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ABSTRACT OF THE DISSERTATION 

WIRELESS SENSOR NETWORK DEPLOYMENT  

By 

Yipeng Qu 

Florida International University, 2013 

Miami, Florida 

Professor Stavros. V. Georgakopoulos, Major Professor 

Wireless Sensor Networks (WSNs) are widely used for various civilian and 

military applications, and thus have attracted significant interest in recent years. This 

work investigates the important problem of optimal deployment of WSNs in terms of 

coverage and energy consumption. Five deployment algorithms are developed for 

maximal sensing range and minimal energy consumption in order to provide optimal 

sensing coverage and maximum lifetime. Also, all developed algorithms include self-

healing capabilities in order to restore the operation of WSNs after a number of nodes 

have become inoperative. 

Two centralized optimization algorithms are developed, one based on Genetic 

Algorithms (GAs) and one based on Particle Swarm Optimization (PSO). Both 

optimization algorithms use powerful central nodes to calculate and obtain the global 

optimum outcomes. The GA is used to determine the optimal tradeoff between network 

coverage and overall distance travelled by fixed range sensors. The PSO algorithm is 

used to ensure 100% network coverage and minimize the energy consumed by mobile 

and range-adjustable sensors. Up to 30% - 90% energy savings can be provided in 
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different scenarios by using the developed optimization algorithms thereby extending the 

lifetime of the sensor by 1.4 to 10 times. 

Three distributed optimization algorithms are also developed to relocate the 

sensors and optimize the coverage of networks with more stringent design and cost 

constraints. Each algorithm is cooperatively executed by all sensors to achieve better 

coverage. Two of our algorithms use the relative positions between sensors to optimize 

the coverage and energy savings. They provide 20% to 25% more energy savings than 

existing solutions. Our third algorithm is developed for networks without self-localization 

capabilities and supports the optimal deployment of such networks without requiring the 

use of expensive geolocation hardware or energy consuming localization algorithms. This 

is important for indoor monitoring applications since current localization algorithms 

cannot provide good accuracy for sensor relocation algorithms in such indoor 

environments. Also, no sensor redeployment algorithms, which can operate without self-

localization systems, developed before our work. 
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CHAPTER 1 

1 INTRODUCTION 

1.1 Problem statement 

Wireless sensor networks have recently attracted significant interest in the 

engineering community and among academic researchers. Different sensor network 

application testbeds have been built by various universities, such as the habitat 

monitoring sensor networks by the University of California at Berkeley and the College 

of Atlantic [1], the Zebranet Project for monitoring animal habits by Princeton University 

[2], and the wireless sensor network monitoring volcano activities in Ecuador by Harvard 

University, the University of New Hampshire, and the University of North Carolina 

together [3]. Also, DARPA has built a self-healing, smart minefield based on wireless 

sensor networks [4]. 

Different research areas are related to wireless sensor networks, such as sensor 

network security, coverage, communication, etc. Specifically, this dissertation focuses on 

the area coverage problem of  mobile and wireless sensors. In the area coverage problem, 

each sensor covers a particular sub-area, and the total covered area of the sensor network 

is made up of the individual covered areas of each sensor node. Maximizing the total 

coverage area of the entire sensor network is the major objective of the area coverage 

problem. The area coverage problem is closely related to the performance of systems in 

applications, such as, target detection and tracking, monitoring the battlefield, homeland 

security, personal protection, and animal habit monitoring. 

The location of the sensors is the most critical factor related to the network 

coverage. In order to obtain a good coverage, sensors are deployed deterministically. 
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However, there are certain conditions when sensors cannot be deployed deterministically, 

for example in applications involving areas of natural disasters or harsh environments. 

Additionally, if the sensing field is very large or has only limited entrance, sensors may 

not be able to be deployed one by one in precise locations. They may instead be deployed 

all at once from an aircraft or similar vehicles. 

When sensors are randomly deployed, the area-coverage initially provided by the 

sensor network cannot be guaranteed to be optimal, as in the deterministic deployment. 

An example of a randomly deployed sensor networks is shown in Figure 1.1. There are 

twelve sensors deployed in a rectangular sensing field. In the left part of the sensing field, 

the density of sensors on the left side of the field is less than on the right side. Therefore, 

the sensing field is not fully covered by the sensors. 

 

Figure 1.1 An example of area coverage by a randomly deployed sensor network. 

In order to increase the coverage area, redundant sensors are deployed. The 

redundancy makes the sensor networks have higher density than normal ad-hoc networks. 

However, it is proved by [5] and [6], that just increasing the sensor density cannot 

provide coverage with 100% probability. Also, it is costly to maintain the large-scale, 

high density sensor networks. Therefore, some other approaches have to be taken in order 
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to avoid these problems and still improve coverage after the sensors are randomly 

deployed. 

Nowadays, with the development of Micro-Electro-Mechanical systems (MEMS), 

sensors have become so small that they have shrunk to the point where they can be 

carried by pet-sized, mobile robots. Also, certain wireless sensor networks utilize mobile 

robotic platforms for moving the sensors in a controlled manner. Therefore, instead of 

increasing the sensing density in a sensor network, the mobile sensors can be used for 

increasing the coverage. 

In addition to the coverage problem of the randomly deployed sensor networks, 

energy consumption is also a major concern for mobile wireless sensor networks. In most 

applications, the lifetime of a system is critical to its effectiveness, especially for mobile 

sensor networks whose mobility systems consume more energy than the other 

components and processing devices. Energy consumption is a primary constraint for 

wireless sensor network nodes because most are self-powered by definition. Among the 

different parts of an individual network node, batteries are the only source of power for 

its entire life. Some applications are limited to the most essential components and do not 

have the option of recharging batteries. All of the node actions, such as, sensing, 

communicating, computing, and moving consume energy. Thus, once the battery or a 

sensor runs out of power, the sensor node is not useable anymore. This can degrade the 

quality of service for the entire sensor network. 

In this dissertation, we will develop algorithms that relocate the sensors to 

improve the coverage of randomly deployed sensor networks, while also minimizing the 

sensor energy consumption so as to prolong the lifetime of the sensor networks. 
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There is also another concern that complicates the redeployment problem: the 

robustness of sensor networks. Once deployed, it is expensive and impractical, if not 

impossible, to replace unusable sensors in applications as the ones described above. 

Therefore, if an individual sensor node dies, it will affect the entire performance of the 

sensor network. The death of a sensor node can be attributed to various causes, such as a 

dead battery, physical damage in the field due to environmental forces, or being 

destroyed by enemy. If a sensor that covers a very sensitive area dies and no other sensor 

can cover that area, the sensor network fails its mission of distributing the sensors 

effectively. 

