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ABSTRACT OF THE DISSERTATION 

PRESSURE INDUCED STRUCTURAL CHANGES AND GAS DIFFUSION 

PATHWAYS IN MONOMERIC FLUORESCENT PROTEINS 

by 

Yuba R. Bhandari 

Florida International University, 2013 

Miami, Florida 

Professor Bernard S. Gerstman, Co-Major Professor 

Professor Prem P. Chapagain, Co-Major Professor 

Fluorescent proteins (FPs) are extremely valuable biochemical markers which 

have found a wide range of applications in cellular and molecular biology research. The 

monomeric variants of red fluorescent proteins (RFPs), known as mFruits, have been 

especially valuable for in vivo applications in mammalian cell imaging. Fluorescent 

proteins consist of a chromophore caged in the beta-barrel protein scaffold. The 

photophysical properties of an FP is determined by its chromophore structure and its 

interactions with the protein barrel.  

Application of hydrostatic pressure on FPs results in the modification of the 

chromophore environment which allows a systematic study of the role of the protein-

chromophore interactions on photophysical properties of FPs. Using Molecular Dynamics 

(MD) computer simulations, I investigated the pressure induced structural changes in the 

monomeric variants mCherry, mStrawberry, and Citrine. The results explain the 

molecular basis for experimentally observed pressure responses among FP variants.  It is 

found that the barrel flexibility, hydrogen bonding interactions and chromophore 
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planarity of the FPs can be correlated to their contrasting photophysical properties at 

vaious pressures.  

I also investigated the oxygen diffusion pathways in mOrange and mOrange2 

which exhibit marked differences in oxygen sensitivities as well as photostability. Such 

computational identifications of structural changes and oxygen diffusion pathways are 

important in guiding mutagenesis efforts to design fluorescent proteins with improved 

photophysical properties. 
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1.  INTRODUCTION 

1.1 WHAT IS FLUORESCENCE 

Fluorescence is a phenomenon in which a molecule absorbs radiation, jumps to an 

excited state and then releases the radiation in the form of light of specific wavelength 

while going back to the ground state. Usually the wavelength of emitted light is longer 

(less energetic) than the wavelength of absorbed light. The timescale range for 

fluorescence process is 1 ns to 100 ns. The molecule is mostly singlet (electronic spins 

paired) in the ground state. After absorbing light, it transits to an excited singlet state. 

Once in the excited state, the molecule may lose energy due to vibrational modes. Then 

finally it jumps back to the ground sate emitting radiation.  If the excited singlet state gets 

converted to the excited triplet state,  it may transit to the ground state emitting radiation 

and this process is called phosphorescence. The phenomenon of phosphorescence takes 

place over longer time scales ranging from 1 ms to 100 seconds. Various processes taking 

place during fluorescence and phosphorescence are depicted in Figure 1.1. 

 

 

Figure 1.1 Jablonski Energy Diagram 
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1.2   WHY STUDY FLUORESCENT PROTEINS 

 Fluorescent proteins are extremely valuable biochemical markers in molecular 

and cell biology. The fluorescent proteins (FPs) emit in the visible range of light when 

they are irradiated with light of a specific shorter wavelength. The emission of light is 

called fluorescence. Because of the fluorescence, when fluorescent proteins are fused 

with other proteins of interest, it is possible to study the movement, localization and 

many other physiological processes of the tagged proteins in vivo (1-4). Fluorescent 

proteins are also used as genetically encoded sensors to detect protein-protein interactions 

on the basis of Forster resonance energy transfer (FRET) applications (5).  Fluorescent 

proteins consist of 220-240 amino acid residues that fold into a barrel shaped beta-sheet 

scaffold, which encloses a tripeptide structure called the chromophore. The protein owes 

it fluorescence to the chromophore (2). The side chains of the residues of the beta barrel 

near the chromophore have an important role to play in the formation and maturation of 

the chromophore. The electronic molecular orbitals of the chromophore are responsible 

for its spectral properties, and may be modified by the surrounding amino acid side 

chains. Understanding the barrel-chromophore interactions and the effect on the 

chromophores’ spectral properties in these proteins will have important implications in 

designing brighter and more photo-stable fluorescent protein variants that can be used as 

efficient biochemical markers for studying cellular processes. In order to better 

understand the system, we subject various fluorescent proteins to high pressures and 

calculate how the chromophore-barrel interactions are modified. 
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1.3 DEVELOPMENT OF MONOMERIC VARIANTS 

Wild type fluorescent proteins have a tendency to oligomerize. Naturally 

occurring green fluorescent protein, derived from the jellyfish Aequorea victoria, forms a 

dimer. Similarly, the red fluorescent protein DsRed, obtained from sea coral Discosoma 

sp., is tetrameric. Oligomeric forms of fluorescent proteins are overly bulky for the 

tagging purpose, and often take a long time (days) to mature and express their 

fluorescence. To overcome the shortcomings of the oligomers, various mutations have 

been carried out to generate monomeric variants. The monomeric FPs mature much 

faster (in hours), but may be slightly less bright and less photostable than their 

multimeric progenitors.  

 

 

Figure 1.2 Barrel and chromophore structure of a monomeric FP. Figure 1.2(a) shows the 

protein barrel enclosing the chromophore. Figure 1.2(b) shows the chromophore from the 

top view of the protein barrel. 



 
 

4

A typical monomeric FP consists of around 240 amino acids forming an 11 

stranded beta barrel. A distorted helix runs through the axis of the cylindrical barrel. The 

chromophore is located at the center of the helix, which is formed by a unique post-

translational modification of, usually, three amino acid residues. The barrel and 

chromophore structure of a monomeric FP are shown is Figure 1.2.  

To be used as an efficient biochemical marker, the monomeric variant should be 

bright enough to produce sufficient signal above the cellular autofluorescence, and 

should have sufficient photostability to be imaged for the time period of the experiment. 

The monomeric variants investigated in my study are mOrange, mOrange2, mCherry and 

mStrawberry (derived from RFP) and citrine (derived from GFP).  

1.4 PRESSURE EFFECTS ON PROTEINS 

Subjecting a protein to higher temperatures increases the thermal fluctuations of 

the system and structural dynamical modes become active, which allows exploration of 

more protein configurations. However, there could be a large number of conformational 

substates unexplored by the temperature effects alone. Pressure is as equally an important 

thermodynamic parameter as temperature, and can be used to further unravel the protein 

dynamics and configurational pathways leading to folding, unfolding, or conformational 

changes. 

Pressure experiments on proteins have shown that proteins can be squeezed (6-

11). As we apply hydrostatic pressure on globular proteins, water molecules can be 

pushed inside or forced out. The change in the number of interior water molecules, along 

with the general squeezing of the protein, can change the number and arrangement of the 
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internal hydrogen bonds. Mozhaev et al. have reported that electrostatic interactions 

become much weaker at higher pressures (12). The denaturation of proteins at very high 

pressures of 1000-1500 MPa may be due to hydration changes occurring inside the 

protein cavities and changes in hydrogen bond patterns.  

Pressure perturbations bring about atomic scale deformations of proteins and 

other biomolecules, which can affect their structural properties and biological 

functioning. Proteins subjected to high pressure undergo significant structural changes, 

varying from elastic effects that may cause spectral shifts without large conformational 

changes, to complete unfolding (13). For example, experimental studies on myoglobin 

and Ribonuclease A have shown that these proteins can be denatured when perturbed by 

hydrostatic pressures around 600 MPa (14, 15). Investigations of the effects on the 

protein structure of gradually increasing the pressure help in understanding the 

mechanistic details about protein functioning and interactions between proteins and 

solvents (7, 16, 17). Pressure effects have also been used to understand the gating 

phenomenon of ion channels in membrane proteins (18).  

 

1.5 GAS DIFFUSION AND OXIDATIVE PHOTOBLEACHING 

There has been a continuous search for improved fluorescent proteins to act as 

efficient biological markers in terms of brightness, wavelength, photostability, protein 

structural stability, pH and temperature stability etc. Red fluorescent proteins (RFPs) are 

especially preferred because the background cellular autofluorescence is low in the red 

region of the spectrum. Unfortunately, the wild type red fluorescent protein, DsRed is 

tetrameric, and is too big to be used effectively as a fusion partner (19). To create a 
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monomer, the tetrameric progenitor dsRed was mutated with 33 substitutions through site 

directed evolution to obtain the first monomeric variant, named mRFP1 (20, 21). 

However, obtaining the monomeric variant involves mutating key residues in the 

monomer that are located at the interfaces of the monomer when formed into a tetramer.  

These mutations may endanger the monomer stability as a whole. Structural changes 

resulting from these mutations may also affect the diffusion of gases and ions into the 

interior through gaps in the protein barrel.  

Recent investigations have shown that protein flexibility plays a major role in gas 

access into many proteins (22-27). Conformational flexibility of the side chains of 

residues involved in forming transient cavities or pathways can alter the sizes of the 

bottlenecks for gas diffusion, as well as changing gating mechanisms at the protein 

surface (28-32). In FPs, in addition to affecting the structures of the chromophore and the 

protein barrel separately (33), the chromophore−barrel interaction can also affect the 

fluctuations of the chromophore and the barrel, which in turn can modify the spectral 

properties and lifetime of the fluorescence (34). It was shown in a recent important work 

on cyan fluorescent protein that the reduction in the flexibility of a beta strand in the 

barrel had led to a dramatic improvement in fluorescence quantum yield (35). The halide 

sensitivity of yellow fluorescent proteins (YFP) was eliminated by the mutation Q69M 

that occupies the halide-binding cavity in the vicinity of the chromophore (36). In an 

important work (37), Roy et al. investigated the diffusion pathways of molecular oxygen 

in the phototoxic KillerRed protein. In this protein, reactive oxygen is generated from 

molecular oxygen that diffuses into the interior of the protein. They were able to identify 

pores and channels that allow the oxygen to escape through the protein barrel to the bulk 
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solvent. This study also suggested that the ease of molecular oxygen diffusion through a 

channel is the cause of the high susceptibility for photobleaching (37). 

Better shielding of the chromophore from the environment, as well as reducing 

the access of molecular oxygen to the chromophore, has been shown to significantly 

increase the photostability of both GFPs and RFPs (38). Two mutations (Q64H and 

F99Y) carried out on mRFP1, resulted in an 11 fold increase in its photostability. Similar 

mutations were performed on mOrange to produce mOrange2, which provided enhanced 

photostability and made an excellent fusion partner with other proteins (39).  

There are many different ways in which amino acid mutations can affect the 

fluorescent properties. Though the changes in the electronic orbitals are important for 

spectral changes, we are especially interested in the structural effects that change the 

oxygen permeability, and structural flexibility that may affect the chromophore’s 

fluorescent properties. A static image from x-ray crystallography is not enough to 

investigate the dynamical properties resulting from the gas diffusion and barrel 

fluctuations. This calls for the need of studying the various transient interactions at the 

molecular level in silico. I have performed molecular dynamics simulations with explicit 

oxygen to investigate the oxygen diffusions and structural fluctuations in mOrange and 

mOrange2. 
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2.    METHODS 

We investigate the effects of pressure on the interactions between the 

chromophore and the protein barrel in fluorescent proteins by performing molecular 

dynamics calculations.  These calculations are aimed at determining structural changes, 

as well as changes in the bonding between the chromophore and the protein barrel. 

Though we do not perform quantum mechanical calculations to determine changes in the 

electronic molecular orbitals of the chromophore, we will see below that some aspects of 

the chromophore’s electronic configuration are incorporated in the calculation when we 

discuss the parameterization of the chromophore later in this chapter.  

We first discuss two major issues for determining the accuracy of an MD 

simulation: the mathematical scheme used to perform the numerical integration for a 

finite Δt, and the force fields that are incorporated to represent the forces experienced by 

the particles.  

2.1 MOLECULAR MECHANICS: FORCE FIELD MODELS 

The most detailed calculations on a molecular system employ quantum 

mechanical methods for calculating electronic molecular orbital properties and bonds 

between atoms. These calculations are computationally expensive and not practical for 

macromolecules containing hundreds of electrons. In this situation, a widely used 

approach with smaller computational cost is to choose empirical potential energy 

functions. The potential energy function can then be parameterized so that the energy it 

produces agrees with experimental data, or with the results of ab initio quantum 

mechanical calculations if available (40). Most of the MD simulation packages use 
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potential energy functions between atoms that have the approximate form of a harmonic 

oscillator potential. Use of simple models of force fields can represent the interactions in 

a biomolecular system from contributions such as bond stretching, angle fluctuations, and 

rotations about bonds, and form the basis of molecular mechanics calculations. 

 

Figure 2.1 Bonded and non-bonded interactions 

 

CHARMM (Chemistry at Harvard Macromolecular Mechanics) is a versatile 

molecular dynamics simulation package that not only performs energy minimization, 

molecular dynamics, trajectory analysis, but also enables full parameterization of the 

novel molecules through comparison with experimental and quantum calculations. We 

use CHARMM (41) version 35b2, and NAMD (42) version 2.9 with the CHARMM27 

force fields for our molecular dynamics simulations. CHARMM27 force field parameters 

are developed to study proteins, nucleic acids, lipids, carbohydrates etc. 

Molecular mechanics calculations compute the energy of a system based on its 

conformation. The interactions between various atoms in a molecule are classified into 

bonded interactions and non-bonded interactions. The sum of individual bonded and non-
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bonded interactions contribute to the energy of the specific conformational state. The 

potential energy terms include energetic penalties when bonds and angles deviate away 

from their preferred arrangement. Since a system with many atoms has many interactions, 

it is unlikely that any configuration will allow all the interactions to be minimized 

simultaneously. This is an example of “frustration”. However, the configuration that best 

minimizes the total energy of the system is the equilibrium configuration. The various 

potential energy terms for the nearest and non-nearest neighbor interactions are described 

in detail below. 

 

2.1.1   BONDED INTERACTIONS 

Bond Stretching 

A chemical bond can be modeled as a spring with equilibrium bond length r0 and 

stretching force constant ks. The energy required to elongate or compress the spring can 

be expressed using Hooke’s law. 

U (r)= 
ೞଶ ൫r	- r0൯2

                                                                 (2.1) 

A realistic bond potential is not perfectly harmonic. Morse proposed a realistic 

functional form used to model bond stretching: 

(ݎ)ܷ = {1ܦ	 − exp[−ܽ(ݎ −  )]}ଶ                                          (2.2)ݎ

In equation 2.2, De is the depth of the potential energy minimum at r = ro 

compared to the potential at r = ∞, and	ܽ =  where μ is the reduced mass ,	(ܦ2/ߤ)ඥݓ

and ω is the frequency of the bond vibration. The Morse potential is represented in Figure 



 
 

11

2.2. Although the Morse potential is more realistic than the harmonic potential, it requires 

more parameters and is computationally expensive (43).  

 

Figure 2.2 Potential energy versus separation for Morse Potential 

Angle Bending 

The angle bending energy is the energy required to bend a bond from its 

equilibrium angle, θ0. The deviations of angles from their equilibrium values are modeled 

using the harmonic potential: 

                                           U(θ)= 
ଶ ൫θ	- θ൯2

                      (2.3) 

In equation 2.3, ݇ is the force constant. A diagram for this potential is displayed 

in Fig. 2.3. The energy penalties for angle bending are less severe than those for bond 

stretching, and are reflected by appropriate small values for ݇. 
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Figure 2.3 Potential energy function for bond angle bending. 

Torsions 

Rotation about a chemical bond causes variation in structure and relative energy. 

If four atoms A-B-C-D form a bonded quartet, the angle between the planes ABC and 

BCD is referred to as the torsion angle. A complex interplay between the torsional and 

non-bonded interactions result in diverse conformational states. The variations in 

torsional potential energy for various torsional angles of ethane are shown in Figure 2.4 

(44). The torsion potential is expressed as a summation of a cosine series: 

(ݓ)ܷ = 	∑ ଶ [1 + cos	(݊ݓ −	ேୀ γ)]                                                         (2.4) 

In equation 2.4, ݓ is the torsion angle, k is the barrier height, γ is the phase factor for 

minimum potential energy, and n denotes multiplicity. 
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Electrostatic Interactions 

These interactions include the attractive and repulsive forces between charged 

atoms and molecules. A customary approach for calculating electrostatic interactions is 

by assigning partial atomic charges to each atom and applying Coulomb’s law: 

(ݎ)ܷ = ∑ ∑ ೕସగఢబೕேಳୀଵேಲୀଵ                                                             (2.5) 

Here, ܰ	and ܰ  are the number of point charges in the two molecules of the 

system, A and B. The permanent partial atomic charges are parameters that are 

determined by making an initial guess and then performing calculations in an attempt to 

reproduce the results of experiments or QM calculations. The discrepancy in the 

calculations is used to guide the modification of the assigned partial charges. The process 

is repeated until the assigned charges produce calculated results that are in good 

agreement with experimental results. The definition of “good” is relative and limits can 

be set by the user based upon considerations such as computational speed.  For periodic 

systems, the electrostatic interactions are calculated efficiently for small as well as large 

distances by using the Particle-Mesh-Ewald (PME) method (45). 

Lennard-Jones Interactions 

The Lenard-Jones potential involves long range dispersion interactions (van der 

Waals attractive forces) and the short range repulsive interactions between non-bonded 

inert atoms. The dispersion interactions are due to the inducement of dipole moments by 

one atom in another, and vice versa. The induced dipole moments form the basis for van 

der Waals attraction (46). If the atoms come too close, the energy contribution increases 
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exponentially. This effect can be explained by the Pauli Exclusion Principle, which 

prohibits any two electrons in the system from having the same set of quantum numbers.  

