Pressure Induced Structural Changes and Gas Diffusion Pathways in Monomeric Fluorescent Proteins

Yuba R. Bhandari
Florida International University, bhandariyuba@gmail.com

DOI: 10.25148/etd.FI13042320
Follow this and additional works at: http://digitalcommons.fiu.edu/etd
Part of the Physics Commons

Recommended Citation
Bhandari, Yuba R., "Pressure Induced Structural Changes and Gas Diffusion Pathways in Monomeric Fluorescent Proteins" (2013). FIU Electronic Theses and Dissertations. 886.
http://digitalcommons.fiu.edu/etd/886
PRESSURE INDUCED STRUCTURAL CHANGES AND GAS DIFFUSION PATHWAYS IN MONOMERIC FLUORESCENT PROTEINS

A dissertation submitted in partial fulfillment of the requirements for the degree of

DOCTOR OF PHILOSOPHY

in

PHYSICS

by

Yuba R. Bhandari

2013
To: Dean Kenneth G. Furton
College of Arts and Sciences

This dissertation, written by Yuba R. Bhandari, and entitled Pressure Induced Structural Changes and Gas Diffusion Pathways in Monomeric Fluorescent Proteins, having been approved in respect to style and intellectual content, is referred to you for judgement.

We have read this dissertation and recommend that it be approved.

David C. Chatfield

Xuewen Wang

Bernard S. Gerstman, Co-Major Professor

Prem P. Chapagain, Co-Major Professor

Date of Defense: March 28, 2013

The dissertation of Yuba R. Bhandari is approved.

Dean Kenneth G. Furton
College of Arts and Sciences

Dean Lakshmi N. Reddi
University Graduate School

Florida International University, 2013
© Copyright 2013 by Yuba R. Bhandari

All rights reserved.
DEDICATION

I dedicate this dissertation to my beloved parents.
ACKNOWLEDGMENTS

I would like to thank Prof. David Chatfield and Prof. Xuewen Wang for their helpful suggestions and comments. I would like to offer special thanks to my co-major advisor Prof. Bernard Gerstman for his time and care for designing and refining my dissertation, and guiding me through my research. I would like to express great appreciation to my co-major advisor Prof. Prem Chapagain for his invaluable guidance, help and support during my entire research work and dissertation writing.

I would like to thank all members of my biophysics research group for their help and cooperation. I shall always cherish our “wonderful Friday meeting” that would keep running for hours and hours with stimulating discussions and full enthusiasm. I would also like to thank my beloved wife Bandana for her care, support and understanding during the writing of this dissertation.
Fluorescent proteins (FPs) are extremely valuable biochemical markers which have found a wide range of applications in cellular and molecular biology research. The monomeric variants of red fluorescent proteins (RFPs), known as mFruits, have been especially valuable for \textit{in vivo} applications in mammalian cell imaging. Fluorescent proteins consist of a chromophore caged in the beta-barrel protein scaffold. The photophysical properties of an FP is determined by its chromophore structure and its interactions with the protein barrel.

Application of hydrostatic pressure on FPs results in the modification of the chromophore environment which allows a systematic study of the role of the protein-chromophore interactions on photophysical properties of FPs. Using Molecular Dynamics (MD) computer simulations, I investigated the pressure induced structural changes in the monomeric variants mCherry, mStrawberry, and Citrine. The results explain the molecular basis for experimentally observed pressure responses among FP variants. It is found that the barrel flexibility, hydrogen bonding interactions and chromophore...
planarity of the FPs can be correlated to their contrasting photophysical properties at various pressures.

I also investigated the oxygen diffusion pathways in mOrange and mOrange2 which exhibit marked differences in oxygen sensitivities as well as photostability. Such computational identifications of structural changes and oxygen diffusion pathways are important in guiding mutagenesis efforts to design fluorescent proteins with improved photophysical properties.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>CHAPTER</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. INTRODUCTION</td>
<td>1</td>
</tr>
<tr>
<td>1.1 What is Fluorescence</td>
<td>1</td>
</tr>
<tr>
<td>1.2 Why Study Fluorescent Proteins</td>
<td>2</td>
</tr>
<tr>
<td>1.3 Development of Monomeric Variants</td>
<td>3</td>
</tr>
<tr>
<td>1.4 Pressure Effects on Proteins</td>
<td>4</td>
</tr>
<tr>
<td>1.5 Gas Diffusion and Oxidative Photobleaching</td>
<td>5</td>
</tr>
<tr>
<td>2. METHODS</td>
<td>8</td>
</tr>
<tr>
<td>2.1 Molecular Mechanics: Force Field Models</td>
<td>8</td>
</tr>
<tr>
<td>2.1.1 Bonded Interactions</td>
<td>10</td>
</tr>
<tr>
<td>2.1.2 Non-bonded Interactions</td>
<td>13</td>
</tr>
<tr>
<td>2.2 Time Integration</td>
<td>17</td>
</tr>
<tr>
<td>2.2.1 Verlet Algorithm</td>
<td>17</td>
</tr>
<tr>
<td>2.2.2 Leap-frog Algorithm</td>
<td>19</td>
</tr>
<tr>
<td>2.2.3 Time Increments, Δt</td>
<td>21</td>
</tr>
<tr>
<td>2.3 Constant Pressure and Temperature Simulation</td>
<td>21</td>
</tr>
<tr>
<td>2.4 Parameterization of Chromophore</td>
<td>22</td>
</tr>
<tr>
<td>2.5 Identifying Protein Cavities</td>
<td>23</td>
</tr>
<tr>
<td>2.6 Locally Enhanced Sampling</td>
<td>24</td>
</tr>
<tr>
<td>2.7 Other Computational Details</td>
<td>25</td>
</tr>
<tr>
<td>2.7.1 Simulation Conditions for mCherry, mStrawberry and Citrine</td>
<td>25</td>
</tr>
<tr>
<td>2.7.2 Simulation Conditions for mOrange and mOrange2</td>
<td>26</td>
</tr>
<tr>
<td>3. STRUCTURAL FEATURES OF THE PROTEIN BARREL THAT ALLOW OXYGEN ACCESS AT AMBIENT PRESSURE</td>
<td>28</td>
</tr>
<tr>
<td>3.1 Protein Barrel and Chromophore of mOrange, mOrange2, mCherry, mStrawberry, and Citrine</td>
<td>28</td>
</tr>
<tr>
<td>3.2 Computationally Determined Protein Channels</td>
<td>31</td>
</tr>
<tr>
<td>3.3 Oxygen Diffusion in mOrange and mOrange2</td>
<td>33</td>
</tr>
<tr>
<td>3.3.1 Experimental Studies on Oxygen Sensitivity</td>
<td>34</td>
</tr>
<tr>
<td>3.3.2 Molecular Oxygen Diffusion Pathways</td>
<td>36</td>
</tr>
<tr>
<td>4. PRESSURE EFFECTS ON mCHERRY, mSTRAWBERRY AND CITRINE</td>
<td>45</td>
</tr>
<tr>
<td>4.1 Barrel Compressibility</td>
<td>47</td>
</tr>
<tr>
<td>4.2 Chromophore-Barrel Interaction and Hydrogen Bonding</td>
<td>51</td>
</tr>
<tr>
<td>4.3 Chromophore Flexibility</td>
<td>59</td>
</tr>
<tr>
<td>4.4 Chromophore Planarity and the Fluorescence</td>
<td>60</td>
</tr>
<tr>
<td>5. CONCLUSIONS</td>
<td>64</td>
</tr>
<tr>
<td>REFERENCES</td>
<td>67</td>
</tr>
<tr>
<td>APPENDICES</td>
<td>75</td>
</tr>
<tr>
<td>VITA</td>
<td>101</td>
</tr>
</tbody>
</table>
LIST OF TABLES

<table>
<thead>
<tr>
<th>TABLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Table 3.1: Number of tunnels in various FPs</td>
<td>32</td>
</tr>
<tr>
<td>Table 3.2: Various photophysical properties of mRFP1, mOrange and mOrange2</td>
<td>34</td>
</tr>
<tr>
<td>Table 4.1: Radius of gyration in angstroms at various pressures</td>
<td>48</td>
</tr>
<tr>
<td>Table 4.2: Tunnels inside mCherry</td>
<td>50</td>
</tr>
<tr>
<td>Table 4.3: Tunnels inside mStrawberry</td>
<td>50</td>
</tr>
<tr>
<td>Table 4.4: Tunnels inside citrine</td>
<td>50</td>
</tr>
<tr>
<td>Table 4.5: Hydrogen bond percentage of mCherry chromophore</td>
<td>58</td>
</tr>
<tr>
<td>Table 4.6: Hydrogen bond percentage of mStrawberry chromophore</td>
<td>58</td>
</tr>
<tr>
<td>Table 4.7: Hydrogen bond percentage of citrine chromophore</td>
<td>59</td>
</tr>
<tr>
<td>FIGURE</td>
<td>PAGE</td>
</tr>
<tr>
<td>--------</td>
<td>------</td>
</tr>
<tr>
<td>Figure 1.1: Jablonski Energy Diagram</td>
<td>1</td>
</tr>
<tr>
<td>Figure 1.2: Barrel and chromophore structure of a monomeric FP</td>
<td>3</td>
</tr>
<tr>
<td>Figure 2.1: Bonded and non-bonded interactions</td>
<td>9</td>
</tr>
<tr>
<td>Figure 2.2: Potential energy versus separation for Morse Potential</td>
<td>11</td>
</tr>
<tr>
<td>Figure 2.3: Potential Energy function due for bond angle bending</td>
<td>12</td>
</tr>
<tr>
<td>Figure 2.4: Potential energy of ethane as a function of torsion angle</td>
<td>13</td>
</tr>
<tr>
<td>Figure 2.5: Lennard-Jones potential</td>
<td>15</td>
</tr>
<tr>
<td>Figure 2.6 Various cutoff distances for LJ potential</td>
<td>17</td>
</tr>
<tr>
<td>Figure 3.1: Sequence alignment of mRFP variants with wild type DsRed and mRFP1</td>
<td>30</td>
</tr>
<tr>
<td>Figure 3.2: Chromophores of various fluorescent proteins</td>
<td>31</td>
</tr>
<tr>
<td>Figure 3.3: Channels present in FPs at atmospheric pressure</td>
<td>33</td>
</tr>
<tr>
<td>Figure 3.4: Various oxygen-hosting pockets common to mOrange and mOrange2</td>
<td>37</td>
</tr>
<tr>
<td>Figure 3.5: Survival curves for mOrange and mOrange2</td>
<td>40</td>
</tr>
<tr>
<td>Figure 3.6: Trajectories of molecular oxygen showing its distance from the chromophore for a 2.7 ns window</td>
<td>41</td>
</tr>
<tr>
<td>Figure 3.7: Oxygen-hosting pockets unique to mOrange</td>
<td>43</td>
</tr>
<tr>
<td>Figure 3.8: Probability density map for the molecular oxygen</td>
<td>44</td>
</tr>
<tr>
<td>Figure 4.1: Experimental results of pressure effects on mCherry and mStrawberry</td>
<td>46</td>
</tr>
<tr>
<td>Figure 4.2: Experimental results of pressure effects on citrine</td>
<td>47</td>
</tr>
<tr>
<td>Figure 4.3: Tunnels in mCherry and mStrawberry plotted at pressures 250 MPa, and tunnels in citrine plotted at pressure 50 MPa</td>
<td>51</td>
</tr>
<tr>
<td>Figure 4.4(a): The hydrogen bonding network in mCherry and mStrawberry</td>
<td>52</td>
</tr>
</tbody>
</table>
Figure 4.4(b): The hydrogen bonding network in YFP53

Figure 4.5: Histogram of the distance between phenolate oxygen and Ser146 Oγ in (a) mCherry and (b) mStrawberry (c) distance between phenolate oxygen and His148 Nδ in citrine55

Figure 4.6: (a) Percentage of H-bonds formed between Ser146 Oγ and chromophore phenolate oxygen in mCherry and mStrawberry. (b) Percentage of H-bonds between His148 and chromophore phenolate oxygen in citrine57

Figure 4.7: Plot of root mean square fluctuations (rmsf) of the chromophore of mCherry, mStrawberry and citrine at various pressures60

Figure 4.8: Plot of average angle between the planes of phenolate ring and imidazolinone ring of the chromophore of mCherry, mStrawberry and citrine at various pressures ...61

Figure 4.9: (a) Average angle between the least square planes through the phenol rings of chromophore and Tyr203 in citrine. (b) Stacking between phenolate rings of chromophore and neighboring residue Tyr20363
<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>FPs</td>
<td>Fluorescent Proteins</td>
</tr>
<tr>
<td>RFPs</td>
<td>Red Fluorescent Proteins</td>
</tr>
<tr>
<td>YFP</td>
<td>Yellow Fluorescent Protein</td>
</tr>
<tr>
<td>GFP</td>
<td>Green Fluorescent Protein</td>
</tr>
<tr>
<td>EGFP</td>
<td>Enhanced Green Fluorescent Protein</td>
</tr>
<tr>
<td>MD:</td>
<td>Molecular Dynamics</td>
</tr>
<tr>
<td>CPT:</td>
<td>Constant Pressure and Temperature</td>
</tr>
<tr>
<td>MM</td>
<td>Molecular Mechanics</td>
</tr>
<tr>
<td>QM</td>
<td>Quantum Mechanics</td>
</tr>
<tr>
<td>LJ</td>
<td>Lennard-Jones</td>
</tr>
<tr>
<td>PME</td>
<td>Particle Mesh Ewald</td>
</tr>
<tr>
<td>VDW</td>
<td>Van der Waals</td>
</tr>
<tr>
<td>LES</td>
<td>Locally Enhanced Sampling</td>
</tr>
<tr>
<td>RMSF</td>
<td>Root Mean Square Fluctuations</td>
</tr>
<tr>
<td>MPa</td>
<td>MegaPascal</td>
</tr>
<tr>
<td>RGYR</td>
<td>Radius of Gyration</td>
</tr>
<tr>
<td>KFP</td>
<td>Kindling Fluorescent Protein</td>
</tr>
<tr>
<td>FRET</td>
<td>Forster Resonance Energy Transfer</td>
</tr>
</tbody>
</table>
1. INTRODUCTION

1.1 WHAT IS FLUORESCENCE

Fluorescence is a phenomenon in which a molecule absorbs radiation, jumps to an excited state and then releases the radiation in the form of light of specific wavelength while going back to the ground state. Usually the wavelength of emitted light is longer (less energetic) than the wavelength of absorbed light. The timescale range for fluorescence process is 1 ns to 100 ns. The molecule is mostly singlet (electronic spins paired) in the ground state. After absorbing light, it transits to an excited singlet state. Once in the excited state, the molecule may lose energy due to vibrational modes. Then finally it jumps back to the ground state emitting radiation. If the excited singlet state gets converted to the excited triplet state, it may transit to the ground state emitting radiation and this process is called phosphorescence. The phenomenon of phosphorescence takes place over longer time scales ranging from 1 ms to 100 seconds. Various processes taking place during fluorescence and phosphorescence are depicted in Figure 1.1.

![Jablonski Energy Diagram](image-url)
1.2 WHY STUDY FLUORESCENT PROTEINS

Fluorescent proteins are extremely valuable biochemical markers in molecular and cell biology. The fluorescent proteins (FPs) emit in the visible range of light when they are irradiated with light of a specific shorter wavelength. The emission of light is called fluorescence. Because of the fluorescence, when fluorescent proteins are fused with other proteins of interest, it is possible to study the movement, localization and many other physiological processes of the tagged proteins in vivo (1-4). Fluorescent proteins are also used as genetically encoded sensors to detect protein-protein interactions on the basis of Forster resonance energy transfer (FRET) applications (5). Fluorescent proteins consist of 220-240 amino acid residues that fold into a barrel shaped beta-sheet scaffold, which encloses a tripeptide structure called the chromophore. The protein owes it fluorescence to the chromophore (2). The side chains of the residues of the beta barrel near the chromophore have an important role to play in the formation and maturation of the chromophore. The electronic molecular orbitals of the chromophore are responsible for its spectral properties, and may be modified by the surrounding amino acid side chains. Understanding the barrel-chromophore interactions and the effect on the chromophores’ spectral properties in these proteins will have important implications in designing brighter and more photo-stable fluorescent protein variants that can be used as efficient biochemical markers for studying cellular processes. In order to better understand the system, we subject various fluorescent proteins to high pressures and calculate how the chromophore-barrel interactions are modified.
1.3 DEVELOPMENT OF MONOMERIC VARIANTS

Wild type fluorescent proteins have a tendency to oligomerize. Naturally occurring green fluorescent protein, derived from the jellyfish *Aequorea victoria*, forms a dimer. Similarly, the red fluorescent protein DsRed, obtained from sea coral *Discosoma sp.*, is tetrameric. Oligomeric forms of fluorescent proteins are overly bulky for the tagging purpose, and often take a long time (days) to mature and express their fluorescence. To overcome the shortcomings of the oligomers, various mutations have been carried out to generate monomeric variants. The monomeric FPs mature much faster (in hours), but may be slightly less bright and less photostable than their multimeric progenitors.

Figure 1.2 Barrel and chromophore structure of a monomeric FP. Figure 1.2(a) shows the protein barrel enclosing the chromophore. Figure 1.2(b) shows the chromophore from the top view of the protein barrel.
A typical monomeric FP consists of around 240 amino acids forming an 11 stranded beta barrel. A distorted helix runs through the axis of the cylindrical barrel. The chromophore is located at the center of the helix, which is formed by a unique post-translational modification of, usually, three amino acid residues. The barrel and chromophore structure of a monomeric FP are shown in Figure 1.2.

To be used as an efficient biochemical marker, the monomeric variant should be bright enough to produce sufficient signal above the cellular autofluorescence, and should have sufficient photostability to be imaged for the time period of the experiment. The monomeric variants investigated in my study are mOrange, mOrange2, mCherry and mStrawberry (derived from RFP) and citrine (derived from GFP).

1.4 PRESSURE EFFECTS ON PROTEINS

Subjecting a protein to higher temperatures increases the thermal fluctuations of the system and structural dynamical modes become active, which allows exploration of more protein configurations. However, there could be a large number of conformational substates unexplored by the temperature effects alone. Pressure is as equally an important thermodynamic parameter as temperature, and can be used to further unravel the protein dynamics and configurational pathways leading to folding, unfolding, or conformational changes.

Pressure experiments on proteins have shown that proteins can be squeezed (6-11). As we apply hydrostatic pressure on globular proteins, water molecules can be pushed inside or forced out. The change in the number of interior water molecules, along with the general squeezing of the protein, can change the number and arrangement of the
internal hydrogen bonds. Mozhaev et al. have reported that electrostatic interactions become much weaker at higher pressures (12). The denaturation of proteins at very high pressures of 1000-1500 MPa may be due to hydration changes occurring inside the protein cavities and changes in hydrogen bond patterns.

Pressure perturbations bring about atomic scale deformations of proteins and other biomolecules, which can affect their structural properties and biological functioning. Proteins subjected to high pressure undergo significant structural changes, varying from elastic effects that may cause spectral shifts without large conformational changes, to complete unfolding (13). For example, experimental studies on myoglobin and Ribonuclease A have shown that these proteins can be denatured when perturbed by hydrostatic pressures around 600 MPa (14, 15). Investigations of the effects on the protein structure of gradually increasing the pressure help in understanding the mechanistic details about protein functioning and interactions between proteins and solvents (7, 16, 17). Pressure effects have also been used to understand the gating phenomenon of ion channels in membrane proteins (18).

1.5 GAS DIFFUSION AND OXIDATIVE PHOTOBLEACHING

There has been a continuous search for improved fluorescent proteins to act as efficient biological markers in terms of brightness, wavelength, photostability, protein structural stability, pH and temperature stability etc. Red fluorescent proteins (RFPs) are especially preferred because the background cellular autofluorescence is low in the red region of the spectrum. Unfortunately, the wild type red fluorescent protein, DsRed is tetrameric, and is too big to be used effectively as a fusion partner (19). To create a
monomer, the tetrameric progenitor dsRed was mutated with 33 substitutions through site directed evolution to obtain the first monomeric variant, named mRFP1 (20, 21). However, obtaining the monomeric variant involves mutating key residues in the monomer that are located at the interfaces of the monomer when formed into a tetramer. These mutations may endanger the monomer stability as a whole. Structural changes resulting from these mutations may also affect the diffusion of gases and ions into the interior through gaps in the protein barrel.

Recent investigations have shown that protein flexibility plays a major role in gas access into many proteins (22-27). Conformational flexibility of the side chains of residues involved in forming transient cavities or pathways can alter the sizes of the bottlenecks for gas diffusion, as well as changing gating mechanisms at the protein surface (28-32). In FPs, in addition to affecting the structures of the chromophore and the protein barrel separately (33), the chromophore–barrel interaction can also affect the fluctuations of the chromophore and the barrel, which in turn can modify the spectral properties and lifetime of the fluorescence (34). It was shown in a recent important work on cyan fluorescent protein that the reduction in the flexibility of a beta strand in the barrel had led to a dramatic improvement in fluorescence quantum yield (35). The halide sensitivity of yellow fluorescent proteins (YFP) was eliminated by the mutation Q69M that occupies the halide-binding cavity in the vicinity of the chromophore (36). In an important work (37), Roy et al. investigated the diffusion pathways of molecular oxygen in the phototoxic KillerRed protein. In this protein, reactive oxygen is generated from molecular oxygen that diffuses into the interior of the protein. They were able to identify pores and channels that allow the oxygen to escape through the protein barrel to the bulk
solvent. This study also suggested that the ease of molecular oxygen diffusion through a channel is the cause of the high susceptibility for photobleaching (37).