1.2 Research Objectives and Contributions 

The objective of the dissertation is to develop relocation algorithms for mobile 

wireless sensor networks that optimize both coverage and energy consumption. The 

specific tasks of our research are as follows: 

1. Develop distributed algorithms that optimize the coverage and energy used for 

carrying the sensors. These algorithms can be performed by the sensor network 

without the use of a powerful central node. Therefore, the algorithms must not 

contain heavy calculations and also should not involve much communication 

overhead. The algorithms should also consider these three situations: 

a) All sensors have very accurate localization systems on them. 

b) None of the sensors have any localization systems on them. 

c) All the sensors have localization systems, but with errors of the localization output. 
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Different technologies and methods have been developed and implemented for self-

localization of wireless sensor nodes. However, in some environments such as 

indoors, there is still no accurate localization algorithm for wireless sensor nodes. All 

these cases need to be analyzed and a different set of algorithms need to be developed 

for them. 

2. Develop centralized algorithms for optimizing the coverage of sensor network 

and energy consumed for the sensors. These algorithms can have higher 

computation requirements and be performed by a central node. The algorithms are 

only applicable when central nodes exist in the wireless sensor networks. Also, the 

use of a central node with high computational abilities should also provide better 

performance than the one provided by distributed algorithms. 

3. Develop algorithms using range-adjustable sensors to provider better coverage 

and also to save energy by shortening some of the sensors’ sensing radius. These 

algorithms are distributed algorithms that only deal with the sensors range but do not 

relocate them. They can be used in conjunction with the proposed and other existing 

relocation algorithms to provide energy savings. 

4. Enhance all the developed algorithms with the property of self-healing. Whether 

a sensor network is capable of functioning well throughout its entire lifetime highly 

depends on its overall robustness. Algorithms with self-healing can increase the 

robustness of the system. The algorithms are designed such that when a sensor node 

dies, due to a drained battery or some physical condition change, the other nodes will 

adjust their status and react properly to minimize the influence of the sensor node’s 

death on the sensor network’s entire performance. 



 

6 
 

5. Ensure our algorithms exhibit rapid convergence. In most monitoring applications, 

reaction time is very important. The algorithms are designed to have a fast 

convergence rate when the sensors are first deployed and also when self-healing 

processes must take place. 

6. Evaluate our proposed algorithm. The performance of our algorithms depends on 

area coverage, energy consumption, and the convergence speed. Different initial 

deployments are tested to ensure the convergence of algorithms. Also, we compare 

and evaluate the performance of our developed algorithm with the existing solutions. 

In our work, seven different optimization algorithms are developed, including 

three distributed algorithms and three centralized algorithms for sensor relocation and 

one distributed algorithm for sensing range adjustment. All of the algorithms focus on 

both optimizing coverage with a limited number of sensors and prolonging the lifetime of 

the entire sensor network. However, this focus is considered differently in various 

applications and conditions, such as, if a central node exists or whether the sensors can 

self-locate. These algorithms should be capable of working with both indoor and outdoor 

monitoring applications, in harsh environments and disaster areas, and in real-time. 

Simulation results show that in all the different conditions described above, the 

corresponding algorithms optimize coverage of the sensor network within a reasonable 

cost of energy. 

1.3 Methodology 

In this dissertation, analytical, as well as computational, methods are used. 
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Firstly, we build the mathematical model for our optimization problem, which 

involves the maximization of the coverage and the minimization of the energy 

consumption. Different models related to the problem have been used in our analysis, and 

we simplify the mathematical model and optimize the solutions. Circle packing and 

Monte Carlo methods are used to analyze the coverage of the sensor networks. 

Secondly, we compare our candidate solutions of the optimization problem with 

the ideal case of optimal solution and try to generate the solution close to the ideal. 

Different approaches have been developed in order to achieve the optimum solution. 

Thirdly, we develop centralized solutions to the optimization problem. We 

developed multi-objective Genetic Algorithm and Particle Swarm optimizations 

algorithms to search for global optimization solutions. Both of these algorithms are 

heuristic optimization algorithms that will avoid local maxima or minima but provide  

globally optimal results. The optimum trade-offs are achieved between the conflicting 

objectives of better coverage and less energy usage. 

Fourthly, simulations are done in the Matlab platform. Different random initial 

deployments are implemented in the simulations and the results are analyzed with 

probability theory. The simulations are repeated a significant number of times in order to 

analyze the results by statistical methods. 

1.4 Dissertation Outline 

The remainder of the dissertation is organized as follows. Chapter 2 discusses the 

related work. Chapter 3 describes the basic models and theories applied in our work. Two 

different sensing models are described with respect to coverage calculation. Models and 
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theories related to energy savings include the energy models of the mobility components 

and the sensing power model of the sensing components, including range adjustable 

sensors. 

Chapter 4 describes three distributed optimization algorithms: one for sensors 

with self-location devices, one for sensors without self-location devices, and the other for 

sensors with inaccurate self-location devices. Simulation results show that in all three 

cases, the coverage can be optimized. The first algorithm optimizes the average relative 

distances and provides fast convergence. The second algorithm works without 

localization system for sensors and provides optimized coverage by a trade-off of energy 

consumed for moving the sensors. The third algorithm works well when the localization 

systems of sensors are not accurate. 

Chapter 5 discusses our centralized optimization algorithms. Three algorithms are 

described. The first is based on multi-objective, Genetic Algorithm. The second is based 

on traditional Particle Swarm Optimization. In the third algorithm, we hybridize the 

distributed algorithms into a Particle Swarm Optimization and generate a Hybrid PSO, 

which works uniquely for the sensor relocation problem. The first two centralized 

algorithms optimize the tradeoffs between coverage and energy consumption of the 

mobile sensor nodes. The hybrid PSO optimizes the lifetime of sensors and also 

optimizes the sensing coverage to be very close to 100%. 

Chapter 6 discusses a novel sensing range adjustment algorithm that provides near 

to 100% coverage and also minimizes redundantly covered areas. This algorithm cannot 

be used for relocating the sensors but can be used cooperatively with our relocation 

algorithms and provide energy savings for the wireless sensor networks. 
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Chapter 7 summarizes the conclusions and provides recommendations for future 

research.   
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CHAPTER 2 

2 RELATED WORK 

This chapter discusses the related work and the literature view. We separate the 

related optimization algorithms into two groups with respect to their method of 

computation: distributed or centralized. After a summary of the existing algorithms, we 

discuss other related terms such as the self-location techniques in wireless sensor 

networks, the Voronoi diagram, the range-adjustable sensors, and the obstacle avoidance. 

2.1 Distributed Optimization Algorithms for Sensor Redeployment 

In the random deployment of sensor networks, distributed algorithms have been 

used. The most commonly used distributed optimization algorithms for coverage 

optimization of mobile wireless sensor networks are the virtual force related algorithms 

[7]-[11].  