The LJ interaction is modeled as a sum of attractive and repulsive terms as: 

(ݎ)ܷ = 4߳ ቀఙቁଵଶ −	ቀఙቁ൨	                                         (2.6) 

The LJ potential contains two adjustable parameters: the collision diameter (σ) and the 

potential well depth ε. Equation 2.6 can be plotted against the distance of separation as 

shown in Figure 2.5. 

 

Figure 2.5 Lennard-Jones potential 

Since the number of non-bonded interactions scales as the square of the number 

of particles of the system, calculating every non-bonded interaction between every atom 

imposes a huge computational cost. A commonly applied solution is to impose a cutoff 

distance on the non-bonded force calculations. Care must be taken because this could 

have serious drawbacks while simulating a system with charged particles, since the 

electrostatic interaction has infinite range.  
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To reduce the computational cost, non-bonded interactions are truncated at a 

certain cutoff distance, and beyond the cutoff distance no interaction is calculated. The 

cutoff criterion may introduce a discontinuity, as the energy may abruptly drop to zero. 

This can lead to unreliable results or early termination of MD simulations. For example, 

two atoms may be separated by a distance that is close to the cutoff. In one time frame of 

the MD simulation, the separation distance may be less than the cutoff and in the next 

time frame it may be slightly more than the cutoff. Although the separation distance may 

fluctuate very slightly, the interaction energy changes abruptly. 

Special functions (shifting, switching etc.) are used to smoothly vary the energy at 

the cutoff distance (47), so that energy function smoothly goes to zero at the cutoff 

distance.  The switching function in CHARMM introduces three different cutoff 

distances: ctonnb, ctofnb, and ctnb. The switching function begins to affect the LJ 

potential starting at the smallest of the three, ctonnb. The switching function brings the 

interaction smoothly to zero at ctofnb. The value of ctnb refers to the distance for 

generating the non-bonded pair list, and is updated periodically. The distance ctnb is 

slightly greater than ctofnb. The various cutoff distances are representated in Figure 2.6. 

The non-bonded interactions between 1-2 and 1-3 neighbors are always excluded, as they 

are the nearest neighbors bonded chemically. 
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The same expression can be written for a reverse time step ݐ߂	as: 

ݐ)ݎ − (ݐ߂ = (ݐ)ݎ − ݐ݀ݎ݀ ݐ߂ + 12݀ଶݐ݀ݎଶ  ଶ(ݐ߂)

Adding the above two equations, we get 

ݐ)ݎ                                    + (ݐ߂	 = (ݐ)ݎ2 − ݐ)ݎ − (ݐ߂ +  ଶ     (2.7)(ݐ߂)(ݐ)ܽ

(ݐ)ܽ = ቀௗమௗ௧మቁ௧  
Equation (2.7) gives the position of a particle after a time interval ݐ߂, provided 

that the position and acceleration at the current time, and the position at the previous time 

t-Δt is known. The Verlet algorithm does not depend on velocity, dr/dt, to calculate the 

new position of the particle. The acceleration at the current time can be calculated from 

the force acting on particle at the current time. 

ܽ = ܨ݉
 

ܨ = ݎܷ݀݀−  

U is the potential energy function that is incorporated in the MD program to represent the 

interactions among the particles. 
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2.2.2 LEAP-FROG ALGORITHM 

Other integration schemes involve continuous updating of velocity as well as 

position.  These integration schemes are employed when knowledge of the velocity is 

necessary, such as when the temperature of the system is controlled. A specific 

temperature means that the average kinetic energy of the particles must have a specific 

value. In order to assure this, periodically the MD program examines the kinetic energy 

and decides if an adjustment is necessary to return the system to the correct temperature. 

This requires knowledge of the speeds of all the particles. A useful integration scheme for 

updating the position of the particles that also allows velocity scaling is the Leap-frog 

algorithm, which is a slightly modified form of the Verlet algorithm. 

The method is called Leap Frog because some quantities are calculated at integer 

values of Δt, whereas other quantities are calculated at Δt/2. The position of a particle can 

be expressed through a Taylor series expansion with a time step of Δt/2 as follows: 

ݎ ൬ݐ + 2ݐ߂ + 2ݐ߂ ൰ = ݎ ൬ݐ + 2ݐ߂ ൰ + ݐ)ݎ݀ + 2ݐ߂ ݐ݀( 2ݐ߂ + 12݀ଶݐ)ݎ + 2ݐ߂ ଶݐ݀( 2ݐ߂) )ଶ + ⋯ 

    

ݎ ൬ݐ + 2ݐ߂ − 2ݐ߂ ൰ = ݎ ൬ݐ + 2ݐ߂ ൰ − ݐ)ݎ݀ + 2ݐ߂ ݐ݀( 2ݐ߂ + 12݀ଶݐ)ݎ + 2ݐ߂ ଶݐ݀( 2ݐ߂) )ଶ + ⋯ 

Subtracting we get 

ݐ)ݎ                      + (ݐ߂ = (ݐ)ݎ + ݐ)ݒ + ௱௧ଶ  (2.8)    ݐ߂	(
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 The definition for the velocity is 

ݒ ൬ݐ + 2ݐ߂ ൰ = ݐ)ݎ݀ + 2ݐ߂ ݐ݀(  

To express this in terms of a=F/m , let us expand the velocity in the time step Δt/2 

ݒ ൬ݐ + 2ݐ߂ ൰ = (ݐ)ݒ + ݐ݀(ݐ)ݒ݀ 2ݐ߂ + 12݀ଶݐ݀(ݐ)ݒଶ 2ݐ߂) )ଶ + ⋯ 

 

ݒ ൬ݐ − 2ݐ߂ ൰ = (ݐ)ݒ − ݐ݀(ݐ)ݒ݀ 2ݐ߂ + 12݀ଶݐ݀(ݐ)ݒଶ 2ݐ߂) )ଶ + ⋯ 

Subtracting we get 

ݒ                                  ቀݐ + ௱௧ଶ ቁ = ݒ ቀݐ − ௱௧ଶ ቁ +  (2.9)     ݐ߂(ݐ)ܽ

(ݐ)ܽ = ݐ݀(ݐ)ݒ݀  

Equation (2.9) is used to calculate the velocity at (ݐ + ௱௧ଶ ); this velocity is used to 

find the position at (ݐ +  using equation (2.8). Consequently, the velocity leaps over (ݐ߂

position first, and then the position leaps over the velocity. The velocities at time t can be 

approximated by the relationship  

(ݐ)ݒ = 12 ݒ ൬ݐ + 2ݐ߂ ൰ + ݒ ൬ݐ − 2ݐ߂ ൰൨ 
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2.2.3 TIME INCREMENTS, Δt 

In molecular dynamics, the motions of atoms occur on different time scales. 

Characteristic times for vibrational motions involving strongly bonded atoms are high 

frequency motions, while non-bonded interactions are low frequency motions. For 

example, the highest frequency of motion in biomolecular system is the vibrational 

motion of a light atom chemical bond to a heavy atom and hydrogen (time period ~ 10-

14s). A very small time interval ~ 1 fs is required to capture this motion. Unfortunately, 

this requires many time steps to investigate protein motions that occur on 100 ns time 

scales. One way to get around this is by constraining the bond between a heavy atom and 

hydrogen to be a fixed length with no vibrations. This process is facilitated by the use of 

the SHAKE command in CHARMM. This allows the use of a slightly longer time 

interval (~ 2 fs).  

2.3 CONSTANT PRESSURE AND TEMPERATURE SIMULATIONS 

Molecular dynamics simulations perform calculations on particles in a 

microscopic system, but under imposed macroscopic conditions involving temperature, 

pressure, and volume. To be able to perform constant temperature simulations, the 

parameters for energy fluctuations have to be incorporated. On the other hand, to 

simulate isobaric conditions, volume has to be introduced as a dynamical variable. 

Constant temperature and pressure simulations have been made possible by the 

pioneering work of incorporating energy and volume fluctuations in a dynamical system, 

such that the trajectory average of any property is equal to its NPT ensemble average (48-

51). One way of applying NPT dynamics is through the modifications of the system’s 
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Hamiltonian (48). The terms in the Lagrangian are redefined to include the volume V, 

and a piston mass M, and a stochastic collision term. The piston can compress the system 

to vary the pressure, and the collision term can vary the energy of the system. A second 

approach to implementing an NPT ensemble is through the weak coupling to an external 

bath (49). Stochastic and friction terms are introduced in the equations of motion, 

resulting in a Langevin equation.  

Isobaric-isothermal simulation is enabled in CHARMM through the use of 

command “Dynamics CPT”. Constant pressure simulation is made possible only through 

the use of periodic boundary conditions. The size of the system is calculated and updated 

each step to allow the volume fluctuations for maintaining constant pressure. Two 

keywords ‘pmass’ and ‘tmass’ have to be specified. The term ‘pmass’ refers to the mass 

of the pressure piston, and setting any component of  ‘pmass’ to zero will fix the size of 

the cell. Mass of the temperature piston “tmass” is kept ten times the mass of the pressure 

piston. Simulations at higher pressure cause volume compression, eventually increasing 

the density of the system.  

2.4 PARAMETERIZATION OF THE CHROMOPHORE 

The chromophore of florescent protein is formed by the auto-oxidation and 

cyclization of three to four amino acid residues. As a chemically modified entity, the 

force field parameters developed for regular amino acid residues do not accurately 

represent the chromophore. This calls for the need of chromophore parameterization. 

Fortunately, the chromophore of a green fluorescent protein has been parameterized by 

Reuter et al. (52) for use in CHARMM simulations. The chromophore of GFP is very 
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similar to the chromophore of mCherrry, mStrawberry and citrine. Hence the force field 

parameters for the chromophore of mCherry, mStrawberry and citrine were adopted from 

the anionic GFP chromophore parameters, with an addition of parameters for acylimine 

nitrogen from the CHARMM27 force fields.  

The formation of the mOrange chromophore involves two cyclizations: one 

leading to the formation of imidazolinone ring, and the other forming the novel five-

member oxazole ring. The parameters for the imidazolinone ring are obtained from GFP 

chromophore, while those for the oxazole like ring are obtained from the CGenFF 

parameters (53) of oxazole and similar five member heterocyclic rings. The CHARMM 

General Force Field (CGenFF) presents the force fields for a wide range of chemical 

groups, including various heterocyclic scaffolds for use in CHARMM simulations. The 

parameterization procedure is based on analogy to the bond, angle and dihedral types as a 

first approximation. The chromophore of mOrange2 is identical to that of mOrange, and 

the mutations are only performed on the barrel. 

2.5 IDENTIFYING PROTEIN CAVITIES: CAVER CALCULATIONS 

A protein barrel includes small cavities and tunnels inside, which provide the 

microenvironment for molecular diffusion and protein ligand interactions. The shape and 

structure of protein clefts and tunnels is transient, and depends on the protein barrel 

fluctuations and molecular interactions occurring inside the cavity. Caver (54) is a 

software package developed to identify such protein tunnels and cavities. The software 

searches for channels by exploring the interior of the protein. The protein atoms are 

modeled with hard sphere atoms with appropriate van der Waals radii, and represented on 
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a three dimensional grid space. The site and probe radius for starting the channel 

calculation has to be specified in the input file. Caver groups nearby tunnels into a single 

tunnel cluster. Performing caver calculations on a large number of frames may be 

computationally very expensive. Instead, frames from a long trajectory can be sampled at 

a specific time interval to carry out Caver calculations. The probe radius chosen in my 

study is 0.8 Å and the chromophore of each FP is set as the starting point for channel 

calculations.   

2.6 LOCALLY ENHANCED SAMPLING 

Locally enhanced sampling is a computational method of increasing the speed for 

exploring the behavior of the system. For example, we are interested in locating all the 

pathways for oxygen entry into the barrel. One way to determine the pathways is to place 

one oxygen molecule at a location outside the barrel and carry out an MD simulation to 

see where it enters. We would then repeat the MD simulation with another oxygen 

molecule initially placed in a different location outside the barrel. Each oxygen location 

would require the performance of its own time consuming MD simulation. Instead, the 

exploration of multiple pathways, i.e the sampling of the system can be done during a 

single MD simulation. This is done by placing multiple, non-interacting copies of the 

oxygen molecule, known as enhanced atoms (55, 56), at many different initial locations 

simultaneously. The copies of the oxygen do not interact with each other, and can occupy 

the same space as well. The “multiply” command in NAMD facilitates the generation of 

multiple copies. The beta column in the pdb file represents the presence of enhanced 
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atoms. A beta value of 0 represents a normal atom, and a non-zero beta value represents 

the enhanced atom.  

I have used 15 copies of the oxygen molecules in my LES molecular dynamics 

simulation for identifying the oxygen diffusion pathways inside the protein barrel. 

2.7 OTHER COMPUTATIONAL DETAILS 

2.7.1 SIMULATION CONDITIONS FOR mCHERRY, mSTRAWBERRY AND 

CITRINE 

Initial protein structures were obtained from the protein data bank (mCherry: pdb 

code 2H5Q, mStrawberry: pdb code 2H5P, and citrine: 1HUY). The parameters for the 

chromophores of all three FPs were obtained from the work on the anionic chromophore 

of the green fluorescent proteins (52). Glu215 was protonated in both mCherry and 

mStrawberry as observed by Shu et. al. (34). The MMTSB toolset (57) was used to set up 

the system. The initial structures of the FPs were separately solvated using TIP3 water 

molecules in rhombic dodecahedron boxes. The minimum distance of a box edge from 

the protein was set to be 10 Å.  In addition to the water molecules already present in the 

crystal structures, mCherry was solvated with 9641 water molecules, mStrawberry with 

8132 water molecules, and citrine with 8463 water molecules.  

Energy was minimized using steepest descent followed by the adopted basis 

Newton-Raphson (ABNR) method. The energy-minimized systems were then neutralized 

by adding sodium and chloride ions, distributed throughout the volume. The systems 

were then heated with a linear gradient of 10 K/ps from 100 K to 300 K. At 300 K, the 

systems were equilibrated for 1ns with a 2 fs integration time step in the isobaric-
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isothermal (constant pressure-temperature, CPT) ensemble. Finally, production runs of 

20-30 ns were performed under the isobaric-isothermal ensemble at 300 K. At high 

pressures 750 MPa and 1000 MPa, 15 ns simulations were performed for mCherry and 

mStrawberry. To investigate similar pressures as done experimentally, our molecular 

dynamics simulations were performed at five different pressures: 0.1 MPa, 250 MPa, 500 

MPa, 750 MPa and 1000 MPa for mCherry and mStrawberry, and at six different 

pressures for citrine: 0.1 MPa, 50MPa, 100 MPa, 250 MPa, 500 MPa and 750 MPa. To 

allow sufficient time for the pressure equilibration of the solvated systems, only the last 

10 ns trajectory from the simulations was used for the analysis.  

A 1ns CHARMM simulation takes about 2 days. The total computational time for 

performing 20 ns simulation of mCherry and mStrawberry at 5 different pressures is 

~10000 processor hours. The total computational time for performing 30 ns simulation of 

citrine at six different pressures is ~9000 processor hours. 

2.7.2 SIMULATION CONDITIONS FOR MORANGE AND MORANGE2 

The initial X-ray crystallographic structure of mOrange (pdb code 2H5O) was 

obtained from the Protein Data Bank. The more photostable mOrange2 was obtained 

through four mutations Q64H/F99Y/E160K/G196D on the mOrange protein barrel using 

MODELER (58). The VMD package was used to setup the system for simulations. The 

initial structures of mOrange and mOrange2 with crystallographic water molecules and 

one molecular oxygen each were solvated by using a box cutoff of 10 Å in VMD. The 

solvated systems were then electrically neutralized using the VMD autoionize plugin, and 

the oxygen molecule was multiplied to 15 copies in each system to enable LES sampling. 
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 The final systems contained a total of 28,892 atoms in mOrange and 29,195 

atoms in mOrange2. All water molecules overlapping with the protein were removed. 

The particle mesh Ewald method was used to treat long-range interactions with a 12 Å 

non-bonded cutoff. Energy minimization was performed using the conjugate gradient and 

line search algorithm. Each system was then heated with a linear gradient of 20 K/ps 

from 20 to 300 K. At 300 K, each system was minimized for 300 steps and equilibrated 

for 5 ps with a 2 fs integration time step in the NVT (constant number, volume, and 

temperature) ensemble. Langevin dynamics was used to maintain the temperature at 300 

K. For each system, an 80 ns production run was performed with NVT dynamics and 2 fs 

time step. The first 10 ns trajectory was not used for analysis to allow sufficient time for 

equilibration of each system.  

The total computational time for carrying out 80 ns LES simulation of mOrange 

and mOrange2 is ~4000 processor hours.  
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3. STRUCTURAL FEATURES OF THE PROTEIN BARREL THAT ALLOW 

OXYGEN ACCESS AT AMBIENT PRESSURE  

In this chapter I provide the results of my calculations performed at ambient pressure. 

For all of the proteins that I investigated, I performed computations to uncover channels 

that allow molecular oxygen in the solvent to penetrate the protein barrel and access the 

chromophore. mOrange and mOrange2 differ in only a few mutations, but have very 

different oxygen sensitivities. I performed additional calculations to elucidate the 

structural features that are responsible for the different oxygen sensitivities of mOrange 

and mOrange2.  