Better shielding of the chromophore from the environment, as well as reducing the access of molecular oxygen to the chromophore, has been shown to significantly increase the photostability of both GFPs and RFPs (38). Two mutations (Q64H and F99Y) carried out on mRFP1, resulted in an 11 fold increase in its photostability. Similar mutations were performed on mOrange to produce mOrange2, which provided enhanced photostability and made an excellent fusion partner with other proteins (39).

There are many different ways in which amino acid mutations can affect the fluorescent properties. Though the changes in the electronic orbitals are important for spectral changes, we are especially interested in the structural effects that change the oxygen permeability, and structural flexibility that may affect the chromophore’s fluorescent properties. A static image from x-ray crystallography is not enough to investigate the dynamical properties resulting from the gas diffusion and barrel fluctuations. This calls for the need of studying the various transient interactions at the molecular level in silico. I have performed molecular dynamics simulations with explicit oxygen to investigate the oxygen diffusions and structural fluctuations in mOrange and mOrange2.
2. METHODS

We investigate the effects of pressure on the interactions between the chromophore and the protein barrel in fluorescent proteins by performing molecular dynamics calculations. These calculations are aimed at determining structural changes, as well as changes in the bonding between the chromophore and the protein barrel. Though we do not perform quantum mechanical calculations to determine changes in the electronic molecular orbitals of the chromophore, we will see below that some aspects of the chromophore’s electronic configuration are incorporated in the calculation when we discuss the parameterization of the chromophore later in this chapter.

We first discuss two major issues for determining the accuracy of an MD simulation: the mathematical scheme used to perform the numerical integration for a finite Δt, and the force fields that are incorporated to represent the forces experienced by the particles.

2.1 MOLECULAR MECHANICS: FORCE FIELD MODELS

The most detailed calculations on a molecular system employ quantum mechanical methods for calculating electronic molecular orbital properties and bonds between atoms. These calculations are computationally expensive and not practical for macromolecules containing hundreds of electrons. In this situation, a widely used approach with smaller computational cost is to choose empirical potential energy functions. The potential energy function can then be parameterized so that the energy it produces agrees with experimental data, or with the results of \textit{ab initio} quantum mechanical calculations if available (40). Most of the MD simulation packages use
potential energy functions between atoms that have the approximate form of a harmonic oscillator potential. Use of simple models of force fields can represent the interactions in a biomolecular system from contributions such as bond stretching, angle fluctuations, and rotations about bonds, and form the basis of molecular mechanics calculations.

![Diagram of molecular interactions](image)

Figure 2.1 Bonded and non-bonded interactions

CHARMM (Chemistry at Harvard Macromolecular Mechanics) is a versatile molecular dynamics simulation package that not only performs energy minimization, molecular dynamics, trajectory analysis, but also enables full parameterization of the novel molecules through comparison with experimental and quantum calculations. We use CHARMM (41) version 35b2, and NAMD (42) version 2.9 with the CHARMM27 force fields for our molecular dynamics simulations. CHARMM27 force field parameters are developed to study proteins, nucleic acids, lipids, carbohydrates etc.

Molecular mechanics calculations compute the energy of a system based on its conformation. The interactions between various atoms in a molecule are classified into bonded interactions and non-bonded interactions. The sum of individual bonded and non-
bonded interactions contribute to the energy of the specific conformational state. The potential energy terms include energetic penalties when bonds and angles deviate away from their preferred arrangement. Since a system with many atoms has many interactions, it is unlikely that any configuration will allow all the interactions to be minimized simultaneously. This is an example of “frustration”. However, the configuration that best minimizes the total energy of the system is the equilibrium configuration. The various potential energy terms for the nearest and non-nearest neighbor interactions are described in detail below.

2.1.1 BONDED INTERACTIONS

Bond Stretching

A chemical bond can be modeled as a spring with equilibrium bond length r_0 and stretching force constant k_s. The energy required to elongate or compress the spring can be expressed using Hooke’s law.

$$U(r) = \frac{k_s}{2} (r - r_0)^2$$ (2.1)

A realistic bond potential is not perfectly harmonic. Morse proposed a realistic functional form used to model bond stretching:

$$U(r) = D_e \{1 - \exp[-a(r - r_0)]\}^2$$ (2.2)

In equation 2.2, D_e is the depth of the potential energy minimum at $r = r_0$ compared to the potential at $r = \infty$, and $a = \omega \sqrt{\mu/2D_e}$, where μ is the reduced mass and ω is the frequency of the bond vibration. The Morse potential is represented in Figure
2.2. Although the Morse potential is more realistic than the harmonic potential, it requires more parameters and is computationally expensive (43).

![Figure 2.2 Potential energy versus separation for Morse Potential](image)

Angle Bending

The angle bending energy is the energy required to bend a bond from its equilibrium angle, θ_0. The deviations of angles from their equilibrium values are modeled using the harmonic potential:

$$U(\theta) = \frac{k}{2} (\theta - \theta_0)^2$$ \hspace{1cm} (2.3)

In equation 2.3, k is the force constant. A diagram for this potential is displayed in Fig. 2.3. The energy penalties for angle bending are less severe than those for bond stretching, and are reflected by appropriate small values for k.
Torsions

Rotation about a chemical bond causes variation in structure and relative energy. If four atoms A-B-C-D form a bonded quartet, the angle between the planes ABC and BCD is referred to as the torsion angle. A complex interplay between the torsional and non-bonded interactions result in diverse conformational states. The variations in torsional potential energy for various torsional angles of ethane are shown in Figure 2.4 (44). The torsion potential is expressed as a summation of a cosine series:

\[
U(w) = \sum_{n=0}^{N} \frac{k}{2} [1 + \cos(nw - \gamma)]
\]

(2.4)

In equation 2.4, \(w\) is the torsion angle, \(k\) is the barrier height, \(\gamma\) is the phase factor for minimum potential energy, and \(n\) denotes multiplicity.
Figure 2.4 Potential energy of ethane as a function of torsion angle. Energy is maximum at eclipsed position.

Improper torsion terms are used to enforce the planar structure of a molecule when needed. Usually, improper torsion angles are defined when atoms are not bonded in a sequence. Improper torsion energy, also called the out-of-plane energy function, can be used to achieve a particular geometry.

2.1.2 NON-BONDED INTERACTIONS

The non-bonded interactions mainly consist of the electrostatic and van der Waals interactions. To compute the non-bonded interactions in a system of N atoms, we get \(N^2/2 \) distinct pairs. Hence, evaluation of LJ and electrostatic interactions is the computationally most expensive of all other interactions. The non-bonded interactions are modeled as an inverse power of the distance. Two types of non-bonded interactions are explained below in detail.
Electrostatic Interactions

These interactions include the attractive and repulsive forces between charged atoms and molecules. A customary approach for calculating electrostatic interactions is by assigning partial atomic charges to each atom and applying Coulomb’s law:

\[
U(r) = \sum_{i=1}^{N_A} \sum_{j=1}^{N_B} \frac{q_i q_j}{4 \pi \varepsilon_0 r_{ij}}
\]

(2.5)

Here, \(N_A\) and \(N_B\) are the number of point charges in the two molecules of the system, A and B. The permanent partial atomic charges are parameters that are determined by making an initial guess and then performing calculations in an attempt to reproduce the results of experiments or QM calculations. The discrepancy in the calculations is used to guide the modification of the assigned partial charges. The process is repeated until the assigned charges produce calculated results that are in good agreement with experimental results. The definition of “good” is relative and limits can be set by the user based upon considerations such as computational speed. For periodic systems, the electrostatic interactions are calculated efficiently for small as well as large distances by using the Particle-Mesh-Ewald (PME) method (45).

Lennard-Jones Interactions

The Lennard-Jones potential involves long range dispersion interactions (van der Waals attractive forces) and the short range repulsive interactions between non-bonded inert atoms. The dispersion interactions are due to the inducement of dipole moments by one atom in another, and vice versa. The induced dipole moments form the basis for van der Waals attraction (46). If the atoms come too close, the energy contribution increases
exponentially. This effect can be explained by the Pauli Exclusion Principle, which prohibits any two electrons in the system from having the same set of quantum numbers.

The LJ interaction is modeled as a sum of attractive and repulsive terms as:

\[U(r) = 4\varepsilon \left[\left(\frac{\sigma}{r} \right)^{12} - \left(\frac{\sigma}{r} \right)^{6} \right] \] \hspace{1cm} (2.6)

The LJ potential contains two adjustable parameters: the collision diameter (\(\sigma \)) and the potential well depth \(\varepsilon \). Equation 2.6 can be plotted against the distance of separation as shown in Figure 2.5.

![Figure 2.5 Lennard-Jones potential](image)

Since the number of non-bonded interactions scales as the square of the number of particles of the system, calculating every non-bonded interaction between every atom imposes a huge computational cost. A commonly applied solution is to impose a cutoff distance on the non-bonded force calculations. Care must be taken because this could have serious drawbacks while simulating a system with charged particles, since the electrostatic interaction has infinite range.
To reduce the computational cost, non-bonded interactions are truncated at a certain cutoff distance, and beyond the cutoff distance no interaction is calculated. The cutoff criterion may introduce a discontinuity, as the energy may abruptly drop to zero. This can lead to unreliable results or early termination of MD simulations. For example, two atoms may be separated by a distance that is close to the cutoff. In one time frame of the MD simulation, the separation distance may be less than the cutoff and in the next time frame it may be slightly more than the cutoff. Although the separation distance may fluctuate very slightly, the interaction energy changes abruptly.

Special functions (shifting, switching etc.) are used to smoothly vary the energy at the cutoff distance (47), so that energy function smoothly goes to zero at the cutoff distance. The switching function in CHARMM introduces three different cutoff distances: ctonnb, ctofnb, and ctnb. The switching function begins to affect the LJ potential starting at the smallest of the three, ctonnb. The switching function brings the interaction smoothly to zero at ctofnb. The value of ctnb refers to the distance for generating the non-bonded pair list, and is updated periodically. The distance ctnb is slightly greater than ctofnb. The various cutoff distances are represented in Figure 2.6. The non-bonded interactions between 1-2 and 1-3 neighbors are always excluded, as they are the nearest neighbors bonded chemically.
\[r(t + \Delta t) = r(t) + \frac{dr}{dt} \Delta t + \frac{1}{2} \frac{d^2r}{dt^2} (\Delta t)^2 + \cdots \]
The same expression can be written for a reverse time step Δt as:

$$r(t - \Delta t) = r(t) - \frac{dr}{dt} \Delta t + \frac{1}{2} \frac{d^2r}{dt^2} (\Delta t)^2$$

Adding the above two equations, we get

$$r(t + \Delta t) = 2r(t) - r(t - \Delta t) + a(t)(\Delta t)^2$$ \quad (2.7)

$$a(t) = \left(\frac{d^2r}{dt^2}\right)_t$$

Equation (2.7) gives the position of a particle after a time interval Δt, provided that the position and acceleration at the current time, and the position at the previous time $t-\Delta t$ is known. The Verlet algorithm does not depend on velocity, dr/dt, to calculate the new position of the particle. The acceleration at the current time can be calculated from the force acting on particle at the current time.

$$a = \frac{F}{m}$$

$$F = -\frac{dU}{dr}$$

U is the potential energy function that is incorporated in the MD program to represent the interactions among the particles.
2.2.2 LEAP-FROG ALGORITHM

Other integration schemes involve continuous updating of velocity as well as position. These integration schemes are employed when knowledge of the velocity is necessary, such as when the temperature of the system is controlled. A specific temperature means that the average kinetic energy of the particles must have a specific value. In order to assure this, periodically the MD program examines the kinetic energy and decides if an adjustment is necessary to return the system to the correct temperature. This requires knowledge of the speeds of all the particles. A useful integration scheme for updating the position of the particles that also allows velocity scaling is the Leap-frog algorithm, which is a slightly modified form of the Verlet algorithm.

The method is called Leap Frog because some quantities are calculated at integer values of Δt, whereas other quantities are calculated at $\Delta t/2$. The position of a particle can be expressed through a Taylor series expansion with a time step of $\Delta t/2$ as follows:

$$r \left(t + \frac{\Delta t}{2} + \frac{\Delta t}{2} \right) = r \left(t + \frac{\Delta t}{2} \right) + \frac{dr(t + \Delta t/2)}{dt} \frac{\Delta t}{2} + \frac{1}{2} \frac{d^2 r(t + \Delta t/2)}{dt^2} \left(\frac{\Delta t}{2} \right)^2 + \cdots$$

$$r \left(t + \frac{\Delta t}{2} - \frac{\Delta t}{2} \right) = r \left(t + \frac{\Delta t}{2} \right) - \frac{dr(t + \Delta t/2)}{dt} \frac{\Delta t}{2} + \frac{1}{2} \frac{d^2 r(t + \Delta t/2)}{dt^2} \left(\frac{\Delta t}{2} \right)^2 + \cdots$$

Subtracting we get

$$r(t + \Delta t) = r(t) + v(t + \frac{\Delta t}{2}) \Delta t \quad (2.8)$$
The definition for the velocity is

\[v(t + \frac{\Delta t}{2}) = \frac{dr(t + \frac{\Delta t}{2})}{dt} \]

To express this in terms of \(a = F/m \), let us expand the velocity in the time step \(\Delta t/2 \)

\[v(t + \frac{\Delta t}{2}) = v(t) + \frac{dv(t) \Delta t}{dt} + \frac{1}{2} \frac{d^2v(t)}{dt^2} (\frac{\Delta t}{2})^2 + \ldots \]

\[v(t - \frac{\Delta t}{2}) = v(t) - \frac{dv(t) \Delta t}{dt} + \frac{1}{2} \frac{d^2v(t)}{dt^2} (\frac{\Delta t}{2})^2 + \ldots \]

Subtracting we get

\[v(t + \frac{\Delta t}{2}) = v(t) = v(t - \frac{\Delta t}{2}) + a(t)\Delta t \quad (2.9) \]

\[a(t) = \frac{dv(t)}{dt} \]

Equation (2.9) is used to calculate the velocity at \(t + \frac{\Delta t}{2} \); this velocity is used to find the position at \(t + \Delta t \) using equation (2.8). Consequently, the velocity leaps over position first, and then the position leaps over the velocity. The velocities at time \(t \) can be approximated by the relationship

\[v(t) = \frac{1}{2} \left[v \left(t + \frac{\Delta t}{2} \right) + v \left(t - \frac{\Delta t}{2} \right) \right] \]
2.2.3 TIME INCREMENTS, Δt

In molecular dynamics, the motions of atoms occur on different time scales. Characteristic times for vibrational motions involving strongly bonded atoms are high frequency motions, while non-bonded interactions are low frequency motions. For example, the highest frequency of motion in biomolecular system is the vibrational motion of a light atom chemical bond to a heavy atom and hydrogen (time period $\sim 10^{-14}$s). A very small time interval ~ 1 fs is required to capture this motion. Unfortunately, this requires many time steps to investigate protein motions that occur on 100 ns time scales. One way to get around this is by constraining the bond between a heavy atom and hydrogen to be a fixed length with no vibrations. This process is facilitated by the use of the SHAKE command in CHARMM. This allows the use of a slightly longer time interval (~ 2 fs).

2.3 CONSTANT PRESSURE AND TEMPERATURE SIMULATIONS

Molecular dynamics simulations perform calculations on particles in a microscopic system, but under imposed macroscopic conditions involving temperature, pressure, and volume. To be able to perform constant temperature simulations, the parameters for energy fluctuations have to be incorporated. On the other hand, to simulate isobaric conditions, volume has to be introduced as a dynamical variable. Constant temperature and pressure simulations have been made possible by the pioneering work of incorporating energy and volume fluctuations in a dynamical system, such that the trajectory average of any property is equal to its NPT ensemble average (48-51). One way of applying NPT dynamics is through the modifications of the system’s
Hamiltonian (48). The terms in the Lagrangian are redefined to include the volume V, and a piston mass M, and a stochastic collision term. The piston can compress the system to vary the pressure, and the collision term can vary the energy of the system. A second approach to implementing an NPT ensemble is through the weak coupling to an external bath (49). Stochastic and friction terms are introduced in the equations of motion, resulting in a Langevin equation.

Isobaric-isothermal simulation is enabled in CHARMM through the use of command “Dynamics CPT”. Constant pressure simulation is made possible only through the use of periodic boundary conditions. The size of the system is calculated and updated each step to allow the volume fluctuations for maintaining constant pressure. Two keywords ‘pmass’ and ‘tmass’ have to be specified. The term ‘pmass’ refers to the mass of the pressure piston, and setting any component of ‘pmass’ to zero will fix the size of the cell. Mass of the temperature piston “tmass” is kept ten times the mass of the pressure piston. Simulations at higher pressure cause volume compression, eventually increasing the density of the system.

2.4 PARAMETERIZATION OF THE CHROMOPHORE

The chromophore of florescent protein is formed by the auto-oxidation and cyclization of three to four amino acid residues. As a chemically modified entity, the force field parameters developed for regular amino acid residues do not accurately represent the chromophore. This calls for the need of chromophore parameterization. Fortunately, the chromophore of a green fluorescent protein has been parameterized by Reuter et al. (52) for use in CHARMM simulations. The chromophore of GFP is very
similar to the chromophore of mCherry, mStrawberry and citrine. Hence the force field parameters for the chromophore of mCherry, mStrawberry and citrine were adopted from the anionic GFP chromophore parameters, with an addition of parameters for acylimine nitrogen from the CHARMM27 force fields.

The formation of the mOrange chromophore involves two cyclizations: one leading to the formation of imidazolinone ring, and the other forming the novel five-member oxazole ring. The parameters for the imidazolinone ring are obtained from GFP chromophore, while those for the oxazole like ring are obtained from the CGenFF parameters (53) of oxazole and similar five member heterocyclic rings. The CHARMM General Force Field (CGenFF) presents the force fields for a wide range of chemical groups, including various heterocyclic scaffolds for use in CHARMM simulations. The parameterization procedure is based on analogy to the bond, angle and dihedral types as a first approximation. The chromophore of mOrange2 is identical to that of mOrange, and the mutations are only performed on the barrel.

2.5 IDENTIFYING PROTEIN CAVITIES: CAVER CALCULATIONS

A protein barrel includes small cavities and tunnels inside, which provide the microenvironment for molecular diffusion and protein ligand interactions. The shape and structure of protein clefts and tunnels is transient, and depends on the protein barrel fluctuations and molecular interactions occurring inside the cavity. Caver (54) is a software package developed to identify such protein tunnels and cavities. The software searches for channels by exploring the interior of the protein. The protein atoms are modeled with hard sphere atoms with appropriate van der Waals radii, and represented on
a three dimensional grid space. The site and probe radius for starting the channel calculation has to be specified in the input file. Caver groups nearby tunnels into a single tunnel cluster. Performing caver calculations on a large number of frames may be computationally very expensive. Instead, frames from a long trajectory can be sampled at a specific time interval to carry out Caver calculations. The probe radius chosen in my study is 0.8 Å and the chromophore of each FP is set as the starting point for channel calculations.

2.6 LOCALLY ENHANCED SAMPLING

Locally enhanced sampling is a computational method of increasing the speed for exploring the behavior of the system. For example, we are interested in locating all the pathways for oxygen entry into the barrel. One way to determine the pathways is to place one oxygen molecule at a location outside the barrel and carry out an MD simulation to see where it enters. We would then repeat the MD simulation with another oxygen molecule initially placed in a different location outside the barrel. Each oxygen location would require the performance of its own time consuming MD simulation. Instead, the exploration of multiple pathways, i.e the sampling of the system can be done during a single MD simulation. This is done by placing multiple, non-interacting copies of the oxygen molecule, known as enhanced atoms (55, 56), at many different initial locations simultaneously. The copies of the oxygen do not interact with each other, and can occupy the same space as well. The “multiply” command in NAMD facilitates the generation of multiple copies. The beta column in the pdb file represents the presence of enhanced
atoms. A beta value of 0 represents a normal atom, and a non-zero beta value represents the enhanced atom.

I have used 15 copies of the oxygen molecules in my LES molecular dynamics simulation for identifying the oxygen diffusion pathways inside the protein barrel.

2.7 OTHER COMPUTATIONAL DETAILS

2.7.1 SIMULATION CONDITIONS FOR mCHERRY, mSTRAWBERRY AND CITRINE

Initial protein structures were obtained from the protein data bank (mCherry: pdb code 2H5Q, mStrawberry: pdb code 2H5P, and citrine: 1HUY). The parameters for the chromophores of all three FPs were obtained from the work on the anionic chromophore of the green fluorescent proteins (52). Glu215 was protonated in both mCherry and mStrawberry as observed by Shu et al. (34). The MMTSB toolset (57) was used to set up the system. The initial structures of the FPs were separately solvated using TIP3 water molecules in rhombic dodecahedron boxes. The minimum distance of a box edge from the protein was set to be 10 Å. In addition to the water molecules already present in the crystal structures, mCherry was solvated with 9641 water molecules, mStrawberry with 8132 water molecules, and citrine with 8463 water molecules.

