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ABSTRACT OF THE DISSERTATION 

THE EFFECT OF IRON OXIDE NANOPARTICLES ON THE FATE AND 

TRANSFORMATION OF ARSENIC IN AQUATIC ENVIRONMENTS 

by 

Dionne C. Dickson 

Florida International University, 2013 

Miami, Florida 

Professor Yong Cai, Major Professor 

Iron oxides and arsenic are prevalent in the environment. With the increase 

interest in the use of iron oxide nanoparticles (IONPs) for contaminant remediation and 

the high toxicity of arsenic, it is crucial that we evaluate the interactions between IONPs 

and arsenic. The goal was to understand the environmental behavior of IONPs in regards 

to their particle size, aggregation and stability, and to determine how this behavior 

influences IONPs-arsenic interactions.  

A variety of dispersion techniques were investigated to disperse bare commercial 

IONPs. Vortex was able to disperse commercial hematite nanoparticles into unstable 

dispersions with particles in the micrometer size range while probe ultrasonication 

dispersed the particles into stable dispersions of nanometer size ranges for a prolonged 

period of time. Using probe ultrasonication and vortex to prepare IONPs suspensions of 

different particle sizes, the adsorption of arsenite and arsenate to bare hematite 

nanoparticles and hematite aggregates were investigated. To understand the difference in 

the adsorptive behavior, adsorption kinetics and isotherm parameters were determined. 

Both arsenite and arsenate were capable of adsorbing to hematite nanoparticles and 



vii 
 

hematite aggregates but the rate and capacity of adsorption is dependent upon the 

hematite particle size, the stability of the dispersion and the type of sorbed arsenic species. 

Once arsenic was adsorbed onto the hematite surface, both iron and arsenic can undergo 

redox transformation both microbially and photochemically and these processes can be 

intertwined. Arsenic speciation studies in the presence of hematite particles were 

performed and the effect of light on the redox process was preliminary quantified. The 

redox behavior of arsenite and arsenate were different depending on the hematite particle 

size, the stability of the suspension and the presence of environmental factors such as 

microbes and light. The results from this study are important and have significant 

environmental implications as arsenic mobility and bioavailability can be affected by its 

adsorption to hematite particles and by its surface mediated redox transformation. 

Moreover, this study furthers our understanding on how the particle size influences the 

interactions between IONPs and arsenic thereby clarifying the role of IONPs in the 

biogeochemical cycling of arsenic.
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1.1 Geochemistry of Iron 

 Iron is widespread in nature and is the fourth most abundant element in the earth’s 

crust (Schwertmann et al., 2000; Taylor et al., 2011).  Elemental iron is highly reactive 

and thus rarely exists as zerovalent iron, Fe(0), in the environment. Because of the high 

reactivity, iron has variable oxidation states which allow it to coordinate with oxygen, 

sulfur and nitrogen atoms. The two major oxidation states of iron in the environment is 

the reduced water-soluble Fe(II) (ferrous iron) and the oxidized water-insoluble Fe(III) 

(ferric iron) (Bose et al., 2002; Cundy et al., 2008). These oxidation states allow iron to 

exist in nature as either dissolved ions or in different solid mineral forms. For example, 

Fe(0) can readily react with oxygen in air or water to from iron oxides, oxide hydroxides 

and hydroxides minerals (Cundy et al., 2008). In addition, iron also exist in other mineral 

forms such as carbonates, phosphates, sulfates, sulfides and silicates (Jambor et al., 1998). 

 Iron oxides minerals are the most widespread in the environment and are 

ubiquitous in air, soils, rocks, lakes and rivers, and on the sea floor (Schwertmann et al., 

2000). The term “iron oxides” is used for simplicity as iron oxides come in different 

chemical and structural forms such as iron oxides, oxide hydroxides and hydroxides. So 

far, there are fifteen different iron oxides consisting only of Fe, O and/or OH, however, 

they differ in the valence of Fe and crystal structure (Schwertmann et al., 2000). Hematite, 

goethite, lepidocrocite and ferihydrite are some of the major iron oxides minerals in the 

environment (Table 1-1). Each mineral form has different stability, reactivity and specific 

surface area (Jambor et al., 1998). Despite their chemical and structural forms, iron 

oxides play a significant role in many biogeochemical processes in the environment. 
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Table 1. 1 Major Iron Oxides Minerals in the Environment (Schwertmann et al., 2000) 
 
Iron oxides Mineral Formula Environmental occurrence 

Hematite  α-Fe2O3 Widespread in rocks, soils 
and water 
 

Magnetite Fe3O4 Igneous and metamorphic 
rocks 
 

Ferrihydrite Fe5HO8.4H2O Fe containing springs, 
drainage lines, lake oxide 
precipitates, groundwater, 
river sediments, oceans  
 

Oxides 

Maghemite γ-Fe2O3 Soils as the weathering 
product of magnetite 
 

 
Goethite 

 
α-FeOOH 

 
Soils, lakes, streams 

 
Akaganeite 

 
β-FeOOH 

 
Chloride-rich 
environments such as hot 
brines and in rust in marine 
environments 
 

Lepidocrocite γ-FeOOH Rocks, soils, biota and rust 
 

 
Oxyhydroxides 

Feroxyhyte δ'-FeOOH Soils 
 
 
 

1.2 Nanotechnology and the Application of Iron Nanoparticles in Environmental 

Remediation 

1.2.1 Nanotechnology and Environmental Remediation 

Organic and heavy metal contamination of ground and surface waters has a major 

impact on the environment, the economy and on human health. Groundwater and surface 

water pollution is a significant problem throughout the world and the need for potable 

water in developing and developed countries is necessary for the health and survival of 
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humans and animals. The poor water quality in some industrial and agricultural sites 

caused a reduction in the supply of freshwater for human use (Theron et al., 2008). The 

need for clean water and the financial burden on cleaning up contaminated sites can be 

challenging for countries and regions that are not economically stable. The need for a 

new and economically feasible technology to address these pollution issues led to the 

potential application of nanotechnology for remediation purposes.  

Nanotechnology offers the potential use of novel nanomaterials for treatment of 

surface water, groundwater, and wastewater contaminated by toxic metal ions, organic 

and inorganic solutes, and microorganisms (Sun et al., 2006; Theron et al., 2008). 

Nanomaterials are generally defined as particles with dimensions ranging from 1 to 100 

nm. The small particle size and large surface area to volume ratio account for their high 

reactivity (large number of reactive sites) and easy delivery through small spaces in the 

subsurface to contaminated sites (U.S. EPA, 2008). These nanomaterials are highly 

preferred for in-situ remediation because of time and cost effectiveness. In-situ 

remediation involves treatment occurring on site thereby eliminating the need to pump 

out groundwater for above ground treatment or the transportation of soil and water to any 

other places for contaminant clean up (U.S. EPA, 2000; Karn et al., 2009). These 

advantages sparked a great interest in nanoparticles for environmental applications. In the 

last decade, the application of nanoscale zerovalent iron (NZVI) has emerged as the 

leading nanomaterial for environmental remediation.  
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1.2.2 Nanoscale Zerovalent Iron (NZVI) and Iron Oxide Nanoparticles (IONPs) 

Remediation Technology 

Nanoscale zerovalent iron can be considered as one of the first generation nanoscale 

environmental technologies (Sun et al., 2006) and its environmental application has 

significantly increased over the last decade. Nanoscale zerovalent iron, a cost effective 

remediation tool,  has shown potential in cleaning up difficult remediation sites (Zhang, 

2003). The greatest applications for NZVI is the in-situ groundwater remediation of 

chlorinated organic compounds such as trichloroethylene (TCE), organochlorine 

pesticides, polychlorinated biphenyls (PCBs) and various toxic metals such as arsenic and 

mercury (Wang et al., 1997; Liu et al., 2005; Quinn et al., 2005; Liu et al., 2006; Turk et 

al., 2010). The small particle size, large surface area, and high in-situ reactivity, accounts 

for its effectiveness as a reagent for the treatment of contaminants in soil, sediment, and 

groundwater remediation (Kanel et al., 2005). NZVI has a unique core-shell structure that 

influences its chemical properties. The core is composed of zerovalent iron (Fe(0)) which 

is surrounded by an iron oxide/hydroxide shell that grows thicker with the progress of 

iron oxidation (Martin et al., 2008). Because of the high reactivity of elemental iron, the 

oxidation of the iron core is inevitable once NZVI is exposed to air or water during 

environmental applications (equations 1 and 2).  Nanoscale zerovalent iron undergoes in 

situ oxidation (corrosion) to produce ferrous iron (Ponder et al., 2000). 

−+ ++→+ OHHFeOHFe 22 2
2

2
0    (1) 

−+ +→++ OHFeOHOFe 422 2
22

0    (2) 
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Further reactions of Fe2+ (equations 3-6) will subsequently yield magnetite (Fe3O4), 

ferrous hydroxide [Fe(OH)2], and ferric hydroxide [Fe(OH)3] depending upon redox 

conditions and pH (Kanel et al., 2005). 

++ +→++ HOFeOHOFe 12266 4322
2   (3) 

2
2 )(22 OHFeOHFe →+ −+           (4)  

OHOFeOOHFe 24322 62)(6 +→+    (5) 

32243 )(1218 OHFeOHOOFe ↔++    (6) 

Most importantly, the oxide layer is composed of Fe(II)/Fe(III) oxides near the Fe(0) 

surface with the Fe(III) oxide being closer to the oxide/water interface (Yan et al., 2010). 

The unique core-shell structure provides an indication of the chemical properties and 

reactivity of NZVI.  The engineered iron nanoparticles may exhibit characteristics of both 

metallic iron and iron oxides. The metallic iron may act as a strong reductant (electron 

donor), while the oxide layer may act as a sorbent for contaminants through electrostatic 

interactions or surface complexation processes (Sun et al., 2006; Yan et al., 2010).  

The NZVI oxide layer is very important in contaminant remediation. The oxide 

layer can be composed of any of the major iron oxides minerals. Because of this, various 

iron oxide nanoparticles (IONPs) such as goethite, magnetite and hematite have been 

investigated for potential applications in environmental remediation (Rebodos et al., 2010; 

Shipley et al., 2010). Similar to NZVI, IONPs have small particle size, large surface area, 

and high reactivity. These IONPs also have similar adsorptive behavior as the NZVI 

oxide layer and are frequently used as a model system for understanding the behavior of 

NZVI in the environment (He et al., 2008). As a sorbent, IONPs can adsorb metal 
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contaminants onto their surface during remediation and facilitate their mobility and 

transport in the environment.  

1.3 Arsenic in the Environment 

1.3.1 Occurrence and Speciation 

Arsenic (As) is the 20th most abundant element in natural systems and is 

extremely toxic to humans and animals (Carabante et al., 2009). It is naturally present in 

the earth’s crust, soils, sediments, water, air and living organism (Mandal et al., 2002; 

Zhang et al., 2002). Arsenic occurs naturally in more than 245 mineral forms but it is 

most often associated with sulfur (S) containing minerals (Bissen et al., 2003). Table 1-2 

lists the most commonly found arsenic minerals and their occurrence in the environment. 

Arsenopyrite (FeAsS) and orpiment (As2S3) are the most common arsenic minerals in 

nature and when exposed to oxidizing water they will undergo oxidative dissolution to 

release Fe, As and S into the environment (Yunmei et al., 2004; Suess et al., 2012). 

Arsenic in soils vary amongst geological regions but the global average concentration is 

approximately 5 mg kg-1 (Chakraborti, 2011).  In sediments, arsenic concentrations will 

vary (0.1-4000 mg kg-1) depending on where the sediments are originated such as from 

lakes, rivers and streams (Chakraborti, 2011). Arsenic concentrations of 1-2 µg L-1 can be 

found in seawater while 10 µg L-1 or less can be found in unpolluted ground and surface 

water (Chakraborti, 2011).  In air, arsenic concentrations ranged from 0.02 to 4 ng m-3 in 

rural areas, 3–200 ng m-3 in urban areas to >1000 ng m-3 in industrial areas (WHO, 2011).  
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Table 1. 2 The most common arsenic minerals in the environment (Mandal et al., 2002) 
 
Mineral Formula Occurrence in the environment 

Native As As Hydrothermal veins 
   
Arsenopyrite  FeAsS The most abundant As mineral, dominantly 

mineral veins 
Proustite Ag3AsS3 Generally one of the late Ag minerals in 

the sequence of primary deposition 
Rammelsbergite NiAs2  Commonly in mesothermal vein deposits 
Safflorite (Co,Fe)As2  Generally in mesothermal vein deposits 
Seligmannite  PbCuAsS3 Occurs in hydrothermal veins 

Smaltite  CoAs2 – 
Niccolite  NiAs Vein deposits and norites 
Realgar  AsS Vein deposits, often associated with 

orpiment, clays and limestones, also 
deposits from hot springs 

Orpiment  
 

As2S3 Hydrothermal veins, hot springs, volcanic 
sublimation product 

Cobaltite  CoAsS High-temperature deposits, metamorphic 
rocks 

Tennantite  (Cu,Fe)12As4S13 Hydrothermal veins 
Enargite  Cu3AsS4 Hydrothermal veins 
Arsenolite  As2O3 Secondary mineral formed by oxidation of 

arsenopyrite, native arsenic and other 
As minerals 

Claudetite  As2O3 Secondary mineral formed by oxidation of 
realgar, arsenopyrite and other As 
minerals 

Scorodite  FeAsO4·2H2O Secondary mineral 
Annabergite  
 

(Ni,Co)3(AsO4)2·8H2O Secondary mineral 

Hoernesite  Mg3(AsO4)2·8H2O Secondary mineral, smelter wastes 
Haematolite  (Mn,Mg)4Al(AsO4) 

(OH)8 
– 

Conichalcite  CaCu(AsO4)(OH) Secondary mineral 
Adamite  Zn2(OH)(AsO4) Secondary mineral 
Domeykite  
 

Cu3As Found in vein and replacement deposits 
formed at moderate temperatures 

Loellingite  FeAs2 Found in mesothermal vein deposits 
Pharmacosiderite  Fe3(AsO4)2(OH)3·5H2O Oxidation product of arsenopyrite and 

other As minerals 
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In living organisms, As concentrations will vary depending on how much arsenic they are 

exposed to. Animals and humans tend to have concentrations less than 0.3 ug g-1 on a wet 

weight basis (Mandal et al., 2002). 

Arsenic is commonly introduced into the environment through both natural 

formation (weathering, biological activity, and volcanic activity) and anthropogenic 

activity (mining, smelting, and direct use of arsenic-containing herbicides by industry and 

agriculture) (Mandal et al., 2002). However, anthropogenic activities accounts for a 

higher release of arsenic, as much as three times higher, compared to  natural sources 

(Mandal et al., 2002). In the environment, arsenic exists in various oxidation states (+5, 

+3, 0, -3) and two different chemical forms (inorganic or organic arsenicals). Figure 1.1 

illustrates the most common arsenic form/species in the environment. In ground and 

surface waters the major chemical forms of arsenic are the inorganic arsenic species: 

pentavalent arsenate (As(V)) and trivalent arsenite (As(III)) (Bissen et al., 2003). 

However, these inorganic arsenics can interact with sulfur to form arsenic-sulfur species 

(thioarsenic). These thiolated species such as thiolated arsenites and thiolated arsenates 

can exist in Fe rich or sulfide rich waters especially where orpiment and arsenopyrite 

minerals undergo dissolution (Yunmei et al., 2004; Suess et al., 2012). Organic arsenicals 

are less prevalent in the environment but can be found in surface waters and in areas 

affected by industrial pollution. The most common forms are monomethylarsonic acid 

(MMA) and dimethylarsinic acid (DMA). MMA and DMA are usually present in plants, 

humans and animals resulting from the uptake and intake of inorganic arsenic from the 

environment. Arsenic is metabolized by methylation in the liver and is usually excreted in 

the urine (Rossman, 2003). Other known forms of organic arsenicals are trimethylarsine 
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oxide (TMAO), the tetramethylarsonium ion (TMAs), arsenobetaine (AsBet), 

arsenocholine (AsCho) and dimethylarsinoylriboside derivatives (arsenosugars) 

(Kohlmeyer et al., 2003).   

 

 

Figure 1. 1 Structures of the most common arsenic species in the environment 
 
 

Arsenic speciation is one of the major contributing factors in the biogeochemical 

cycling of arsenic. The pH and redox environment will determine the predominant form 

of arsenic species present. The redox potential (Eh) will determine the distribution of 

arsenic by oxidation states while pH will determine the form of oxyanion present within a 

particular arsenic oxidation state (Bose et al., 2002). In the environment, As(III) and 

As(V) do not exist as free cations but rather as oxyanions while still maintaining their +3 

and +5 oxidation states (Smedley et al., 2002). Under reducing conditions (low Eh), 
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As(III) is the major arsenic species and it exists as neutral H3AsO3
0 species from pH 0-9 

and has three pKa values (pK1 = 9.22, pK2 = 12.13 and pK3 = 13.4) (Ko et al., 2004; Su et 

al., 2008).  H2AsO3
-1 is the predominant species above pH 9, HAsO3

-2 is the major 

species above pH 12 and AsO3
-3 is the major species above pH 13. On the other hand, 

As(V) predominates under oxidizing conditions (high Eh) and exists as neutral H3AsO4
0 

under extreme acidic conditions (pH < 2) and has three pka values (pK1 = 2.20, pK2 = 

6.97 and pK3 = 11.53). In the pH range of 2 to 11, H2AsO4
- and HAsO4 -2 are the 

predominant species. Above pH 11, AsO4
-3 is the predominant form of As(V). In the case 

of Fe rich and sulfide rich environments and under reducing conditions, thiolated arsenite 

HAs(III)S3
-2 dominate at pH > 6.25 and HAs(III)S2O

-2 dominate at pH >7.25. In oxidizing 

conditions, thioarsenates species dominate with HAs(V)S3O
-2 present at pH < 6 and 

As(V)S4
-3 present at higher pH (Couture et al., 2011). In this study the focus will be on 

inorganic As(III) and As(V) as these are the more predominant species in aquatic 

environments. 

1.3.2 Toxicity 

The toxicity of arsenic is dependent upon its chemical form and oxidation states. 

Generally, inorganic arsenic is considered more toxic than organic arsenicals with 

arsenite being more toxic than arsenate. However, recent studies have shown that 

MMA(III) and DMA(III)  are even more toxic than inorganic As(V), MMA(V) and 

DMA(V).The higher toxicity of arsenite has been attributed to its strong binding affinity 

to sulfhydryl groups of biomolecules thereby inhibiting the activities of enzymes 

resulting in various harmful health effects (Sharma et al., 2009). Short and long term 

exposure to arsenic can result in acute and chronic health effects. Acute health effects 
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include gastrointestinal discomfort, vomiting, diarrhea, bloody urine, anuria, shock, 

convulsions, coma, and death while chronic effects include conjunctivitis, hyperkeratosis, 

hyper pigmentation, cardiovascular diseases, disturbance in the peripheral vascular and 

nervous systems, skin lesions and blackfoot disease (Jain et al., 2000; Hughes, 2002). 

Chronic exposure to arsenic can also cause carcinogenic effects. Arsenic has been linked 

to cancer of the bladder, lungs, skin, kidney, nasal passages, liver, and prostate. The 

International Agency for Research on Cancer (IARC) has classified arsenic as a known 

human carcinogen (Group 1) based on epidemiological studies that showed an increase in 

skin cancer following arsenic medical treatments (IARC, 1987). Because of the severe 

and adverse health effects resulting from exposure to arsenic, the WHO and EPA reduced 

the arsenic standard in drinking water from 50 to 10 μg L-1 (Smedley et al., 2002). 

