

deadlines of tasks saving significant energy consumption. Several other related ap-

proaches were proposed in [71, 101, 102, 115]. For example, Kim et al. [71] proposed

an energy reduction technique for periodic tasks with EDF priority by improving

slack time estimation. On the other hand, authors in [101, 102, 115], addressed fixed-

priority scheduling exploiting slack time for power reduction using power down mode

and DVS.

The energy-efficient scheduling in multi-core systems are often NP-hard, as a re-

sult several heuristics and approximation techniques are studied to minimize dynamic

energy consumption on multi-core platforms [143, 33, 50, 148]. In [50] Gruian used

simulated annealing algorithm for task to core allocation and developed two-stage

27

energy minimization method when scheduling tasks with inter-dependencies. Zhang

et al. [143] proposed a technique that finds the optimal task allocation for energy

minimization by exhaustively checking all possible permutations of task allocation

running on the minimum speed that could guarantee real-time constraints for each

task. A heuristic algorithm with largest task first strategy is proposed in [33]. More-

over, exploiting slack time sharing on multiple processors, Zhu et al. [148] developed

a power-aware scheduling method for energy minimization such that timeliness of the

schedule is never violated.

2.4.2 Scheduling for Overall Power Reduction with Constant Leakage

Reducing dynamic power consumption is important in solving energy efficiency prob-

lems, however, ignoring leakage power consumption leaves the above mentioned schedul-

ing techniques ineffective in contemporary and modern integrated circuits. Acknowl-

edging the growing dominance of leakage power dissipation in overall energy consump-

tion, several research works are published addressing overall energy minimization in

both single core (e.g. [63, 67, 94, 103] etc.) and multi-core platforms(e.g. [131, 34, 42]

etc). For example, Irani et al. [63] proposed an off-line approximation algorithm with

a competitive ratio of 3 on a DVS processor with continuous speed levels. The ap-

proach is based on energy-optimal greedy algorithm in [134]. They also proposed an

on-line algorithm with constant approximation factor.

In a separate approach, authors in [94] and [103] proposed efficient method that

merge idle intervals due in a DVS schedule by delaying the execution of task in-

stances, so that the processor shutdown overhead can be reduced and the overall

energy performance can be improved. When addressing overall energy minimization

on multi-core systems, Langen et al. [42] presented leakage-aware heuristics to deter-

mine tradeoff between DVS, shut down and optimal number of active processors. In

28

a related work, Xu et al. [131] proposed an algorithm to estimate the system load and

corresponding optimal number of processing nodes for energy efficiency in cluster sys-

tems. Unlike [42], processors in this work are assumed to have discrete speed levels.

However, all these techniques for overall energy reduction modeled leakage power as

a constant value and therefore their efficiency in energy reduction is strictly limited,

abandoning energy-efficiency to continue as a grave challenge.

2.4.3 Thermal Aware Scheduling

In addition, along with technology scaling thermal challenges are growing aggres-

sively, making temperature a critical constraint to achieve desirable performance.

Moreover, as previously mentioned that power/energy aware solutions are incom-

petent to address thermal issues single handedly, an increasing number of researches

have been published on thermal-aware scheduling for both single and multiple proces-

sor platforms(e.g. [14, 105, 139, 127, 109] etc). For example, in [14] and [32] authors

try to identify the upper bound of the maximal temperature when executing real-

time tasks on a single processor. These techniques cannot guarantee that real-time

tasks can still meet deadlines when the maximal temperature is given. Some others

(e.g. [14, 38, 29, 109]) intend to minimize the peak temperature or guarantee the

given maximal temperature constraints when scheduling a job set or a single copy of

a task graph. For example, Chantem et al. [29] proposed an MILP-based solution to

minimize the peak temperature when executing a task graph.

Recently, significant amount of 3D thermal-conscious OS-level work has been pub-

lished [40, 146, 76, 83, 87, 122]. In [146], an online thermal-aware task scheduling

technique for high performance with reduced peak temperature is proposed. The

methodology involves temperature-balance among ’super-cores’ combined with DVFS

to avoid thermal emergencies. An online rotation task scheduling policy to reduce

29

peak temperature on the 3D multi-core system is proposed in [76]. Liu et al. [83]

proposed a thermal-aware job allocation technique, which always assigns hot jobs to

core near heat sink, for fast heat removal so that the peak temperature of the system

can be reduced.

2.4.4 Power/Thermal Aware Scheduling with Temperature Sensitive Leak-

age Power

Several power/thermal aware scheduling methods have been proposed addressing var-

ious design metrics for both single core and multi-core systems incorporating leak-

age/temperature dependency into system models. For example, in [104, 100], authors

formulated several feasibility checking methods when scheduling a periodic tasks set

on a uniprocessor. In [31, 73, 139, 66, 29, 48] etc. several thermal-aware scheduling

techniques were proposed to reduce peak temperature on both single core and multi-

core processors. In [66] Jayaseelan et al. proposed different iterative job sequencing

techniques to identify the peak temperature and to reduce the peak temperature of

the system. Kumar et. al [73] proposed a stop-n-go approach to reduce the peak

temperature for task with data dependencies. They distribute the slack time between

jobs such that temperature can be minimized and there is no make-span violation.

In [35], Chen et al. proposed proactive scheduling methods to minimize response

time under the thermal constraint, and also the reduction of the peak temperature

under timing constraints. Fisher et al. [48] proposed method to minimize the peak

temperature in a homogeneous multi-core system, by deriving an ideally preferred

speed for each core in a global task scheduling environment.

As we know escalating energy consumption is a serious problem, that worsen with

leakage and temperature interplay, authors in [57, 132, 17, 53, 85] proposed tech-

niques to minimize energy consumption under peak temperature constraints. For

30

instance, Huang et al. [57] derived a closed-form energy calculation equation based

on which they further proposed an energy minimization scheduling method for peri-

odic task sets. In [132], Yang et al. presented a procedure to find the optimal pattern

of schedule with the minimum energy consumption at the steady state. Hanumaiah

et al. [53] formulated energy minimization as a quasiconcave optimization problem

and employed DVFS, task migration and cooling methods to optimize the objective

function on a multi-processor system. On the other hand, Liu et.al [85] developed a

thermal-constrained energy optimization procedure to minimize system energy con-

sumption under peak temperature constraint.

Performance optimization has always been the first class design objective specially

with temperature constraints. In [30, 58, 80, 54] and [55] authors proposed techniques

to improve processor performance by maximizing the throughput or minimizing the

makespan time under peak temperature limitations. Chantem et al. [30] proposed to

run real-time tasks by frequently switching between the two speeds which are neigh-

boring to the constant speed whose stable temperature is the given peak temperature.

In [58], Huang et al. proposed two approaches to maximize the throughput for a peri-

odic real-time system under the given peak temperature constraint, one for processor

with simple active and sleep mode and the other for more complicated processors

with DVFS capabilities. When maximizing throughput on multi-core platforms, au-

thors in [55] address task-to-core allocation over migration intervals and voltage speed

scaling within migration intervals as a separate problem and translated task-to-core

allocation in MILP -formulation. To reduce the non-linearity of the function several

assumptions were made to solve the optimization functions.

Including leakage power model, Zhu et al. [147] proposed a run-time thermal man-

agement technique that exploits the heterogeneity of execution cores and workload.

They proposed a proactive hardware-OS assisted technique to achieve efficient ther-

31

mal management. A closely related adaptive approach that balances the temperature

on the cores,’ Adapt3D’ was proposed by Coskun et al. [40]. Coskun et al. used a

second order polynomial temperature dependence leakage model in their method and

proposed a thermal-aware job scheduling technique that uses a thermal history of

neighbors in job allocation decisions.

2.5 Conclusions

In this chapter, we discussed several relevant background of our research and related

work. We presented a general introduction to the basics of real-time systems, task

models and real-time scheduling. Next, we discussed power/thermal modeling and

several effective ways to address power/thermal challenges from different design ab-

straction levels. We then, presented a literature review on the existing power/thermal

aware scheduling methods that are closely related to this dissertation.

In this dissertation, our goal is to develop power/thermal aware scheduling solu-

tions for both single core and multi-core, hard real-time system with deterministic

workload under various design constraints. In the next four chapters, i.e. Chapters 3,

4, 5 and 6 we present our contributions. We will conclude this dissertation in Chapter

7.

32

CHAPTER 3

Fundamentals of Leakage Aware Real-Time DVS Scheduling for Peak

Temperature Minimization

In the previous chapter, we discussed some of the background information that is

closely related to our research work. We now present a detail discussion on our first

contribution. In this chapter, we study the fundamental principles on how to employ

dynamic voltage scaling (DVS) to reduce the peak operating temperature. Our goal

is to formulate guidelines and principles that can be used to make effective decisions

when applying DVS for thermal management.

Since the thermal management problem is closely related to the power reduction

problem, we started our research by investigating how effective the basic principles

for energy reduction can be, when applied for dynamic thermal management. We

began with the two well-known principles ([134, 64]), for dynamic energy reduction,

• Principle 1 : Using the lowest constant speed leads to the schedule that con-

sumes the minimum dynamic energy;

• Principle 2 : If a single lowest constant speed is not available, then using two

closest neighboring speeds is the optimal solution in dynamic energy reduction.

The question then becomes: when considering the complex relationship among the

leakage power, the temperature, and the supply voltage, is it still true that a real-time

schedule employing the lowest constant speed will lead to the lowest peak temperature

within the scheduling interval? We find that, for a specific workload and interval, the

schedule that uses the lowest constant speed is not necessarily optimal anymore in

reducing the peak temperature. We identify the scenarios when a schedule that uses

two different speeds may in fact lead to lower peak temperature. We also find that

principles similar to the two listed above do exist to minimize the peak temperature

33

during the temperature stable status when scheduling a periodic task. We formulate

our observations into several theorems with formal proofs. The significance of this

chapter is that it uncovers a number of fundamental principles in the development of

effective DVS techniques for thermal aware computing.

The rest of the Chapter is organized as follows. Section 3.1 introduces the related

work. System models used in this chapter are defined in Section 3.2. Section 3.3

presents our empirical results to motivate our research. Fundamental principles are

formulated and proved in Section 3.4 and 3.5. Section 3.6 concludes the chapter.

3.1 Related Work

Closely related to our work, there are many thermal aware scheduling researches

that seek to reduce the maximum operating temperature for a computing system.

For example, Bansal et al. [14] modeled the cooling behavior of a device using first-

order approximation to manage the temperature and energy of the system. Zhang et

al. [139] proposed performance optimization by latency minimization under thermal

constraints. Chantem et al. [30] proposed a dynamic work maximization technique

by using DVFS with non-negligible transition overheads and under the temperature

constraint. In [66] Jayaseelan et al. proposed different iterative job sequencing tech-

niques to identify the peak temperature and to reduce the peak temperature of the

system. Chaturvedi et al. developed [31] a so-called “M-Oscillations” scheduling

method to minimize the peak temperature for a periodic task set. In their approach

they used two-neighboring speeds to oscillate alternately to reduce the peak temper-

ature of the system. Liu et al. [82] proposed to reduce the temperature of the system

by properly sequencing hot and cool jobs and allocating slack time to hot jobs based

on the duration of execution. Kumar et. al [73], proposed a stop-n-go approach to

reduce the peak temperature for task with data dependencies. They distribute the

34

slack time between jobs such that temperature can be minimized and there is no

make-span violation. In [72], Kumar et al. developed a novel online technique that

uses shapers to insert idle-time between the task set to reduce the peak temperature

of the system. They modeled the task set by a resource-based curve on a single speed

processor.

One distinct difference between our research and the existing researches is the

way we deal with the leakage/temperature dependency. Some of the existing work

totally ignore the leakage power or the leakage/temperature dependency(e.g. [72, 73,

17, 139]). As discussed before, a thermal aware scheduling technique becomes out of

sync with the current IC technology in the deep submicron domain without taking

the leakage/temperaure dependency into considerations. As the leakage power be-

comes more prominent, the heat generated by the processor can dramatically increase

the leakage power and thus the overall power consumption. At the same time, the

increased overall power consumption will in turn drive the temperature to an even

higher level. Therefore, to build an appropriate model that can effectively handle

the sensitive relationship between leakage/temperature, is the key to success when

developing thermal aware scheduling techniques.

One way to deal with the leakage/temperature dependency is to incorporate the

complex circuit level leakage model into system analysis ([56, 137]). For instance, He

et al. [56] and Yuan et al. [137] studied how to reduce the leakage power at the system

level. Yuan et al. [137] introduced an off-line and an on-line scheduling algorithm that

take into account the leakage/temperature interactions when scheduling a set of soft

real-time jobs.

Another common approach to address the leakage/temperature dependency that

is adopted by existing work (such as [35, 30, 17, 11, 140, 96, 73, 72]) is to assume that

the leakage power changes linearly or quadratically with temperature. Since leakage

35

current changes super linearly with temperature [84], this model works well if the sup-

ply voltage do not change. Otherwise, as evidenced by the empirical results in Huang

et al. [59], this model can lead to large discrepancies in either power consumption or

peak temperature calculation in a DVS system.

3.2 System Model Definitions

In this section we define the system models used in this chapter, which include the

task model, the processor model, the power model, and the thermal model.

3.2.1 Task Model

We consider two real-time application scenarios. In the first case, we assume that

a number of real-time tasks within total execution cycles of c start at time 0 must

be finished within the interval of [0, p]. Since all tasks have the same deadline, for

simplicity, we assume there is only one task with execution cycle of c and deadline of

p. In the second case, we further assume that this task is periodic with period of p.

3.2.2 Processor Model

The processor that we consider can run in different modes, with each mode being

characterized by a pair of parameters (vi, fi), where vi is the supply voltage and fi

is the working frequency in mode i. Even though the circuit delay changes with the

circuit temperature dynamically, as given by equation (5.3) [77],

fi =
1

td
∝ (vi − vt)

μ

viT η
, (3.1)

where vt is the threshold voltage, td is the circuit delay, and μ and η are technology-

related constants, we assume that the processor working frequency in each mode is

36

fixed, and is the one that can accommodate the peak temperature (i.e. by assigning

the peak temperature in equation (5.3) across the entire chip). Let fmax be the

largest fi among different modes. We can normalize the processor working frequency

with fmax and get the normalized processor speed for each mode. In what follows,

unless otherwise specified, we use the term processor speed or working frequency

interchangeably.

3.2.3 Power Model

The power consumption of the processor consists of the dynamic power Pdyn and

the leakage power Pleak. Pleak changes with both temperature and supply voltage.

Specifically, the leakage current for a single transistor Ileak can be formulated as

follows [77]:

Ileak = Is · (A · T 2 · e((α·Vdd+β)/T) + B · e(γ·Vdd+δ)) (3.2)

where Is is the leakage current at certain reference temperature and supply volt-

age, T is the temperature, A,B, α, β, γ, δ are empirically determined constants. Liu

et al. [84] found that using linear approximation method to model the leakage cur-

rent/temperature dependence can achieve reasonable accuracy with greatly simplified

leakage power model. In our work, we adopt this method and simplify the leakage

power model as follows:

Pleak(k) = C0(k)vk + C1T, (3.3)

where k = 0, · · · ,m − 1 represents m different processor modes. C0(k) and C1 are

constants that can be obtained by curve fitting for a particular processor under its

operating environment conditions. In section 3.3, we use empirical study results to

justify the appropriateness of this leakage model.

37

Therefore the total power consumption at processor mode k can be formulated as

P (k) = C0(k)vk + C1 · T + C2v
3
k. (3.4)

3.2.4 Thermal Model

We use the lumped RC model similar to Skadron et al. [118] to capture the thermal

phenomena of the processor. Specifically, assuming a fixed ambient temperature

(Tamb), let T (t) denote the temperature at time t. Then we have

RC
dT (t)

dt
+ T (t)−RP (t) = Tamb, (3.5)

where P (t) denotes the power consumption (in Watt) at time t, and R, C denote the

thermal resistance (oC/W), and thermal capacitance (in J/oC). We can then scale

T such that Tamb is zero and get

dT (t)

dt
= aP (t)− bT (t), (3.6)

where a = 1/C and b = 1/RC.

Putting Equation 3.4 in Equation 5.1, we formulate the temperature dynamics of

the processor such that when a processor running in mode k for interval [t0, te], let

the starting temperature be T0, then solving equation (5.2), the ending temperature

can be formulated as below:

From equation (3.4) and (5.2),

Te =
A(k)

B
+ (T0 −

A(k)

B
)e−B(te−t0)

= G(k) + (T0 −G(k))e−B(te−t0). (3.7)

38

where

A(k) = a(C0(k)vk + C2v
3
k), (3.8)

B = b− aC1, (3.9)

and

G(k) =
A(k)

B
. (3.10)

Equation (3.7)-(3.10) play a critical role in our analytical analysis. For the sake of

simplicity, we use Ak and Gk to denote A(k) and G(k), respectively, if there is no

confusion.

3.3 The Empirical Studies

Considering that the leakage power changes with both temperature and supply volt-

age, is the constant speed schedule still the optimal choice in minimizing the peak

temperature within a specific interval? Before we draw any conclusions, we first

launched a number of empirical studies to obtain some intuitions. We also conducted

several experiments to justify our leakage power model as well as to study the ther-

mal characteristics of the processor based on our thermal model. For ease of our

presentation, we first define several representative real-time schedules as follows.

Definition 3.3.1. The constant-speed schedule Ŝ(Sc) within an interval [t0, tp] is the

schedule that employs the lowest constant processor speed Sc to complete the workload

within the interval.

Definition 3.3.2. A two-speed schedule Ŝ(S1, S2) within an interval [t0, tp] is the

schedule that uses the two different speeds S1 and S2 with at-most two transitions

between the speed levels to complete the workload within the interval.

We further define four different types of two-speed schedules.

39

Figure 3.1: Different Speed Schedules: (a) The Dip Schedule; (b) The Hump Schedule;
(c) The Constant Schedule; (d) The Step-Down Schedule; (e) The Step-Up Schedule.

Definition 3.3.3. A dip schedule Ŝ(S1, S2) within an interval [t0, tp] is a two-speed

schedule that uses S1 during the interval [x1, x2](t0 ≤ x1 < x2 ≤ tp), and S2 in the

rest of the intervals, with S1 < S2.

Definition 3.3.4. A hump schedule Ŝ(S1, S2) within an interval [t0, tp] is a two-speed

schedule that uses S2 during the interval [x1, x2](t0 ≤ x1 < x2 ≤ tp), and S1 in the

rest of the intervals, with S1 < S2.

Definition 3.3.5. A step-up schedule Ŝ(S1, S2) within an interval [t0, tp] is a two-

speed schedule that uses S1 during the interval [t0, x], and uses S2 in interval [x, tp]

with S1 < S2.

Definition 3.3.6. A step-down schedule Ŝ(S1, S2) within an interval [t0, tp] is a two-

speed schedule that uses S2 during the interval [t0, x], and uses S1 in the interval [x, tp]

with S1 < S2.

40

Figure 3.1 shows an example of different speed schedules defined above. Note that,

according to Definition 2, once the two speeds and total workload within the interval

are defined, the total length of the interval to run processor with each speed is also

defined (e.g. t1 and t2 in Figure 3.1). In what follows, we present several empirical

results that help to obtain some intuitions on the applicability—in the context of peak

temperature minimization—of the two power reduction principles mentioned above.

(a) (b)

Figure 3.2: The Peak Temperatures by Different Schedules Within a Given Interval

Empirical Study 1 First, we wanted to verify if two principles listed before

are still valid in terms of the peak temperature minimization for a given interval.

We constructed our processor similar to the one shown in [104, 100], based on the

65nm technology and with the conventional air cooling option of Rth = 0.8oC/W ,

Cth = 340J/oC [119]. We assumed that the processor can run on four active modes

i.e. 0.95V, 1.0V, 1.05V and 1.10V, and one shut-down mode. The corresponding

frequency was calculated using equation (5.3). The values of the remaining parameters

are taken from [100]. The ambient temperature was set to 25oC.

We selected three available processor speeds with corresponding supply voltages

as 0.95V, 1.0V, and 1.05V respectively. Five different types of schedules, i.e. the

constant-speed schedule, the step-down, the step-up schedule, the dip schedule and

41

the hump schedule were constructed that run the same length and complete same

workload. For dip and hump schedule, the value of x1 (see Figure 3.1) was randomly

selected. We then varied the interval length from 10 to 2000 seconds to get different

schedules. For each test case, the highest temperature within the corresponding

interval by each schedule was collected and plotted in Figure 3.2(a).

As can be seen from Figure 3.2(a), while the maximum temperature using the

step-up schedule is always higher than that by the constant-speed schedule, the peak

temperature by the other two-speed schedules can in fact be lower sometimes. For

instance, when the period is equal to 700 seconds, the peak temperature of the step-

down, the constant, the hump, the dip and the step-up speed schedules are 37.84oC,

43.95oC, 45.07oC, 46.5oC and 47.32oC, respectively. This result clearly contradicts

the conclusion that the constant-speed schedule is the optimal schedule in terms of

minimizing the peak temperature within a given interval. In the meantime, we can

also observe that the peak temperature by the step-up schedule is indeed consistently

higher than that of other types of schedules.

We further studied if using the two closest neighboring speeds is the best choice in

terms of peak temperature reduction within a given interval. Two step-down speed

schedules Sa and Sb were constructed. Sa uses the speed corresponding to supply

voltages 0.95V & 1.05V for low and high speed respectively, and Sb uses speeds

corresponding to 0.95V & 1.10V. Both Sa and Sb run the same length and complete

same workload. As done before, we then varied the interval length from 10 to 2000

seconds to get different schedules. For each test case, the highest temperature within

the corresponding interval by each schedule was collected and plotted in Figure 3.2(b).

When comparing their peak temperatures, as shown in Figure 3.2(b), the step-down

schedule Sa is not necessarily always better than Sb. When the period is set to 700

seconds, the peak temperature for Sa is 43.65oC, while for Sb it is 43.56oC. This

42

result seems to also imply that the second principle is not valid either in terms of the

peak temperature reduction.

Empirical Study 2 We next want to verify if the two principles listed before can

be used to minimize the peak temperature when the processor temperature reaches its

stable status.

We constructed the five different schedules, i.e., the constant-speed schedule, the

step-down, the dip schedule, the hump schedule and the step-up schedule the same

as above, and ran each schedule not one time but periodically until the temperature

became stable and do not seem to change anymore. We then varied the periods,

collected the maximum temperature for each case and plotted in Figure 3.3(a). From

this figure, we can clearly see that the constant-speed schedule always lead to the

lowest peak temperature in our experiment, and the peak temperatures by remaining

two-speed schedules eventually become the same.