Energy was minimized using steepest descent followed by the adopted basis Newton-Raphson (ABNR) method. The energy-minimized systems were then neutralized by adding sodium and chloride ions, distributed throughout the volume. The systems were then heated with a linear gradient of 10 K/ps from 100 K to 300 K. At 300 K, the systems were equilibrated for 1ns with a 2 fs integration time step in the isobaric-
isothermal (constant pressure-temperature, CPT) ensemble. Finally, production runs of 20-30 ns were performed under the isobaric-isothermal ensemble at 300 K. At high pressures 750 MPa and 1000 MPa, 15 ns simulations were performed for mCherry and mStrawberry. To investigate similar pressures as done experimentally, our molecular dynamics simulations were performed at five different pressures: 0.1 MPa, 250 MPa, 500 MPa, 750 MPa and 1000 MPa for mCherry and mStrawberry, and at six different pressures for citrine: 0.1 MPa, 50MPa, 100 MPa, 250 MPa, 500 MPa and 750 MPa. To allow sufficient time for the pressure equilibration of the solvated systems, only the last 10 ns trajectory from the simulations was used for the analysis.

A 1ns CHARMM simulation takes about 2 days. The total computational time for performing 20 ns simulation of mCherry and mStrawberry at 5 different pressures is ~10000 processor hours. The total computational time for performing 30 ns simulation of citrine at six different pressures is ~9000 processor hours.

2.7.2 SIMULATION CONDITIONS FOR MORANGE AND MORANGE2

The initial X-ray crystallographic structure of mOrange (pdb code 2H5O) was obtained from the Protein Data Bank. The more photostable mOrange2 was obtained through four mutations Q64H/F99Y/E160K/G196D on the mOrange protein barrel using MODELER (58). The VMD package was used to setup the system for simulations. The initial structures of mOrange and mOrange2 with crystallographic water molecules and one molecular oxygen each were solvated by using a box cutoff of 10 Å in VMD. The solvated systems were then electrically neutralized using the VMD autoionize plugin, and the oxygen molecule was multiplied to 15 copies in each system to enable LES sampling.
The final systems contained a total of 28,892 atoms in mOrange and 29,195 atoms in mOrange2. All water molecules overlapping with the protein were removed. The particle mesh Ewald method was used to treat long-range interactions with a 12 Å non-bonded cutoff. Energy minimization was performed using the conjugate gradient and line search algorithm. Each system was then heated with a linear gradient of 20 K/ps from 20 to 300 K. At 300 K, each system was minimized for 300 steps and equilibrated for 5 ps with a 2 fs integration time step in the NVT (constant number, volume, and temperature) ensemble. Langevin dynamics was used to maintain the temperature at 300 K. For each system, an 80 ns production run was performed with NVT dynamics and 2 fs time step. The first 10 ns trajectory was not used for analysis to allow sufficient time for equilibration of each system.

The total computational time for carrying out 80 ns LES simulation of mOrange and mOrange2 is ~4000 processor hours.
3. STRUCTURAL FEATURES OF THE PROTEIN BARREL THAT ALLOW OXYGEN ACCESS AT AMBIENT PRESSURE

In this chapter I provide the results of my calculations performed at ambient pressure. For all of the proteins that I investigated, I performed computations to uncover channels that allow molecular oxygen in the solvent to penetrate the protein barrel and access the chromophore. mOrange and mOrange2 differ in only a few mutations, but have very different oxygen sensitivities. I performed additional calculations to elucidate the structural features that are responsible for the different oxygen sensitivities of mOrange and mOrange2.

3.1 PROTEIN BARREL AND CHROMOPHORE OF mORANGE, mORANGE2, mCHERRY, mSTRAWBERRY, AND CITRINE

The monomeric variants mOrange, mCherry and mStrawberry were derived from the wild type tetrameric progenitor DsRed. The naturally occurring tetramer has a very high fluorescence quantum yield of 0.79 and is very bright. The 33 mutations carried out on DsRed resulted in the first generation monomeric RFP known as mRFP1. Development of the monomeric RFP overcame the problems of tetramerization and the slow maturation of the parent protein DsRed. However, mRFP1 exhibited a very small quantum yield of 0.25 and a brightness of 21% of that of DsRed, possibly due to the compromised barrel structure caused by the mutations introduced to break the tetramer interactions at the interface between the monomers. The immediate challenge was to develop monomeric RFP variants with higher quantum yield and photostability. The following mutations were carried out on mRFP1 to obtain mOrange: Q66M, T147S, M182K, M66T, T195V, T41F and L83F. Although these mutations were able to greatly
enhance the brightness of mOrange, four additional mutations (Q64H/F99Y/E160K/G196D) in the protein barrel were needed to achieve a highly photostable variant, mOrange2. The chromophores of mOrange and mOrange2 are identical, and are composed of three connected rings formed by the oxidation and cyclization among four amino acids: Phe, Thr, Tyr and Gly. mCherry and mStrawberry were also developed from mRFP1. The chromophore of mCherry is made up of Met, Tyr and Gly, and that of mStrawberry is made up of Thr, Tyr and Gly. The mutations carried out to develop all the RFP variants are depicted in Figure 3.1. The chromophores of various FPs investigated in my study are shown in Figure 3.2.

The yellow fluorescent proteins are obtained through the mutation T203Y in green fluorescent proteins (59). Citrine is a variant of YFPs derived from the GFP with mutations S65G/V68L/Q69M/S72A/T203Y (36). The mutation T203Y is responsible for red shift, and the mutation Q69M fills a large halide binding cavity, thus decreasing the halide sensitivity. The chromophore of citrine is formed by the cyclization of Gly-Tyr-Gly, resulting in the formation of a heterocyclic imidazolinone ring (60). The $\beta7 - \beta10$ gap in citrine is slightly smaller than that of mCherry (61).
Figure 3.1 Sequence alignment of mRFP variants with the wild type DsRed and mRFP1. mRFP1 mutations are shown in blue, and critical mutations in mCherry, mStrawberry, mTangerine, mOrange, mBanana and mHoneydew are shown in colors corresponding to the color of each variant. Only the GFP type termini of mRFP variants are shown in green. Figure 3.1 is obtained from reference (62).
3.2 COMPUTATIONALLY DETERMINED PROTEIN CHANNELS

The protein barrel contains channels for the diffusion of water, gases and ions. The channels may be transient, opening and closing due to barrel fluctuations, and the presence of water or gases in the immediate vicinity may modify the shape and structure of the channels. The Caver software (54) was used to identify tunnels that start from the chromophore and lead to exits outside the barrel, with a probe radius of 0.8 Å. I used 200 equally spaced frames extracted from a 10 ns simulation of each FP for the Caver calculations. Table 3.1 shows the number of tunnels present in all the variants at atmospheric pressure. Nearby tunnels were grouped into single tunnel cluster.
Table 3.1 Number of tunnels in various FPs

<table>
<thead>
<tr>
<th>Fluorescent Protein</th>
<th>Number of tunnel clusters</th>
<th>Number of tunnels</th>
</tr>
</thead>
<tbody>
<tr>
<td>mOrange</td>
<td>35</td>
<td>178</td>
</tr>
<tr>
<td>mOrange2</td>
<td>31</td>
<td>95</td>
</tr>
<tr>
<td>mCherry</td>
<td>33</td>
<td>292</td>
</tr>
<tr>
<td>mStrawberry</td>
<td>29</td>
<td>191</td>
</tr>
<tr>
<td>Citrine</td>
<td>10</td>
<td>144</td>
</tr>
</tbody>
</table>

The insights gained from channel calculations can be useful for understanding the barrel flexibility and gas diffusion in FPs. A relatively small number of tunnel clusters is found in citrine. The greater number of tunnel clusters and significantly larger number of tunnels in mOrange provides a good explanation for the experimental observations that show that mOrange is more permeable to molecular oxygen than mOrange2. The oxygen sensitivity of mOrange and mOrange2 is investigated in detail in the next section using explicit oxygen molecular dynamics simulation. mCherry and mStrawberry also show a significantly larger number of tunnels inside the protein barrel than citrine. Figure 3.3 shows the tunnel clusters present in various FPs at atmospheric pressure. The tunnels belonging to the same cluster are represented by same color.
Figure 3.3 Channels present in FPs at atmospheric pressure. The tunnels belonging to the same cluster are represented by the same color.

3.3 OXYGEN DIFFUSION IN mORANGE AND mORANGE2

Mutations were performed experimentally on mOrange to produce mOrange2. These mutations were successful in significantly increasing the fluorescence lifetime. I now describe the mutations that were performed, and then show how the results of my computational investigations provide molecular level explanations for the effects of the mutations.
3.3.1 EXPERIMENTAL STUDIES ON OXYGEN SENSITIVITY

Although the mutations performed on mRFP1 greatly enhanced the fluorescent quantum yield, the photostability could not be improved for most of the variants. One possible cause of low photostability was easy oxygen access through the barrel to the chromophore which causes fluorescence quenching. Four important mutations (Q64H, F99Y, E160K and G196D) were carried out on mOrange to obtain a highly photostable variant, mOrange2. Among the mutations introduced to obtain mOrange2, a combined mutation of Q64H and F99Y imparted about a tenfold increase in photostability. The same combination of Q64H and F99Y conferred an 11-fold increase in photostability to mRFP1. Oxygen sensitivity experiments performed on both mOrange and mOrange2 showed that anoxia (low oxygen concentration) resulted in a large increase in the photobleaching half-life of mOrange, but the photobleaching half-life for mOrange2 remained unchanged at different oxygen concentrations. This implies that the mutations incorporated into mOrange2 successfully prevented the access of oxygen to the chromophore even at normal oxygen concentrations. Various photophysical properties of mRFP1, mOrange and mOrange2 are given in table 3.2 (62).

Table 3.2 Various photophysical properties of mRFP1, mOrange and mOrange2. Brightness is calculated as (extinction coefficient x quantum yield)/1,000. Arc lamp illumination causes each molecule to emit 1,000 photons/s initially. ND – not determined.

<table>
<thead>
<tr>
<th>Fluorescent Protein</th>
<th>Quantum Yield</th>
<th>Brightness</th>
<th>(t_{1/2} \text{ bleach (arc lamp)}) (s)</th>
<th>(t_{1/2} \text{ bleach (O}_2\text{-free)}) (s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>mRFP1</td>
<td>0.25</td>
<td>13</td>
<td>8.7</td>
<td>ND</td>
</tr>
<tr>
<td>mOrange</td>
<td>0.69</td>
<td>49</td>
<td>9.0</td>
<td>250</td>
</tr>
<tr>
<td>mOrange2</td>
<td>0.60</td>
<td>35</td>
<td>228</td>
<td>228</td>
</tr>
</tbody>
</table>
As with other mFruit variants, the barrel structural integrity of mOrange is compromised, especially in the \(\beta_7\) and \(\beta_{10}\) region, due to missing tetrameric interactions present in the naturally occurring DsRed. Transient thermal fluctuations (61) can allow easier oxygen access to the chromophore. This may help chromophore maturation but can cause fluorescence quenching or faster photobleaching due to oxidation. In similar work by our group, our simulation results showed that the M163Q mutation in mCherry significantly reduces molecular oxygen entry into the barrel, which might help explain the role of molecular oxygen in permanent photobleaching of FPs and improving the photostability in mCherry (63).

A floppy barrel can cause fluorescence problems in other ways. In the cyan fluorescent protein, \(\beta_7\) flexibility has been thought to cause collisional fluorescence quenching due to the collision of the Ile146 side chain with the chromophore. In a recent work, structure guided amino acid replacements to reduce \(\beta_7\) flexibility have led to a significantly brighter and highly photostable fluorescent protein mTurquoise2, with the highest quantum yield (93\%) among monomeric fluorescent proteins (35).

Identification of barrels and cavities, as described in section 3.2, showed that there could be various pathways for gas diffusion and pockets that host gas molecules inside the protein barrel. I have performed molecular dynamics simulations with locally enhanced sampling of molecular oxygen which enables the investigations of gas diffusion pathways and protein barrel fluctuations on both mOrange and mOrange2 at the molecular level. Moreover, the presence of an oxygen molecule can modify the environment in a way that might allow the oxygen to enter the protein barrel. The explicit
oxygen simulations carried out in the present investigations are able to capture these possibilities.

3.3.2 MOLECULAR OXYGEN DIFFUSION PATHWAYS

For enhanced search statistics, our explicit oxygen calculation employed 15 copies of oxygen in our NAMD LES calculations. The oxygen molecules do not interact with each other, but interact with the rest of the system. With these 15 copies of non-interacting oxygen molecules in the system, we performed an 80 ns MD production run. The simulations reveal several different types of events of molecular oxygen entry into the protein barrel from various locations, which are pictured in Figure 4.2 and described below. We observed several protein pockets far from the chromophore where the molecular oxygen can enter and remain for an extended time. Some of these pockets are dead-ends with no access to the chromophore, but some of the pockets join to form pathways that ultimately lead to the chromophore.

Diffusion of Oxygen into Pockets Common to mOrange and mOrange2

There are four oxygen-hosting pockets common to both mOrange and mOrange2 as shown in Figure 3.4. Oxygen may enter through the β7 – β10 gap or through the bottom of the barrel. After 10 ns of equilibration time, the first oxygen entered into mOrange from the bottom at 3 ns, and the first oxygen entered into mOrange2 at 13.4 ns from the bottom. There are two pockets at the bottom of the barrel, which can host the oxygen entering from the bottom.
Figure 3.4 Various oxygen-hosting pockets common to mOrange and mOrange2. The largest gap between the beta strands is between \(\beta7 \) and \(\beta10 \), as shown in Figure 3.4(a).

Pocket A is at the bottom right of the protein in fig. 3.4(a), close to \(\beta7 \), \(\beta8 \) and \(\beta9 \), and is an entry point from the solvent. Pocket A is formed by the residues Val22, Ile60, Val105, Leu124, Phe129, Val135, Met136, Leu125, Leu167 and Tyr73. Oxygen entering in this pocket has to then pass through pocket B (fig. 3.4b) to get to the chromophore. The residues Val22, Phe27, Phe56, Leu61, Val 105, Leu124 and Ile60 form pocket B, which is located at the rear side, near the bottom of the barrel. The residues Val22, Ile60, Val105 and Leu124 form the interface between these two pockets. An oxygen molecule can move between pockets A and B multiple times. Pocket B leads to pocket C (fig. 3.4c), which is right below the chromophore. Pocket C is formed by the residues Pro63,
Arg95, Ile161, Met163, and Val177. Pocket C is close to the center of the chromophore.

The fourth pocket D (fig. 3.4d) is close to pocket C, and allows entry to the interior through the β7 – β10 gap. Pocket D is formed by the residues Ser62, Pro63, Trp143, Ile161, Met163, Leu199 and Leu201. The residues Pro63, Ile161 and Met163 lie at the interface between the pockets C and D. The oxygen molecule can move between the pockets C and D.

In order to investigate oxygen diffusion into the barrel in more detail, we cut out uninteresting computational time at the beginning of the simulation during which the oxygen molecule moved around in the solvent outside the protein. In order to avoid the computational wait-time for the oxygen in the solvent to get to the gate point between β7–β10, we used 20 independent simulations, each with just one oxygen molecule placed at the β7–β10 gate. This expedited the search for pathways into the protein through the β7–β10 gate. The location of the oxygen molecule in the initial frame has to be made carefully. The oxygen molecule needs to be surrounded by a hydrophobic pocket.

A simulation was terminated if the oxygen molecule drifted out to the solvent. We considered the oxygen molecule to have completely escaped and terminated the simulation if the oxygen’s distance from the chromophore’s phenolate oxygen exceeded 15 Å. This distance ensures that a simulation will not be terminated if the oxygen has not truly drifted away from the β7–β10 gate, and an oxygen that remains in the vicinity just outside the pocket will be given time to reenter. In 1 out of 20 simulations in mOrange, the oxygen molecule escaped immediately into the solvent in less than 0.1 ns. In 8 out of the 20 simulations, the oxygen molecule entered pocket D and then exited out of the
barrel through the $\beta 7-\beta 10$ gap. In 10 out of the 20 simulations, the oxygen molecule managed to diffuse further into pocket C via pocket D. In the remaining one simulation in mOrange, the oxygen molecule escaped into pocket E, which is a unique pocket to mOrange as shown in Figure 3.7. For mOrange2, in 14 out of the 20 simulations, the oxygen molecule escaped immediately into the solvent in less than 0.2 ns. In the remaining 6 simulations, the oxygen molecule diffused into pocket C via pocket D. The fate of the oxygen molecule in the above 20 independent simulations in mOrange and mOrange2 shows that mOrange2 is less permeable to oxygen diffusion.

In another oxygen sensitivity test, an oxygen molecule is placed in pocket B in both mOrange and mOrange2, and 20 independent simulations are performed. For mOrange, in all 20 simulations, the oxygen molecule escaped out of the bottom of the barrel into the solvent in less than 6 ns. For mOrange2, in 8 out of 20 simulations, the oxygen molecule escaped from the bottom of the barrel into the solvent in less than 6 ns. In 7 out of 20 simulations in mOrange2, the oxygen molecule stayed inside the barrel for longer than 10 ns. The oxygen molecule was still inside the barrel in one simulation at the end of 30 ns. The survival curve showing the percentage of simulations in which the oxygen molecule is inside the barrel against the simulation time is given in Figure 3.5. In both mOrange and mOrange2, the oxygen molecule mostly oscillates between pockets A and B, and never reaches close to the chromophore. In 5 out of 20 runs in mOrange, the oxygen molecule exits through the bottom passing very close to the F99Y mutation within 6 ns of the simulation time. However in mOrange2, only in 1 out of 20 runs, the oxygen exits passing very close to the F99Y mutation within 6 ns of the simulation time.
Mean values were calculated through exponential fitting of the curves in Figure 3.5. The mean survival time for oxygen in mOrange is 3.2 ns and in mOrange2 is 10 ns. This shows that an oxygen molecule inside the bottom of the barrel in mOrange has higher probability of diffusing into the solvent than that in mOrange2. The same idea can be extended to oxygen diffusion from the bulk solvent into the protein barrel. This shows that mOrange2 is less permeable to molecular oxygen than mOrange.

![Survival curves for mOrange and mOrange2](image)

Figure 3.5 Survival curves for mOrange and mOrange2 showing the percentage of simulation runs in which the oxygen molecule is inside the barrel are plotted against the simulation time.

Trajectories that manifest the transition between the four pockets A, B, C and D are shown in Figure 3.6, which displays the distance of the oxygen molecule from a reference point on the chromophore. I chose nitrogen N3 of the imidazolinone ring as the reference point because this part of the chromophore is least flexible.
Figure 3.6 Trajectories of molecular oxygen showing its distance from the chromophore for a 2.7 ns time window. All four pockets A, B, C and D are visited in each trajectory. In the red trajectory, which represents mOrange, an oxygen molecule enters from pocket B, goes to pocket C, and then back to pocket B, then oscillates between pockets A and B. Between times 0.8 to 1.6 ns, the oxygen molecule spends a considerable amount of time in pocket D, and then exits to the solvent through the \(\beta 7 - \beta 10 \) gap. In the green trajectory, for mOrange2, an oxygen molecule enters through pocket A, oscillates between pockets A and B, then moves to pocket C, then oscillates between pockets C and D. The oxygen molecule finally exits through pocket D. The starting point time of 0 (ns) in the figure corresponds to 27 ns into the simulation for the red trajectory and 60 ns for the green trajectory.

In an 80 ns simulation, including the 10 ns equilibration time, a total of 13 oxygen molecule entries into the barrel were observed for mOrange, and 14 oxygen molecule entries for mOrange2. For mOrange, four entries through the \(\beta 7 - \beta 10 \) gap, two entries from the top, and seven entries from the bottom of the barrel were found. For mOrange2, eight entries from the \(\beta 7 - \beta 10 \) gap, 0 entries from the top, and six entries from the
bottom of the barrel were found. The number of oxygen entries into the barrel does not seem to explain the oxygen sensitivities. However two unique pockets were found in mOrange that were not present in mOrange2. The unique pockets could be the crucial sites for fluorescence quenching in mOrange.

Diffusion of Oxygen into Pockets Unique to mOrange

Two unique pockets for oxygen access were found in mOrange as shown in Figure 3.7. Pocket E is located to the left, on the lateral side of the chromophore. The oxygen enters into this pocket at 35 ns through the $\beta_7 - \beta_{10}$ gap, and stays there for about 8 ns. Various residues including Phe14, Val16, Glu32, Gln42, Ala44, Leu46, Tyr120 and Tyr214 form pocket E. The oxygen enters into this pocket from a point very close to the G196D mutation site on β_{10}. This is one of the four mutations necessary to obtain mOrange2. The glycine at 196 seems to provide an unhindered pathway to the oxygen in mOrange. Pocket F hosts oxygen entering into the barrel from the top. Pocket F is formed by the residues Phe91, Trp93, Gln109, Asp110 and Ser111. There are two oxygen entries into this pocket at 50 ns and at 67 ns, and both of them remain in this pocket for 2 ns.