A potential field method was introduced by Howard, et al., [7], to optimize the 

coverage of sensor networks. Specifically, in [7], all sensors and obstacles create a virtual 

potential field. Therefore, every sensor is a point enacted upon by the combined potential 

field created by all the other sensors and obstacles. Each sensor will be impacted by a 

composition force from the virtual potential field. The interactive force of a particular 

potential field of another sensor or obstacle is directly proportional to the square of 

distance to that sensor or obstacle. The forces can be calculated as: 

 
2

1 i
n n

i i i

r
F k

r r
= − ⋅



  (2.1) 
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where Fn and Fo represents the force due to other nodes and obstacles correspondingly, ir


is the directional vector pointing for the center sensor to other sensors or obstacles and ri 

is its magnitude. It can be seen from the above equation that both forces have a negative 

sign which means there are only repulsive forces. Sensors will be assigned weights so 

that they can move according to the virtual forces applied to them as they would in a real 

physical situation. Virtual frictional effects are also applied so that the algorithm can 

converge faster. It has been proved that equilibrium state can be achieved in a sensing 

field with boundaries. As a result, the sensors in the sensing field will rearrange 

themselves into a more uniform distribution after being randomly deployed, and also, the 

network’s coverage can be significantly increased. 

Sheng, et al., [8] also used the potential field algorithm. In their work, the 

potential field algorithm was used to relocate the sink nodes, which were carried by 

mobile robotic devices. After the relocation of the mobile sink nodes, more static sensor 

nodes could communicate to the sink nodes so that the quality of performance is 

increased. 

Yi Zou, et al., [9], introduced a virtual force algorithm. The major difference 

between [7] and [9] is that [9] has both repulsive and attractive forces between sensors, 

whereas [7] only has the repulsive force. The force depends on the distance between 

sensors and their relative position. The forces can be represented as follow: 

 

( ( ), )

0

( / , )

A ij th ij ij th

ij ij th

R ij ij ij th

k d d a if d d

F if d d

k d a if d dπ

 − >
= =
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  (2.3) 



 

12 
 

where dij is the distance between sensors and aij is the direction from the center node to 

other sensor nodes, and dth is a distance threshold that has a close relation to the sensors’ 

sensing range. The objective of this algorithm is also to achieve better overall coverage 

by relocating the mobile sensors. 

Different force models have been derived, including the impact of hotspots and 

obstacles model by Li et al.,[10]. A ranking system has also been applied to the force 

model, so that the algorithm can be used for varying application requirements. 

Wong et al.,[11] improved the virtual force algorithms by applying a back-off 

delay time in the virtual force algorithm. The back-off delay time is used such that the 

sensors relocate themselves one-at-a-time in each round of movement. Thus, each sensor 

will have the most updated position information of the other sensors, including the 

movement of previous sensors within the current round. In this way, the sensors can 

move less than if they use the aged location information. 

It should be pointed out that the virtual force related algorithms described above 

require that each sensor knows the exact or relative positions of all other sensors in the 

network. In other words, location information for sensors is required, and must somehow 

be communicated throughout the network. 

Other deployment algorithms for randomly distributed mobile sensor networks 

were proposed by Wang et al.,[12], Pac et al.,[13], and Chang, et al.,[14]. These 

algorithms require that each sensor knows only the relative locations of sensors that are in 

its communication range, or its neighborhood. 

Specifically, Wang et al.,[12], used Voronoi diagrams to detect areas that are not 

covered, or the sensing holes, and determined the way the sensors should move to cover 
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those areas. Three different optimization algorithms have been developed: vector based 

optimization (VEC), Voronoi diagram based optimization (VOR), and Minimax 

optimization. The VOR and Minimax have similar performances that are better than the 

VEC when sensor nodes have low density. These algorithms also used a virtual 

movement method. With this method, each sensor calculates the future movements of all 

neighboring sensors and tracks these virtual movements to predict their future locations 

using the virtual locations. This prediction technique is repeated several times, and then 

the sensor moves only once. By using the virtual movement method, the total distance of 

sensor relocation is greatly decreased, along with the energy consumed. 

Furthermore, Pac, et al., [13], used a fluid model for sensor relocation. In this 

algorithm, the author compared the mobile sensor network to a fluid model. The sensors 

are treated as fluid elements in a continuous medium, which represents the unknown 

sensing field. This algorithm can optimize the sensing coverage. 

Chang, et al. [14] developed a density control coverage optimization algorithm. 

Each sensor divided its surrounding area into eight, hexagonal subareas, according to the 

relative direction. Then, the sensor density of each subarea was calculated, according to 

the number of sensors and the area of obstacles in that subarea. Then, the sensors moved 

toward the subarea that has the least density. 

The deployment algorithms above are not designed to converge fast. However, 

the convergence speed is an important factor in real time applications. 
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2.2 Centralized Optimization Algorithms for Sensor Redeployment 

The effectiveness of the deterministic deployment of a sensor network is a 

function of how efficiently it uses the sensor nodes to cover the desired area without any 

uncovered spots. This problem is related to the Art Gallery problem[15]. The Art Gallery 

problem is that of positioning the cameras of an art gallery so that the least amount of 

camera sensors can cover the entire art gallery. This problem is an optimization problem 

that is Non-deterministic, Polynomial-time hard. The video cameras in the Art Gallery 

problem are very similar to the sensors in wireless sensor networks. The main difference 

is that the video cameras have no limit of visual range, as they can see as long as no wall 

or obstacle blocks their line of sight. However, the sensor nodes always have a limited 

sensing range. 

2.2.1 Genetic Algorithm 

Genetic algorithms (GAs) are a type of evolutionary, optimization algorithm. 

Evolutionary optimization algorithms were first introduced by Barricelli in 1957[16]. 

GAs are heuristic search algorithms that come from the idea of natural evolution[17][18]. 

They take the concept of chromosomes, inheritance, mutation, and crossover in natural 

evolution. In a genetic algorithm, the input variables are treated as chromosome vectors. 

Different groups of initial variables will be generated. The genetic algorithm evaluates 

the values of the fitness function related to the input variables and keeps the 

chromosomes of the best fitness values. The GA simulates mutation and crossover of the 

chromosomes and always keeps the best values. So the best chromosomes are always 

inherited. GAs are very useful in obtaining the global maximum without being trapped in 
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a local optimum. This is because the initial population covers the entire solution space, so 

that local optimized values will be avoided. They are suitable for solving nonlinear 

optimization problems and for finding the global optimization value of a fitness function. 

Genetic algorithms can be used to solve optimization problems with NP-hard 

complexity. Also, deterministic deployment algorithms seek to prolong the lifetime of 

sensor networks by minimizing energy consumption. Some previously developed 

algorithms have used GAs to obtain optimum deployment of sensor networks. 

Jourdan, et al., [19] used a Multi-Objective Genetic Algorithm to optimize the 

coverage and lifetime of an entire wireless sensor network. In the sensor network in [19], 

there is only one sink node. All sensors need to transmit data to the sink node directly or 

through multi-hop communication. Data transmission is the main concern of energy 

consumption in [19]. So with different communication ranges, the data transmission will 

have different number of hops, changing the energy consumed. The work presented in 

[19] deals with the conflict of the goals of minimizing energy consumption and 

maximizing coverage and uses a Multi-Objective Genetic Algorithm to find the optimal 

tradeoff between coverage and lifetime. Different optimum layouts are obtained with 

respect to different sensing-to-communication range ratios. 