In addition, when we constructed the two step-down schedules Sa and Sb as

above and ran them periodically. From Figure 3.3(b), we can see that the step-down

schedule Sa using the two closest neighboring speeds is always better than Sb.

These empirical results suggest that using a constant speed in a schedule, or using

the neighboring speeds when the constant speed is not available, is still the best way to

minimize the peak temperature when the temperature reaches its stable status. In the

next few sections, we formulate these findings into theorems and prove them formally.

Before we introduce the theorems and their proofs, we first use empirical results to

justify our leakage model and to establish some useful thermal characteristics of our

processor model.

43

(a) The peak temperature by the constant

speed is consistently lower than others

(b) The peak temperature by the sched-

ule using neighboring speeds is consistently

lower than the one using non-neighboring

speeds

Figure 3.3: Peak Temperatures at the Stable Status by Different Schedules

Empirical Study 3 In Section 3.2, we have introduced a simplified linear leakage

power model to model the relationship of the leakage, the temperature, and the supply

voltages. One immediate question is how accurate this model is? In this empirical

study, we use an existing processor model drawn from the existing literature [77] to

study this problem. The processor model is the same as used in Empirical study

1 & 2 with conventional air cooling. However, in this study, we assumed that the

processor can run on 15 active modes i.e. 0.60V to 1.3V, with step size of 0.05V and

one shut-down mode. The corresponding frequency was calculated using equation

(5.3). The values of the remaining empirical and technology parameters are taken

from [100] and [118]. The ambient temperature was set to 25oC and we assume the

processor’s starting temperature is the same as the ambient temperature. Based on

this processor model, we compared several existing leakage models.

• The Actual leakage model [77]: Pleak(k) = Ileakvk where Ileak is defined in

equation (3.2).

44

• The simple Linear leakage model (e.g. [35, 30, 66, 140]): Pleak(k) = C0 + C1T

with C0, C1 being constants;

• LKTV model [104]: Pleak(k) = Ileak(k)vk and Ileak(k) = C0 + C1T .

• LKT model: the model defined in section 3.2.

Based on the experimental settings stated above, Figure 3.4 depicts the leakage

power consumptions under different supply voltages and temperatures according to

different leakage models. As we can see from Figure 3.4, when the supply voltage

varies, the leakage power consumption varies dramatically. For instance, if we con-

sider the Actual leakage model at 50oC, the leakage power becomes almost double

when supply level changes from 0.95V to 1.1V. Therefore, the simple Linear leakage

model can only be used when the supply voltage cannot be changed. Otherwise,

large discrepancies between the actual leakage power consumption (e.g. the results

according to the Actual leakage model) and the estimated one with this model may

occur. On the other hand, we can see that both LTTV and LKT match the actual

leakage power consumption well, with relative errors under 4% in our study. These

results clearly show that LKT model is a leakage model with very good accuracy1.

1According to our empirical results, the LTTV model is more accurate than LKT model. However,
we are not able to formally prove all theorems in this chapter based on model LTTV .

45

Figure 3.4: Leakage Power Consumptions Calculated using Different Leakage Models

under Different Temperatures and Supply Voltages

Furthermore, in order to conduct analytical analysis based on temperature dynam-

ics in equation (3.7), it is highly desirable that the characteristics of Gk is known.

However, since Gk is determined essentially by the curve-fitting constants C0 and C1,

it is difficult to analytically study its properties. Therefore we study its attributes

empirically.

Figure 3.3 plots the characteristics of the function G(k) under different operat-

ing conditions i.e. (a) conventional air cooling option, (b) water spray cooling. As

illustrated in Figures 3.5(a) and 3.5(b), we can clearly see that, for both cooling con-

ditions, the function Gk is a positive, monotonic increasing, and convex function of

the supply voltage. Also, from equation (5.24), we can see that it is necessary that

B > 0, or the temperature will run away otherwise. Therefore, in what follows, unless

otherwise specified, we assume that

• Gk (or G(vk)) is a positive, monotonic increasing, and convex function of k (or

46

vk), respectively;

• B > 0.

(a) Conventional Air Cooling (b) Water Spray Cooling

Our empirical results presented above reveal some strong and interesting findings.

In the following sections, we formulate these findings into theorems and formally

prove them.

3.4 Peak Temperature Minimization Within a Specified Interval

The empirical study 1 discussed in previous section shows that a constant speed

schedule is not the optimal method for the peak temperature reduction within a

specified interval. Then the question becomes what the optimal schedule is. To answer

this question, in what follows, we formulate several theorems from our empirical

study and prove them analytically. These theorems provide us with some insights

and guiding principles when developing better DVS schedules for peak temperature

minimization within a given interval. Specifically, Theorem 1 characterizes the peak

temperature obtained using the step-up schedule within a given interval.

Theorem 3.4.1. Given two processor speeds S1 and S2 with S1 < S2 and a hard real-

time job J , the step-up schedule (Ŝ(S1, S2)) has the highest peak temperature among

47

all two-speed schedules within the same interval if the initial temperature T0 < G1.

Where Gk is defined in equation (3.10).

Proof: We first compare the peak temperature between the step-up and step-

down schedules as shown in Figure 3.1(d) and (e). Let Tu be the peak temperature

of step-up schedule, which always occurs at the end of the interval [31]. Let t1 and t2

be the interval length that the processor runs at speed S1 and S2, respectively. From

Figure 3.1(e) and based on equations (3.7)-(3.10), we have

Tu = G2(1− e−Bt2) +G1(1− e−Bt1)e−Bt2 + T0e
−B(t2+t1) (3.11)

According to Figure 3.1(d), we can see that, when using the step-down schedule,

the peak temperature will occur either at point x or at tp. Therefore to prove this

theorem we need to consider two cases:

• Case 1: The peak temperature of the step-down schedule appears at point tp.

With the starting temperature T0, the temperature of the step-down schedule

Td at tp is given by

Td = G1(1− e−Bt1) +G2(1− e−Bt2)e−Bt1 + T0e
−B(t1+t2) (3.12)

To show that Tu > Td, by canceling T0e
−B(t1+t2) from both equation (3.12) and

(3.11), we have

G2(1− e−Bt2) +G1(1− e−Bt1)e−Bt2 >

G1(1− e−Bt1) +G2(1− e−Bt2)e−Bt1 . (3.13)

or

G2 > G1 (3.14)

48

As Gi is a monotonically increasing function, equation (3.14) is true. Hence,

we proved that the step-up schedule results in a higher peak temperature than

the step-down schedule when its peak temperature appears at point tp.

• Case 2: The peak temperature of step-down schedule Td appears at point x.

The temperature at point x by step-down speed schedule can be formulated as

Td = G2(1− e−Bt2) + T0e
−Bt2 . (3.15)

To show that Tu > Td, based on equation (3.15) and (3.11), we only need to

show

G2(1− e−Bt2) +G1(1− e−Bt1)e−Bt2 + T0e
−B(t1+t2) >

G2(1− e−Bt2) + T0e
−Bt2 . (3.16)

or

(G1 − T0)e
−Bt2 > (G1 − T0)e

−B(t1+t2) (3.17)

As T0 < G1, equation (3.17) is true. Hence we proved that the step-up schedule

always results in higher peak temperature than step-down schedule when its

peak temperature appears at point x.

From above, we can conclude that the step-up schedule always result in a higher peak

temperature compared to the step-down schedule within a given interval for T0 < G1.

49

(c) The Peak Temperature by the Hump

and Step-Up Schedule

(d) The Peak Temperature by the Dip and

Step-Up Schedule

Figure 3.5: Peak Temperature

We now compare the step-up schedule with other types of two-speed schedules.

We first compare it with the hump schedule as shown in Figure 3.5(c). Let Tx be the

temperature at t = x1. Based on equation (3.7), we have

Tx = G1 + (T0 −G1)e
−Bx. (3.18)

Since T0 < G1, we have Tx < G1. Moreover, in Figure 3.5(c), let Tu(x1) and Tf (x1)

denote the peak temperature within the interval [x1, p] by the step-up schedule and

the hump schedule, respectively. Since Tx < G1, and from the first part of the proof

we know that the step-up schedule always incurs a higher peak temperature than

that of a step-down schedule, we immediately prove that Tf (x) ≤ Tu(x). Similar

conclusions can be proved for the dip schedule shown in Figure 3.5(d). �

Theorem 3.4.1 helps to identify the two-speed schedule that potentially leads to

the highest peak temperature. It would be interesting if we can also identify the

schedule that potentially leads to the lowest peak temperature. Theorem 3.4.2 can

be used for this purpose.

50

Theorem 3.4.2. Given two processor speeds S1 and S2 with S1 < S2 and a hard

real-time job J , the step-down schedule (Ŝ(S1, S2)) has the lowest peak temperature

among all two-speed schedules within the same interval if the initial temperature T0 <

min(G1, (G1 −G2)e
Bx +G2), where x is the length of the interval using S2. where B

and Gk are defined in equation (5.24) and (3.10), respectively.

Proof: Theorem 3.4.1 already proves that the peak temperature of the step-up

schedule is always higher than the step-down schedule under the same given condition,

so we only need to compare the peak temperature between the step-down schedule

with that by hump and dip schedules.

Consider Figure 3.6(a). Both the step-down schedule and the hump schedule use

the same speed between x2 and p. Also the initial temperature T0 < G1. Therefore,

according to Theorem 3.4.1, we conclude that the peak temperature by the step down

schedule is lower than that by the hump schedule.

Now consider Figure 3.6(b). Let the temperature at t = x1 be Tx1. Then based

on equation (3.7), we have

Tx1 = G2 + (T0 −G2)e
−Bx1. (3.19)

At the same time, since T0 < (G1 −G2)e
Bx +G2, we have

Tx1 < G2 + (G1 −G2)e
B(x−x1). (3.20)

Since G1 < G2 and eB(x−x1) > 1, we have

Tx1 < G2 + (G1 −G2) = G1. (3.21)

Therefore, according to Theorem 3.4.1, we conclude that the peak temperature by

51

the step-down schedule is lower than that by the dip schedule. �

(a) The Peak Temperature by the Hump

and Step-Down Schedule

(b) The Peak Temperature by the Dip and

Step-Down Schedule

Figure 3.6: Peak Temperature

Furthermore, our empirical study shows that the conclusion that the constant-

speed schedule is the optimal choice in terms of peak temperature minimization within

a given interval is not true anymore. Even though our empirical results show that

in most cases the constant-speed schedule is a better choice, it can be inferior to a

step-down schedule sometimes. In Theorem 3.4.3, we formulate this conclusion and

present the conditions when a constant-speed schedule becomes inferior to a step-

down schedule in terms of peak temperature reduction.

52

Figure 3.7: The Constant-Speed Schedule and a Step-Down Schedule within a Given

Interval.

Theorem 3.4.3. Given a constant-speed schedule Ŝ(S1) and a step-down schedule

Ŝ(S0, S2) for a hard real-time job J . Assuming T0 < min(G1, (G1−G2)e
Bx+G2) and

S0 < S1 < S2. Let Tm(Ŝ(S1)) and Tm(Ŝ(S0, S2)) be the peak temperature by Ŝ(S1)

and Ŝ(S0, S2) within the interval [0,p], respectively. Then,

Tm(Ŝ(S1)) > Tm(Ŝ(S0, S2)) (3.22)

if and only if

• 1
B
ln(G2−T0

G2−G0
) < x < 1

B
ln(G2−T0

G2−G1(1−e−Bp)−T0e−Bp); or,

• x < min(1
B
ln(G2−T0

G2−G0
), p− 1

B
ln(G2−G0

(G1−G0)+(G2−G1)e−Bp)).

where S1p = S2x + S0(p − x), and B,Gk are defined in equation (5.23) and (3.10),

respectively

Proof: From Figure 3.7, let Tx and Tp denote the temperatures of the step-down

schedule at t = x and t = p, respectively. Let Tc be the peak temperature of the

53

constant-speed schedule. Based on equation (3.7), we have

Tx = G2(1− e−Bx) + T0e
−Bx. (3.23)

Tp = G0(1− e−B(p−x)) +G2(1− e−Bx)e−B(p−x) + T0e
−Bp (3.24)

Tc = G1(1− e−Bp) + T0e
−Bp (3.25)

Note that the peak temperature of the step-down schedule must be either Tx or

Tp. Then equation (3.22) becomes true only when

• Tx < Tc when Tx > Tp, or

• Tp < Tc when Tp > Tx

Replace Tx, Tc and Tp with equation (3.23) to (3.25) and solve for x, we can prove

the theorem. �

As implied by Theorem 3.4.3, neither the constant speed schedule nor any par-

ticular two-speed schedule is always the optimal schedule to minimize the peak tem-

perature within a given interval. On the other hand, however, Theorem 3.4.2 and

Theorem 3.4.3 help to identify the optimal schedules that can potentially lead to the

optimal DVS schedule to minimize the peak temperature within an interval. Both

Theorem 3.4.2 and Theorem 3.4.3 target a single real-time job. Since most real-time

tasks are repetitive in nature, it is highly desirable we can explore some fundamental

principles for the periodic tasks as well.

3.5 Peak Temperature Minimization at the Stable State

In this section, we extend our research from a single real-time job to a periodic

real-time task. When running a real-time task set periodically, unless the processor

temperature “runs away” [77], the processor temperature is eventually stabled. The

54

stable status is defined as below.

Definition 3.5.1. [104]When running a periodic task with period p, the temperature

at the processor is called to be stable if for a given threshold, i.e. 0 < ε << 1,

|T ((n+ 1)p)− T (np)| < ε, (3.26)

where n ≥ 0, n ∈ Z, and T (t) is the temperature at t.

Similarly, we want to investigate the validity of applying Principle 1 and 2 in the

context of minimizing peak temperature when scheduling a periodic task set.

We first present two theorems that act as the basis in formulating the key principles

of peak temperature minimization when the processor temperature becomes stable.

Theorem 3.5.2. Given a hard real-time periodic task τ , the maximum temperature

when the processor temperature reaches its stable status does not depend upon the

initial temperature.

Proof: Let us consider a step-down speed schedule shown in Figure 3.1, where S2

and S1 denotes the high speed and low speed. From Figure 3.1, t1 and t2 denotes the

duration of S1 and S2 in the first period.

Based on equation (3.7), the temperature at t = x and t = tp can be formulated

as

Tx = G2 + (T0 −G2)e
−Bt2 , Ttp = G1 + (Tx −G1)e

−Bt1

where B and Gk are defined in equation (5.24) and (3.10), respectively.

From [104], the maximal temperature at the stable state temperature can be

formulated as

Tmax = max(T∞
x , T∞

tp)

55

where,

T∞
x =

G2(1− e−Bt2)

1− e−Bt2
= G2 (3.27)

T∞
tp =

G1(1− e−Bt1) +G2(1− e−Bt2)e−Bt1

1− e−B(t1+t2)
(3.28)

As can be seen from equation (3.27) and (3.28), no matter if the maximal tem-

perature occur at t=x or t=tp, it does not depend upon the initial temperature T0.

Similar conclusion can be achieved using other speed schedules. �

Based on Theorem 3.5.2, we can show that the maximum peak temperatures at

the stable state with any periodic two-speed schedule are the same.

Theorem 3.5.3. Given a real-time periodic task τ and two processor speeds, then the

maximal temperature at the stable status with any two-speed schedule using the same

two speeds are the same.

Proof: Consider a periodic step-up speed schedule shown in Figure 3.8. From [104],

we can calculate the stable state temperature or the peak temperature as:

Tmax =
G2(1− e−Bt2) +G1(1− e−Bt1)e−Bt2)

1−K
(3.29)

where t1 and t2 denotes duration of low speed and high speed. B and Gi are defined

in equation (5.24) and (3.10), respectively and

K = e−B(t1+t2).

From Figure 3.8 we can see that the step-down schedule shown is same as the

periodic step-up schedule but with an initial temperature Ta. Similarly, all other

periodic two-speed schedules can be viewed as the step-up schedule with an initial

shift. Therefore their peak temperatures are equivalent to the one with the periodic

56

step-up schedule with a different initial temperature. Since Theorem 3.5.2, already

proves that the stable temperature does not depend on the starting temperature, the

conclusion is proved.

�

Figure 3.8: Stable Temperature for Step-Down and Step-Up Schedule

Figure 3.9: Stable Temperature for Step-Up and Constant-Speed Schedule

Based on the conclusions from Theorem 3.5.2 and 3.5.3, we can now formulate an

important theorem for the problem of scheduling hard real-time periodic task, with

the goal of peak temperature minimization.

Theorem 3.5.4. Given a real-time periodic task τ , the maximum temperature at the

stable state is minimized when running τ using the lowest constant-speed.

57

Proof: From Theorem 3.5.3, we know that at stable status all the two-speed schedules

result in the same peak temperature. Therefore, to prove this theorem we will compare

constant-speed schedule with any two-speed schedule. Let T∞
c and T∞

u denote the

maximum stable temperature for the constant-speed (S1) and the step-up schedule

(S0 < S2) respectively (Figure 3.9).

Without loss of generality, we can assume p = 1. Also from the conclusion of

Theorem 3.5.2, we know the stable temperature does not depend on the initial tem-

perature, therefore we assume the initial temperature to be zero. Then we have

T∞
c =

G1(1− e−B)

1− e−B
= G1 (3.30)

T∞
u =

G2(1− e−B(1−x)) +G0(1− e−Bx)e−B(1−x)

1− e−(B(1−x)+Bx)
(3.31)

To show that T∞
c ≤ T∞

u , we only need to show that

G1 ≤ kG0 + (1− k)G2, (3.32)

where

k =
e−B(1−x) − e−B

1− e−B
, 1− k =

1− e−B(1−x)

1− e−B
. (3.33)

Since

S1 = S0x+ S2(1− x), (3.34)

and B > 0 and Gi is a convex function, we have

G1 ≤ xG0 + (1− x)G2. (3.35)

58

Therefore, to show that equation (3.32) holds, we only need to show that

xG0 + (1− x)G2 ≤ kG0 + (1− k)G2, (3.36)

or

(G0 −G2)(x− k) ≤ 0. (3.37)

As G0 ≤ G2, we only need to prove that

x ≥ k = 1− 1− e−B(1−x)

1− e−B
. (3.38)

Or, equivalently,

1− e−B(1−x)

1− e−B
≥ 1− x. (3.39)

Now consider function

F (z) =
1− e−Bz

1− e−B
− z. (3.40)

with 0 ≤ z ≤ 1. We can readily show that function F (z) is a concave function since

F ′′(z) < 0. Note that the curve F (z) passes two points, i.e. (0, 0) and (1, 0), as

F (0) = 0 and F (1) = 0. Let H(z) be the line that crosses these two points. Since

F (z) is concave, we have F (z) ≥ H(z) ≥ 0 for 0 ≤ z ≤ 1.

We therefore prove that the constant speed schedule always outperforms a step-up

periodic schedule in minimizing the peak temperature when the temperature reaches

the stable status. In Theorem 3.5.3, we have already proved that at stable status the

peak temperature of step-up and any other two-speed are the same. Hence we can

immediately conclude that at the stable state the constant-speed outperforms any

two-speed schedule in peak temperature reduction. �

Moreover, as constant-speed schedule is not always available and multiple speeds

have to be used. In that case, we establish a new principle similar to Principle 2.

59

Theorem 3.5.5. If a two-speed schedule is used for a hard real-time periodic task,

then the one that uses the two closest neighboring speeds minimizes the maximum

temperature at the stable state .

Proof: Consider interval [0, p] and step-up schedules Ŝ1(s1, s4) and Ŝ2(s2, s3) shown

in Figure3.10. Without loss of generality, we assume s1 ≤ s2 < s3 ≤ s4. Let T (Ŝ)

represent the maximal temperature at the stable status with schedule Ŝ . We want to

show that T (Ŝ(s2, s3)) ≤ T (Ŝ(s1, s4)). Let the speed change occur at x in Ŝ2(s2, s3).

Consider another schedule Ŝ3(s2, s4) and let its speed change at x′. Then we have

x ≤ x′. Note that Ŝ2 and Ŝ3 complete the same workload within interval [0, x] with

the same speed, but Ŝ2 uses a constant speed to complete the rest of the interval and

Ŝ3 uses two different speeds. From Theorem 3.5.4, we can immediately conclude that

T (Ŝ(s2, s3)) ≤ T (Ŝ(s2, s4)). Similarly, we can prove that T (Ŝ(s2, s4)) ≤ T (Ŝ(s1, s4)).

Therefore, T (Ŝ(s2, s3)) ≤ T (Ŝ(s1, s4)). �

Figure 3.10: Step-Up Schedules Ŝ2(s2, s3) and Ŝ3(s2, s4) for a Real-Time Periodic

Task.

Note that, even though Theorem 3.5.4 and Theorem 3.5.5 look very similar to the

two basic principles that have been widely used for dynamic energy reduction, it does

not necessarily imply that the existing energy reduction techniques can be readily

60

applied for the purpose of peak temperature minimization. On the other hand, The-

orem 3.4.1 to Theorem 3.5.5 present some fundamental guidelines in the development

of new DVS schedule techniques that can minimize the peak temperature.

3.6 Summary

In this Chapter, we incorporated the leakage/temperature/supply voltage dependency

into the real-time scheduling analysis that aims at minimizing the peak temperature.

We showed that a constant-speed schedule is not always the optimal schedule in terms

of peak temperature minimization for a given interval. We further showed that for a

given periodic task, the lowest constant-speed is the optimal schedule among all two-

speed schedules to minimize the peak temperature at the stable state. If this constant-

speed is not available, then the schedule that uses the two closest neighboring speeds

is the best choice. These new findings and theorems form the basis for the future

study of developing more effective power and thermal aware scheduling techniques

for more complicated architectures and real-time systems.

61

CHAPTER 4

M-Oscillations : A Scheduling Technique for Peak Temperature

Minimization

In this chapter, we present a novel real-time scheduling technique, i.e. the M-

Oscillations algorithm, that oscillates the high and low processor speeds to mini-

mize the peak temperature for a periodic tasks set. We formally proved the cor-

rectness of this algorithm based on a processor power model that can capture the

leakage/temperature dependency in reasonable accuracy yet simple enough and thus

suitable for system level analysis. Furthermore, we validated the effectiveness of

our algorithm based on the technology parameters derived from the 65nm technol-

ogy. The experimental results demonstrated that our proposed scheduling technique

can greatly reduce the peak temperature and, as a result, significantly improve the

feasibility when scheduling periodic task sets under the maximum temperature con-

straints.