Both of these unique pockets may be important locations at which the oxygen may chemically modify the chromophore, eventually causing fluorescence quenching.
Oxygen Diffusion Channels Connecting Multiple Pockets

A complete passage (channel) for the oxygen entering from the bottom and exiting through the β7 – β10 gap is observed for both mOrange and mOrange2. The channel passes through the four oxygen-hosting pockets A, B, C and D as shown in Figure 3.8. An oxygen molecule entering from pocket A or B, first passes through pocket C, then gets to D and then may finally exit into the solvent. The oxygen molecule can oscillate between the pockets A and B, B and C, or C and D only. This pathway is a complete channel that can bring the oxygen molecules very close to the chromophore, which may cause the decrease in the photostability of the FPs.
Figure 3.8 Probability density map for the molecular oxygen. The probability density map shows a clear channel for the diffusion of oxygen from the bottom of the protein to bulk solvent through the β7 – β10 gap. Three different probability density isosurfaces are depicted with isovalues 0.0241, 0.0091 and 0.0025.
4. PRESSURE EFFECTS ON mCHERRY, mSTRAWBERRY, AND CITRINE

Fluorescent proteins have significant and widespread applications in cell tagging and imaging biological cells and tissues (64). Red fluorescent proteins are preferred to green fluorescent proteins for imaging mammalian tissue because signal masking cellular autofluorescence is low in the red region of spectrum, and also because higher wavelengths can probe deeper into the tissues (19, 65, 66). We aim to explore the pressure response of two monomeric red fluorescent proteins, mCherry and mStrawberry, derived from their tetrameric progenitor DsRed. High pressure experiments performed on Blue Fluorescent Proteins show enhanced fluorescence up to a pressure of 600 Mpa (67). The restriction in chromophore vibrations at increased hydrostatic pressure contributes to increased stability of the hydrogen bonding network in the chromophore cavity and thus improves the quantum yield of these blue fluorescent proteins. In addition, chromophore planarity is believed to be an important factor in fluorescence. The chromophore of a non-fluorescent protein asFP595-A143G, also known as Kindling Fluorescent Protein (KFP), is significantly less planar (68) than the chromophore of a far red fluorescent protein eqFP611 which is highly fluorescent (69), although the chromophore is in the trans-conformation which is generally non-fluorescent in many proteins.

Recent high pressure experimental studies on the red fluorescent proteins mCherry and mStrawberry show that these proteins respond very differently to hydrostatic pressure (70), despite structural similarities in their protein barrels and in their chromophores. The difference response to pressure of these proteins are shown in Figure 4.1 (70). The fluorescence intensity of mStrawberry increases with the application of moderate pressure and decreases at higher pressure. In contrast, mCherry fluorescence
intensity shows a monotonic decrease with increasing pressure. Subsequent theoretical and computational investigations (71) showed that mStrawberry has a much floppier structure than mCherry at atmospheric pressure. Investigations were also performed involving ground state and excited state calculations on the two conformers of mStrawberry, and the results displayed a blue shift in both conformers at higher pressure. The blue shift is attributed to the change in distance between the chromophore and a neighboring residue Lys70, which is necessary for chromophore maturation in RFPs (72).

Figure 4.1 Experimental results of pressure effects on mCherry and mStrawberry. This figure is adopted from reference (70).

I have performed MD simulations and additional analyses that shed further light on the contrasting pressure response of these RFPs with respect to their structural and spectral behavior. In addition, we performed MD simulations on the pressure effects on a related monomeric yellow fluorescent protein, citrine. As in mStrawberry, the peak fluorescence intensity of citrine increases with the application of moderate (~ ambient)
pressures but decreases at higher pressures as shown in Figure 4.2 (73, 74). The effects of hydrostatic pressure on the structure of the protein barrel, the chromophore, and on the hydrogen bonding network inside the protein cavity of mCherry, mStrawberry and citrine is discussed in the following sections.

![Figure 4.2](image.png)

Figure 4.2 Experimental results of pressure effects on citrine. This figure is adopted from reference (74).

4.1 BARREL COMPRESSIBILITY

The compression caused by increased hydrostatic pressure was investigated by calculating the radius of gyration (rgyr) of the protein barrel at various pressures, as shown in table 4.1. Both mCherry and mStrawberry show decreases in the radius of gyration at increasing pressures. mStrawberry shows a small increase (0.01 Å) in rgyr at 500 MPa compared to that at 250 MPa. This could be because of the fluctuations in the loop regions of the fluorescent protein. The radius of gyration for citrine is slightly higher at 50 MPa than that at atmospheric pressure. The standard deviations in rgyr of citrine are observed to be higher (~ 0.058 Å) at pressures 50 MPa and 100 MPa, compared to those
(~0.040 Å) at higher pressures. In general, the changes in rgyr are on a sub-angstrom scale.

Table 4.1 Radius of gyration in angstroms at various pressures.

<table>
<thead>
<tr>
<th>Pressure (MPa)</th>
<th>rgyr (mCherry)</th>
<th>rgyr (mStrawberry)</th>
<th>rgyr (Citrine)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.1</td>
<td>16.95</td>
<td>17.07</td>
<td>17.09</td>
</tr>
<tr>
<td>50</td>
<td></td>
<td>17.25</td>
<td></td>
</tr>
<tr>
<td>100</td>
<td></td>
<td>17.08</td>
<td></td>
</tr>
<tr>
<td>250</td>
<td>16.85</td>
<td>16.83</td>
<td>17.00</td>
</tr>
<tr>
<td>500</td>
<td>16.65</td>
<td>16.84</td>
<td>16.89</td>
</tr>
<tr>
<td>750</td>
<td>16.61</td>
<td>16.71</td>
<td>16.80</td>
</tr>
<tr>
<td>1000</td>
<td>16.54</td>
<td>16.66</td>
<td></td>
</tr>
</tbody>
</table>

The compressibility (β) is calculated by using the relation,

$$\beta = -\frac{1}{V} \left(\frac{\Delta V}{\Delta P} \right)$$ \hspace{1cm} (4.1)

In equation 4.1, V is the volume, ΔV is the change in volume, and ΔP is the change in pressure of the fluorescent protein.

Approximating the protein barrel as a sphere with the calculated radius of gyration, the average compressibility for mCherry is 8.11×10^{-5} MPa$^{-1}$, for mStrawberry it is 9.98×10^{-5} MPa$^{-1}$, and for citrine it is 5.42×10^{-5} MPa$^{-1}$. The value of rgyr at 50 MPa is not considered for compressibility calculations in citrine, as this shows an increase in volume at higher pressure. These results show that mStrawberry is floppier than mCherry, which is consistent with the computational results of Laurent et. al. (71). Also, citrine is the least compressible. The gap between the $\beta7$ and $\beta10$ strands in citrine is
smaller than the gaps between the \(\beta \)7 and \(\beta \)10 strands in mCherry and mStrawberry. This could be a cause for the small compressibility of citrine. The compressibility values are also comparable to the experimental data obtained from the measurement of the adiabatic compressibility of globular proteins using sound velocity measurements at room temperature (75).

I analyzed the squeezing effects of increased hydrostatic pressure on the tunnel and cavities inside the protein barrel of mCherry and mStrawberry. Caver software (54) was used to identify tunnels that start from the chromophore and lead to exits outside the barrel, with a probe radius of 0.8 Å. The total number of tunnels and tunnel clusters are shown in table 4.2 for mCherry, in table 4.3 for mStrawberry, and in table 4.4 for citrine. mCherry is observed to have the most channels at pressures up to 500 MPa. This shows that mCherry has relatively more empty space inside the barrel, which also explains the higher rmsf fluctuations of mCherry as compared to mStrawberry and citrine. mStrawberry has a significantly fewer tunnels than mCherry at the pressure 250 MPa. This makes the chromophore more stable and thus able to better fluoresce at 250 MPa. However at the pressure of 500 MPa, the number of tunnels in mStrawberry is reduced to very few, and the chromophore may be distorted. The consequence is the decrease in the fluorescent intensity peak of mStrawberry at 500 MPa pressure. For citrine, it is interesting to note that the number of tunnels inside the barrel reduces significantly even at a relatively lower pressure of 100 MPa.

Tunnels inside the protein barrel are depicted for mCherry and mStrawberry at a pressure of 250 MPa, and for citrine at a pressure of 50 MPa in Figure 4.3. Similar tunnels are colored the same way. Although mCherry has significantly more tunnels than
mStrawberry at 250 MPa, the number of tunnel clusters in both RFPs is the same, and this is also represented in Figure 4.3. Citrine contains the greatest number of tunnel clusters at 50 MPa. There are more tunnel clusters leading to the bottom of the barrel in citrine than in mCherry and mStrawberry.

Table 4.2 Tunnels inside mCherry

<table>
<thead>
<tr>
<th>Pressure (MPa)</th>
<th>Number of tunnel clusters</th>
<th>Number of tunnels</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.1</td>
<td>33</td>
<td>292</td>
</tr>
<tr>
<td>250</td>
<td>10</td>
<td>208</td>
</tr>
<tr>
<td>500</td>
<td>3</td>
<td>74</td>
</tr>
<tr>
<td>750</td>
<td>4</td>
<td>13</td>
</tr>
<tr>
<td>1000</td>
<td>1</td>
<td>35</td>
</tr>
</tbody>
</table>

Table 4.3 Tunnels inside mStrawberry

<table>
<thead>
<tr>
<th>Pressure (MPa)</th>
<th>Number of tunnel clusters</th>
<th>Number of tunnels</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.1</td>
<td>29</td>
<td>191</td>
</tr>
<tr>
<td>250</td>
<td>10</td>
<td>123</td>
</tr>
<tr>
<td>500</td>
<td>3</td>
<td>7</td>
</tr>
<tr>
<td>750</td>
<td>1</td>
<td>32</td>
</tr>
<tr>
<td>1000</td>
<td>1</td>
<td>55</td>
</tr>
</tbody>
</table>

Table 4.4 Tunnels inside citrine

<table>
<thead>
<tr>
<th>Pressure (MPa)</th>
<th>Number of tunnel clusters</th>
<th>Number of tunnels</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.1</td>
<td>10</td>
<td>144</td>
</tr>
<tr>
<td>50</td>
<td>25</td>
<td>83</td>
</tr>
<tr>
<td>100</td>
<td>9</td>
<td>22</td>
</tr>
<tr>
<td>250</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>500</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>750</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>
Figure 4.3 Tunnels in mCherry and mStrawberry plotted at pressures 250 MPa, and tunnels in citrine plotted at pressure 50 MPa. The fluorescence intensity of mStrawberry and citrine are maximum at 250 MPa and 50 MPa pressures respectively.

4.2 CHROMOPHORE-BARREL INTERACTION AND HYDROGEN BONDING

An intricate network of hydrogen bonds and interactions between the buried charges stabilizes the chromophore. Disruption in the hydrogen bond network can destabilize the chromophore and lead to the quenching of fluorescence. The hydrogen bonding network inside each FP is shown in Figure 4.4. The dotted lines represent the hydrogen bonds, and the two connected rings at the center represent the chromophore. The phenolate oxygen of the chromophore is hydrogen bonded to Ser146 Oγ in mCherry and mStrawberry, and to His148 Nδ in citrine. The carbonyl oxygen of the imidazolinone ring interacts with the closest arginine residue in all three FPs. In mCherry and mStrawberry, Glu215 is protonated and forms a hydrogen bond with the nitrogen in the imidazole ring and with water. However, in citrine, Glu222 is not protonated, and it forms hydrogen bonds with water only. In addition, we can also notice the position of
Tyr203 in citrine, which allows the stacking of it phenol ring against the phenol ring of the chromophore.

Figure 4.4(a) The hydrogen bonding network (34) in mCherry and mStrawberry. The dotted lines represent the hydrogen bonds.
Figure 4.4(b) The hydrogen bonding network (59) in Yellow Fluorescent Protein. Citrine exhibits a hydrogen-bonding pattern very similar to YFP. The dotted lines represent the hydrogen bonds.

One end of the chromophore is connected to the central helix, and the other end (phenolic end) is stabilized by hydrogen bonding. The hydrogen bond between the chromophore tip (oxygen at the phenolic end), and the nearest residue is considered very important, as the chromophore tip acts as an important anchor point. The criteria adopted for the existence of a hydrogen bond are, the distance between the donor and acceptor atom should be less than 3 angstroms, and the hydrogen bond cutoff angle should be less than 30 degrees.

The histogram of the distance between the phenolate oxygen and Ser146 Oγ is shown in Figure 4.5(a, b) for mCherry and mStrawberry. The Ser146 adopts two different conformations – one in which it stays closer to the chromophore and forms a hydrogen bond, and the other in which it flips away from the chromophore far enough to break the
hydrogen bond. The mStrawberry chromophore is predominantly hydrogen bonded to the serine. But in mCherry, the histogram shows an appreciable hump on the right side at higher pressures representing the flipping of the serine residue away from the chromophore. Without the hydrogen bond to the serine, the chromophore is less stable. This effect may be the cause of diminished the fluorescence intensity of mCherry with increasing pressure. This mechanism also sheds light on the importance of the interaction between serine and the phenolate oxygen for forming a stable and fluorescent chromophore. However, at very high pressure (1000 MPa) the chromophore structure might be highly compressed and stiffened so that the Ser146 is in the immediate vicinity of the chromophore, allowing the formation of a hydrogen bond with the phenolate oxygen. This is depicted by the single peak of the histogram at 1000 MPa for both mCherry and mStrawberry. There are several water molecules around the chromophore that form two hydrogen bonds with the phenolate oxygen when the Ser146 Oγ is beyond the closest approach for forming hydrogen bonds.
Figure 4.5. Histogram of the distance between the phenolate oxygen and Ser146 Oγ in (a) mCherry and (b) mStrawberry, (c) distance between phenolate oxygen and His148 Nδ in citrine.

In citrine, the tip of the chromophore at the phenolate terminal is stabilized by forming hydrogen bonds with His148 Nδ and/or water. The histogram of the distance between phenolate oxygen and His148 Nδ in citrine is shown in Figure 4.5(c). The peaks at pressures 0.1 MPa and 50 MPa look similar. The histogram at 100 MPa pressure is relatively more spread-out and flat, which may be the reason for the onset of a decrease in fluorescence intensity at this pressure. At pressures above 100 MPa, the barrel is highly squeezed, decreasing the distance between the phenolate oxygen and His148 Nδ in citrine.
We have also examined the percentage of hydrogen bonds formed between Ser146 Oγ and the phenolate oxygen (in mCherry and mStrawberry) as shown in Figure 4.6(a), and between His148 Nδ and the phenolate oxygen (in citrine) as shown in Figure 4.6(b). For mCherry the population of hydrogen bonds decreases significantly at 250 MPa and 500 MPa. Hence the chromophore is flexible and the fluorescent intensity decreases in mCherry. At pressures above 500 MPa the percentage of hydrogen bonds starts to increase as the barrel is highly squeezed. For mStrawberry, the percentage of H-Bonds between Ser-146 and the tip of the chromophore keeps increasing at all higher pressures. Consequently the fluorescence intensity of mStrawberry increases at 250 MPa.

For citrine, the percentage of hydrogen bonds remains similar at pressures 0.1 MPa and 50 MPa. However, the percentage of hydrogen bonds greatly decreases at 100 MPa, which explains the decrease in fluorescence intensity at this pressure. At pressures higher than 100 MPa, the protein barrel is squeezed and the percentage of hydrogen bonding increases. At even higher pressures, the pi-stacking interactions between the phenol rings of the chromophore and Tyr 203 are highly perturbed (explained in section 4.4). Hence, the stability imparted by the increment in hydrogen bonding is not helpful for increasing the fluorescent intensity at pressures above 50 MPa.
Figure 4.6(a) Percentage of hydrogen bonds formed between Ser146 Oγ and the chromophore phenolate oxygen in mCherry and mStrawberry.

Figure 4.6(b) Percentage of hydrogen bonds formed between His148 Nδ and chromophore phenolate oxygen in citrine.
The percentage of hydrogen bonds formed by oxygen at the phenolate ring, and carbonyl oxygen and nitrogen at the imidazolinone ring is shown in table 4.5 for mCherry, in table 4.6 for mStrawberry, and in table 4.7 for citrine. The general trend is increase in hydrogen bonding at higher pressures. The percentage of hydrogen bonding is comparatively high for the interaction between Arg95 N and the chromophore, because it offers two donor sites for the formation a hydrogen bond. Other residues offer only a single donor site. In citrine, the population of hydrogen bonds between Arg96 N and the chromophore increases considerably at 50 MPa, while that between His148 Nδ and the chromophore remains almost unchanged as seen in table 4.7. This could be partially responsible for the maximized fluorescence peak intensity of citrine at 50 MPa.

Table 4.5 Hydrogen bond percentage of mCherry chromophore at various pressures.

<table>
<thead>
<tr>
<th>H-Bond Type</th>
<th>0.1 MPa</th>
<th>250 MPa</th>
<th>500 MPa</th>
<th>750 MPa</th>
<th>1000 MPa</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ser146 Oγ - Cro</td>
<td>69</td>
<td>36</td>
<td>8</td>
<td>84</td>
<td>77</td>
</tr>
<tr>
<td>Arg95 N - Cro</td>
<td>86</td>
<td>89</td>
<td>58</td>
<td>88</td>
<td>93</td>
</tr>
<tr>
<td>Glu215 Oε - Cro</td>
<td>47</td>
<td>59</td>
<td>68</td>
<td>68</td>
<td>71</td>
</tr>
</tbody>
</table>

Table 4.6 Hydrogen bond percentage of mStrawberry chromophore at various pressures.

<table>
<thead>
<tr>
<th>H-Bond Type</th>
<th>0.1 MPa</th>
<th>250 MPa</th>
<th>500 MPa</th>
<th>750 MPa</th>
<th>1000 MPa</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ser146 Oγ - Cro</td>
<td>78</td>
<td>81</td>
<td>81</td>
<td>79</td>
<td>45</td>
</tr>
<tr>
<td>Arg95 N - Cro</td>
<td>77</td>
<td>86</td>
<td>91</td>
<td>88</td>
<td>82</td>
</tr>
<tr>
<td>Glu215 Oε - Cro</td>
<td>25</td>
<td>36</td>
<td>40</td>
<td>51</td>
<td>50</td>
</tr>
</tbody>
</table>
Table 4.7 Hydrogen bond percentage of citrine chromophore at various pressures.

<table>
<thead>
<tr>
<th>H-Bond Type</th>
<th>0.1 MPa</th>
<th>50 MPa</th>
<th>100 MPa</th>
<th>250 MPa</th>
<th>500 MPa</th>
<th>750 MPa</th>
</tr>
</thead>
<tbody>
<tr>
<td>His148 Nδ - Cro</td>
<td>25</td>
<td>21</td>
<td>13</td>
<td>28</td>
<td>32</td>
<td>44</td>
</tr>
<tr>
<td>Arg96 N - Cro</td>
<td>65</td>
<td>76</td>
<td>62</td>
<td>45</td>
<td>57</td>
<td>55</td>
</tr>
</tbody>
</table>

4.3 CHROMOPHORE FLEXIBILITY

As with other FPs, the chromophores of both mCherry and mStrawberry are formed by cyclization and oxidation of peptide sequences; the mCherry chromophore is formed by Met-Tyr-Gly and the mStrawberry chromophore is formed by Thr-Tyr-Gly. Although Tyr and Gly are common to both tripeptides, Met in mCherry is replaced by Thr in mStrawberry. The mStrawberry chromophore constituent Thr is less bulky than Met in mCherry. Therefore, the mStrawberry chromophore has more conformational degrees of freedom at ambient pressure conditions. When a moderate pressure is applied this conformational freedom is reduced and the chromophore is more stabilized. The improved chromophore rigidity at moderate pressure (~250 MPa) results in a better fluorescence in mStrawberry. The overall effect of pressure in the conformational freedom of the chromophore is shown in Figure 4.7 in terms of root mean square fluctuations (rmsf). For mStrawberry, the chromophore rmsf decreases with increasing pressure, which explains the improved intensity at 250 MPa. But mCherry shows higher rmsf fluctuations at all pressures, which implies that the chromophore is more mobile and the excited state chromophore is more likely to follow the path of radiationless decay through vibrational relaxations. At very high pressures of 750 MPa and 1000 MPa, the chromophore structure may be distorted, resulting in the loss of fluorescent intensity.
The chromophore of the yellow fluorescent protein citrine shows a slight increase in rmsf at moderate pressures (50 MPa and 100 MPa) as shown in Figure 4.7. This seems contrary to the fact that the peak intensity of citrine is maximum at 50 MPa. However the increased interaction between the chromophore and the phenol ring of Tyr203 may be a dominant cause of the peak fluorescence intensity in citrine at 50 MPa (explained in section 4.4). At pressures higher than 100 MPa, the citrine chromophore shows a monotonic decrease in rmsf, similar to mStrawberry.

Figure 4.7 Plot of root mean square fluctuations (rmsf) of the chromophore of mCherry, mStrawberry and citrine at various pressures.

4.4 CHROMOPHORE PLANARITY AND THE FLUORESCENCE

In order to investigate the pressure effects on chromophore planarity, best-fit planes were constructed for the two rings of the chromophore using the CHARMM trajectory analysis package. To find the least square planes, I have considered atoms C1, C2, N2, N3, O2, CA1, CA2, CB2 and CA3 for imidazolinone, and atoms CB2, CG2,
CD1, CD2, CE1, CE2, CZ and OH for p-hydroxybenzyl. The atom names are exactly as given in the PDB files of the three FPs. The average dihedral angle between these two least squares planes is plotted against different pressures in Figure 4.8.

Figure 4.8 Plot of average angle between the planes of phenolate ring and imidazolinone ring of the chromophore of mCherry, mStrawberry, and citrine at various pressures.