Jia, et al.,[20] deals with the scheduling problem for redundant sensors to prolong 

the lifetime of wireless sensor networks. The two objectives of their fitness function are 

to maximize the coverage and minimize the area covered by more than one sensor. They 

introduced a non-dominated sorting genetic algorithm (NSGA-II) to solve the 

optimization problem and minimize the number of sensors that need to be “on” to cover 
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the maximum area. The other sensors are turned off so that they can save their energy and 

can be used when other sensors die. 

Wang, et al.,[21] focused on improving the problem of selecting dynamic sensor 

nodes, which was first introduced by Burne, et al.,[22]. The problem is similar to the 

problem described in [20] but it involves the energy of each sensor in real time, 

dynamically. The objectives are to optimize the coverage ratio and prolong the lifetime of 

the entire sensor network. A Hopfield network (NH) is used to reduce the search space of 

the GA. Compared to the GA, this NH-GA converges faster. 

Also, sensing range adjustment and coverage optimization were performed in[23]. 

The work presented in[23] used the Voronoi Diagram to determine the approximate 

sensing range of each sensor and then used the GA to optimize the utilization of power.  

Liang, et al.,[24] performed the optimization work for wireless sensor networks in 

3D environments. In this work, a force driven genetic algorithm was introduced to decide 

the location of the sensors in order to obtain an optimized coverage and also consider 

energy savings. 

GAs are suitable for optimizing the deployment positions of sensor nodes, 

scheduling of groups of sensor nodes, and optimizing energy usage such as optimizing 

the sensing range and communication. GAs are very powerful optimization tools for the 

wireless sensor networks. However, the main restriction of GAs is they have very high 

computation complexity; thus, they require powerful CPUs. A normal sensor node 

usually does not have the ability to do so, and a central node with powerful computational 

capabilities is always required for GAs. 
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2.2.2 Particle Swarm Optimization 

Particle Swarm Optimizations (PSOs) was first introduced by Kennedy, et al.,[25] 

in 1995. The idea of a PSO comes from the natural behavior of birds seeking food. When 

a group of birds are looking for food together, each bird will first look around in the area 

near itself. Each bird will communicate to the other birds where it finds the most amount 

of food near its area. Thus, all the birds can know which areas have the most amount of 

food in their entire, collective feeding area. Birds will continue looking for food in nearby 

places, especially where the most amount of food had been found in the entire area. PSO 

algorithms simplify this concept of organized labor. Similar to GAs, a group of 

candidates will be generated in PSOs from the entire space. Each candidate is a set of 

vectors that contain the variables related to the problem. The group of candidates will 

evolve to the combination of personal best fitness and the group global best fitness. This 

is like the process of the birds seeking food. 

Compared to GAs, the PSO has the advantage that it is easier to program and 

implement, and it has less parameters to control. The PSO has been widely used in 

wireless sensor networks[26], such as node and base station positioning[27], node 

localization[28][29][30], data aggregation[31][32], and energy aware clustering[33][34]. 

PSO has been used in coverage and energy optimizations for non-mobile wireless 

sensor networks. Wang, et al.,[35] used a parallel particle swarm optimization algorithm 

for optimizing the energy used by sensors to track targets. The parallel PSO is used for 

maximizing the coverage and minimizing the energy consumption by turning off the 

sensors that are far away from the targets. The simulation results showed siginificant 

improvement in energy efficiency. 
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The PSO has also been used for relocating mobile sensor nodes[36]-[39]. Bai, et 

al.,[36], used PSO to optimally relocate sensors that are initially randomly deployed. The 

objective of their PSO is to optimize the coverage of the sensor network with least 

amount of sensor movements. Specifically, they studied two different cases of sensors 

mobility. In the first case, the sensors can move unlimited distance. In second case, the 

sensors modeled with limited mobility, which means they can only move within a certain 

maximum distance. The PSO algorithm improved the network’s coverage in both cases, 

especially in the limited mobility model. Also, the energy spent for the sensors’ 

movement was greatly reduced. 

Wang, et al.,[37], developed a new PSO algorithm, called VFCPSO, which 

combines the virtual force (VF) algorithms and co-evolutionary particle swarm 

optimizations (CPSO). In this algorithm, virtual forces are used to update the evolving 

velocity of each candidate solutions and different, cooperating swarms. The algorithm 

optimizes the coverage of a network that contains both static and mobile sensors. 

Compared to the traditional PSO, the VFCPSO can perform better with increasing 

dimensionality of the optimization problem and decreasing the computation time of the 

VFCPSO. Simulation results showed that VFCPSO provides a 10% coverage increased 

compared to the traditional PSO. Huang and Lu [38] also applied the PSO to the coverage 

optimization of hybrid, wireless sensor networks. 

Li, et al., [39] imported selection and mutation to the PSO and named their 

algorithm Particle Swarm Genetic Optimization (PSGO). Their algorithm aims at 

improving the density of nodes. Mobile nodes move to cover the uncovered areas 

(coverage holes). Their work demonstrated that by relocating only 5 of 100 sensors, the 
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algorithm could increase the coverage by 6%. However, these algorithms do not focus on 

energy savings and prolonging the lifetime of sensor networks with limited energy 

resources. 

2.3 Self-localization in Wireless Sensor Networks 

Self-localization is the ability to know one’s location with respect to some agreed 

upon reference, and it is very important for wireless sensor networks, since most 

applications require knowledge of where the data is coming from. It is also important to 

the coverage optimization algorithms, most relocation algorithms discussed above require 

knowing at least the relative locations of sensors, and they cannot function if the sensors 

have no self-localization system. Therefore, sensor localization has become an active 

research topic in recent years. 

There are two types of sensor self-localization methods; one is Fine Grained 

Localization and the other one is Coarse Grained Localization. The first type usually has 

less error in the localization results than the second, but it usually involves either higher 

computational complexity or hardware cost. 

A typical Coarse Grained Localization algorithm for wireless sensor networks is 

the Distance Vector hop (DV-Hop) method introduced by Niculescu[40]. In this 

algorithm, the distances between nodes are estimated by the least number of hops they 

need to communicate, where a hop is a communication link used between sensors that 

form part of a larger segmented transmission path. Since neither the hop distance between 

each sensor pair is constant, nor are their associated directions always the same, this 

algorithm can only estimate the approximate area that other nodes are in, and not their 
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exact locations. Different algorithms are developed to optimize the original DV-Hop. Li, 

et al.,[41] developed a weighted DV-Hop self-localization scheme that can increase the 

accuracy of the traditional DV-Hop. Other improved algorithms are [47-51]. [42][43][44][45][46]. 