The rest of the chapter is organized as follows. Section 4.1 discusses the related

work. System models are described in Section 4.2. The M-Oscillations scheduling

algorithm is introduced in Section 4.3. Empirical results are presented in Section 4.4,

and Section 4.5 concludes the chapter.

4.1 Related Work

There have been an increasing number of research results published on thermal aware

real-time scheduling, for both single and multiple processor platforms (e.g. [14, 32,

105, 139]). Some approaches (e.g. [14, 32]) try to identify the upper bound of the

maximum temperature. Some others (e.g. [14, 38, 29, 133]) intend to minimize the

peak temperature or to guarantee the given maximum temperature constraints when

scheduling a job set or a single copy of a task graph. While it is a common practice

62

to repeat a real time schedule developed for jobs within the first hyperperiod of a

periodic task set, as indicated in [35, 105], this approach is not applicable anymore if

the temperature constraint is taken into consideration.

For periodic task sets, Wang et al. [126, 127] studied the maximum delay for

periodic tasks when scheduling real-time tasks based on a two-speed scheduling policy.

Zhang et al. [139] proposed to guarantee the temperature feasibility of a periodic

system by forcing the temperature at the end of its first hyperperiod to be equal or

less than the starting temperature. Quan et al. [105] developed a closed formula for

the feasibility analysis under the maximum temperature constraint. None of these

researches has taken the temperature/leakage dependency into consideration.

Some researches, such as that by Bao et al. [16], have applied equation (3.2) di-

rectly to capture the leakage/temperature dependency for the scheduling analysis.

However, due to the non-linear and high-order magnitude terms in equation (3.2),

such a model or tool can be too complex and cumbersome to be used for more rig-

orous real-time analysis and scheduling technique development. For example, Yuan

et al. [138] also studied how to directly incorporate equation (3.2) into scheduling

decisions. However, due to the complexity of equation (3.2), their approach can

only be applied for soft real-time systems. There are also a number of other ap-

proaches formulate the temperature-constrained problem as a convex optimization

problem [85, 92, 29]. The leakage/temperature dependency (equation (3.2)) may be

incorporated into the optimization formulation [85]. The problem is that the compu-

tational complexity of the convex optimization problem is very high. Therefore these

approaches can only work at system level when the design solution space is small.

A number of recent researches try to simplify the leakage/temperature depen-

dency model. Liu et al. observed that the leakage current changes super linearly

with temperature [84]. Based on this observation, a number of researches (such as

63

[35, 48, 30] adopt a simple temperature/leakage dependency model that assumes the

leakage current changes linearly only with temperature. However, as can be seen from

equation (3.2), leakage varies not only with temperature but also supply voltage as

well. Quan et al. [104] introduced a leakage/temperature model that is more practi-

cal. According to their model, a processor has different running modes, and leakage

varies at different rates with temperature when running at different modes. Based on

this model, they presented several conditions to verify the feasibility of a given real-

time schedule. However, how to develop a feasible and effective schedule for a given

periodic task set under the maximum temperature constraint remains the problem.

In what follows, with leakage/temperature dependency in mind, we develop a novel

and scheduling technique that can effectively reduce the maximum temperature.

4.2 The System Models

In this section, we introduce the system models that are used in this chapter.

The Real-Time Model The real-time system we considered consists of a number

of real-time tasks with the same period (such as the MPEG decoder). We can thus

simplify this model by assuming that the real-time system has only one periodic task.

The period of the task is denoted as p and its worst-case workload is c. We assume

that the deadline of the task equals its period.

The Thermal Model We use the RC thermal model same as what we used in

Chapter 3 and that has been widely used in the similar research (e.g. [30, 35, 92, 104]).

Specifically, assuming a fixed ambient temperature (Tamb), let T (t) be the temperature

at time t. Then we have

RC
dT (t)

dt
+ T (t)−RP (t) = Tamb, (4.1)

where P (t) denotes the power consumption (in Watt) at time t, and R, C denote the

64

thermal resistance (in J/oC) and thermal capacitance (in Watt/oC). We can then

scale T such that Tamb is zero and get

dT (t)

dt
= aP (t)− bT (t), (4.2)

where a = 1/C and b = 1/RC.

The processor and its power model The processor can run in n different

modes, with each mode as (vi, fi), i = 0, 1, ..., n − 1. where vi is the supply voltage

and fi is the working frequency in mode i. We assume that vi < vj, if i < j. We

also assume that the processor speed is proportional to the supply voltage. In what

follows, we use processor speed and supply voltage interchangeably.

Given a voltage level v, the power consumption is composed of dynamic Pdyn and

leakage Pleak, i.e. P = Pdyn + Pleak. According to Liao et al. [77], the leakage power

consumption can be estimated by the following,

Pleak = Ngate · Ileak · v (4.3)

where Ngate represents the number of gate, v is the voltage level, and Ileak can be

formulated using equation (3.2). As leakage current changes super linearly with tem-

perature [84], we can simplify Pleak and define the leakage power for the processor

running in mode k as

Pleak(k) = C0(k)vk + C1(k)Tvk, (4.4)

where C0(k) and C1(k) are constants. This model is same as the LKTV model dis-

cussed in Section 3.3.

The dynamic power consumption is independent of temperature, and can be for-

mulated Pdyn = C2v
ξ
k(ξ > 0). We choose ξ = 3 [107] in this chapter1. Hence the total

1Choosing other values will not change the conclusions in this chapter.

65

power consumption at processor mode k is

P (k) = C0(k)vk + C1(k) · Tvk + C2v
3
k. (4.5)

Based on equation (4.5) and (4.2), when a processor running in mode k, the temper-

ature dynamics can be formulated as

dT (t)

dt
= A(k)− BT (t) (4.6)

where

A(k) = a(C0(k)vk + C2v
3
k) (4.7)

B(k) = b− aC1(k)vk (4.8)

For interval [t0, te], let the starting temperature be T0, by solving equation (4.6), the

ending temperature can be formulated as below:

Te =
A(k)

B(k)
+ (T0 −

A(k)

B(k)
)e−B(k)(te−t0)

= G(k) + (T0 −G(k))e−B(k)(te−t0). (4.9)

where

G(k) =
A(k)

B(k)
. (4.10)

In what follows, we use Ak, Bk and Gk to denote A(k), B(k) and G(k) respectively

when there is no confusion. Equation (4.5) to (4.9) form the basis of our system level

thermal analysis with leakage/termpature interplay taken into account.

66

4.3 Scheduling for Peak Temperature Reduction

In this section, we study how to minimize the maximum temperature when scheduling

a periodic task set. Thermal-aware scheduling problems have distinct characteristics

in comparison with the power aware scheduling problem as illustrated below.

Consider a simple two-speed schedule, as illustrated in Figure 4.1, that can finish

a real-time job at its deadline. Note that, the dynamic energy consumption by the

two-speed schedule shown in Figure 4.1 remains the same as long as the length for

each individual speed keeps the same, i.e. t1 and t2 are constants. However, the

temperature at t = 1 varies with the value of x. The following theorem captures this

characteristic.

Figure 4.1: A Two-Speed Schedule that Uses Speed s1 for t1 Time Units and Speed
s2 for t2 Time Units. t1 + t2 = 1.

Theorem 4.3.1. Given a two-speed schedule as shown in Figure 4.1, and letting

s2 > s1, if for any s2 > s1, we have G2 > G1 and B1, B2 > 0 (with Gk, Bk defined

in equation (4.10) and (4.8), respectively), then the temperature at t = 1, i.e.Te is a

monotonically increasing function of x.

Proof sketch: Based on equation (4.9), let Ta be the temperature at point a, then

we have

Te = G1 + (Ta −G1)e
−B1(t1−x) (4.11)

67

Therefore,

d(Te)

dx
=

d(G1 + (Ta −G1)e
−B1(t1−x))

dx

= (G2 −G1)(1− e−B2t2)B1e
−B1(t1−x). (4.12)

So Te decreases with decreasing x if G2 > G1 and B1, B2 > 0. �

Figure 4.2: A Two-Speed Schedule that Uses Speed s2 for t1 Time Units and Speed
s1 for t2 Time Units. t1 + t2 = 1.

Similarly, for the two-speed schedule illustrated in Figure 4.2, we have Theo-

rem 4.3.2.

Theorem 4.3.2. Given a two-speed schedule as shown in Figure 4.2, and letting

s2 > s1, if for any s2 > s1, we have G2 > G1 and Bk > 0 (with Gk, Bk defined

in equation (4.10) and (4.8), respectively), then the temperature at t = 1, i.e.Te is a

monotonically decreasing function of x.

Proof sketch: Based on equation (4.9), Ta be the temperature at a, then we have

Te = G2 + (Ta −G2)e
−B2(t1−x) (4.13)

68

Therefore,

d(Te)

dx
=

d(G1 + (Ta −G1)e
−B1(t1−x))

dx

= −(G2 −G1)(1− e−B1t2)B2e
−B2(t1−x). (4.14)

So Te decreases with increasing x if G2 > G1 and Bk > 0. �

Theorem 4.3.1 and 4.3.2 indicate that temperature at the end of a schedule

depends on locations where different running modes are applied. They help to reduce

the temperature at the end of schedule, but do not necessarily reduce the maximum

temperature within the entire interval. In addition, Theorem 4.3.1 and 4.3.2 are

applied for a single job rather than a periodic task set. In what follows, we introduced

a novel scheduling algorithm (we call it the M-Oscillations algorithm) to minimize

the peak temperature for a periodic hard real-time task. We assume that, when a

processor runs a periodic task, the temperature will not run away and eventually

reach a stable status. The temperature stable status is defined below.

Definition 4.3.3. When running a periodic task with period p, the temperature at

the processor is called to be stable if for a given threshold, i.e. 0 < ε << 1,

|T ((n+ 1)p)− T (np)| < ε, (4.15)

where n ≥ 0, n ∈ Z, and T (t) is the temperature at t.

Our M-Oscillations algorithm works as follows: given a two-speed schedule, we

can divide the high speed interval and the low speed interval evenly into m sections,

and run the processor with the low speed and high speed alternatively. Apparently,

an m-oscillation schedule will complete the same workload as the original schedule

in one period and thus guarantee the deadline. At the same time, the maximum

temperature can be significantly reduced as stated in the following theorem.

69

Figure 4.3: A Two-Speed Schedule and Its Corresponding M-Oscillations Schedule.

Theorem 4.3.4. Let S(t) be a two-speed schedule and S̃(m, t) be the corresponding

M-Oscillations schedule. Also let Tmax(S) represent the maximum temperature that a

processor can reach when running schedule S. If for any v2 > v1, we have G2 > G1

and Bi > 0, i = 1, 2, then

• Tmax(S̃(m, t)) ≤ Tmax(S(t));

• Tmax(S̃(n, t)) ≤ Tmax(S̃(m, t)) if m ≤ n.

Proof sketch: Here we only present the partial proof, i.e. for the case shown in

Figure 4.3.

For S̃(m, t) shown in Figure 4.3, base on equation (4.9), the temperature at t = x

and t = y can be formulated as

Tx = G1(1− e−B1t1/m), Ty = G2 + (Tx −G2)e
−B2t2/m

70

From [104], when the temperature reaches the stable status, we have

Tmax(S̃(m, t)) = T∞
y = Ty +

Ty

1−Ky

Ky

where

Ky = e−
(B1t1+B2t2)

m .

Expand T∞
y , we have

T∞
y = (G2 −G1)

1− e−
B2t2
m

1− e−
(B1t1+B2t2)

m

+G1

Let B2t2 = m(m+ 1)p and B1t1 = m(m+ 1)q, p, q > 0 and let

f(m) =
1− e−mp

1− e−m(p+q)
.

Then

Tmax(S̃(m, t)) = (G2 −G1)f(m+ 1) +G1

Tmax(S̃(m+ 1, t)) = (G2 −G1)f(m) +G1

To show that f(m+ 1) > f(m), we only need to note that

f(m) =
1− e−p

1− e−(p+q)
·

∑m−1
i=0 e−ip∑m−1

i=0 e−i(p+q)
.

71

Also,

∑m−1
i=0 e−ip∑m−1

i=0 e−i(p+q)
<

∑m
i=0 e

−ip∑m
i=0 e

−i(p+q)

⇐= e−m(p+q) ·
m−1∑
i=0

e−ip < e−mp ·
m−1∑
i=0

e−i(p+q)

⇐= e−mq ·
m−1∑
i=0

e−ip <

m−1∑
i=0

e−i(p+q)

⇐=
m−1∑
i=0

e−ip <

m−1∑
i=0

e−ip · e(m−i)q.

With i ≤ m, e(m−i)q ≥ 1, therefore f(m+ 1) > f(m), and so

Tmax(S̃(m, t)) > Tmax(S̃(m+ 1, t)). (4.16)

�

Theorem 4.3.4 implies that, by dividing the high speed interval and the low speed

interval each into m equal sections and running them alternatively, an m-oscillating

schedule can always reduce the maximum temperature when a processor reaches its

stable status. The larger the m is, the lower the maximum temperature becomes.

Note that the conclusion in Theorem 4.3.4 and its proof are contingent upon two

important assumptions, i.e. (i) G2 > G1 for any v2 > v1 and (ii) Bi > 0, i =

1, 2. It is difficult, however, to analytically validate these two assumptions since

the temperature invariants C0 and C1 in equation (4.8) and (4.10) depend on the

technology parameters. In addition, C0 and C1 are obtained through curve-fitting

rather than from a closed analytical formula. In Section 3.3, we have already validated

all the assumptions empirically, including the accuracy of the temperature sensitive

linear leakage model.

72

4.4 Experiments and Results

In this section, we use experiments to examine the M-Oscillations scheduling algo-

rithm. We evaluate its performance by comparing it with a previous work, i.e. the

two-speed scheduling method [127], in terms of the feasibility and peak temperature.

4.4.1 Performance Evaluation

We next study the performance of M-Oscillations scheduling algorithm by compar-

ing with the existing approaches. The proactive scheduling method introduced in [35]

intends to minimize the task response time under given maximum temperature con-

straints. However, it is developed based on a processor model with continuously

changeable speed, and to extend the proposed scheduling technique to a more prac-

tical processor model (i.e. with discrete supply voltages) as we used in this chapter

is far from a trivial and straight forward effort. Therefore, we compare our approach

with a more general one, i.e. the reactive two-speed scheduling approach introduced

in [127]. The reactive two-speed schedule [127] work as follows. For a given maxi-

mum temperature constraint, the processor works at the highest speed until it reaches

the maximum temperature. Then it runs at an equilibrium speed to maintain the

temperature.

First, we want to investigate the feasibility of the two scheduling policies, i.e.

the M-Oscillations schedule and the reactive two-speed schedule, under the same

maximum temperature constraints and workloads.

Note that for a given maximum temperature and a processor with discrete speeds,

the equilibrium speed is not necessarily one of the available speeds. We therefore fixed

the equilibrium speed to one of the available speeds of the processor, and then used the

stable temperature as the maximum temperature constraint to test both scheduling

policies.

73

Table 4.1: Equilibrium Speeds & Corresponding Maximum Temperatures
VEquil(V) Tmax(

oC)
0.80 33.99
0.90 38.88
1.0 46.16

Figure 4.4: Feasibility Comparison Between the M-Oscillations Scheme and the Re-
active Two-Speed Scheme under Different Maximum Temperature Constraints

We randomly generated real-time tasks with period of 2000 seconds and workload

evenly distributed within range of [0, 100%], with 100% indicating that the processor

has to run at the maximum speed all the time (i.e. 100%) to complete the workload.

We divided the task workload into 10 equal intervals, i.e. 0-10%,10-20% and so on,

and 100 random tasks were generated within each interval. The equilibrium voltages

were set to be 0.8V, 0.9V and 1.0V, and the corresponding stable temperature were

set as the maximum temperature constraint. Table 6.2(a) lists the values of the

equilibrium voltages and their corresponding stable temperatures.

For M-Oscillations schedule, we first calculated the constant speed that will guar-

antee workload. Then the two neighboring speeds were used to construct our M-

Oscillations schedule algorithm described in section 4.3. Figure 4.4 presents the fea-

sibility differences between active two-speed scheduling and M-Oscillations scheduling

74

with m=1, 2, 5, and 8. When the randomly generated workload is very low, all above

scheduling policies can schedule the task feasibly; and when the workload is high,

none four scheduling policies can make the task feasible. Therefore Figure 4.4 only

depicts the workload regions that there exist differences in terms of feasibility among

different scheduling choices. From Figure 4.4, we can clearly see that M-Oscillations

scheduling shows higher feasibility as compared to reactive two-speed schedule. The

larger the m is, the higher the feasibility can be. At the equilibrium voltage of

0.8V, the feasibility by the active two-speed scheduling policy is very close to the M-

Oscillations scheduling algorithm. However, when m is increased to 5, the feasibility

is improved over 13%, and up to 20% when m = 8. At the equilibrium voltage of

0.9V and 1.0V, we can see the feasibility improvement of 35% and 10%, respectively,

by M-Oscillations algorithm to the two-speed scheduling algorithm.

Even though a task can be feasibly scheduled, a higher peak temperature is not

desirable since it increases packaging and cooling costs, degrade the performance, life

span, and reliability of a computing system. We therefore collected the maximum

temperatures of all feasible tasks under different scheduling policies and compared

their average maximum temperatures as shown in Figure 4.5. Figure 4.5 clearly

demonstrates that the M-Oscillations algorithm is very effective in reducing the peak

temperature. Note that at the equilibrium voltage of 0.8V, the average maximum

temperature of reactive two-speed schedule is 31.84oC, and is reduced to 28.64oC

when m = 1 for the M-Oscillations scheduling algorithm. It is further reduced to

27.85oC for m = 5. At equilibrium voltage of 0.9V and 1.0V, the average maximum

temperatures are reduced by 7.78oC and 14.0oC, respectively.

75

Figure 4.5: Average Maximum Temperature Comparison Between the M-Oscillations
Scheme and the Reactive Two-Speed Scheme

4.4.2 Performance Evaluation on a Practical Simulation Platform

After evaluating the performance of our proposed M-Oscillations scheduling algo-

rithm on a synthetic simulation platform, we now extend our experiments on to more

practical simulation framework. We developed a practical simulation framework by

combining some of the most practical simulators available in the research domain.

Practical Simulation Platform Set-Up

The simulator model is based on SimpleScalar [2, 13] and it is composed of two

major parts. The first part is power simulation part which uses Wattch [3, 27] as

the simulation tool. After Wattch generates the power output for each module of

the platform, we calculate the temperature using HotSpot [4] in the second part of

simulation. Hotspot uses the existing power information to find the temperature

characteristics for each benchmark program in SPEC CPU2000.

76

Table 4.2: The Different Supply Levels and Corresponding Frequencies
Supplylevel(V) Frequency(GHz)

0.90 5.0
1.1 5.57
1.3 6.03

The selected platform is Alpha EV6 which is available in Hotspot [4] and has

its power model in Wattch and SimpleScalar. We select gcc integer benchmark pro-

gram from SPEC CPU2000 to perform the simulation. The input for gcc benchmark

program is gcc.lgred.cp-decl.i.

Modifications

To match the requirements for our experiments, we did several modifications in the

simulation models.

We modified the Wattch power simulator to be able to calculate the power of each

floorplan unit every single clock cycle. Furthermore, SimpleScalar and Wattch have

been modified such that the power can be calculated from different supply voltage

levels and frequencies. The original power formulas are maintained. The modules for

power calculation are duplicated and slightly modified to be compatible with different

supply voltage levels and frequencies. In the experiments, we select 100 kilocycles as

our simulation interval size. Other configurations are kept default.

Hotspot has been modified to compute the temperature according to the interval

size. The initial temperature of each floorplan unit has been redefined to 25 degree

centigrade (298 Kelvin). Based on the work by Liao at al. [77], the processor is pro-

vided with three different supply levels and corresponding frequencies(Table 6.2(a)).

Different supply voltages and frequencies can be redefined at any specific clock cycle

of execution.

77

Figure 4.6: Conceptual Flow Diagram of the Simulator Platform Set-Up

Execution Flow

The execution of our simulation starts with the power simulation, the SPEC CPU2000

is executed within SimpleScalar which will subsequently call Wattch to calculate

power consumed by each floorplan unit during the execution of SPEC CPU2000

benchmark program. If the supply voltage or the frequency is changed during the

execution, Wattch will update all its defined parameters that are related to the supply

voltage and frequency and continue its power calculation for each clock cycle.

Next, the Hotspot is called after the SimpleScalar and Wattch have finished gener-

ating the power profile. Hotspot will open the initial configuration files given including

the recorded power file from Wattch. Hotspot calculates temperature from the ex-

isting power parameters and output the instantaneous temperature to a file and also

update the power profile with the change in power values that occur due to increase

in leakage power as a result of increase in temperature (Figure 4.6).

Experiments

In this section, we discuss the different experiments that we have performed on our

novel simulation platform discussed in Section 4.4.2. In our experiments, we assumed

that the processor is provided with discrete supply levels. The available supply levels

78

Figure 4.7: Temperature Pattern Running a Traditional Constant Speed Schedule

and the corresponding frequencies are shown in the table 6.2(a). These values are

taken from the work shown in [77]. We start our experiments with first running

the entire gcc program from SPEC CPU2000 benchmark using a constant speed

schedule with supply level of 1.1 volts and the corresponding frequency of 5.57 GHz.

We followed the execution flow discussed in the previous section and generated a

temperature profile for each module of the Alpha EV6 processor model. To get the

detail of each module, interested reader can refer to the reference paper [2, 13].

We next execute the entire gcc benchmark with M-Oscillations schedule using the

two neighboring supply levels i.e. 0.9 and 1.3 volts and their corresponding frequencies

i.e. 5.0 and 6.03 GHz respectively. We ran the experiment for different values of m,

for example 1, 2, 4, 10, 100, 1000, 5000, 9000 etc.

As running a complete benchmark program results in extensive volume of data,

it is not possible for us to present the entire data that we have collected. We

therefore present the comparison of the temperature pattern due to the integer-

register1 module of the processor model which results in the highest peak tempera-

ture among all the modules on the platform. In Figure 4.7, 4.8, 4.9 and 4.10, we have

shown the temperature pattern for traditional constant schedule and M-Oscillations

(m = 100, 1000, 10000) on the integer-register1 module of the platform. From the

79

Figure 4.8: Temperature Pattern Running a M-Oscillations with m = 100

Figure 4.9: Temperature Pattern Running a M-Oscillations with m = 1000

Figure 4.10: Temperature Pattern Running a M-Oscillations with m = 10000

80

figures, we can observe two important characteristics of M-Oscillations. Firstly, with

increasing value of m, the peak temperature of the system decreases; for example,

when the value of m is equal to 100, peak temperature is 125oC, and when m is equal

to 10000, peak temperature reduces to 94oC.