At moderate pressures up to 500 MPa, mCherry shows an improvement in chromophore planarity while the mStrawberry chromophore maintains the same planarity. The total change in the angle between the planes of the two chromophore rings is about 6 degrees, and this effect may not be significant enough to alter the fluorescence intensity.
Interestingly, the average angle between the two chromophore rings in citrine increases at 50 MPa and 100 MPa. This may adversely affect the fluorescence intensity peak. However, the phenolate ring of the citrine chromophore interacts with the phenolate ring of neighboring residue Tyr203, and this phenomenon is not observed in mCherry and mStrawberry. In addition, the structure of citrine is more planar (less than 12 degrees) than that of mCherry or mStrawberry at all pressures. Also, at pressures above 100 MPa, the chromophore structure in citrine shows no change in planarity, compared to the monotonic decrease in chromophore planarity observed in mCherry and mStrawberry at equivalent pressures.

The YFP variant citrine stems from an important mutation T203Y in the green fluorescent protein family. The interaction between the chromophore and the phenolic ring of Tyr203, as shown in Figure 4.9(b) causes the fluorescence peak shift from green to yellow in citrine (59). Barstow and coworkers observed an initial increase of fluorescence peak intensity in citrine by applying moderate hydrostatic pressure, followed by a monotonic decrease in intensity at higher pressure. The maximum peak intensity was observed at around 50MPa of pressure. The study reported that the relative displacement between the phenolic ring of Tyr203 and the phenolic ring of the chromophore explains the observed pressure response to the peak fluorescent intensity (73, 74). I have investigated the effects of hydrostatic pressure on the dihedral angle between these phenolic rings. Best-fit planes were constructed for the chromophore phenolic ring and Tyr203 Phenolic ring, using the CHARMM trajectory analysis tool. The fitting involve atoms CB2, CG2, CD1, CD2, CE1, CE2, CZ and OH of the chromophore and CB, CG, CD1, CE1, CD2, CE2, CZ and OH of Tyr203. The average
dihedral angle between these two least squares planes is plotted against various pressures in Figure 4.9(a). As the average angle reaches a minimum at 50 MPa, this would result in favorable pi-stacking interactions between the chromophore and the phenol. At 50 MPa pressure, although the planarity of the chromophore itself decreases, the increased interaction between the chromophore and the neighboring phenol ring of Tyr203, helps increase the fluorescence intensity. Hence the fluorescence intensity peak is maximum at 50 MPa. At pressures beyond 50 MPa, the planarity between the two phenolate rings decreases and so does the peak intensity. This directly correlates with the experimentally observed changes in peak fluorescence intensity with the application of hydrostatic pressure in citrine.

![Figure 4.9](image)

Figure 4.9 (a) Average angle between the least square planes through the phenol rings of chromophore and Tyr203 in citrine. (b) Stacking between phenolate rings of chromophore and neighboring residue Tyr203.
5. CONCLUSIONS

I investigated several structural aspects related to fluorescence in fluorescent proteins. I now summarize these results.

Access for molecular oxygen to the chromophore in fluorescent proteins is required for chromophore maturation. However, oxygen penetration through the barrel to the mature chromophore can also cause irreversible photo-bleaching and significantly reduce the photostability of an FP. In this work, I performed molecular dynamics simulations to investigate the diffusion of molecular oxygen into the protein barrel of the monomeric RFP variants mOrange and mOrange2. A clear channel for oxygen diffusion into the protein, common to both mOrange and mOrange2, is described. The pathway contains several oxygen hosting pockets, which are identified by the amino acid residues that form each pocket. One end of the channel is accessed from the solvent through the floppy β7–β10 gap, which leads immediately to a gateway pocket (D) that provides some access to the chromophore. Another entrance from the solvent is at the bottom of the protein barrel. Two unique oxygen-hosting pockets have been identified in mOrange, that are not present in mOrange2. In both pockets, oxygen spends a significant amount of time in the immediate vicinity of the chromophore. This explains the significantly lower photostability of mOrange as compared to mOrange2. Such computational identifications of oxygen diffusion pathways can be helpful in guiding mutagenesis efforts to design fluorescent proteins with improved photophysical properties.

A large chromophore like the tripeptide in fluorescent proteins needs to be fairly rigid to be able to fluoresce. Otherwise, the energy contained in the excited electronic orbital can dissipate through radiationless, vibrational modes. For example, the
chromophore isolated from the Aequorea green fluorescent protein was observed to fluoresce highly when present in a frozen solution, but was non-fluorescent at room temperature (76). In fluorescent proteins, rigidity of the chromophore can be attained by anchoring to the protein. The chromophore in the fluorescent protein eqFP611 interacts with the residue Phe174, but KFP lacks this interaction due to a different residue at this position and is non-fluorescent (77). Our computational results show that high pressures stabilize the mStrawberry chromophore more than the mCherry chromophore. The citrine chromophore is more stabilized at 50 MPa than at 0.1 MPa through hydrogen bonding with Arg96 N and His148 N\(\delta\), which may be the cause of the increased fluorescence intensity in citrine at that pressure.

The chromophore interaction with neighboring residues and the movement of water molecules in the chromophore cavity seem to play a crucial role in imparting rigidity and stability to the chromophore. The Y66H/Y145F mutations of the green fluorescent protein result in the formation of blue fluorescent proteins. As a consequence of the smaller size of the histidine (H) as compared to tyrosine (Y), the chromophore in BFP cannot link to the hydrogen bonding network in the cavity (78). Mauring and his group showed that the fluorescence intensity of BFP can be increased by increasing pressure (67). This can be a result of squeezing of the cavity, which allows the formation of additional hydrogen bonds to the histidine, causing it to become more rigid. Similarly, in mStrawberry, with a small threonine residue in the cavity, the chromophore may have increased mobility at 1 atm. High pressure may squeeze the pocket enough to reduce the flexibility of the chromophore, and the increased rigidity at higher pressure improves the fluorescence intensity.
Pressure can be used as an effective tool to explore details of protein conformations. Fluorescent proteins are complex biopolymers with numerous degrees of freedom. It is difficult to elucidate the role of each bond in the chromophore cavity of these proteins, but pressure can be used to produce structural changes that allow a better understanding of the structural factors associated with their biological functions. We have investigated pressure effects on planarity and other interactions of the chromophore that contribute to its overall fluorescent behavior. Our investigations show that there is a complex interplay involving various interactions between the chromophore, the barrel, and the aqueous environment. All of these are responsible for the fluorescent behavior of the FPs. This approach of varying the pressure to determine important structure-function relationships is useful in designing and engineering novel fluorescent proteins with optimized photophysical properties.
REFERENCES

APPENDICES

Appendix A: Chromophore Structure of various fluorescent proteins. Hydrogen atoms are not shown for clarity.

Appendix B: Residue topology and parameter files for the chromophore of mOrange and mOrange2

Table 5.1 Residue topology file for the chromophore of mOrange and mOrange2

<table>
<thead>
<tr>
<th>MASS</th>
<th>Residue</th>
<th>Parameter</th>
</tr>
</thead>
<tbody>
<tr>
<td>251</td>
<td>NRc2</td>
<td>14.00700 N ! neutral his unprotonated ring nitrogen</td>
</tr>
<tr>
<td>252</td>
<td>NRc1</td>
<td>14.00700 N ! neutral his protonated ring nitrogen</td>
</tr>
<tr>
<td>253</td>
<td>HAc1</td>
<td>1.00800 H ! for alkene; RHC=CR</td>
</tr>
<tr>
<td>254</td>
<td>HPc</td>
<td>1.00800 H ! aromatic H</td>
</tr>
</tbody>
</table>
MASS 255 Oc2 15.99900 O ! carbonyl oxygen
MASS 256 OcH 15.99900 O ! from OH1
MASS 257 HCc1 1.00800 H ! polar H ! not needed for anionic
MASS 258 HAc1 1.00800 H ! nonpolar H
MASS 259 CA1 12.01100 C ! aromatic C
MASS 260 CA2 12.01100 C ! aromatic C
MASS 261 CA3 12.01100 C ! aromatic C
MASS 262 CPC2 12.01100 C ! his CE1 carbon
MASS 263 CEc1 12.01100 C ! for alkene; RHC=CR
MASS 264 CPC1 12.01100 C ! his CG and CD2 carbons
MASS 265 CA4 12.01100 C ! aromatic C
MASS 266 CT3c 12.01100 C ! aliphatic sp3 C for CH3
MASS 267 CAG1 12.01100 C !
MASS 268 CBG1 12.01100 C !
MASS 269 CG4 12.01100 C !
MASS 270 OGg1 15.99900 O ! carbonyl oxygen
MASS 271 Og4 15.99900 O ! carbonyl oxygen
MASS 272 HBg1 1.00800 H ! aromatic H
MASS 273 HOg1 1.00800 H ! aromatic H
MASS 274 Ng1 14.00700 N ! neutral his protonated ring nitrogen

DECL -CA
DECL -C
DECL -O
DECL -C3
DECL +N4
DECL +N
DECL +HN
DECL +CA

DEFA FIRS NTER LAST CTER
AUTO ANGLES DIHE

RESI CRO -1.000
GROUP ! Imidazolinone ring
ATOM C1 CPC2 0.50
ATOM N2 NRc2 -0.60
ATOM N3 NRc1 -0.57
ATOM C2 CPC1 0.57
ATOM O2 Oc2 -0.57
ATOM CA2 CPC1 0.10
ATOM CB2 CEC1 -0.14
ATOM HB2 HAc1 0.21
ATOM CG2 CA1 -0.09 ! Tyr ring : charges from charmm22
ATOM CD1 CA2 -0.08
ATOM HD1 HPc 0.14
ATOM CD2 CA2 -0.08
ATOM HD2 HPc 0.14
ATOM CE1 CA3 -0.28
ATOM HE1 HPc 0.10
ATOM CE2 CA3 -0.28
ATOM HE2 HPc 0.10
ATOM CZ CA4 0.45
ATOM OH OcH -0.62 ! Absence of H ---- anionic
!Glycine part from Charmm22

GROUP
ATOM CA3 CT2 -0.18 ! |
ATOM HA31 HB 0.09 ! |
ATOM HA32 HB 0.09 ! HA1-CA-HA2
GROUP ! |
ATOM C3 C 0.51 ! |
ATOM O3 O -0.51 ! C=O

!Thr and Phe cyclized part part from charmm22

GROUP
ATOM N1 Ng1 -0.61 ! oxazole like ring
ATOM CA1 CAg1 0.22
ATOM CB1 CBg1 0.34 ! from compensating
ATOM CG1 CT3 -0.27
ATOM HG11 HA 0.09
ATOM HG12 HA 0.09
ATOM HG13 HA 0.09
ATOM HB1 HBg1 0.11
ATOM OG1 Ogg1 -0.29 ! from oxazole
ATOM C4 Cg4 0.34 ! from compensating
ATOM O4 Og4 -0.54
ATOM HO1 H0g1 0.43
GROUP
ATOM CA4 CT1 0.07
ATOM N4 NH1 -0.47
ATOM HN4 H 0.31
ATOM HA4 HB 0.09

ATOM CB4 CT2 -0.18
ATOM HB41 HA 0.09
ATOM HB42 HA 0.09
GROUP
ATOM CG4 CA 0.00 ! benzene ring
ATOM CD4 CA -0.115
ATOM HD4 HP 0.115
ATOM CD5 CA -0.115
ATOM HD5 HP 0.115
ATOM CE4 CA -0.115
ATOM HE4 HP 0.115
ATOM CE5 CA -0.115
ATOM HE5 HP 0.115
ATOM Cz4 CA -0.115
ATOM Hz4 HP 0.115

BOND CA1 C1 N4 -C C3 +N
BOND N2 CA2 CB2 HB2 CB2 CB2 CG2 CD1 HD1 CD1 CE1 CE1 HE1 CZ OH
BOND CZ CE2 CE2 HE2 CD2 HD2 CD2 CG2 CA2 C2
BOND N3 CA3 CA3 HA31 CA3 HA32 CA3 C3 N3 C1 N3 C2
BOND N1 C4 C4 O4 O4 HO1 C4 OGl OGl CB1 CB1 CB1 CB1 HB1 CB1 CB1 CA1
BOND CG1 HG11 CG1 HG12 CG1 HG13
BOND C4 CA4 CA4 HA4 CA4 N4 N4 HN4 CA4 CB4 CB4 CB4 HB41 CB4 HB42 CB4 CB4
BOND CD5 HD5 CD5 CE5 HE5 Cz4 Hz4 Cz4 Cz4 CE4 CE4 CE4 HE4
BOND CD4 HD4 CD4 CG4
Table 5.2 Parameter file for the chromophore of mOrange and mOrange2

*charm parameter file of mStrawberry chromophore (phe-thr-tyr-gly)
*
!parameter file

!GFP Chromophore parameters, protonated form
!
BONDS
!
!V(bond) = Kb(b - b0)**2
!
!Kb: kcal/mole/A**2
!b0: A
!
!atom type Kb b0
!
CPc2 CTc1 354.000 1.4900 !ion for RFP C1-CA1 connection
NRc1 CT2 396.000 1.4400 !ion
NRc1 CPC2 400.000 1.3900 !
NRc1 CPC1 400.000 1.4100 !
CPc1 Oc2 854.000 1.2400 !ion
NRc2 CPC2 400.000 1.3000 !
CPc1 CPC1 410.000 1.4600 !ion
NRc2 CPC1 400.000 1.4000 !
CPc1 CEC1 500.000 1.3900 !ion
HAc1 CEC1 360.500 1.1000 !
CEC1 CA1 437.000 1.4100 !ion
CA1 CA2 305.000 1.4300 !ion
HPc CA2 340.000 1.0800 !
CA2 CA3 305.000 1.3500 !ion
HPc CA3 340.000 1.0800 !
CA3 CA4 305.000 1.4550 !ion
OcH CA4 842.000 1.2500 !ion
CTc1 NH1 463.000 1.3650 !RFP CA1-N1 connection
CT1 CTc1 222.500 1.5000 !ALLOW ALI

ANGLES
!
!V(angle) = Ktheta(Theta - Theta0)**2
!
!V(Urey-Bradley) = Kub(S - S0)**2
!
!Ktheta: kcal/mole/rad**2
!Theta0: degrees
!Kub: kcal/mole/A**2 (Urey-Bradley)
!S0: A

<table>
<thead>
<tr>
<th>Atom types</th>
<th>Ktheta</th>
<th>Theta0</th>
<th>Kub</th>
<th>S0</th>
</tr>
</thead>
<tbody>
<tr>
<td>NRc2 CPc2 NRc1</td>
<td>130.000</td>
<td>113.3000</td>
<td>!ion</td>
<td></td>
</tr>
<tr>
<td>NRc2 CPc2 CPc1</td>
<td>130.000</td>
<td>106.6000</td>
<td>!ion</td>
<td></td>
</tr>
<tr>
<td>Cpc2 NRc1 CPc1</td>
<td>130.000</td>
<td>107.9000</td>
<td>!</td>
<td></td>
</tr>
<tr>
<td>NRc2 CPc1 CPc1</td>
<td>130.000</td>
<td>108.3000</td>
<td>!</td>
<td></td>
</tr>
<tr>
<td>NRc2 CPc1 CPc1</td>
<td>45.800</td>
<td>129.5000</td>
<td>!</td>
<td></td>
</tr>
<tr>
<td>NRc1 CPc1 Oc2</td>
<td>50.000</td>
<td>124.0000</td>
<td>!ion</td>
<td></td>
</tr>
<tr>
<td>NRc1 CPc1 CPc1</td>
<td>130.000</td>
<td>103.0000</td>
<td>!</td>
<td></td>
</tr>
<tr>
<td>Oe2 CPc1 CPc1</td>
<td>44.000</td>
<td>133.0000</td>
<td>!ion</td>
<td></td>
</tr>
<tr>
<td>Cpc1 CPc1 CEc1</td>
<td>45.800</td>
<td>122.7000</td>
<td>!ion</td>
<td></td>
</tr>
<tr>
<td>CPc1 CEc1 CA1</td>
<td>130.000</td>
<td>133.2000</td>
<td>!ion</td>
<td></td>
</tr>
<tr>
<td>CPc1 CEc1 HAc1</td>
<td>42.000</td>
<td>122.0000</td>
<td>!ion</td>
<td></td>
</tr>
<tr>
<td>CA1 CA2 CA3</td>
<td>40.000</td>
<td>122.0000</td>
<td>!ion</td>
<td></td>
</tr>
<tr>
<td>CA2 CA1 CA2</td>
<td>40.000</td>
<td>116.0000</td>
<td>!ion</td>
<td></td>
</tr>
<tr>
<td>CA2 CA3 CA4</td>
<td>40.000</td>
<td>122.0000</td>
<td>!ion</td>
<td></td>
</tr>
<tr>
<td>CA3 CA4 CA3</td>
<td>40.000</td>
<td>115.0000</td>
<td>!ion</td>
<td></td>
</tr>
<tr>
<td>Hpc CA3 CA4</td>
<td>30.000</td>
<td>120.0000</td>
<td>!</td>
<td></td>
</tr>
<tr>
<td>Hpc CA3 CA2</td>
<td>30.000</td>
<td>120.0000</td>
<td>!</td>
<td></td>
</tr>
<tr>
<td>Hpc CA2 CA3</td>
<td>30.000</td>
<td>120.0000</td>
<td>!</td>
<td></td>
</tr>
<tr>
<td>Hpc CA2 CA1</td>
<td>30.000</td>
<td>120.0000</td>
<td>!</td>
<td></td>
</tr>
<tr>
<td>OcH CA4 CA3</td>
<td>45.200</td>
<td>120.0000</td>
<td>! ALLOW ARO ALC</td>
<td></td>
</tr>
</tbody>
</table>

!Link to the thr(65) fragment

<table>
<thead>
<tr>
<th>Atom types</th>
<th>Ktheta</th>
<th>Theta0</th>
<th>Kub</th>
<th>S0</th>
</tr>
</thead>
<tbody>
<tr>
<td>NH1 CTc1 CPc2</td>
<td>50.000</td>
<td>107.0000</td>
<td>! ALLOW PEP POL ARO ALI</td>
<td></td>
</tr>
<tr>
<td>NRc2 CPc2 CTc1</td>
<td>40.000</td>
<td>125.0000</td>
<td>!</td>
<td></td>
</tr>
<tr>
<td>NRc1 CPc2 CTc1</td>
<td>40.000</td>
<td>121.7000</td>
<td>!ion</td>
<td></td>
</tr>
<tr>
<td>CT2 CT1 CPc2</td>
<td>52.000</td>
<td>108.0000</td>
<td>! ALLOW ALI PEP POL ARO</td>
<td></td>
</tr>
<tr>
<td>CT1 CTc1 CPc2</td>
<td>52.000</td>
<td>108.0000</td>
<td>! ALLOW ALI PEP POL ARO</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Atom types</th>
<th>Ktheta</th>
<th>Theta0</th>
<th>Kub</th>
<th>S0</th>
</tr>
</thead>
<tbody>
<tr>
<td>CTC1 NH1 C</td>
<td>50.000</td>
<td>120.0000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NH1 CTc1 CT1</td>
<td>70.000</td>
<td>113.5000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HA CT1 CTc1</td>
<td>34.500</td>
<td>110.10</td>
<td>22.53</td>
<td>2.17900 ! ALLOW ALI</td>
</tr>
<tr>
<td>CT3 CT1 CTc1</td>
<td>53.350</td>
<td>108.50</td>
<td>8.00</td>
<td>2.56100 ! ALLOW ALI</td>
</tr>
<tr>
<td>OH1 CT1 CTc1</td>
<td>75.700</td>
<td>110.1000</td>
<td>! ALLOW ALI ALC ARO (Yuba)</td>
<td></td>
</tr>
</tbody>
</table>

!Link to the gly(67) fragment

<table>
<thead>
<tr>
<th>Atom types</th>
<th>Ktheta</th>
<th>Theta0</th>
<th>Kub</th>
<th>S0</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cpc2 NRc1 CT2</td>
<td>40.000</td>
<td>128.3000</td>
<td>!ion</td>
<td></td>
</tr>
<tr>
<td>Cpc1 NRc1 CT2</td>
<td>40.000</td>
<td>123.8000</td>
<td>!ion</td>
<td></td>
</tr>
<tr>
<td>NRc1 CT2 C</td>
<td>50.000</td>
<td>107.0000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NRc1 CT2 HB</td>
<td>48.000</td>
<td>108.0000</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

! DIHEDRALS

!V(dihedral) = Kchi(1 + cos(n(Chi) - delta))
!Kchi: kcal/mole
!n: multiplicity
!delta: degrees

!atom types Kchi n delta
!
CPc2 NRc2 CPc1 CPc1 14.0000 2 180.00!
CPc2 NRc1 CPc1 CPc1 14.0000 2 180.00!
NRc2 CPc2 NRc1 CPc1 14.0000 2 180.00!
NRc2 CPc1 CPc1 NRc1 4.0000 2 180.00!
NRc1 CPc2 NRc2 CPc1 4.0000 2 180.00!
CA1 CA2 CA3 CA4 3.1000 2 180.00!
CA2 CA1 CA2 CA3 3.1000 2 180.00!
CA2 CA3 CA4 CA3 3.1000 2 180.00!
!Oc2 CAC CAC CAC 3.1000 2 180.00!
CA2 CA3 CA4 OcH 3.1000 2 180.00!
CA1 CA2 CA3 HPc 4.2000 2 180.00!
CA2 CA1 CA2 HPc 4.2000 2 180.00!
CA3 CA4 CA3 HPc 4.2000 2 180.00!
HPc CA2 CA3 CA4 4.2000 2 180.00!
HPc CA2 CA3 HPc 2.4000 2 180.00!
!HcH Oc2 CAC CAC 0.9900 2 180.00!
!HcH OcH CA4 CA3 0.9900 2 180.00!
HPc CA3 CA4 OcH 4.2000 2 180.00!
!
CPc2 NRc2 CPc1 CEc1 3.0000 2 180.00!
NRc1 CPc1 CPc1 CEc1 3.0000 2 180.00!
Oc2 CPc1 CPc1 CEc1 2.0000 2 180.00!
CEc1 CA1 CA2 HPc 4.2000 2 180.00!
CEc1 CA1 CA2 CA3 3.1000 2 180.00!