Bulusu, et al., [47] introduced a reference-point based, low-cost self-localization 

algorithm for wireless sensor networks. In this algorithm, base stations, or other types of 

infrastructures, are located at grid points. They send out beacon signals including their 

location information to nearby sensors. These sensors use this information to estimate 

their own location by assuming they are at the centroid, or average location, of all the 

stations from which they receive beacon signals. If a sensor node can hear from reference 

nodes located in (x1,y1), (x2,y2),… (xn,yn), the sensor node will self-locate itself as: 
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where (xest,yest) is the estimation location decided by the sensor. Thus, this method does 

not require the sensors to know or use the strength of the beacon signal, as the exact 

distance is not calculated. The accuracy depends on the density of the reference points 

and the distances between them. Furthermore, the accuracy of this method increases as 

the density of the reference points increases 

Xu, et al.,[48] introduced a coarse localization algorithm based on received signal 

strength indicators (RSSI). In this algorithm, three base stations are placed in different 

corners of a sensing field that, again, send out beacon signals to nearby sensors. A signal 

strength map is generated and stored by the individual sensor nodes. In the map, there are 

also discrete reference points at locations of pre-determined signal strength, which are 
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known to the sensor nodes. The individual sensors will compare the received signal 

strengths of the three base stations with that of the reference nodes and assign to 

themselves the location of the reference points with the most similar values. 

In the Coarse Grained Localization schemes described above, there is not much 

calculation involved. However, the Fine Grained localization is different. Fine-grained 

localization algorithms can be classified into three types: received signal strength (RSS) 

based, time of arrival (TOA) based, and direction of arrival (DOA) based. 

In RSS based localization algorithms, radio propagation model equations are used, 

as the received signal strength between sensors or base stations are directly related to the 

distance between them. The main process of an RSS based localization algorithm is the 

determination by the sensors of their locations. First, each sensor receives the beacon 

from the reference nodes (base stations etc). Then, it calculates the distance to each 

reference node. Finally, it solves the distance equations to get its own location. The main 

obstacle of this type of algorithm is that the parameters, especially that of the path loss 

exponent (also called distance-power gradient), in the equations are not easily obtained 

due to variations in the environment of sensing field and the uncertainty of channel noise 

in lognormal fading. Thus, different algorithms are developed to optimize the solutions of 

the equations and minimize the localization error. 

Li, [49] developed an RSS based localization algorithm for unknown distance-

power gradients. He used the gradient method to minimize the estimation error. 

Simulation results show a significant advantage of this algorithm over ones with fixed 

distance-power gradient values when the distance-power gradient is not accurate. Similar 

works are also done in [50] 
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MacDonald, et al., [51] analyzed the RSS based localization algorithm with an 

isotropic transmitter. They also estimated the distance-power gradient to be 2, which is 

the free space value. They also use the gradient method to optimize their results. They 

tested their algorithm with localized, cell phone base stations along Lake Shore Drive in 

Chicago. 

Other relevant RSS-based works are included in the following. Shi, et al., [52] use 

the steepest descent method to refine the node position of RSS and minimize the 

influence of the noise. Yao, et al., [53] used Particle Swarm Optimization to increase the 

localization accuracy. Jia, et al., [54] used Genetic Algorithm to perform the optimization. 

Amutha, et al., [55] developed a hybrid algorithm that first uses the hop count to 

approximate the positions of the sensor nodes and then uses RSS to refine the result. 

TOA is another distance based localization algorithm. In this type of algorithm, 

the distance is calculated using the time differences between when the beacon signal is 

transmitted and when it is received. Radio waves are propagate very fast, thereby 

requiring a very accurate clock to determine the locations precisely. Therefore, the TOA 

algorithms have a high cost. The global positioning system (GPS) is a typical application 

of the TOA localization[56]. Mobile devices use the signal received from satellites to 

calculate the distance between the satellites and themselves. The satellites also send their 

own location information, so that the mobile devices can calculate and estimate their own 

locations. A detailed survey about TOA based localization algorithms is presented in [57]. 

Other TOA algorithms can be found in [58-60].[58][59][60]. 

DOA and AOA (angle of arrival) algorithms are used for localization sensor 

nodes. In these algorithms, individual sensors have the ability to tell the direction of 



 

23 
 

beacon signal they received. This usually requires antenna arrays or some other 

complicated hardware using directional antennas. Sensors use the location information of 

the reference nodes and the angle, or direction, at which they received the beacon signal 

to solve triangulation equations and determine their locations [59-62].[61][62][63][64]. 

When sensor networks are used indoors, accurate self-localization becomes 

significantly more difficult. This is primarily due to multipath fading, or signal 

degradation when radiated through dense materials, such as metal and concrete found in 

buildings. Various improvements have been implemented to reduce the noise in indoor 

environments. Pu, et al., [65] used time-series filters to eliminate the noise in RSS 

localization algorithms. Wu, et al., [66] used radio map filters to deal with noise. Chen, et 

al., [67] analyzed the obstacles’ influence on the localization systems and derived an 

error-based improved RSS localization algorithm. 

The localization error of wireless sensor networks used indoors is at mimimum 2 

meters, in existing manufactured products. This is tolerable if there are not any walls or 

obstacles that must be taken into account. However, if a sensor node is near a wall, which 

is about 20 cm thick on average, the previously discussed localization schemes are not 

able to determine on which side of the obstacle the sensor is located. With this level of 

uncertainty, most relocation schemes described before cannot function properly for 

indoor sensor networks. 

2.4 Voronoi Diagram 

A Voronoi diagram is a method of decomposing an area. Assume there is a set of 

N nodes deployed in an area without any obstacles, the Voronoi diagram will divide the 
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entire area into N subareas, and each subarea has a single node inside it. The 

characteristic of Voronoi diagram is that each subarea is composed of the area closest to 

the node inside it, as opposed to the other nodes. The generation of the Voronoi diagram 

requires the location information of all nodes. Voronoi diagrams are very useful in the 

coverage problem of wireless sensor networks. If each sensor can cover its own Voronoi 

subarea, the entire sensing field can be covered. 

Voronoi diagrams have been used for detecting uncovered areas. Aziz, et al., [68] 

used PSO to optimize the coverage of wireless sensor networks. Voronoi diagrams are 

used for calculating whether there are any uncovered areas, so as to calculate the fitness 

function. Meguerdichian, et al., [69] examined the best-worst case coverage in target 

tracking in wireless sensor networks. A Voronoi diagram is used for the worst case 

coverage analysis. The worst case coverage happened when the target traveled along the 

edge of Voronoi subarea. Boukerche, et al., [70] optimized the centralized Voronoi 

diagram approach and reduced the computation for coverage problem in wireless sensor 

networks. 

Wang, et al., [12], also used a Voronoi diagram for uncovered area detection in 

wireless sensor networks. After detecting the uncovered area, sensors move toward that 

direction, and thus increasing the coverage. Wang, et al., [12], also developed a scheme 

in which the sensors are always moving to the center of the Voronoi subarea, so that the 

sensors will have a larger chance to cover the entire Voronoi subarea. 

Voronoi diagrams have also been used to optimize the coverage of wireless sensor 

networks. Li, et al., [71] used Voronoi diagram to assist in reducing the number of 

sensors needed to cover the maximum area for directional sensors. Lee, et al., [23] 
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applied the Voronoi diagram on wireless sensor networks to save the energy when range 

adjustable sensors are used. The Voronoi diagram can help choose the sensing range that 

is shortest without decreasing the coverage of the entire sensor network. 