1.3.3 Arsenic Contamination in Water 

Metal contamination is a serious issue in aquatic environments and may coexist 

with other contaminants such as organic pollutants originating from industrial and 

military activities (Zhang, 2003).  The human population can become exposed to arsenic 

through natural sources, industrial sources or from drinking water and food. The three 

routes of entry into the human body are: dermal, inhalation and ingestion. Dermal 

exposure involves arsenic absorption through the skin, however, minimal information is 

known regarding the arsenic chemical form or the mechanism of absorption (ATSDR, 

2009). Inhalation exposure occurs from breathing in air from occupational exposure to 

agricultural pesticide and smelters (ATSDR, 2009). However, the primary exposure  

route to arsenic occurs through the ingestion of arsenic contaminated water  and food 

(Rahman et al., 2009).  
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Arsenic contamination in natural water is a worldwide problem and has become 

an important issue and challenge for the world engineers, scientists and even the policy 

makers (Choong et al., 2007). Typical arsenic concentrations in groundwater ranged from 

0.5-10 µg/l, however elevated concentrations (> 50 µg/l) are found in the groundwater of 

some countries. Parts of Argentina, Bangladesh, Chile, China, Hungary, India (West 

Bengal), Mexico, Romania, Taiwan, Vietnam and even the USA have groundwater with 

arsenic concentrations above 50 µg/l (Smedley et al., 2002).  These high concentrations 

are a result of arsenic release from sediments such as the oxidation of arsenic pyrite 

minerals and/or the reductive dissolution of ferric iron hydroxide to ferrous iron 

consequently releasing arsenic into the water (Mandal et al., 2002). In most of these 

countries, groundwater is the major drinking water supply for the population. Therefore, 

the ingestion of high concentrations of arsenic on a daily basis poses serious health 

threats. About 13 million people mostly in western USA are exposed to arsenic 

concentrations > 10 µg/L (Camacho et al., 2011). In Bangladesh, up to 30-35 million 

people are exposed to arsenic by drinking contaminated groundwater (Smedley et al., 

2002). The situation in Bangladesh is considered the largest mass poisoning in history 

(Das et al., 2004). 

Humans are not only exposed to arsenic by drinking groundwater but also through 

the ingestion of arsenic contaminated food. Arsenic can be found in foods such seafood,  

vegetables and most importantly rice (Das et al., 2004). Seafood accounts for 60-90% of 

the dietary intake of arsenic but the arsenic is mostly in the organic form (Zhao et al., 

2010). Arsenic in vegetables usually occurs from the irrigation of the vegetation with 

arsenic contaminated water (Bhattacharya et al., 2007). However, rice accounts for the 
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largest contributions to the dietary intake of inorganic arsenic (Zhao et al., 2010). Rice is 

grown in mostly water making it more susceptible to arsenic contamination especially if 

it is grown in arsenic contaminated water. These elevated levels of arsenic in both 

drinking water and food are a major concern for millions of people around the world.  

1.3.4 Arsenic Mobility 

In general, the mobility of arsenic is dependent on processes occurring at the 

mineral surfaces such as precipitation, dissolution, adsorption and desorption (Bauer et al., 

2006). However, the adsorption of arsenic to metal oxides particularly iron oxides plays a 

key role in its mobility in the environment. Iron oxides in general, whether in the bulk 

form or nanoparticulate form, have a strong binding affinity for both arsenite and arsenate 

(Jain et al., 1999). The strength of the binding and any subsequent desorption will be 

affected by pH and redox potentials. In the environment (pH 5-8 for natural waters), 

arsenite is more mobile than arsenate and it is less strongly adsorbed to the iron oxide 

surface (Camacho et al., 2011). Another process influencing arsenic mobility is 

coprecipitation which occurs after arsenic is adsorbed to the iron oxides surface. In the 

case of IONPs, arsenic can be trapped during the nanoparticle aggregation process and 

these newly formed large aggregates will precipitate out of solution thereby removing 

arsenic from the aqueous phase as well. Arsenic mobilization can also occur during the 

reductive dissolution of IONPs, a process catalyzed by iron-reducing bacteria thereby 

releasing arsenic back into solution (Ahmann et al., 1997). All these processes mentioned 

above are very significant and will affect the transport, reactivity and bioavailability of 

arsenic in the environment.  
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1.4 Interactions between Arsenic and Iron Oxide Nanoparticles 

It is widely known that granular or bulk iron oxide is ubiquitous and plays a 

significant role in the cycling of arsenic in the environment but limited knowledge is 

known about IONPs or NZVI interaction with arsenic. In the environment, NZVI is 

inevitably oxidized to iron oxide or iron hydroxide. NZVI can be oxidized to magnetite 

(Fe3O4), ferrous hydroxide [Fe(OH)2], ferric hydroxide [Fe(OH)3],  ferrihydrite 

(Fe5HO8·4H2O), goethite (α-FeOOH) and hematite (α-Fe2O3)  depending upon redox 

conditions and pH.  Each form of iron oxide shell has a different interaction with arsenic 

and this can influence the fate of arsenic in aquatic systems. These oxidized iron particles 

are expected to stay suspended or precipitate in water depending on the water chemistry 

and the coarsening kinetics of the particles.  

The IONPs suspension can be considered as a colloidal system and it is this 

system that is the dominant factor controlling the speciation and mobility of metals in 

aquatic environment (Gustafsson et al., 1997; Bose et al., 2002). IONPs can interact with 

arsenic in various ways (Figure 1.2); however, adsorption is the most prominent method 

of interaction. IONPs has a high adsorption capacity and ligand-like coordination 

properties that allow arsenic to adsorb onto its oxide surface forming an inner-sphere 

complex (Manning et al., 2002). The IONPs have a strong affinity for both arsenite and 

arsenate and the retention of both arsenic species is strongly pH dependent (Jain et al., 

1999).  Kanel et al. (2005) reported that As (III) can be removed by adsorption on NZVI 

in a very short time (minute scale) and is strongly adsorbed over a wide range of pH and 

anion environments. The extent of removal was 88.6-99.9% in the pH range 4-10 and 

decreased sharply at pH below 4 and above 10. The pH dependent behavior can be 
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explained by ionization of both the adsorbate and the adsorbent causing repulsion at the 

surface and decreasing the net As(III) adsorption. Su and Puls (2008) explained that at 

low pH surface protonation of the iron oxide occurs, and As(III) exists as a neutral 

H3AsO3 species.  

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1. 2 Schematic representation of the possibly interactions of iron oxide 

nanoparticles with As(III) and As(V). (a) Adsorption and desorption of As(III) and As(V) 

to IONPs, (b) adsorption of As(III) and As(V) to IONPs followed by co-precipitation with 

IONPs, (c) reduction of As(V) to As(III) followed by desorption, and (d) oxidation of 

As(III) to As(V) followed by desorption. 
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As the pH increases above 5, surface protonation diminishes and approaches zero 

at pH 7, facilitating maximum adsorption. Electrostatic repulsion leads to decreased 

sorption when pH is above 9 since the negatively charged H3AsO3
-
 is the dominant 

species and the oxide surface becomes negatively charged. Su and Puls (2001) also 

studied As (V) (H3AsO4) adsorption onto iron oxide and showed that As(V) adsorption 

decreases with increasing pH over the pH range from 3 to 10. H2AsO4
- is the predominant 

species at pH 3-6, and is the major species being adsorbed due to the iron oxide surfaces 

having a net positive charge in this pH range. Therefore pH plays a key role in the 

adsorption and desorption of arsenic subsequently affecting arsenic’s mobility in the 

environment. 

Iron oxide nanoparticles’ strong adsorption characteristics make it more 

applicable to contaminant remediation. However the chemical interactions between 

IONPs and arsenic need to be evaluated. Although it is well known that adsorption and 

desorption are the main interactions between IONPs and arsenic, not much work has been 

done on the possible species transformation when arsenic is adsorbed or in contact with 

IONPs. Both arsenic and iron are redox sensitive and can undergo redox transformation 

in the environment either microbially or photochemically (Masscheleyn et al., 1991). 

However, once arsenic is adsorbed to the nanoparticle surface, the redox transformation 

of iron can somehow influence the redox transformation of arsenic. Therefore, arsenic 

speciation studies in the presence of IONPs need to be evaluated. The transformation of 

arsenic species will depend on various factors such as the redox potential, the iron species 

present, pH, the presence of microbes, and photochemical effect. 
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 Few research groups have reported speciation of arsenic in the presence of iron 

nanoparticles. Kanel et al. (2005) found that As(III) near or in contact with the corroding 

NZVI surface can be oxidized to As(V). In addition, Su and Puls (2001) reported that 

there is a strong evidence for partial oxidation of As(III) to form As(V) in zerovalent iron 

solutions, whereas there is no evidence for significant reduction of As(V) under the same 

experimental conditions. Bose et al. (2002) reported that there is possible reduction of 

As(V) to As(III) during the dissolution of As(V)- iron oxide precipitate thereby releasing 

arsenic (V) and iron (II) in solution, then followed by reduction of arsenic (V) to arsenic 

(III) in the dissolved phase. The transformation process of arsenic in the presence of 

IONPs and how often it occurs is unclear and a more thorough understanding is needed.  

The transformation and fate of arsenic is dependent upon the colloidal stability of 

the IONPs. Colloidal stability can be defined as the ability of a particle dispersion to 

resist aggregation for a specific time (Phenrat et al., 2007). Colloidal particles frequently 

aggregate to larger particles in circumneutral water and can settle out of solution. 

Therefore, aggregation is an important factor to consider because the dispersion behavior 

of nanoparticles will affect their reactivity in environmental settings (Gilbert et al., 2007). 

Aggregation can be beneficial by immobilizing arsenic through the co-precipitation 

process. The process usually involves arsenic adsorbing to the nanoparticles and getting 

trapped inside an aggregate during particle growth. The aggregate will subsequently 

precipitate out of solution with the trapped arsenic thereby causing a reduction of arsenic 

in the aqueous phase. On the other hand aggregation can be ineffective as the 

nanoparticles grow larger in size causing a reduction in the surface area thereby lowering 

the absorption capacity. In recent years, the application of stabilizers to modify the 
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nanoparticle surface has emerged as a method to prevent aggregation and prolong 

colloidal stability. Stabilizers are soluble polymers or surfactants that are attached to 

surface of the nanoparticles providing strong interparticle electrostatic and steric 

repulsion that will overcome the van der waals attraction and magnetic forces that causes 

aggregation (He et al., 2007).  Schrick et al. (2004) and Yang et al (2007) reported that 

nanoiron modified with polyacrylic acid (PAA) formed stable and mobile suspensions. 

Kanel et al. (2007) reported the use of tween 20, He and Zhao (2007) reported the use of 

carboxymethyl cellulose and Terifarri et al. (2008) used guar gum as stabilizers to 

prevent aggregation. Although stabilizers are effective in enhancing colloidal stability, 

they may interfere with the interaction between arsenic and the nanoparticle surface. 

Therefore, understanding the colloidal behavior and aggregation of IONPs is key to 

determine its role on the transport and transformation of arsenic in the environment.  

Studies on the interaction of iron nanoparticles with arsenic are relatively new but 

are of utmost importance. With the increase interest in the use of IONPs or NZVI for 

remediation application, and the high toxicity and prevalence of arsenic in the 

environment, it is crucial that we evaluate the interaction between arsenic and IONPs. 

Many uncertainties arise when we try to understand the effects of IONPs on arsenic 

speciation, mobility and fate in the environment. Some of these include: 1) how does 

IONPs exist in aquatic environments in regards to their particle size, aggregation and 

stability in the presence of environmental factors such as organic matter and salinity? 2) 

How do the interactions between IONPs and arsenic affect their transport in the 

environment? 3) What is the role and how much influence does IONPs have on the 

transformation of arsenic? In this study, we seek to answer these questions and determine 
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the extent at which iron nanoparticles influence the biogeochemical cycling of arsenic. 

The information we gather is necessary and crucial for the assessment of the prospective 

use of iron nanomaterials in clean up strategies for arsenic and other toxic metals. This 

information will further our knowledge on the biogeochemical cycling of arsenic and 

assist in understanding the behavior of nanoparticles in the environment. In addition, 

through this study, we can have an understanding on how natural and engineered 

nanoparticles might play a role in the cycling of arsenic and other metals in the 

environment.  

1.5 Research Objectives and Hypothesis 

The primary purpose of this research is to study the effects of iron oxide nanoparticles 

on the fate, mobility and transformation of arsenic in aquatic environment. To achieve 

this goal, the following objectives will be investigated: 

1.5.1 To Prepare a Stable IONPs Dispersion without the Use of Surface 

Modifications. 

The goal here was to develop an efficient method to disperse and stabilize bare 

iron oxide nanoparticles without the use of surface modifications and to determine the 

stability of the dispersion. Experiments were designed to disperse commercial IONPs into 

nanoparticulate size ranges using bath sonication, probe sonication and ultrasonication 

and to determine the stability of the dispersion after being exposed to environmentally 

relevant conditions. This work was aimed to mimic the way IONPs may exist in the 

environment and to determine their environmental behavior. The findings will ultimately 

give an indication on how nanoparticles might exist in the environment and how their 

properties will influence their interaction with metal contaminants. 
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Hypothesis: It was hypothesized that IONPs can be dispersed and stable for a prolonged 

period of time under environmental conditions without the use of surface modifications. 

The hypothesis was formed on the basis that IONPs powder can form dispersions in 

water by mechanically breaking down the particles from large aggregates to smaller 

particles. However, breaking the IONPs apart does not guarantee stability. The particle 

size, concentration of the suspended particles, the surface chemistry of the particle, pH, 

ionic strength and solution composition will determine the level of stability and how fast 

the nanoparticles aggregate. These dispersions should be prepared without stabilizers 

modifying the nanoparticle surface thereby enhancing the stability either electrostatically 

or sterically. These stabilizers themselves can affect the reactivity of the nanoparticle and 

limit the interactions between the nanoparticle surface and metal contaminants. 

1.5.2 Quantification of the Interactions (kinetics and thermodynamics) of 

Engineered Iron Oxide Nanoparticles and Iron Oxide Aggregates with Different 

Arsenic Species. 

The goal here was to investigate the adsorption and retention of arsenic to iron 

nanoparticles or aggregates under environmental conditions. The effects of particle size 

on the adsorption process were investigated while acquiring kinetic and thermodynamic 

data. This step is initial but will provide important data that will give us a solid basis for 

studying the environmental fate and transformation of arsenic. 

Hypothesis: It was hypothesized that iron oxides whether in the nanoparticulate form or 

colloidal aggregate will adsorb arsenic onto their surfaces, however, the adsorption 

process will be different depending on the size of the iron oxide particles and the type of 

sorbed arsenic species. The hypothesis was formed on the basis that iron oxides in 
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general are known to have a strong affinity for adsorbing heavy metals. Therefore, 

arsenic will readily adsorbs onto iron oxides surfaces and the extent of adsorption will 

vary depending on the arsenic’s oxidation state. In terms of the particle size, the smaller 

the iron oxide particle the higher the efficiency of adsorption. Nanoparticles tend to have 

high surface area and larger amounts of binding sites thereby accommodating higher 

amounts of arsenic adsorption onto their surface compared to colloidal aggregates. 

1.5.3 Quantification of the Key Transformation Processes of Arsenic in the presence 

of Iron Oxide Nanoparticles and  Iron Oxide Aggregates. 

 The third objective determined the key processes of transformation of arsenic and 

the factors that could possibly influence arsenic speciation. The information gathered will 

give us a better understanding of the biogeochemical cycling of arsenic since speciation 

determines the degree of mobility of arsenic in the environment. 

Hypothesis: The transformation between arsenic species can be affected by varying 

chemical reactivity and environmental conditions. It was hypothesized that the 

transformation such as As(III) oxidation to As(V) or As(V) reduction to As(III) would 

behave differently in the presence of IONPs and iron oxide aggregates.  It is widely 

known that aqueous phase chemical and direct microbial catalyzed redox transformations 

of arsenic are responsible for speciation. However, other factors such as mineral phases 

can play a significant role in the transformation process. Once arsenic adsorbs onto these 

iron oxide surfaces, it might undergo surface mediated reduction or oxidation reactions. 

 



23 
 

1.6 List of References 

Ahmann D, Krumholz LR, Hemond HF, Lovley DR, Morel FMM. Microbial 
Mobilization of Arsenic from Sediments of the Aberjona Watershed. Environ Sci 
Technol 1997; 31: 2923-2930. 

ATSDR. Case studies in environmental medicine.  2009: Agency for Toxic Substances 
and Disease Registry: http://www.atsdr.cdc.gov/csem/arsenic/docs/arsenic.pdf. 

Bauer M, Blodau C. Mobilization of arsenic by dissolved organic matter from iron oxides, 
soils and sediments. Sci Total Environ 2006; 354: 179-190. 

Bhattacharya P, Welch AH, Stollenwerk KG, McLaughlin MJ, Bundschuh J, Panaullah G. 
Arsenic in the environment: Biology and Chemistry. Sci Total Environ 2007; 379: 
109-120. 

Bissen M, Frimmel FH. Arsenic - a review. Part I: Occurrence, toxicity, speciation, 
mobility. Acta Hydrochim Hydrobiol 2003; 31: 9-18. 

Bose P, Sharma A. Role of iron in controlling speciation and mobilization of arsenic in 
subsurface environment. Water Res 2002; 36: 4916-4926. 

Camacho LM, Gutierrez M, Alarcon-Herrera MT, Villalba MdL, Deng S. Occurrence 
and treatment of arsenic in groundwater and soil in northern Mexico and 
southwestern USA. Chemosphere 2011; 83: 211-225. 

Carabante I, Grahn M, Holmgren A, Kumpiene J, Hedlund J. Adsorption of As (V) on 
iron oxide nanoparticle films studied by in situ ATR-FTIR spectroscopy. Colloid 
Surface A 2009; 346: 106-113. 

Chakraborti D. Arsenic: Occurrence in Groundwater. Encyclopedia of Environmental 
Health. 1. Elsevier, Burlington, 2011, pp. 165-180. 

Choong TSY, Chuah TG, Robiah Y, Koay FLG, Azni I. Arsenic toxicity, health hazards 
and removal techniques from water: an overview. Desalination 2007; 217: 139-
166. 

Couture RM, Van Cappellen P. Reassessing the role of sulfur geochemistry on arsenic 
speciation in reducing environments. J hazard mater 2011; 189: 647-652. 

Cundy AB, Hopkinson L, Whitby RLD. Use of iron-based technologies in contaminated 
land and groundwater remediation: A review. Sci Total Environ 2008; 400: 42-51. 

Das HK, Mitra AK, Sengupta PK, Hossain A, Islam F, Rabbani GH. Arsenic 
concentrations in rice, vegetables, and fish in Bangladesh: a preliminary study. 
Environment International 2004; 30: 383-387. 



24 
 

Gilbert B, Lu G, Kim CS. Stable cluster formation in aqueous suspensions of iron 
oxyhydroxide nanoparticles. J Colloid Interface Sci   2007; 313: 152-159. 

Gustafsson O, Gschwend PM. Aquatic colloids: concepts, definitions, and current 
challenges. Limnol and Oceanogr 1997; 42: 519-528. 

He F, Zhao D. Manipulating the Size and Dispersibility of Zerovalent Iron Nanoparticles 
by Use of Carboxymethyl Cellulose Stabilizers. Environ Sci Technol 2007; 41: 
6216-6221. 

He YT, Wan J, Tokunaga T. Kinetic stability of hematite nanoparticles: the effect of 
particle sizes. J Nanopart Res 2008; 10: 321-332. 

Hughes MF. Arsenic toxicity and potential mechanisms of action. Toxicol Lett 2002; 133: 
1-16. 

IARC. Arsenic and arsenic compounds (Group I). In: IARC monographs on the 
evaluation of the carcinogenic risks to humans. Supplement 7.  1987: 
International Agency for Research on Cancer. 

Jain A, Raven KP, Loeppert RH. Arsenite and Arsenate Adsorption on Ferrihydrite: 
Surface Charge Reduction and Net OH- Release Stoichiometry. Environ Sci 
Technol 1999; 33: 1179-1184. 

Jain CK, Ali I. Arsenic: occurrence, toxicity and speciation techniques. Water Res 2000; 
34: 4304-4312. 

Jambor JL, Dutrizac JE. Occurrence and Constitution of Natural and Synthetic 
Ferrihydrite, a Widespread Iron Oxyhydroxide. Chem Rev 1998; 98: 2549-2585. 

Kanel SR, Manning B, Charlet L, Choi H. Removal of arsenic(III) from groundwater by 
nanoscale zero-valent iron. Environ Sci Technol 2005; 39: 1291-8. 

Karn B, Kuiken T, Otto M. Nanotechnology and in situ remediation: a review of the 
benefits and potential risks. Environ Health Perspect 2009; 117: 1813-31. 

Ko I, Kim J-Y, Kim K-W. Arsenic speciation and sorption kinetics in the As-hematite-
humic acid system. Colloids Surf 2004; 234: 43-50. 