!connection CA-CB
CPc1 CPc1 CEc1 HAc1 3.9000 2 180.00!
CPc1 CPc1 CEc1 CA1 3.9000 2 180.00!
NRc2 CPc1 CEc1 HAc1 3.9000 2 180.00!
NRc2 CPc1 CEc1 CA1 3.9000 2 180.00!

!connection CB-CG2
CPc1 CEc1 CA1 CA2 2.7000 2 180.00!
HAc1 CEc1 CA1 CA2 2.7000 2 180.00!
!
CPc2 NRc1 CPc1 Oc2 14.0000 2 180.00!
NRc2 CPc2 NRc1 CT2 14.0000 2 180.00!
NRc2 CPc1 CPc1 Oc2 14.0000 2 180.00!
CPc1 NRc1 CPc2 CTc1 14.0000 2 180.00!
Oc2 CPc1 NRc1 CT2 14.0000 2 180.00!
CPc1 NRc2 CPc2 CTc1 14.0000 2 180.00!
CPc1 CPc1 NRc1 CT2 14.0000 2 180.00!
CTc1 CPc2 NRc1 CT2 14.0000 2 180.00!

! Linking the chromophore and the glycine(67) fragment
O C CT2 NRc1 0.0000 1 0.00!
NH1 C CT2 NRc1 0.6000 1 0.00!
CPc2 NRc1 CT2 HB 0.0320 3 0.00!
CPc2 NRc1 CT2 C 0.0320 3 0.00!
CPc1 NRc1 CT2 HB 0.0320 3 180.00 !
CPc1 NRc1 CT2 C 0.0320 3 180.00 !

! Linking the chromophore and the thr(65) fragment
C NH1 CTc1 CPc2 2.2500 2 180.00 ! Taken from X-C-NC2-X Charmm22
NRc2 CPc2 CTc1 CT1 0.1050 3 180.00 !
NRc2 CPc2 CTc1 NH1 0.1050 3 180.00 !
NRc1 CPc2 CTc1 CT1 0.1050 3 0.00 !
NRc1 CPc2 CTc1 NH1 0.1050 3 0.00 !

! connecting N1=CA1 region due to new type CTc1
O C NH1 CTc1 2.5000 2 180.00
CT1 C NH1 CTc1 2.5000 2 180.00
CT1 CTc1 NH1 C 1.8000 1 0.00
CPc2 CTc1 CT1 HA 0.2000 3 0.00
CPc2 CTc1 CT1 CT3 0.2000 3 0.00
NH1 CTc1 CT1 HA 0.2000 3 0.00
NH1 CTc1 CT1 CT3 0.2000 3 0.00 ! X CT1 CT1 X
CPC2 CTc1 CT1 OH1 0.2000 3 0.00 ! ALLOW ALI
NH1 CTc1 CT1 OH1 0.2000 3 0.00 ! ALLOW ALI

IMPROPER
!
!V(improper) = Kpsi(ψi - ψi0)**2
!
!Kpsi: kcal/mole/rad**2
!ψi0: degrees
!note that the second column of numbers (0) is ignored
!
!atom types Kpsi psi0
!
CPc2 NRc2 NRc1 CTc1 50.0000 0 0.0000
CPc2 NRc1 NRc2 CTc1 50.0000 0 0.0000
!
CPc1 NRc1 CPc1 Oc2 50.0000 0 0.0000
CPc1 CPc1 NRc1 Oc2 50.0000 0 0.0000
!
NRc1 CPc1 CPc2 CT2 50.0000 0 0.0000
NRc1 CPc2 CPc1 CT2 50.0000 0 0.0000
!
CPc1 NRc2 CPc1 CEc1 50.0000 0 0.0000
CPc1 CPc1 NRc2 CEc1 50.0000 0 0.0000
!
CEc1 CPc1 CA1 HAc1 30.0000 0 0.0000
CEc1 CA1 CPc1 HAc1 30.0000 0 0.0000

!V(Lennard-Jones) = Eps,i,j[(Rmin,i,j/ri,j)**12 - 2(Rmin,i,j/ri,j)**6]
!
!epsilon: kcal/mole, Eps,i,j = sqrt(eps,i * eps,j)
!Rmin/2: A, Rmin,i,j = Rmin/2,i + Rmin/2,j
!
Appendix C: Residue topology and parameter files for the chromophore of mCherry

Table 5.3 Residue topology file for the chromophore of mCherry

<table>
<thead>
<tr>
<th>MASS</th>
<th>197 NRc2</th>
<th>14.00700 N</th>
<th>neutral his unprotonated ring nitrogen</th>
</tr>
</thead>
<tbody>
<tr>
<td>MASS</td>
<td>198 NRc1</td>
<td>14.00700 N</td>
<td>neutral his protonated ring nitrogen</td>
</tr>
<tr>
<td>MASS</td>
<td>199 HAc1</td>
<td>1.00800 H</td>
<td>for alkene; RHC=CR</td>
</tr>
<tr>
<td>MASS</td>
<td>200 Hpc</td>
<td>1.00800 H</td>
<td>aromatic H</td>
</tr>
<tr>
<td>MASS</td>
<td>201 Oc2</td>
<td>15.99900 O</td>
<td>carbonyl oxygen</td>
</tr>
<tr>
<td>MASS</td>
<td>202 OcH</td>
<td>15.99900 O</td>
<td>from OH1</td>
</tr>
<tr>
<td>!MASS</td>
<td>203 HcH</td>
<td>1.00800 H</td>
<td>polar H</td>
</tr>
<tr>
<td>MASS</td>
<td>204 HAc</td>
<td>1.00800 H</td>
<td>nonpolar H</td>
</tr>
<tr>
<td>MASS</td>
<td>205 CA1</td>
<td>12.01100 C</td>
<td>aromatic C</td>
</tr>
<tr>
<td>MASS</td>
<td>206 CA2</td>
<td>12.01100 C</td>
<td>aromatic C</td>
</tr>
<tr>
<td>MASS</td>
<td>207 CA3</td>
<td>12.01100 C</td>
<td>aromatic C</td>
</tr>
<tr>
<td>MASS</td>
<td>208 CPC2</td>
<td>12.01100 C</td>
<td>his CE1 carbon</td>
</tr>
<tr>
<td>MASS</td>
<td>209 CEc1</td>
<td>12.01100 C</td>
<td>for alkene; RHC=CR</td>
</tr>
<tr>
<td>MASS</td>
<td>210 CPC1</td>
<td>12.01100 C</td>
<td>his CG and CD2 carbons</td>
</tr>
<tr>
<td>MASS</td>
<td>211 CA4</td>
<td>12.01100 C</td>
<td>aromatic C</td>
</tr>
<tr>
<td>!MASS</td>
<td>212 CT3c</td>
<td>12.01100 C</td>
<td>aliphatic sp3 C for CH3</td>
</tr>
<tr>
<td>MASS</td>
<td>213 CTc1</td>
<td>12.01100 C</td>
<td>aliphatic sp3 C for CH</td>
</tr>
</tbody>
</table>

DECL -CA
DECL -C
DECL -O
DECL -C3
DECL +N1
DECL +N
DECL +HN
DECL +CA

DEPA FIRS NTER LAST CTER
AUTO ANGLES DIHE

RESI CH6 -1.000
GROUP ! Imidazolinone ring
ATOM C1 CPC2 0.50
ATOM N2 NRc2 -0.60
ATOM N3 NRc1 -0.57
ATOM C2 CPC1 0.57
ATOM O2 Oc2 -0.57
ATOM CA2 CPC1 0.10
ATOM CB2 CEC1 -0.14
ATOM HB2 HAc1 0.21
ATOM CG2 CA1 -0.09 ! Tyr ring : charges from charmm22
ATOM CD1 CA2 -0.08
ATOM HD1 HPC 0.14
ATOM CD2 CA2 -0.08
ATOM HD2 HPC 0.14
ATOM CE1 CA3 -0.28
ATOM HE1 HPC 0.10
ATOM CE2 CA3 -0.28
ATOM HE2 HPC 0.10
ATOM CZ CA4 0.45
ATOM OH OCH -0.62

!Glycine part from Charmm22
GROUP
ATOM CA3 CT2 -0.18 ! | |
ATOM HA31 HB 0.09 ! | |
ATOM HA32 HB 0.09 ! HA1-CA-HA2
GROUP ! |
ATOM C3 C 0.51 ! |
ATOM O3 O -0.51 ! C=O

!met part from charmm22
GROUP
ATOM N1 NH1 -0.16
ATOM CA1 CTc1 0.16 ! atom type changed
GROUP
ATOM CB1 CT2 -0.18
ATOM HB11 HA 0.09
ATOM HB12 HA 0.09
GROUP
ATOM CG1 CT2 -0.14
ATOM HG11 HA 0.09
ATOM HG12 HA 0.09
ATOM SD S -0.09
ATOM CE CT3 -0.22
ATOM HE11 HA 0.09
ATOM HE12 HA 0.09
ATOM HE13 HA 0.09
Table 5.4 Parameter file for the chromophore of mCherry

*charm parameter file of mCherry chromophore (met-tyr-gly)
*
!parameter file

! GFP Chromophore parameters, protonated form
!
BONDS
!
!V(bond) = Kb(b - b0)**2
!
!Kb: kcal/mole/A**2
!b0: A
!
!atom type Kb b0
!
CPc2 CTc1 354.000 1.4900 !ion for RFP C1-CA1 connection
NRc1 CT2 396.000 1.4400 !ion
NRc1 CPc2 400.000 1.3900 !
NRc1 CPc1 400.000 1.4100 !
CPc1 Oc2 854.000 1.2400 !ion
NRc2 CPc2 400.000 1.3000 !
CPc1 CPc1 410.000 1.4600 !ion
NRc2 CPc1 400.000 1.4000 !
CPc1 CEc1 500.000 1.3900 !ion
HAc1 CEc1 360.500 1.1000 !
CEc1 CA1 437.000 1.4100 !ion
CA1 CA2 305.000 1.4300 !ion
HPc CA2 340.000 1.0800 !
CA2 CA3 305.000 1.3500 !ion
HPc CA3 340.000 1.0800 !
CA3 CA4 305.000 1.4550 !ion
OcH CA4 842.000 1.2500 !ion
CTc1 NH1 463.000 1.3650 !RFP CA1-N1 connection
CT2 CTc1 222.500 1.5380 !RFP CB1-CA1 connection

ANGLES
!
!V(angle) = Ktheta(Theta - Theta0)**2
!
!V(Urey-Bradley) = Kub(S - S0)**2
<table>
<thead>
<tr>
<th>Atom types</th>
<th>Ktheta</th>
<th>Theta0</th>
<th>Kub</th>
<th>S0</th>
</tr>
</thead>
<tbody>
<tr>
<td>NRc2 CPC2 NRc1</td>
<td>130.000</td>
<td>113.3000</td>
<td>!ion</td>
<td></td>
</tr>
<tr>
<td>CPC2 NRc2 CPC1</td>
<td>130.000</td>
<td>106.6000</td>
<td>!ion</td>
<td></td>
</tr>
<tr>
<td>CPC2 NRc1 CPC1</td>
<td>130.000</td>
<td>107.9000</td>
<td>!</td>
<td></td>
</tr>
<tr>
<td>NRc2 CPC1 CPC1</td>
<td>130.000</td>
<td>108.3000</td>
<td>!</td>
<td></td>
</tr>
<tr>
<td>NRC2 CPC1 CEc1</td>
<td>45.800</td>
<td>129.5000</td>
<td>!</td>
<td></td>
</tr>
<tr>
<td>NRC1 CPC1 Oc2</td>
<td>50.000</td>
<td>124.0000</td>
<td>!ion</td>
<td></td>
</tr>
<tr>
<td>NRC1 CPC1 CPC1</td>
<td>130.000</td>
<td>103.0000</td>
<td>!</td>
<td></td>
</tr>
<tr>
<td>Oc2 CPC1 CPC1</td>
<td>44.000</td>
<td>133.0000</td>
<td>!ion</td>
<td></td>
</tr>
<tr>
<td>CPC1 CPC1 CEc1</td>
<td>45.800</td>
<td>122.7000</td>
<td>!ion</td>
<td></td>
</tr>
<tr>
<td>CPC1 CEc1 CA1</td>
<td>130.000</td>
<td>133.2000</td>
<td>!ion</td>
<td></td>
</tr>
<tr>
<td>CPC1 CEc1 HAc1</td>
<td>42.000</td>
<td>112.0000</td>
<td>!ion</td>
<td></td>
</tr>
<tr>
<td>HAc1 CEc1 CA1</td>
<td>45.800</td>
<td>120.0000</td>
<td>!ion</td>
<td></td>
</tr>
<tr>
<td>CA1 CA2 CA3</td>
<td>40.000</td>
<td>122.0000</td>
<td>!ion</td>
<td></td>
</tr>
<tr>
<td>CA2 CA1 CA2</td>
<td>40.000</td>
<td>116.0000</td>
<td>!ion</td>
<td></td>
</tr>
<tr>
<td>CA2 CA3 CA4</td>
<td>40.000</td>
<td>122.0000</td>
<td>!ion</td>
<td></td>
</tr>
<tr>
<td>CA3 CA4 CA3</td>
<td>40.000</td>
<td>115.0000</td>
<td>!ion</td>
<td></td>
</tr>
<tr>
<td>HPC CA3 CA4</td>
<td>30.000</td>
<td>120.0000</td>
<td>!</td>
<td></td>
</tr>
<tr>
<td>HPC CA3 CA2</td>
<td>30.000</td>
<td>120.0000</td>
<td>!</td>
<td></td>
</tr>
<tr>
<td>HPC CA2 CA3</td>
<td>30.000</td>
<td>120.0000</td>
<td>!</td>
<td></td>
</tr>
<tr>
<td>HPC CA2 CA1</td>
<td>30.000</td>
<td>120.0000</td>
<td>!</td>
<td></td>
</tr>
<tr>
<td>OCH CA4 CA3</td>
<td>45.200</td>
<td>120.0000</td>
<td>ALLOW ARO ALC</td>
<td></td>
</tr>
</tbody>
</table>

!Link to the met(65) fragment

<table>
<thead>
<tr>
<th>Atom types</th>
<th>Ktheta</th>
<th>Theta0</th>
<th>Kub</th>
<th>S0</th>
</tr>
</thead>
<tbody>
<tr>
<td>NH1 CTc1 CPC2</td>
<td>50.000</td>
<td>107.0000</td>
<td>ALLOW PEP POL ARO ALI</td>
<td></td>
</tr>
<tr>
<td>NRC2 CPC2 CTc1</td>
<td>40.000</td>
<td>125.0000</td>
<td>!</td>
<td></td>
</tr>
<tr>
<td>NRC1 CPC2 CTc1</td>
<td>40.000</td>
<td>121.7000</td>
<td>!ion</td>
<td></td>
</tr>
<tr>
<td>CT2 CT1 CPC2</td>
<td>52.000</td>
<td>108.0000</td>
<td>ALLOW ALI PEP POL ARO</td>
<td></td>
</tr>
<tr>
<td>CT2 CTc1 CPC2</td>
<td>52.000</td>
<td>108.0000</td>
<td>ALLOW ALI PEP POL ARO</td>
<td></td>
</tr>
<tr>
<td>CTc1 NH1 C</td>
<td>50.000</td>
<td>120.0000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NH1 C CTc1</td>
<td>80.000</td>
<td>116.5000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NH1 CTc1 CT2</td>
<td>70.000</td>
<td>113.5000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HA CT2 CTc1</td>
<td>33.430</td>
<td>110.1000 22.53 2.17900</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CT2 CT2 CTc1</td>
<td>58.350</td>
<td>113.50 11.16 2.56100</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

!Link to the gly(67) fragment

<table>
<thead>
<tr>
<th>Atom types</th>
<th>Ktheta</th>
<th>Theta0</th>
<th>Kub</th>
<th>S0</th>
</tr>
</thead>
<tbody>
<tr>
<td>CPC2 NRc1 CT2</td>
<td>40.000</td>
<td>128.3000</td>
<td>!ion</td>
<td></td>
</tr>
<tr>
<td>CPC1 NRc1 CT2</td>
<td>40.000</td>
<td>123.8000</td>
<td>!ion</td>
<td></td>
</tr>
<tr>
<td>NRc1 CT2 C</td>
<td>50.000</td>
<td>107.0000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NRc1 CT2 HB</td>
<td>48.000</td>
<td>108.0000</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

! DIHEDRALS !
\[\text{!V(dihedral)} = K_{\text{chi}}(1 + \cos(n(\text{chi}) - \delta)) \]

\[\text{!K_{\text{chi}}: kcal/mole} \]

\[\text{n: multiplicity} \]

\[\text{!\delta: degrees} \]

<table>
<thead>
<tr>
<th>atom types</th>
<th>Kchi</th>
<th>n</th>
<th>delta</th>
</tr>
</thead>
<tbody>
<tr>
<td>CPc2 NRc2 CPc1 CPc1</td>
<td>14.0000</td>
<td>2</td>
<td>180.00</td>
</tr>
<tr>
<td>CPc2 NRc1 CPc1 CPc1</td>
<td>14.0000</td>
<td>2</td>
<td>180.00</td>
</tr>
<tr>
<td>NRc2 CPc2 NRc1 CPc1</td>
<td>14.0000</td>
<td>2</td>
<td>180.00</td>
</tr>
<tr>
<td>NRc2 CPc1 CPc1 NRc1</td>
<td>4.0000</td>
<td>2</td>
<td>180.00</td>
</tr>
<tr>
<td>NRc1 CPc2 NRc2 CPc1</td>
<td>4.0000</td>
<td>2</td>
<td>180.00</td>
</tr>
<tr>
<td>CA1 CA2 CA3 CA4</td>
<td>3.1000</td>
<td>2</td>
<td>180.00</td>
</tr>
<tr>
<td>CA2 CA1 CA2 CA3</td>
<td>3.1000</td>
<td>2</td>
<td>180.00</td>
</tr>
<tr>
<td>CA2 CA3 CA4 CA3</td>
<td>3.1000</td>
<td>2</td>
<td>180.00</td>
</tr>
<tr>
<td>!OC2 CAC CAC CAC</td>
<td>3.1000</td>
<td>2</td>
<td>180.00</td>
</tr>
<tr>
<td>CA2 CA3 CA4 OcH</td>
<td>3.1000</td>
<td>2</td>
<td>180.00</td>
</tr>
<tr>
<td>CA1 CA2 CA3 Hpc</td>
<td>4.2000</td>
<td>2</td>
<td>180.00</td>
</tr>
<tr>
<td>CA2 CA1 CA2 Hpc</td>
<td>4.2000</td>
<td>2</td>
<td>180.00</td>
</tr>
<tr>
<td>CA3 CA4 CA3 Hpc</td>
<td>4.2000</td>
<td>2</td>
<td>180.00</td>
</tr>
<tr>
<td>Hpc CA2 CA3 CA4</td>
<td>4.2000</td>
<td>2</td>
<td>180.00</td>
</tr>
<tr>
<td>Hpc CA2 CA3 Hpc</td>
<td>2.4000</td>
<td>2</td>
<td>180.00</td>
</tr>
<tr>
<td>!HcH Oc2 CAC CAC</td>
<td>0.9900</td>
<td>2</td>
<td>180.00</td>
</tr>
<tr>
<td>!HcH OcH CA4 CA3</td>
<td>0.9900</td>
<td>2</td>
<td>180.00</td>
</tr>
<tr>
<td>Hpc CA3 CA4 OcH</td>
<td>4.2000</td>
<td>2</td>
<td>180.00</td>
</tr>
</tbody>
</table>

| !connection CA-CB |
Cpc2 NRc2 Cpc1 CEc1	3.000	2	180.00
NRc1 Cpc1 Cpc1 CEc1	3.00	2	180.00
Oc2 Cpc1 Cpc1 CEc1	2.00	2	180.00
CEc1 CA1 CA2 Hpc	4.20	2	180.00
CEc1 CA1 CA2 CA3	3.10	2	180.00

| !connection CB-CG2 |
| Cpc1 CEc1 CA1 CA2 | 2.7000 | 2 | 180.00 |
| HAc1 CEc1 CA1 CA2 | 2.7000 | 2 | 180.00 |

<p>| ! Linking the chromophore and the glycine(67) fragment |
| O C CT2 NRc1 | 0.0000 | 1 | 0.00 |
| NH1 C CT2 NRc1 | 0.6000 | 1 | 0.00 |
| Cpc2 NRc1 CT2 HB | 0.0320 | 3 | 0.00 |</p>
<table>
<thead>
<tr>
<th>Atom Types</th>
<th>Type</th>
<th>Kpsi</th>
<th>psi0</th>
</tr>
</thead>
<tbody>
<tr>
<td>CPC2 NRc1 CT2 C</td>
<td>0.0320</td>
<td>3</td>
<td>0.00</td>
</tr>
<tr>
<td>CPC1 NRc1 CT2 HB</td>
<td>0.0320</td>
<td>3</td>
<td>180.00</td>
</tr>
<tr>
<td>CPC1 NRc1 CT2 C</td>
<td>0.0320</td>
<td>3</td>
<td>180.00</td>
</tr>
</tbody>
</table>

Linking the chromophore and the met(65) fragment

C NH1 CTc1 CPC2 2.2500 2 180.00 ! Taken from X-C-NC2-X

Charmm22

NRc2 CPC2 CTc1 CT2 0.1050 3 180.00 !
NRc2 CPC2 CTc1 NH1 0.1050 3 180.00 !
NRc1 CPC2 CTc1 CT2 0.1050 3 0.00 !
NRc1 CPC2 CTc1 NH1 0.1050 3 0.00 !