3.1 PROTEIN BARREL AND CHROMOPHORE OF mORANGE, mORANGE2,  

mCHERRY, mSTRAWBERRY, AND CITRINE 

The monomeric variants mOrange, mCherry and mStrawberry were derived from 

the wild type tetrameric progenitor DsRed. The naturally occurring tetramer has a very 

high fluorescence quantum yield of 0.79 and is very bright. The 33 mutations carried out 

on DsRed resulted in the first generation monomeric RFP known as mRFP1. 

Development of the monomeric RFP overcame the problems of tetramerization and the 

slow maturation of the parent protein DsRed. However, mRFP1 exhibited a very small 

quantum yield of 0.25 and a brightness of 21% of that of DsRed, possibly due to the 

compromised barrel structure caused by the mutations introduced to break the tetramer 

interactions at the interface between the monomers. The immediate challenge was to 

develop monomeric RFP variants with higher quantum yield and photostability. The 

following mutations were carried out on mRFP1 to obtain mOrange: Q66M, T147S, 

M182K, M66T, T195V, T41F and L83F. Although these mutations were able to greatly 
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enhance the brightness of mOrange, four additional mutations 

(Q64H/F99Y/E160K/G196D) in the protein barrel were needed to achieve a highly 

photostable variant, mOrange2. The chromophores of mOrange and mOrange2 are 

identical, and are composed of three connected rings formed by the oxidation and 

cyclization among four amino acids: Phe, Thr, Tyr and Gly. mCherry and mStrawberry 

were also developed from mRFP1. The chromophore of mCherry is made up of Met, Tyr 

and Gly, and that of mStrawberry is made up of Thr, Tyr and Gly. The mutations carried 

out to develop all the RFP variants are depicted in Figure 3.1. The chromophores of 

various FPs investigated in my study are shown in Figure 3.2. 

The yellow fluorescent proteins are obtained through the mutation T203Y in 

green fluorescent proteins (59). Citrine is a variant of YFPs derived from the GFP with 

mutations S65G/V68L/Q69M/S72A/T203Y (36). The mutation T203Y is responsible for 

red shift, and the mutation Q69M fills a large halide binding cavity, thus decreasing the 

halide sensitivity. The chromophore of citrine is formed by the cyclization of Gly-Tyr-

Gly, resulting in the formation of a heterocyclic imidazolinone ring (60). The β7 – β10 

gap in citrine is slightly smaller than that of mCherry (61).  
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Table 3.1 Number of tunnels in various FPs 

Fluorescent Protein Number of tunnel clusters Number of tunnels 

mOrange 35 178 

mOrange2 31 95 

mCherry 33 292 

mStrawberry 29 191 

Citrine 10 144 

 

The insights gained from channel calculations can be useful for understanding the 

barrel flexibility and gas diffusion in FPs. A relatively small number of tunnel clusters is 

found in citrine. The greater number of tunnel clusters and significantly larger number of 

tunnels in mOrange provides a good explanation for the experimental observations that 

show that mOrange is more permeable to molecular oxygen than mOrange2. The oxygen 

sensitivity of mOrange and mOrange2 is investigated in detail in the next section using 

explicit oxygen molecular dynamics simulation. mCherry and mStrawberry also show a 

significantly larger number of tunnels inside the protein barrel than citrine. Figure 3.3 

shows the tunnel clusters present in various FPs at atmospheric pressure. The tunnels 

belonging to the same cluster are represented by same color.  
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3.3.1 EXPERIMENTAL STUDIES ON OXYGEN SENSITIVITY 

Although the mutations performed on mRFP1 greatly enhanced the fluorescent 

quantum yield, the photostability could not be improved for most of the variants. One 

possible cause of low photostability was easy oxygen access through the barrel to the 

chromophore which causes fluorescence quenching. Four important mutations (Q64H, 

F99Y, E160K and G196D) were carried out on mOrange to obtain a highly photostable 

variant, mOrange2. Among the mutations introduced to obtain mOrange2, a combined 

mutation of Q64H and F99Y imparted about a tenfold increase in photostability. The 

same combination of Q64H and F99Y conferred an 11-fold increase in photostability to 

mRFP1. Oxygen sensitivity experiments performed on both mOrange and mOrange2 

showed that anoxia (low oxygen concentration) resulted in a large increase in the 

photobleaching half-life of mOrange, but the photobleaching half-life for mOrange2 

remained unchanged at different oxygen concentrations. This implies that the mutations 

incorporated into mOrange2 successfully prevented the access of oxygen to the 

chromophore even at normal oxygen concentrations. Various photophysical properties of 

mRFP1, mOrange and mOrange2 are given in table 3.2 (62).  

 

Table 3.2 Various photophysical properties of mRFP1, mOrange and mOrange2. 

Brightness is calculated as (extinction coefficient x quantum yield)/1,000. Arc lamp 

illumination causes each molecule to emit 1,000 photons/s initially. ND – not determined. 

 

Fluorescent 
Protein 

Quantum 
Yield 

Brightness t1/2 bleach 
(arc lamp) (s) 

t1/2 bleach 
(O2 - free) (s) 

mRFP1 0.25 13 8.7 ND 
mOrange 0.69 49 9.0 250 
mOrange2 0.60 35 228 228 
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As with other mFruit variants, the barrel structural integrity of mOrange is 

compromised, especially in the β7 and β10 region, due to missing tetrameric interactions 

present in the naturally occurring DsRed. Transient thermal fluctuations (61) can allow 

easier oxygen access to the chromophore. This may help chromophore maturation but can 

cause fluorescence quenching or faster photobleaching due to oxidation. In similar work 

by our group, our simulation results showed that the M163Q mutation in mCherry 

significantly reduces molecular oxygen entry into the barrel, which might help explain 

the role of molecular oxygen in permanent photobleaching of FPs and improving the 

photostability in mCherry (63). 

A floppy barrel can cause fluorescence problems in other ways. In the cyan 

fluorescent protein, β7 flexibility has been thought to cause collisional fluorescence 

quenching due to the collision of the Ile146 side chain with the chromophore. In a recent 

work, structure guided amino acid replacements to reduce β7 flexibility have led to a 

significantly brighter and highly photostable fluorescent protein mTurquoise2, with the 

highest quantum yield (93%) among monomeric fluorescent proteins (35).  

Identification of barrels and cavities, as described in section 3.2, showed that 

there could be various pathways for gas diffusion and pockets that host gas molecules 

inside the protein barrel. I have performed molecular dynamics simulations with locally 

enhanced sampling of molecular oxygen which enables the investigations of gas diffusion 

pathways and protein barrel fluctuations on both mOrange and mOrange2 at the 

molecular level. Moreover, the presence of an oxygen molecule can modify the 

environment in a way that might allow the oxygen to enter the protein barrel. The explicit 
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oxygen simulations carried out in the present investigations are able to capture these 

possibilities. 

3.3.2 MOLECULAR OXYGEN DIFFUSION PATHWAYS 

For enhanced search statistics, our explicit oxygen calculation employed 15 

copies of oxygen in our NAMD LES calculations. The oxygen molecules do not interact 

with each other, but interact with the rest of the system. With these 15 copies of non-

interacting oxygen molecules in the system, we performed an 80 ns MD production run. 

The simulations reveal several different types of events of molecular oxygen entry into 

the protein barrel from various locations, which are pictured in Figure 4.2 and described 

below. We observed several protein pockets far from the chromophore where the 

molecular oxygen can enter and remain for an extended time. Some of these pockets are 

dead-ends with no access to the chromophore, but some of the pockets join to form 

pathways that ultimately lead to the chromophore. 

Diffusion of Oxygen into Pockets Common to mOrange and mOrange2 

There are four oxygen-hosting pockets common to both mOrange and mOrange2 

as shown in Figure 3.4. Oxygen may enter through the β7 – β10 gap or through the 

bottom of the barrel. After 10 ns of equilibration time, the first oxygen entered into 

mOrange from the bottom	 at 3 ns, and the first oxygen entered into mOrange2 at 13.4 ns 

from the bottom. There are two pockets at the bottom of the barrel, which can host the 

oxygen entering from the bottom. 
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Arg95, Ile161, Met163, and Val177. Pocket C is close to the center of the chromophore. 

The fourth pocket D (fig. 3.4d) is close to pocket C, and allows entry to the interior 

through the β7 – β10 gap. Pocket D is formed by the residues Ser62, Pro63, Trp143, 

Ile161, Met163, Leu199 and Leu201. The residues Pro63, Ile161 and Met163 lie at the 

interface between the pockets C and D. The oxygen molecule can move between the 

pockets C and D. 

In order to investigate oxygen diffusion into the barrel in more detail, we cut out 

uninteresting computational time at the beginning of the simulation during which the 

oxygen molecule moved around in the solvent outside the protein. In order to avoid the 

computational wait-time for the oxygen in the solvent to get to the gate point between 

β7−β10, we used 20 independent simulations, each with just one oxygen molecule placed 

at the β7−β10 gate. This expedited the search for pathways into the protein through the 

β7−β10 gate. The location of the oxygen molecule in the initial frame has to be made 

carefully. The oxygen molecule needs to be surrounded by a hydrophobic pocket.  

A simulation was terminated if the oxygen molecule drifted out to the solvent. We 

considered the oxygen molecule to have completely escaped and terminated the 

simulation if the oxygen’ s distance from the chromophore’ s phenolate oxygen exceeded 

15 Å. This distance ensures that a simulation will not be terminated if the oxygen has not 

truly drifted away from the β7−β10 gate, and an oxygen that remains in the vicinity just 

outside the pocket will be given time to reenter. In 1 out of 20 simulations in mOrange, 

the oxygen molecule escaped immediately into the solvent in less than 0.1 ns. In 8 out of 

the 20 simulations, the oxygen molecule entered pocket D and then exited out of the 
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barrel through the β7−β10 gap. In 10 out of the 20 simulations, the oxygen molecule 

managed to diffuse further into pocket C via pocket D. In the remaining one simulation in 

mOrange, the oxygen molecule escaped into pocket E, which is a unique pocket to 

mOrange as shown in Figure 3.7. For mOrange2, in 14 out of the 20 simulations, the 

oxygen molecule escaped immediately into the solvent in less than 0.2 ns. In the 

remaining 6 simulations, the oxygen molecule diffused into pocket C via pocket D. The 

fate of the oxygen molecule in the above 20 independent simulations in mOrange and 

mOrange2 shows that mOrange2 is less permeable to oxygen diffusion. 

In another oxygen sensitivity test, an oxygen molecule is placed in pocket B in 

both mOrange and mOrange2, and 20 independent simulations are performed. For 

mOrange, in all 20 simulations, the oxygen molecule escaped out of the bottom of the 

barrel into the solvent in less than 6 ns. For mOrange2, in 8 out of 20 simulations, the 

oxygen molecule escaped from the bottom of the barrel into the solvent in less than 6 ns. 

In 7 out of 20 simulations in mOrange2, the oxygen molecule stayed inside the barrel for 

longer than 10 ns. The oxygen molecule was still inside the barrel in one simulation at the 

end of 30 ns. The survival curve showing the percentage of simulations in which the 

oxygen molecule is inside the barrel against the simulation time is given in Figure 3.5. In 

both mOrange and mOrange2, the oxygen molecule mostly oscillates between pockets A 

and B, and never reaches close to the chromophore. In 5 out of 20 runs in mOrange, the 

oxygen molecule exits through the bottom passing very close to the F99Y mutation 

within 6 ns of the simulation time. However in mOrange2, only in 1 out of 20 runs, the 

oxygen exits passing very close to the F99Y mutation within 6 ns of the simulation time. 
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Mean values were calculated through exponential fitting of the curves in Figure 3.5.  The 

mean survival time for oxygen in mOrange is 3.2 ns and in mOrange2 is 10 ns. This 

shows that an oxygen molecule inside the bottom of the barrel in mOrange has higher 

probability of diffusing into the solvent than that in mOrange2. The same idea can be 

extended to oxygen diffusion from the bulk solvent into the protein barrel. This shows 

that mOrange2 is less permeable to molecular oxygen than mOrange. 

 

Figure 3.5 Survival curves for mOrange and mOrange2 showing the percentage of 

simulation runs in which the oxygen molecule is inside the barrel are plotted against the 

simulation time.  

Trajectories that manifest the transition between the four pockets A, B, C and D 

are shown in Figure 3.6, which displays the distance of the oxygen molecule from a 

reference point on the chromophore. I chose nitrogen N3 of the imidazolinone ring as the 

reference point because this part of the chromophore is least flexible. 
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bottom of the barrel were found. The number of oxygen entries into the barrel does not 

seem to explain the oxygen sensitivities. However two unique pockets were found in 

mOrange that were not present in mOrange2. The unique pockets could be the crucial 

sites for fluorescence quenching in mOrange. 

Diffusion of Oxygen into Pockets Unique to mOrange 

Two unique pockets for oxygen access were found in mOrange as shown in 

Figure 3.7. Pocket E is located to the left, on the lateral side of the chromophore. The 

oxygen enters into this pocket at 35 ns through the β7 – β10 gap, and stays there for about 

8 ns. Various residues including Phe14, Val16, Glu32, Gln42, Ala44, Leu46, Tyr120 and 

Tyr214 form pocket E. The oxygen enters into this pocket from a point very close to the 

G196D mutation site on β10. This is one of the four mutations necessary to obtain 

mOrange2. The glycine at 196 seems to provide an unhindered pathway to the oxygen in 

mOrange. Pocket F hosts oxygen entering into the barrel from the top. Pocket F is formed 

by the residues Phe91, Trp93, Gln109, Asp110 and Ser111. There are two oxygen entries 

into this pocket at 50 ns and at 67 ns, and both of them remain in this pocket for 2 ns. 

Both of these unique pockets may be important locations at which the oxygen 

may chemically modify the chromophore, eventually causing fluorescence quenching. 
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4. PRESSURE EFFECTS ON mCHERRY, mSTRAWBERRY, AND CITRINE 

Fluorescent proteins have significant and widespread applications in cell tagging 

and imaging biological cells and tissues (64). Red fluorescent proteins are preferred to 

green fluorescent proteins for imaging mammalian tissue because signal masking cellular 

autofluorescence is low in the red region of spectrum, and also because higher 

wavelengths can probe deeper into the tissues (19, 65, 66). We aim to explore the 

pressure response of two monomeric red fluorescent proteins, mCherry and mStrawberry, 

derived from their tetrameric progenitor DsRed. High pressure experiments performed on 

Blue Fluorescent Proteins show enhanced fluorescence up to a pressure of 600 Mpa (67). 

The restriction in chromophore vibrations at increased hydrostatic pressure contributes to 

increased stability of the hydrogen bonding network in the chromophore cavity and thus 

improves the quantum yield of these blue fluorescent proteins. In addition, chromophore 

planarity is believed to be an important factor in fluorescence. The chromophore of a 

non-fluorescent protein asFP595-A143G, also known as Kindling Fluorescent Protein 

(KFP), is significantly less planar (68) than the chromophore of a far red fluorescent 

protein eqFP611 which is highly fluorescent (69), although the chromophore is in the 

trans-conformation which is generally non-fluorescent in many proteins. 

Recent high pressure experimental studies on the red fluorescent proteins 

mCherry and mStrawberry show that these proteins respond very differently to 

hydrostatic pressure (70), despite structural similarities in their protein barrels and in their 

chromophores. The difference response to pressure of these proteins are shown in Figure 

4.1 (70). The fluorescence intensity of mStrawberry increases with the application of 

moderate pressure and decreases at higher pressure. In contrast, mCherry fluorescence 
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intensity shows a monotonic decrease with increasing pressure.  Subsequent theoretical 

and computational investigations (71) showed that mStrawberry has a much floppier 

structure than mCherry at atmospheric pressure. Investigations were also performed 

involving ground state and excited state calculations on the two conformers of 

mStrawberry, and the results displayed a blue shift in both conformers at higher pressure. 

The blue shift is attributed to the change in distance between the chromophore and a 

neighboring residue Lys70, which is necessary for chromophore maturation in RFPs (72). 

 

Figure 4.1 Experimental results of pressure effects on mCherry and mStrawberry.              

This figure is adopted from reference (70). 

I have performed MD simulations and additional analyses that shed further light 

on the contrasting pressure response of these RFPs with respect to	 their structural and 

spectral behavior. In addition, we performed MD simulations on the pressure effects on a 

related monomeric yellow fluorescent protein, citrine. As in mStrawberry, the peak 

fluorescence intensity of citrine increases with the application of moderate (~ ambient) 
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pressures but decreases at higher pressures as shown in Figure 4.2 (73, 74). The effects of 

hydrostatic pressure on the structure of the protein barrel, the chromophore, and on the 

hydrogen bonding network inside the protein cavity of mCherry, mStrawberry and citrine 

is discussed in the following sections.  

 

Figure 4.2 Experimental results of pressure effects on citrine. This figure is adopted from 
reference (74). 

 

4.1 BARREL COMPRESSIBILITY 

The compression caused by increased hydrostatic pressure was investigated by 

calculating the radius of gyration (rgyr) of the protein barrel at various pressures, as 

shown in table 4.1. Both mCherry and mStrawberry show decreases in the radius of 

gyration at increasing pressures.  mStrawberry shows a small increase (0.01 Å) in rgyr at 

500 MPa compared to that at 250 MPa. This could be because of the fluctuations in the 

loop regions of the fluorescent protein. The radius of gyration for citrine is slightly higher 

at 50 MPa than that at atmospheric pressure. The standard deviations in rgyr of citrine are 

observed to be higher (~ 0.058 Å) at pressures 50 MPa and 100 MPa, compared to those 
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(~0.040 Å) at higher pressures. In general, the changes in rgyr are on a sub-angstrom 

scale. 