Kohlmeyer U, Jantzen E, Kuballa J, Jakubik S. Benefits of high resolution IC-ICP-MS 
for the routine analysis of inorganic and organic arsenic species in food products 
of marine and terrestrial origin. Anal Bioanal Chem 2003; 377: 6-13. 

Liu Y, Lowry GV. Effect of Particle Age (Fe0 Content) and Solution pH On NZVI 
Reactivity: H2 Evolution and TCE Dechlorination. Environ Sci Technol 2006; 40: 
6085-6090. 



25 
 

Liu Y, Majetich SA, Tilton RD, Sholl DS, Lowry GV. TCE Dechlorination Rates, 
Pathways, and Efficiency of Nanoscale Iron Particles with Different Properties. 
Environ Sci Technol 2005; 39: 1338-1345. 

Mandal BK, Suzuki KT. Arsenic round the world: a review. Talanta 2002; 58: 201-235. 

Manning BA, Hunt ML, Amrhein C, Yarmoff JA. Arsenic(III) and Arsenic(V) Reactions 
with Zerovalent Iron Corrosion Products. Environ Sci Technol 2002; 36: 5455-
5461. 

Martin JE, Herzing AA, Yan W, Li X-q, Koel BE, Kiely CJ, et al. Determination of the 
Oxide Layer Thickness in Core-Shell Zerovalent Iron Nanoparticles. Langmuir 
2008; 24: 4329-4334. 

Masscheleyn PH, Delaune RD, Patrick WH. Effect of redox potential and pH on arsenic 
speciation and solubility in a contaminated soil. Environ Sci Technol 1991; 25: 
1414-1419. 

Phenrat T, Saleh N, Sirk K, Tilton RD, Lowry GV. Aggregation and Sedimentation of 
Aqueous Nanoscale Zerovalent Iron Dispersions. Environ Sci Technol 2007; 41: 
284-290. 

Ponder SM, Darab JG, Mallouk TE. Remediation of Cr(VI) and Pb(II) Aqueous 
Solutions Using Supported, Nanoscale Zero-valent Iron. Environ Sci Technol 
2000; 34: 2564-2569. 

Quinn J, Geiger C, Clausen C, Brooks K, Coon C, O'Hara S, et al. Field Demonstration 
of DNAPL Dehalogenation Using Emulsified Zero-Valent Iron. Environ Sci 
Technol 2005; 39: 1309-1318. 

Rahman MM, Ng JC, Naidu R. Chronic exposure of arsenic via drinking water and its 
adverse health impacts on humans. Environ Geochem Health 2009; 31: 189-200. 

Rebodos RL, Vikesland PJ. Effects of Oxidation on the Magnetization of Nanoparticulate 
Magnetite. Langmuir 2010; 26: 16745-16753. 

Rossman TG. Mechanism of arsenic carcinogenesis: an integrated approach. Mutat. Res., 
Fundam. Mol. Mech. Mutagen. 2003; 533: 37-65. 

Schwertmann U, Cornell RM. Iron Oxides in the Laboratory: Preparation and 
Characterization. Weinheim: Wiley, 2000. 

Sharma VK, Sohn M. Aquatic arsenic: Toxicity, speciation, transformations, and 
remediation. Environ Int 2009; 35: 743-759. 

Shipley H, Engates K, Guettner A. Study of iron oxide nanoparticles in soil for 
remediation of arsenic. J Nanopart Res 2010: 1-11-11. 



26 
 

Smedley PL, Kinniburgh DG. A review of the source, behaviour and distribution of 
arsenic in natural waters. Appl Geochem 2002; 17: 517-568. 

Su C, Puls RW. Arsenate and Arsenite Sorption on Magnetite: Relations to Groundwater 
Arsenic Treatment Using Zerovalent Iron and Natural Attenuation. Water, Air, 
Soil Poll 2008; 193: 65-78. 

Suess E, Planer-Friedrich B. Thioarsenate formation upon dissolution of orpiment and 
arsenopyrite. Chemosphere 2012; 89: 1390-1398. 

Sun Y-P, Li X-q, Cao J, Zhang W-x, Wang HP. Characterization of zero-valent iron 
nanoparticles. Adv Colloid Interface Sci  2006; 120: 47-56. 

Taylor KG, Konhauser KO. Iron in Earth Surface Systems: A Major Player in Chemical 
and Biological Processes. Elements 2011; 7: 83-87. 

Theron J, Walker JA, Cloete TE. Nanotechnology and water treatment: Applications and 
emerging opportunities. Crit Rev Microbiol 2008; 34: 43-69. 

Turk T, Alp I, Deveci H. Adsorption of As(V) from water using nanomagnetite. J 
Environ Eng 2010; 136: 399-404. 

U.S. EPA. Engineered approaches to in situ bioremediation of chlorinated solvents: 
fundamentals and field applications.  2000: EPA 542-R-00-008. Washington, DC: 
U.S. Environmental Protection Agency. 

U.S. EPA. Nanotechnology for Site Remediation Fact Sheet.  2008: EPA 542-F-08-009. 
Washington, DC: U.S. Environmental Protection Agency. Available: 
http://www.epa.gov/tio/download/remed/542-f-08-009.pdf. 

Wang C-B, Zhang W-x. Synthesizing Nanoscale Iron Particles for Rapid and Complete 
Dechlorination of TCE and PCBs. Environ Sci Technol 1997; 31: 2154-2156. 

WHO. Arsenic in Drinking-water.  2011: World Health Organization; 
http://www.who.int/water_sanitation_health/dwq/chemicals/arsenic.pdf. 

Yan W, Herzing AA, Kiely CJ, Zhang W-x. Nanoscale zero-valent iron (nZVI): Aspects 
of the core-shell structure and reactions with inorganic species in water. J Contam 
Hydrol 2010; 118: 96-104. 

Yunmei Y, Yongxuan Z, Williams-Jones AE, Zhenmin G, Dexian L. A kinetic study of 
the oxidation of arsenopyrite in acidic solutions: implications for the environment. 
Appl Geochem 2004; 19: 435-444. 

Zhang W-x. Nanoscale Iron Particles for Environmental Remediation: An Overview. J 
Nanopart Res 2003; 5: 323-332. 



27 
 

Zhang W, Cai Y, Tu C, Ma LQ. Arsenic speciation and distribution in an arsenic 
hyperaccumulating plant. Sci Total Environ 2002; 300: 167-177. 

Zhao FJ, McGrath SP, Meharg AA. Arsenic as a food chain contaminant: mechanisms of 
plant uptake and metabolism and mitigation strategies. Annu Rev of Plant Biol 
2010; 61: 535-559. 

 
                                                                                                                                                                        



28 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

CHAPTER II 

Dispersion and stability of bare hematite nanoparticles: effect of dispersion tools, 

nanoparticle concentration, humic acid and ionic strength 
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2.1 Abstract 

The aggregation and sedimentation of iron oxide nanoparticles (IONPs) can 

significantly affect the mobility and reactivity of IONPs and subsequently influence the 

interaction between IONPs and environmental contaminants. Dispersing bare IONPs 

into a stable suspension within nanoscale range is an important step for studying the 

interaction of IONPs with contaminants (e.g., toxic metals). In this study, different 

techniques to disperse bare IONPs (vortex, bath sonication and probe ultrasonication) 

and the effects of important environmental factors such as dissolved organic matter and 

ionic strength on the stability of IONPs dispersions were investigated. Vortex minimally 

dispersed IONPs with hydrodynamic diameter outside the “nano-size range” (698-

2400nm). Similar to vortex, bath sonication could not disperse IONPs efficiently. Probe 

ultrasonication was more effective at dispersing IONPs (50% or more) with 

hydrodynamic diameters ranging from 120-140 nm with minimal changes in size and 

sedimentation of IONPs for a prolonged period of time. Over the course of 168 hours, 

considerable amounts of IONPs remained dispersed in the presence and absence of low 

ionic strength (0.1 mM of NaCl) and 100 mg/L of humic acid (HA). These results 

indicate that IONPs can be broken down efficiently into “nanosize range” by probe 

ultrasonication and a degree of stability can be achieved without the use of synthetic 

modifiers to enhance colloidal stability. This dispersion tool could be used to develop a 

laboratory method to study the adsorption mechanism between dispersed bare IONPs 

and toxic contaminants. 
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2.2. Introduction 

Groundwater pollution by toxic heavy metals has become an important issue 

globally and the development of inexpensive remediation technologies to clean up water 

is crucial. Nanotechnology has emerged as one of the leading technologies for cleaning 

up polluted sites. Currently, nanotechnology is widely studied and has shown 

considerable growth in the remediation of contaminants in ground and surface waters. 

Nanoscale zerovalent iron (NZVI) is considered as the first generation nanoscale 

environmental technologies and has the potential to remove a wide range of pollutants 

(Sun et al., 2006). NZVI has shown significant applications in groundwater remediation 

of chlorinated organic compounds such as trichloroethylene, organochlorine pesticides, 

polychlorinated biphenyls as well as remediation of toxic metals (Phenrat et al., 2007). 

In the past few years, a variety of iron oxide nanoparticles (IONPs) have been studied 

for environmental remediation purposes. These IONPs behave similarly to NZVI when 

used as treatment for contaminated sites and are frequently used as a model system for 

understanding aggregation behavior (He et al., 2008).  

The growing interest in engineered NZVI and IONPs for groundwater 

remediation is attributed to the large surface area (25-54 m2g-1), highly reactive surface 

sites and high in-situ reactivity (Phenrat et al., 2007; Theron et al., 2008). The possibility 

of in situ remediation results in shorter remediation time and low cost, as nanoscale 

metal particles are applied directly to contaminated sites (Wang et al., 1997; He et al., 

2007). Despite the advantages, NZVI and IONPs have one major limitation that can be 

detrimental to their use as effective groundwater treatment. Studies have shown rapid 

agglomeration of NZVI and IONPs to form large aggregates that will sediment (He et al., 
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2007). The surface properties of NZVI and IONPs influence their aggregation. Once in 

aquatic environment, the aggregation of  nanoparticles results from the interaction 

between nanoparticles surface and water components and is strongly influenced by 

several factors such as salinity, solution composition, surface chemistry, concentration 

of suspended particles, and the pH especially where the nanoparticles is approaching the 

pH of point zero charge (PZC) (Mylon et al., 2004; Yang et al., 2007; Baalousha, 2009; 

Hu et al., 2010). The particle-particle interactions are the driving forces for aggregation 

and deposition of nanoparticles although other interactions such as steric, magnetic and 

hydration forces can also play an important role (Petosa et al., 2010). The Derjaguin-

Landau-Verwey- Overbeek (DLVO) theory describes colloidal stability and can be used 

to explain the stability of nanoparticles in aquatic environment. The DLVO theory states 

that the stability of nanoparticles can be explained by the sum (total interaction energy) 

of van der Waals and electric double layer interactions (Deryagin et al., 1941; Verwey, 

1947; Verwey et al., 1948; Petosa et al., 2010).  The total interaction energy is 

experienced by a nanoparticle when it is approaching another particle and this energy 

determines whether the net interaction between particles are repulsive or attractive 

(Zhang et al., 2008) . In addition, the Hamaker theory is an important component in the 

DLVO theory as the Hamaker constant relates the interatomic van der Waals interaction 

to the total van der Waals interaction (Petosa et al., 2010). 

Consequently aggregation and sedimentation can significantly alter the mobility 

of the nanoparticles in aquatic environment and reduce the efficacy of using these 

nanoparticles for remediation purposes (Sun et al., 2007; Kim et al., 2009). Therefore, 

stable dispersions of nanoparticles are critical for efficient sorption of pollutants. In 
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recent years, there is noticeably increase in the application of modifiers, e.g., soluble 

polymers and surfactants, to alter the surface of nanoparticles thus preventing 

aggregation (Schrick et al., 2004; Kanel et al., 2007; Yang et al., 2007). Several 

researchers have reported the use of modifiers that are capable of reducing NZVI and 

IONPs aggregation (Schrick et al., 2004; He et al., 2007; Kanel et al., 2007; Yang et al., 

2007; Tiraferri et al., 2008). Although modifiers can enhance colloidal stability, they can 

be expensive, have adverse effect on the environment and alter the surface of the 

nanoparticles, consequently affecting the fate and transport of nanoparticles and their 

interaction with contaminants (Tiraferri et al., 2008). Specifically, modifiers could affect 

the sorption and desorption of contaminants, introduce additional mass transfer 

limitations of contaminants to active surface sites, and could decrease the reaction rate 

of the reactions that could be taking place at the surface (Phenrat et al., 2009). Phenrat el 

al. (2009) reported a decrease in dechlorination rate of trichloroethylene nonlinearly 

with increase surface modifiers on Fe0/Fe3O4 nanoparticles. In order to better understand 

the environmental fate and transport of “true” IONPs and the true representation of how 

the IONPs interact with other contaminants, development of a method to disperse and 

stabilize bare/uncoated IONPs at relevant environmental conditions over a prolonged 

period of time is necessary.  

The goal of this research was to develop a method to disperse bare IONPs and to 

determine IONPs stability after being dispersed and exposed to environmentally relevant 

conditions (pH 6-8 and in the presence of natural organic matter and ionic strength). 

This work was not aimed to disperse large quantity of IONPs for real field practice, but 

aimed to disperse IONPs in a laboratory setting in order to provide a tool to prepare a 



33 
 

uniformly dispersed suspension. The purpose of preparing such a bare IONPs 

suspension was to estimate how nanomaterials might exist in the environment and this in 

turn will provide an in-depth understanding of how nanomaterials will behave in the 

environment with respect to the fate and transformation of contaminants. As one of the 

most widespread and relatively thermodynamically stable iron oxide in the environment, 

hematite nanoparticles are a good model system for understanding aggregation of IONPs 

(Schwertmann et al., 2000). This study investigated and compared different mechanical 

methods to disperse hematite nanoparticles without the use of modifiers.  

2.3 Procedures and Methods 

2.3.1 Materials and Chemicals 

Commercial iron oxide nanoparticles (α-Fe2O3, 98% purity and 50 m2/g specific 

surface area, primary particle diameter from 20 to 50 nm) were purchased from 

Nanostructured and Amorphous Materials (Houston, Texas). Humic acid (HA) was 

obtained from Acros Organic (New Jersey, USA) and sodium chloride was purchased 

from Fisher Scientific (New Jersey, USA). All materials were suspended or dissolved in 

nanopure 18.2MΩ water produced from a nanopure diamond lab water system 

(Barnstead Thermolyne Corporation, Dubuque, IA) and prepared in Corning 50 mL 

polypropylene centrifuge tubes. 

2.3.2 Instrumentation 

Iron oxide nanoparticles were dispersed using a Fisher Scientific touch mixer 

model 232 (Pittsburgh, PA), Branson ultrasonic model 1510 (Danbury, CT) and Fisher 

Scientific sonic dismembrator model 100 (Pittsburg, PA). For particle size monitoring 

using dynamic light scattering (DLS), a Malvern Zetasizer Nano-ZS (Westborough, 
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MA.) was employed. The hydrodynamic diameters reported in this study represent the 

average particle diameter “z-average” intensity peak as a function of size. Zeta potential 

measurements were also made using the Malvern Zetasizer Nano-ZS. Total iron 

concentration was monitored using a graphite furnace atomic absorption spectrometer 

(GFAAS) (Perkin Elmer, model Aanalyst 600). The pH measurements were made using 

a Fisher Scientific accumet Research AR15 pH/mV/°C Meter. 

2.3.4 Experimental procedures 

2.3.4.1 Effect of Dispersion Techniques on IONPs Stability 

Dispersion of iron oxide nanoparticles. Stock suspension (40 mL) of α-Fe2O3 

nanoparticles was prepared by mixing the required amount of α-Fe2O3 nanoparticles and 

nanopure water to make a concentration of 500 mg/L of α-Fe2O3 (IONPs). The stock 

suspension was dispersed using a vortex, bath sonication or probe ultrasonication to 

investigate which technique can provide sufficient power to disperse the nanoparticles. 

For vortexing, the stock suspension was vortexed for 20 minutes at the highest speed 

(speed 10). For bath sonication (power density of 0.0370 W/mL), the stock suspension 

was sonicated for 30 minutes. For ultrasonication, the following probe power and 

sonication times were investigated: probe power level 3 (power density of 0.275 W/mL) 

and level 6 (power density of 0.55 W/mL) at 5, 20 and 60 minutes of sonication for each 

power level. Immediately following sonication 20 mL of IONPs suspensions (each 

containing 10, 30, 50, 75, 100 and 200 mg/L of α-Fe2O3) were prepared by subsequent 

dilution of the stock suspension. Time dependent hydrodynamic diameters of the 

nanoparticles were measured in triplicate at 0, 1, 3, 5, 8, 24, 48, 72 and 168 hours with 
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all sizes reported as mean ± standard deviation. Suspensions had pH ranging from 6.2 to 

7.60. The drift in pH was a result of the suspensions not being buffered. 

Iron analysis. Total iron concentration in the 10, 30, 50, 75, 100 and 200 mg/L 

IONPs suspensions was analyzed using GFAAS to monitor the sedimentation of IONPs 

over time. Before iron analysis, IONPs suspension underwent acid digestion in 50% 

nitric acid for 20 minutes at 95 ± 5 ºC. 

2.3.4.2 Effect of Humic Acid (HA) and Ionic Strength on IONPs Stability 

A 500 mg/L stock suspension (40 mL) of α-Fe2O3 nanoparticles was prepared 

and dispersed using probe ultrasonication for 20 minutes at power level 6. After probe 

sonication concentrations of IONPs (10, 30, 50, 75, 100 and 200 mg/L) were prepared 

by subsequent dilution of the stock suspension and spiked with appropriate amount of 

HA to make a concentration of 100 mg/L HA. For the effect of ionic strength, the 

diluted IONPs suspensions were spiked with the appropriate amount of NaCl to make a 

concentration of 0.1, 10 and 100 mM NaCl. In addition, the stability of IONPs was also 

investigated in the presence of both HA (100 mg/L) and NaCl (0.1 mM). For these 

experiments, DLS measurements and iron quantification were made at 0, 1, 3, 5, 8, 24, 

48, 72 and 168 hours. Zeta potential measurements were made while investigating the 

effect of HA alone on the aggregation behavior of IONPs. Zeta potential measurements 

could indicate whether HA is able to adsorb to IONPs resulting in a change in charge on 

the IONPs surface. 
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2.4 Results and Discussion 

2.4.1 Effect of Dispersion Techniques on IONPs Size Distribution  

Commercial grade nanoparticles are obtained as agglomerates and the breakage 

of IONPs to its primary particle size is an important step to prepare a stable dispersion.  

There was difficulty dispersing IONPs by vortex as most of the nanoparticles remained 

aggregated at the bottom of the sample containers and any dispersed particles quickly 

precipitated. At t0 (measured immediately following vortex) the average particle 

diameters ranged from 698-2400 nm with smaller sizes observed with increasing time as 

the larger aggregates sediment leaving the smaller ones remaining in suspension (Figure 

2.1a). These measured hydrodynamic diameters are significantly larger than the 20-50 

nm range reported by the manufacturer. Depending on the concentration of IONPs, the 

hydrodynamic diameters vary in size. The dilute dispersions (10, 30 and 50 mg/L) had 

the largest particle size at t0 while the higher concentrations (75, 100 and 200 mg/L) had 

smaller sizes. This difference is likely due to a higher rate of collision between particles 

in concentrated dispersions thus resulting in higher aggregation rate and subsequent 

sedimentation of the nanoparticles (Baalousha et al., 2008; Baalousha, 2009). Therefore, 

vortex lacks the capability of breaking up IONPs powder and does not sufficiently 

disperse IONPs. In addition, dispersion by bath sonication was also investigated but 

rapid sedimentation immediately following sonication (data not shown) limited its 

capability to disperse IONPs.  