2.5 Range-Adjustable Sensors 

Range-adjustable sensors can change their sensing range by controlling their 

power. This type of sensor can be used to save energy by shortening the sensing range. 

There are now some sensors available with range adjustable capabilities, such as some 

motion detection sensors and photoelectron sensors. Motion detector sensors are very 

typical sensors that can be found in safety monitoring or in harsh environments. 

Wu, et al., [72] studied a coverage problem with range-adjustable sensors. They 

attempted to minimize the number of sensors and maintain the coverage, in order to 

lower the energy consumption. Different energy models have been proposed to describe 

the relationship between the sensing range and consumed energy. A scheduling model 

has been proposed to achieve the objectives. 

Cardei, et al., [73] introduced an energy saving method using range-adjustable 

sensors. They grouped the sensors into Adjustable Range Set Covers (AR-SC), such that 

each set can cover the entire desired area. A scheduling scheme was also proposed, so 

that the energy can be saved and the lifetime of the entire wireless sensor network can be 

optimized. 

Dhawan, et al., [74] also developed algorithms for a similar problem as the one 

handled by [73]. A mathematical model was proposed and the approximation algorithm 

of Garg-Konemann was used to determine the approximate solutions. Simulations 
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showed that their algorithm can increase the lifetime of sensor network by four times 

compared to the one of [73]. 

2.6 Energy Consumption 

As we described in the first chapter, a common mobile sensor has several 

components, such as the CPU, memory, battery, sensing device, and mobile device. 

These components will need to use energy from a battery. It will be very helpful to know 

the energy consumed by each of the components. 

Pei, et al., [75] did a survey on hardware platforms for wireless sensor networks. 

They summarized the sensor nodes hardware for different applications. They analyzed 

the energy consumption for different communication protocols and microprocessor 

platforms. Stojcev, et al., [76] summarized the energy consumed in different types of 

sensors such as a GPS, a barometric sensor, and a humidity sensor. They also compared 

the power of some common radio modules. Mei, et al., [77] presented a mobile device for 

carrying wireless sensor nodes. They analyzed the energy consumed when a sensor node 

moves straight or turns. 

2.7 Summary 

This chapter summarized both distributed and centralized algorithms for coverage 

optimization of wireless sensor networks. We also described some key terms related to 

coverage optimization: the localization of sensors is critical for the coverage optimization 

algorithm; the Voronoi diagram is helpful for coverage calculation and energy savings; 

range-adjustable sensors can also be used for energy saving. Lastly, we discuss the 

energy consumption of different sensors’ components.  
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CHAPTER 3 

3 MODELS AND THEORIES 

This chapter describes the models and theories that are related to the coverage 

optimization algorithms. The coverage of wireless sensor networks is related to the 

sensing model used. Different sensing models are introduced in this chapter, and the 

corresponding methods for coverage calculation are described in the following. We also 

explain the ideal model for sensor deployment for optimizing coverage, without any 

uncovered areas in between the sensors. In order to optimize the energy usage in 

individual wireless sensor nodes of the network, we also describe the energy models for 

mobile sensors and range adjustable sensors.  

3.1 Sensing Models 

There are two types of sensors in the real world. The first type of sensor only is 

concerned about the data at the point where it is located, such as temperature, humidity, 

and pressure sensors. The second type of sensor has a certain range in which it can detect, 

such as motion detectors and video camera sensors. In our discussion, we mainly focus 

on the second type of sensors, because they are more commonly used for area monitoring 

and safety surveillance. 

In the real world, the sensing range of sensors may be irregular due to the 

obstacles in the environment, such as rain and snow. Fei, et al., [78] researched the 

irregular sensing range due to the existence of obstacles in the real world and proposed an 

α-shape range detection model. 
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However, in order to simplify the analysis and calculation, the sensing range of 

each sensor is always assumed to be a circular area. Commonly, there are two different 

types of sensing models used for simulating the performance of sensors [9]: the binary 

and probability models. 

The difference between binary sensing model and probability sensing model is 

that, in the probability model, if a target is in a certain area, the target may be detected 

with a certain probability between 0 and 1. However, there is no such area in binary 

model. In binary model, a target can either be detected or not. This difference between 

the models is illustrated in Figure 3.1. The notation used is explained below. 

 

Figure 3.1 Difference between binary sensing model and probability sensing model. 
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3.1.1 Binary sensing model 

If there is a sensor node S at location (xs, ys), we assume that the sensing range of 

the sensor S is a circular area with radius RS and centered at (xs, ys). RS is called the 

sensing radius of node S. 

In the binary model, the sensor S is able to detect the target inside its sensing 

range with a probability 1, and it is not able to detect any target that is outside of its 

sensing range. Thus, in the binary model, a sensor can detect the target with a probability 

of 1 if the distance between the target area and the sensor is less than the sensing radius 

RS. However, if the distance between the target and sensor is farther than RS, the sensor 

will have zero probability of detecting it. 

Assume a target T is located at coordinate (xt, yt), the probability that the target T 

will be detected by sensor S in binary model can be expressed in the following equation: 
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where psb represents the sensing probability in binary model, DTS is the distance between 

target T and sensor S which can be calculated as: 

 
2 2( ) ( )TS s t s tD x x y y= − + −   (3.2) 

There is no transitional period in the binary model. A slight difference in locations 

may result in a totally different detection output. The binary model is the most simplified 

model for sensing. 
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3.1.2 Probability sensing model 

In the probability model, unlike the binary model, there is a transitional period 

between when a sensor absolutely can and cannot detect a target. There will be a certain 

area for each sensor, in which the sensor cannot tell if a target can be detected. In that 

area, the target will have a probability to be detected between 0 and 1. 

In the probability model, there are two critical distances for a sensor. The first one 

is RS, which is the same as the one in the binary model. If the distance between the target 

and the sensor is less than RS, the target can be detected by the sensor with a probability 

of 1. The second critical distance is RU, which stands for the uncertain range. If the 

distance between the target and the sensor is in the range between RS and RS+RU, the 

probability that the target will be detected by the sensor is related to the distance between 

them. If the distance between the target and sensor is farther than RS+RU, the target will 

not be detected by the sensor. The mathematical expression of probability model is as 

followed: 
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where a = DTS - RS, and λ and β are constants related to the sensors’ hardware properties. 

The relationship between the probability model, λ, and β is shown in Figure 3.2. In the 

figure, RS is set to be 10 meters and RU is set to be 25 meters. 
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Figure 3.2 Detection probability in Probability model and Binary model. 

It can be seen in Figure 3.2, that when the distance between the target and the 

sensor is closer than RS, both binary model and probability model give a detection 

probability of 1. When the distance is longer than RS and shorter than RS+RU, the binary 

model gives a 0 probability of being detected, but the probability model will have a 

gradually decreasing probability. When the distance is longer than RS+RU, both of the 

sensing models will give a zero detection probability. 

Different parameter values result in different transitions regions of the decreasing 

probability. As it can be seen, when λ and β are both equal to 1, the probability drop from 

1 to 0 in about 6 meters, and when λ and β are both equal to 0.5, the probability has not 

dropped to 0 after 15 meters. In our algorithm, we want to choose the value of λ and β 

that can make the probability drop from 1 to 0 gradually in the entire range of RU. 