Secondly, for an appropriate value of m, M-Oscillations can be as effective as

traditional constant speed schedule in reducing the peak temperature; for example,

the peak temperature due to the constant speed schedule is 92oC and the peak tem-

perature due to M-Oscillation for m equal to 10000 is 94oC. Calculation of the

appropriate value of m on such a practical platform is a non-trivial task, however it

is a part of our future work to develop algorithm to calculate optimum value of m on

such a platforms.

From the results presented, we can see that on a very practical architectural

platform, the M-Oscillations schedule is effective in reducing the peak temperature

of the system and can be used as an effective substitute to traditional approach, when

it is not possible to implement the constant speed schedule due to unavailability of

the desired lowest constant speed to execute the workload.

4.5 Summary

As semiconductor technology continues to scale down, the positive feedback loop be-

tween temperature and leakage exacerbates not only the power/energy minimization

problem but also the thermal management problem. In this chapter, we incorporated

the leakage/temperature dependency into the real-time scheduling analysis that aims

at minimizing the maximum temperature. We presented and proved a number of the-

orems and exhibit the distinct characteristics of thermal aware real-time scheduling.

We also proposed a new scheduling technique, i.e. the M-Oscillations scheduling that

can effectively reduce the peak temperature when executing a hard real-time periodic

81

task set. These theorems and techniques form a solid basis for further leakage-aware

temperature-constrained researches in design and development of practical real-time

systems. Our future research will be based on the theorems presented in this chapter

and extended in a number of ways, including more complex real-time system models,

processors with non-trivial transition overhead, and multiple-core type of architec-

tures.

82

CHAPTER 5

Feasibility Analysis for Temperature-Constraint Hard Real-Time

Periodic Tasks

In the previous two chapters, our focus was on developing novel solutions to mini-

mize the peak temperature of the uniprocessor system by judiciously applying DVS

algorithms. In this chapter, we extended our research work to an equally important

problem of insuring successful execution of the given tasks set within a given deadline

without violating any design constraints. Specifically, we studied the problem on how

to guarantee the feasibility of a periodic tasks set under the maximal temperature

constraint.

Traditionally, one common strategy is to check if each task instances of the task set

can meet their deadlines within the first hyperperiod, i.e. the least common multiple

(LCM) of the task periods. However, when we consider the maximal temperature

constraints, this strategy does not apply anymore. As shown in [105, 35] as well as

later in the chapter, a schedule for a periodic task set that can satisfy both the timing

and the maximal temperature constraint within the first hyperperiod is not necessarily

feasible later in the schedule. Therefore, new techniques need to be developed for

checking the schedulability of the real-time periodic tasks set under the maximal

temperature constraint.

We then present new necessary and sufficient conditions to check the feasibility

of real-time schedules. We further incorporate the leakage/temperature dependency

into our feasibility analysis, and develop more elaborated feasibility conditions. Our

experiments, based on technical parameters derived from a processor using the 65nm

IC technology, demonstrate the effectiveness of our feasibility conditions and, at the

same time, highlight the fact that a power/thermal-aware computing technique be-

comes ineffective if the temperature/leakage dependency is not properly addressed.

83

The rest of the chapter is organized as follows. We introduce the related work

in section 5.1. Section 5.2 discusses the system models and formulates our problem

formally. In section 5.3, we study the unique characteristics of feasibility analysis

problem for periodic tasks under maximal temperature constraints. In section 5.4,

we incorporate the leakage/temperature dependency into our feasibility analysis and

introduce several feasibility checking methods. We present our experimental results

in section 5.5 and draws conclusions in section 5.6.

5.1 Related Work

In this chapter, we focus on the feasibility checking problem for real-time tasks run-

ning on a single processor. There are several closely related research works have been

proposed, for instance some of the researches (e.g. [14, 32]) try to identify the upper

bound of the maximal temperature when executing real-time tasks on a single proces-

sor. These techniques cannot guarantee that real-time tasks can still meet deadlines

when the maximal temperature is given. Some others (e.g. [14, 38, 29, 109, 133]) in-

tend to minimize the peak temperature or guarantee the given maximal temperature

constraints when scheduling a job set or a single copy of a task graph. For example,

Bansal et al. [14] introduced an off-line technique to minimize the energy consumption

for a job set, and Chantem et al. [29] proposed an MILP-based solution to minimize

the peak temperature when executing a task graph. While it is a common practice

to repeat a real time schedule developed for jobs within the first hyperperiod of a

periodic task set, as noted by Quan et al. [105] and Chen et al. [35], this approach is

not applicable anymore if the temperature constraint is taken into consideration.

For periodic task sets, Wang et al. [127, 126] considered the problem of using two

processor speeds to schedule a hard real-time task set. A processor runs at the highest

possible speed until the temperature reaches the temperature threshold. Then the

84

processor is set to run with the “equilibrium speed“ at which the processor enters the

equilibrium state with its temperature unchanged. This approach does not take the

advantages that many modern processors support more than two levels of running

speeds. In addition, it is not always possible that the “equilibrium speed“ is exactly

one of the available processor speeds. Zhang et al. [139] proposed to guarantee the

temperature feasibility of a periodic system by forcing the temperature at the end of

its first hyperperiod to be equal or less than the starting temperature. However, as

shown later in this chapter, this constraint can be overly pessimistic. In addition, none

of these researches has taken the temperature/leakage dependency into consideration.

Researchers have already studied in depth the complex relationship between the

leakage and temperature at the circuit and micro architecture level [77, 145]. Follow-

ing what, few recent papers incorporate the temperature/leakage dependency into the

energy- or thermal-aware scheduling. He et al. [56] and Yuan et al. [137] studied how

to reduce the leakage power at the system level. Yuan et al. [138] introduced an offline

and an on-line scheduling algorithm that take into account the leakage/temperature

interactions when scheduling a set of soft real-time jobs. This approach cannot

guarantee that real-time periodic tasks can meet deadlines under the given maximal

temperature. A number of other approaches formulate the temperature-constrained

problem as a convex optimization problem (e.g. [85, 92]). The leakage/temperature

relationship can thus be formulated as one of the constraints. The problem is that the

computational complexity for convex optimization problems is very high. Therefore

these approaches can only work at system level when the design solution space is

small.

Liu et al. showed that linear models can be used to permit highly-accurate leakage

estimation over the operating temperature ranges in real ICs [84]. A number of

researches (such as [35, 48, 104, 30]) simplify the leakage/temperature relationship

85

based on this idea. Specifically, Chen et al. [35] and Chantem et al. [30] adopted

a simple temperature/leakage dependency model that assumes the leakage power

changes linearly only with temperature. As can be seen from Equation 3.2, leakage

varies not only with temperature but also supply voltage as well. In Section 5.5, we use

experiments to study the accuracy of this model and its impacts to the schedulability

analysis results.

5.2 Preliminary

The real-time system considered in this chapter contains n independent periodic tasks,

T = {τ0, τ1, · · · , τn−1}. Task τi is characterized using three parameters, i.e., τi =

(pi, di, ci). pi, di (di ≤ pi), and ci represent the period, the deadline and the worst

case execution time for τi, respectively.

We use the lumped RC model similar to the model in Chapter 3([117]) to cap-

ture the thermal phenomena of the processor. Specifically, assuming a fixed ambient

temperature (Tamb), let T (t) denote the temperature at time t. Then we have

RC
dT (t)

dt
+ T (t)−RP (t) = Tamb, (5.1)

where P (t) denotes the power consumption (in Watt) at time t, and R, C denote the

thermal resistance (in J/oC) and thermal capacitance (in Watt/oC). We can then

scale T such that Tamb is zero and get

dT (t)

dt
= aP (t)− bT (t), (5.2)

where a = 1/C and b = 1/RC. For the rest of the chapter, we assume that the

initial temperature of the processor equals the ambient temperature. The ambient

temperature is assumed to be constant.

86

We assume the processor can run in different modes, with each mode being char-

acterized by a pair of parameters (vi, fi), where vi is the supply voltage and fi is

the working frequency in mode i. Even though the circuit delay changes with the

temperature dynamically, as shown in Equation 5.3 [77],

fi =
1

td
∝ (Vi − vt)

μ

ViT η
, (5.3)

where vt is the threshold voltage, td is the circuit delay, and μ and η are technology-

related constants, we assume that the processor working frequency in each mode is

fixed, and is the one that can accommodate the peak temperature (i.e. by assigning

the peak temperature in Equation 5.3) across the chip. Let fmax be the largest fi

among different modes. We can normalize the processor working frequency with fmax

and get the normalized processor speed for each mode. In what follows, unless other-

wise specified, we use the term processor speed or working frequency interchangeably.

The power consumption (P) of the processor consists of two parts: the dynamic

power(Pdyn) and the leakage power (Pleak).

P = Pdyn + Pleak. (5.4)

The dynamic power consumption is independent of the temperature and can be for-

mulated as Pdyn ∝ vξk with ξ > 1 [107]. For simplicity, we choose ξ = 3.

The leakage power is sensitive to the temperature and can be estimated using the

following formula,

Pleak = Ngate · Ileak · Vdd (5.5)

where Ngate is the total number of gates, Vdd is the supply voltage and Ileak can be

determined by Equation 3.2.

87

Varying processor supply voltage and working frequency is one of the most effec-

tive ways to manage the power consumption dynamically. We call a schedule that

dictates how to vary the processor supply voltage and working frequency as the speed

schedule, which is formally defined as follows.

Definition 5.2.1. Given periodic task set T , let L be the least common multiple

(LCM) of the periods, i.e.,p0, p1, · · · , pn−1. The speed schedule Ŝ(t) is defined as a

sequence of < [sti, edi],modei >, where

• [sti, edi] is an interval in which the processor runs in modei,

• ⋃
i[sti, edi] = [0, L], and

• [sti, edi]
⋂
[stj, edj] = ∅ if i
= j.

With the thermal and processor models introduced as above, our problem can be

formulated as follows:

Problem 5.2.2. Given

• a hard real-time task set T = {τ0, τ1, · · · , τn−1},

• a variable voltage processor that can run in m different modes, i.e. (vi, fi),

i = 0, · · · ,m− 1,

• the maximal allowable temperature Tmax,

• and a speed schedule Ŝ(t) with l intervals, i.e. < [ti, ti+1],modei >, i =

0, 1, · · · , l − 1,

determine if T can meet the required deadlines using Ŝ(t) with the temperature stays

below Tmax all the time.

88

5.3 The Leakage Oblivious Feasibility Analysis

In this, we study Problem 5.2.2 assuming that the leakage power is negligible. Under

this assumption, the overall power consumption is therefore independent of temper-

ature. Through this study, we intend to gain some valuable insights on how to deal

with the maximal temperature constraints in the feasibility analysis for periodic task

systems. We then incorporate the leakage/temperature dependency and develop sev-

eral more elaborated feasibility conditions.

One common practice to ensure the feasibility of a periodic real-time task set is

to construct a feasible schedule with interval [0, L], where L represents the hyper-

period, i.e. the least common multiple (LCM) of task periods. As long as the tasks

are feasible in [0, L], by replicating the schedule, the timing feasibility of the real-time

system is guaranteed. However, when the execution of the real-time tasks are further

constrained by a maximal temperature, is this approach still feasible?

We first introduce Theorem 5.3.1 which helps to answer this question.

Theorem 5.3.1. Given periodic task set T , let

• L be the LCM of the periods, i.e.,P0, P1, · · · , Pn−1,

• Ŝ(t) be the speed schedule within interval [0, L] that can guarantee the deadlines

of T under the maximal temperature constraints Tmax with the initial tempera-

ture T (0).

Then, when repeating Ŝ(t) later in the schedule, all task deadlines can be guaranteed

under initial temperature T (0) if T (L) ≤ T (0).

Proof. For interval [t0, t1], let the temperature at t = t0 be T (t0). Assuming there is no

leakage power, based on Equation 5.4, we can simplify the overall power consumption

formulation as P = v3k, where vk is the supply voltage when the processor is running

89

in mode k. By solving Equation 5.2, we have

T (t1) =

∫ t1

t0

av3(τ)e−b(τ−t0)dτ + T (t0)e
−b(t1−t0). (5.6)

So we have

T (L) =

∫ L

0

av3(τ)e−bτdτ + T (0)e−bL. (5.7)

If we repeat Ŝ(t) for interval [L, 2L], we have

T (2L) =

∫ 2L

L

av3(τ)e−b(τ−L)dτ + T (L)e−bL (5.8)

=

∫ L

0

av3(τ − L)e−bτdτ + T (L)e−bL (5.9)

Note that v3(τ) = v3(τ − L). Thus we have

T (2L)− T (L) = (T (L)− T (0))e−bL. (5.10)

So, for the (k + 1)th LCM interval, we have

T ((k + 1)L)− T (kL) = (T (L)− T (0))e−kbL. (5.11)

Therefore, when T (L) < T (0), the temperatures at t = 0, L, 2L, · · · will be mono-

tonically decreasing.

This ensures that if the maximal temperature constraint is not violated within

[0, L], it will not be violated within interval [L, 2L], [2L, 3L],· · · . Therefore, under

this scenario, Ŝ(t) must be globally schedulable.

Theorem 5.3.1 states that as long as the temperature at the ending point of a

schedule is no more than the initial temperature at t = 0, repeating the schedule

that is feasible during the first LCM interval is safe to guarantee the temperature and

90

timing constraint. The question is then what if T (L) > T (0). We present another

theorem for this case. We use the same notation as that in Theorem 5.3.1.

Theorem 5.3.2. If T (L) > T (0), when repeating Ŝ(t), all task deadlines can be

guaranteed with initial temperature T (0) if and only if

• Condition 1: T (L) ≤ (Tmax − T (0))(1− e−bL) + T (0);

• Condition 2: T (tm) ≤ Tmax− T (L)−T (0)
1−e−bL e−btm for all tm ∈ [0, L] such that T (tm) ≥

T (t), t ∈ [0, L].

Proof. From Equation 5.11, when T (L) > T (0), the temperatures at t = 0, L, 2L, · · ·

will be monotonically increasing. Also T (L)−T (0), T (2L)−T (L), T (3L)−T (2L), · · · , T ((k+

1)L, kL) forms a geometric series and we have

T ((k + 1)L) = T (0) +
(T (L)− T (0))(1− e−kbL)

1− e−bL
. (5.12)

As k → ∞, we have

lim
→∞

T (kL) = T (0) +
(T (L)− T (0))

1− e−bL
. (5.13)

So, T (kL) ≤ Tmax if and only if

T (L) ≤ (Tmax − T (0))(1− e−bL) + T (0). (5.14)

We next examine the temperature feasibility for the points within each LCM. Let

tm ∈ [0, L] such that T (m) ≥ T (t) for any t ∈ [0, L]. Let tm′ ∈ [kL, (k + 1)L] and

t′m = tm + kL. We want to show that T (tm′) ≤ Tmax if and only if Condition 2 holds.

Based on Equation 5.6, similarly, we have

T (tm′) =

∫ (k+1)L

kL

av3(τ)e−b(τ−kL)dτ + T (kL)e−b(tm′−kL), (5.15)

91

and

T (tm) =

∫ L

0

av3(τ)e−bτdτ + T (0)e−btm . (5.16)

Since tm = tm′ − kL, we have,

T (tm′) = T (tm) +
(T (kL)− T (0))

ebtm
. (5.17)

Since

lim
k→∞

T (kL) = T (0) +
T (L)− T (0)

1− e−bL
, (5.18)

so, T (tm′) ≤ Tmax if and only if

T (tm) ≤ Tmax −
T (L)− T (0)

1− e−bL
e−btm . (5.19)

Theorem 5.3.1 and Theorem 5.3.2 provide the necessary and sufficient condition

to predict if a schedule feasible within the first LCM is globally feasible. On the

other hand, Theorem 5.3.2 also implies that not all schedules are feasible under the

maximal temperature constraint even if they can guarantee the deadlines and main-

tain the maximal temperature below Tmax during the first LCM, i.e., [0, L]. This is

another example that the temperature-constrained real-time scheduling problem has

its unique characteristics, compared with the corresponding power-aware scheduling

problems.

5.4 The Leakage Conscious Feasibility Analysis

The results in previous section reveal some interesting and important characteristics in

feasibility analysis for periodic tasks under the maximal temperature constraint, with

the leakage power consumption ignored. However, the leakage power consumption is

92

too significant to be ignored in the deep sub-micron domain, as stated before. In this

section, we take the leakage power consumption into account and conduct a more

sophisticated study on feasibility analysis.

5.4.1 Simplifying the leakage/temperature dependency

When taking the leakage into account, one of the biggest challenges is to deal with

the complex behavior of the leakage current, as formulated in Equation 3.2. While

Equation 3.2 can capture accurately the characteristics of leakage current, the high

order and non-linear terms make it prohibitive for our real-time feasibility analy-

sis. Liu et al. [84] found that using linear approximation method to model the leak-

age/temperature dependence can maintain reasonable accuracy, i.e. with error within

1% using the piece-wise linear function or less than 5.5% using single linear function,

but the leakage model is significantly simplified. Based on this idea, we define the

leakage power for the processor running in mode k as

Pleak(k) = (C0(k) + C1(k)T) · vk, (5.20)

where C0(k) and C1(k) are constants that depend on the running mode, i.e. k. This

model is same as the LKTV discussed in Chapter 3. In what follows, we omit variable

k for sake of conciseness.

The overall power consumption in mode k is thus given by the following formula.

P (k) = (C0 + C1T) · vk + C2v
3
k. (5.21)

C0, C1 and C2 can be determined in practice once the practical power consumptions

at different temperatures are profiled.

93

With the simplified leakage power formulation, we are now able to formulate the

temperature dynamics in a closed form. Note that, when the processor runs in mode

k, by combining Equation 5.2 and 5.21, we have temperature variations as follows:

dT (t)

dt
= A(k)− B(k)T (t), (5.22)

where

A(k) = a(C0vk + C2v
3
k) (5.23)

B(k) = (b− aC1vk) (5.24)

If we run processor in mode k during interval [t1, t2], with temperature at t = t1 be

T (t1), by solving equation 5.22, we can thus get the temperature at t = t2 as

T (t2) =
A(k)

B(k)
+ (T (t1)−

A(k)

B(k)
)e−B(k)(t2−t1). (5.25)

Equation 5.20 to 5.25 form the basis of feasibility analysis with leakage/termpature

interplay taken into account. In what follows, we introduce several feasibility condi-

tions developed based on this leakage power consumption model.

5.4.2 Checking the Temperature at the End of First Hyperperiod

The reason that a periodic task set feasible within the first hyperperiod is not neces-

sarily feasible later in its life time is that the temperature at the end of a hyperperiod

may be higher than that at the beginning of the hyperperiod. If this is case, starting at

a new hyperperiod, the processor will run at a higher initial temperature and continue

to reach an even higher temperature at the end of this hyperperiod. As this process

continues, the temperature may eventually exceed the peak temperature. Conversely,

94

from Theorem 5.3.1, as long as we can ensure that the temperature within the first

hyperperiod is not higher than Tmax, and as long as the ending temperature is not

higher than the initial temperature, we can determine that a schedule must be feasi-

ble under the given maximal temperature constraint. However, assuming the initial

temperature be the ambient temperature, unless some aggressive cooling strategies

are applied, the temperature of a processor will always increase when executing tasks.

Therefore, the applicability of Theorem 5.3.1 is very limited. Next, we introduce two

other theorems that can effectively deal with the case when T (L) > T (0).

5.4.3 Checking the Temperature Safe Modes

Recall that, in Section 5.2, the processor can work in different modes, each of which is

associated with a distinct pair of supply voltage and working frequency. For some of

the modes, no matter how long the processor runs in that mode, the final temperature

will never exceed the given Tmax. We call these processor modes as the safe modes.

To determine if a processor mode, i.e. mode k, is safe, we can set

dT (t)

dt
|T (t)=Tmax= 0, (5.26)

Based on Equation 5.2 and 5.21, we have

a((C0 + C1Tmax) · v + C2v
3)− bTmax = 0. (5.27)

Note that Equation 5.27 is the classic depressed cubic equation [93]. In addition, if

we transform Equation 5.27 slightly, we have

aC2v
3 = −a((C0 + C1Tmax)) · v + bTmax. (5.28)

95

From Section 5.4.1, it is not difficult to see that aC2 > 0, and a((C0 +C1Tmax)) > 0.

Therefore, as illustrated in Figure 5.1, Equation 5.27 has only one single real root for

v, which can be solved analytically [128]. We call the solution to Equation 5.27 as the

equilibrium voltage. Note that different processor running modes may have different

equilibrium supply voltages since C0 and C1 in Equation 5.28 are different in different

modes.

Formally, we have the following lemma to determine whether or not a processor

running mode is a safe mode.

Lemma 5.4.1. Let ve be the equilibrium voltage (i.e. the solution to Equation 5.27)

for processor’s mode k (i.e. (vk, fk)). Then this mode is a safe mode if ve ≥ vk.

Proof. We prove it by contradiction. Assume that at time t ≤ t0 we have T (t) = Tmax

but at t0 +t, we have T (t0 +t) > Tmax. So we must have

dT (t)

dt
|t=t0=

dT (t)

dt
|T (t)=Tmax > 0. (5.29)

On the other hand, since ve ≥ vk, from Equation 5.27, we have

dT (t)

dt
|t=t0 = a((C0 + C1Tmax) · vk + C2v

3
k)− bTmax

≤ a((C0 + C1Tmax) · ve + C2v
3
e)− bTmax

= 0, (5.30)

which contradicts Equation 5.29.

Based on Lemma 5.4.1, we can formulate our second feasibility checking method

in the following theorem.

96

Figure 5.1: Since the slope for the linear function y = −a((C0 +C1Tmax)) · v + bTmax

is less than zero, there is only one cross point for function y = −a((C0 + C1Tmax)) ·
V + bTmax and function y = aC2V

3. So Equation 5.27 has only one real root. [104]

Theorem 5.4.2. Let Ŝ(t) be the speed schedule within interval [0, L] that can guaran-

tee the deadlines of T under the maximal temperature constraint Tmax, and let smax

be the maximal speed in Ŝ(t). Also let smf be the highest speed among the proces-

sor safe modes. Then if smax ≤ smf , when repeating Ŝ(t) later in the schedule, the

temperature will never exceed Tmax.

Theorem 5.4.2 can be easily proved following the similar proof as that for Lemma 5.4.1.