 

Table 4.1 Radius of gyration in angstroms at various pressures. 
 

Pressure (MPa) rgyr (mCherry) rgyr (mStrawberry) rgyr (Citrine) 

0.1 16.95 17.07 17.09 

50   17.25 

100   17.08 

250 16.85 16.83 17.00 

500 16.65 16.84 16.89 

750 16.61 16.71 16.80 

1000 16.54 16.66  

 

 The compressibility (β) is calculated by using the relation, 

	ߚ                                   = 	− ଵ ቀቁ                                                            (4.1) 

In equation 4.1, V is the volume, ΔV is the change in volume, and ΔP is the change in 

pressure of the fluorescent protein. 

Approximating the protein barrel as a sphere with the calculated radius of 

gyration, the average compressibility for mCherry is 8.11 x 10-5 MPa-1, for mStrawberry 

it is 9.98 x 10-5 MPa-1, and for citrine it is 5.42 x 10-5 MPa-1. The value of rgyr at 50 MPa 

is not considered for compressibility calculations in citrine, as this shows an increase in 

volume at higher pressure. These results show that mStrawberry is floppier than 

mCherry, which is consistent with the computational results of Laurent et. al. (71). Also, 

citrine is the least compressible. The gap between the β7 and β10 strands in citrine is 
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smaller than the gaps between the β7 and β10 strands in mCherry and mStrawberry. This 

could be a cause for the small compressibility of citrine. The compressibility values are 

also comparable to the experimental data obtained from the measurement of the adiabatic 

compressibility of globular proteins using sound velocity measurements at room 

temperature (75). 

I analyzed the squeezing effects of increased hydrostatic pressure on the tunnel 

and cavities inside the protein barrel of mCherry and mStrawberry. Caver software (54) 

was used to identify tunnels that start from the chromophore and lead to exits outside the 

barrel, with a probe radius of 0.8 Å. The total number of tunnels and tunnel clusters are 

shown in table 4.2 for mCherry, in table 4.3 for mStrawberry, and in table 4.4 for citrine. 

mCherry is observed to have the most channels at pressures upto 500 MPa. This shows 

that mCherry has relatively more empty space inside the barrel, which also explains the 

higher rmsf fluctuations of mCherry as compared to mStrawberry and citrine. 

mStrawberry has a significantly fewer tunnels than mCherry at the pressure 250 MPa.  

This makes the chromophore more stable and thus able to better fluoresce at 250 MPa. 

However at the pressure of 500 MPa, the number of tunnels in mStrawberry is reduced to 

very few, and the chromophore may be distorted. The consequence is the decrease in the 

fluorescent intensity peak of mStrawberry at 500 MPa pressure. For citrine, it is 

interesting to note that the number of tunnels inside the barrel reduces significantly even 

at a relatively lower pressure of 100 MPa.  

Tunnels inside the protein barrel are depicted for mCherry and mStrawberry at a 

pressure of 250 MPa, and for citrine at a pressure of 50 MPa in Figure 4.3. Similar 

tunnels are colored the same way. Although mCherry has significantly more tunnels than 
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mStrawberry at 250 MPa, the number of tunnel clusters in both RFPs is the same, and 

this is also represented in Figure 4.3. Citrine contains the greatest number of tunnel 

clusters at 50 MPa. There are more tunnel clusters leading to the bottom of the barrel in 

citrine than in mCherry and mStrawberry. 

 

Table 4.2 Tunnels inside mCherry 

Pressure (MPa) Number of tunnel clusters Number of tunnels 
    0.1 33 292 
  250 10 208 
  500   3   74 
  750   4   13 
1000   1   35 
 

Table 4.3 Tunnels inside mStrawberry 

Pressure (MPa) Number of tunnel clusters Number of tunnels 
  0.1 29 191 
250 10 123 
500   3    7 
750   1  32 

          1000   1  55 
  

Table 4.4 Tunnels inside citrine 

Pressure (MPa) Number of tunnel clusters Number of tunnels 
0.1 10 144 
50 25   83 

          100  9   22 
          250   3    3 
          500   1    1 
         750   1    1 
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Tyr203 in citrine, which allows the stacking of it phenol ring against the phenol ring of 

the chromophore. 

 

 

Figure 4.4(a) The hydrogen bonding network (34) in mCherry and mStrawberry. The 

dotted lines represent the hydrogen bonds. 

mCherry 

mStrawberry 
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hydrogen bond. The mStrawberry chromophore is predominantly hydrogen bonded to the 

serine. But in mCherry, the histogram shows an appreciable hump on the right side at 

higher pressures representing the flipping of the serine residue away from the 

chromophore. Without the hydrogen bond to the serine, the chromophore is less stable.  

This effect may be the cause of diminished the fluorescence intensity of mCherry with 

increasing pressure. This mechanism also sheds light on the importance of the interaction 

between serine and the phenolate oxygen for forming a stable and fluorescent 

chromophore.  However, at very high pressure (1000 MPa) the chromophore structure 

might be highly compressed and stiffened so that the Ser146 is in the immediate vicinity 

of the chromophore, allowing the formation of a hydrogen bond with the phenolate 

oxygen. This is depicted by the single peak of the histogram at 1000 MPa for both 

mCherry and mStrawberry. There are several water molecules around the chromophore 

that form two hydrogen bonds with the phenolate oxygen when the Ser146 Oγ is beyond 

the closest approach for forming hydrogen bonds.  



 

F

m

ci

fo

b

at

re

in

h

ci

igure 4.5. H

mCherry and 

itrine. 

In citr

orming hydr

etween phen

t pressures 0

elatively mo

n fluorescen

ighly squeez

itrine. 

Histogram of 

(b) mStraw

rine, the tip

rogen bonds

nolate oxyge

0.1 MPa and

ore spread-ou

nce intensity

zed, decreasi

the distance

wberry, (c) di

 of the chro

s with His14

en and His14

d 50 MPa l

ut and flat, w

y at this pre

ing the dista

 55

e between th

istance betw

omophore at

48 Nδ and/o

48 Nδ in citr

ook similar.

which may b

essure. At p

ance between

he phenolate 

ween phenola

t the phenol

or water. Th

rine is shown

. The histog

be the reaso

pressures ab

n the phenol

oxygen and 

ate oxygen a

late terminal

he histogram

n in Figure 4

gram at 100 

on for the on

bove 100 M

ate oxygen a

d Ser146 Oγ 

and His148 N

l is stabilize

m of the dis

4.5(c). The p

MPa pressu

nset of a dec

MPa, the barr

and His148 N

 

in (a) 

Nδ in 

ed by 

stance 

peaks 

ure is 

crease 

rel is 

Nδ in 



 
 

56

We have also examined the percentage of hydrogen bonds formed between 

Ser146 Oγ and the phenolate oxygen (in mCherry and mStrawberry) as shown in Figure 

4.6(a), and between His148 Nδ and the phenolate oxygen (in citrine) as shown in Figure 

4.6(b). For mCherry the population of hydrogen bonds decreases significantly at 250 

MPa and 500 MPa. Hence the chromophore is flexible and the fluorescent intensity 

decreases in mCherry. At pressures above 500 MPa the percentage of hydrogen bonds 

starts to increase as the barrel is highly squeezed. For mStrawberry, the percentage of H-

Bonds between Ser-146 and the tip of the chromophore keeps increasing at all higher 

pressures. Consequently the fluorescence intensity of mStrawberry increases at 250 MPa. 

For citrine, the percentage of hydrogen bonds remains similar at pressures 0.1 

MPa and 50 MPa. However, the percentage of hydrogen bonds greatly decreases at 100 

MPa, which explains the decrease in fluorescence intensity at this pressure. At pressures 

higher than 100 MPa, the protein barrel is squeezed and the percentage of hydrogen 

bonding increases. At even higher pressures, the pi-stacking interactions between the 

phenol rings of the chromophore and Tyr 203 are highly perturbed (explained in section 

4.4). Hence, the stability imparted by the increment in hydrogen bonding is not helpful 

for increasing the fluorescent intensity at pressures above 50 MPa.  
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Figure 4.6(a) Percentage of hydrogen bonds formed between Ser146 Oγ and the 

chromophore phenolate oxygen in mCherry and mStrawberry 

        

Figure 4.6(b) Percentage of hydrogen bonds formed between His148 Nδ and 

chromophore phenolate oxygen in citrine. 
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The percentage of hydrogen bonds formed by oxygen at the phenolate ring, and 

carbonyl oxygen and nitrogen at the imidazolinone ring is shown in table 4.5 for 

mCherry, in table 4.6 for mStrawberry, and in table 4.7 for citrine. The general trend is 

increase in hydrogen bonding at higher pressures. The percentage of hydrogen bonding is 

comparatively high for the interaction between Arg95 N and the chromophore, because it 

offers two donor sites for the formation a hydrogen bond. Other residues offer only a 

single donor site. In citrine, the population of hydrogen bonds between Arg96 N and the 

chromophore increases considerably at 50 MPa, while that between His148 Nδ and the 

chromophore remains almost unchanged as seen in table 4.7. This could be partially 

responsible for the maximized fluorescence peak intensity of citrine at 50 MPa. 

 

Table 4.5 Hydrogen bond percentage of mCherry chromophore at various pressures. 

H-Bond Type 0.1 MPa 250 MPa 500 MPa 750 MPa 1000 MPa 

Ser146 Oγ - Cro 69 36 8 84 77 

Arg95 N  - Cro 86 89 58 88 93 

Glu215 Oε - Cro 47 59 68 68 71 

 

Table 4.6 Hydrogen bond percentage of mStrawberry chromophore at various pressures. 

H-Bond Type 0.1 MPa 250 MPa 500 MPa 750 MPa 1000 MPa 

Ser146 Oγ - Cro 78 81 81 79 45 

Arg95 N  - Cro 77 86 91 88 82 

Glu215 Oε - Cro 25 36 40 51 50 
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Table 4.7 Hydrogen bond percentage of citrine chromophore at various pressures. 

H-Bond Type 0.1 MPa 50 MPa 100 MPa 250 MPa 500 MPa 750 MPa

His148 Nδ - Cro 25 21 13 28 32 44

Arg96 N  - Cro 65 76 62 45 57 55

 

4.3 CHROMOPHORE FLEXIBILITY 

As with other FPs, the chromophores of both mCherry and mStrawberry are 

formed by cyclization and oxidation of peptide sequences; the mCherry chromophore is 

formed by Met-Tyr-Gly and the mStrawberry chromophore is formed by Thr-Tyr-Gly.  

Although Tyr and Gly are common to both tripeptides, Met in mCherry is replaced by 

Thr in mStrawberry. The mStrawberry chromophore constituent Thr is less bulky than 

Met in mCherry. Therefore, the mStrawberry chromophore has more conformational 

degrees of freedom at ambient pressure conditions. When a moderate pressure is applied 

this conformational freedom is reduced and the chromophore is more stabilized. The 

improved chromophore rigidity at moderate pressure (~250 MPa) results in a better 

fluorescence in mStrawberry. The overall effect of pressure in the conformational 

freedom of the chromophore is shown in Figure 4.7 in terms of root mean square 

fluctuations (rmsf). For mStrawberry, the chromophore rmsf decreases with increasing 

pressure, which explains the improved intensity at 250 MPa. But mCherry shows higher 

rmsf fluctuations at all pressures, which implies that the chromophore is more mobile and 

the excited state chromophore is more likely to follow the path of radiationless decay 

through vibrational relaxations. At very high pressures of 750 MPa and 1000 MPa, the 

chromophore structure may be distorted, resulting in the loss of fluorescent intensity. 
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The chromophore of the yellow fluorescent protein citrine shows a slight increase 

in rmsf at moderate pressures (50 MPa and 100 MPa) as shown in Figure 4.7. This seems 

contrary to the fact that the peak intensity of citrine is maximum at 50 MPa. However the 

increased interaction between the chromophore and the phenol ring of Tyr203 may be a 

dominant cause of the peak fluorescence intensity in citrine at 50 MPa (explained in 

section 4.4). At pressures higher than 100 MPa, the citrine chromophore shows a 

monotonic decrease in rmsf, similar to mStrawberry. 

 

Figure 4.7 Plot of root mean square fluctuations (rmsf) of the chromophore of mCherry, 

mStrawberry and citrine at various pressures. 

 

4.4 CHROMOPHORE PLANARITY AND THE FLUORESCENCE  

In order to investigate the pressure effects on chromophore planarity, best-fit 

planes were constructed for the two rings of the chromophore using the CHARMM 

trajectory analysis package. To find the least square planes, I have considered atoms C1, 

C2, N2, N3, O2, CA1, CA2, CB2 and CA3 for imidazolinone, and atoms CB2, CG2, 
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CD1, CD2, CE1, CE2, CZ and OH for p-hydroxybenzyl. The atom names are exactly as 

given in the PDB files of the three FPs. The average dihedral angle between these two 

least squares planes is plotted against different pressures in Figure 4.8.  

 

 

Figure 4.8 Plot of average angle between the planes of phenolate ring and imidazolinone 

ring of the chromophore of mCherry, mStrawberry, and citrine at various pressures.  

 

 
At moderate pressures up to 500 MPa, mCherry shows an improvement in 

chromophore planarity while the mStrawberry chromophore maintains the same 

planarity. The total change in the angle between the planes of the two chromophore rings 

is about 6 degrees, and this effect may not be significant enough to alter the fluorescence 

intensity. 

2

6

10

14

18

22

26

30

0 200 400 600 800 1000

A
ve

ra
ge

 A
ng

le

Pressure (MPa)

mCherry
mStrawberry

citrine



 
 

62

Interestingly, the average angle between the two chromophore rings in citrine 

increases at 50 MPa and 100 MPa. This may adversely affect the fluorescence intensity 

peak. However, the phenolate ring of the citrine chromophore interacts with the phenolate 

ring of neighboring residue Tyr203, and this phenomenon is not observed in mCherry and 

mStrawberry. In addition, the structure of citrine is more planar (less than 12 degrees) 

than that of mCherry or mStrawberry at all pressures. Also, at pressures above 100 MPa, 

the chromophore structure in citrine shows no change in planarity, compared to the 

monotonic decrease in chromophore planarity observed in mCherry and mStrawberry at 

equivalent pressures.  

The YFP variant citrine stems from an important mutation T203Y in the green 

fluorescent protein family. The interaction between the chromophore and the phenolic 

ring of Tyr203, as shown in Figure 4.9(b) causes the fluorescence peak shift from green 

to yellow in citrine (59). Barstow and coworkers observed an initial increase of 

fluorescence peak intensity in citrine by applying moderate hydrostatic pressure, 

followed by a monotonic decrease in intensity at higher pressure. The maximum peak 

intensity was observed at around 50MPa of pressure. The study reported that the relative 

displacement between the phenolic ring of Tyr203 and the phenolic ring of the 

chromophore explains the observed pressure response to the peak fluorescent intensity 

(73, 74). I have investigated the effects of hydrostatic pressure on the dihedral angle 

between these phenolic rings. Best-fit planes were constructed for the chromophore 

phenolic ring and Tyr203 Phenolic ring, using the CHARMM trajectory analysis tool. 

The fitting involve atoms CB2, CG2, CD1, CD2, CE1, CE2, CZ and OH of the 

chromophore and CB, CG, CD1, CE1, CD2, CE2, CZ and OH of Tyr203. The average 
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5. CONCLUSIONS 

I investigated several structural aspects related to fluorescence in fluorescent 

proteins. I now summarize these results. 

Access for molecular oxygen to the chromophore in fluorescent proteins is 

required for chromophore maturation. However, oxygen penetration through the barrel to 

the mature chromophore can also cause irreversible photo-bleaching and significantly 

reduce the photostabilty of an FP. In this work, I performed molecular dynamics 

simulations to investigate the diffusion of molecular oxygen into the protein barrel of the 

monomeric RFP variants mOrange and mOrange2. A clear channel for oxygen diffusion 

into the protein, common to both mOrange and mOrange2, is described. The pathway 

contains several oxygen hosting pockets, which are identified by the amino acid residues 

that form each pocket. One end of the channel is accessed from the solvent through the 

floppy β7−β10 gap, which leads immediately to a gateway pocket (D) that provides some 

access to the chromophore. Another entrance from the solvent is at the bottom of the 

protein barrel. Two unique oxygen-hosting pockets have been identified in mOrange, that 

are not present in mOrange2. In both pockets, oxygen spends a significant amount of time 

in the immediate vicinity of the chromophore. This explains the significantly lower 

photostability of mOrange as compared to mOrange2. Such computational identifications 

of oxygen diffusion pathways can be helpful in guiding mutagenesis efforts to design 

fluorescent proteins with improved photophysical properties. 

A large chromophore like the tripeptide in fluorescent proteins needs to be fairly 

rigid to be able to fluoresce. Otherwise, the energy contained in the excited electronic 

orbital can dissipate through radiationless, vibrational modes. For example, the 
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chromophore isolated from the Aequorea green fluorescent protein was observed to 

fluoresce highly when present in a frozen solution, but was non-fluorescent at room 

temperature (76). In fluorescent proteins, rigidity of the chromophore can be attained by 

anchoring to the protein. The chromophore in the fluorescent protein eqFP611 interacts 

with the residue Phe174, but KFP lacks this interaction due to a different residue at this 

position and is non-fluorescent (77). Our computational results show that high pressures 

stabilize the mStrawberry chromophore more than the mCherry chromophore. The citrine 

chromophore is more stabilized at 50 MPa than at 0.1 MPa through hydrogen bonding 

with Arg96 N and His148 Nδ, which may be the cause of the increased fluorescence 

intensity in citrine at that pressure.  