Assume β = 1, then λ can be calculated by this equation: 
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 URe λ ε− =   (3.4) 

where ε is a small positive value. 

We calculate that when λ is equal to 6/RU, ε will be equal to 0.0025. It can be 

seen in Figure 3.1, when λ = 6/RU and β = 1, the detection probability will drop from 1 to 

0 continuously in the entire range of RU. We will use these values in our simulation in the 

following chapters. 

The probability model is more realistic than the binary model and the binary 

model is the simplified version of probability model when RU is zero. However, the 

binary model is much easier to analyze. 

3.2 Coverage Calculation Model 

In Section 3.1, the two sensing models have been described. As the binary model 

is a special case of the probability model, we can just use one coverage calculation model 

that fits both of the sensing models. 

The definition of coverage ratio (RCoverage) is the ratio of area that can be covered 

by sensors cooperatively (ACovered) over the entire sensing field (ATotal): 
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The maximum coverage ratio is 1. In the rest of this dissertation, we will use a 

percentage to describe the coverage ratio. 

An area is covered if it can be covered by at least one sensor node or by the joint 

detection of several sensors. Assume there are N sensor nodes in the entire sensing field, 

the joint detection probability for a certain area can be calculated as below: 
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where ps can be calculated by equation (3.1) and (3.3) corresponding to the model 

adopted. 

In the binary model, PCover will be either 1 or 0, which means the area will be 

covered or not. However, in the probability model, PCover will be any value from 0 to 1. A 

threshold (Pth) is required for judging if an area is covered. If PCover is bigger than Pth, the 

area is considered to be covered, otherwise, the area is not covered. The value of Pth 

depends on the application requirement. 

Due to the random positions of sensors, the area they cover will be irregular. One 

method for calculating an irregular area is the Monte Carlo method. The Monte Carlo 

method is a statistical method for finding numerical results for the problems that are hard 

to find or do not have analytical results. In the Monte Carlo method, random samples will 

be evaluated repeatedly. If a sufficient number of samples are evaluated, the results will 

be very close to the expected value of the outcome [79] [80].. 

In the Monte Carlo method, the area of an irregular field can be calculated in the 

following procedure. First, a regular area that surrounds the target field is chosen. Second, 

we randomly pick a sufficient number of points in the regular area and judge if each is in 

the target field. Last, the coverage ratio is calculated with the number of points inside the 

target field over the number of all sample points. The area will be the coverage ratio 

multiplied with the area of the regular area.  
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In our algorithm, we did not sample randomly when calculating the coverage. 

Instead, we treated the sensing fields as a grid, and used each grid point as a sample point 

for calculating the coverage. The coverage ratio can be calculated by: 

 Coverage

n
R

N
=   (3.7) 

where n is the number of grid points that meet the requirement that PCover  Pth. It is 

implied that if Pth is 1, the probability model is equivalent to the binary model. 

The accuracy of this method depends on the distance between grids. In our 

simulations, the sensing field has been divided into 100 by 100 grid points, which means 

there are 101x101 = 10201 points in total. Therefore, the error in the coverage calculation 

for our simulations is less than 1%. 

Examples of the coverage calculation in both models are shown in Figure 3.3. In 

figure 3.3, three sensor nodes A, B and C are deployed in a 20 meter by 20 meter square 

field. There are 21*21 = 441 grid points in total. The parameters we used here are: the 

sensing radius is 3 meters, the uncertain radius is 4 meters, and the coverage probability 

threshold is 0.5. The circles with radius RS represent the real covered areas, with the 

binary model is applied. It can be seen that all the grid points have probability 1 to be 

detected. We count the number of nodes that have a detection probability 1, which is 79. 

So the coverage of binary model is 79/441 = 17.9%. The different color solid points are 

those that are covered when employing the probability model. The color bar on the right 

side indicates the probability. All other hollow points are places the probability model 

cannot cover. The number of grid points covered when applying the probability model is 

95, so that the coverage ratio when we use probability model is 21.5%. 
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Figure 3.3 Coverage calculation for Binary model and Probability model. 

Compare point P and Q in Figure 3.3 in probability model. They have similar 

distances to sensor node A; however, point P is not covered but point Q is covered. This 

is because Q is in the uncertain range of both sensor A and C. Therefore, the joint 

detection probability of Q becomes larger than 50%. 

3.3 Ideal Coverage Model 

Consider a sensing field without any obstacles or attractive areas inside. The 

deployment of sensors with maximum coverage can be achieved as in [81] and [82]. Boll, 

A

B C

RS

Uncoverd Area (Pcover < Pth) 

. . . Covered when Probability Model applied

Covered when Binary Model applied

Point P

Point Q

Parameters:

RS = 3; RU = 4; Pth =0.5.
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et al., [81] works on circular packing problems. However, in this work, they only deal 

with circle packing of adjacent sensors to each other so that a gap will be between each 

pair circles. Circles are not allowed to overlap. This is not suitable for analyzing the 

problem of sensor deployment, because in sensor deployment the  sensors’ covered areas 

can overlap. 

Wang, et al., [82] analyzed the problem of seamless coverage in sensor networks. 

Optimal deployment of sensors is achieved when all sensors have the same equal sensing 

radius. The optimal layout is shown in Figure 3.4. This is an ideal coverage model for the 

binary sensing model. This can be used for the deterministic deployment of sensors when 

the boundary of sensing field has a regular shape and there are no obstacles in the sensing 

field. 

 

Figure 3.4 Ideal coverage model. 
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Figure 3.4 shows that in the ideal coverage model sensors are deployed regularly 

with same distance between sensors. The distance between sensors (dth) can be calculated 

by the sensing radius: 

 3thd R= ⋅   (3.8) 

a) Binary model 

When the binary model is used, R will be equal to the sensing radius RS, 

therefore, dth can be calculated using RS as below: 

 3th Sd R= ⋅   (3.9) 

b) Probability model 

When the Probability model is used, the joint point J will have a detection 

probability of Pth by the sensor nodes A, B and C. Using the same notations as 

previous, the radius R can be calculated by solving equation (3.3) and (3.6): 
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= − − =∏   (3.10) 

 ( )sR R
sp e

βλ− −=   (3.11) 

Since the distances from sensor node A, B and C to joint point P have same 

distance, the single detection probability from A, B and C are the same. Equation (3.10) 

can be simplified to: 

 ( )3
1 1 s thp P− − =   (3.12) 

 31 1s thp P= − −   (3.13) 

Also, we are using the parameters in Section 3.2 in which λ = -6/RU and β = 1. R 

can be solved in the following way: 



 

38 
 

 
6

( )
31 1

s
U

R R
R

the P
− −

= − −   (3.14) 

 ( )3ln 1 1
6
U

S th

R
R R P= − − −   (3.15) 

Therefore, dth can be calculated by: 

 ( )33 ln 1 1
6
U

th S th

R
d R P

 = − − −  
  (3.16) 

Comparing equation (3.9) and (3.16) for binary model and probability model, 

when Pth equals to 1 or RU equals to 0, equation (3.16) is equivalent to equation (3.9). 