Note that, as long as the maximal temperature Tmax and the processor is given, the

highest speed (smf) among the processor safe modes is well determined. Also, it is

much less costly to get the maximal speed (smax) in a schedule (such as those gen-

erated by the approach in [134]) rather than to get the entire speed schedule for a

periodic task set. Therefore this approach can be effectively used for the purpose of

design space exploration.

Even though the feasibility condition formulated in Theorem 5.4.2 can be used

for cases when the ending temperature of the first hyperperiod is higher than the

initial temperature, this feasibility condition is still only a sufficient condition. In

97

Figure 5.2: A speed schedule within 2 hyperperiods.

other word, when the maximal processor speed is higher than the maximal safe speed

of the processor, the schedule may still be feasible under the maximal temperature.

In what follows, we introduce the third feasibility condition, which is also a stronger

condition and can be used to check the schedulability for these cases.

5.4.4 The Necessary and Sufficient Condition

To guarantee the maximal temperature constraint, we need to make sure that this

constraint is not violated at the end point of each hyperperiod and anywhere inside the

hyperperiod. It helps then to identify the possible locations within the hyperperiod

that this constraint may be violated. In what follows, we first introduce the term,

island interval.

Definition 5.4.3. An interval [ti, tj] in Ŝ(t) is called an island interval if the proces-

sor needs to run in a non-safe processor mode within this interval, or a non-island

interval otherwise.

For an island interval, we have the following observation.

Lemma 5.4.4. Let [t1, t2] be an island interval. If for any t ∈ [t1, t2], we have

T (t) ≤ Tmax, then we have T (t) ≤ T (t2).

Proof. For any t ∈ [t1, t2], since the processor must be running at a non-safe mode at

98

t and T (t) ≤ Tmax, we have

dT (t)

dt
|t∈[t1,t2]> 0, (5.31)

Therefore, T (t) monotonically increases with t. So T (t2) must be the highest within

the interval.

According to Lemma 5.4.4, the highest temperature for an island interval always

occurs at its end, given that the maximal temperature constraint is not violated.

Therefore, to verify if the temperature constraint is violated within a given hyperpe-

riod, we only need to check temperatures at at the ends of all island intervals, plus

the one at the end of the hyperperiod.

Our goal is to make sure that the temperature constraint is not violated during

the entire life cycle when executing a periodic task set. Exhaustively checking tem-

perature constraint for all hyperperiods is apparently impossible. In addition, it is

not adequate to draw a conclusion that a schedule is feasible under the maximal tem-

perature constraint simply because the temperature constraint is not violated within

the first hyperperiod. So, if we want to check temperatures only at the first hyperpe-

riod, additional constraints must be imposed. The following theorem provides such

“additional” constraints.

Theorem 5.4.5. Let the ith interval in Ŝ(t) be [ti, ti+1] and let its processor mode be

k. Define Ai, Bi such that

Ai = A(k) = a(C0vk + C2v
3
k), (5.32)

Bi = B(k) = (b− aC1vk). (5.33)

99

Let [t(j−1), tj] be an arbitrary island interval in Ŝ(t), and let

Kj = exp(−B0(t1 − t0)− · · · −Bj(tj − t(j−1))) (5.34)

K = exp(−B0(t1 − t0)− · · · −Bl(tl − t(l−1))) (5.35)

where tl = L. Then repeating Ŝ(t) later in the schedule, the temperature will never

exceed Tmax iff the following conditions hold:

• 0 ≤ K < 1;

• T (L) ≤ Tmax(1−K);

• T (tj) ≤ Tmax − T (L)
1−K

Kj.

Proof. See Figure 5.2. Let starting points for intervals in Ŝ(t) be t0, t1, · · · , t(l−1),

respectively. After repeating Ŝ(t), let the corresponding points during the second

hyperperiod be t′0, t
′
1, · · · , t′(l−1), correspondingly. Note that t0 = 0, t′0 = tl = L and

t′l = 2L.

According to Equation 5.25, we have

T (t1) =
A0

B0

+ (T (t0)−
A0

B0

)e−B0(t1−t0)

and

T (t′1) =
A0

B0

+ (T (t′0)−
A0

B0

)e−B0(t′1−t′0).

Since (t′1 − t′0) = (t1 − t0), we have

T (t′1)− T (t1) = (T (t′0)− T (t0))e
−B0(t1−t0). (5.36)

100

Similarly, we have

T (t′2)− T (t2) = (T (t′0)− T (t0))e
−B0(t1−t0)−B1(t2−t1),

· · ·

Therefore, we have

T (2L)− T (L)

= T (t′l)− T (tl)

= (T (L)− T (0))
l∑

i=1

e−Bi−1(ti−ti−1)

= (T (L)− T (0))K. (5.37)

In the same way, we can see that

T (3L)− T (2L) = (T (2L)− T (L))K (5.38)

T (4L)− T (3L) = (T (3L)− T (2L))K (5.39)

· · ·

Therefore,T (L)− T (0), T (2L)− T (L), T (3L)− T (2L), · · · , T (qL)− T ((q− 1)L) form

a geometric series and we have

T (qL) = T (0) +
(T (L)− T (0))(1−Kq)

1−K
. (5.40)

Since 0 ≤ K < 1, as q → ∞, we have

lim
q→∞

T (qL) = T (0) +
(T (L)− T (0))

1−K
. (5.41)

101

After T0 is calibrated to 0, T (qL) ≤ Tmax if and only if

T (L) ≤ Tmax(1−K). (5.42)

We now need to make sure that the maximal temperature constraint is not violated

in any island interval. Let [tj−1, tj] be an arbitrary island interval in Ŝ(t). Follow the

same procedure as stated above, we have

T (L+ tj)− T (tj)

= (T (L)− T (0))

j∑
i=1

e−Bi−1(ti−ti−1)

= (T (L)− T (0))Kj.

Similarly, we have

T (2L+ tj)− T (L+ tj) = (T (2L)− T (L))Kj,

T (3L+ tj)− T (2L+ tj) = (T (3L)− T (2L))Kj,

...

T (qL+ tj)− T ((q − 1)L+ tj) = (T (qL)−

T ((q − 1)L))Kj,

Add all above questions together, we have

T (qL+ tj)− T (tj) = (T (qL)− T (0))Kj. (5.43)

102

Similarly, since 0 ≤ K < 1, as q → ∞, with Equation 5.40, we can get

T (qL+ tj) = T (tj) +
(T (L)− T (0))

1−K
Kj. (5.44)

So, after T0 is calibrated to 0, T (qL+ tj) ≤ Tmax if and only if

T (tj) ≤ Tmax −
T (L)

1−K
Kj. (5.45)

Note that, after the speed schedule Ŝ(t) is defined, K and Kj are well defined. We

then can check temperatures at the end of first hyperperiod as well as those at the end

of island intervals. Ŝ(t) is a feasible schedule if the three conditions in Theorem 5.4.5

hold.

5.4.5 Further Discussions

From Theorem 5.4.5 and its proof, we have a number of interesting observations.

Corollary 5.4.6, for example, is a straightforward conclusion from proof of Theo-

rem 5.4.5.

Corollary 5.4.6. If K > 1 and T (L) > T (0), the processor temperature will run

away and reach infinity.

Corollary 5.4.6 can be easily proved from Equation 5.40. When K > 1,

lim
q→∞

T (qL) = lim
q→∞

(T (0) +
(T (L)− T (0))(1−Kq)

1−K
)

= ∞.

This implies that the heat generated by the processor exceeds its cooling capability,

and the temperature continues to rise until the system breaks down.

103

On the other hand, when 0 ≤ K < 1, the processor temperature will eventually

enter a stable status if the system does not break down before that. The stable status

is formally defined as follows.

Definition 5.4.7. Assume a processor is running a periodic schedule Ŝ(t) with period

L, the processor temperature is called to be in a stable status if for a given threshold,

i.e. 0 < ε << 1,

|T ((i+ 1)L)− T (iL)| < ε, (5.46)

where i ≥ 0, i ∈ Z.

When the processor temperature enters the stable status, the temperature profile

does not change much from one hyperperiod to another hyperperiod. Also, from the

proof of Theorem 5.4.5, the temperature when the processor is in its stable status

can be analytically formulated as follows.

Lemma 5.4.8. Assume a processor is running a periodic speed schedule Ŝ(t) with

period L. Let T (0) and T (L) be temperatures at t = 0 and L, respectively. Then when

the processor temperature reaches its stable status, the temperature at the starting (or

ending) point of a period, denoted as T (L′), can be formulated as

T (L′) = T (0) +
(T (L)− T (0))

1−K
. (5.47)

Note that similar lemmas can also be developed to calculate the temperature at

each specific scheduling point, based on Equation 5.44 in the proof of Theorem 5.4.5.

In summary, we introduce three feasibility testing methods (Section 5.4.2, Sec-

tion 5.4.3, and Section 5.4.4) to verify if a feasible schedule developed within the

first hyperperiod is globally feasible or not under the given maximal temperature

constraint. The first two, which are based on Theorem 5.3.1 and 5.4.2, are sufficient

conditions. The third one, based on Theorem 5.4.5, is a more elaborated necessary

104

and sufficient condition. All three methods take the leakage/temperature dependency

into account based on the processor power model formulated in Equation 5.21. In

what follows, we use experiments to further study their effectiveness.

5.5 Experiment

The feasibility conditions introduced in the previous section are established based on

the leakage power model proposed in Section 5.2, or more specifically, formulated by

Equation 5.21. Therefore to study the performance of the feasibility conditions, we

need to first validate the leakage model. It is difficult to analyze the accuracy of the

leakage model analytically, since the constants C0 and C1 are obtained through poly-

nomial approximation methods rather than from some analytical formulas. Similar

to empirical experiments done in Chapter 3, we conduct some new experiments to

check the accuracy of various leakage models.

Next, we will examine the performance of different schedulability conditions pre-

sented before. We also studied what impacts different leakage models may have in

schedulability analysis.

5.5.1 Leakage Model Validation

We constructed our processor model based on the work by Liao et al. [77] for a

processor using 65nm technology. We assumed that the processor can run in six

different active modes, with the corresponding supply voltages as 0.85V, 0.9V, 0.95V,

1.0V, 1.05V and 1.1V. The processor can also be shut down and consumes no energy.

For each mode, we set the frequency of the processor in each mode such that it

can accommodate the longest delay at the highest temperature (110oC) based on

Equation 5.3, with μ = 1.19, η = 1.2, and vt = 0.3 [77]. For the thermal constants,

we selected Rth = 0.8K/W , Cth = 340J/K [119], and ambient temperature as 25oC.

105

We studied four different leakage models shown below:

• ConstA The leakage power is a constant that is independent of both temperature

and supply voltage. This is the leakage power model used by many previous

researches (such as [105]). The constant is determined by the average leakage

power consumption at the ambient temperature.

• ConstH The leakage power is also a constant. But the constant is determined

by the average leakage power consumption at the highest temperature.

• LKT The leakage power changes only with the temperature but not the supply

voltage. This model is adopted in previous work such as [35, 48, 30].

• LKT&V The leakage power varies with both the temperature and supply voltage.

This is the model proposed in Section 5.2.

We used the analytical formula, i.e. Equation 3.2, to compute the actual leakage

power for temperature from 40oC to 110oC with step size of 10oC. The total number

of gate, i.e. Ngate in Equation 5.5, was set to be 106. The dynamic power consumption

was determined based on the experimental results reported in [77] on benchmark

gcc. The corresponding power consumption results were then used to determine the

constants in the leakage models.

Specifically, the power consumptions obtained above were used to determined the

curve fitting constants C0, C1 and C2 for Model LKT&V , which are listed in Table 7.1.

The leakage power consumptions for ConstA and ConstH were defined as the average

results at the ambient temperature (T = 25oC) and the highest temperature (T =

110oC), respectively. For Model LKT , the average leakage power consumption at

each temperature was used to derive the corresponding linear function.

Figure 5.3 plots the leakage power consumptions based on the complex non-linear

model (i.e. Equation 3.2) and other four models. As we can see from Figure 5.3,

106

Table 5.1: Processor parameters and constants for Model LKT&V

Vdd(V) C0 C1 C2 Frequency
0.00 0.0 0.0 0.0 0.0
0.85 7.3249 0.1666 15.0 0.8010
0.90 8.6126 0.1754 15.0 0.8291
0.95 10.238 0.1846 15.0 0.8553
1.00 12.315 0.1942 15.0 0.8797
1.05 14.998 0.2043 15.0 0.9027
1.10 18.497 0.2149 15.0 1.0

25

30

35

40

45

e�
Po

w
er

�(W
)

Non�Linear LK�T&V LK_T
CONST�A CONST�H

V=1.1V

5

10

15

20

40 50 60 70 80 90 100 110

Le
ak

ag
e

Temperature�(oC)

v=0.85v

Figure 5.3: The Leakage Power Consumptions Based on Different Leakage Models.

40 50 60 70 80 90 100 110
−3

−2

−1

0

1

2

3

4

5

6

Temperatureo C)

R
el

at
iv

e
er

ro
r(

%
)

Relative Error

Relative Error@0.85V
Relative Error@0.9V
Relative Error@0.95V
Relative Error@1.0V
Relative Error@1.05V
Relative Error@1.1V

107

with linear approximation, the leakage power consumptions based on Model LKT&V

match very closely to that by a much more complex method (Equation 3.2). As

further shown in Figure 5.5.1, the relative error is less than 5% for 0.85V and less

than 3% for 1.1V. The results clearly show that Model LKT&V is a leakage model

with low complexity and very good accuracy.

On the other hand, however, our experimental results also show that if the supply

voltage or temperature dependency are not carefully addressed, the leakage model can

lead to estimation results deviated far away from the actual values. From Figure 5.3,

when the supply voltage is not taken into consideration, the estimation errors by

Model LKT can be as much as 2.08 times higher or 26.7% lower than the actual leakage

power consumptions. When also ignoring the leakage/temperature dependency, the

estimation errors by Model ConstA and ConstH become even larger, i.e. as much as

3.8 times higher or 56% lower than the actual values. We investigate how significant

the leakage power estimation errors may affect schedulability analysis in Section 5.5.3.

5.5.2 The Performance of Feasibility Conditions

We next used the processor model developed above to study the feasibility analysis

methods proposed in this chapter. Three feasibility checking methods were imple-

mented and investigated. The first one (namely EndCheck), based on Theorem 5.3.1

checks if the temperature at the end of the hyperperiod is no more than the initial

temperature. The second one (namely SafeCheck) applies Theorem 5.4.2 and uses

the processor safe speed to check the feasibility. The third one (namely Island-

Check) employs Theorem 5.4.5, checking temperatures at the ending points of the

first hyperperiod and all island intervals in the first hyperperiod.

108

The real time tasks were randomly generated with periods distributed evenly in range

[1000, 5000] seconds. Deadlines were determined by multiplying periods with a con-

stant, called the deadline-period ratio. The execution time for each task was also

randomly generated, which is evenly distributed between 1 and its deadline. The

feasible speed schedules, generated based on the optimal method to minimize the dy-

namic energy [134], were used as our test cases. Since the approach in [134] assumes a

processor model with continuously variable speed, we always rounded up a processor

speed to the next higher available one in our experiments.

In the first set of experiments, we fixed the deadline-period ratio at 0.3 (i.e. DPra-

tio=0.3) and varied the peak temperature constraint from 40oC to 110oC, with step

size of 1oC. For each peak temperature, we generated 100 test cases that can satisfy

deadlines if the temperature factor is not taken into consideration. In the second set

of experiments, we fixed the maximal temperature at 50oC, and varied the deadline-

period ratio. The deadline-period ratio was varied from 0.1 to 0.9 with step size of

0.1. All these test cases were then tested using the three methods stated above.

We evaluate the performance of three feasibility conditions using the numbers of

schedulable task sets under each feasibility condition, as shown in Figure 5.4 and

Figure 5.5. Figure 5.4 and Figure 5.5 show clearly the significant impacts of peak

temperature requirement to the schedule’s feasibility. Note that in Figure 5.4, when

the peak temperature constraint is higher than 58oC, all 100 schedules randomly gen-

erated as above can satisfy the temperature constraints based on IslandCheck and

SafeCheck. When the peak temperature constraint getting tighter, however, the

feasibility drops quickly. In Figure 5.4, when the peak temperature is set to 41oC,

more than 30% of the original feasible schedules become infeasible.

109

Figure 5.4: Success Rate Under Different Maximal Temperature (deadline-period
ratio = 0.3)

Figure 5.5: Success Rate Under Different Deadline-Period Ratio. (Tmax = 50oC)

110

Figure 5.6: Success Rate Under Different Initial Temperature(above ambient temper-
ature). (Tmax = 50oC and deadline-period ratio = 0.1)

It is not surprising to see in Figure 5.4 that none of the task sets can be pre-

dicted as feasible using EndCheck. This is because that, starting from the ambient

temperature, the processor temperature always increases to one that is above the

ambient temperature after executing tasks, given the thermal settings stated before.

Therefore, the usage of this feasibility condition is very limited. Moreover, we can

see that SafeCheck is pessimistic in predicting the feasibility for a schedule. This

is because a schedule occasionally using a speed higher than the processor safe speed

can still reach a temperature lower than the required maximal temperature. In Fig-

ure 5.4, when the maximal temperature is set to be 57oC, about 18% of the feasible

task sets cannot be properly verified by SafeCheck. When the given maximal tem-

perature becomes very high, all processor running modes become safe modes, and

thus SafeCheck obtains the same results as that by IslandCheck in Figure 5.4.

Similar conclusions can be drawn from Figure 5.5 when the deadline period ratios are

different.

111

Figure 5.7: Success Rate Under Different Initial Temperature(above ambient temper-
ature). (Tmax = 50oC and deadline-period ratio = 0.5)

We next evaluate the success rate of three feasibility conditions with different initial

temperature. We fixed the maximum temperature constraint to 50oC, and deadline-

period ratio to 0.1, 0.5 and 0.9. Figure 5.6, 5.7 and 5.8 shows the comparison of

success rate by three feasibility methods. In all the figures X-axis represents the ini-

tial temperature above ambient. From Figure 5.8, we can see that the feasibility by

EndCheck increases with increasing initial temperature. When the initial tempera-

ture becomes as high as 14oC above ambient, the feasibility of EndCheck becomes

equal to that of IslandCheck. From Figure 5.7, at deadline-period ratio equal to

0.5, EndCheck follows IslandCheck closely after 4oC. In Figure 5.6, EndCheck

is always pessimistic compared to IslandCheck when deadline-period ratio is 0.1.

The overall result continues to support our claim that the EndCheck is a pessimistic

method compared to IslandCheck. As we can clearly see from our results that it

can be very close to IslandCheck in many scenarios, but IslandCheck is always

either same or better than EndCheck.

112

Figure 5.8: Success Rate Under Different Initial Temperature(above ambient temper-
ature). (Tmax = 50oC and deadline-period ratio = 0.9)

5.5.3 The Impacts of Different Leakage Models

We further examine how different leakage power models may affect the feasibility

analysis results. We used the same test cases generated in Section 5.5.2 and applied

IslandCheck on all four leakage models introduced in Section 5.5.1. The numbers

of feasible task sets are collected and depicted in Figure 5.9. The results shown in

Figure 5.9 verify the large discrepancies in terms of task set schedulability caused by

the large estimation errors by different leakage models. When assuming the leakage

power being a constant at the highest temperature, the leakage model ConstH can

lead to a feasibility analysis that is extremely pessimistic. Note that in Figure 5.9

none of the task sets is predicted as schedulable according to ConstH at temperature

of 44oC. According to leakage model LKT&V , however, 74 of the task sets are in fact

schedulable.

When assuming the leakage power consumption at the ambient temperature, the

feasibility analysis based on leakage model ConstA can be both pessimistic or op-

timistic. Note that we defined the constant leakage power consumption in ConstA

113

using the average results under different supply voltages at the ambient temperature.

This leakage power consumption can thus be over estimated when the actual supply

voltage is low or under estimated when the actual supply voltages is high. When

the maximal temperature constraint is low, the schedules that employ low processor

speed are more likely to satisfy the temperature constraints. As a result, the feasi-

bility analysis results based on ConstA tends to be pessimistic for these test cases.

In Figure 5.9, at 40oC, 82% of the feasible task sets cannot be correctly predicted

based on leakage model ConstA. As temperature increases, the feasibility analysis

results become more and more optimistic. At temperature 49oC, at least 22% task

sets that are predicted as feasible according to ConstA are in fact infeasible according

to results based on the leakage model LKT&V .

Even though the leakage/temperature dependency is considered in model LKT ,

large estimation errors still exist since the leakage power varies not only with tem-

perature but also supply voltage. As a result, similar to leakage model ConstA, the

feasibility analysis based on leakage model LKT can be overly pessimistic or overly

optimistic. At 40oC, as many as 86% of the feasible tasks cannot be properly pre-

dicted based on model LKT , and as many as 15% of the feasible task sets at 53oC

in fact cannot satisfy the temperature constraint. These results clearly demonstrate

that the feasibility analysis without appropriately accounting for the leakage power

with temperature and supply voltage can deviate far away from the actual results.

5.6 Conclusion

In this chapter, we studied the feasibility checking problem for real-time periodic

task sets under the peak temperature constraint. We showed that the traditional

scheduling approach, i.e. to repeat the schedule that is feasible through the range of

one hyper-period, does not apply any more. We presented three feasibility analysis

114

60

80

100

120

e�
Ta

sk
�S

et
s

Const�A Const�H LK�T LK�T&V

0

20

40

40 42 44 46 48 50 52 54 56 58 60

Fe
as

ib
le

Temperature�(oC)

Figure 5.9: Feasible Task Sets Based on Different Leakage Models Under Different
Temperature (deadline-period ratio=0.3)

techniques to determine if a period task set can meet deadlines under a given maximal

temperature constraint. Our experimental results, based on technical parameters

derived from a processor using 65nm technology, showed that our leakage current

model have a relative error less than 5%. In addition, our experimental results on the

feasibility analysis demonstrated the effectiveness of our methods and clearly highlight

the importance to deal with the impacts of leakage/temperature relationship.

115

CHAPTER 6

Energy Minimization in Multi-Core Processor Systems

In the recent years, advancement in microprocessor architecture design has gain a

tremendous momentum. Driven by the growing appetite for high performance un-

der stringent energy constraints, the microprocessor design standard has evolve from

the single core to the multi-core architectures. The multi-core systems are gaining

widespread popularity and are now the mainstream processor design solution for the

high performance computing. However, energy efficiency is still a critical concern in

multi-core system designs. It becomes even more challenging when considering the

cyclic dependency between leakage power and temperature. Moreover, absence of

analytical energy formulation is a fundamental bottleneck in developing effective and

efficient system level energy reduction techniques.