Probe ultrasonication was employed as a dispersion tool and IONPs were more 

uniformly dispersed with smaller hydrodynamic diameter. Figure 2.1b shows the change 

in hydrodynamic diameter with time for different concentrations of IONPs dispersed 
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Other conditions such as varying the sonication time and power density (5 and 60 

minutes of sonication at both power level 3 and 6) had similar results (data not shown).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. 1 The time dependent hydrodynamic diameter of 10, 30, 50, 75, 100 and 200 

mg/L IONPs dispersed by (a) vortex for 20 minutes at power level 10 and (b) ultrasonic 

probe for 20 minutes at power level 6.  
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Regardless of IONPs concentration, probe power density and time of sonication (5, 20 

or 60 minutes), the particle diameter ranged between 124-128 nm at t0 with minimal 

changes in size over a period of 168 hours. This range of particle size (124-128 nm) was 

2-5 times larger than the manufacturers reported primary particle diameter (20-50 nm) 

and it was slightly greater than the size defined as nanoparticles (<100 nm). For the 

purpose of easy discussion, we name these particles as nanoparticles in this paper. The 

ultrasonic probe was a more powerful tool to disperse IONPs when compared to vortex 

and bath sonication. The difference in dispersion is attributed to the fact that the 

ultrasonic probe is directly inserted in the sample and it has greater power than the other 

dispersion methods (Santos et al., 2007). The acoustic waves imparted by ultrasonication 

is effective in dispersing IONPs due to the transient cavitation and acoustic streaming 

that can possibly redefine the shape and structure of nanoparticles and change the 

surface morphology (Suslick et al., 1999). Specifically, acoustic cavitation gave rise to 

cavitation cycles that involves the nucleation and collapsing of micro-bubbles creating 

micro “hot spots” where nanoparticles experience extreme conditions such as high 

temperatures and pressures. These conditions result in the breakage of aggregated 

nanoparticles and a more uniform dispersion in liquids (Suslick et al., 1999; Mandzy et 

al., 2005). 

Although probe ultrasonication broke up the nanoparticles extensively, it could 

not break down IONPs to the primary particle diameter due to the possible aggregation 

of the particles during  long storage periods (Zhang et al., 2008) or during synthesis 

(Mandzy et al., 2005) or there could be preexisting aggregates that could not be 

dispersed by sonication (Saleh et al., 2005). However the 124-128 nm particle size range 
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obtained in this study was sufficient to evaluate probe ultrasonication as an effective 

dispersion tool in breaking up nanoparticles and to investigate how the stability of 

IONPs changes in aquatic environment after being dispersed. Overall, with probe 

sonication as a dispersion tool, particles with hydrodynamic diameters between 117-147 

nm remained in suspension over a 168 hour time period. Knowing that IONPs were still 

suspended, it was desirable to quantify the amount of IONPs that remain suspended in 

order to determine the stability of the IONPs dispersions.  

2.4.2 Stability of IONPs 

Nanoparticle stability can be defined as an even distribution of particles 

throughout the whole volume and the ability of the particles to stay separated from each 

other with time (Veronovski et al., 2010). However, it is also important that the particle 

size remain consistent for nanoparticle stability as aggregation to larger particles affects 

their mobility and reactivity. Although DLS has the ability to measure the hydrodynamic 

diameter of the particles that were currently suspended, it cannot quantify the amount of 

IONPs in the dispersion. Therefore, total iron analysis over a period of 168 hours was 

implemented as a means to assess the sedimentation of IONPs as well as to assist in the 

determination of the appropriate power level and sonication time to disperse IONPs into 

a stable suspension.  

Stability experiments were performed on two concentrations of IONPs: 10 and 

100 mg/L. Figure 2.2 shows the percentage of IONPs dispersed over a course of 168 

hours for a 10 mg/L IONPs dispersion at two power levels of sonication and at 

sonication times of 5, 20 and 60 minutes. The breakage of IONPs and the amount 

dispersed was strongly influenced by the energy input of the ultrasonic probe which is 
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Figure 2. 2 The percentage of IONPs dispersed over a course of 168 hours for a 10 mg/L IONPs dispersion at two power levels of 

sonication and at sonication times of 5, 20 and 60 minutes. Graphs a, b and c represent dispersion for 5, 20 and 60 minutes of 

probe ultrasonication at power level 3. Graphs d, e and f represent dispersion for 5, 20 and 60 minutes of probe ultrasonication, 

respectively at power level 6
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controlled by the  time, power and dispersion volume (Mandzy et al., 2005). In this 

experiment, the volume was constant for all samples so the time and power 

predominantly controlled the amount of IONPs dispersed. The greater the sonication 

power and the longer the sonication time, the greater the energy input and thus more 

efficient dispersion. Figures 2.2a, 2.2b and 2.2c illustrate that an increase in time from 5 

to 60 minutes for power level 3 increased the IONPs dispersion from 44 to 65% at t0.  

Similar results were observed for power level 6 as IONPs increased from 44 to 73% with 

increase in sonication time (Figures 2.2d, 2.2e and 2.2f). In addition an increase in power 

from level 3 (power density of 0.275 W/mL) to level 6 (power density of 0.55 W/mL) 

increased the amount of IONPs dispersed at t0 for sonication times of 20 and 60 minutes. 

However, equivalent amount (~44%) of IONPs was dispersed for 5 minutes of sonication 

regardless of the power level at t0. The amount of IONPs dispersed increased from 51% 

to 86 % at 20 minutes sonication and from 65% to 73% at 60 minutes when power 

increased from level 3 to level 6. A similar trend was seen for the 100 mg/L IONPs 

dispersion, in which the IONPs concentration in the suspension increases as sonication 

power and time increase (Figure 2.3). Monitoring the deposition over time (from t0 to t168) 

was important as it will provide information on how long these dispersions will remain 

stable overtime. As time progressed, aggregation occurred for both the 10 and 100 mg/L 

IONPs dispersions, as evidenced by the decrease in % IONPs dispersed.  

A comparison of the different sonication time at varying power levels indicates 

that sonicating for 20 minutes at power level 6 is the optimum dispersion condition. 

Sonicating for 60 minutes was time consuming and in most cases only slightly (~15%) 
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Figure 2. 3 The percentage of IONPs dispersed over a course of 168 hours for a 100 mg/L IONPs dispersed by ultrasonic probe. 

Graphs a, b and c represent dispersion for 5, 20 and 60 minutes respectively, at power level 3. Graphs d, e and f represent 

dispersion for 5, 20 and 60 minutes, respectively at power level 6. 
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increased the amount of IONPs dispersed at t0 when compared to 20 minutes. Sonicating 

for 5 minutes was not sufficient enough to disperse of the IONPs when compared to the 

other sonication times, and aggregation and sedimentation was faster compared to the 

other conditions.  

 The results of iron measurements show that a stable size distribution of IONPs in 

solution does not necessarily correlate with the concentration of IONPs. Sedimentation of 

IONPs is inevitable due to their tendency to aggregate resulted from the electrostatic, 

steric, and van der Waals forces (Jiang et al., 2009). As shown in this study, size 

measurements of IONPs at different times had consistent hydrodynamic diameters but 

particles still aggregate and sediment over time resulting in less and less IONPs being 

present in the suspensions. As often being overlooked, a stable size distribution does not 

imply that aggregation and sedimentation of particles does not occur. Monitoring both the 

particle size distribution and IONPs concentration over time can provide a better estimate 

on the stability of the dispersions. 

2.4.3 Effect of HA and ionic strength on the stability of IONPs 

2.4.3.1 Effect of HA on IONPs Stability 

Humic acid is capable of adsorbing on iron oxides and thus can affect the surface 

charge, reactivity, and stability of the IONPs, which subsequently could influence the 

interaction of IONPs with metal contaminants (Mylon et al., 2004; Liu et al., 2010; Liu et 

al., 2011). Our study indicates that there was no significant change in the size of IONPs 

when HA was present. The hydrodynamic diameter ranged from 128-133 nm at t0 with 

the sizes slightly decreasing over the next 168 hour for all concentrations of IONPs 

(Figure 2.4). It was reported that the hydrodynamic radius between hematite colloids and 
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Figure 2. 4 The time dependent hydrodynamic diameter of 10, 30, 50, 75, 100 and 200 

mg/L IONPs dispersed by ultrasonic probe in the presence of humic acid (100 mg/L). All 

samples were dispersed using ultrasonic probe for 20 minutes at power level 6. 

 

natural organic matter (NOM) coated hematite was indistinguishable when using DLS 

measurements. It was reported that HA increased the layer thickness of small hematite 

colloids by only < 2 nm (Au et al., 1999; Mylon et al., 2004).  Monitoring the IONPs 

concentration with time indicated that 70% or more IONPs were dispersed for all IONPs 

suspensions at t0 regardless of the nanoparticle concentration (dash lines in Figure 2.5). 

There was minimal sedimentation of IONPs from t0 to t168 with approximately 10-15% of 

IONPs sediment. The minimal sedimentation could be a result of the decrease in 

aggregation of the IONPs in the presence of HA resulting from the possibly coating of 

HA on the surface of the nanoparticles. It has been reported that HA can coat the surface 
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of the nanoparticle thereby preventing aggregation through either electrostatic or steric 

interactions (Ghosh et al., 2010).  

 

 

 

 

Figure 2. 5 The percentage of IONPs dispersed over a course of 168 hours while 

investigating the effect of 0.1 mM NaCl and 100 mg/L HA (alone or in combination) on 

the dispersion of IONPs. Graphs a, b, c, d, e and f represent the percentage of IONPs 

dispersed in 10, 30, 50, 75, 100 and 200 mg/L IONPs suspension respectively. All 

samples were dispersed using ultrasonic probe for 20 minutes at power level 6. 
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Hematite nanoparticles have a point of zero charge (PZC) ranging from pH 5.5 to 9.5 

depending on the method of synthesis and experimental conditions (Schwertmann et al., 

2000; He et al., 2008; Cerovic et al., 2009; Shipley et al., 2010).At this pH of 5.5 to 9.5, 

the repulsive force between IONPs decreases due to the lack of charge on the IONPs 

surface resulting in aggregation of the particles. Therefore the IONPs used in this study 

should experience a high degree of instability since all the samples in this study have 

measured pH ranging from pH 6.2-7.6, which is within the PZC range of hematite 

nanoparticles (pH 5.5-9.5). Zeta potential measurements showed that the uncoated IONPs 

had a slight positive charge with zeta potential +29.8 ± 0.917 mV, while the HA coated 

IONPs was more negatively charged with a zeta potential of -48.0 ± 0.624 mV. HA has 

an abundant of carboxylic (-COOH, -COO-) and phenolic (-OH) functional groups that 

exist as negatively charged and it is believed that HA coating the surface can suppress 

any positive charge of the nanoparticle while enhancing the negative charge (Illes et al., 

2006; Christian et al., 2008; Hu et al., 2010). Therefore, the minimal sedimentation of 

IONPs in the presence of HA (Figure 2.5, broken lines) compared to that without HA 

(Figures 2.2 and 2.3) could be explained by HA coating the IONPs surface leading to a 

change in the surface charge of the IONPs from a slightly positive charge to a stronger 

negative charge. The stronger negative charge with HA present possibly has a greater 

repulsive force compared to the slightly positive charge of IONPs without HA, thus 

enhancing stability through electrostatic interactions (Ghosh et al., 2010).  

2.4.3.2 Effect of ionic strength on IONPs Stability 

The DLVO theory can be used to explain the stability of IONPs dispersions. The 

van der Waals attractive forces and electrical double layer repulsive force between 
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particles plays a significant role in controlling the aggregation of particles. The ionic 

strength has a strong influence on the thickness of the electrical double layer. An increase 

in ionic strength would lead to a decrease in the electric double layer thickness resulting 

from the compression of the electric double-layer causing aggregation of particles (Zhang 

et al., 2008; Jiang et al., 2009). To examine the effect of ionic strengths on IONPs 

aggregation, several concentrations of NaCl (0.1, 10 and 100 mM) were tested.  

At low ionic strength (0.1mM), the hydrodynamic diameter ranged from 115-130 

nm (Figure 2.6) over the course of 168 hours.  

 

 

 

 

 

 

 

 

 

 

 

Figure 2. 6  The time dependent hydrodynamic diameter of 10, 30, 50, 75, 100 and 200 

mg/L IONPs dispersed by ultrasonic probe in the presence of NaCl (0.1 mM). All 

samples were dispersed using ultrasonic probe for 20 minutes at power level 6. 
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These results were not significantly different from the size of IONPs alone (Figure 2.1b), 

indicating that at low ionic strength, the electrostatic repulsive force is dominant over the 

attractive force therefore the particle size was not altered.  

In regards to the quantity of IONPs suspended over time, Figure 2.5 (dark solid 

lines) shows that approximately 50% or more IONPs was dispersed for the 10, 30, 50, 75, 

100 and 200 mg/L dispersions. Majority of the IONPs had remained dispersed with only 

10-15% deposition of IONPs from t0 to t168 for all IONPs concentration except for the 10 

mg/L dispersion (Figure 2.5a, dark solid line). The 10 mg/L dispersion had the greatest 

sedimentation over time and this could possibly be a result of a concentration effect (see 

below). Similarly to the addition of 0.1 mM NaCl to the nanoparticle suspension, the 

addition of 10 mM NaCl resulted in aggregation and sedimentation that was depended 

upon the nanoparticle concentrations (data not shown). An increase in ionic strength to 10 

mM NaCl resulted in rapid aggregation and sedimentation for the 10, 30, 50 and 75 mg/L 

IONPs dispersion within 8 hours as evidenced by a deposit of nanoparticles at the bottom 

of sample containers as well as unsuccessful DLS measurements due to the intensity of 

the scattered light not satisfactory for quantitative determination of particle size. However, 

the 100 and 200 mg/L suspensions were not significantly affected and were stable for 

DLS measurements. Hydrodynamic diameters for the 100 mg/L dispersion ranged from 

128 nm at t0, increasing to 174 nm at t72 then slightly decreased in size to 150 nm at t168 

(Figure 2.7). On the other hand, the 200 mg/L dispersion had minimal changes in size 

(110-120 nm). This difference could possibly be accounted for by the compression of the 

electric double layer being more feasible in low IONPs concentration as a result of the 

ionic strength being high enough to cause aggregation of the nanoparticles. 
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Figure 2. 7 The time dependent hydrodynamic diameter of 100 and 200 mg/L IONPs 

dispersions in the presence of 10 mM NaCl. Samples were dispersed using ultrasonic 

probe for 20 minutes at power level 6. 

 

A further increase in ionic strength (100 mM) caused rapid aggregation and 

sedimentation of all the IONPs dispersions within 4 hours. Similarly to 10 mM ionic 

strength, deposits of nanoparticles accumulated at the bottom of sample containers and 

DLS measurements were unsuccessful due to the polydispersity of the suspensions. At 

this ionic strength, van der Waals attractive forces dominate over the repulsive forces 

causing significant aggregation. In addition, metal oxides have large Hamaker constants 

and electrostatic stabilization is usually achieved at low ionic strength.  

2.4.3.3 Stability of IONPs in the presence of both HA and low ionic strength 

The aggregation behavior of IONPs was investigated in the coexistence of low 

ionic strength (0.1 mM NaCl) and HA. Figure 2.8 shows that the hydrodynamic 
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diameters ranged from 132 to 135 nm at t0 with sizes decreasing slightly over the course 

of 168 hours. These sizes are similar to the hydrodynamic diameter of IONPs in the 

presence of HA alone (128-133 nm, Figure 2.4) and in the presence of low ionic strength 

alone (115-130 nm, Figure 2.6).  

 

 

 

 

 

 

 

 

 

 

 

Figure 2. 8 The time dependent hydrodynamic diameter of 10, 30, 50, 75, 100 and 200 

mg/L IONPs dispersed by ultrasonic probe in the presence of HA (100 mg/L) and NaCl 

(0.1 mM). All samples were dispersed using ultrasonic probe for 20 minutes at power 

level 6. 

 

The amount of nanoparticles dispersed was 65% or more at t0 with minimal 

sedimentation for all IONPs over 168 hours (Figure 2.5, light solid lines). The large 

sedimentation of IONPs that was seen for the 10 mg/L dispersion in the presence of 
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0.1mM NaCl alone, was not observed when both HA and NaCl were present. The 

instability caused by the ionic strength could have been overcome by the stabilization 

effect of HA. Overall, the minimal sedimentation could be a result of HA coating the 

surface of the nanoparticles causing both steric and electrostatic stabilization as well as 

the ionic strength being low enough to allow for electrostatic repulsive force to be 

dominant therefore enhancing the stability of IONPs. Therefore, IONPs dispersions can 

be prepared under different environmental factors with these dispersions being stable for 

a prolonged period of time.  

2.5 Conclusions 

In this study, we determined that probe ultrasonication is an appropriate tool to 

disperse IONPs. Although probe ultrasonication did not break the IONPs down into the 

primary particle size, this method had proven to be more effective in dispersing IONPs 

compared to dispersion via vortex or bath sonication. It is important to be aware that a 

stable size distribution of IONPs in solution does not necessarily correlate with the 

concentration of IONPs therefore it is necessary to monitor the concentration of IONPs 

in stability studies. An increase in ultrasonication time and power increased the amount 

of IONPs dispersed. Although sedimentation occurred to some extent, a considerable 

amount of IONPs remained in suspension in the presence and absence of 100 mg/L HA 

and 0.1 mM NaCl. Results showed that high ionic strengths increased colloidal instability 

by compressing the electrical double layer thickness causing rapid aggregation and 

sedimentation. On the other hand, the electrostatic repulsive force dominated at low ionic 

strengths resulting in reduced destabilization of the dispersions. The addition of modifiers 

to enhance stability of IONPs may not be necessary as the presence of HA, which is 
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naturally found in the environment, could enhance the colloidal stability of IONPs 

through possible steric and electrostatic repulsion. These results are important as stable 

IONPs dispersions can be prepared without the use of synthetic modifiers. This research 

provides us with a useful tool for development of a laboratory scale methodology to study 

and understand the adsorption mechanisms of toxic environmental contaminants with 

unmodified IONPs. 
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Chapter III 

Interactions of arsenite and arsenate with hematite nanoparticles and aggregates: 

sorption kinetics and isotherm studies. 
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3.1 Abstract 

 The mobility and bioavailability of arsenic is strongly influenced by the 

adsorption onto iron oxide surfaces. In the environment, arsenic is known to adsorb onto 

bulk zerovalent iron (ZVI), iron oxides and oxy-hydroxides but this process can be 

enhanced using nanoparticulate iron oxides. These nanoparticles have increased reactivity 

and remediation capability compared to their bulk sizes. Kinetic and thermodynamic 

parameters are lacking for the comparative adsorption of arsenite and arsenate to bare 

hematite particles and how the particle size influences the adsorption process. Therefore, 

the objective of the present study was to compare the adsorption kinetics and adsorption 

isotherm of arsenite and arsenate on bare hematite nanoparticles and aggregates. Kinetic 

data were best described by a pseudo second-order model. As(V) and As(III) had similar 

rate constants as rapid adsorption occurred within the first 8h regardless of particle size. 

However, hematite nanoparticles and aggregates showed a higher affinity to adsorb larger 

amounts of As(V) than As(III) at equilibrium. We were able to show that aggregation and 

sedimentation of hematite nanoparticles occurs during the adsorption process especially 

during the period of rapid arsenic adsorption. Isotherm studies were described by the 

Freundlich model and it confirmed that hematite nanoparticles has a significantly higher 

adsorption capacity for both As(V) and As(III) than hematite aggregates. The information 

gathered is useful and can assist in predicting arsenic adsorption behavior and assessing 

the role of iron oxide nanoparticles in the biogeochemical cycling of arsenic. 
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3.2 Introduction 

Iron is the fourth most abundant element in the earth’s crust and reactions 

involving iron can play a significant role in the cycling of metals (Schwertmann et al., 

2000; Cundy et al., 2008). Iron oxides are widespread in nature and usually occur as a 

result of the oxidization of Fe (0) when exposed to oxygen in water or air (Stipp et al., 

2002; Zhang, 2003). Sorption of contaminants onto bulk zerovalent iron (ZVI), iron 

oxides and oxy-hydroxides is known to occur widely in the environment (Zaspalis et al., 

2007). Several studies have investigated the adsorption of metals to bulk iron and iron 

oxides (Jain et al., 1999; Jeong et al., 2007; Kundu et al., 2007; Banerjee et al., 2008). 

The process can be enhanced using zerovalent iron nanoparticles (NZVI) and iron oxide 

nanoparticles (IONPs) (Dixit et al., 2003). The application of NZVI and IONPs for 

environmental cleanup has gained interest as their unique physical and chemical 

properties allow for remediation of chlorinated compounds and heavy metals from 

aquatic environment (Wang et al., 1997; He et al., 2007; Phenrat et al., 2007; Shipley et 

al., 2010a). The strong adsorption characteristics for metals to IONPs are important as 

this can control the fate and bioavailability of heavy metals in the environment.  