Connecting N1=CA1 region due to new type CTc1

O C NH1 CTc1 2.5000 2 180.00
CT1 C NH1 CTc1 2.5000 2 180.00
CT2 CTc1 NH1 C 1.8000 1 0.00
CPC2 CTc1 CT2 HA 0.2000 3 0.00
CPC2 CTc1 CT2 CT2 0.2000 3 0.00
NH1 CTc1 CT2 HA 0.2000 3 0.00
NH1 CTc1 CT2 CT2 0.2000 3 0.00

Improper

V(improper) = Kpsi(psi - psi0)**2

Kpsi: kcal/mole/rad**2
psi0: degrees
Note that the second column of numbers (0) is ignored.

<table>
<thead>
<tr>
<th>Atom Types</th>
<th>Type</th>
<th>Kpsi</th>
<th>psi0</th>
</tr>
</thead>
<tbody>
<tr>
<td>CPC2 NRc2 NRc1 CTc1</td>
<td>50.0000</td>
<td>0</td>
<td>0.0000</td>
</tr>
<tr>
<td>CPC2 NRc1 NRc2 CTc1</td>
<td>50.0000</td>
<td>0</td>
<td>0.0000</td>
</tr>
<tr>
<td>CPC1 NRc1 CPC1 Oc2</td>
<td>50.0000</td>
<td>0</td>
<td>0.0000</td>
</tr>
<tr>
<td>CPC1 CPC1 NRc1 Oc2</td>
<td>50.0000</td>
<td>0</td>
<td>0.0000</td>
</tr>
<tr>
<td>NRc1 CPC1 CPC2 CT2</td>
<td>50.0000</td>
<td>0</td>
<td>0.0000</td>
</tr>
<tr>
<td>NRc1 CPC2 CPC1 CT2</td>
<td>50.0000</td>
<td>0</td>
<td>0.0000</td>
</tr>
<tr>
<td>CPC1 NRc2 CPC1 CEc1</td>
<td>50.0000</td>
<td>0</td>
<td>0.0000</td>
</tr>
<tr>
<td>CPC1 CPC1 NRc2 CEc1</td>
<td>50.0000</td>
<td>0</td>
<td>0.0000</td>
</tr>
<tr>
<td>CEc1 CPC1 CA1 HAc1</td>
<td>30.0000</td>
<td>0</td>
<td>0.0000</td>
</tr>
<tr>
<td>CEc1 CA1 CPC1 HAc1</td>
<td>30.0000</td>
<td>0</td>
<td>0.0000</td>
</tr>
</tbody>
</table>

Lennard-Jones

V(Lennard-Jones) = Eps,i,j[(Rmin,i,j/ri,j)**12 - 2(Rmin,i,j/ri,j)**6]

Eps,i,j: kcal/mole, Eps,i,j = sqrt(eps,i * eps,j)
Rmin/2: A, Rmin,i,j = Rmin/2,i + Rmin/2,j
Appendix D: Residue topology and parameter files for the chromophore of mStrawberry

Table 5.5 Residue topology file for the chromophore of mStrawberry

| MASS |
|--------|---|
| 197 | NRc2 14.00700 N ! neutral his unprotonated ring nitrogen |
| 198 | NRc1 14.00700 N ! neutral his protonated ring nitrogen |
| 199 | HAc 1.00800 H ! for alkene; RHC=CR |
| 200 | HpC 1.00800 H ! aromatic H |
| 201 | Oc2 15.99900 O ! carbonyl oxygen |
| 202 | OcH 15.99900 O ! from OH1 |
| 204 | HAc 1.00800 H ! nonpolar H |
| 205 | CA1 12.01100 C ! aromatic C |
| 206 | CA2 12.01100 C ! aromatic C |
| 207 | CA3 12.01100 C ! aromatic C |
| 208 | CpC2 12.01100 C ! his CE1 carbon |
| 209 | CeC1 12.01100 C ! for alkene; RHC=CR |
| 210 | CpC1 12.01100 C ! his CG and CD2 carbons |
| 211 | CA4 12.01100 C ! aromatic C |
| 212 | CTC1 12.01100 C ! aliphatic sp3 C for CH |

DECL -CA
DECL -C
DECL -O
DECL -C3
DECL +N1
DECL +N
DECL +HN
DECL +CA

DEFA FIRS NTER LAST CTER
AUTO ANGLES DIHE

RESI CRO -1.000
GROUP ! Imidazolinone ring
ATOM C1 CPC2 0.50
ATOM N2 NRC2 -0.60
ATOM N3 NRC1 -0.57
ATOM C2 CPC1 0.57
ATOM O2 OC2 -0.57
ATOM CA2 CPC1 -0.10
ATOM CB2 CEC1 -0.14
ATOM HB2 HAC1 0.21
ATOM CG2 CA1 -0.09 ! Tyr ring : charges from charmm22
ATOM CD1 CA2 -0.08
ATOM HD1 HPC 0.14
ATOM CD2 CA2 -0.08
ATOM HD2 HPC 0.14
ATOM CE1 CA3 -0.28
ATOM HE1 HPC 0.10
ATOM CE2 CA3 -0.28
ATOM HE2 HPC 0.10
ATOM CZ CA4 0.45
ATOM OH OC2 -0.62

!Glycine part from Charmm22
GROUP
ATOM CA3 CT2 -0.18 ! |
ATOM HA31 HB 0.09 ! |
ATOM HA32 HB 0.09 ! HA1-CA-HA2
GROUP ! |
ATOM C3 C 0.51 ! |
ATOM O3 O -0.51 ! C=O

!Thr part from charmm22
GROUP
ATOM N1 NH1 -0.16
ATOM CA1 CTc1 0.16 !atom type changed
GROUP
ATOM CB1 CT1 0.14
ATOM HB1 HA 0.09
ATOM OG1 OH1 -0.66
ATOM HG1 H 0.43
GROUP
ATOM CG1 CT3 -0.27
ATOM HG11 HA 0.09
ATOM HG12 HA 0.09
ATOM HG13 HA 0.09

!!!Now needed to define bond
Table 5.6 Parameter file for the chromophore of mStrawberry

*charmm parameter file of mStrawberry chromophore (thr-tyr-gly)
*
!parameter file

! GFP Chromophore parameters, protonated form
!
BONDS
!
!V(bond) = Kb(b - b0)**2
!
!Kb: kcal/mole/A**2
!b0: A
!
!atom type Kb b0

<table>
<thead>
<tr>
<th>Atom Type</th>
<th>Kb</th>
<th>b0</th>
</tr>
</thead>
<tbody>
<tr>
<td>CPc2</td>
<td>354.000</td>
<td>1.4900</td>
</tr>
<tr>
<td>CTc1</td>
<td>396.000</td>
<td>1.4400</td>
</tr>
<tr>
<td>NRc1</td>
<td>400.000</td>
<td>1.3900</td>
</tr>
<tr>
<td>NRc1</td>
<td>400.000</td>
<td>1.4100</td>
</tr>
<tr>
<td>NRc1</td>
<td>400.000</td>
<td>1.4000</td>
</tr>
<tr>
<td>NRc2</td>
<td>400.000</td>
<td>1.3000</td>
</tr>
<tr>
<td>NRc2</td>
<td>400.000</td>
<td>1.4600</td>
</tr>
<tr>
<td>Cpc1</td>
<td>410.000</td>
<td>1.4600</td>
</tr>
<tr>
<td>Cpc1</td>
<td>500.000</td>
<td>1.3900</td>
</tr>
<tr>
<td>Hac1</td>
<td>360.500</td>
<td>1.1000</td>
</tr>
<tr>
<td>CEC1</td>
<td>437.000</td>
<td>1.4100</td>
</tr>
<tr>
<td>CA1</td>
<td>340.000</td>
<td>1.0800</td>
</tr>
<tr>
<td>CA2</td>
<td>340.000</td>
<td>1.0800</td>
</tr>
<tr>
<td>CA3</td>
<td>340.000</td>
<td>1.4550</td>
</tr>
<tr>
<td>CA3</td>
<td>340.000</td>
<td>1.2500</td>
</tr>
<tr>
<td>Och</td>
<td>463.000</td>
<td>1.3650</td>
</tr>
<tr>
<td>CTc1</td>
<td>222.500</td>
<td>1.5000</td>
</tr>
</tbody>
</table>

ANGLES
!
!V(angle) = Ktheta(Theta - Theta0)**2
!
!V(Urey-Bradley) = Kub(S - S0)**2
!Ktheta: kcal/mole/rad**2
!Theta0: degrees
!Kub: kcal/mole/A**2 (Urey-Bradley)
!S0: A

<table>
<thead>
<tr>
<th>atom types</th>
<th>Ktheta</th>
<th>Theta0</th>
<th>Kub</th>
<th>S0</th>
</tr>
</thead>
<tbody>
<tr>
<td>NRc2 CPc2 NRc1</td>
<td>130.000</td>
<td>113.3000</td>
<td>ion</td>
<td></td>
</tr>
<tr>
<td>Cpc2 NRc2 CPc1</td>
<td>130.000</td>
<td>106.6000</td>
<td>ion</td>
<td></td>
</tr>
<tr>
<td>Cpc2 NRc1 CPc1</td>
<td>130.000</td>
<td>107.9000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NRc2 CPc1 CPc1</td>
<td>130.000</td>
<td>108.3000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NRc2 CPc1 CEc1</td>
<td>45.800</td>
<td>129.5000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NRc1 CPc1 Oc2</td>
<td>50.000</td>
<td>124.0000</td>
<td>ion</td>
<td></td>
</tr>
<tr>
<td>NRc1 CPc1 CPc1</td>
<td>130.000</td>
<td>103.0000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Oc2 CPc1 CPc1</td>
<td>44.000</td>
<td>133.0000</td>
<td>ion</td>
<td></td>
</tr>
<tr>
<td>Cpc1 CPc1 CEC1</td>
<td>45.800</td>
<td>122.7000</td>
<td>ion</td>
<td></td>
</tr>
<tr>
<td>Cpc1 CEC1 CA1</td>
<td>130.000</td>
<td>133.2000</td>
<td>ion</td>
<td></td>
</tr>
<tr>
<td>Cpc1 CEC1 HAc1</td>
<td>42.000</td>
<td>112.0000</td>
<td>ion</td>
<td></td>
</tr>
<tr>
<td>CEC1 CA1 CA2</td>
<td>45.800</td>
<td>120.0000</td>
<td>ion</td>
<td></td>
</tr>
<tr>
<td>HAc1 CEC1 CA1</td>
<td>42.000</td>
<td>115.0000</td>
<td>ion</td>
<td></td>
</tr>
<tr>
<td>CA1 CA2 CA3</td>
<td>40.000</td>
<td>122.0000</td>
<td>ion</td>
<td></td>
</tr>
<tr>
<td>CA2 CA1 CA2</td>
<td>40.000</td>
<td>116.0000</td>
<td>ion</td>
<td></td>
</tr>
<tr>
<td>CA2 CA3 CA4</td>
<td>40.000</td>
<td>122.0000</td>
<td>ion</td>
<td></td>
</tr>
<tr>
<td>CA3 CA4 CA3</td>
<td>40.000</td>
<td>115.0000</td>
<td>ion</td>
<td></td>
</tr>
<tr>
<td>Hpc CA3 CA4</td>
<td>30.000</td>
<td>120.0000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hpc CA3 CA2</td>
<td>30.000</td>
<td>120.0000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hpc CA2 CA3</td>
<td>30.000</td>
<td>120.0000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hpc CA2 CA1</td>
<td>30.000</td>
<td>120.0000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>OcH CA4 CA3</td>
<td>45.200</td>
<td>120.0000</td>
<td>ALLOW ARO ALC</td>
<td></td>
</tr>
</tbody>
</table>

!Link to the thr(65) fragment

NH1 CTc1 Cpc2	50.000	107.0000	ALLOW PEP POL ARO ALI		
NRc2 Cpc2 CTc1	40.000	125.0000			
NRc1 Cpc2 CTc1	40.000	121.7000	ion		
CT1 CTc1 Cpc2	52.000	108.0000	ALLOW ALI PEP POL ARO		
CTc1 NH1 C	50.000	120.0000			
NH1 CTc1 CT1	70.000	113.5000			
HA CT1 CTc1	34.500	110.10	22.53	2.17900	ALLOW ALI
CT3 CT1 CTc1	53.350	108.50	8.00	2.56100	ALLOW ALI
OH1 CT1 CTc1	75.700	110.1000	ALLOW ALI ALC ARO (Yuba)		

!Link to the gly(67) fragment

Cpc2 NRc1 CT2	40.000	128.3000	ion
Cpc1 NRc1 CT2	40.000	123.8000	ion
NRc1 CT2 C	50.000	107.0000	
NRc1 CT2 HB	48.000	108.0000	

!DIHEDRALS

!V(dihedral) = Kchi(1 + cos(n(chi) - delta))

!Kchi: kcal/mole
!n: multiplicity
!delta: degrees

atom types

<table>
<thead>
<tr>
<th>Atom Types</th>
<th>Kchi</th>
<th>n</th>
<th>Delta</th>
</tr>
</thead>
<tbody>
<tr>
<td>CPc2 NRc2 CPc1 CPc1</td>
<td>14.0000</td>
<td>2</td>
<td>180.00</td>
</tr>
<tr>
<td>CPc2 NRc1 CPc1 CPc1</td>
<td>14.0000</td>
<td>2</td>
<td>180.00</td>
</tr>
<tr>
<td>NRC2 CPc2 NRc1 CPc1</td>
<td>14.0000</td>
<td>2</td>
<td>180.00</td>
</tr>
<tr>
<td>NRC2 CPc1 CPc1 NRc1</td>
<td>4.0000</td>
<td>2</td>
<td>180.00</td>
</tr>
<tr>
<td>NRC2 CPc2 NRc2 CPc1</td>
<td>4.0000</td>
<td>2</td>
<td>180.00</td>
</tr>
<tr>
<td>CA1 CA2 CA3 CA4</td>
<td>3.1000</td>
<td>2</td>
<td>180.00</td>
</tr>
<tr>
<td>CA2 CA1 CA2 CA3</td>
<td>3.1000</td>
<td>2</td>
<td>180.00</td>
</tr>
<tr>
<td>CA2 CA3 CA4 CA3</td>
<td>3.1000</td>
<td>2</td>
<td>180.00</td>
</tr>
<tr>
<td>Oc2 CAC CAC CAC</td>
<td>3.1000</td>
<td>2</td>
<td>180.00</td>
</tr>
<tr>
<td>CA2 CA3 CA4 OcH</td>
<td>3.1000</td>
<td>2</td>
<td>180.00</td>
</tr>
<tr>
<td>CA1 CA2 CA3 HPc</td>
<td>4.2000</td>
<td>2</td>
<td>180.00</td>
</tr>
<tr>
<td>CA2 CA1 CA2 HPc</td>
<td>4.2000</td>
<td>2</td>
<td>180.00</td>
</tr>
<tr>
<td>CA3 CA4 CA3 HPc</td>
<td>4.2000</td>
<td>2</td>
<td>180.00</td>
</tr>
<tr>
<td>HPC CA2 CA3 CA4</td>
<td>4.2000</td>
<td>2</td>
<td>180.00</td>
</tr>
<tr>
<td>HPC CA2 CA3 HPc</td>
<td>2.4000</td>
<td>2</td>
<td>180.00</td>
</tr>
<tr>
<td>HHC Oc2 CAC CA1</td>
<td>0.9900</td>
<td>2</td>
<td>180.00</td>
</tr>
<tr>
<td>HHC OcH CA4 CA3</td>
<td>0.9900</td>
<td>2</td>
<td>180.00</td>
</tr>
<tr>
<td>HPC CA3 CA4 OcH</td>
<td>4.2000</td>
<td>2</td>
<td>180.00</td>
</tr>
<tr>
<td>CPc2 NRc2 CPc1 CEc1</td>
<td>3.0000</td>
<td>2</td>
<td>180.00</td>
</tr>
<tr>
<td>NRC1 CPc1 CPc1 CEc1</td>
<td>3.0000</td>
<td>2</td>
<td>180.00</td>
</tr>
<tr>
<td>Oc2 CPc1 CPc1 CEc1</td>
<td>2.0000</td>
<td>2</td>
<td>180.00</td>
</tr>
<tr>
<td>CEc1 CA1 CA2 HPc</td>
<td>4.2000</td>
<td>2</td>
<td>180.00</td>
</tr>
<tr>
<td>CEc1 CA1 CA2 CA3</td>
<td>3.1000</td>
<td>2</td>
<td>180.00</td>
</tr>
</tbody>
</table>

!Connection CA-CB
<table>
<thead>
<tr>
<th>Atom Types</th>
<th>Kchi</th>
<th>n</th>
<th>Delta</th>
</tr>
</thead>
<tbody>
<tr>
<td>CPc1 CPc1 CEc1 HAcl1</td>
<td>3.9000</td>
<td>2</td>
<td>180.00</td>
</tr>
<tr>
<td>CPc1 CPc1 CEc1 CA1</td>
<td>3.9000</td>
<td>2</td>
<td>180.00</td>
</tr>
<tr>
<td>NRC2 CPc1 CEc1 HAcl1</td>
<td>3.9000</td>
<td>2</td>
<td>180.00</td>
</tr>
<tr>
<td>NRC2 CPc1 CEc1 CA1</td>
<td>3.9000</td>
<td>2</td>
<td>180.00</td>
</tr>
</tbody>
</table>

!Connection CB-CG2
<table>
<thead>
<tr>
<th>Atom Types</th>
<th>Kchi</th>
<th>n</th>
<th>Delta</th>
</tr>
</thead>
<tbody>
<tr>
<td>CPc1 CEc1 CA1 CA2</td>
<td>2.7000</td>
<td>2</td>
<td>180.00</td>
</tr>
<tr>
<td>HAcl1 CEc1 CA1 CA2</td>
<td>2.7000</td>
<td>2</td>
<td>180.00</td>
</tr>
</tbody>
</table>

! Linking the chromophore and the glycine(67) fragment
<table>
<thead>
<tr>
<th>Atom Types</th>
<th>Kchi</th>
<th>n</th>
<th>Delta</th>
</tr>
</thead>
<tbody>
<tr>
<td>O C CT2 NRc1</td>
<td>0.0000</td>
<td>1</td>
<td>0.00</td>
</tr>
<tr>
<td>NH1 C CT2 NRc1</td>
<td>0.6000</td>
<td>1</td>
<td>0.00</td>
</tr>
<tr>
<td>CPc2 NRc1 CT2 HB</td>
<td>0.0320</td>
<td>3</td>
<td>0.00</td>
</tr>
<tr>
<td>CPc2 NRc1 CT2 C</td>
<td>0.0320</td>
<td>3</td>
<td>0.00</td>
</tr>
</tbody>
</table>
Linking the chromophore and the thr(65) fragment

C NH1 CTc1 CPc2 2.2500 2 180.00 !Taken from X-C-NC2-X

Charmm22
NRc2 CPc2 CTc1 CT1 0.1050 3 180.00 !
NRc2 CPc2 CTc1 NH1 0.1050 3 180.00 !
NRc1 CPc2 CTc1 CT1 0.1050 3 0.00 !
NRc1 CPc2 CTc1 NH1 0.1050 3 0.00 !