In this chapter, we first present a novel method to calculate the energy consump-

tion of a given voltage schedule on a multi-core platform, with the leakage/temperature

dependency taken into consideration. Different from the traditional numerical method

for energy calculation, this method analytically formulates the overall energy con-

sumption of a given speed schedule. To the best of our knowledge, this is the only

work that provides an analytical solution for energy calculation on the multi-core

platforms incorporating leakage/temperature dependency into scheduling decisions.

Our experiment results demonstrated that this method can achieve a speedup of two

orders of magnitude compared with the numerical method, with a relative error of no

more than 0.1%.

Next, we combined our energy calculation method with two different task alloca-

tion techniques and present new energy minimization(EM) methods, namely Exhaus-

tive Task Allocation(ETA-EM) and Thermal Aware Task Allocation(TATA-EM). We

compared the efficiency of these methods in minimizing the over all energy of the sys-

116

tem. By definition, the ETA method is an optimal solution for energy minimization,

however it can be computationally expensive with increasing number of processing

cores. Our experimental results showed that TATA-EM is an computationally inex-

pensive method and can very well match the optimal solution.

The rest of this chapter is organized as follows. First we discuss the closely related

work in Section 6.1. Next, we introduce the system models used in this chapter in

Section 6.2. In Section 6.3 we present the formulation of our temperature dynamics

and the analytical solution for energy calculation on multi-core systems. We evaluate

the accuracy and efficiency of our method in Section 6.4. We present our experimental

based comparative study in Section 6.5, and conclude this chapter in Section 6.6.

6.1 Related Work

In the past, extensive research work has been published on both single core and multi-

core processor systems for energy-aware designs [134, 75, 68, 16, 132, 57, 85, 17, 150].

A key problem in energy efficient electronic design automation is to calculate the en-

ergy consumption for a design alternative. Earlier research, e.g. [134, 75], has been

exclusively focused on dynamic energy consumption. Some later research such as that

in [68] takes the leakage power into considerations, but assumes that leakage power

is constant. Under these assumptions, the calculation of the energy consumption for

a given voltage schedule is trivial, since the overall power consumption remains the

same as long as a system keeps the same running mode. However, when consider-

ing the leakage/temperature dependency, the problem becomes substantially more

challenging since the leakage power consumption (and thus the overall power con-

sumption) varies with the temperature, and temperature changes with the power

consumption as well. It becomes even more complicated for multi-core platforms

when the temperature of one core depends on temperatures from other cores as well.

117

To calculate the overall energy consumption with leakage/temperatue dependency

taken into considerations, one intuitive and commonly adopted approach is to use the

numerical method. According to this method, the entire voltage schedule is split into

a set of small time intervals such that within each interval the voltage/frequency or

temperature of all cores can be regarded as invariant. The temperature and power

trace, and thus the energy consumption, for a schedule can thus be obtained ac-

cordingly. For example, Liu et al. [85] formulated the energy minimization under

a peak temperature as a non-linear programming problem, and then employed the

above mentioned method to calculate the energy consumption. Bao et al. [15] also

used the similar approach to keep track of temperature variations in their research

on task mapping combined with dynamic voltage frequency scaling (DVFS) to min-

imize the overall energy consumption for multi-core systems. One major problem of

this approach is that the accuracy highly depends on the variation rate of power and

temperature. To achieve high accuracy, the length of the interval need to be kept

very small and thus the computation cost can be very high.

Huang et al. proposed [57] a different approach to calculate the energy consump-

tion. Based on leakage/temperature dependency model proposed in [104], they de-

veloped an analytical closed-form energy estimation method for a schedule. However,

their work can only be applied for single core platforms only. In another approach,

Hanumaiah et al. [53] studied the energy efficient problem that optimizes a metric

called performance per watt (PPW). They transformed this problem as an optimiza-

tion problem with the objective function as quasiconcave. They then used Matlab

tools to search for solutions. However, the proposed approach cannot be readily

applied to calculate the energy consumption for a given schedule.

118

6.2 Preliminary

In this section, we present our system models that are used in developing our theo-

retical framework and validation platform.

6.2.1 Processor and Task Model

The real-time system considered in this chapter consists of M processors, denoted

as P = {P1,P2, ...,PM}. Each processor has N running modes, each of which is

characterized by a pair of parameters (vk, fk), where vk and fk are the supply voltage

and working frequency under mode k, respectively.

Let S represent a voltage schedule or speed schedule which indicates how to vary

the supply voltage and working frequency for each processor at different time. In this

chapter, we use voltage schedule and speed schedule interchangeably. Let L be the

schedule length of S. We define the concept of state interval as below:

Definition 6.2.1. Given a speed schedule S for a multi-core system, an interval

[tq−1, tq] is called a state interval if each processor runs only at one mode during that

interval.

According to Definition 6.2.1, a speed schedule S essentially consists of a number

of non-overlapped state intervals, i.e. Q state intervals, such that

1.
⋃Q

q=1[tq−1, tq] = [0, L]

2. [tq−1, tq]
⋂
[tp−1, tp] = ∅, if q
= p

In addition, for a single state interval [tq−1, tq], we use κq to denote the interval

mode, which consists of the running modes of all processors in that interval, i.e.

κq = {k1, ..., kM} where ki is the running mode of processor Pi in that interval.

119

6.2.2 Power Model

As previously discussed, the overall power consumption (in Watt) is composed of

dynamic power Pdyn and leakage power Pleak. In our power model, Pdyn is independent

of the temperature, while Pleak is sensitive to both temperature and supply voltage.

The dynamic power consumption of processor Pi can be formulated as [107]

Pdyn,i = εki · v3ki (6.1)

where vki is the supply voltage of processor Pi and εki is a constant, both of which

depend on the running mode of processor Pi, i.e. mode ki.

Similar to the work in [100], we model the leakage power of processor Pi as follows

Pleak,i =
(
σki + ρki · Ti(t)

)
· vki (6.2)

where σki and ρki are constants depending on the processor running mode, i.e. mode

ki.

Consequently, the total power consumption of processor Pi at time t, denoted as

Pi(t), can be formulated as:

Pi(t) =
(
σki + ρki · Ti(t)

)
· vki + εki · v3ki (6.3)

We rewrite the above power model by separating the elements into temperature in-

dependent/dependent parts such that

Pi(t) = λi + ζi · Ti(t) (6.4)

120

where

λi = σki · vki + εki · v3i (6.5)

ζi = ρki · vki (6.6)

Now we can introduce our system power model for multi-core platforms.

P(t) = Λ+ ζT(t) (6.7)

Note that, to ease our presentation, we use the bold text for a vector/matrix and the

normal text for a value, e.g. T represents a temperature vector while T represents a

temperature value.

6.2.3 Thermal Model

�� � � ���

�� �� ���

��� � ��
�

���
� �� �

���

���

���

���

���

� ��

Figure 6.1: Illustration for thermal phenomena on multi-core system

The thermal model used in this chapter is similar to the one used in related

researches [113, 123]. Figure 6.1 illustrates the thermal model for a 4-core system. Ci

and Rij denote the thermal capacitance (in Watt/oC) of processor Pi and the thermal

resistance (in J/oC) between processor Pi and Pj, respectively. Let Tamb denote the

121

ambient temperature, then in general, the thermal phenomena of processor Pi can be

formulated as

Ci ·
dTi(t)

dt
+

Ti(t)− Tamb

Rii

+
∑
j �=i

Ti(t)− Tj(t)

Rij

= Pi(t) (6.8)

Let ηi =
Tamb

Rii
and

gij =

⎧⎪⎪⎨
⎪⎪⎩

∑M
j=1

1
Rij

, if j = i

−1
Rij

, otherwise

(6.9)

Then the thermal model in equation (6.8) can be rewritten as

Ci ·
dTi(t)

dt
+

M∑
j=1

gij · Tj(t) = Pi(t) + ηi (6.10)

Accordingly, for the entire system, the thermal model can be represented as

C
dT(t)

dt
+ gT(t) = P(t) + η (6.11)

Note that C, g and η are all constant that only depend on the multi-core architecture,

i.e. capacitance and/or conductance. It is worthy of mentioning that our thermal

model in very general and accounts for the heat transfer impacts among different

cores. It can be used for thermal analysis for both the temperature transient states

as well as the temperature stable state.

6.3 Energy Formulation for Multi-Core Systems

Our goal is to formulate the overall energy consumption for a given schedule. Before

we introduce our method, we first present how to formulate the temperature dynamics

on multi-core systems analytically.

122

Note that, by applying the power model (see equation (6.7)) into the thermal

model (see equation (6.11)), we can directly obtain that

C
dT(t)

dt
+ gT(t) = Λ+ ζT(t) + η (6.12)

Let G = g− ζ, then the above can be rewritten as

C
dT(t)

dt
+GT(t) = Λ+ η (6.13)

Since C is the capacitance matrix with none zero values only on the diagonal, we

know C is nonsingular. Thus, the inverse of C, i.e. C−1 exists. Then equation (6.13)

can be further represented as

dT(t)

dt
= AT(t) +B (6.14)

where A = −C−1G and B = C−1(Λ + η). The system thermal model shown in

equation (6.14) has a form of first order Ordinary Differential Equations (ODE),

which has the following solution under constant coefficients:

T(t) = etAT0 +A(etA − I)B (6.15)

where T0 is the initial temperature.

Specifically, for a state interval [tq−1, tq], and let κq be the corresponding interval

mode, once the temperate at the starting point, i.e. T (tq−1), is determined, according

to equation (6.15), the ending temperature of that interval, i.e. T (tq−1), can be

directly formulated as

T(tq) = eΔtqAκqT(tq−1) +A−1
κq
(eΔtqAκq − I)Bκq (6.16)

123

where Aκq = −C−1Gκq , Bκq = C−1(Λκq + η), and Δtq = tq − tq−1. Note that since

Aκq and Bκq are only dependent on the processor running modes, i.e. κq, within a

state interval [tq−1, tq], both Aκq and Bκq are constant.

Consequently, given a speed schedule S and the corresponding initial temperature

T(0), with the method introduced above, we can obtain the temperature traces of S

by successively calculating the temperature from one state interval to another.

We now discuss our method to formulate the energy consumption on multi-core

systems considering the interdependence of leakage power and temperature. In what

follows, we first present an analytical solution to calculated the energy consumption

for one state interval. Then we formulate the total energy consumption for the entire

speed schedule.

Consider a state interval, i.e. [tq−1, tq] with initial temperature of T(tq−1). The

energy consumption of all processors within that interval can be simply formulated

as

E(tq−1, tq) =

∫ tq

tq−1

P(t)dt (6.17)

Based on our system power model, given by equation (6.7), we have

E(tq−1, tq) = ΔtqΛ+ ζ

∫ tq

tq−1

T(t)dt (6.18)

To calculate E(tq−1, tq), we only need to solve
∫ tq
tq−1

T(t)dt.

Recall that the analytical solution for T(t) is given by equation (6.15). One

intuitive approach is therefore to solve
∫ tq
tq−1

T(t)dt as follows:

∫ tq

tq−1

T(t)dt =

∫ tq

tq−1

(
etAT(tq−1) +A(etA − I)B

)
dt (6.19)

=

∫ tq

tq−1

etAdtT(tq−1) +A
(∫ tq

tq−1

etAdt− tI
)
B (6.20)

124

Now the problem becomes how to solve
∫ tq
tq−1

etAdt. However, we are not aware of

any existing method or mathematical tools that can be used to solve the problem of

exponential matrix integration. However, based on the definition of our state interval,

as all the processors are running on a single mode,
∫ tq
tq−1

T(t)dt is essentially a constant

value, that be can calculated.

To calculate
∫ tq
tq−1

T(t)dt, since all processors are running on a single mode, if we

integrate on both sides of equation (6.13) with respect to time t and assume that G

is a non-singular matrix, we can easily find the value of this constant with simple

substitution. In what follows, we can formulate the over all energy consumption of

the system within a given state interval as,

E(tq−1, tq) = ΔtqΛ+ ζG−1Y (6.21)

where

Y = Δtq(Λ+ η)−CΔTq (6.22)

Note that given a speed schedule and initial temperature, the temperature at the

ends of each state interval can be readily determined using equation (6.15). For a

speed schedule S consisting of Q state intervals, the total system energy consumption

under S can be obtained by summing up the energy consumptions of all state intervals

and is given by:

Etotal(S) =

Q∑
q=1

M∑
i=1

Ei(tq−1, tq) (6.23)

where Ei(tq−1, tq) can be calculated from equation (6.18).

The computational complexity for our energy calculation of each state interval

mainly comes from the matrix multiplications and inversions, with a complexity of

O(M3). To calculate the overall energy consumption for a schedule with Q state

125

intervals, the complexity is thus O(Q×M3). In what follows, we use experiments to

evaluate the performance of our proposed method.

6.4 Experimental validation

In this section, we validate the accuracy and timing efficiency of our analytical en-

ergy calculation method. We compared our approach with the traditional numerical

method. In what follows, we first introduce the settings for our experiments. We then

present and discuss the experimental results.

6.4.1 Experimental Set-Up

Vdd � � �
0 0 0 0

0.8 1.4533 0.0760 6.0531
0.9 2.4173 0.0844 5.8008
1.0 4.0533 0.0936 5.8906

(a) Power/thermal parameters

Parameter Value
Area Per Core 4 mm2
Die Thickness 0.15 mm
Heat Spreader Side 20 mm
Heat Sink Side 30 mm
Convection Resistance 0.1 K/W
Convection Capacitance 140 J/K

(b) HotSpot Parameters

Figure 6.2: Experimental Parameters

We performed our experimental simulations based on a 3 × 3 multi-core system.

For convenience, the granularity of the floorplan was restricted to core-level. Our

processor model was based on 65nm technology as presented in [77]. We assumed

that each processor supports 3 active modes with the supply voltage ranging from

0.8V to 1.0V and step size of 0.1V . We also set one inactive/sleep mode with supply

voltage equal to zero.

We adopted the same thermal parameters as used in work [100] (see Table 6.2(a)).

We set the power consumption under the peak temperature constraint of 1100C. The

thermal parameters, including thermal conductance, capacitance etc. were taken

126

from HotSpot-5.02 [4]. The thermal nodes in our thermal model included active

layer, interface layer, heat spreader and heat sink. The relevant useful parameters

were shown in Table 7.1. We set the ambient temperature Tamb as well as the initial

temperature Tamb as 30
oC.

We randomly generated 50 multi-core speed schedules as our test cases. The

running mode for each scheduling interval was randomly chosen from [0, 0.8, 0.9, 1.0]V

(see Table 6.2(a)). The total length of the schedule interval was evenly distributed

within [100, 200], and the length of each scheduling interval was evenly distributed

within [50, 80]. For each test case, our proposed method as well as the traditional

numerical method with sampling interval varies from 0.01 second to 1 second were

used to calculate the energy consumption. When applying the numerical method, we

calculated the leakage power consumption based on the accurate circuit level leakage

temperature model, i.e.

Ileak = Is · (A · T 2 · e((a·Vdd+b)/T) + B · e(c·Vdd+d)) (6.24)

where Is is the leakage current at certain reference temperature and supply voltage, T

is the processor temperature, A,B, a, b, c, d are empirically determined constants. All

the simulations were conducted on a the Dell Precision T1500 Desktop Workstation

with CPU type of Intel i5 750 Quad Core and memory capacitance of 4GB.

6.4.2 Accuracy Analysis

In this subsection, we validated the performance of our proposed method in terms

of accuracy. To compare the accuracy of different energy estimation approaches, we

need to identify the accurate energy consumption for a given speed schedule. We

resorted to the numerical method with very short sampling interval to achieve this

goal. The question is how short the sampling interval should be.

127

0 10 20 30 40 500

0.1

0.2

0.3

0.4

0.5

E
ne

rg
y

D
iff

er
en

ce
 R

at
io

(%
)

Test Case Number

ts=0.1
ts=0.2
ts=0.3
ts=0.4
ts=0.5
1

(a) Numerical method

0 10 20 30 40 500.04

0.06

0.08

0.1

0.12

E
ne

rg
y

D
iff

er
en

ce
 R

at
io

(%
)

Test Case Number

our method
ts=0.2
ts=0.3

(b) Our proposed method

Figure 6.3: Accuracy Analysis, Compared with the Numerical Method Under ts =
0.01

128

In our experiments, we set the sampling intervals from ts = 0.01 second to 0.1

second with step size of 0.01 second and calculated the energy consumption for differ-

ent schedules. We found that the largest relative energy difference between ts = 0.01

second and ts = 0.03 second is smaller than 0.02%. We thus set the energy estimation

results by the numerical method with sampling interval of ts = 0.01 second as our

baseline results. We then normalized the energy consumption by other approaches

to the baseline results. Figure 6.3(a) shows the relative energy differences of energy

consumption estimation results using numerical approach with different sampling in-

tervals, i.e. from ts = 0.1 second to ts = 1.0 second. The relative difference of energy

consumption based on our proposed approach and comparable numerical results are

presented in Figure 6.3(b).

From Figure 6.3(a), it is not surprising to see that the smaller of the sampling

interval, the smaller of the energy difference ratio becomes. For example, when ts

is decreased from 1 to 0.5, the average energy difference ratio is reduced from 0.3%

to 0.15%. This is because that the smaller the sampling interval is, the less the

temperature can change. Since the numerical method estimates the leakage con-

sumption within an interval assuming temperature within a sampling interval does

not change, the estimated leakage energy can be kept small if the sampling interval

is small enough.

On the other hand, we can see from Figure 6.3(b) that our proposed method

performed very well from the aspect of accuracy. For example, the largest error rate

observed in Figure 6.3(b) is no more than 0.1%. As shown in Figure 6.3(b), we can

see that our method outperformed the numerical method with ts = 0.3 second for

most test cases, with an average energy different ratio 0.73% vs. 0.85% in accuracy.

The experimental results clearly show that our proposed approach can achieve very

good accuracy in estimating the overall energy consumption for a give speed schedule.

129

0 10 20 30 40 500

100

200

300

400

S
pe

ed
up

Test Case Number

our method
ts=0.1
ts=0.2
ts=0.3
ts=0.4
ts=0.5
1

Figure 6.4: Time Efficiency Analysis, Normalized with Our Method

6.4.3 Time Efficiency Analysis

We next want to evaluate the computational efficiency of our proposed method. We

collected the CPU time for different approaches for all test cases. We then use the

CPU times of our method as the baseline results. The normalized results are shown

in Figure 6.4.

From Figure 6.4, we can see that the numerical method with small sampling

interval can have a substantially large computational overhead than our approach.

For example, as shown in Figure 6.4, our method is more than 300 times (in average)

faster than the numerical approach with ts = 0.1, and 25 times (in average) faster

than that with ts = 1. Compared with the numerical method with ts = 0.03, which

is compatible with our method from the perspective of accuracy, our method can

achieve a worst-case speedup no less than 80 times and an average speedup of 110

times. From Figure 6.4, we can conclude that the proposed method was much more

time efficient than the numerical approach.

130

Figure 6.5: Thermal Aware Task Allocation on 3X3 Platform

6.5 Energy-Minimization Scheduling Methods

Energy minimization is a critical design challenge for multi-core systems and to ad-

dress this issue most of the previously published research works, rely upon better task

allocation or speed scheduling methods to minimize over all energy consumption of

the system [143, 144, 15, 39, 41, 34]. Even though some of these techniques are very

effective, but due to the absence of reliable and fast energy calculation methods, the

computation complexity limits the efficiency and accuracy of such techniques.

Our energy calculation method offers a fast, accurate and computationally light

solution to the above mentioned problem. Following what, we combined our method

with two different task allocation techniques and proposed new energy minimiza-

tion(EM) methods, namely Exhaustive Task Allocation(ETA-EM) and Thermal Aware

Task Allocation(TATA-EM). For comparison purpose, we also define a third method,

Random Task Allocation(RTA-EM). We now present a brief description of these three

energy minimization methods.

1. Exhaustive Task Allocation(ETA-EM): Given N processing cores and N real-

time tasks to execute, this technique finds the optimal task allocation for en-

ergy minimization by exhaustively checking all the possible permutations of

task allocation running on the minimum speed that could guarantee real-time

131

constraints for each task. A strong limitation to this approach is due to total

number of permutations which increases with number of processing units N.

However, search for close to optimal task allocation can be achieved by using

different search optimization or meta-heuristic methods like simulated anneal-

ing, genetic algorithms etc. A similar discussion on thermal aware task mapping

is presented in [15], where author used genetic algorithm to find optimal or close

to optimal task allocation. In our experiments, as our floorplan was no larger

than 3 × 3, we were able to perform exhaustive approach. However, for more

dense platforms genetic algorithm can be a useful solution.

2. Thermal Aware Task Allocation(TATA-EM): As temperature plays a critical

role in increasing system’s energy consumption, we propose a new technique

that performs temperature aware task allocation. It assign tasks to cores, such

that no two hot tasks are assigned to neighboring cores. This technique uses the

knowledge of floor-plan and assign hotter tasks to core with minimum lateral

impact to reduce the system temperature and hence energy consumption. For

example, given N processing cores and N real-time tasks (T1, T2...TN) to execute,

this method first calculate the minimum speed that will guarantee the deadline

of each task and then based on required power consumption by each task, it

assigns hotter tasks to cores at farthest distance from each other to minimize

the impact of lateral heat transfer. This is simple static task assignment method

with no computation expenses. For instance, in a 3X3 platform, assuming power

consumption of each task as P1 > P2 > ...P9, the thermal aware task allocation

will be done as shown in Figure 6.5.

3. Random Task Allocation(RTA-EM): Given N processing cores and N real-time

tasks to execute, this technique randomly assigns tasks to cores and executes

task using the minimum speed to guarantee deadlines.

132

Next, we present our performance evaluation experiments and results. Using the

experimental set-up discussed in previous section, we generated 100 random task sets,

assuming random execution time for each task (1− 100 seconds). Every task set has

a common deadline. Deadline for each set was selected randomly between 1.1 to 2

times of the maximum execution time in that set. Figure 6.6 shows the corresponding

experimental results which are normalized with the result of ETA.

Figure 6.6: Normalized System Energy (J) on 3x3 Multi-Core Platform

Figure 6.7: Normalized System Energy (J) on 2x3 Multi-Core Platform

133

Figure 6.8: ETA-EM vs TATA-EM on 3x3 Multi-Core Platform

From Figure 6.6, we can clearly see that ETA-EM is the optimal solution. In

Figure 6.6, RTA-EM consumed up to 6% extra energy than that of ETA-EM. On

the other hand, TATA-EM provided a solution matching very close to ETA-EM and

in much lesser time. The computation time of ETA-EM was recorded to be at least

300X more than TATA-EM.