Arsenic is naturally present in groundwater and is commonly introduced into the 

environment through both natural formation (weathering, biological activity, and 

volcanic activity) and anthropogenic activity (mining, smelting, and direct use of arsenic-

containing herbicides by industry and agriculture) (Mandal et al., 2002; Zhang et al., 

2002). The human population can become exposed to arsenic through numerous ways but 

the most significant one is through ingestion of arsenic in drinking water or food. The 

environmental impact of arsenic contamination is a global problem because of its high 
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level of toxicity. Arsenic is a well-known carcinogen and has been linked to cancer of the 

bladder, lungs, skin, kidney, nasal passages, liver, and prostate (Ng et al., 2003; Shipley 

et al., 2009). The severe effects of long term exposure to arsenic resulted in an EPA 

reduction of arsenic standard in drinking water from 50 to 10 μg/L. Arsenic in the natural 

waters is predominantly in the inorganic forms: pentavalent arsenate (As(V)) or the 

trivalent arsenite (As(III)) (Ko et al., 2004; Zaspalis et al., 2007). However, the degree of 

toxicity is dependent upon the oxidation state with the reduced form arsenite being more 

toxic and mobile than arsenate (Kundu et al., 2007; Carabante et al., 2009).  

The reactivity of arsenic in the environment can be in the form of adsorption, 

ligand exchange, oxidation–reduction, and precipitation (Banerjee et al., 2008). However, 

adsorption to metal oxides particularly iron oxides to form inner-sphere complexes is one 

of the most significant factor controlling arsenic mobility in the environment (Al-Abed et 

al., 2006). Iron oxides in general, whether in the bulk form or nanoparticulate form, have 

strong binding affinity for both arsenite and arsenate. The application of iron oxide 

nanoparticles (IONPs) in contaminant remediation has enhanced the adsorption process 

due to the large surface area and its strong adsorption characteristics. These nanoparticles 

have increased adsorption capacity while maintaining many of the properties of bulk iron 

oxides. Numerous studies have investigated the adsorption behavior of arsenic with bulk 

iron oxides (Raven et al., 1998; Jain et al., 1999; Zhang et al., 2004; Jeong et al., 2007; 

Banerjee et al., 2008), but only a few studies have investigated arsenic adsorption 

behavior with bare/unmodified iron oxide nanoparticles (Auffan et al., 2008; Tuutijarvi et 

al., 2009; Shipley et al., 2010b; Turk et al., 2010). At environmental pH, iron oxides 

nanoparticle suspensions are highly unstable and aggregation occurs. In recent years, the 
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new trend is the application of stabilizers/modifiers to prevent aggregation. Stabilizers or 

modifiers are soluble polymers or surfactants that are attached to the nanoparticles , 

providing strong interparticle electrostatic and steric repulsion that will overcome the van 

der waals attraction and magnetic forces (He et al., 2007). Although this enhances 

nanoparticle stability, modifiers could affect the sorption and desorption of contaminants 

on the nanoparticle surface, introduce additional mass transfer limitations of 

contaminants to active surface sites, and could decrease the reaction rate of the reactions 

that could be taking place at the surface (Phenrat et al., 2009). Therefore, it is necessary 

to study the interactions of bare/ unmodified iron oxide nanoparticles with arsenic so as 

to understand the true interactions of nanoparticles with arsenic in the environment.  .   

As a consequence of the prevalence and toxicity of arsenic, its strong binding 

affinity for iron oxides surface and the development of nanotechnology as a potential 

remediation tool for toxic metals contaminants in the environment, it is of great interest 

that we evaluate the effects of IONPs on the fate and mobility of arsenate and arsenite in 

aqueous environment. The adsorption of arsenic and its retention on IONPs should be 

investigated while considering several factors such as the aggregation of the 

nanoparticles and the type of sorbed species. Studies in the literature focusing on arsenic 

adsorption behavior with IONPs had failed to monitor IONPs particle size during 

adsorption. From our previous studies (Dickson et al., 2012) and that of Zhang et al. 2008, 

IONPs tend to aggregate either at the initial stage of experiments and as time persist.  

These IONPS can grow to micron size particles during the adsorption process and will 

eventually sediment. The IONPs sedimentation will influence the adsorptive properties of 

IONPs and its interaction with arsenic. Hence, previous arsenic studies in the literature 
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might not be representative of nanoparticle behavior.  The potential aggregation of the 

nanoparticles can retard adsorption by reducing the surface area consequently decreasing 

IONPs reactivity and reducing the efficiency of arsenic adsorption (He et al., 2008). 

However, aggregation can be beneficial in the immobilization of arsenic by trapping the 

arsenic in the interior portions of the iron oxide aggregates thus reducing its 

bioavailability (Waychunas et al., 2005). Therefore, it is important to understand and 

demonstrate the difference of arsenic adsorption between nanosized iron oxides and 

aggregated iron oxides. It is also important to investigate the adsorption of different 

arsenic species with IONPs and IONPs aggregates since the degree of toxicity and 

mobility is dependent upon the oxidation state.  

In the present study, the adsorption/desorption process between nanoparticulate 

iron oxides and iron oxides aggregates was investigated with unmodified hematite (α-

Fe2O3).  Hematite is one of the most thermodynamically stable iron oxides (Schwertmann 

et al., 2000). It is usually the final stage of iron oxide phase transformations where 

unstable phases such as ferrihydrite and lepidocrocite are transformed into more stable 

phases such as goethite and hematite (Pedersen et al., 2006). Phase transformation can be 

detrimental to adsorption since adsorbates can be desorbed and become bioavailable 

during the process. Therefore hematite has a greater potential for contaminant adsorption 

due to its stability. These hematite nanoparticles will have no surface modifications as 

modifiers could affect the sorption and desorption of contaminants on the nanoparticle 

surface, introduce additional mass transfer limitations of contaminants to active surface 

sites, and could decrease the reaction rate of the reactions that could be taking place at the 

surface (Phenrat et al., 2009). Therefore, we investigated and compared the adsorption 
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process of As(V) and As(III) with hematite nanoparticles and hematite aggregates. The 

probe ultrasonication dispersion method was utilized to produce nanosized iron oxides 

from commercially bought nanoparticle powder and a conventional method was used to 

mimic IONPs that may be aggregated at the early stage of experiments. The goal was to 

understand the kinetics and thermodynamics of arsenic-IONPs interactions. In doing so, I 

determined kinetic parameters, adsorption isotherms and adsorption capacities, thus 

evaluating the role of hematite nanoparticles and aggregates in the fate, mobility and 

bioavailability of arsenic in the environment. 

3.3 Procedures and Methods 

3.3.1 Materials and Chemicals  

Commercial iron oxide nanoparticles (α-Fe2O3, 98% purity and 50 m2/g specific 

surface area) were purchased from Nanostructured and Amorphous Materials (Houston, 

Texas). Stock solutions of 1000 mg/L As (III) and As (V) were prepared by dissolving 

sodium (meta)arsenite (NaAsO2, 98% purity) and sodium arsenate dibasic heptahydrate 

(Na2HAsO4.7H2O, 99% purity), respectively in nanopure 18.2MΩ water produced from a 

nanopure diamond lab water system (Barnstead Thermolyne Corporation, Dubuque, IA). 

The arsenic standards were reagent grade and obtained from Aldrich Chemical Company 

(Milwaukee, WI.). 

3.3.2 Instrumentation 

Iron oxide nanoparticles were dispersed by probe ultrasonication using a Fisher 

Scientific sonic dismembrator model 100 (Pittsburg, PA) to prepare nanosize hematite 

particle. The IONPs were dispersed by vortex using a Fisher Scientific touch mixer 

model 232 (Pittsburgh, PA) to prepare micrometer size particles. Dynamic Light 
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Scattering (DLS), a Malvern Zetasizer Nano-ZS (Westborough, MA.), was employed for 

particle size monitoring and zeta potential measurements. Field emission scanning 

electron microscopy (FE-SEM, JEOL JSM-6330F) was used for particle size 

measurement and morphology. Total iron concentration was monitored using a graphite 

furnace atomic absorption spectrometer (GFAAS) (Perkin Elmer, model Aanalyst 600). 

The pH measurements were made using a Fisher Scientific accumet Research AR15 

pH/mV/°C Meter. Quantitative determination of arsenic concentration was conducted 

using Inductively Coupled Plasma-Mass Spectrometry (ICP-MS) (Perkin Elmer). Prior to 

arsenic analysis by ICP-MS, samples were centrifuged with a Fisher Marathon 21000R 

centrifuge (Needham Heights, MA).  

3.3.3 Experimental Procedures 

3.3.3.1 Characterization of Hematite Nanoparticles and Aggregates 

 The 10 mg/L hematite dispersions (prepared by probe ultrasonication and vortex) 

were filtered through 0.1 µm membrane filter made of cellulose of esters material 

(Millipore). The filters were dried overnight and the particles were coated with gold using 

an auto sputter coater (Pelco SC-7) before FE-SEM imaging. The particle size and 

morphology was obtained at 15kV using the secondary electron imaging mode. DLS was 

also used to determine the particle size of the hematite dispersions.  

3.3.3.2 Adsorption Kinetics Experiments  

Adsorption studies were performed by mixing 10 mg/L hematite nanoparticles 

with 200 µg/L of As(V) or As(III)  in 50 mL polypropylene centrifuge tubes. Firstly, 

IONPs were dispersed using probe ultrasonication for 20 minutes at power level 6 to 

generate nanosize hematite particles. In this study, iron oxides that are dispersed using 
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probe ultrasonication are referred to as hematite nanoparticles. After dispersion, the 

suspension was spiked with 200 µg/L of arsenic standard (10 mg/L). All samples were 

prepared in nanopure 18.2MΩ water and the pH ranged from 6.8-8 as the suspensions 

were not buffered. The experiment was performed at room temperature (20ºC) and the 

samples were agitated by pulsing with probe ultrasonicator every 2-4 hours. Aliquots of 

samples (2 mL) were collected at definite time intervals (0-168h) and the arsenic 

concentration in solution was monitored as a function of time.  

Arsenic concentrations were measured using ICP-MS after the nanoparticles were 

removed from aqueous phase. Centrifugation and filtration were investigated for particle 

removal efficiency. The centrifugation speed and time as well as filter pore sizes and 

membrane materials were investigated.  Nanoparticle suspension (100 mg/L) underwent 

centrifugation at 6,000 and 10,000 rpm for 30 and 60 minutes. Filtration of the 

nanoparticle suspension was performed using as well filtration using 0.45 µm PVDF 

filter, 0.22 µm PVDF filter and 0.2 µm nylon filter. The supernatant or filtrate was tested 

for any residual nanoparticles by measuring for total Fe using GFAAS.  

The aliquots collected at the different time intervals (0-168h) during the 

adsorption experiments were centrifuged for 60 minutes at 10,000 rpm. The supernatant 

was analyzed for arsenic concentrations using ICP-MS. The amount of arsenic adsorbed 

was calculated from the difference between the initial and supernatant arsenic 

concentrations. The IONPs particle size was monitored during the adsorption experiment. 

IONPs concentration was also determined by measuring the total iron concentration in 

the suspensions using GFAAS in order to monitor the sedimentation of IONPs over time. 

Before iron analysis, IONPs aliquots underwent acid digestion in accordance to EPA 
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method 3050B. The IONPs were digested in nitric acid in the ratio of 1:1 at 95 ± 5 ºC for 

20 minutes using a heating block (Environmental Express). The digestate was made up to 

50 mL with distilled deionized water and undergo further dilutions that are appropriate 

for GFAAS analysis.  

Adsorption experiments on hematite aggregates were performed with similar 

procedures as described above except the hematite aggregates were dispersed using 

vortex for 20 minutes at level 10 which is the highest power setting of the vortex. In this 

study, iron oxides dispersed by vortex are referred to as hematite aggregates. This 

dispersion method generates particles in the micrometer size range (see chapter 2). The 

As-hematite aggregates samples were agitated by shaking on an orbital shaker at 250 rpm 

for the entire experimental time.  

3.3.3.3 Adsorption Isotherms  

Hematite nanoparticles were dispersed similarly to procedures in the adsorption 

kinetics experiment. The hematite nanoparticles concentration was fixed at 10 mg/L and 

it was mixed with the appropriate amount of 10 mg/L As (V) or As (III) stock solutions 

to vary the arsenic concentrations from 10-2000 µg/L. The As-IONPs dispersions were 

reacted to equilibrium (time 24h determined from kinetic experiment). The dispersions 

were agitated by pulsing with probe sonicator every 2-4 hours at room temperature (20 

°C). At equilibrium, 2 mL aliquots of samples were collected and the IONPs were 

separated from aqueous phase by centrifuging at 10,000 rpm for 60 minutes. Total 

arsenic concentrations in the supernatant were measured using ICP-MS. Additional 2 mL 

aliquots of samples were collected at equilibrium and the iron concentration was 

measured. Isotherm experiments on hematite aggregates were performed with similar 
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procedures as described above except the IONPs were dispersed using vortex. Samples 

were agitated by shaking on an orbital shaker at 250 rpm for the entire experimental time. 

3.4 Results and Discussion 

3.4.1 Characterization of hematite nanoparticles and hematite aggregates 

Figure 3.1 shows the SEM micrographs of hematite nanoparticles and hematite 

aggregates. Individual hematite nanoparticles, spherical in shape, can be seen with size 

ranges of 50-130 nm (Figure 3.1a). 

 

 

 

 

 

 

 

 

 

 

Figure 3. 1 SEM micrographs of (a) hematite nanoparticles (10 mg/L) in water dispersed 

using probe ultrasonication (b) hematite aggregates (10 mg/L) dispersed using vortex. 

b 

a 



67 
 

This indicates that probe ultrasonication was effective in preparing nanoparticulate 

hematite dispersions. In the nanoparticle dispersion, there was a high concentration of 

individual particles in the nanosized range that are available for absorption. On the other 

hand, Figure 3.1b shows a large hematite aggregate after dispersion by vortex. The 

aggregate is composed of numerous nanoparticles clumped together into a large mass 

with diameter averaging approximately 2.5 µm.  The number of particles available for 

adsorption are much fewer compared to dispersion by probe ultrasonication as most of 

the individual particles are part of the large aggregate 

3.4.2 Adsorption Experiments 

3.4.2.1 Removal of nanoparticles from aqueous phase 

In order to complete adsorption experiments, the nanoparticles have to be 

removed from the aqueous phase prior to the quantitative analysis of arsenic. Two 

techniques (centrifugation and filtration) were investigated for efficiency of hematite 

nanoparticles removal. Figure 3.2 shows the concentration of hematite nanoparticles that 

remain in the aqueous phase after centrifugation. Centrifugation at 6,000 rpm for 30 

minutes resulted in 1036 µg/L of IONPs remaining in the supernatant suggesting that 

89% of IONPs was removed from the aqueous phase. An increase in the centrifugation 

time to 60 minutes while keeping the speed constant at 6,000 rpm resulted in lower 

IONPs concentration (192.1µg/L) in the supernatant, a 98% removal of IONPs from 

aqueous phase. An increase in centrifugation speed to 10,000 rpm for 30 minutes resulted 

in 1275 µg/L of IONPs remaining in the supernatant, 87% removal from aqueous phase 

(Figure 3.2). However, an increase in the centrifugation time to 60 minutes while 

maintaining a constant speed (10,000 rpm) resulted in a significant lower concentration 
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of IONPs (8.04 µg/L), a 99.9% removal from aqueous phase. A comparison of the results 

from varying the centrifugation speed and time showed that high speed of centrifugation 

(10,000 rpm), whether for 30 minutes or 60 minutes of centrifugation, can remove 98% 

or more of IONPs from aqueous phase.  However, centrifugation for 60 minutes yields 

the highest IONPs removal efficiency.  

 

 

 

 

 

 

 

 

Figure 3. 2 The effect of centrifugation on the separation of IONPs from aqueous phase. 

A 10 mg/L IONPs dispersion was centrifuged at 10,000 and 6,000 rpm for 30 and 60 

minutes.  

Figure 3.3 shows the concentration of hematite nanoparticles remaining in the 

filtrate after filtration using filters of varying pore sizes and materials. Nanoparticles were 

able to penetrate through the filter as hematite nanoparticles were found in the filtrate. 

Filtration using 0.45 µm PVDF filter, 0.22 µm PVDF filter and 0.2 µm nylon filter 



69 
 

0

400

800

1200

1600

2000

2400

2800

796 μg/L

153 μg/L

0.2 μm nylon0.22 μm PVDF

IO
N

P
s

 in
 f

ilt
ra

te
 (

μg
/L

)

Filter pore size and membrane

0.45 μm PVDF

2430 μg/L

resulted in 2,430, 1,530, and 796 µg/L IONPs in the filtrate, respectively. These results 

suggest a 76%, 85% and 92% removal efficiency for the 0.45 µm PVDF filter, 0.22 µm 

PVDF filter and 0.2 µm nylon filter, respectively, IONPs in the filtrate have an average 

particle size of 124.7 ± 0.5 nm (typical size of bare IONPs dispersed using the probe 

ultrasonication method, see Chapter 2).  

 

   

 

 

 

 

 

 

Figure 3. 3 The effect of filtration on the separation of IONPs from aqueous phase. A 10 

mg/L IONPs dispersion was filtered using 0.45µm PVDF, 0.22µm PVDF and 0.22µm 

nylon filter. 

These results indicated that a decrease in the pore sizes of the filter results in 

higher amounts of IONPs being retained on the filter and removed from the aqueous 

phase. However, considerable amounts of IONPs were able to penetrate through the filter 
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as some nanoparticles were detected in the filtrate. From these results, centrifugation and 

filtration can remove most hematite nanoparticles from aqueous phase. A comparison of 

both techniques indicated that centrifugation at 10,000 rpm for 60 minutes is more 

efficient at removing hematite nanoparticles from the aqueous phase than filtration. 

Therefore, centrifugation was used in this study to separate IONPs from the aqueous 

phase. These results are important as there is ambiguity in the literature in regards to the 

technique used for nanoparticle removal before instrumentation analysis. Numerous 

articles in the literature mentioned the use of centrifugation (Giasuddin et al., 2007; 

Auffan et al., 2008; Turk et al., 2010) and filtration (0.45 µm filter) (Kanel Sushil et al., 

2005; Morgada et al., 2009; Shipley et al., 2009; Shipley et al., 2010a) to remove 

nanoparticles from aqueous phase but they failed to mention the efficiency of the removal. 

Any nanoparticles remaining in the aqueous phase can affect instrumentation analysis as 

well as interfering with the adsorption experiments.  

3.4.2.2 Adsorption of arsenite and arsenate to hematite nanoparticles 

The adsorption of As(III) and As(V) to hematite nanoparticles was investigated at 

pH 7-8.0 which is the characteristic pH of many potable waters. Figures 3.4a and 3.4b 

show the adsorption curve of As(III)  and As(V) with hematite nanoparticles, respectively. 

Rapid adsorption was observed for both As(III) and As(V) to hematite nanoparticles 

within the first 8h after which the adsorption rate slowed and equilibrium was attained at 

~24 h. During the adsorption experiment, a slight drift in pH was observed (Table 3.1). 

There was no particular trend in pH variation as the pH increases and decreases randomly 

while remaining in the pH 7-8.0 range throughout the experiment. These pH changes did 

not affect the adsorption studies as arsenic continued to adsorb to hematite nanoparticles 
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in increasing amounts during the first 24h although the pH increases and decreases 

randomly during that time. The slight change in pH could be attributed to the samples 

being not buffered.   

 

 

 

 

 

 

 

 

 

 

 

Figure 3. 4 Plots of arsenic adsorbed onto hematite nanoparticle. a) As(III) adsorbed onto 

hematite nanoparticles (µg As(III)/g IONPs) b) As(V) adsorbed onto hematite 

nanoparticles (µg As(V)/g IONPs). Adsorption was performed using 200 µg/L As(III) or 

As(V) and 10 mg/L hematite nanoparticles over a contact time of 168h. 
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Table 3. 1 pH measurements during As(III) and As(V) adsorption to hematite 

nanoparticles over a contact time of 168h.  