The chromophore interaction with neighboring residues and the movement of 

water molecules in the chromophore cavity seem to play a crucial role in imparting 

rigidity and stability to the chromophore. The Y66H/Y145F mutations of the green 

fluorescent protein result in the formation of blue fluorescent proteins. As a consequence 

of the smaller size of the histidine (H) as compared to tyrosine (Y), the chromophore in 

BFP cannot link to the hydrogen bonding network in the cavity (78). Mauring and his 

group showed that the fluorescence intensity of BFP can be increased by increasing 

pressure (67). This can be a result of squeezing of the cavity, which allows the formation 

of additional hydrogen bonds to the histidine, causing it to become more rigid. Similarly, 

in mStrawberry, with a small threonine residue in the cavity, the chromophore may have 

increased mobility at 1 atm.  High pressure may squeeze the pocket enough to reduce the 

flexibility of the chromophore, and the increased rigidity at higher pressure improves the 

fluorescence intensity.  
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Pressure can be used as an effective tool to explore details of protein 

conformations. Fluorescent proteins are complex biopolymers with numerous degrees of 

freedom.  It is difficult to elucidate the role of each bond in the chromophore cavity of 

these proteins, but pressure can be used to produce structural changes that allow a better 

understanding of the structural factors associated with their biological functions. We have 

investigated pressure effects on planarity and other interactions of the chromophore that 

contribute to its overall fluorescent behavior. Our investigations show that there is a 

complex interplay involving various interactions between the chromophore, the barrel, 

and the aqueous environment. All of these are responsible for the fluorescent behavior of 

the FPs. This approach of varying the pressure to determine important structure-function 

relationships is useful in designing and engineering novel fluorescent proteins with 

optimized photophysical properties.  
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MASS   255 Oc2     15.99900 O ! carbonyl oxygen 
MASS   256 OcH     15.99900 O ! from OH1 
!MASS   257 HcH    1.00800 H ! polar H  ! not needed for anionic 
MASS   258 HAc     1.00800 H ! nonpolar H 
MASS   259 CA1     12.01100 C ! aromatic C 
MASS   260 CA2     12.01100 C ! aromatic C 
MASS   261 CA3     12.01100 C ! aromatic C 
MASS   262 CPc2    12.01100 C ! his CE1 carbon 
MASS   263 CEc1    12.01100 C ! for alkene; RHC=CR 
MASS   264 CPc1    12.01100 C ! his CG and CD2 carbons 
MASS   265 CA4     12.01100 C ! aromatic C 
!MASS   266 CT3c   12.01100 C ! aliphatic sp3 C for CH3 
MASS   267 CAg1    12.01100 C !  
MASS   268 CBg1    12.01100 C !  
MASS   269 Cg4     12.01100 C !  
MASS   270 OGg1    15.99900 O  ! carbonyl oxygen 
MASS   271 Og4     15.99900 O ! carbonyl oxygen 
MASS   272 HBg1    1.00800 H ! aromatic H 
MASS   273 HOg1    1.00800 H ! aromatic H 
MASS   274 Ng1     14.00700 N ! neutral his protonated ring nitrogen 
 
DECL -CA   
DECL -C   
DECL -O   
DECL -C3  
DECL +N4  
DECL +N   
DECL +HN   
DECL +CA   
 
DEFA FIRS NTER LAST CTER    
AUTO ANGLES DIHE    
 
RESI CRO  -1.000 
GROUP                   ! Imidazolinone ring 
ATOM C1    CPc2   0.50 
ATOM N2    NRc2  -0.60 
ATOM N3    NRc1  -0.57 
ATOM C2    CPc1   0.57 
ATOM O2    Oc2   -0.57 
ATOM CA2   CPc1   0.10 
ATOM CB2   CEc1  -0.14 
ATOM HB2   HAc1   0.21 
ATOM CG2   CA1   -0.09 ! Tyr ring : charges from charmm22 
ATOM CD1   CA2   -0.08 
ATOM HD1   HPc    0.14 
ATOM CD2   CA2   -0.08 
ATOM HD2   HPc    0.14 
ATOM CE1   CA3   -0.28 
ATOM HE1   HPc    0.10 
ATOM CE2   CA3   -0.28 
ATOM HE2   HPc    0.10 
ATOM CZ    CA4    0.45 
ATOM OH    OcH   -0.62 ! Absence of H ---- anionic 
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! 
!Glycine part from Charmm22 
GROUP 
ATOM CA3   CT2   -0.18  !     | 
ATOM HA31  HB     0.09  !     | 
ATOM HA32  HB     0.09  ! HA1-CA-HA2 
GROUP                   !     | 
ATOM C3    C      0.51  !     | 
ATOM O3    O     -0.51  !     C=O 
! 
!Thr and Phe cyclized part part from charmm22  
GROUP    
ATOM N1      Ng1       -0.61 ! oxazole like ring                    
ATOM CA1     CAg1       0.22    
ATOM CB1     CBg1       0.34 ! from compensating    
ATOM CG1     CT3       -0.27  
ATOM HG11    HA         0.09 
ATOM HG12    HA         0.09 
ATOM HG13    HA         0.09 
ATOM HB1     HBg1       0.11 
ATOM OG1     OGg1      -0.29 ! from oxazole 
ATOM C4      Cg4        0.34 ! from compensating  
ATOM O4      Og4       -0.54 
ATOM HO1     HOg1       0.43 
GROUP 
ATOM CA4     CT1        0.07 
ATOM N4      NH1       -0.47 
ATOM HN4     H          0.31 
ATOM HA4     HB         0.09 
       
ATOM CB4     CT2        -0.18 
ATOM HB41    HA          0.09 
ATOM HB42    HA          0.09 
GROUP 
ATOM CG4     CA          0.00  ! benzene ring  
ATOM CD4     CA         -0.115 
ATOM HD4     HP          0.115 
ATOM CD5     CA         -0.115 
ATOM HD5     HP          0.115 
ATOM CE4     CA         -0.115 
ATOM HE4     HP          0.115 
ATOM CE5     CA         -0.115 
ATOM HE5     HP          0.115 
ATOM Cz4     CA         -0.115 
ATOM Hz4     HP          0.115 
 
BOND CA1 C1 N4 -C C3 +N 
BOND N2 CA2 CB2 HB2 CB2 CG2 CD1 HD1 CD1 CE1 CE1 HE1 CZ OH     
BOND CZ CE2 CE2 HE2 CD2 HD2 CD2 CG2 CA2 C2   
BOND N3 CA3 CA3 HA31 CA3 HA32 CA3 C3 N3 C1 N3 C2  
BOND N1 C4 C4 O4 O4 HO1 C4 OG1 OG1 CB1 CB1 CG1 CB1 HB1 CB1 CA1 
BOND CG1 HG11 CG1 HG12 CG1 HG13 
BOND C4 CA4 CA4 HA4 CA4 N4 N4 HN4 CA4 CB4 CB4 HB41 CB4 HB42 CB4 CG4 
BOND CD5 HD5 CD5 CE5 CE5 HE5 Cz4 Hz4 Cz4 CE4 CE4 HE4 
BOND CD4 HD4 CD4 CG4 
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DOUBLE C1 N2 CA2 CB2 C2 O2 C3 O3 CD1 CG2 CD2 CE2 CZ CE1 CA1 N1 CG4 CD5 
CE5 Cz4 CE4 CD4 

 

 

Table 5.2 Parameter file for the chromophore of mOrange and mOrange2 

*charmm parameter file of mStrawberry chromophore (phe-thr-tyr-gly) 
* 
!parameter file  
 
! GFP Chromophore parameters, protonated form 
! 
BONDS 
! 
!V(bond) = Kb(b - b0)**2 
! 
!Kb: kcal/mole/A**2 
!b0: A 
! 
!atom type Kb          b0 
  
CPc2 CTc1  354.000     1.4900 !ion for RFP C1-CA1 connection 
NRc1 CT2   396.000     1.4400 !ion 
NRc1 CPc2  400.000     1.3900 ! 
NRc1 CPc1  400.000     1.4100 ! 
CPc1 Oc2   854.000     1.2400 !ion 
NRc2 CPc2  400.000     1.3000 ! 
CPc1 CPc1  410.000     1.4600 !ion 
NRc2 CPc1  400.000     1.4000 ! 
CPc1 CEc1  500.000     1.3900 !ion 
HAc1 CEc1  360.500     1.1000 ! 
CEc1 CA1   437.000     1.4100 !ion 
CA1  CA2   305.000     1.4300 !ion 
HPc  CA2   340.000     1.0800 ! 
CA2  CA3   305.000     1.3500 !ion 
HPc  CA3   340.000     1.0800 ! 
CA3  CA4   305.000     1.4550 !ion 
OcH  CA4   842.000     1.2500 !ion 
CTc1 NH1   463.000     1.3650 !RFP CA1-N1 connection    
CT1  CTc1  222.500     1.5000 ! ALLOW   ALI 
 
ANGLES 
! 
!V(angle) = Ktheta(Theta - Theta0)**2 
! 
!V(Urey-Bradley) = Kub(S - S0)**2 
! 
!Ktheta: kcal/mole/rad**2 
!Theta0: degrees 
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!Kub: kcal/mole/A**2 (Urey-Bradley) 
!S0: A 
! 
!atom types     Ktheta    Theta0   Kub     S0 
! 
 
NRc2 CPc2 NRc1  130.000   113.3000 !ion 
CPc2 NRc2 CPc1  130.000   106.6000 !ion 
CPc2 NRc1 CPc1  130.000   107.9000 ! 
NRc2 CPc1 CPc1  130.000   108.3000 ! 
NRc2 CPc1 CEc1   45.800   129.5000 ! 
NRc1 CPc1 Oc2    50.000   124.0000 !ion 
NRc1 CPc1 CPc1  130.000   103.0000 ! 
Oc2  CPc1 CPc1   44.000   133.0000 !ion 
CPc1 CPc1 CEc1   45.800   122.7000 !ion 
CPc1 CEc1 CA1   130.000   133.2000 !ion 
CPc1 CEc1 HAc1   42.000   112.0000 !ion 
CEc1 CA1  CA2    45.800   120.0000 !ion 
HAc1 CEc1 CA1    42.000   115.0000 !ion 
CA1  CA2  CA3    40.000   122.0000 !ion 
CA2  CA1  CA2    40.000   116.0000 !ion 
CA2  CA3  CA4    40.000   122.0000 !ion 
CA3  CA4  CA3    40.000   115.0000 !ion 
! 
HPc  CA3  CA4    30.000   120.0000 ! 
HPc  CA3  CA2    30.000   120.0000 ! 
HPc  CA2  CA3    30.000   120.0000 ! 
HPc  CA2  CA1    30.000   120.0000 ! 
! 
OcH  CA4  CA3    45.200   120.0000 ! ALLOW   ARO ALC 
 
!Link to the thr(65) fragment  
NH1  CTc1 CPc2   50.000   107.0000 ! ALLOW   PEP POL ARO ALI 
NRc2 CPc2 CTc1   40.000   125.0000 ! 
NRc1 CPc2 CTc1   40.000   121.7000 !ion 
!CT2  CT1  CPc2   52.000   108.0000 ! ALLOW   ALI PEP POL ARO 
CT1  CTc1 CPc2   52.000   108.0000 ! ALLOW   ALI PEP POL ARO 
 
CTc1 NH1  C      50.000   120.0000 
NH1  CTc1 CT1    70.000   113.5000 
HA   CT1  CTc1   34.500    110.10   22.53   2.17900 ! ALLOW   ALI 
CT3  CT1  CTc1   53.350    108.50    8.00   2.56100 ! ALLOW   ALI 
OH1  CT1  CTc1   75.700   110.1000 ! ALLOW   ALI ALC ARO  (Yuba) 
 
!Link to the gly(67) fragment 
CPc2 NRc1 CT2    40.000   128.3000 !ion 
CPc1 NRc1 CT2    40.000   123.8000 !ion 
NRc1 CT2  C      50.000   107.0000 
NRc1 CT2  HB     48.000   108.0000 
 
! 
DIHEDRALS 
! 
!V(dihedral) = Kchi(1 + cos(n(chi) - delta)) 
! 
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!Kchi: kcal/mole 
!n: multiplicity 
!delta: degrees 
! 
!atom types             Kchi    n   delta 
! 
CPc2 NRc2 CPc1 CPc1    14.0000  2   180.00 ! 
CPc2 NRc1 CPc1 CPc1    14.0000  2   180.00 ! 
NRc2 CPc2 NRc1 CPc1    14.0000  2   180.00 ! 
NRc2 CPc1 CPc1 NRc1     4.0000  2   180.00 ! 
NRc1 CPc2 NRc2 CPc1     4.0000  2   180.00 ! 
CA1  CA2  CA3  CA4      3.1000  2   180.00 ! 
CA2  CA1  CA2  CA3      3.1000  2   180.00 ! 
CA2  CA3  CA4  CA3      3.1000  2   180.00 ! 
!Oc2  CAC  CAC  CAC      3.1000  2   180.00 ! 
CA2  CA3  CA4  OcH      3.1000  2   180.00 ! 
CA1  CA2  CA3  HPc      4.2000  2   180.00 ! 
CA2  CA1  CA2  HPc      4.2000  2   180.00 ! 
CA3  CA4  CA3  HPc      4.2000  2   180.00 ! 
HPc  CA2  CA3  CA4      4.2000  2   180.00 ! 
HPc  CA2  CA3  HPc      2.4000  2   180.00 ! 
!HcH  Oc2  CAC  CAC      0.9900  2   180.00 ! 
!HcH  OcH  CA4  CA3      0.9900  2   180.00 ! 
HPc  CA3  CA4  OcH      4.2000  2   180.00 ! 
! 
CPc2 NRc2 CPc1 CEc1     3.000   2   180.00 ! 
NRc1 CPc1 CPc1 CEc1     3.00    2   180.00 ! 
Oc2  CPc1 CPc1 CEc1     2.00    2   180.00 ! 
CEc1 CA1  CA2  HPc      4.20    2   180.00 ! 
CEc1 CA1  CA2  CA3      3.10    2   180.00 ! 
 
!connection CA-CB 
CPc1 CPc1 CEc1 HAc1     3.9000  2   180.00 ! 
CPc1 CPc1 CEc1 CA1      3.9000  2   180.00 ! 
NRc2 CPc1 CEc1 HAc1     3.9000  2   180.00 ! 
NRc2 CPc1 CEc1 CA1      3.9000  2   180.00 !  
 
!connection CB-CG2 
CPc1 CEc1 CA1  CA2      2.7000  2   180.00 ! 
HAc1 CEc1 CA1  CA2      2.7000  2   180.00 ! 
! 
CPc2 NRc1 CPc1 Oc2     14.0000  2   180.00 ! 
NRc2 CPc2 NRc1 CT2     14.0000  2   180.00 ! 
NRc2 CPc1 CPc1 Oc2     14.0000  2   180.00 ! 
CPc1 NRc1 CPc2 CTc1    14.0000  2   180.00 ! 
Oc2  CPc1 NRc1 CT2     14.0000  2   180.00 ! 
CPc1 NRc2 CPc2 CTc1    14.0000  2   180.00 ! 
CPc1 CPc1 NRc1 CT2     14.0000  2   180.00 ! 
CTc1 CPc2 NRc1 CT2     14.0000  2   180.00 ! 
 
! Linking the chromophore and the glycine(67) fragment 
O    C    CT2  NRc1     0.0000  1     0.00 ! 
NH1  C    CT2  NRc1     0.6000  1     0.00 ! 
CPc2 NRc1 CT2  HB       0.0320  3     0.00 ! 
CPc2 NRc1 CT2  C        0.0320  3     0.00 ! 



 
 

81

CPc1 NRc1 CT2  HB       0.0320  3   180.00 ! 
CPc1 NRc1 CT2  C        0.0320  3   180.00 ! 
 
 
! Linking the chromophore and the thr(65) fragment 
C    NH1  CTc1 CPc2     2.2500  2   180.00 !Taken from X-C-NC2-X 
Charmm22 
NRc2 CPc2 CTc1 CT1      0.1050  3   180.00 ! 
NRc2 CPc2 CTc1 NH1      0.1050  3   180.00 ! 
NRc1 CPc2 CTc1 CT1      0.1050  3     0.00 ! 
NRc1 CPc2 CTc1 NH1      0.1050  3     0.00 ! 
 
!connecting N1=CA1 region due to new type CTc1 
O    C    NH1  CTc1     2.5000  2   180.00 
CT1  C    NH1  CTc1     2.5000  2   180.00 
CT1  CTc1 NH1  C        1.8000  1     0.00 
CPc2 CTc1 CT1  HA       0.2000  3     0.00 
CPc2 CTc1 CT1  CT3      0.2000  3     0.00 
NH1  CTc1 CT1  HA       0.2000  3     0.00 
NH1  CTc1 CT1  CT3      0.2000  3     0.00   ! X    CT1  CT1  X   
CPC2 CTC1 CT1  OH1      0.2000  3     0.00 ! ALLOW   ALI 
NH1  CTC1 CT1  OH1      0.2000  3     0.00 ! ALLOW   ALI 
 
IMPROPER 
! 
!V(improper) = Kpsi(psi - psi0)**2 
! 
!Kpsi: kcal/mole/rad**2 
!psi0: degrees 
!note that the second column of numbers (0) is ignored 
! 
!atom types           Kpsi                   psi0 
! 
 