We also performed a similar experiment on a different multi-core platform having

6 cores arranged as 2X3 mesh. The results presented in Figure 6.7, endorses the

conclusion of the previous experiment with TATA-EM matching very closely to the

optimal solution by ETA-EM.

In an another set of experiments, we compared only ETA-EM and TATA-EM on

a 3X3 platform . We assumed only two tasks, i.e. hot task and cool task. The hot

task is a task which runs on the peak mode (Vdd = 1.0) and cool task runs on the

minimum mode (Vdd = 0.6) for equal period of time (50 seconds). We created 10

different test cases, starting with all the cores running only cool task, then replacing

cool task by hot task one by one in every new test case. For instance test case 1

has 9 cool tasks to be executed, test case 2 has 1 hot and 8 cool tasks, so on and

so forth. The result of this experiment are shown in Figure 6.8. In Figure 6.8, we

can see that, when all the tasks are cool or all the tasks are hot, both ETA-EM and

134

TATA-EM are same in energy consumption, which is obvious. In all the other cases,

TATA-EM results in energy consumption close to energy consumption by ETA-EM.

The difference in energy consumption increases when the number of hot and cool

tasks are equal or close to equal.

Thus, from all our experiments, we can conclude that in multi-core systems, ther-

mal aware task allocation can provide a close to optimal solution for energy minimiza-

tion with negligible computational expenses compared to optimal ETA-EM method.

This conclusion is very useful particularly in the futuristic many core platforms and

3D stacked integrated circuits, where energy consumption due to high chip tempera-

ture is a critical concern.

6.6 Conclusions

Energy consumption optimization is a critical metric in the design of the multi-core

computing systems. It becomes even more challenging in deep sub-micron domain

where the leakage power consumption is becoming increasingly significant. In this

chapter, we presented a fast and accurate solution for the energy calculation on a

multi-core system that take the interdependency of leakage, temperature and supply

voltage into consideration. Different from the traditional numerical approach, we de-

veloped an analytical formulation of the energy consumption to calculate the overall

energy consumption rapidly and accurately. Our system models are rather general

and can be easily extended to different platforms and applications. Our experiments

showed that the proposed method can achieve a speedup of two orders of magni-

tude compared with the numerical method, with a relative error no more than 0.1%.

Furthermore, employing the analytical energy estimation solution, we presented two

new energy minimization methods and compared them for their efficiency in energy

reduction.

135

CHAPTER 7

Conclusions and Future Works

In this chapter, we summarize our contributions presented in this dissertation. We

then discuss the possible directions for our future research work.

7.1 Summary

Over the years, the increasing demand for high computing performance and the con-

tinuous scaling of semiconductor technology have resulted in the exponentially in-

creased number of transistors integrated on an IC chip. One immediate impact of

the increasing transistors on the chip is the exponential increase of power/energy con-

sumption, translating directly into high chip temperature. The dramatically increased

power consumption presents grave challenges not only on how to extend battery life

for portable devices, but also on how to keep the operational cost in check for power-

rich platforms such as data center. The soaring temperature adversely impacts the

performance, reliability, life-span and packaging/cooling costs of the computing sys-

tems. In addition, due to the diminishing feature size (feature size < 45nm), rising

chip temperature increases the temperature-dependent leakage power consumption,

which is now a serious threat to power and thermal efficiency of modern computing

systems. Evidently, power/thermal problems have become the first-class design is-

sues in computer system design, and efforts from every design abstraction level are

demanded to address these problems.

In this dissertation, we presented our research work that seeks to address power/thermal

issues at the operating system level. Specifically, we presented several novel strate-

gies to use real-time scheduling methods in optimizing the power/thermal efficiency

of the real-time computing systems with leakage/temperature dependency taken into

considerations. We started our research work by first exploring the fundamental prin-

136

ciples on how to employ dynamic voltage scaling (DVS) to reduce the peak operating

temperature. We found that, for a specific interval, a real-time schedule using the

lowest constant speed is not necessarily the optimal choice in minimizing the peak

temperature. Moreover, we identified the scenarios when a schedule using two dif-

ferent speeds can outperform the one using the lowest constant speed. In addition,

we also found that, when scheduling a periodic task set, the constant speed schedule

is still the optimal solution for minimizing the peak temperature when the temper-

ature is at its stable status. We formally proved the validity of our findings using

system models that are sensitive to leakage/temperature dependency. These new

findings and theorems form the basis for the future study of developing more effective

power and thermal aware scheduling techniques for more complicated architectures

and real-time systems.

We next developed a novel scheduling method namely ’M-Oscillations ’ to re-

duce the peak operating temperature of a given periodic hard real-time task set

on a uniprocessor platform. To minimize the peak temperature, our M-Oscillations

method uses two-speed schedule similar to our previous work discussed above, and

divides the high speed interval and the low speed interval evenly into ’m’ sections,

and run the processor with the low speed and high speed alternatively. Apparently,

an M-Oscillations schedule will complete the same workload as the original sched-

ule in one period and thus guarantee the deadline. We formally proved the cor-

rectness of the proposed algorithm based on a processor model that can effectively

account for the leakage/temperature relationship. The experimental results validated

the assumptions of our scheduling method and also demonstrated its effectiveness

in terms of feasibility improvement and peak temperature reduction. The proposed

M-Oscillations scheduling method can reduce peak-temperature of the system up to

14oC, improving feasibility of the given tasks set by maximum 20%.

137

Next, we diverted our focus from peak temperature minimization to an equally

challenging problem of guaranteeing the feasibility of a given periodic hard real-time

tasks set under a given peak temperature constraint. Specifically, we presented three

feasibility analysis techniques to determine if a periodic task set can meet deadlines

under a given maximal temperature constraint. Our experimental results on the fea-

sibility analysis demonstrated the effectiveness of our methods and clearly highlighted

the importance to deal with the impacts of leakage/temperature relationship.

Lastly, we focused our research efforts on energy estimation problem associated

with multi-core platforms. In this work, we presented a fast and accurate solution

for the energy calculation on a multi-core system that take the interdependency of

leakage, temperature and supply voltage into consideration. Different from the tra-

ditional numerical approach, we developed an analytical formulation of the energy

consumption to calculate the overall energy consumption rapidly and accurately. Our

experiments showed that the proposed method can achieve a speedup of two orders

of magnitude compared with the numerical method, with a relative error of no more

than 0.1%. Our system models are rather general and can be easily extended to

different platforms and applications. Moreover, based on our proposed method, we

performed a comparative study on different energy minimization techniques for their

efficiency in minimizing the overall energy consumption of a multi-core system.

7.2 Future Work

Our existing research is based on a number of simple yet accurate system models (chip-

level thermal models, leakage/temperature dependency model, etc), which enable

us to conduct a rigorous theoretical research. The effectiveness and efficiency of

the proposed techniques were evaluated using architecture/system level simulation

platforms and commonly used benchmarks. This approach has been very effective

138

Figure 7.1: source [65]

and can be extended in a number of ways. One most promising future work is to

employ this approach for the 3D processor architecture.

The present 2D planar microprocessor architectures integrate numerous functional

blocks to achieve increased parallelism and higher performances. This dense integra-

tion results in long interconnects that carry on-chip and off-chip communications.

Due to the continuous scaling of device feature size, the performance gap between

transistor gate delay and interconnect wire delay is growing very fast. From Fig-

ure 7.1, we can see that the gap between the transistor gate delay and the delay of

a representative 1mm wire has increased from 10X at the 180nm node to 10,000X at

the 32nm process node [65]. The gap between transistor and wire delay is expected

to increase exponentially with every new technology node generation in the future,

as shown in Figure 7.1.

As a result, communication delay penalties will severely affect the performance of

microprocessors [19, 130]. Additionally, the interconnect delays result in the unwanted

dynamic power consumption, sometimes leading to 30% of the total microprocessor

power consumption [19]. Furthermore, the combination of denser functionality com-

bined with degraded interconnect scalability results in larger footprints and inferior

packing of integrated circuit chips.

139

The three dimensional(3D) integrated circuits are foreseen as a promising solution

to the long standing problem of scalability and power consumption of interconnects

in 2D multi-core platforms [19, 99, 62]. In 3D integration technology multiple active

silicon dies are stacked together vertically to reduce on/off chip interconnects’ lengths.

The reduction in interconnect lengths improved the performance and reduces the

power consumption overheads on interconnects. Moreover, 3D integration provides

cost effective flexibility in design and better packing of integrated circuits systems.

However, as there is no “free lunch”, 3D integration technology also faces several

severe challenges, on top of which are the thermal challenges.

Thermal issues are the primary concern in 3D ICs. Due to stacking of active layers,

the power density of the chip increases linearly with the number of stacked layers [86].

This results in soaring chip temperatures. For instance, with 3D implementation of

a 2 layer Alpha-like processor 17-20oC rise in the peak temperature was recorded

compared to its planar design [62]. Furthermore, the impact of increased temperature

grows many folds in 3D ICs due to strong thermal relation between vertically aligned

neighbors. The vertical heat conductance in 3D stacks is at least 16X times compared

to lateral heat flow. This strong thermal correlation elevates the thermal issues by

creating more hot spots [147].

The adverse impact of rising chip temperature on the leakage power consumption,

reliability, performance and cooling/packging is already well established in 2D planar

designs [22]. It will degrade further in 3D implementation. For example, in [110],

authors studied the relation between leakage power and temperature and showed that

the increase in the leakage power consumption can result up to 18.6% increase in the

peak temperature. Moreover, as temperature has a strong relation with reliability,

it is shown that 30% variation in process parameters can result up to 20X increased

leakage power consumption [28]. In order to gain the first hand experience with the

140

Table 7.1: HotSpot Parameters and Floorplan
Parameter V alue
Total Cores 8 (2x2x2)

Area per Core 4 mm2

Die Thickness 0.15 mm
Heat Spreader Side 20 mm
Heat Sink Side 30 mm

Convection Resistance 0.1 K/W
Convection Capacitance 140 J/K

Interlayer Material Thickness 0.02mm
Interlayer Material Resistivity 0.25 mK/W

Ambient Temperature 45oC
Sampling Interval 100 ms

thermal dynamics of 3D ICs, we conducted a series of experiments.

Experimental Set-Up: Similar to the practical simulation set-up discussed in Sec-

tion 4.4.2, we used a combination of SimpleScalar [2, 13] andWattch [3, 27] to generate

the power trace of a gcc integer benchmark program from SPEC CPU2000. To capture

thermal characteristics in a 3D platform, we used a new version of HotSpot simulator

i.e. HotSpot-5.02 (HotSpot detailed 3D(default) extension) [40, 4]. This version of

HotSpot is capable of modeling multiple active layers stacked together along with the

thermal impact of through-silicon-vias(TSV) connecting the layers. We configured

model parameters of HotSpot as shown in Table 7.1. For the remaining parameters

we used the default values [4]. Our 3D multi-core platform consists of a total of 8

homogenous processing cores distributed on two layers with each active layer having

4 cores as a 2x2 mesh, as shown in Figure 7.2. In our experiments, we use a single

task i.e. gcc integer benchmark program.

Experiments and Results: Through our experiments we wanted to study the

impact of vertical heat flow and lateral heat flow on the temperature profiles of each

core on a practical 3D multi-core platform. We conducted three different experiments:

(CASE 1) the task is assigned to core 8 (Figure 7.2) and the rest of the cores are idle,

141

Figure 7.2: A 3D Stacked Multi-core Architecture

(CASE 2) the task oscillates among the four cores on layer 2 for an equal number of

cycles, and (CASE 3) the task oscillates between two vertically stacked cores i.e. core

4 and core 8.

Figures 7.3, 7.4 and 7.5 shows the results of the three experiments. From Fig-

ure 7.3, we can make two important observations. First, the temperature of core 4

which is vertically connected to core 8 continues to be the maximum temperature.

This clearly demonstrates the large impact of high vertical conductance over lateral

conductance. Second, even though all the cores other than core 8 are idle temper-

ature continues to increase in all of them. This result suggests that even though

vertical conductance is very large compared to lateral conductance, but ignoring lat-

eral conductance in high-level system models is not appropriate. Furthermore, when

comparing the results of CASE 2 (Figure 7.4) and CASE 3 (Figure 7.5) with CASE

1(Figure 7.3), we can see that oscillating task among multiple cores result in the

higher peak temperature compared to the task assigned to the coolest core.

142

Figure 7.3: Peak Temperature Dynamics on each Core, CASE 1

Based on our background on 2D single core and multi-core platforms, combined

with observations we recorded through our empirical study, we can established the

corresponding 3D system level power and thermal models and extend our research

on power/thermal problems to 3D architecture. Furthermore, the 3D integration

method provides a great opportunity for designers to leverage upon the capabilities

of heterogeneous integration of active devices. How to explore opportunities in floor-

planning, cooling options, architecture variations to form the effective power/thermal

solutions for 3D architectures is an interesting problem and needs further study.

143

Figure 7.4: Peak Temperature Dynamics on each Core, CASE 2

Figure 7.5: Peak Temperature Dynamics on each Core, CASE 3

144

REFERENCES

[1] Arbitron and edison research media. the infinite dial 2008: Radios digital plat-
forms.

[2] Simplescalar llc. page http://www.simplescalar.com/.

[3] Wattch. pages http://www.eecs.harvard.edu/ dbrooks/wattch–form.html.

[4] Hotspot 5.02 temperature modeling tool. University of Virgina, page
http://lava.cs.virginia.edu/HotSpot, 2011.

[5] T. F. Abdelzaher, V. Sharma, and C. Lu. A utilization bound for aperiodic
tasks and priority driven scheduling. IEEE Transactions on Computers.

[6] A. Abdollahi, F. Fallah, and Massoud. Runtime mechanisms for leakage current
reduction in cmos vlsi circuits. In Low Power Electronics and Design, 2002.
ISLPED ’02. Proceedings of the 2002 International Symposium on, pages 213 –
218, 2002.

[7] E. P. Agency. Report to congress on server and data center energy efficiency.
page http://www.energystar.gov, 2007.

[8] B. Andersson. Global static-priority preemptive multiprocessor scheduling with
utilization bound 38%. In T. Baker, A. Bui, and S. Tixeuil, editors, Principles
of Distributed Systems, volume 5401 of Lecture Notes in Computer Science,
pages 73–88. Springer Berlin / Heidelberg, 2008. 10.1007/978-3-540-92221-6 7.

[9] B. Andersson, S. Baruah, and J. Jonsson. Static-priority scheduling on multi-
processors. In Real-Time Systems Symposium, 2001. (RTSS 2001). Proceedings.
22nd IEEE, pages 193 – 202, Dec 2001.

[10] B. Andersson and J. Jonsson. Fixed-priority preemptive multiprocessor schedul-
ing: to partition or not to partition. In RTCSA ’00: Proceedings of the Seventh
International Conference on Real-Time Systems and Applications (RTCSA’00),
page 337, 2000.

[11] A. Andrei, P. Eles, O. Jovanovic, M. Schmitz, J. Ogniewski, and Z. Peng. Quasi-
static voltage scaling for energy minimization with time constraints. IEEE
Transaction on VLSI systems, 19(1):10–23, 2011.

[12] F. Assaderaghi, D. Sinitsky, S. A. Parke, J. Bokor, P. Ko, and C. Hu. Dynamic
threshold-voltage mosfet (dtmos) for ultra-low voltage vlsi. IEEE Trans. on
Elec. Dev., 44(3):414–422, Mar 1997.

[13] T. Austin, E. Larson, and D. Ernst. Simple scalar: an infrastructure for com-
puter system modeling. IEEE computer society, 35, 2002.

145

[14] N. Bansal, T. Kimbrel, and K. Pruhs. Speed scaling to manage energy and
temperature. Journal of the ACM, 54(1):1–39, 2007.

[15] M. Bao, A. Andrei, P. Eles, and Z. Peng. Temperature-aware voltage selection
for energy optimization. In Design Automation Conference, 2008. DAC ’08.
45th ACM/IEEE, pages 1083 –1086, 2008.

[16] M. Bao, A. Andrei, P. Eles, and Z. Peng. On-line thermal aware dynamic
voltage scaling for energy optimization with frequency/temperature dependency
consideration. In Design Automation Conference, pages 490–495, 2009.

[17] M. Bao, A. Andrei, P. Eles, and Z. Peng. Temperature-aware idle time distribu-
tion for energy optimization with dynamic voltage scaling. Date, pages 21–26,
2010.

[18] C. Belady. In the data center, power and cooling costs more than the it equip-
ment it supports. Electronics Cooling, 23(1), 2007.

[19] B. Black, M. Annavaram, N. Brekelbaum, J. DeVale, L. Jiang, G. Loh, D. Mc-
Cauley, P. Morrow, D. Nelson, D. Pantuso, P. reed, J. Rupley, S. Shankar,
J. Shen, and C. Webb. Die stacking (3d) microarchitecture. In International
symposium on microarchitecture, pages 201–206, 2006.

[20] J. R. Black. Electromigrationa brief survey and some recent results. IEEE
Trans. Electron Devices, 16(4):338347, 1969.

[21] J. R. Black. Failure mechanisms and models for semiconductor devices. Joint
Electron Device Engineering Council, Tech. Rep., 2003.

[22] S. Borkar. Thousand core chips: a technology perspective. In DAC, pages
746–749, 2007.

[23] S. Borkar. Gigascale integration challenges and opportunities. Intel Software
Network, 2008.

[24] S. Borkar and A. A. Chen. The future of microprocessors. Communications of
the ACM, 54(5):67–77, 2011.

[25] K. G. Brill. The invisible crisis in the data center: The economic meltdown of
moore’s law. Uptime Institute, 2007.

[26] D. Brooks and M. Martonosi. Dynamic thermal management for high-
performance microprocessors. In HPCA ’01: Proceedings of the 7th Interna-
tional Symposium on High-Performance Computer Architecture, pages 17–28,
2001.

[27] D. Brooks, V. Tiwari, and M. Martonosi. Wattch: A framework for
architectural-level power analysis and optimization. ISCA, 6, 2000.

146

[28] K. Chakraborty and S. Roy. Rethinking threshold voltage assignment in 3d
multicore designs. In International conference on VLSI design 2010, pages
375–380, 2010.

[29] T. Chantem, R. P. Dick, and X. S. Hu. Temperature-aware scheduling and
assignment for hard real-time applications on mpsocs. In DATE, pages 288–
293, 2008.

[30] T. Chantem, X. S. Hu, and R. Dick. Online work maximization under a peak
temperature constraint. ISLPED, pages 105–110, 2009.

[31] V. Chaturvedi, H. Huang, and G. Quan. Leakage aware scheduling on maximal
temperature minimization for periodic hard real-time systems. ICESS, pages
1802–1809, 2010.

[32] J. Chen, C. Hung, and T. Kuo. On the minimization fo the instantaneous
temperature for periodic real-time tasks. RTAS, pages 236–248, 2007.

[33] J.-J. Chen, H.-R. Hsu, K. Chuang, C. Yang, A. Pang, and T.-W. Kuo. Mul-
tiprocessor energy-efficient scheduling with task migration considerations. In
ECRTS, pages 101 – 108, 2004.

[34] J.-J. Chen, H.-R. Hsu, and T.-W. Kuo. Leakage-aware energy-efficient schedul-
ing of real-time tasks in multiprocessor systems. In RTAS, pages 408–417, 2006.

[35] J.-J. Chen, S. Wang, and L. Thiele. Proactive speed scheduling for real-time
tasks under thermal constraints. RTAS, pages 141–150, 2009.

[36] J. Choi, C. Chen, H. Franke, H. Hamann, A. Weger, and P. Bose. Thermal-
aware task scheduling at the system software level. In ISLPED, pages 213–218,
2007.

[37] M. A. Cirit. Transistor sizing for cmos circuits. In Design Automation Confer-
ence.

[38] A. Cohen, F. Finkelstein, A. Mendelson, R. Ronen, and D. Rudoy. On estimat-
ing optimal performance of cpu dynamic thermal management. IEEE Computer
Architecture Letter, 2(1):6–9, 2003.

[39] A. Coskun, D. Atienza, T. Rosing, T. Brunschwiler, and B. Michel. Energy-
efficient variable-flow liquid cooling in 3d stacked architectures. In Design,
Automation Test in Europe Conference Exhibition (DATE), 2010, pages 111
–116, march 2010.

[40] A. Coskun, J. Ayala, D. Atienza, T. Rosing, and Y. Leblebici. Dynamic thermal
management in 3d multicore architectures. In Design, Automation, and Test in
Europe (DATE), pages 1410–1415, 2009.

147

[41] A. Coskun, T. Rosing, K. Whisnant, and K. Gross. Temperature-aware mpsoc
scheduling for reducing hot spots and gradients. In Design Automation Con-
ference, 2008. ASPDAC 2008. Asia and South Pacific, pages 49 –54, march
2008.

[42] P. de Langen and B. Juurlink. Leakage-aware multiprocessor scheduling. Jour-
nal of Signal Processing Systems, 2007.

[43] R. H. Dennard, F. Gaensslen, H. Yu, V. L. Rideout, E. Bassous, and A. R.
Leblanc. Design of ion-implanted mosfets with very small physical dimensions.
IEEE Journal of solid state circuits, 9(5):256–268, october 1974.

[44] S. Devadas and S. Malik. A survey of optimization techniques targeting low
power vlsi circuits. In Design Automation Conference.

[45] N. Eagle and A. Pentland. Social serendipity: Mobilizing social software. IEEE
Pervasive computing, 4(2):28–34, 2005.

[46] H. Esmaeilzadeh, E. Blem, R. S. Amant, K. Sankaralingam, and D. Burger.
Power challenges may end the multicore era. Communications of the ACM,
56(2):93–102, 2013.

[47] M. Fan and G. Quan. Harmonic semi-partitioned scheduling for fixed-priority
real-time tasks on multi-core platform. In Design Automation and Test in
Europe, DATE’12.

[48] N. Fisher, J.-J. Chen, S. Wang, and L. Thiele. Thermal-aware global real-time
scheduling on multicore systems. In RTAS, pages 131–140, 2009.

[49] F. Gao and J. P. Hayes. Exact and heuristic approaches to input vector con-
trol for leakage power reduction. In ICCAD ’04: Proceedings of the 2004
IEEE/ACM International conference on Computer-aided design, pages 527–
532, 2004.

[50] F. Gruian. System-level design methods for low-energy architectures containing
variable voltage processors. In First International Workshop on Power-Aware
Computer Systems, pages 1 – 12, 2000.