 

 

 

 

 

 

 

 

 

 

 

A kinetic fit of the data for the first 24h was performed using a pseudo-second 

order kinetic model to determine initial rate constants and the amount of arsenic adsorbed 

at equilibrium. The pseudo second order kinetic model (equation 1a) is used to describe 

chemical adsorption, in particular, metal sorption onto different sorbents (Ho and McKay, 

1999).  In order to compare the adsorption of As(III) and As(V) to hematite nanoparticles, 

only the first 24h data was used during the kinetic analysis. As(III) and As(V) both 

undergo rapid adsorption during the first 24h after which the adsorption slowed for As(III) 

Time (h) As(III) As(V) 

0 7.96 7.52 

1 7.25 7.85 

2 7.66 7.74 

4 7.76 6.86 

8 7.61 7.20 

24 7.81 7.28 

48 7.68 7.72 

72 7.27 7.57 

96 7.62 7.89 

144 7.83 7.31 

168 7.22 7.57 
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but desorption was observed for As(V).  The factors causing As(V) desorption is 

uncertain at this time but it might be related to As(V) redox transformation (see Chapter 

4). Never the less, the desorption of As(V) can affect the rate parameters, therefore, only 

the initial rates of adsorption are compared in this study. The pseudo second-order kinetic 

model for adsorption is expressed as (Ho et al., 1999; Azizian, 2004): 

2
2 )( te qqk

dt

dq −=        (1a) 

Equation 1a can be integrated for the boundary conditions t = 0 to t = t and q = 0 to q = t 

to give equation 1b (Lin et al., 2009). Equation 1b can be rearranged to the linear form 

(equation 1c) where a plot of t/qt versus t can provide the pseudo second order rate 

constants by using the linear least-squares regression to estimate the parameters and their 

errors.  
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       (1c) 

where k2 is the rate constant of sorption, qe is the amount of adsorbate at equilibrium 

(µg/g) and qt is the amount of adsorbate at a certain time (µg/g). A plot of t/qt versus t 

provides a straight line with slope of 1/k2q
2

e and intercept of 1/qe. The values of k2 and qe 

can be determined from the slope and intercept respectively. All data analysis and 

graphing were performed using the software OriginPro8. Figure 3.5 shows the pseudo 
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second order kinetic for the adsorption of As(III) to hematite nanoparticles (Figure 3.5a) 

and As(V) adsorption to hematite nanoparticles (Figure 3.5b). 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3. 5 Linear Pseudo-Second Order Kinetic Fit for the adsorption of (a) As(III) to 

hematite nanoparticles and (b) As(V)  to hematite nanoparticles. 
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From figure 3.5, there is a good linear fit for the second-order kinetic model for 

adsorption as R2 > 0.99. A pseudo first order kinetic fit was also performed on the data 

but the data did not fit the model appropriately. Using the pseudo second-order kinetic, 

the initial rate constant for As(V) adsorption is 5.10 X 10-4 ± 1.4 X 10-4 g/µg.h and 6.45 

X 10-4 ± 3.1 X 10-4 g/µg.h for As(III) adsorption (Table 3.2). There was no significant 

difference between the adsorption rate for As(III) and As(V) onto hematite nanoparticles 

(z-test, p > 0.05). However, a larger amount of As(V) can be adsorbed at equilibrium (qe 

= 4,122 ± 63 µg/g) compared to As(III) (qe = 2,899 ± 71µg/g) (Table 3.2).  

Table 3. 2 Kinetic (pseudo second order) parameters for the adsorption of As(III) and 

As(V) with hematite nanoparticles and hematite aggregates. 

 

The reactivity and the adsorption capabilities of hematite nanoparticles can be 

affected by the aggregation/growth of the particle from nanoparticulate sizes to 

micrometer size particles. Therefore, to determine if aggregation of the nanoparticles 

during the adsorption experiments affects the adsorption process, the hydrodynamic 

Particle Arsenic  Qe (µg/g)     k2 (g/ µg.h) (10-4) R2 

Hematite 

nanoparticles 

            As (III) 

            As (V) 

2899 ± 71 

4122 ± 63 

        6.45 ± 3.1 

        5.10 ± 1.2 

0.9970 

0.9988 

Hematite 

aggregates 

            As (III) 

            As (V) 

1689 ± 90 

2614 ± 73 

        3.82 ± 1.4 

        4.61 ± 2.7 

0.9961 

0.9859 
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diameter of the particles was monitored during the adsorption experiments. The t0h 

hydrodynamic sizes, although slightly outside the range of what is considered 

nanoparticles (<100 nm), are the minimum sizes that can be achieved using the probe 

ultrasonication dispersion method. From our previous work (Dickson et al., 2012) and 

other’s (Zhang et al., 2008), the dispersion of commercial nanoparticles to the originally 

acclaimed size by the manufacturer (20-50 nm) is difficult. The probe ultrasonicator 

cannot break down IONPs to its primary particle diameter due to possible aggregation of 

the particles during synthesis or long periods of storage.  

Figures 3.6a and 3.6b (triangles) show the particle size distribution during the 

adsorption of As(III) and As(V) respectively to hematite nanoparticles. During the period 

of rapid adsorption (0-8h), the hydrodynamic diameter of hematite nanoparticles 

increased as As(III) and As(V) adsorb to the hematite nanoparticle surface (Figs 3.6a and 

3.6b triangles).  In the presence of As(III), the hematite nanoparticle size increased from 

122 nm at t0 to 213 nm at t8h but reduced to sizes similar to the control (120-160 nm) 

from t24-168h. In the presence of As(V), the particle size drastically increased from 137 nm 

at t0 to 345 nm at t2h but reduced to sizes similar to the control (120-160 nm) from t24-168h. 

These changes in size are possibly due to the adsorption of arsenic to the hematite 

nanoparticle surface causing a change in the surface charge and increasing particle 

growth. Researchers studying the adsorption of arsenic to bulk ferrihydrite (FeOOH) had 

found that there is a reduction in the surface charge of ferrihydrite when both arsenite and 

arsenate adsorb (Jain et al., 1999). Therefore, the surface charge properties of hematite 

nanoparticles could explain, at least partially, the aggregation of hematite nanoparticles 

when arsenic is adsorbed. At this pH (pH 6-8), As(III) is neutral (H3AsO2
0) and hematite 
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nanoparticle is slightly positively charged with a zeta potential +29.8 ± 0.917 mV(see 

Chapter 2). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3. 6 Hematite nanoparticle concentration (squares) and particle size distribution 

(triangles) monitored during adsorption (contact time of 168h) (a) As(III) and (b) As(V). 
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There is a possibility that the surface charge of hematite nanoparticle becomes suppressed 

when arsenite adsorbs  causing the aggregation and sedimentation of the particles as 

evidenced by a reduction in the amount of IONPs in the dispersion from t0 to t8 (Figure 

3.6a squares).  On the other hand, As(V) is negatively charged (H2AsO4
- and HAsO4

2-) at 

pH 6-8 and there is a strong electrostatic attraction between As(V) and the slightly 

positively charged nanoparticle.  Therefore, the charge becomes neutralized during 

adsorption and this caused the particles to aggregate and sediment as evidenced by a 

reduction in the amount of hematite nanoparticles in the dispersion from t0 to t8h (Figure 

3.6b squares).  After 8h, adsorption of arsenate and arsenite is minimal and the IONPs 

particle sizes are similar to those of the control (120-160nm) with minimal sedimentation 

suggesting that the IONPs that remained in suspension is not bound/affected by arsenic. 

The suppression or neutralization of the charge once arsenic adsorbs to hematite 

nanoparticles reduces any electrostatic repulsion between the nanoparticles causing them 

to come together and aggregate. The results of these adsorption experiments suggest that 

As(V) is more readily adsorbed to hematite nanoparticles than As(III). The negatively 

charged As(V) has a stronger electrostatic attraction to the positively charged hematite 

particles than the electrically neutral As(III). Therefore, the surface charge properties of 

both the hematite nanoparticle and arsenic is a good explanation as to why higher 

amounts of As(V) than As(III) is adsorbed at equilibrium.  

3.4.2.3 Adsorption of arsenite and arsenate to hematite aggregates 

 The adsorption of arsenic to hematite aggregates was investigated to determine 

the extent at which the reduction in surface area affects hematite reactivity and the 

efficiency of arsenic adsorption. Figures 3.7a and 3.7b show the adsorption curve of 
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As(III) and As(V) with hematite aggregates. There was rapid adsorption of As(III) and 

As(V) to hematite aggregates within the first 24h after which arsenic desorption was 

observed between t 24h-72h. The causes of desorption are uncertain at this point but arsenic 

species transformation is one probable cause of arsenic release from the particle surface 

(Islam et al., 2004; Pedersen et al., 2006; Tufano et al., 2008).  

A pseudo second order kinetic fit was carried out for the first 24 h for arsenic 

adsorption to hematite aggregates (Figures 3.8a and 3.8b). In order to compare arsenic 

adsorption on hematite aggregates to hematite nanoparticles, the kinetic fit was carried 

out for the first 24 h. Similarly to As(V) adsorption to hematite nanoparticles, arsenic 

adsorption to hematite aggregates was observed during the first 24h after which 

desorption was observed. As mentioned before, the desorption of arsenic can possibly 

affect the rate parameters, therefore, only the initial rates of adsorption are compared in 

this study. The initial rate constants for adsorption are 4.60 X 10-4 ± 2.7 X 10-4 g/µg.h for 

As(V)  and 3.82 X 10-4 ± 1.4 X 10-4 g/µg.h for As(III). These k2 values are similar as 

there was no significant difference between the adsorption rate for As(III) and As(V) to 

hematite aggregates (z-test, p > 0.05) suggesting that hematite aggregates were able to 

adsorb both As(III) and As(V) at similar rates. However, As(V) was adsorbed in larger 

amounts at equilibrium (qe = 2,614 ± 73 µg/g) compared to As(III) (qe = 1,689 ± 90 µg/g) 

(Table 3.2). As mentioned in section 3.3.2.1, the surface charge properties is a good 

explanation as to why the negatively charged As(V) has a stronger electrostatic attraction 

to the positively charged hematite particles than the electrically neutral As(III).  
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Figure 3. 7 Plots of arsenic adsorbed onto hematite aggregates. a) As(III) adsorbed onto 

hematite aggregates (µg As(III)/g IONPs) b) As(V) adsorbed onto hematite aggregates. 

Adsorption was performed using 200 µg/L As(III) and As(V) and 10 mg/L hematite 

aggregates over a contact time of 168h. 
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Figure 3. 8 Linear Pseudo-Second Order Kinetic Fit for the adsorption of (a) As(III) to 

hematite aggregates and (b) of As(V)  to hematite aggregates. 

3.4.2.4 Particle size effect on the kinetics of adsorption 

A comparison of the results from the kinetic study showed that there was no 

significance difference between the initial rate of adsorption of As(III) and As(V) to 

hematite nanoparticles and hematite aggregates (z test, p < 0.05). This assumption was 

formed on the basis of the rate constants for the adsorption reactions. The fastest rate of 

arsenic (III, V) adsorption occurred in the first 24h regardless of the particle size. 
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However, the amount of arsenic adsorb at equilibrium was different depending on the 

size of the particle. The results indicated that hematite nanoparticles adsorbed 

significantly more As(III) and As(V) at equilibrium compared to hematite aggregates (z 

test, p < 0.05). The FE-SEM imaging of the hematite nanoparticles (Figure 1a) showed 

large amounts of individual particles available for arsenic adsorption. The high 

concentration of individual nanoparticles suggests that there is more nanoparticle surface 

available to accommodate a high volume of arsenic adsorbing to the surface. On the other 

hand, the large aggregates are fewer in suspension and have smaller surface area resulting 

in a reduction in adsorption sites hence reducing its adsorption efficiency.  

3.4.3 Adsorption Isotherms 

3.4.3.1 Arsenic adsorption isotherm to hematite nanoparticles 

From the kinetic studies, it is observed that hematite nanoparticles adsorb more 

arsenic at equilibrium compared to hematite aggregates. To understand the 

thermodynamics of adsorption, the Freundlich isotherm was used to describe the 

adsorption equilibrium data for the adsorption of As(V) and As(III) with hematite 

nanoparticles and aggregates. The purpose of the adsorption isotherm experiments is to 

understand the relationship between the adsorbate concentration and its degree of 

adsorption to the hematite surface (nanoparticles and aggregates) at equilibrium. The 

Freundlich model best describes adsorption equilibrium on heterogeneous materials and 

assumes that there is an infinite supply of adsorbent sites. The Freundlich isotherm is 

expressed as (Banerjee et al., 2008; Skopp, 2009; Duran et al., 2011): 

n
efe CKq 1=        (2) 
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where qe is the amount of As adsorbed at equilibrium (µg As/g IONPs), Ce is the 

equilibrium As concentration (µg/L),  Kf is the Freundlich constant for relative adsorption 

capacity (µg As /g IONPs) and n is the Freundlich constants for adsorption intensity 

(µg/L).Figure 3.9 describes the Freundlich isotherm for the adsorption of As(III) and 

As(V) to hematite nanoparticles.  

 

  

 

 

 

 

 

 

 

 

 

Figure 3. 9 Freundlich Isotherm of (a) As(III) and (b) As(V) with hematite nanoparticles. 

Arsenic concentrations vary from 10-2000 µg/L and reacted with 10 mg/L of hematite 

nanoparticles to equilibrium (24h). 
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The amount of arsenic adsorbing to the nanoparticle surface increased as the 

concentration of As(III) and As(V) in solution increased (Figure 3.9), indicating that 

there was no upper limit on adsorption under the experimental conditions and the 

Freundlich model was used appropriately to describe the equilibrium data. The data had a 

good fit to the Freundlich model (R2 > 0.96). The parameters from the Freundlich 

isotherms are summarized in Table 3.3.  The Kf values for As(III)  and As(V) are 101 ± 

44.0 µg As/g IONPs and 200 ± 92.2 µg As/g IONPs, respectively, suggesting that 

hematite nanoparticles has a significantly higher adsorption capacity for As(V) compared 

to As(III) (z-test, p < 0.05). The surface charge properties might explain why As(V) had a 

higher adsorption capacity than As(III). The negatively charged As(V) will have a 

stronger attraction to the slightly positive hematite nanoparticles and adsorbed more to 

the hematite nanoparticle hence the higher adsorption capacity. The neutrally charged 

As(III) has less attraction to hematite nanoparticle surface hence the lower adsorption 

capacity.  

The n value is the Freundlich constants for adsorption intensity. It describes the 

degree of favorability of adsorption of one adsorbate to another. The ideal value of n 

should be between 1 and 10 for favorable adsorption.  For hematite nanoparticles n is 

1.66 ± 0.18 µg/L for As(V) and 1.50 ± 0.13µg/L for As(III). These results show that 

arsenic, whether As(V) or As (III), will naturally adsorb to hematite nanoparticles since 

arsenic have a strong binding affinity towards iron oxides. 
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Table 3. 3 Freundlich isotherm parameters for the adsorption of As(III) and As(V) with 

hematite nanoparticles and hematite aggregates. 

 

 

 

 

 

 

 

3.4.3.2 Arsenic adsorption isotherm to hematite aggregates 

Figure 3.10 shows the adsorption isotherm for hematite aggregates. The 

Freundlich isotherm was also used to model the data which had a good fit to this model 

(R2 > 0.96).  The Kf values for As(V)  and As(III) are 21.5 ± 14.4 µg As/g IONPs and 

26.8 ± 8.74 µg As/g IONPs  respectively (Table 3.3). These results showed that there was 

no significant difference between the adsorption capacity for As(III) and As(V) for 

hematite aggregates (z-test, p > 0.05). For hematite aggregates, the adsorption intensity (n 

values) for As(V) and As(III) are 1.25 ± 0.14 and 1.40 ± 0.086 µg/L, respectively. From 

these results, there were no significant difference between the favorability of adsorption 

of As(III) and As(V) to hematite aggregates (z-test, p > 0.05). These isotherm parameters 

suggest that hematite aggregates can adsorb similar concentrations of As(V) and As(III) 

at equilibrium and it does not favor to adsorb one arsenic species over the other. 

Particle Arsenic   Kf (µg/g)         n (µg/L) R2 

Hematite 
nanoparticles 

            As (III) 

            As (V) 

101 ± 44 

200 ± 92 

        1.50 ± 0.13 

        1.66 ± 0.18 

0.9773 

0.9689 

Hematite 
aggregates 

            As (III) 

            As (V) 

26.8 ± 8.7 

21.5 ± 14 

        1.40 ± 0.086 

        1.25 ± 014 

0.9899 

0.9682 
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Figure 3. 10 Freundlich Isotherm of (a) As(III) and (b) As(V) with hematite aggregate. 

Arsenic concentrations vary from 10-2000 µg/L and reacted with 10 mg/L of hematite 

aggregates to equilibrium (24h). 
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3.4.3.3 Particle size effect on the thermodynamics of adsorption 

Isotherm studies showed that hematite has a favorable adsorption for both As(V) 

and As(III)  regardless of the particle size. Therefore, arsenic will readily adsorb to 

hematite nanoparticles and hematite aggregates and the amount of arsenic adsorbing onto 

the hematite particle will increase as the concentration of arsenic increases in the solution. 

However, hematite nanoparticles have significantly higher adsorption capacity for both 

As(III) and As(V) compared to hematite aggregates (Table 3.3) (z-test, p < 0.05). The 

adsorption capacity for As(V) to hematite nanoparticle (200 ± 92 µg As/g IONPs) is nine 

times higher than As(V) adsorption capacity for hematite aggregates (21.5 ± 14 µg As/g 

IONPs ). A similar trend was observed for As(III) in which the adsorption capacity for 

As(III) to hematite nanoparticle (101 ± 44 µg As/g IONPs) is approximately four times 

higher than As(III) capacity for hematite aggregates (26.8 ± 8.7 µg As/g IONPs ). The 

higher adsorption capacity for the nanoparticles are a result of the nanoparticles being 

more reactive due to the higher amounts of adsorption sites compared to those of 

hematite aggregates. Therefore, the nanoparticles can accommodate larger amounts of 

arsenic adsorbing to their surface. 

3.4.4 Comparison to other’s work 

Information on the kinetic and thermodynamic parameters of arsenic adsorption to 

hematite nanoparticles is lacking in the literature making it challenging to do a direct 

comparison. However, the results of this study are comparable to others’ work where iron 

oxides nanoparticles (regardless of the mineral phase) can adsorb higher concentrations 

of arsenic compared to bulk particles (Table 3.4). From Table 3.4, the particles in the  
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Table 3. 4  Arsenic adsorption capacity to iron oxide minerals

Forms of  
Iron Oxide 

Particle Size Adsorption 

Capacity (ug/g) 

References 

  As(III) As(V)  
Magnetite 20 nm --- 1186 (Shipley et al., 2009) 

     
NZVI 10-100 nm 3500 --- (Kanel et al., 2005) 

 
Maghemite 

 

18.4 nm --- 5000 (Tuutijarvi et al., 2009) 

Granular ferric hydroxide 

 

0.32-2 mm --- 3130 (Banerjee et al., 2008) 

iron oxide coated sand --- 690 --- (Kundu et al., 2007) 
     

Fe2O3 0.7 µm --- 560 (Jeong et al., 2007) 
 

Hematite nanoparticles 120 nm 2899 4122 This study 
 

Hematite aggregates 2.5 µm 1689 2614 This study 
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nanometer range tend to adsorb higher amounts of arsenic regardless of the iron oxide 

mineral phase. In addition, this study is the first to report the aggregation of the 

nanoparticles during the adsorption experiment. No previous studies have investigated 

the change in size of the iron oxide particles during the adsorption process and how the 

adsorption of arsenic to the nanoparticles’ surface can influence aggregation. This 

information is crucial as it suggests that the interaction of arsenic with the nanoparticle 

surface can change the IONPs surface charge and possibly increases aggregation of the 

nanoparticles.   