!Connecting N1=CA1 region due to new type CTc1
O C NH1 CTc1 2.5000 2 180.00
CT1 C NH1 CTc1 2.5000 2 180.00
CT1 CTc1 NH1 C 1.8000 1 0.00
CPC2 CTc1 CT1 HA 0.2000 3 0.00
CPC2 CTc1 CT1 CT3 0.2000 3 0.00
NH1 CTc1 CT1 HA 0.2000 3 0.00
NH1 CTc1 CT1 CT3 0.2000 3 0.00 ! X CT1 CT1 X (Yuba)
CPc2 CTc1 CT1 OH1 0.2000 3 0.00 ! ALLOW ALI
NH1 CTc1 CT1 OH1 0.2000 3 0.00 ! ALLOW ALI

IMPROPER
!
!V(improper) = Kpsi(psi - psi0)**2
!
!Kpsi: kcal/mole/rad**2
!psi0: degrees
!note that the second column of numbers (0) is ignored
!
<table>
<thead>
<tr>
<th>atom types</th>
<th>Kpsi</th>
<th>psi0</th>
</tr>
</thead>
<tbody>
<tr>
<td>CPc2 NRc2</td>
<td>50.0000</td>
<td>0.0000</td>
</tr>
<tr>
<td>CPc2 NRc1</td>
<td>50.0000</td>
<td>0.0000</td>
</tr>
<tr>
<td>CPc1 NRc1</td>
<td>50.0000</td>
<td>0.0000</td>
</tr>
<tr>
<td>CPc1 CPC1</td>
<td>50.0000</td>
<td>0.0000</td>
</tr>
<tr>
<td>NRc1 CPc2</td>
<td>50.0000</td>
<td>0.0000</td>
</tr>
<tr>
<td>NRc1 CPC1</td>
<td>50.0000</td>
<td>0.0000</td>
</tr>
<tr>
<td>CPC1 NRc2</td>
<td>50.0000</td>
<td>0.0000</td>
</tr>
<tr>
<td>CPC1 CPC1</td>
<td>50.0000</td>
<td>0.0000</td>
</tr>
<tr>
<td>CPC1 CA1</td>
<td>30.0000</td>
<td>0.0000</td>
</tr>
<tr>
<td>CPC1 HAc1</td>
<td>30.0000</td>
<td>0.0000</td>
</tr>
</tbody>
</table>

!
!V(Lennard-Jones) = Eps,ij[(Rmin,ij/ri,j)**12 - 2(Rmin,ij/ri,j)**6]
!
!epsilon: kcal/mole, Eps,ij = sqrt(eps,i * eps,j)
!Rmin/2: A, Rmin,ij = Rmin/2,i + Rmin/2,j
Appendix E: Residue topology and parameter files for the chromophore of citrine

Table 5.7 Residue topology file for the chromophore of citrine

<table>
<thead>
<tr>
<th>MASS</th>
<th>197 NRc2</th>
<th>14.00700 N</th>
<th>neutral his unprotonated ring nitrogen</th>
</tr>
</thead>
<tbody>
<tr>
<td>MASS</td>
<td>198 NRc1</td>
<td>14.00700 N</td>
<td>neutral his protonated ring nitrogen</td>
</tr>
<tr>
<td>MASS</td>
<td>199 HAc1</td>
<td>1.00800 H</td>
<td>for alkene; RHC=CR</td>
</tr>
<tr>
<td>MASS</td>
<td>200 Hpc</td>
<td>1.00800 H</td>
<td>aromatic H</td>
</tr>
<tr>
<td>MASS</td>
<td>201 Oc2</td>
<td>15.99900 O</td>
<td>carbonyl oxygen</td>
</tr>
<tr>
<td>MASS</td>
<td>202 OcH</td>
<td>15.99900 O</td>
<td>from OH1</td>
</tr>
<tr>
<td>MASS</td>
<td>204 HAc</td>
<td>1.00800 H</td>
<td>nonpolar H</td>
</tr>
<tr>
<td>MASS</td>
<td>205 CA1</td>
<td>12.01100 C</td>
<td>aromatic C</td>
</tr>
<tr>
<td>MASS</td>
<td>206 CA2</td>
<td>12.01100 C</td>
<td>aromatic C</td>
</tr>
<tr>
<td>MASS</td>
<td>207 CA3</td>
<td>12.01100 C</td>
<td>aromatic C</td>
</tr>
<tr>
<td>MASS</td>
<td>208 CPC2</td>
<td>12.01100 C</td>
<td>his CE1 carbon</td>
</tr>
<tr>
<td>MASS</td>
<td>209 CEC1</td>
<td>12.01100 C</td>
<td>for alkene; RHC=CR</td>
</tr>
<tr>
<td>MASS</td>
<td>210 CPC1</td>
<td>12.01100 C</td>
<td>his CG and CD2 carbons</td>
</tr>
<tr>
<td>MASS</td>
<td>211 CA4</td>
<td>12.01100 C</td>
<td>aromatic C</td>
</tr>
<tr>
<td>MASS</td>
<td>213 CTc1</td>
<td>12.01100 C</td>
<td>aliphatic sp3 C for CH</td>
</tr>
</tbody>
</table>

DECL -CA
DECL -C
DECL -O
DECL -C3 !Chola
DECL +N1 !Chola
DECL +N
DECL +HN
DECL +CA

DEFA FIRS NTER LAST CTER
AUTO ANGLES DIHE

RESI CRO -1.000
GROUP ! Imidazolinone ring
ATOM C1 CPC2 0.50
ATOM N2 NRc2 -0.60
ATOM N3 NRc1 -0.57
ATOM C2 CPC1 0.57
ATOM O2 Oc2 -0.57
ATOM CA2 CPC1 0.10
ATOM CB2 CEC1 -0.14
ATOM HB2 HAc1 0.21
ATOM CG2 CA1 -0.09 ! Tyr ring : charges from charmm22
ATOM CD1 CA2 -0.08
ATOM HD1 HPc 0.14
ATOM CD2 CA2 -0.08
ATOM HD2 HPc 0.14
ATOM CE1 CA3 -0.28
ATOM HE1 HPc 0.10
ATOM CE2 CA3 -0.28
ATOM HE2 HPc 0.10
ATOM CZ CA4 0.45
ATOM OH OCH -0.62

! !Glycine (67) part from Charmm22
GROUP
ATOM CA3 CT2 -0.18 ! | |
ATOM HA31 HB 0.09 ! | |
ATOM HA32 HB 0.09 ! HA1-CA-HA2
GROUP ! |
ATOM C3 C 0.51 ! |
ATOM O3 O -0.51 ! C=O
!
!gly (65) part from charmm22
GROUP
ATOM N1 NH1 -0.47 !atom type changed
ATOM HN1 H 0.31
ATOM CA1 CTC1 -0.02
ATOM HA11 HB 0.09
ATOM HA12 HB 0.09

BOND CA1 C1 N1 -C C3 +N CA1 N1 N1 NH1 CA1 HA11 CA1 HA12
BOND N2 CA2 CB2 HB2 CB2 CG2 CD1 HD1 CD1 CE1 CE1 HE1 CZ OH
BOND CZ CE2 CE2 HE2 CD2 HD2 CD2 CG2 CA2 C2
BOND N3 CA3 CA3 HA31 CA3 HA32 CA3 C3 N3 C1 N3 C2
DOUBLE C1 N2 CA2 CB2 C2 O2 C3 O3 CD1 CG2 CD2 CE2 CZ CE1
Table 5.8 Parameter file for the chromophore of citrine

charm parameter file of citrine chromophore (gly-tyr-gly)
*parameter file

! GFP Chromophore parameters, protonated form
!
BONDS
!
!V(bond) = Kb(b - b0)**2
!
!Kb: kcal/mole/A**2
!b0: A
!
<table>
<thead>
<tr>
<th>atom type</th>
<th>Kb</th>
<th>b0</th>
</tr>
</thead>
<tbody>
<tr>
<td>NRc1 CT2</td>
<td>396.000</td>
<td>1.4400</td>
</tr>
<tr>
<td>NRc1 CPC2</td>
<td>400.000</td>
<td>1.3900</td>
</tr>
<tr>
<td>NRc1 CPC1</td>
<td>400.000</td>
<td>1.4100</td>
</tr>
<tr>
<td>CPC1 OC2</td>
<td>854.000</td>
<td>1.2400</td>
</tr>
<tr>
<td>NRc2 CPC2</td>
<td>400.000</td>
<td>1.3000</td>
</tr>
<tr>
<td>CPC1 CPC1</td>
<td>410.000</td>
<td>1.4600</td>
</tr>
<tr>
<td>NRc2 CPC1</td>
<td>400.000</td>
<td>1.4000</td>
</tr>
<tr>
<td>CPC1 CEc1</td>
<td>500.000</td>
<td>1.3900</td>
</tr>
<tr>
<td>HAc1 CEc1</td>
<td>360.500</td>
<td>1.1000</td>
</tr>
<tr>
<td>CEc1 CA1</td>
<td>437.000</td>
<td>1.4100</td>
</tr>
<tr>
<td>CA1 CA2</td>
<td>305.000</td>
<td>1.4300</td>
</tr>
<tr>
<td>Hpc CA2</td>
<td>340.000</td>
<td>1.0800</td>
</tr>
<tr>
<td>CA2 CA3</td>
<td>305.000</td>
<td>1.3500</td>
</tr>
<tr>
<td>Hpc CA3</td>
<td>340.000</td>
<td>1.0800</td>
</tr>
<tr>
<td>CA3 CA4</td>
<td>305.000</td>
<td>1.4550</td>
</tr>
<tr>
<td>OCH CA4</td>
<td>842.000</td>
<td>1.2500</td>
</tr>
<tr>
<td>NH1 CTc1</td>
<td>320.000</td>
<td>1.4300</td>
</tr>
<tr>
<td>HB CTc1</td>
<td>330.000</td>
<td>1.0800</td>
</tr>
</tbody>
</table>

ANGLES
!
!V(angle) = Ktheta(Theta - Theta0)**2
!
!V(Urey-Bradley) = Kub(S - S0)**2
!
!Ktheta: kcal/mole/rad**2
!Theta0: degrees
!Kub: kcal/mole/A**2 (Urey-Bradley)
!S0: A
!
<table>
<thead>
<tr>
<th>atom types</th>
<th>Ktheta</th>
<th>Theta0</th>
<th>Kub</th>
<th>S0</th>
</tr>
</thead>
<tbody>
<tr>
<td>NRc2 CPC2</td>
<td>130.000</td>
<td>113.300</td>
<td>ion</td>
<td></td>
</tr>
<tr>
<td>CPC2 NRc2</td>
<td>130.000</td>
<td>106.600</td>
<td>ion</td>
<td></td>
</tr>
</tbody>
</table>
Cpc2 NRc1 CPc1 130.000 107.9000
NRc2 CPc1 CPc1 130.000 108.3000
NRc2 CPc1 CEc1 45.800 129.5000
NRc1 CPc1 Oc2 50.000 124.0000 !ion
NRc1 CPc1 CPc1 130.000 103.0000 !ion
Oc2 CPc1 CPc1 44.000 133.0000 !ion
CPc1 CPc1 CEc1 45.800 122.7000 !ion
CPc1 CEc1 CA1 130.000 133.2000 !ion
CPc1 CEc1 HAcl 42.000 112.0000 !ion
CEc1 CA1 CA2 45.800 120.0000 !ion
HAcl CEc1 CA1 42.000 115.0000 !ion
CA1 CA2 CA3 40.000 122.0000 !ion
CA2 CA1 CA2 40.000 116.0000 !ion
CA2 CA3 CA4 40.000 122.0000 !ion
CA3 CA4 CA3 40.000 115.0000 !ion
HPc CA3 CA4 30.000 120.0000 !ion
HPc CA3 CA2 30.000 120.0000 !ion
HPc CA2 CA3 30.000 120.0000 !ion
HPc CA2 CA1 30.000 120.0000 !ion
OcH CA4 CA3 45.200 120.0000 ! ALLOW ARO ALC

!Link to the gly(65) fragment
NH1 CTc1 CPc2 50.000 107.0000 ! ALLOW PEP POL ARO ALI
HB CTc1 CPc2 50.000 109.5000 ! ALLOW ALI PEP POL ARO
NRc2 CPc2 CTc1 40.000 125.0000 !ion
NRc1 CPc2 CTc1 40.000 121.7000 !ion
CTc1 NH1 C 50.000 120.0000
NH1 CTc1 HB 48.000 108.0000
H NH1 CTc1 35.000 117.0000
HB CTc1 HB 36.000 115.0000

!Link to the gly(67) fragment
Cpc2 NRc1 CT2 40.000 128.3000 !ion
Cpc1 NRc1 CT2 40.000 123.8000 !ion
NRc1 CT2 C 50.000 107.0000
NRc1 CT2 HB 48.000 108.0000

! DIHEDRALS
!
! V(dihedral) = Kchi(1 + cos(n(chi) - delta))
!
! Kchi: kcal/mole
! n: multiplicity
! delta: degrees
!
atom types Kchi n delta
!
Cpc2 NRc2 CPc1 CPc1 14.0000 2 180.00 !
Cpc2 NRc1 CPc1 CPc1 14.0000 2 180.00 !
NRc2 CPc2 NRc1 CPc1 14.0000 2 180.00 !
NRc2 CPc1 CPc1 NRc1 4.0000 2 180.00 !
NRc1 CPc2 NRc2 CPc1 4.0000 2 180.00 !
CA1 CA2 CA3 CA4 3.1000 2 180.00 !
CA2 CA1 CA2 CA3 3.1000 2 180.00 !
CA2 CA3 CA4 CA3 3.1000 2 180.00 !
!Oc2 CAC CAC CAC 3.1000 2 180.00 !
CA2 CA3 CA4 OcH 3.1000 2 180.00 !
CA1 CA2 CA3 Hpc 4.2000 2 180.00 !
CA2 CA1 CA2 Hpc 4.2000 2 180.00 !
CA3 CA4 CA3 Hpc 4.2000 2 180.00 !
Hpc CA2 CA3 CA4 4.2000 2 180.00 !
Hpc CA2 CA3 Hpc 2.4000 2 180.00 !
Hpc CA3 CA4 OcH 4.2000 2 180.00 !
!
CPc2 NRc2 CPc1 CEc1 3.0000 2 180.00 !
NRc1 CPc1 CPc1 CEc1 3.0000 2 180.00 !
Oc2 CPc1 CPc1 CEc1 2.0000 2 180.00 !
CEc1 CA1 CA2 Hpc 4.2000 2 180.00 !
CEc1 CA1 CA2 CA3 3.1000 2 180.00 !
!connection CA-CB
CPc1 CPc1 CEc1 HAc1 3.9000 2 180.00 !
CPc1 CPc1 CEc1 CA1 3.9000 2 180.00 !
NRc2 CPc1 CEc1 HAc1 3.9000 2 180.00 !
NRc2 CPc1 CEc1 CA1 3.9000 2 180.00 !
!
CPc1 CEc1 CA1 CA2 2.7000 2 180.00 !
HAc1 CEc1 CA1 CA2 2.7000 2 180.00 !
!
connection CB-CG2
CPc2 NRc1 CPc1 Oc2 14.0000 2 180.00 !
NRc2 CPc2 NRc1 CT2 14.0000 2 180.00 !
NRc2 CPc1 CPc1 Oc2 14.0000 2 180.00 !
CPc1 NRc1 CPc2 CTc1 14.0000 2 180.00 !
Oc2 CPc1 NRc1 CT2 14.0000 2 180.00 !
CPc1 NRc2 CPc2 CTc1 14.0000 2 180.00 !
CTc1 CPc2 NRc1 CT2 14.0000 2 180.00 !
!
! Linking the chromophore and the glycine(67) fragment
O C CT2 NRc1 0.0000 1 0.00 !
NH1 C CT2 NRc1 0.6000 1 0.00 !
CPc2 NRc1 CT2 HB 0.0320 3 0.00 !
CPc2 NRc1 CT2 C 0.0320 3 0.00 !
CPc1 NRc1 CT2 HB 0.0320 3 180.00 !
CPc1 NRc1 CT2 C 0.0320 3 180.00 !
!
! Linking the chromophore and the gly(65) fragment
C NH1 CTc1 CPc2 0.2000 1 180.00 !
NRc2 CPc2 CTc1 NH1 0.0150 3 180.00 !
NRc1 CPc2 CTc1 NH1 0.0150 3 0.00 !
!
H NH1 CTc1 CPc2 0.0000 1 0.00 !
NRc2 CPc2 CTc1 HB 0.1050 3 180.00 !
NRc1 CPc2 CTc1 HB 0.1050 3 0.00 !
CT1 C NH1 CTc1 1.6000 1 0.00 ! ALLOW PEP
HB CTc1 NH1 C 0.0000 1 0.00 ! ALLOW PEP
IMPROPER

\[V(\text{improper}) = K_{\psi}(\psi - \psi_0)^2 \]

\(K_{\psi} \): kcal/mole/rad**2

\(\psi_0 \): degrees

\textit{note that the second column of numbers (0) is ignored}

\textit{atom types} \hspace{1cm} K_{\psi} \hspace{1cm} \psi_0

\begin{tabular}{cccc}
CPc2 & NRc2 & NRc1 & CTc1 & 50.0000 & 0 & 0.0000 \\
CPc2 & NRc1 & NRc2 & CTc1 & 50.0000 & 0 & 0.0000 \\
\end{tabular}

\begin{tabular}{cccc}
CPc1 & NRc1 & CPc1 & Oc2 & 50.0000 & 0 & 0.0000 \\
CPc1 & CPc1 & NRc1 & Oc2 & 50.0000 & 0 & 0.0000 \\
\end{tabular}

\begin{tabular}{cccc}
NRc1 & CPc1 & CPc2 & CT2 & 50.0000 & 0 & 0.0000 \\
NRc1 & CPc2 & CPc1 & CT2 & 50.0000 & 0 & 0.0000 \\
\end{tabular}

\begin{tabular}{cccc}
CPc1 & NRc2 & CPc1 & CEc1 & 50.0000 & 0 & 0.0000 \\
CPc1 & CPc1 & NRc2 & CEc1 & 50.0000 & 0 & 0.0000 \\
\end{tabular}

\begin{tabular}{cccc}
CEc1 & CPc1 & CA1 & HAc1 & 30.0000 & 0 & 0.0000 \\
CEc1 & CA1 & CPc1 & HAc1 & 30.0000 & 0 & 0.0000 \\
\end{tabular}

\textit{atom} \hspace{1cm} \textit{ignored} \hspace{1cm} \textit{epsilon} \hspace{1cm} \textit{Rmin/2} \hspace{1cm} \textit{ignored} \hspace{1cm} \textit{eps,1-4} \hspace{1cm} \textit{Rmin/2,1-4}

\begin{tabular}{cccc}
CAc & 5.000000 & -0.070000 & 1.992400 & ALLOW ARO \\
\end{tabular}

NONBONDED nbxmod 5 atom cdie1 shift vatm vdistance vs switch -
cutnb 14.0 ctofnb 12.0 ctonnb 10.0 eps 1.0 e14fac 1.0 wmin 1.5

\begin{tabular}{cccc}
CA1 & 5.000000 & -0.070000 & 1.992400 & ALLOW ARO \\
CA2 & 5.000000 & -0.070000 & 1.992400 & ALLOW ARO \\
CA3 & 5.000000 & -0.070000 & 1.992400 & ALLOW ARO \\
CA4 & 5.000000 & -0.070000 & 1.992400 & ALLOW ARO \\
CEc1 & 0.000000 & -0.068000 & 2.090000 & ! for propene, yin/adm jr., \\
Cpc1 & 0.000000 & -0.050000 & 1.800000 & ALLOW ARO \\
Cpc2 & 0.000000 & -0.050000 & 1.800000 & ALLOW ARO \\
HAc & 0.000000 & -0.022000 & 1.320000 & ALLOW PEP ALI POL SUL \\
HAc1 & 0.000000 & -0.031000 & 1.250000 & ! \\
HPc & 0.000000 & -0.030000 & 1.358200 & 0.000000 & -0.030000 & 1.358200 \\
\end{tabular}
<table>
<thead>
<tr>
<th>Symbol</th>
<th>X</th>
<th>Y</th>
<th>Z</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>NRc1</td>
<td>0.0000</td>
<td>-0.2000</td>
<td>1.8500</td>
<td>ALLOW ARO</td>
</tr>
<tr>
<td>NRc2</td>
<td>0.0000</td>
<td>-0.2000</td>
<td>1.8500</td>
<td>ALLOW ARO</td>
</tr>
<tr>
<td>Oc2</td>
<td>0.0000</td>
<td>-0.1200</td>
<td>1.7000</td>
<td>ALLOW PEP POL,</td>
</tr>
<tr>
<td>OcH</td>
<td>0.0000</td>
<td>-0.1521</td>
<td>1.7700</td>
<td>ALLOW ALC ARO</td>
</tr>
<tr>
<td>CTc1</td>
<td>0.0000</td>
<td>-0.0200</td>
<td>2.2750</td>
<td></td>
</tr>
</tbody>
</table>
VITA

YUBA R. BHANDARI

2008 – 2013
Teaching Assistant
Florida International University
Miami, Florida, USA

2004 – 2005
Master of Science (Physics)
Tribhuvan University
Kathmandu, Nepal

2001 – 2003
Bachelor of Science (Physics)
Tribhuvan University
Bharatpur, Nepal

LIST OF PUBLICATIONS IN REFERRED JOURNALS:

1. Chola K. Regmi, Yuba R. Bhandari, Bernard S. Gerstman and Prem P. Chapagain
"Exploring the diffusion of molecular oxygen in the red fluorescent protein mCherry
using explicit oxygen molecular dynamics simulations", Journal of Physical
Chemistry B, 2013, 117 (8), 2247–2253

2. Yuba R. Bhandari, Prem P. Chapagain and Bernard S. Gerstman “Lattice model
simulations of the effects of the position of a peptide trigger segment on helix
folding and dimerization” Journal of Chemical Physics 137, 105103 (2012).

3. Ilan E. Chemmama, Adam Colt Pelea, Yuba R. Bhandari, Prem P. Chapagain and
Bernard S. Gerstman “Structural propensities and entropy effects in peptide helix-

4. Prem P. Chapagain, Bernard Gerstman, Yuba R. Bhandari, and Dipak Rimal, “Free-
energy landscapes and thermodynamic parameters of complex molecules from
ORAL/POSTER PARTICIPATION IN CONFERENCES/SEMINARS:

2. American Physical Society March Meeting, Boston, February 2012
 a) “Effects of pressure on the protein barrel and the chromophore interactions in mCherry”
 b) “Barrel fluctuation and oxygen diffusion pathways in the monomeric fluorescent proteins”

3. American Physical Society March Meeting, Dallas, March 2011 “Heterogeneous helical propensity and its effects on dimerization and the stability of a model protein dimer”

4. American Physical Society March Meeting, Portland, March 2010 “Position dependence of the trigger sequence in the folding and dimerization of a lattice model coiled-coil peptide”

5. Presentation on “Protein Folding” at Central Department of Physics, Tribhuvan University, Nepal on August 2005 organized by the Students Association of Physics.