CPc2 NRc2 NRc1 CTc1    50.0000         0      0.0000 
CPc2 NRc1 NRc2 CTc1    50.0000         0      0.0000 
! 
CPc1 NRc1 CPc1 Oc2     50.0000         0      0.0000 
CPc1 CPc1 NRc1 Oc2     50.0000         0      0.0000 
! 
NRc1 CPc1 CPc2 CT2     50.0000         0      0.0000 
NRc1 CPc2 CPc1 CT2     50.0000         0      0.0000 
! 
CPc1 NRc2 CPc1 CEc1    50.0000         0      0.0000 
CPc1 CPc1 NRc2 CEc1    50.0000         0      0.0000 
! 
CEc1 CPc1 CA1  HAc1    30.0000         0      0.0000 
CEc1 CA1  CPc1 HAc1    30.0000         0      0.0000 
 
! 
!V(Lennard-Jones) = Eps,i,j[(Rmin,i,j/ri,j)**12 - 2(Rmin,i,j/ri,j)**6] 
! 
!epsilon: kcal/mole, Eps,i,j = sqrt(eps,i * eps,j) 
!Rmin/2: A, Rmin,i,j = Rmin/2,i + Rmin/2,j 
! 
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!atom  ignored    epsilon Rmin/2   ignored   eps,1-4 Rmin/2,1-4 
! 
!CAc  5.000000  -0.070000  1.992400 ! ALLOW   ARO 
 
NONBONDED nbxmod  5 atom cdiel shift vatom vdistance vswitch - 
cutnb 14.0 ctofnb 12.0 ctonnb 10.0 eps 1.0 e14fac 1.0 wmin 1.5  
 
CA1    5.000000  -0.070000     1.992400 ! ALLOW   ARO 
CA2    5.000000  -0.070000     1.992400 ! ALLOW   ARO 
CA3    5.000000  -0.070000     1.992400 ! ALLOW   ARO 
CA4    5.000000  -0.070000     1.992400 ! ALLOW   ARO 
CEc1   0.000000  -0.068000     2.090000 ! ! for propene, yin/adm jr.,  
CPc1   0.000000  -0.050000     1.800000 ! ALLOW ARO 
CPc2   0.000000  -0.050000     1.800000 ! ALLOW ARO 
HAc    0.000000  -0.022000     1.320000 ! ALLOW PEP ALI POL SUL 
HAc1   0.000000  -0.031000     1.250000 ! 
HPc    0.000000  -0.030000   1.358200   0.000000  -0.030000    1.358200  
NRc1   0.000000  -0.200000     1.850000 ! ALLOW ARO 
NRc2   0.000000  -0.200000     1.850000 ! ALLOW ARO 
Oc2    0.000000  -0.120000     1.700000 ! ALLOW   PEP POL, 
OcH    0.000000  -0.152100     1.770000 ! ALLOW   ALC ARO 
CTc1   0.000000  -0.020000  2.275000 ! 0.000000  -0.010000     1.900000 

 

Appendix C: Residue topology and parameter files for the chromophore of mCherry 

Table 5.3 Residue topology file for the chromophore of mCherry 

MASS   197 NRc2  14.00700 N ! neutral his unprotonated ring nitrogen 
MASS   198 NRc1  14.00700 N ! neutral his protonated ring nitrogen 
MASS   199 HAc1   1.00800 H ! for alkene; RHC=CR 
MASS   200 HPc    1.00800 H ! aromatic H 
MASS   201 Oc2   15.99900 O ! carbonyl oxygen 
MASS   202 OcH   15.99900 O ! from OH1 
!MASS   203 HcH    1.00800 H ! polar H 
MASS   204 HAc    1.00800 H ! nonpolar H 
MASS   205 CA1   12.01100 C ! aromatic C 
MASS   206 CA2   12.01100 C ! aromatic C 
MASS   207 CA3   12.01100 C ! aromatic C 
MASS   208 CPc2  12.01100 C ! his CE1 carbon 
MASS   209 CEc1  12.01100 C ! for alkene; RHC=CR 
MASS   210 CPc1  12.01100 C ! his CG and CD2 carbons 
MASS   211 CA4   12.01100 C ! aromatic C 
!MASS   212 CT3c  12.01100 C ! aliphatic sp3 C for CH3 
MASS   213 CTc1  12.01100 C ! aliphatic sp3 C for CH 
 
DECL -CA   
DECL -C   
DECL -O   
DECL -C3  
DECL +N1  
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DECL +N   
DECL +HN   
DECL +CA   
 
DEFA FIRS NTER LAST CTER    
AUTO ANGLES DIHE    
 
RESI CH6  -1.000 
GROUP                   ! Imidazolinone ring 
ATOM C1    CPc2   0.50 
ATOM N2    NRc2  -0.60 
ATOM N3    NRc1  -0.57 
ATOM C2    CPc1   0.57 
ATOM O2    Oc2   -0.57 
ATOM CA2   CPc1   0.10 
ATOM CB2   CEc1  -0.14 
ATOM HB2   HAc1   0.21 
ATOM CG2   CA1   -0.09 ! Tyr ring : charges from charmm22 
ATOM CD1   CA2   -0.08 
ATOM HD1   HPc    0.14 
ATOM CD2   CA2   -0.08 
ATOM HD2   HPc    0.14 
ATOM CE1   CA3   -0.28 
ATOM HE1   HPc    0.10 
ATOM CE2   CA3   -0.28 
ATOM HE2   HPc    0.10 
ATOM CZ    CA4    0.45 
ATOM OH    OcH   -0.62 
 
!Glycine part from Charmm22 
GROUP 
ATOM CA3   CT2   -0.18  !     | 
ATOM HA31  HB     0.09  !     | 
ATOM HA32  HB     0.09  ! HA1-CA-HA2 
GROUP                   !     | 
ATOM C3    C      0.51  !     | 
ATOM O3    O     -0.51  !     C=O 
! 
!met part from charmm22 
GROUP    
ATOM N1    NH1    -0.16                     
ATOM CA1   CTc1    0.16 !atom type changed   
GROUP                    
ATOM CB1   CT2    -0.18  
ATOM HB11  HA      0.09  
ATOM HB12  HA      0.09 
GROUP                    
ATOM CG1   CT2    -0.14 
ATOM HG11  HA      0.09 
ATOM HG12  HA      0.09 
ATOM SD    S      -0.09 
ATOM CE    CT3    -0.22 
ATOM HE11  HA      0.09 
ATOM HE12  HA      0.09 
ATOM HE13  HA      0.09 
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BOND CA1 C1 N1 -C C3 +N 
BOND N2 CA2 CB2 HB2 CB2 CG2 CD1 HD1 CD1 CE1 CE1 HE1 CZ OH     
BOND CZ CE2 CE2 HE2 CD2 HD2 CD2 CG2 CA2 C2   
BOND N3 CA3 CA3 HA31 CA3 HA32 CA3 C3 N3 C1 N3 C2  
BOND CB1 HB11 CB1 HB12 CB1 CG1 CG1 HG11 CG1 HG12 CA1 CB1 
BOND CG1 SD SD CE CE HE11 CE HE12 CE HE13 
DOUBLE C1 N2 CA2 CB2 C2 O2 C3 O3 CD1 CG2 CD2 CE2 CZ CE1 CA1 N1 

 

Table 5.4 Parameter file for the chromophore of mCherry 

*charmm parameter file of mCherry chromophore (met-tyr-gly) 
* 
!parameter file  
 
! GFP Chromophore parameters, protonated form 
! 
BONDS 
! 
!V(bond) = Kb(b - b0)**2 
! 
!Kb: kcal/mole/A**2 
!b0: A 
! 
!atom type Kb          b0 
  
CPc2 CTc1  354.000     1.4900 !ion for RFP C1-CA1 connection 
NRc1 CT2   396.000     1.4400 !ion 
NRc1 CPc2  400.000     1.3900 ! 
NRc1 CPc1  400.000     1.4100 ! 
CPc1 Oc2   854.000     1.2400 !ion 
NRc2 CPc2  400.000     1.3000 ! 
CPc1 CPc1  410.000     1.4600 !ion 
NRc2 CPc1  400.000     1.4000 ! 
CPc1 CEc1  500.000     1.3900 !ion 
HAc1 CEc1  360.500     1.1000 ! 
CEc1 CA1   437.000     1.4100 !ion 
CA1  CA2   305.000     1.4300 !ion 
HPc  CA2   340.000     1.0800 ! 
CA2  CA3   305.000     1.3500 !ion 
HPc  CA3   340.000     1.0800 ! 
CA3  CA4   305.000     1.4550 !ion 
OcH  CA4   842.000     1.2500 !ion 
CTc1 NH1   463.000     1.3650 !RFP CA1-N1 connection    
CT2  CTc1  222.500     1.5380 !RFP CB1-CA1 connection 
 
ANGLES 
! 
!V(angle) = Ktheta(Theta - Theta0)**2 
! 
!V(Urey-Bradley) = Kub(S - S0)**2 
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! 
!Ktheta: kcal/mole/rad**2 
!Theta0: degrees 
!Kub: kcal/mole/A**2 (Urey-Bradley) 
!S0: A 
! 
!atom types     Ktheta    Theta0   Kub     S0 
! 
 
NRc2 CPc2 NRc1  130.000   113.3000 !ion 
CPc2 NRc2 CPc1  130.000   106.6000 !ion 
CPc2 NRc1 CPc1  130.000   107.9000 ! 
NRc2 CPc1 CPc1  130.000   108.3000 ! 
NRc2 CPc1 CEc1   45.800   129.5000 ! 
NRc1 CPc1 Oc2    50.000   124.0000 !ion 
NRc1 CPc1 CPc1  130.000   103.0000 ! 
Oc2  CPc1 CPc1   44.000   133.0000 !ion 
CPc1 CPc1 CEc1   45.800   122.7000 !ion 
CPc1 CEc1 CA1   130.000   133.2000 !ion 
CPc1 CEc1 HAc1   42.000   112.0000 !ion 
CEc1 CA1  CA2    45.800   120.0000 !ion 
HAc1 CEc1 CA1    42.000   115.0000 !ion 
CA1  CA2  CA3    40.000   122.0000 !ion 
CA2  CA1  CA2    40.000   116.0000 !ion 
CA2  CA3  CA4    40.000   122.0000 !ion 
CA3  CA4  CA3    40.000   115.0000 !ion 
! 
HPc  CA3  CA4    30.000   120.0000 ! 
HPc  CA3  CA2    30.000   120.0000 ! 
HPc  CA2  CA3    30.000   120.0000 ! 
HPc  CA2  CA1    30.000   120.0000 ! 
! 
OcH  CA4  CA3    45.200   120.0000 ! ALLOW   ARO ALC 
 
!Link to the met(65) fragment 
NH1  CTc1 CPc2   50.000   107.0000 ! ALLOW   PEP POL ARO ALI 
NRc2 CPc2 CTc1   40.000   125.0000 ! 
NRc1 CPc2 CTc1   40.000   121.7000 !ion 
CT2  CT1  CPc2   52.000   108.0000 ! ALLOW   ALI PEP POL ARO 
CT2  CTc1 CPc2   52.000   108.0000 ! ALLOW   ALI PEP POL ARO 
CTc1 NH1  C      50.000   120.0000 
NH1  C    CTc1   80.000   116.5000 
NH1  CTc1 CT2    70.000   113.5000 
HA   CT2  CTc1   33.430   110.1000 22.53   2.17900 
CT2  CT2  CTc1   58.350   113.50   11.16   2.56100 
 
!Link to the gly(67) fragment 
CPc2 NRc1 CT2    40.000   128.3000 !ion 
CPc1 NRc1 CT2    40.000   123.8000 !ion 
NRc1 CT2  C      50.000   107.0000 
NRc1 CT2  HB     48.000   108.0000 
 
! 
DIHEDRALS 
! 
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!V(dihedral) = Kchi(1 + cos(n(chi) - delta)) 
! 
!Kchi: kcal/mole 
!n: multiplicity 
!delta: degrees 
! 
!atom types             Kchi    n   delta 
! 
CPc2 NRc2 CPc1 CPc1    14.0000  2   180.00 ! 
CPc2 NRc1 CPc1 CPc1    14.0000  2   180.00 ! 
NRc2 CPc2 NRc1 CPc1    14.0000  2   180.00 ! 
NRc2 CPc1 CPc1 NRc1     4.0000  2   180.00 ! 
NRc1 CPc2 NRc2 CPc1     4.0000  2   180.00 ! 
CA1  CA2  CA3  CA4      3.1000  2   180.00 ! 
CA2  CA1  CA2  CA3      3.1000  2   180.00 ! 
CA2  CA3  CA4  CA3      3.1000  2   180.00 ! 
!Oc2  CAC  CAC  CAC      3.1000  2   180.00 ! 
CA2  CA3  CA4  OcH      3.1000  2   180.00 ! 
CA1  CA2  CA3  HPc      4.2000  2   180.00 ! 
CA2  CA1  CA2  HPc      4.2000  2   180.00 ! 
CA3  CA4  CA3  HPc      4.2000  2   180.00 ! 
HPc  CA2  CA3  CA4      4.2000  2   180.00 ! 
HPc  CA2  CA3  HPc      2.4000  2   180.00 ! 
!HcH  Oc2  CAC  CAC      0.9900  2   180.00 ! 
!HcH  OcH  CA4  CA3      0.9900  2   180.00 ! 
HPc  CA3  CA4  OcH      4.2000  2   180.00 ! 
! 
CPc2 NRc2 CPc1 CEc1     3.000   2   180.00 ! 
NRc1 CPc1 CPc1 CEc1     3.00    2   180.00 ! 
Oc2  CPc1 CPc1 CEc1     2.00    2   180.00 ! 
CEc1 CA1  CA2  HPc      4.20    2   180.00 ! 
CEc1 CA1  CA2  CA3      3.10    2   180.00 ! 
!connection CA-CB 
CPc1 CPc1 CEc1 HAc1     3.9000  2   180.00 ! 
CPc1 CPc1 CEc1 CA1      3.9000  2   180.00 ! 
NRc2 CPc1 CEc1 HAc1     3.9000  2   180.00 ! 
NRc2 CPc1 CEc1 CA1      3.9000  2   180.00 !  
 
!connection CB-CG2 
CPc1 CEc1 CA1  CA2      2.7000  2   180.00 ! 
HAc1 CEc1 CA1  CA2      2.7000  2   180.00 ! 
! 
CPc2 NRc1 CPc1 Oc2     14.0000  2   180.00 ! 
NRc2 CPc2 NRc1 CT2     14.0000  2   180.00 ! 
NRc2 CPc1 CPc1 Oc2     14.0000  2   180.00 ! 
CPc1 NRc1 CPc2 CTc1    14.0000  2   180.00 ! 
Oc2  CPc1 NRc1 CT2     14.0000  2   180.00 ! 
CPc1 NRc2 CPc2 CTc1    14.0000  2   180.00 ! 
CPc1 CPc1 NRc1 CT2     14.0000  2   180.00 ! 
CTc1 CPc2 NRc1 CT2     14.0000  2   180.00 ! 
 
! Linking the chromophore and the glycine(67) fragment 
O    C    CT2  NRc1     0.0000  1     0.00 ! 
NH1  C    CT2  NRc1     0.6000  1     0.00 ! 
CPc2 NRc1 CT2  HB       0.0320  3     0.00 ! 
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CPc2 NRc1 CT2  C        0.0320  3     0.00 ! 
CPc1 NRc1 CT2  HB       0.0320  3   180.00 ! 
CPc1 NRc1 CT2  C        0.0320  3   180.00 ! 
 
! Linking the chromophore and the met(65) fragment 
C    NH1  CTc1 CPc2     2.2500  2   180.00 !Taken from X-C-NC2-X 
Charmm22 
NRc2 CPc2 CTc1 CT2      0.1050  3   180.00 ! 
NRc2 CPc2 CTc1 NH1      0.1050  3   180.00 ! 
NRc1 CPc2 CTc1 CT2      0.1050  3     0.00 ! 
NRc1 CPc2 CTc1 NH1      0.1050  3     0.00 ! 
 
!connecting N1=CA1 region due to new type CTc1 
O    C    NH1  CTc1     2.5000  2   180.00 
CT1  C    NH1  CTc1     2.5000  2   180.00 
CT2  CTc1 NH1  C        1.8000  1     0.00 
CPc2 CTc1 CT2  HA       0.2000  3     0.00 
CPc2 CTc1 CT2  CT2      0.2000  3     0.00 
NH1  CTc1 CT2  HA       0.2000  3     0.00 
NH1  CTc1 CT2  CT2      0.2000  3     0.00 
 
 
 
IMPROPER 
! 
!V(improper) = Kpsi(psi - psi0)**2 
! 
!Kpsi: kcal/mole/rad**2 
!psi0: degrees 
!note that the second column of numbers (0) is ignored 
! 
!atom types           Kpsi                   psi0 
! 
 