3.5 Conclusions 

The study was conducted to evaluate the adsorption of As(III) and As(V) to 

hematite nanoparticles and hematite aggregates. In doing so, the effect of particle size on 

hematite adsorption capability was assessed. Kinetic and isotherm studies were 

performed to describe the adsorption process. A comparison of As(III) and As(V) 

adsorption to hematite particles is necessary. Kinetic studies revealed that the initial rate 

of adsorption of As(III) and As(V) onto hematite nanoparticle and aggregates was fastest 

within the first 8h. However, As(V) can be adsorbed in larger amounts to both hematite 

nanoparticles and hematite aggregates at equilibrium compared to As(III). The size of the 

particle is a key factor that can influence the adsorption process. The results from this 

study revealed that hematite nanoparticles significantly adsorb more As(V) and As(III) at 

equilibrium in comparison to hematite aggregates. The higher arsenic adsorption by 

hematite nanoparticles can be explained by the fact that there are a greater number of 

individual nanoparticles (higher amount of adsorption sites) in the nanoparticle dispersion 

that can accommodate a high volume of arsenic adsorbing to the surface. Isotherm studies 
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showed that hematite nanoparticles has a significantly higher adsorption capacity for both 

As(V) and As(III) than hematite aggregates. The adsorption studies also revealed that 

aggregation and sedimentation of hematite nanoparticles did occur during arsenic 

adsorption especially in the period of rapid arsenic adsorption. The aggregation can be 

explained by the change in the particle surface charge due to arsenic adsorption. These 

results are important as aggregation can reduce the adsorptive capability of the 

nanoparticle and slow down the adsorption process. Overall, these findings are important 

as they further our understanding of the interactions of hematite nanoparticles and 

hematite aggregates with arsenic in the environment. 
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Chapter IV 

Redox transformation of arsenic in the presence of hematite nanoparticles and 

hematite aggregates 
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4.1 Abstract 

Toxicity, mobility and bioavailability of arsenic are highly dependent upon its 

redox state. It is well known that chemical and direct microbial catalyzed redox 

transformations of arsenic are responsible for arsenic cycling in the environment. 

However, other environmental factors such as mineral phases must be considered because 

they can play a significant role in the transformation process. In the environment, iron 

oxides whether in the nanoparticulate or aggregates form can undergo redox 

transformations (microbially or photochemically) that can influence or be coupled to the 

redox transformation of arsenic. Therefore in this work, arsenic redox behavior in the 

presence of hematite nanoparticles and hematite aggregates were preliminarily quantified. 

The effect of hematite particle size on the rate and extent of arsenic species 

transformation and the effect of photochemical processes on the redox transformation of 

arsenic were investigated. The results showed that As(III) can be oxidized to As(V) and 

As(V) can be reduced to As(III) in the presence of hematite nanoparticles and hematite 

aggregates.  The particle size influences the rate of redox transformation as arsenic 

transformation occurred more readily and rapidly in the presence of hematite 

nanoparticles than when interacting with hematite aggregates. Arsenite underwent 

oxidation in the presence of both hematite nanoparticles and hematite aggregates 

however reduction of arsenate did minimally. Arsenite oxidation occurred faster in the 

presence of light than under dark conditions and higher amounts of As(III) was oxidized 

to As(V) in the presence of hematite nanoparticles than hematite aggregates. These 

results improve our understanding of the role of IONP played in arsenic redox 

transformations in the aquatic environment. 
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4.2 Introduction 

The biogeochemical cycling of arsenic is a complex process and it is crucial to 

understand the cycling of arsenic in the environment as it will determine its 

environmental fate. The mobility, bioavailability and toxicity of arsenic are highly 

dependent upon its oxidation state. In the environment, arsenate and arsenite are the 

predominant species present with arsenite being more mobile and toxic of the two. The 

redox behavior is an important factor in determining the form of arsenic species present 

and this will ultimately determine the extent of toxicity. As(V) and As(III) species in the 

environment are often subjected to both chemical and microbiological oxidation-

reduction reactions as well as methylated reactions (Masscheleyn et al., 1991) These 

reactions can cause arsenic species transformation in which one chemical form of arsenic 

can be converted to another.  The transformation process is important as it can greatly 

affect arsenic solubility and mobility in the environment making it either more or less 

bioavailable.  

 Iron oxides minerals are ubiquitous in the environment and the biogeochemical 

cycling of iron is strongly intertwined with the biogeochemical cycling of arsenic 

(Johnston et al., 2011). Arsenate and arsenite are notorious for adsorbing onto iron oxide 

mineral phases subsequently controlling arsenic mobility and influencing any possible 

arsenic transformation in the environment. Because of the high presence of iron oxides in 

nature, arsenic readily interacts with iron oxide minerals primarily though the 

chemisorption process. From our work (see chapter 3) and others (Raven et al., 1998; 

Jain et al., 1999; Zaspalis et al., 2007; Shipley et al., 2009), arsenate and arsenite are 

capable of adsorbing onto iron oxide nanoparticles and iron oxide aggregates. However, 
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once adsorbed it is uncertain whether arsenic can remain chemically active to a certain 

extent (Luther et al., 2005) or can show decreased reactivity due to the formation of 

IONPs-arsenic complexes that can aggregate and subsequently sediment (Waychunas et 

al., 2005).  

A few studies have investigated arsenic species conversion in the presence of iron 

oxide minerals such as goethite and ferrihydrite and the observed speciation was 

explained by microbial or photochemical processes involving the iron oxide minerals. 

Although these studies did not emphasize the effect of the mineral particle size on arsenic 

redox transformation, they indicated that arsenic can indeed remain chemically active to a 

certain extent after adsorption to iron oxides. Therefore, microbial and photochemical 

processes are important in the environment because they can cause the reduction and/or 

oxidation of arsenic and iron (Ahmann et al., 1997; Langner et al., 2000; Emett et al., 

2001; Bhandari et al., 2011, 2012). Once iron oxide minerals are present, arsenic will 

adsorb onto these minerals and might undergo surface mediated reduction or oxidation 

reactions (Yan et al., 2008). Iron oxides can also undergo redox transformation during the 

arsenic transformation process. Therefore, the redox transformation of both arsenic and 

iron are coupled. 

 Many microbes can reduce Fe(III) oxide resulting in dissolution and desorption of 

arsenic into the aqueous phase (Cummings et al., 1999). Once the reduction and 

subsequent dissolution of iron oxide particles occur, any adsorbed arsenic can be released 

into solution. As a result of the reductive dissolution of iron oxides, arsenic can become 

more mobile and direct aqueous phase arsenic species conversion (reduction of As(V) to 

As(III) or the oxidation of As(III) to As(V)) by the same microbes or by other 
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microorganism can occur (Langner et al., 2000).  Abiotic oxidation of As(III) by 

dissolved oxygen is a possible mechanism of species transformation although the process 

is relatively slow (Zhao et al., 2011). Recent studies have shown that photoinduced 

oxidation of As(III) to As(V) can occur in the presence of nanoferrihydrite and goethite 

(Bhandari et al., 2011, 2012). Bhandari et al. (2011) assumed that in As(III)-ferrihydrite 

system, the oxidation of As(III) occurred on the ferrihydrite surface until the surface 

becomes saturated with As(V). Bhandari et al. (2011) also proposed that aqueous Fe(II) 

was formed from the reduction of Fe(III) associated with the iron oxide phases and the 

As(III) oxidation is similar under oxic and anoxic conditions. In the As(III)-goethite 

system, Bhandari et al. (2012) cannot determine whether the oxidation of As(III) 

occurred on the goethite surface however higher amounts of As(III) oxidation is observed 

under oxic conditions than anoxic conditions.  So far, information regarding 

photoinduced arsenic speciation in the presence of iron oxide is limited in the literature. 

Furthermore, no prior studies have investigated the photoinduced oxidation of As(III) in 

the presence of hematite nanoparticles or hematite aggregates. Therefore, it is necessary 

to investigate arsenic species transformation in the presence of hematite mineral phase. 

Moreover, studies in the literature lack information on whether the particle size might 

influence the rate and extent of arsenic speciation since the reactivity of iron oxides are 

highly dependent upon its particle size. 

The objective of the study was aimed to determine the effect of hematite particles 

on the redox transformation of As(V) and As(III). To our best knowledge, no prior study 

has clarified if the hematite particle size can influence arsenic species conversion and if 

so how does the particle size influence the rate and extent of transformation. The focus of 
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the study was to determine and quantify the key transformation process of arsenic in the 

presence of hematite nanoparticles and hematite aggregates. The study investigated the 

effect of particle size on the rate and extent of speciation. In addition, the effect of 

photochemical processes on the redox transformation of arsenic during its interaction 

with hematite nanoparticles and hematite aggregates were determined. The results 

obtained will improve our understanding of the behavior of hematite nanoparticles and 

hematite aggregates with regard to arsenic redox transformation in the environment.  

4.3. Procedures and Methods 

4.3.1. Materials and Chemicals  

Commercial iron oxide nanoparticles (α-Fe2O3, 98% purity and 50 m2/g specific 

surface area) were purchased from Nanostructured and Amorphous Materials (Houston, 

Texas). Stock solutions of 1000 mg/L As (III) and As (V) were prepared by dissolving 

sodium (meta)arsenite (NaAsO2, 98% purity) and sodium arsenate dibasic heptahydrate 

(Na2HAsO4.7H2O, 99% purity), respectively in nanopure 18.2MΩ water produced from a 

nanopure diamond lab water system (Barnstead Thermolyne Corporation, Dubuque, IA). 

The arsenic standards were reagent grade and obtained from Aldrich Chemical Company 

(Milwaukee, WI.). Sodium azide was purchased from Fisher Scientific (Fairlawn, NJ, 

USA). 

4.3.2. Instrumentation 

Iron oxide nanoparticles were dispersed by probe ultrasonication using a Fisher 

Scientific sonic dismembrator model 100 (Pittsburg, PA) to prepare nanosize hematite 

particle. The IONPs were dispersed by vortex using a Fisher Scientific touch mixer 

model 232 (Pittsburgh, PA) to prepare micrometer size particles. Speciation and 
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quantitative determination of arsenic was conducted using high performance liquid 

chromatography -inductively coupled plasma-Mass Spectrometry (HPLC-ICP/MS) 

(Perkin Elmer). Prior to arsenic speciation analysis, samples were centrifuged with a 

Fisher Marathon 21000R centrifuge (Needham Heights, MA) to remove the hematite 

nanoparticles and aggregates from the aqueous phase.  

4.3.3. Experimental Procedures 

4.3.3.1 Arsenic Speciation in the presence of hematite nanoparticles 

  Arsenic speciation studies were performed for both As(III) and As(V) in the 

presence of hematite nanoparticles. Speciation studies were performed by mixing 10 

mg/L hematite nanoparticles with 200 µg/L of As(III) or As(V)  in 50 mL 

polypropylene centrifuge tubes. IONPs were dispersed using probe ultrasonication for 

20 minutes at power level 6 to generate nanosize hematite particles following a 

procedure previosly developed (Dickson et al., 2012). All samples were prepared in 

nanopure 18.2MΩ water and the pH varied in the range of 7.2-8 as the suspensions 

were not buffered. Samples were agitated by pulsing with probe ultrasonicator every 

2-4 hrs. Aliquots of samples (2 mL) were collected at definite time intervals (0-168h) 

and arsenic speciation and quantification in solution was monitored as a function of 

time. The aliquots were centrifuged at 10,000 rpm for 60 minutes which was 

sufficient to separate IONPs from aqueous phase (see Chapter 3). Arsenic speciation 

was monitored using HPLC-ICP/MS by analyzing the supernatant for As(III) and 

As(V) concentrations. For the separation of As(III) and As(V), a Hamilton PRPX-200 

cation exchange column (250 x 4.1 mm in dimension and 10 micron particle size) was 

employed with a mobile phase (0.05% formic acid) flow rate of 1 mL. min-1 and the 
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sample injection volume was 50 μL. As(III) and As(V) controls (200 µg/L) were 

prepared except without hematite nanoparticles added. The control was exposed to 

similar experimental conditions as the As-hematite nanoparticle samples. Arsenic 

specation in the control was monitored over a period of 168h. 

4.3.3.2 Arsenic speciation in the presence of hematite aggregates 

Arsenic speciation experiments with hematite aggregates were performed with 

similar procedures as described in section 4.2.3.1 with the exception that hematite 

particles were dispersed using vortex for 20 minutes at level 10. The vortex dispersion 

method generates particles in the micrometer size range (Dickson et al., 2012). The 

samples were agitated by shaking on an orbital shaker at 250 rpm for the entire 

experimental time. Arsenic speciation was monitored using HPLC-ICP/MS. 

4.3.3.3 Photochemical effect on the species transformation of arsenite and arsenate 

in the presence of hematite nanoparticles and hematite aggregates 

As(III)-hematite nanoparticles suspensions and As(III)-hematite aggregate 

suspensions were investigated for the effect of light on arsenite oxidation. For the As(III)-

hematite nanoparticle suspensions, two set of samples containing As(III) (250 µg/L) and 

10 mg/L of hematite nanoparticles were prepared similarly to experiment 4.2.3.1.  For the 

As(III)-hematite aggregate suspensions, two set of samples containing As(III) (200 µg/L) 

and 10 mg/L of hematite nanoparticles were prepared similarly to experiment 4.2.3.1. 

One set of sample was exposed to room light and the other set was kept in the dark. 

Samples (2 mL aliquots) from each trial were removed in triplicates at 24, 48, and 168h 

and measured for As(III) and As(V) concentrations using HPLC-ICP/MS.  
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To determine if microbes were assisting the speciation process during the 

photochemical experiment, sodium azide was used to inhibit microbial redox 

transformation. Sodium azide (0.02%), a salt, was added to the nanoparticle suspension 

(10 mg/L) and monitored for hematite nanoparticles stability. Aliquots of 2 mL were 

removed from the suspension in triplicate at 0, 1, 2, 4, 8, 24, 48, 72, 96 and 144h. The 

hematite nanoparticle suspensions were analyzed for iron concentrations using GFAAS to 

monitor the sedimentation of IONPs over time. Before iron analysis, IONPs suspension 

underwent acid digestion in 50% nitric acid at 95 ± 5 ºC for 20 minutes using heating 

block (Environmental Express). 

As(V)-hematite nanoparticle suspensions and As(V)-hematite aggregate 

suspensions were investigated for the effect of light on arsenate reduction. Two set of 

samples containing As(V) (250 µg/L) and 10 mg/L of hematite nanoparticles were 

prepared similarly to experiment 4.2.3.1. For the As(V)-hematite aggregate suspensions, 

two set of samples containing As(V) (200 µg/L) and 10 mg/L of hematite nanoparticles 

were prepared similarly to experiment 4.2.3.1. One set of sample was exposed to room 

light and the other set was in the dark. Samples (2 mL aliquots) were removed in 

triplicate at 24, 48 and 168h. Arsenic speciation was monitored using HPLC-ICP/MS. 

4.4. Results and Discussion 

4.4.1 The effect of hematite particle size on arsenite and arsenate redox 

transformation 

Experiments were performed to determine whether As(III) can be oxidized to 

As(V) and As(V) can be reduced to As(III)  in the presence of hematite nanoparticles and 

hematite aggregates. These samples contained arsenic with hematite nanoparticles or 
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hematite aggregates and no other factors were added or controlled. Figures 4.1a and 4.2a 

showed that both As(III) and As(V) can undergo redox transformation in the presence of 

hematite nanoparticles. 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 
 

Figure 4. 1Arsenite speciation studies over a contact time of 168h. (a) As(III) (200 µg/L) 

with 10 mg/L hematite nanoparticles under room light at 20ºC and (b) As(III) control 

(200 µg/L of As(III)  in deionized water under room light at 20ºC)
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Figure 4. 2 Arsenate speciation studies over a contact time of 168h. (a) As(V) (200 µg/L) 

with 10 mg/L hematite nanoparticles under room light at 20ºC and (b) As(V) control
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In As(III)-hematite nanoparticles samples, As(III) was oxidized to As(V) starting at t8h 

with As(III) oxidation increasing overtime as evidenced by the increasing amounts of 

As(V) in solution (Fig. 4.1a). Approximately 21-27% of the As(III) was oxidized to As(V) 

over the course of 168h. However, no As(III) oxidation was observed in the control 

throughout the entire experimental time (Fig. 4.1b). In As(V)-hematite nanoparticles 

samples, As(V) was reduced to As(III) at t24h with increasing reduction overtime as 

evidenced by the increasing amounts of As(III) in solution (Fig. 4.2a). In the control, 

As(V) reduction was also observed but at t24h and increasing slightly with time (Fig. 4.2b). 

A comparison between As(V)-hematite nanoparticle sample and As(V) control showed 

that at t168h 65% of As(V) was reduced to As(III) in the sample compared to only 15% in 

the control.  At this point, it is not clear whether or not the nanoparticle adsorbed the 

newly converted species but the adsorption of these species are possible as from the 

previous adsorption experiments (see chapter 3) hematite nanoparticles were capable of 

adsorbing both As(III) and As(V). 

To gain insight on how the size of the particle influences arsenic species 

conversion, arsenic speciation was performed in the presence of hematite aggregates. In 

As(III)-hematite aggregates samples, no oxidation of As(III) to As(V) was observed 

during the course of the experiment (Figure 4.3a). Control studies also indicated no 

As(III) oxidation over the course of 168h (Figure 4.3b). However, in As(V)-hematite 

aggregates samples, As(V) was reduced to As(III) at t72h with slight increase in reduction 

through t168h (Fig. 4.4a). As(V) reduction was also observed in the control but only at t168h 

(Figure 4.4b). A comparison of the As(V)-hematite aggregate sample and the As(V) 
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control showed that only  6% As(III) was found in aqueous phase in the As(V)-hematite 

aggregates sample compared to only 17% in the control.  

  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

 

 

 

 

Figure 4. 3Arsenite speciation studies over a contact time of 168h. (a) As(III) (200 µg/L) 

with 10 mg/L hematite aggregates under room light at 20ºC and (b) As(III) control
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Figure 4. 4 Arsenate speciation studies over a contact time of 168h. (a) As(V) (200 µg/L) 

with 10 mg/L hematite aggregates under room light at 20ºC and (b) As(V) control
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The increase in the newly converted arsenic species in the aqueous phase is a 

good indication that arsenic redox transformation does occur in the presence of hematite 

nanoparticles and hematite aggregates and the transformation is increasing with time. The 

rate of As(V) and As(III) species conversion was faster in the presence of hematite 

nanoparticles than hematite aggregates (z test, p < 0.05). Moreover, As(V) speciation was 

observed at t24h for the hematite nanoparticles in comparison to t72h for hematite 

aggregates. In addition, As(III) oxidation was observed in the presence of hematite 

nanoparticle starting at t8h while no oxidation was observed in the aggregated dispersion 

throughout the entire experimental time (168h). Since the amount of As(V)/As(III) that is 

reduced/oxidized in the presence of hematite nanoparticles is greater than the control (z 

test, p < 0.05), factors relating to the iron oxide is possibly causing As(V) reduction or 

As(III) oxidation. Furthermore, a higher percentage of As(III) or As(V) was transformed 

in the presence of hematite nanoparticles than hematite aggregates, suggesting that As(III) 

and As(V) more readily undergoes redox transformation in the presence of hematite 

nanoparticles than hematite aggregates.  

The factors that are fully responsible for species transformation and the 

mechanisms of speciation are not yet determined but the particle size is likely one of the 

major influences on how fast species transformation occurs. Small particles have high 

surface area that can accommodate higher amounts of arsenic for adsorption. Any surface 

mediated arsenic transformation would therefore occur faster and in higher amounts on 

the nanoparticle’s surface than on the hematite aggregates’ surfaces.  

 



109 
 

0

50

100

150

200

A
s

(I
II)

 a
n

d
 A

s(
V

) 
in

 s
o

lu
ti

o
n

 (
μg

/L
)

 As(III)    As(V)

a

0

50

100

150

200

Time (h)

24 48 168

b

4.4.2 The effect of light on arsenite redox transformation in the presence of iron 

oxide nanoparticles and iron oxide aggregates. 

So far arsenic transformation was observed in the presence of hematite 

nanoparticles and aggregates when no additional factors were added and the samples 

were exposed to light. Based on these experimental conditions, photochemical processes 

might be one of the factors that are possibly causing arsenic redox transformation. 

Therefore experiments were performed where arsenic speciation was monitored when 

arsenic was exposed to hematite nanoparticles and hematite aggregates under light and 

dark conditions. Figure 4.5 shows the speciation of As(III) in the presence of hematite 

nanoparticles under light and dark conditions for 24, 48 and 168h.  