[51] N. Guan, M. Stigge, W. Yi, and G. Yu. Fixed-priority multiprocessor scheduling
with liu and layland’s utilization bound. In Real-Time and Embedded Technology
and Applications Symposium (RTAS), 2010 16th IEEE, pages 165 –174, April
2010.

[52] S. Gunther, F. Binns, D. M. Carmean, and J. C. Hall. Managing the impact of
increasing microprocessor power consumption. Intel Technology Journal, 5(1),
2001.

148

[53] V. Hanumaiah and S. Vrudhula. Energy-efficient operation of multi-core proces-
sors by dvfs, task migration and active cooling. Computers(TC), IEEE Trans-
actions on, pages 1–14, 2012.

[54] V. Hanumaiah, S. Vrudhula, and K. Chatha. Maximizing performance of ther-
mally constrained multi-core processors by dynamic voltage and frequency con-
trol. pages 310–313, 2009.

[55] V. Hanumaiah, S. Vrudhula, and K. Chatha. Performance optimal online dvfs
and task migration techniques for thermally constrained multi-core processors.
Computer-Aided Design of Integrated Circuits and Systems, IEEE Transactions
on, 30(11):1677 –1690, nov. 2011.

[56] L. He, W. Liao, and M. R. Stan. System level leakage reduction considering
the interdependence of temperature and leakage. DAC, pages 12–17, 2004.

[57] H. Huang and G. Quan. Leakage aware energy minimization for real-time sys-
tems under the maximum temperature constraint. DATE, pages 1–6, 2011.

[58] H. Huang and G. Quan. Throughput maximization for periodic real-time sys-
tems under the maximal temperature constraint. In DAC (accepted), 2011.

[59] H. Huang, G. Quan, and J. Fan. Leakage temperature dependency modeling in
system level analysis. ISQED, pages 447–452, 2010.

[60] W. Huang, M. Allen-Ware, J. Carter, E. Cheng, K. Skadron, and M. Stan.
Temperature-aware architecture: Lessons and opportunities. IEEE Micro,
31(3):82–86, 2011.

[61] W. Huang, M. R. Stan, K. Skadron, K. Sankaranarayanan, S. Ghosh, and
S. Velusam. Compact thermal modeling for temperature-aware design. In DAC,
pages 878–883, 2004.

[62] W. Hung. Interconnect and thermal-aware floorplanning for 3d microporcessors.
In ISQED, pages 98–104, 2006.

[63] S. Irani, S. Shukla, and R. Gupta. Algorithms for power savings. SODA, 2003.

[64] T. Ishihara and H. Yasuura. Voltage scheduling problem for dynamically vari-
able voltage processors. ISLPED, pages 197–202, 1998.

[65] ITRS. International Technology Roadmap for Semiconductors (2011 Edition).
International SEMATECH, Austin, TX., http://public.itrs.net/.

[66] R. Jayaseelan and T. Mitra. Temperature aware task sequencing and voltage
scaling. ICCAD, pages 618–623, 2008.

149

[67] R. Jejurikar and R. Gupta. Procrastination scheduling in fixed priority real-time
systems. LCTES, 2004.

[68] R. Jejurikar, C. Pereira, and R. Gupta. Dynamic slack reclamation with pro-
crastination scheduling in real-time embedded systems. DAC, 2005.

[69] S. Kato and N. Yamasaki. Semi-partitioned fixed-priority scheduling on mul-
tiprocessors. In Real-Time and Embedded Technology and Applications Sympo-
sium, 2009. RTAS 2009. 15th IEEE, pages 23 –32, April 2009.

[70] C. Kim and K. Roy. Dynamic vth scaling scheme for active leakage power
reduction. DATE, pages 163–167, 2002.

[71] W. Kim, J. Kim, and S. Min. Dynamic voltage scaling algorithm for dynamic-
priority hard real-time systems using slack time analysis. DATE, pages 788–794,
2002.

[72] P. Kumar and L. Thiele. Cool shapers: Shaping real-time tasks for improved
thermal guarantees. DAC, pages 468–473, 2011.

[73] P. Kumar and L. Thiele. Thermally optimal stop-go scheduling of task graphs
with real-time constraints. ASPDAC, pages 123–128, 2011.

[74] K. Lakshmanan, R. Rajkumar, and J. Lehoczky. Partitioned fixed-priority
preemptive scheduling for multi-core processors. In Real-Time Systems, 2009.
ECRTS ’09. 21st Euromicro Conference on, pages 239 –248, July 2009.

[75] C.-H. Lee and K. Shin. On-line dynamic voltage scaling for hard real-time
systems using the edf algorithm. In Real-Time Systems Symposium, 2004. Pro-
ceedings. 25th IEEE International, pages 319 – 335, 2004.

[76] J. Li, M. Qiu, J. Niu, Y. Zhu, and T. Chen. Real-time constrained task schedul-
ing in 3d chip multi-processor to reduce peak temperature. In IEEE/IFIP Inter-
national Conference on Embedded and Ubiquitous Computing, pages 170–176,
2010.

[77] W. Liao, L. He, and K. Lepak. Temperature and supply voltage aware perfor-
mance and power modeling at microarchitecture level. IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems, 24(7):1042 – 1053,
2005.

[78] C. H. Lim, W. Daasch, and G. Cai. A thermal-aware superscalar microprocessor.
In Quality Electronic Design, 2002. Proceedings. International Symposium on,
pages 517 – 522, 2002.

[79] C. L. Liu and J. W. Layland. Scheduling algorithms for multiprogramming in
a hard-real-time environment. J. ACM, 20(1):46–61, January 1973.

150

[80] G. Liu, M. Fan, and G. Quan. Neighbor-aware dynamic thermal management
for multi-core platform. In Design, Automation Test in Europe Conference
Exhibition (DATE), 2012, pages 187 –192, march 2012.

[81] J. Liu. Real-Time Systems. Prentice Hall, 2000.

[82] S. Liu and M. Qiu. Thermal-aware scheduling for peak temperature reduction
with stochastic workloads. RTAS WiP, 2010.

[83] S. Liu, J. Zhang, Q. Wu, and Q. Qiu. Thermal-aware job allocation and schedul-
ing for three dimensional chip multiprocessor. In International Symposium on
Quality Electronic Design (ISQED), 2010, pages 390–398, 2010.

[84] Y. Liu, R. P. Dick, L. Shang, and H. Yang. Accurate temperature-dependent
integrated circuit leakage power estimation is easy. DATE, pages 1526–1531,
2007.

[85] Y. Liu, H. Yang, R. P. Dick, H. Wang, and L. Shang. Thermal vs energy
optimization for dvfs-enabled processors in embedded systems. In ISQED, pages
204–209, 2007.

[86] G. Loh, Y. Xie, and B. Black. Processor design in 3d die-stacking technologies.
volume 27, pages 31–48, 2007.

[87] C. Lung, Y. Ho, D. Kwai, and S. Chang. Thermal-aware online task allocation
for 3d multi-core processor throughput optimization. In Design, Automation,
and Test in Europe (DATE), pages 1–6, Grenoble, France, 2011.

[88] C. A. Mack. Fifty years of moore’s law. IEEE transactions on semiconductor
manufacturing, 24(2):202–207, may 2011.

[89] H. Mahmoodi, V. Tirumalashetty, M. Cooke, and K. Roy. Ultra low-power
clocking scheme using energy recovery and clock gating. Very Large Scale In-
tegration (VLSI) Systems, IEEE Transactions on, 17(1):33 –44, jan. 2009.

[90] J. Markoff. Intel’s big shift after hitting technical wall. New York Times, 2004.

[91] G. Moore. Cramming more components onto integrated circuits. Electronics
Magazine, 38(8):114–117, may 1965.

[92] S. Murali, A. Mutapcic, D. Atienza, R. Gupta, S. Boyd, and G. D. Micheli.
Temperature-aware processor frequency assignment for mpsocs using convex
optimization. In CODES+ISSS, pages 111–116, 2007.

[93] P. J. Nahin. The Story of
√
−1. Princeton University Press, Boston, 1998.

[94] L. Niu and G. Quan. Reducing both dynamic and leakage energy consumption
for hard real-time systems. CASES’04, Sep 2004.

151

[95] M. Pedram and J. Rabaey. Power Aware Design Methodologies. Kluwer ac-
demic, 2002.

[96] S. Perathoner, K. Lampka, N. Stoimenov, L. Thiele, and J. J. Chen. Combining
optimistic and pessimistic dvs scheduling: An adaptive scheme and analysis.
ICCAD, pages 131–139, 2010.

[97] P. Pillai and K. G. Shin. Real-time dynamic voltage scaling for low-power
embedded operating systems. In SOSP, 2001.

[98] R. Prasher, J. Chang, I. Sauciuc, S. Narasimhan, D. chau, G. Chrysler, A. My-
ers, S. Prstic, and C. Hu. Nano and micro technology-based next-generation
package-level cooling solutions. Intel Technology Journal, 9(4), 2005.

[99] K. Puttaswamy and G. H. Loh. Thermal herding: Microarchitecture techniques
for controlling hotspots in high-performance 3d-integrated processors. In HPCA
’07: Proceedings of the 2007 IEEE 13th International Symposium on High Per-
formance Computer Architecture, pages 193–204, 2007.

[100] G. Quan and V. Chaturvedi. Feasibility analysis for temperature- constraint
hard real-time periodic tasks. IEEE Transaction on Industrial Informatics,
6(3):329–339, 2010.

[101] G. Quan and X. Hu. Energy efficient fixed-priority scheduling for real-time
systems on variable voltage processors. In DAC ’01: Proceedings of the 38th
conference on Design automation, pages 828–833, 2001.

[102] G. Quan and X. Hu. Minimum energy fixed-priority scheduling for variable
voltage processor. In DATE ’02: Proceedings of the conference on Design,
automation and test in Europe, page 782, 2002.

[103] G. Quan, L. Niu, B. Mochocki, and X. Hu. Fixed priority scheduling for reducing
overall energy on variable voltage processors. RTSS’04, pages 309–318, Dec
2004.

[104] G. Quan and Y. Zhang. Leakage aware feasibility analysis for temperature-
constrained hard real-time periodic tasks. ECRTS, pages 207–216, 2009.

[105] G. Quan, Y. Zhang, W. Wiles, and P. Pei. Guaranteed scheduling for repetitive
hard real-time tasks under the maximal temperature constraint. ISSS+CODES,
pages 267–272, 2008.

[106] V. C. G. Quan. Leakage conscious dvs scheduling for peak temperature min-
imization. In Asia and South Pacific Design Automation Conference, pages
135–140.

[107] J. Rabaey, A. Chandrakasan, and B. Nikolic. Digital Integrated Circuits: A
Design Perspective. Prentice Hall, 2003.

152

[108] T. Raja, V. D. Agrawal, and M. L. Bushnell. Transistor sizing of logic gates to
maximize input delay variability. Journal of Low Power Electronics, 2(1):121–
128, january 2006.

[109] R. Rao, S. Vrudhula, C. Chakrabarti, and N. Chang. An optimal analytical
solution for processor speed control with thermal constraints. In ISLPED, pages
292–297, 2006.

[110] S. Roy and K. Chakraborty. A convex optimization framework for leakage aware
thermal provisioning in 3d multicore architectures. In International Symposium
on Quality Electronic Design (ISQED), 2010, pages 804–811, 2010.

[111] M. Santarini. Thermal integrity: A must for low-power ic digital design. EDN,
pages 37–42, 2005.

[112] K. Seta, H. Ham, T. Kurcda, M. Kakumu, and T. Sakurai. 50% active-power
saving without speed degradation using standby power reduction (spr) circuit.
In IEEE International Solid-State Circuits Conference.

[113] S. Sharifi, R. Ayoub, and T. Rosing. Tempomp: Integrated prediction and
management of temperature in heterogeneous mpsocs. In Design, Automation
Test in Europe Conference Exhibition (DATE), 2012, pages 593–598, march
2012.

[114] K. Shin and P. Ramanathan. Real-time computing: a new discipline of com-
puter science and engineering. Proceedings of the IEEE, 82(1):6 –24, jan 1994.

[115] Y. Shin and K. Choi. Power conscious fixed priority scheduling for hard real-
time systems. In DAC, pages 134 – 139, 1999.

[116] A. Shye, B. Scholbrock, and G. Memik. Into the wild: studying real user activity
patterns to guide power optimizations for mobile architectures. pages 168–178,
2009.

[117] K. Skadron, T. Abdelzaher, and M. R. Stan. Control-theoretic techniques and
thermal-rc modeling for accurate and localized dynamic thermal management.
HPCA, pages 17–28, 2002.

[118] K. Skadron, M. Stan, W. Huang, S. Velusamy, K. Sankaranarayanan, and
D. Tarjan. Temperature-aware computer systems: opportunities and challenges.
IEEE Micro, 23(6):52–61, 2003.

[119] K. Skadron, M. Stan, W. Huang, S. Velusamy, K. Sankaranarayanan, and
D. Tarjan. Temperature-aware microarchitecture. ICSA, pages 2–13, 2003.

[120] A. Sridhar, D. Atienza, Y. Temiz, Y. Leblebici, J. Thome, T. Brunschwiler,
and B. Michel. Towards thermally-aware design of 3d mpsocs with inter-tier
cooling. In DATE, pages 1–6, 2011.

153

[121] A. Tanenbaum. Modern operating systems. Prentice Hall, 2001.

[122] T.-H. Tsai and Y.-S. Chen. Thermal-aware real-time task scheduling for three
dimensional multicore chip. In ACM Symposium on Applied Computing (SAC-
2012), pages 1618–1624, 2012.

[123] I. Ukhov, M. Bao, P. Eles, and Z. Peng. Steady-state dynamic temperature
analysis and reliability optimization for embedded multiprocessor systems. In
Design Automation Conference, 2012. DAC ’12., number 197-204, june 2012.

[124] V. S. V. Hanumaiah. Temperature-aware dvfs for hard real-time applications
on multi-core processors. IEEE Transactions on Computers, 99, 2011.

[125] V. venkatchalam and M. Franz. Power reduction techniques for microprocessor
systems. ACM Computing Surveys, 37(3):195 –237, september 2005.

[126] S. Wang and R. Bettati. Delay analysis in temperature-constrained hard real-
time systems with general task arrivals. RTSS, pages 323–334, 2006.

[127] S. Wang and R. Bettati. Reactive speed control in temperature-constrained
real-time systems. ECRTS, pages 161–170, 2006.

[128] Wikepdeia. Cubic function. http://en.wikipedia.org/wiki/Cubic equation, 2008.

[129] Q. Wu, M. Pedram, and X. Wu. Clock-gating and its application to low power
design of sequential circuits. volume 47.

[130] Y. Xie, G. Loh, B. Black, and K. Bernstein. Design space exploration for 3d
architectures. volume 2, pages 65–103, 2006.

[131] R. Xu, D. Zhu, C. Rusu, R. Melhem, and D. Mosse. Energy-efficient policies
for embedded clusters. ACM SIGPLAN/SIGBED conference on Languages,
compilers, and tools for embedded systems, 40(7):1–10, 2005.

[132] C. Yang, J. Chen, L. Thiele, and T. Kuo. Energy-efficient real-time task schedul-
ing with temperature-dependent leakage. DATE, pages 9–14, 2010.

[133] J. Yang, X. Zhou, M. Chrobak, Y. Zhang, and L. Jin. Dynamic thermal man-
agement through task scheduling. In International Symposium on Performance
Analysis of Systems and Software, pages 191–201, 2008.

[134] F. Yao, A. Demers, and S. Shenker. A scheduling model for reduced cpu energy.
FOCS, pages 374–382, 1995.

[135] L.-T. Yeh and R. C. Chu. Thermal Management of Microelectronic Equipment:
Heat Transfer Theory, Analysis Methods, and Design Practices. ASME Press,
New York, NY, 2002.

154

[136] I. Yeo, C. C. Liu, and E. J. Kim. Predictive dynamic thermal management for
multicore systems. In DAC, pages 734–739, 2008.

[137] L. Yuan, S. Leventhal, and G. Qu. Temperature-aware leakage minimization
technique for real-time systems. ICCAD, pages 761–764, 2006.

[138] L. Yuan and G. Qu. Alt-dvs: Dynamic voltage scaling with awareness of leak-
age and temperature for real-time systems. Adaptive Hardware and Systems,
NASA/ESA Conference on, 0:660–670, 2007.

[139] S. Zhang and K. S. Chatha. Approximation algorithm for the temperature-
aware scheduling problem. ICCAD, pages 281–288, 2007.

[140] S. Zhang and K. S. Chatha. Thermal aware task sequencing on embedded
processors. DAC, pages 585–590, 2010.

[141] S. Zhang, K. S. Chatha, and G. Konjevod. Near optimal battery-aware energy
management. In ISLPED, pages 249–254, 2009.

[142] Y. Zhang, M. L. Dunn, K. Gall, J. W. Elam, and S. M. George. Suppression
of inelastic deformation of nanocoated thin film microstructures. Journal of
Applied Physics, 95(12):82168225, 2004.

[143] Y. Zhang, X. Hu, and D. Z. Chen. Task scheduling and voltage selection for
energy minimization. In Design Automation Conference (DAC), 2002 39th
ACM/EDAC/IEEE, pages 183–188, 2002.

[144] Y. Zhang, X. Hu, and D. Z. Chen. Thermal-aware job allocation and schedul-
ing for three dimensional chip multiprocessor. In International symposium on
quality electronic design (ISQED), pages 390–398, 2010.

[145] Y. Zhang, D. Parikh, K. Sankaranarayanan, K. Skadron, and M. Stan. Hotleak-
age: a temperature-aware model of subthreshold and gate leakage for architects.
University of Virginia Dept. of Computer Science Technical Report, 2003.

[146] X. Zhou, Y. Xu, Y. Du, Y. Zhang, and J. Yang. Thermal management for 3d
processors via task scheduling. In ICPP, pages 115–122, 2008.

[147] C. Zhu, Z. Gu, L. Shang, R. Dick, and R. Joseph. Three-dimensional
chip-multiprocessor run-time thermal management. IEEE Transactions on
Computer-Aided Design of Integrated Circuits and SystCems, 27(8):1479–1492,
2008.

[148] D. Zhu, R. Melhem, , and B. R. Childers. Scheduling with dynamic volt-
age/speed adjustment using slack reclamation in multiprocessor real-time sys-
tems. In IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYS-
TEMS, volume 14, pages 686 – 700, July 2003.

155

[149] Y. Zhu and F. Mueller. Dvsleak: combining leakage reduction and voltage
scaling in feedback edf scheduling. SIGPLAN Not., 42(7):31–40, 2007.

[150] S. Zhuravlev, J. Saez, S. Blagodurov, A. Fedorova, and M. Prieto. Survey
of energy-cognizant scheduling techniques. Parallel and Distributed Systems,
IEEE Transactions on, PP(99):1, 2012.

156

VITA

VIVEK CHATURVEDI

EDUCATION

Ph.D. Candidate in Electrical Engineering 08/2009-Present
Florida International University, Miami, FL
Advisor: Dr. Gang Quan

Master of Science, Electrical Engineering (M.S.E.E.) August 2008
Syracuse University, Syracuse, NY, USA

Bachelor of Engineering, Electronics & Communication Engineering June 2006
Rajiv Gandhi Technical University, Bhopal, MP, India

TEACHING EXPERIENCE

Teaching Assistant Fall 2007
Syracuse University, NY

INTERNSHIP EXPERIENCE

Post-Silicon Validation Intern Summer 2007
SUN Microsystems, Burlington, MA

PUBLICATIONS

Journals

J1. V. Chaturvedi, H. Huang, S. Ren, G. Quan, “On the Fundamentals of Leakage Aware
Real-Time DVS Scheduling for Peak Temperature Minimization” , Journal of Systems Ar-
chitecture, Vol. 58, No. 10, 387-397, 2012

J2. H. Huang, V. Chatervedi, G. Quan, J. Fan, “Throughput Maximization for Periodic
Real-Time Systems under the Maximal Temperature Constraint”, ACM Transactions on
Embedded Computing Systems (under second review)

J3. H. Huang, V. Chaturvedi, G. Quan, “Leakage Aware Scheduling On Maximum Tem-
perature Minimization For Periodic Hard Real-Time Systems”, Journal of Low Power Elec-
tronics, Vol. 8, No. 4, 378-393, 2012

J4. G. Quan, V. Chaturvedi “Feasibility Analysis for Temperature-Constraint Hard Real-
time Periodic Tasks”, IEEE Transactions on Industrial Informatics, Vol. 6, No. 3, 329-339,
2010

157

Refereed Conferences

C1. V. Chaturvedi, H. Huang, G. Quan, “Leakage Aware Scheduling On Maximal Tem-
perature Minimization For Periodic Hard Real-Time Systems”, Computer and Information
Technology (CIT), 2010 IEEE 10th International Conference on, pp.1802-1809, June 29
2010-July 1, 2010

C2. V. Chaturvedi, G. Quan, “Leakage Conscious DVS Scheduling for Peak Temperature
Minimization”, IEEE/ACM Asia and South Pacific Design Automation Conference (ASP-
DAC), Yokohama, Japan, 2011 pg. 135-140

C3. V. Chaturvedi, P. Thanarungroj, C. Liu, G. Quan, “Validation of Scheduling Tech-
niques to Reduce Peak Temperature on an Architectural Level Platform Set-up”, IEEE
SoutheastCon, 2011, Nashville, TN, 111-116

C4. M. Fan, V. Chaturvedi, S. Sha, G. Quan, “Thermal-Aware Energy Minimization for
Real-Time Scheduling on Multi-core Systems”, IEEE Real-Time Systems Symposium (WiP-
RTSS), 2012, San Juan, PR, USA

C5. M. Fan, V. Chaturvedi, S. Sha, G. Quan, “Feasibility Analysis for Temperature Con-
strained Real-Time Scheduling on Multi-Core Platforms”, IEEE/ACM Design Automation
Conference (WiP-DAC), 2013

C6. M. Fan, V. Chaturvedi, S. Sha, G. Quan, “Energy Calculation for Multi-core Systems
with Leakage and Temperature Consideration”, (to be submitted)

C7. M. Fan, V. Chaturvedi, S. Sha, G. Quan, “Feasibility Analysis for Temperature Con-
strained Real-Time Scheduling on Multi-Core Platforms”, (to be submitted)

158

	Florida International University
	FIU Digital Commons
	3-26-2013

	Leakage Temperature Dependency Aware Real-Time Scheduling for Power and Thermal Optimization
	Vivek Chaturvedi
	Recommended Citation

	Leakage Temperature Dependency Aware Real-Time Scheduling for Power and Thermal Optimization