CPc2 NRc2 NRc1 CTc1    50.0000         0      0.0000 
CPc2 NRc1 NRc2 CTc1    50.0000         0      0.0000 
! 
CPc1 NRc1 CPc1 Oc2     50.0000         0      0.0000 
CPc1 CPc1 NRc1 Oc2     50.0000         0      0.0000 
! 
NRc1 CPc1 CPc2 CT2     50.0000         0      0.0000 
NRc1 CPc2 CPc1 CT2     50.0000         0      0.0000 
! 
CPc1 NRc2 CPc1 CEc1    50.0000         0      0.0000 
CPc1 CPc1 NRc2 CEc1    50.0000         0      0.0000 
! 
CEc1 CPc1 CA1  HAc1    30.0000         0      0.0000 
CEc1 CA1  CPc1 HAc1    30.0000         0      0.0000 
 
 
! 
!V(Lennard-Jones) = Eps,i,j[(Rmin,i,j/ri,j)**12 - 2(Rmin,i,j/ri,j)**6] 
! 
!epsilon: kcal/mole, Eps,i,j = sqrt(eps,i * eps,j) 
!Rmin/2: A, Rmin,i,j = Rmin/2,i + Rmin/2,j 
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! 
!atom  ignored    epsilon Rmin/2   ignored   eps,1-4 Rmin/2,1-4 
! 
!CAc  5.000000  -0.070000  1.992400 ! ALLOW   ARO 
 
NONBONDED nbxmod  5 atom cdiel shift vatom vdistance vswitch - 
cutnb 14.0 ctofnb 12.0 ctonnb 10.0 eps 1.0 e14fac 1.0 wmin 1.5  
 
CA1    5.000000  -0.070000     1.992400 ! ALLOW   ARO 
CA2    5.000000  -0.070000     1.992400 ! ALLOW   ARO 
CA3    5.000000  -0.070000     1.992400 ! ALLOW   ARO 
CA4    5.000000  -0.070000     1.992400 ! ALLOW   ARO 
CEc1   0.000000  -0.068000     2.090000 ! ! for propene, yin/adm jr., 
12/95 
CPc1   0.000000  -0.050000     1.800000 ! ALLOW ARO 
CPc2   0.000000  -0.050000     1.800000 ! ALLOW ARO 
HAc    0.000000  -0.022000     1.320000 ! ALLOW PEP ALI POL SUL 
HAc1   0.000000  -0.031000     1.250000 ! 
HPc    0.000000  -0.030000   1.358200   0.000000  -0.030000    1.358200  
NRc1   0.000000  -0.200000     1.850000 ! ALLOW ARO 
NRc2   0.000000  -0.200000     1.850000 ! ALLOW ARO 
Oc2    0.000000  -0.120000     1.700000 ! ALLOW   PEP POL, 
OcH    0.000000  -0.152100     1.770000 ! ALLOW   ALC ARO 
CTc1   0.000000  -0.020000     2.275000  
 

Appendix D: Residue topology and parameter files for the chromophore of mStrawberry 

Table 5.5 Residue topology file for the chromophore of mStrawberry 

MASS   197 NRc2  14.00700 N ! neutral his unprotonated ring nitrogen 
MASS   198 NRc1  14.00700 N ! neutral his protonated ring nitrogen 
MASS   199 HAc1   1.00800 H ! for alkene; RHC=CR 
MASS   200 HPc    1.00800 H ! aromatic H 
MASS   201 Oc2   15.99900 O ! carbonyl oxygen 
MASS   202 OcH   15.99900 O ! from OH1 
MASS   204 HAc    1.00800 H ! nonpolar H 
MASS   205 CA1   12.01100 C ! aromatic C 
MASS   206 CA2   12.01100 C ! aromatic C 
MASS   207 CA3   12.01100 C ! aromatic C 
MASS   208 CPc2  12.01100 C ! his CE1 carbon 
MASS   209 CEc1  12.01100 C ! for alkene; RHC=CR 
MASS   210 CPc1  12.01100 C ! his CG and CD2 carbons 
MASS   211 CA4   12.01100 C ! aromatic C 
MASS   212 CTc1  12.01100 C ! aliphatic sp3 C for CH 
 
DECL -CA   
DECL -C   
DECL -O   
DECL -C3  
DECL +N1  
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DECL +N   
DECL +HN   
DECL +CA   
 
DEFA FIRS NTER LAST CTER    
AUTO ANGLES DIHE    
 
RESI CRO  -1.000 
GROUP                   ! Imidazolinone ring 
ATOM C1    CPc2   0.50 
ATOM N2    NRc2  -0.60 
ATOM N3    NRc1  -0.57 
ATOM C2    CPc1   0.57 
ATOM O2    Oc2   -0.57 
ATOM CA2   CPc1   0.10 
ATOM CB2   CEc1  -0.14 
ATOM HB2   HAc1   0.21 
ATOM CG2   CA1   -0.09 ! Tyr ring : charges from charmm22 
ATOM CD1   CA2   -0.08 
ATOM HD1   HPc    0.14 
ATOM CD2   CA2   -0.08 
ATOM HD2   HPc    0.14 
ATOM CE1   CA3   -0.28 
ATOM HE1   HPc    0.10 
ATOM CE2   CA3   -0.28 
ATOM HE2   HPc    0.10 
ATOM CZ    CA4    0.45 
ATOM OH    OcH   -0.62 
 
! 
!Glycine part from Charmm22 
GROUP 
ATOM CA3   CT2   -0.18  !     | 
ATOM HA31  HB     0.09  !     | 
ATOM HA32  HB     0.09  ! HA1-CA-HA2 
GROUP                   !     | 
ATOM C3    C      0.51  !     | 
ATOM O3    O     -0.51  !     C=O 
! 
!thr part from charmm22 
GROUP    
ATOM N1    NH1    -0.16                     
ATOM CA1   CTc1    0.16 !atom type changed   
GROUP                    
ATOM CB1   CT1     0.14  
ATOM HB1   HA      0.09  
ATOM OG1   OH1    -0.66 
ATOM HG1   H       0.43 
GROUP                    
ATOM CG1   CT3    -0.27 
ATOM HG11  HA      0.09 
ATOM HG12  HA      0.09 
ATOM HG13  HA      0.09 
 
!!!Now needed to define bond 
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BOND CA1 C1 N1 -C C3 +N 
BOND N2 CA2 CB2 HB2 CB2 CG2 CD1 HD1 CD1 CE1 CE1 HE1 CZ OH     
BOND CZ CE2 CE2 HE2 CD2 HD2 CD2 CG2 CA2 C2   
BOND N3 CA3 CA3 HA31 CA3 HA32 CA3 C3 N3 C1 N3 C2  
BOND CA1 CB1 CB1 HB1 CB1 OG1 CB1 CG1 OG1 HG1  
BOND CG1 HG11 CG1 HG12 CG1 HG13 
DOUBLE C1 N2 CA2 CB2 C2 O2 C3 O3 CD1 CG2 CD2 CE2 CZ CE1 CA1 N1 
 

Table 5.6 Parameter file for the chromophore of mStrawberry 

*charmm parameter file of mStrawberry chromophore (thr-tyr-gly) 
* 
!parameter file  
 
! GFP Chromophore parameters, protonated form 
! 
BONDS 
! 
!V(bond) = Kb(b - b0)**2 
! 
!Kb: kcal/mole/A**2 
!b0: A 
! 
!atom type Kb          b0 
  
CPc2 CTc1  354.000     1.4900 !ion for RFP C1-CA1 connection 
NRc1 CT2   396.000     1.4400 !ion 
NRc1 CPc2  400.000     1.3900 ! 
NRc1 CPc1  400.000     1.4100 ! 
CPc1 Oc2   854.000     1.2400 !ion 
NRc2 CPc2  400.000     1.3000 ! 
CPc1 CPc1  410.000     1.4600 !ion 
NRc2 CPc1  400.000     1.4000 ! 
CPc1 CEc1  500.000     1.3900 !ion 
HAc1 CEc1  360.500     1.1000 ! 
CEc1 CA1   437.000     1.4100 !ion 
CA1  CA2   305.000     1.4300 !ion 
HPc  CA2   340.000     1.0800 ! 
CA2  CA3   305.000     1.3500 !ion 
HPc  CA3   340.000     1.0800 ! 
CA3  CA4   305.000     1.4550 !ion 
OcH  CA4   842.000     1.2500 !ion 
CTc1 NH1   463.000     1.3650 !RFP CA1-N1 connection    
CT1  CTc1  222.500     1.5000 ! ALLOW   ALI 
 
ANGLES 
! 
!V(angle) = Ktheta(Theta - Theta0)**2 
! 
!V(Urey-Bradley) = Kub(S - S0)**2 
! 
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!Ktheta: kcal/mole/rad**2 
!Theta0: degrees 
!Kub: kcal/mole/A**2 (Urey-Bradley) 
!S0: A 
! 
!atom types     Ktheta    Theta0   Kub     S0 
! 
 
NRc2 CPc2 NRc1  130.000   113.3000 !ion 
CPc2 NRc2 CPc1  130.000   106.6000 !ion 
CPc2 NRc1 CPc1  130.000   107.9000 ! 
NRc2 CPc1 CPc1  130.000   108.3000 ! 
NRc2 CPc1 CEc1   45.800   129.5000 ! 
NRc1 CPc1 Oc2    50.000   124.0000 !ion 
NRc1 CPc1 CPc1  130.000   103.0000 ! 
Oc2  CPc1 CPc1   44.000   133.0000 !ion 
CPc1 CPc1 CEc1   45.800   122.7000 !ion 
CPc1 CEc1 CA1   130.000   133.2000 !ion 
CPc1 CEc1 HAc1   42.000   112.0000 !ion 
CEc1 CA1  CA2    45.800   120.0000 !ion 
HAc1 CEc1 CA1    42.000   115.0000 !ion 
CA1  CA2  CA3    40.000   122.0000 !ion 
CA2  CA1  CA2    40.000   116.0000 !ion 
CA2  CA3  CA4    40.000   122.0000 !ion 
CA3  CA4  CA3    40.000   115.0000 !ion 
HPc  CA3  CA4    30.000   120.0000 ! 
HPc  CA3  CA2    30.000   120.0000 ! 
HPc  CA2  CA3    30.000   120.0000 ! 
HPc  CA2  CA1    30.000   120.0000 ! 
OcH  CA4  CA3    45.200   120.0000 ! ALLOW   ARO ALC 
 
!Link to the thr(65) fragment  
 
NH1  CTc1 CPc2   50.000   107.0000 ! ALLOW   PEP POL ARO ALI 
NRc2 CPc2 CTc1   40.000   125.0000 ! 
NRc1 CPc2 CTc1   40.000   121.7000 !ion 
CT1  CTc1 CPc2   52.000   108.0000 ! ALLOW   ALI PEP POL ARO 
 
CTc1 NH1  C      50.000   120.0000 
NH1  CTc1 CT1    70.000   113.5000 
HA   CT1  CTc1   34.500    110.10   22.53   2.17900 ! ALLOW   ALI 
CT3  CT1  CTc1   53.350    108.50    8.00   2.56100 ! ALLOW   ALI 
OH1  CT1  CTc1   75.700   110.1000 ! ALLOW   ALI ALC ARO  (Yuba) 
 
!Link to the gly(67) fragment 
CPc2 NRc1 CT2    40.000   128.3000 !ion 
CPc1 NRc1 CT2    40.000   123.8000 !ion 
NRc1 CT2  C      50.000   107.0000 
NRc1 CT2  HB     48.000   108.0000 
! 
DIHEDRALS 
! 
!V(dihedral) = Kchi(1 + cos(n(chi) - delta)) 
! 
!Kchi: kcal/mole 
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!n: multiplicity 
!delta: degrees 
! 
!atom types             Kchi    n   delta 
! 
 
CPc2 NRc2 CPc1 CPc1    14.0000  2   180.00 ! 
CPc2 NRc1 CPc1 CPc1    14.0000  2   180.00 ! 
NRc2 CPc2 NRc1 CPc1    14.0000  2   180.00 ! 
NRc2 CPc1 CPc1 NRc1     4.0000  2   180.00 ! 
NRc1 CPc2 NRc2 CPc1     4.0000  2   180.00 ! 
CA1  CA2  CA3  CA4      3.1000  2   180.00 ! 
CA2  CA1  CA2  CA3      3.1000  2   180.00 ! 
CA2  CA3  CA4  CA3      3.1000  2   180.00 ! 
!Oc2  CAC  CAC  CAC      3.1000  2   180.00 ! 
CA2  CA3  CA4  OcH      3.1000  2   180.00 ! 
CA1  CA2  CA3  HPc      4.2000  2   180.00 ! 
CA2  CA1  CA2  HPc      4.2000  2   180.00 ! 
CA3  CA4  CA3  HPc      4.2000  2   180.00 ! 
HPc  CA2  CA3  CA4      4.2000  2   180.00 ! 
HPc  CA2  CA3  HPc      2.4000  2   180.00 ! 
!HcH  Oc2  CAC  CAC      0.9900  2   180.00 ! 
!HcH  OcH  CA4  CA3      0.9900  2   180.00 ! 
HPc  CA3  CA4  OcH      4.2000  2   180.00 ! 
! 
CPc2 NRc2 CPc1 CEc1     3.000   2   180.00 ! 
NRc1 CPc1 CPc1 CEc1     3.00    2   180.00 ! 
Oc2  CPc1 CPc1 CEc1     2.00    2   180.00 ! 
CEc1 CA1  CA2  HPc      4.20    2   180.00 ! 
CEc1 CA1  CA2  CA3      3.10    2   180.00 ! 
 
!connection CA-CB 
CPc1 CPc1 CEc1 HAc1     3.9000  2   180.00 ! 
CPc1 CPc1 CEc1 CA1      3.9000  2   180.00 ! 
NRc2 CPc1 CEc1 HAc1     3.9000  2   180.00 ! 
NRc2 CPc1 CEc1 CA1      3.9000  2   180.00 !  
 
!connection CB-CG2 
CPc1 CEc1 CA1  CA2      2.7000  2   180.00 ! 
HAc1 CEc1 CA1  CA2      2.7000  2   180.00 ! 
! 
CPc2 NRc1 CPc1 Oc2     14.0000  2   180.00 ! 
NRc2 CPc2 NRc1 CT2     14.0000  2   180.00 ! 
NRc2 CPc1 CPc1 Oc2     14.0000  2   180.00 ! 
CPc1 NRc1 CPc2 CTc1    14.0000  2   180.00 ! 
Oc2  CPc1 NRc1 CT2     14.0000  2   180.00 ! 
CPc1 NRc2 CPc2 CTc1    14.0000  2   180.00 ! 
CPc1 CPc1 NRc1 CT2     14.0000  2   180.00 ! 
CTc1 CPc2 NRc1 CT2     14.0000  2   180.00 ! 
 
! Linking the chromophore and the glycine(67) fragment 
O    C    CT2  NRc1     0.0000  1     0.00 ! 
NH1  C    CT2  NRc1     0.6000  1     0.00 ! 
CPc2 NRc1 CT2  HB       0.0320  3     0.00 ! 
CPc2 NRc1 CT2  C        0.0320  3     0.00 ! 
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CPc1 NRc1 CT2  HB       0.0320  3   180.00 ! 
CPc1 NRc1 CT2  C        0.0320  3   180.00 ! 
 
! Linking the chromophore and the thr(65) fragment 
C    NH1  CTc1 CPc2     2.2500  2   180.00 !Taken from X-C-NC2-X 
Charmm22 
NRc2 CPc2 CTc1 CT1      0.1050  3   180.00 ! 
NRc2 CPc2 CTc1 NH1      0.1050  3   180.00 ! 
NRc1 CPc2 CTc1 CT1      0.1050  3     0.00 ! 
NRc1 CPc2 CTc1 NH1      0.1050  3     0.00 ! 
 
!connecting N1=CA1 region due to new type CTc1 
O    C    NH1  CTc1     2.5000  2   180.00 
CT1  C    NH1  CTc1     2.5000  2   180.00 
CT1  CTc1 NH1  C        1.8000  1     0.00 
CPc2 CTc1 CT1  HA       0.2000  3     0.00 
CPc2 CTc1 CT1  CT3      0.2000  3     0.00 
NH1  CTc1 CT1  HA       0.2000  3     0.00 
NH1  CTc1 CT1  CT3      0.2000  3     0.00   ! X    CT1  CT1  X  (Yuba) 
CPC2 CTC1 CT1  OH1      0.2000  3     0.00 ! ALLOW   ALI 
NH1  CTC1 CT1  OH1      0.2000  3     0.00 ! ALLOW   ALI 
 
IMPROPER 
! 
!V(improper) = Kpsi(psi - psi0)**2 
! 
!Kpsi: kcal/mole/rad**2 
!psi0: degrees 
!note that the second column of numbers (0) is ignored 
! 
!atom types           Kpsi                   psi0 
! 
 