 

 

 

 

 

 

 

 

 

 

Figure 4. 5 As(III) (250 µg/L) speciation studies in the presence of hematite nanoparticles 

(10 mg/L) in (a) light (b) dark. The columns represent arsenic in solution (µg/L). The line 

represents the amount of arsenic is adsorbed (µg/L) onto the hematite nanoparticles. 
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As(III) was oxidized to As(V) under both light and dark conditions. However, higher 

amounts of As(III) oxidation were observed under light with species transformation 

increasing slightly with time (Figure. 4.5a). There was minimal As(III) oxidation in the 

dark and oxidation occurred  slower than when exposed to light (Figure. 4.5b) (z test, p < 

0.05). However, light did not affect the amount of As(III) that was adsorbed as similar 

amounts of As(III) was  adsorbed onto hematite nanoparticles under light and dark 

conditions (Figure 4.5 line) (z test, p > 0.05).  

Figure 4.6 shows the speciation of As(III) in the presence of hematite aggregates 

when exposed to light and dark conditions for 24, 48, and 168h. As(III) oxidation was 

observed when the As(III)-hematite aggregates suspension was exposed to light (Figure 

4.6a), while no speciation was observed in the dark (Figure 4.6b). Control experiments 

were performed where As(III) in the absence of hematite nanoparticles and hematite 

aggregates were exposed to light and dark conditions similar to the As(III)-hematite 

samples. The control showed no oxidation of As(III) either in the light or in the dark over 

the course of 168h (Figures 4.7 and 4.8). These results indicate that photochemical 

reactions might play a role in As(III) oxidation. Arsenite oxidation in the presence of 

both hematite nanoparticles and hematite aggregates occurred faster in the presence of 

light than in the dark. However, more As(III) was oxidized to As(V) in the presence of 

hematite nanoparticles than hematite aggregates over the course of 168h as indicated by 

the higher amounts of As(V) in the aqueous phase ( z test, p < 0.05). 
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Figure 4. 6 As(III) (200 µg/L) speciation studies in the presence of hematite aggregates 

(10 mg/L) in (a) light (b) dark. The columns represent arsenic in solution (µg/L) and the 

line represents the amount of arsenic (µg/L) was adsorbed onto the hematite aggregates. 

 

 

 

 

 

 

 

 

 

Figure 4. 7 As(III) control (250 µg/L) performed during the As(III)-hematite 

nanoparticles speciation experiment (a) light (b) dark
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Figure 4. 8 As(III) control (200 µg/L) performed during the As(III)-hematite aggregates 

speciation experiment (a) light (b) dark. 

 

 

It could be concluded from these results that the rate of photochemical oxidation 

of As(III) is dependent upon the size of the hematite particle. Nanoparticles can have 

optical and electronic properties that are different from the aggregated or bulk form 

(Altman et al., 2001; Sosa et al., 2003). It is known that nanoparticles have high surface 

area which can ultimately increase the photocatalytic activity of the hematite particle 

(Tang et al., 2004). From the results, higher As(III) oxidation transformation efficiency 

was observed in the presence of the nanoparticles than the aggregates. Since the amount 

of As(III) oxidized is particle size dependent, it is presumed that As(III) oxidation occurs 
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on the surface of the hematite particles (nanoparticle or aggregate). As mentioned before, 

nanoparticles are more reactive than micrometer sized particles indicated by the higher 

amounts of arsenic that was adsorbed onto the nanoparticle surface compared to the 

aggregates (Figures. 4.5 and 4.6 lines). Since more As(III) was adsorbed onto the 

nanoparticle surface, then higher amounts of As(III) is subjected to surface mediated 

oxidation possibly explaining why As(III) oxidation was greatest in the presence of 

hematite nanoparticles.  

The mechanism of the photoinduced redox transformation of arsenic, to the best 

of our knowledge, has not been extensively studied. Figure 4.9 shows a schematics of the 

proposed pathway of the surface mediated oxidation of As(III) in the presence of 

hematite particles modified from Stumm and Morgan (Stumm et al., 1996).  It is assumed 

that after As(III) adsorption to the hematite surface and upon exposure to light, the 

insoluble Fe(III) gets reduced to the soluble Fe(II) and the adsorbed As(III) is oxidized to 

As(V). Both Fe(II) and As(V) are then released into the aqueous phase. This assumption 

is formed on the basis that many metal oxides can behave as semiconductors absorbing 

light energy directly. After light is absorbed, the excited state produce a charge separation 

(e- and holes h+) in the energy band gap which can form reducing and oxidizing sites at 

the particle surface (Zou et al., 2001). The electrons are reducing and can reduce Fe(III) 

to Fe(II) and the holes are oxidizing where it can oxidize As(III) to As(V) .
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Figure 4. 9 Proposed pathway for surface mediated As(III) oxidation in the presence of α-

Fe2O3
 (hematite). After light absorption, a strong reducing electron and a strong oxidizing 

hole are formed. Fe(III) is reduced to Fe(II) by the reducing electron and As(III) is 

oxidized to As(V) via the oxidizing hole, h+. Both Fe(II) and As(V) are then released into 

solution.  

 
The proposed reactions below can explain and summarize the mechanisms of the 

photochemical redox transformation (Stumm et al., 1996; Motamedi et al., 2003; 

Baumanis et al., 2011). 

α-Fe2O3 + hv  e-
CB + h+

VB        1 

Fe(III) + e-
CB    Fe(II)      2 

As(III) + h+
VB  As(IV)      3 
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As(IV) + O2 As(V) + O2
-.      4 

As(IV) + As(IV)  As(III) + As(V)     5 

Overall, photochemical processes play an important role in the biogeochemical 

cycling of iron and arsenic by influencing their redox processes (Equations 1-5). To fully 

comprehend the effect of light on As(III) oxidation in the presence of iron oxides 

nanoparticles, future studies need to be performed to confirm the proposed mechanism of 

the redox transformation (see Chapter 5).  

4.4.3 The effect of light on arsenate redox transformation in the presence of iron 

oxide nanoparticles and iron oxide aggregates  

Figure 4.10 shows the speciation of As(V) in the presence of hematite 

nanoparticles under light and dark conditions for 24, 48 and 168h. There was minimal 

As(V) reduction in the presence and absence of light.  However, the amount of As(V) 

reduced at t168h under light conditions was similar to the amount of As(V) reduced 

under dark conditions. In addition, arsenate species conversion was also investigated in 

the presence of hematite aggregates, however, there was no observation of As(V) 

reduction either in the presence or absence of light (Figure 4.11).  Control studies also 

showed minimal to no As(V) reduction in the presence or absence of light (Figure 4.12 

and 4.13). These results indicate that photochemical processes are not responsible for 

As(V) reduction in the presence of hematite particles.  Based on the proposed 

mechanisms, it is difficult for As(V) to be reduced photochemically. The e- that is 

generated upon the absorption of light, is used to reduce Fe(III) to Fe(II). The h+ usually 

generates oxidizing regions on the surface of the particles and therefore cannot reduce 

As(V).
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Figure 4. 10 As(V) (250 µg/L) speciation studies in the presence of hematite 

nanoparticles in (a) light (b) dark. The columns represent arsenic in solution (µg/L) 

 

 

 

 

 

 

 

 

 

 

Figure 4. 11 As(V) (200 µg/L) speciation studies in the presence of hematite aggregates 

in (a) light (b) dark. The columns represent arsenic in solution (µg/L) 
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Figure 4. 12 As(V) control (250 µg/L) performed during the As(V)-hematite 

nanoparticles speciation experiment (a) light (b) dark. 

 

 

 

 

 

 

 

 

 

Figure 4. 13 As(V) control (200 µg/L) performed during the As(V)-hematite aggregates 

speciation experiment (a) light (b) dark 
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This can possibly explain why no As(V) reduction occurred during the photochemical 

speciation experiments thereby suggesting that other factors are causing As(V) reduction 

in the presence of hematite particles. The results here are different from Figure 4.2 where 

As(V)  reduction was observed. The microbial content was not controlled in these 

experiments and can vary by sample, therefore, the difference in As(V) reduction might 

be explained by microbial activity. Based on the experimental conditions, microbial 

activity could be another possible factor responsible for As(V) reduction in the presence 

of hematite nanoparticles and hematite aggregates.  

It is well established that As(V) reduction mainly occurs microbially in the 

environment (Ahmann et al., 1997; Nicholas et al., 2003; Lloyd et al., 2006). Therefore, 

the samples in Figure 4.2 might have a higher microbial content than the samples from 

the photochemical speciation experiments thereby more As(V) underwent microbial 

reduction. In order to determine if microbes are causing As(V) reduction, preliminary 

studies were conducted to investigate the microbial effect on arsenic speciation. Sodium 

azide which can minimize microbial oxidation/reduction of arsenic, was added to 

hematite nanoparticle suspensions to remove microbial effect (Liu et al., 2010). However, 

sodium azide is a salt and nanoparticles could aggregate rapidly in solutions with high 

salinity (see Chapter 2). Therefore, stability test on the hematite nanoparticles 

suspensions were performed. The addition of sodium azide to the hematite nanoparticle 

suspension and monitoring how fast the particles sediment, provide a good indication on 

how fast aggregation and sedimentation of the particles occur. Fig 4.14 showed the 

sedimentation of hematite nanoparticles in the presence of 0.02% sodium azide. Hematite 

nanoparticles aggregated rapidly and majority of the particles sediment within 48h (Fig. 
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4.14). From the speciation experiments, most arsenic species conversion occurred after 

24-48h. Therefore, it will be challenging to study the redox transformation of arsenic in 

the presence of hematite nanoparticles in a microbe free environment when only few 

particles remained dispersed in the suspension after 48h. Therefore, future experiments 

are necessary to thoroughly investigate the microbial redox transformation of arsenic in 

the presence of hematite particles (see Chapter 5). It is also necessary to determine how 

particle size and stability of the nanoparticle suspension influences the microbial redox 

transformation of arsenic.  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4. 14 Sedimentation of hematite nanoparticles (10 mg/L) in the 

presence of 0.02% sodium azide over a period of 144h.  
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4.5 Conclusions  

This study evaluated the transformation of arsenic species in the presence of 

hematite nanoparticles and hematite aggregates. The effect of particle size on the rate of 

species transformation was determined and the possible environmental factors, such as 

photochemistry, that are responsible for the redox transformation were also investigated. 

The major findings are that As(III) can be oxidized to As(V) and As(V) can be reduced to 

As(III) in the presence of hematite nanoparticles and hematite aggregates. In addition, 

higher amounts of As(III) and As(V) was transformed in the presence of hematite 

nanoparticles than hematite aggregates suggesting that As(III) and As(V) readily 

undergoes redox transformation in the presence of hematite nanoparticles than hematite 

aggregates. The hematite particle size affects the rate of species conversion. The large 

surface area of the nanoparticle can accommodate higher amounts of arsenic that can 

undergo redox transformation faster and in higher amounts on the nanoparticle’s surface 

than on the hematite aggregates’ surfaces. Photochemical reactions could play an 

important role in the redox transformation of arsenic in the presence of hematite particle. 

Arsenite oxidation in the presence of both hematite nanoparticles and hematite aggregates 

occurred faster in the presence of light than in the dark. However, minimal As(V) was 

reduced photochemically. At present, the mechanism of photoinduced oxidation of As(III) 

is uncertain however on the basis of our results it is proposed that after light absorption, a 

strong reducing electron and a strong oxidizing hole are formed causing Fe(III) to be 

reduced to Fe(II) by the reducing electron and As(III) to be oxidized to As(V) via the 

oxidizing hole, h+ on the particle surface. Both Fe(II) and As(V) is released from the 

mineral surface and into the solution where they newly converted As(V) was detected. 
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Future studies are necessary to confirm the proposed pathway of arsenic photoinduced 

redox transformation. Overall, these results have environmental implications because the 

redox transformation of arsenic on the mineral surface leads to the release of arsenic into 

solution making it more bioavailable. 
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CHAPTER V 

Summary and Future Research Directions 
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5.1 Summary 

This research furthers the understanding of the effects of iron oxide nanoparticles 

(hematite nanoparticles) on the fate and transformation of arsenic in the environment. 

The first step was to understand the environmental behavior of nanoparticles. It is 

important to understand how IONPs exist in aquatic environments in regards to their 

particle size, aggregation and stability in the presence of environmental factors such as 

organic matter and ionic strength. The preparation of a bare commercial IONPs stable 

dispersion that is within the nanoscale range is an important component for studying the 

interaction of IONPs with contaminants (e.g., arsenic). A variety of dispersion techniques 

(vortex, bath sonication and probe ultrasonication) were investigated to disperse bare 

IONPs. The effects of important environmental factors such as dissolved organic matter 

and ionic strength on the stability of IONPs dispersions were also investigated. Among 

all the techniques studied, probe ultrasonication was more effective at dispersing IONPs. 

At least 50% or more of IONPs had hydrodynamic diameters ranging from 120-140 nm 

that changed minimally in size over a period of 168h.The sedimentation of IONPs was 

also minimal for a prolonged period of time suggesting that IONPs formed a stable 

suspension with particles within the nano-range. Over the course of 168 hours, 

considerable amounts of IONPs remained dispersed in the presence of low ionic strength 

(0.1 mM of NaCl) and 100 mg/L of humic acid (HA) (dissolved organic matter). These 

results indicated that IONPs can be broken down efficiently into “nanosize range” by 

probe ultrasonication and a degree of stability can be achieved without the use of 

synthetic modifiers to enhance colloidal stability. The probe ultrasonication dispersion 
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tool could be used to develop a laboratory method to study the adsorption mechanism 

between dispersed bare IONPs and toxic contaminants. 

The adsorption of arsenic onto iron oxide surfaces can affect its mobility and 

bioavailability. In the environment arsenic is known to adsorb onto bulk zerovalent iron 

(ZVI), iron oxides and oxy-hydroxides. However, the adsorption process can be enhanced 

using nanoparticulate iron oxides. The adsorption kinetics and adsorption isotherm 

studies of arsenic on bare hematite nanoparticles and hematite aggregates were 

investigated. Using the probe ultrasonication dispersion method to prepare IONPs 

suspensions, the adsorption of arsenic to hematite nanoparticles were investigated. The 

adsorption onto hematite aggregates was also investigated using vortex as the dispersion 

tool to prepare iron oxide in the aggregated form. As(V) and As(III) had similar rate 

constants as rapid adsorption occurred within the first 8h regardless of particle size. 

However, hematite nanoparticles and aggregates showed a higher affinity to adsorb larger 

amounts of As(V) than As(III) at equilibrium. Adsorption isotherm studies showed that 

hematite nanoparticles has a significantly higher adsorption capacity for both As(V) and 

As(III) than hematite aggregates. The large surface area of the nanoparticles can 

accommodate higher amounts of arsenic for adsorption on their surface. The adsorption 

and isotherm studies indicated that the size of the iron oxide mineral is a major factor 

affecting its reactivity as hematite nanoparticles can efficiently adsorb more As(V) and 

As(III) compared to hematite aggregates. This information can assist in predicting arsenic 

adsorption behavior and assess the role of iron oxide nanoparticles in the biogeochemical 

cycling of arsenic. 
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The redox transformation process is an important aspect in the biogeochemical 

cycling of arsenic. The toxicity, mobility and bioavailability of arsenic are highly 

dependent upon its redox state. Environmental factors such as mineral phases could play 

a significant role in arsenic redox transformation process. Both iron and arsenic can 

undergo microbial and photochemcial redox transformation and these processes can be 

intertwined in the environment. Arsenic speciation studies in the presence of hematite 

nanoparticles and hematite aggregates were performed. As(III) oxidation to As(V) and 

As(V) reduction to As(III) occurred in the presence of hematite nanoparticles and 

hematite aggregates. The particle size is an important factor in the rate of redox 

transformation as arsenic speciation occurred more readily and rapidly in the presence of 

hematite nanoparticles than when interacting with hematite aggregates. The hematite 

nanoparticles have high surface area that can accommodate higher amounts of arsenic for 

adsorption. Any surface mediated arsenic transformation will occur faster and in higher 

amounts on the nanoparticle’s surface than on the hematite aggregates’ surfaces.  

Photochemical processes are one of the factors influencing arsenic speciation. 

Arsenite oxidation in the presence of both hematite nanoparticles and hematite aggregates 

occurred faster in the presence of light than in dark. However, minimal As(V) was 

reduced photochemically. Throughout all the speciation studies, the newly converted 

arsenic species, whether it’s As(III) or As(V), were found in the aqueous phase. The 

mechanism of the photochemical oxidation of arsenic is not well established and on the 

basis of the results it is proposed that after As(III) adsorption to the hematite surface and 

upon exposure to light, the insoluble Fe(III) gets reduced to the soluble Fe(II) and the 

adsorbed As(III) is oxidized to As(V).  Both Fe(II) and As(V) are then released into the 
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aqueous phase. Therefore, the presence of nanoparticles in the aqueous environment can 

enhance arsenic speciation. The higher amounts of arsenic that is absorbed onto the 

nanoparticles’ surface can be exposed to surface mediated redox reactions therefore 

resulting in higher amounts of arsenic being reduced or oxidized.  

Overall, this research has significant environmental implications. Iron oxide 

nanoparticles can remain stable in the environment to a certain extent where it can adsorb 

As(III, V) and influence arsenic speciation. The can affect the mobility and 

bioavailability of arsenic in the environment. The adsorption of arsenic to the iron oxide 

surface can reduce arsenic mobility and bioavailability. However, arsenic species 

conversion on the nanoparticle surface and ultimate release back into the aqueous 

environment will result in arsenic’s increased mobility and bioavailability. The 

nanoparticles size and aggregation in the natural environment will affect how fast 

adsorption and redox transformation of arsenic occur. In conclusion, the biogeochemical 

cycling of arsenic is a complex process and this research provided a better understanding 

of the role of iron oxide nanoparticles in arsenic cycling in the environment.  

5.2 Future Research Directions 

5.2.1 Photoinduced arsenic species transformation 

The proposed pathway for the photochemical oxidation of As(III) in the presence 

of hematite particles needs to be investigated extensively. In order to determine if Fe(III) 

undergo reduction, the concentration of Fe(II) and Fe(III) should be quantified at 

different time intervals (24, 48 and 168h). Arsenic species concentration should also be 

measured and compared to the concentration of Fe(II) during that time period. The 

presence of Fe(II) will suggest that Fe(III) undergoes reduction. In addition experiments 
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should be performed to determine whether or not the redox transformation of arsenic is 

surface mediated or solution based. 

5.2.2 Microbial transformation of arsenic species 

It is necessary to determine the effect of microbes on arsenic redox transformation. 

Microbes play a significant role in the redox transformation of both arsenic and iron in 

the environment. The iron redox transformation by microbes is strongly intertwined with 

arsenic redox transformation in the environment. Dissimilatory microbial reduction of 

Fe(III) can cause the release of Fe(II) and any adsorbed As(III) and As(V) into solution 

where the arsenic species can undergo direct oxidation or reduction by the same microbes 

that caused iron reduction or by other microbes. Therefore, investigating arsenic 

speciation in a microbe free environment will provide a good indication of how much 

influence does microbes have on speciation.  

The effect of iron oxide particle size on microbial arsenic speciation is important. 

A few studies in the literature have reported that the rate of microbial Fe(III) reduction 

can be affected by the size of the iron oxide particle. Nanosized particles are more 

accessible to microbes than large aggregates thereby undergoing a higher reduction rate. 

Therefore, it is necessary to the study how the size of the hematite nanoparticle will 

influence the rate of arsenic speciation in the presence of microbes. The addition of 

microbes such as geobacter metallireducens and shewanella putrefaciens (common iron 

reducing microbes) can be added to arsenic-hematite nanoparticle and arsenic-hematite 

aggregates suspensions to investigate the rate of the microbial reduction of iron and the 

subsequent oxidation or reduction arsenic. In these experiments, photochemical effect 
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should be eliminated in order to investigate the role of microbes only on arsenic redox 

transformation. 

 5.2.3 Effects of environmental factors on the interactions between arsenic 

species and IONP 

At present, this research has determined the interactions of IONPs and arsenic in 

water only without any other factors added. In the environment, other factors are 

naturally present such as dissolved organic matter that can play key roles in the cycling of 

arsenic. Dissolved organic matter (DOM) is ubiquitous and has importance in metal 

cycling and possibly has a stabilizing effect on nanoparticles. A multiphase system is 

necessary to fully understand the interactions of IONPs with arsenic in natural 

environments. Future studies should focus on adsorption and isotherm studies of arsenic 

to IONPs in the presence of DOM. Speciation studies is also necessary as to determine 

how degradation and oxidation of DOM can be coupled to the redox transformation of 

arsenic in the presence of IONPs.   
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