CPc2 NRc2 NRc1 CTc1    50.0000         0      0.0000 
CPc2 NRc1 NRc2 CTc1    50.0000         0      0.0000 
! 
CPc1 NRc1 CPc1 Oc2     50.0000         0      0.0000 
CPc1 CPc1 NRc1 Oc2     50.0000         0      0.0000 
! 
NRc1 CPc1 CPc2 CT2     50.0000         0      0.0000 
NRc1 CPc2 CPc1 CT2     50.0000         0      0.0000 
! 
CPc1 NRc2 CPc1 CEc1    50.0000         0      0.0000 
CPc1 CPc1 NRc2 CEc1    50.0000         0      0.0000 
! 
CEc1 CPc1 CA1  HAc1    30.0000         0      0.0000 
CEc1 CA1  CPc1 HAc1    30.0000         0      0.0000 
 
 
 
! 
!V(Lennard-Jones) = Eps,i,j[(Rmin,i,j/ri,j)**12 - 2(Rmin,i,j/ri,j)**6] 
! 
!epsilon: kcal/mole, Eps,i,j = sqrt(eps,i * eps,j) 
!Rmin/2: A, Rmin,i,j = Rmin/2,i + Rmin/2,j 
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! 
!atom  ignored    epsilon Rmin/2   ignored   eps,1-4 Rmin/2,1-4 
! 
!CAc  5.000000  -0.070000  1.992400 ! ALLOW   ARO 
 
NONBONDED nbxmod  5 atom cdiel shift vatom vdistance vswitch - 
cutnb 14.0 ctofnb 12.0 ctonnb 10.0 eps 1.0 e14fac 1.0 wmin 1.5  
 
CA1    5.000000  -0.070000     1.992400 ! ALLOW   ARO 
CA2    5.000000  -0.070000     1.992400 ! ALLOW   ARO 
CA3    5.000000  -0.070000     1.992400 ! ALLOW   ARO 
CA4    5.000000  -0.070000     1.992400 ! ALLOW   ARO 
CEc1   0.000000  -0.068000     2.090000 !  
CPc1   0.000000  -0.050000     1.800000 ! ALLOW ARO 
CPc2   0.000000  -0.050000     1.800000 ! ALLOW ARO 
HAc    0.000000  -0.022000     1.320000 ! ALLOW PEP ALI POL SUL 
HAc1   0.000000  -0.031000     1.250000 ! 
HPc    0.000000  -0.030000     1.358200 0.000000  -0.030000    1.358200  
NRc1   0.000000  -0.200000     1.850000 ! ALLOW ARO 
NRc2   0.000000  -0.200000     1.850000 ! ALLOW ARO 
Oc2    0.000000  -0.120000     1.700000 ! ALLOW   PEP POL, 
OcH    0.000000  -0.152100     1.770000 ! ALLOW   ALC ARO 
CTc1   0.000000  -0.020000  2.275000 ! 0.000000  -0.010000     1.900000 

 

Appendix E: Residue topology and parameter files for the chromophore of citrine 

Table 5.7 Residue topology file for the chromophore of citrine 

MASS   197 NRc2  14.00700 N ! neutral his unprotonated ring nitrogen 
MASS   198 NRc1  14.00700 N ! neutral his protonated ring nitrogen 
MASS   199 HAc1   1.00800 H ! for alkene; RHC=CR 
MASS   200 HPc    1.00800 H ! aromatic H 
MASS   201 Oc2   15.99900 O ! carbonyl oxygen 
MASS   202 OcH   15.99900 O ! from OH1 
MASS   204 HAc    1.00800 H ! nonpolar H 
MASS   205 CA1   12.01100 C ! aromatic C 
MASS   206 CA2   12.01100 C ! aromatic C 
MASS   207 CA3   12.01100 C ! aromatic C 
MASS   208 CPc2  12.01100 C ! his CE1 carbon 
MASS   209 CEc1  12.01100 C ! for alkene; RHC=CR 
MASS   210 CPc1  12.01100 C ! his CG and CD2 carbons 
MASS   211 CA4   12.01100 C ! aromatic C 
MASS   213 CTc1  12.01100 C ! aliphatic sp3 C for CH 
 
DECL -CA   
DECL -C   
DECL -O   
DECL -C3 !Chola 
DECL +N1 !Chola 
DECL +N   
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DECL +HN   
DECL +CA   
 
DEFA FIRS NTER LAST CTER    
AUTO ANGLES DIHE    
 
RESI CRO  -1.000 
GROUP                   ! Imidazolinone ring 
ATOM C1    CPc2   0.50 
ATOM N2    NRc2  -0.60 
ATOM N3    NRc1  -0.57 
ATOM C2    CPc1   0.57 
ATOM O2    Oc2   -0.57 
ATOM CA2   CPc1   0.10 
ATOM CB2   CEc1  -0.14 
ATOM HB2   HAc1   0.21 
ATOM CG2   CA1   -0.09 ! Tyr ring : charges from charmm22 
ATOM CD1   CA2   -0.08 
ATOM HD1   HPc    0.14 
ATOM CD2   CA2   -0.08 
ATOM HD2   HPc    0.14 
ATOM CE1   CA3   -0.28 
ATOM HE1   HPc    0.10 
ATOM CE2   CA3   -0.28 
ATOM HE2   HPc    0.10 
ATOM CZ    CA4    0.45 
ATOM OH    OcH   -0.62 
 
! 
!Glycine (67) part from Charmm22 
GROUP 
ATOM CA3   CT2   -0.18  !     | 
ATOM HA31  HB     0.09  !     | 
ATOM HA32  HB     0.09  ! HA1-CA-HA2 
GROUP                   !     | 
ATOM C3    C      0.51  !     | 
ATOM O3    O     -0.51  !     C=O 
! 
!gly (65) part from charmm22 
GROUP    
ATOM N1    NH1    -0.47 !atom type changed                     
ATOM HN1   H       0.31 
ATOM CA1   CTc1   -0.02   
ATOM HA11  HB      0.09 
ATOM HA12  HB      0.09 
 
BOND CA1 C1 N1 -C C3 +N CA1 N1 N1 HN1 CA1 HA11 CA1 HA12 
BOND N2 CA2 CB2 HB2 CB2 CG2 CD1 HD1 CD1 CE1 CE1 HE1 CZ OH     
BOND CZ CE2 CE2 HE2 CD2 HD2 CD2 CG2 CA2 C2   
BOND N3 CA3 CA3 HA31 CA3 HA32 CA3 C3 N3 C1 N3 C2  
DOUBLE C1 N2 CA2 CB2 C2 O2 C3 O3 CD1 CG2 CD2 CE2 CZ CE1  
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Table 5.8 Parameter file for the chromophore of citrine 

*charmm parameter file of citrine chromophore (gly-tyr-gly) 
* 
!parameter file  
 
! GFP Chromophore parameters, protonated form 
! 
BONDS 
! 
!V(bond) = Kb(b - b0)**2 
! 
!Kb: kcal/mole/A**2 
!b0: A 
! 
!atom type Kb          b0 
  
CPc2 CTc1  354.000     1.4900 !ion for RFP C1-CA1 connection 
NRc1 CT2   396.000     1.4400 !ion 
NRc1 CPc2  400.000     1.3900 ! 
NRc1 CPc1  400.000     1.4100 ! 
CPc1 Oc2   854.000     1.2400 !ion 
NRc2 CPc2  400.000     1.3000 ! 
CPc1 CPc1  410.000     1.4600 !ion 
NRc2 CPc1  400.000     1.4000 ! 
CPc1 CEc1  500.000     1.3900 !ion 
HAc1 CEc1  360.500     1.1000 ! 
CEc1 CA1   437.000     1.4100 !ion 
CA1  CA2   305.000     1.4300 !ion 
HPc  CA2   340.000     1.0800 ! 
CA2  CA3   305.000     1.3500 !ion 
HPc  CA3   340.000     1.0800 ! 
CA3  CA4   305.000     1.4550 !ion 
OcH  CA4   842.000     1.2500 !ion 
 
NH1  CTc1  320.000     1.4300 
HB   CTc1  330.000     1.0800    
 
ANGLES 
! 
!V(angle) = Ktheta(Theta - Theta0)**2 
! 
!V(Urey-Bradley) = Kub(S - S0)**2 
! 
!Ktheta: kcal/mole/rad**2 
!Theta0: degrees 
!Kub: kcal/mole/A**2 (Urey-Bradley) 
!S0: A 
! 
!atom types     Ktheta    Theta0   Kub     S0 
! 
 
NRc2 CPc2 NRc1  130.000   113.3000 !ion 
CPc2 NRc2 CPc1  130.000   106.6000 !ion 
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CPc2 NRc1 CPc1  130.000   107.9000 ! 
NRc2 CPc1 CPc1  130.000   108.3000 ! 
NRc2 CPc1 CEc1   45.800   129.5000 ! 
NRc1 CPc1 Oc2    50.000   124.0000 !ion 
NRc1 CPc1 CPc1  130.000   103.0000 ! 
Oc2  CPc1 CPc1   44.000   133.0000 !ion 
CPc1 CPc1 CEc1   45.800   122.7000 !ion 
CPc1 CEc1 CA1   130.000   133.2000 !ion 
CPc1 CEc1 HAc1   42.000   112.0000 !ion 
CEc1 CA1  CA2    45.800   120.0000 !ion 
HAc1 CEc1 CA1    42.000   115.0000 !ion 
CA1  CA2  CA3    40.000   122.0000 !ion 
CA2  CA1  CA2    40.000   116.0000 !ion 
CA2  CA3  CA4    40.000   122.0000 !ion 
CA3  CA4  CA3    40.000   115.0000 !ion 
HPc  CA3  CA4    30.000   120.0000 ! 
HPc  CA3  CA2    30.000   120.0000 ! 
HPc  CA2  CA3    30.000   120.0000 ! 
HPc  CA2  CA1    30.000   120.0000 ! 
OcH  CA4  CA3    45.200   120.0000 ! ALLOW   ARO ALC 
 
!Link to the gly(65) fragment 
NH1  CTc1 CPc2   50.000   107.0000 ! ALLOW   PEP POL ARO ALI 
HB   CTc1 CPc2   50.000   109.5000 ! ALLOW   ALI PEP POL ARO 
NRc2 CPc2 CTc1   40.000   125.0000 ! 
NRc1 CPc2 CTc1   40.000   121.7000 !ion 
CTc1 NH1  C      50.000   120.0000 
NH1  CTc1 HB     48.000   108.0000  
H    NH1  CTc1   35.000   117.0000 
HB   CTc1 HB     36.000   115.0000 
 
!Link to the gly(67) fragment 
CPc2 NRc1 CT2    40.000   128.3000 !ion 
CPc1 NRc1 CT2    40.000   123.8000 !ion 
NRc1 CT2  C      50.000   107.0000 
NRc1 CT2  HB     48.000   108.0000 
 
! 
DIHEDRALS 
! 
!V(dihedral) = Kchi(1 + cos(n(chi) - delta)) 
! 
!Kchi: kcal/mole 
!n: multiplicity 
!delta: degrees 
! 
!atom types             Kchi    n   delta 
! 
 
CPc2 NRc2 CPc1 CPc1    14.0000  2   180.00 ! 
CPc2 NRc1 CPc1 CPc1    14.0000  2   180.00 ! 
NRc2 CPc2 NRc1 CPc1    14.0000  2   180.00 ! 
NRc2 CPc1 CPc1 NRc1     4.0000  2   180.00 ! 
NRc1 CPc2 NRc2 CPc1     4.0000  2   180.00 ! 
CA1  CA2  CA3  CA4      3.1000  2   180.00 ! 
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CA2  CA1  CA2  CA3      3.1000  2   180.00 ! 
CA2  CA3  CA4  CA3      3.1000  2   180.00 ! 
!Oc2  CAC  CAC  CAC      3.1000  2   180.00 ! 
CA2  CA3  CA4  OcH      3.1000  2   180.00 ! 
CA1  CA2  CA3  HPc      4.2000  2   180.00 ! 
CA2  CA1  CA2  HPc      4.2000  2   180.00 ! 
CA3  CA4  CA3  HPc      4.2000  2   180.00 ! 
HPc  CA2  CA3  CA4      4.2000  2   180.00 ! 
HPc  CA2  CA3  HPc      2.4000  2   180.00 ! 
HPc  CA3  CA4  OcH      4.2000  2   180.00 ! 
! 
CPc2 NRc2 CPc1 CEc1     3.000   2   180.00 ! 
NRc1 CPc1 CPc1 CEc1     3.00    2   180.00 ! 
Oc2  CPc1 CPc1 CEc1     2.00    2   180.00 ! 
CEc1 CA1  CA2  HPc      4.20    2   180.00 ! 
CEc1 CA1  CA2  CA3      3.10    2   180.00 ! 
 
!connection CA-CB 
CPc1 CPc1 CEc1 HAc1     3.9000  2   180.00 ! 
CPc1 CPc1 CEc1 CA1      3.9000  2   180.00 ! 
NRc2 CPc1 CEc1 HAc1     3.9000  2   180.00 ! 
NRc2 CPc1 CEc1 CA1      3.9000  2   180.00 ! 
 
!connection CB-CG2 
CPc1 CEc1 CA1  CA2      2.7000  2   180.00 ! 
HAc1 CEc1 CA1  CA2      2.7000  2   180.00 ! 
! 
CPc2 NRc1 CPc1 Oc2     14.0000  2   180.00 ! 
NRc2 CPc2 NRc1 CT2     14.0000  2   180.00 ! 
NRc2 CPc1 CPc1 Oc2     14.0000  2   180.00 ! 
CPc1 NRc1 CPc2 CTc1    14.0000  2   180.00 ! 
Oc2  CPc1 NRc1 CT2     14.0000  2   180.00 ! 
CPc1 NRc2 CPc2 CTc1    14.0000  2   180.00 ! 
CPc1 CPc1 NRc1 CT2     14.0000  2   180.00 ! 
CTc1 CPc2 NRc1 CT2     14.0000  2   180.00 ! 
 
! Linking the chromophore and the glycine(67) fragment 
O    C    CT2  NRc1     0.0000  1     0.00 ! 
NH1  C    CT2  NRc1     0.6000  1     0.00 ! 
CPc2 NRc1 CT2  HB       0.0320  3     0.00 ! 
CPc2 NRc1 CT2  C        0.0320  3     0.00 ! 
CPc1 NRc1 CT2  HB       0.0320  3   180.00 ! 
CPc1 NRc1 CT2  C        0.0320  3   180.00 ! 
 
 
! Linking the chromophore and the gly(65) fragment 
C    NH1  CTc1 CPc2     0.2000  1   180.00 ! 
NRc2 CPc2 CTc1 NH1      0.1050  3   180.00 ! 
NRc1 CPc2 CTc1 NH1      0.1050  3     0.00 ! 
! 
H    NH1  CTc1 CPc2     0.0000  1     0.00 ! 
NRc2 CPc2 CTc1 HB       0.1050  3   180.00 ! 
NRc1 CPc2 CTc1 HB       0.1050  3     0.00 ! 
CT1  C    NH1  CTc1     1.6000  1     0.00 !  ALLOW PEP 
HB   CTc1 NH1  C        0.0000  1     0.00 ! ALLOW PEP 
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O    C    NH1  CTc1     2.5000  2   180.00 !  ALLOW PEP 
HB   CTc1 NH1  H        0.0000  1     0.00 ! ALLOW PEP 
 
 
 
IMPROPER 
! 
!V(improper) = Kpsi(psi - psi0)**2 
! 
!Kpsi: kcal/mole/rad**2 
!psi0: degrees 
!note that the second column of numbers (0) is ignored 
! 
!atom types           Kpsi                   psi0 
! 
 
CPc2 NRc2 NRc1 CTc1   50.0000     0    0.0000 
CPc2 NRc1 NRc2 CTc1   50.0000     0    0.0000 
! 
CPc1 NRc1 CPc1 Oc2    50.0000     0    0.0000 
CPc1 CPc1 NRc1 Oc2    50.0000     0    0.0000 
! 
NRc1 CPc1 CPc2 CT2    50.0000     0    0.0000 
NRc1 CPc2 CPc1 CT2    50.0000     0    0.0000 
! 
CPc1 NRc2 CPc1 CEc1   50.0000     0    0.0000 
CPc1 CPc1 NRc2 CEc1   50.0000     0    0.0000 
! 
CEc1 CPc1 CA1  HAc1   30.0000     0    0.0000 
CEc1 CA1  CPc1 HAc1   30.0000     0    0.0000 
 
 
! 
!V(Lennard-Jones) = Eps,i,j[(Rmin,i,j/ri,j)**12 - 2(Rmin,i,j/ri,j)**6] 
! 
!epsilon: kcal/mole, Eps,i,j = sqrt(eps,i * eps,j) 
!Rmin/2: A, Rmin,i,j = Rmin/2,i + Rmin/2,j 
! 
!atom  ignored    epsilon Rmin/2   ignored   eps,1-4 Rmin/2,1-4 
! 
!CAc  5.000000  -0.070000  1.992400 ! ALLOW   ARO 
 
NONBONDED nbxmod  5 atom cdiel shift vatom vdistance vswitch - 
cutnb 14.0 ctofnb 12.0 ctonnb 10.0 eps 1.0 e14fac 1.0 wmin 1.5  
 
CA1    5.000000  -0.070000     1.992400 ! ALLOW   ARO 
CA2    5.000000  -0.070000     1.992400 ! ALLOW   ARO 
CA3    5.000000  -0.070000     1.992400 ! ALLOW   ARO 
CA4    5.000000  -0.070000     1.992400 ! ALLOW   ARO 
CEc1   0.000000  -0.068000     2.090000 ! ! for propene, yin/adm jr.,  
CPc1   0.000000  -0.050000     1.800000 ! ALLOW ARO 
CPc2   0.000000  -0.050000     1.800000 ! ALLOW ARO 
HAc    0.000000  -0.022000     1.320000 ! ALLOW PEP ALI POL SUL 
HAc1   0.000000  -0.031000     1.250000 ! 
HPc    0.000000  -0.030000     1.358200 0.000000  -0.030000    1.358200  
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NRc1   0.000000  -0.200000     1.850000 ! ALLOW ARO 
NRc2   0.000000  -0.200000     1.850000 ! ALLOW ARO 
Oc2    0.000000  -0.120000     1.700000 ! ALLOW   PEP POL, 
OcH    0.000000  -0.152100     1.770000 ! ALLOW   ALC ARO 
CTc1   0.000000  -0.020000     2.275000 !  
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