However, this optimal model is ideal because it can only be used for optimizing 

the deployment without obstacles. If obstacles are present in the sensing field, the 

problem becomes more complicated. No formulated algorithm is derived when different 

shapes and numbers of obstacles appear in the sensing field. 

3.4 Energy Model for Mobile Sensors 

Our algorithms aim at relocating sensor nodes to increase the overall network 

coverage ratio. In the relocation process, energy will be consumed by each sensor node as 

they move or turn. 

When the weight of sensors and speed are constant, we consider the power consumed 

in relocating to be constant as well. Therefore, the energy consumed in moving the sensors 

(Edis) is linear with respect to distance it traveled when acceleration is negligible. Also, 

every time a sensor node turns, energy will be consumed. The energy consumed for 

turning (Eturn) is linearly related to the angle sensor node turned. These can be summarized 

by the following equations: 
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 dis dis totalE k D= ⋅   (3.17) 

 turn turn totalE k A= ⋅   (3.18) 

where kdis and kturn are coefficients representing the energy consumption rate. Dtotal and 

Atotal are the total distance travelled and the total angle turned by the sensor respectively. 

The total energy for moving the sensors will be the summation of the two types of energy 

listed above: 

 moving dis turnE E E= +   (3.19) 

 

Figure 3.5 Moving energy calculation illustration 

As shown in Figure 3.5, we assume a sensor is originally located in (x0,y0), and 

moves to location (xn,yn) by moving through (xi,yi) (i= 1,…n-1). We also assume that all 

sensors start off facing the direction of positive x-axis. Also, a sensor can turn either 

clockwise or counter clockwise, and it will always choose the smaller angle to turn to its 

destination direction. Dtotal and Atotal can be calculated by equation (3.20) and (3.21): 
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Energy efficient motors have been used for designing the low energy mobile 

sensors [83][84]. Omni-directional small robots have been built by Reshko, et al., [85] 

1AΔ
2AΔ

3AΔ
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which can be used in mobile sensors. In [85], three wheels are used in each robot, and the 

wheels are uniformly fixed along the edge of a round-shaped platform and pointing to 

three different angles 120o apart. The locations of the wheels form a regular rectangle. In 

this way, the robot can move straight or turn omni-directionally. Mei, et al.,[86] provided 

the energy model for this type of omni-directional mobile robot. According to [86], the 

energy for a robot platform to move 1 meter is 9.34 Joules, when traveling at a constant 

speed of 0.08m/s. The energy for this three-wheel robot to turn 90 degrees is 2.35 Joules. 

We assume the sensors in the algorithm move and turn at a constant speed. Therefore, kdis 

and kturn can be calculated with the parameters provided by [86]: 

 ( )9.34 /disk Joules Meter=   (3.22) 

 ( )2.35
0.0261 /

90turnk Joules Degree= =   (3.23) 

3.5 Energy Model for Adjusting Range 

Range adjustable sensors are used because when they shorten their sensing radius, 

the power consumed will be lower thereby yielding energy savings. 

Different energy models are used for analyzing the relationship between a sensors’ 

sensing radius and its energy consumption, and they depend on the characteristics of the 

sensing device. Typical models are the linear, quadratic, cubical and quadruplicate 

models. The most common are the linear and quadratic models[87],[73]. 

For range adjustable sensors, there is always a maximum sensing radius that the 

sensors can achieve. We denote this maximum sensing range as RSMax. When RS is shorter 

than RSMax, the power consumed has certain relationship with the sensing radius RS. 
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In the linear model, the energy consumption of the sensor device is linearly 

related to the sensing radius: 

 ( )l l S S SMaxP k R R R= ⋅ ≤   (3.24) 

where Pl is the power consumed in sensing, and kl is a device-dependent constant related 

to the power consumption rate. 

Similarly, in the quadratic model, the energy consumption is depends 

quadratically on the sensing radius: 

 2 ( )q q S S SMaxP k R R R= ⋅ ≤   (3.25) 

where Pq is the power consumed in sensing, and kq is a constant for power consumption 

rate. 

In the linear model, it is implied that the energy consumption is linear to the 

sensing radius. However, in quadratic model, the energy consumption is linear to the 

sensor’s covered area. 

For example, a sensing device consumes 4 Watts when it works with its 

maximum sensing radius of 20 meters. Then kl and kq can be calculated with equation 

(3.24) and (3.25): 

 4 20lWatts k Meters= ⋅   (3.26) 

 ( )2
4 20qWatts k Meters= ⋅   (3.27) 

So that kl is 0.2 Watts/Meter, and kq is 0.01 Watts/Meter2. In this case, if the 

sensing radius is shortened to 10 meters, the power in linear model reduces to 2 Watts 

and the power in quadratic model reduces to 1 Watt. This example shows that when the 
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sensing radius has reduces by half, the energy savings are 50% and 75% for the linear 

and quadratic energy models, respectively.  

In our analysis energy savings, both the linear and quadratic energy models will 

be used. 

3.6 Obstacle Model 

Our algorithms will also consider the existence of obstacles. Obstacles can be 

walls, trees or any other physical body which is not part of the regular sensing field. 

Usually, obstacles will have an impact on wireless sensor networks in three different 

ways: communication, sensing, and mobility. In this subsection, the aspects of obstacles 

important to wireless sensor networks will be characterized. 

1. Obstacles have no impact on the communication between sensors. The obstacles will 

not lower the signal strength, so that the sensors can communicate with each other 

even when they are on opposing sides of the obstacle. 

2. Obstacles will block the sensing function. Sensors do not have the ability to cover the 

areas that are blocked by obstacles, even if the distance from that area to the sensor is 

less than RS. The detection probability for an area blocked by an obstacle is 0. 

3. A sensor can detect the existence of an obstacle. It can also tell the location and the 

shape of the obstacle if and only if the obstacle falls into the covered area of the 

sensor. 

4. Obstacles will block the movement of the sensors. The sensors cannot move across 

any obstacles. With point 3 listed above, sensors can detect the existence of the 

obstacles, so they will be programmed not to hit the obstacles. If the destination of a 
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sensor is on the other side of an obstacle, it must go around the obstacle to reach its 

desired destination. 

In our algorithms, we do not focus on how to avoid obstacles. We only listed the 

characteristics that are related to our relocation process. 

3.7 Assumptions 

Fine-tuned optimizations in the real world are designed by adjusting to various, 

small-scale non-idealities, such as irregular shape of sensing field, obstacles, and 

disruptions of communication between sensors. In order to simplify these problems, our 

algorithms assume the following: 

1. All sensors are mobile and can move according to the direction and distance to which 

they are instructed. Also, each sensor has a compass so it can tell its direction and 

turn to the destination directions. 

2. All sensors have a circular communication area. The radius of communication range 

is RC. This means, if the distance between a pair of sensor is shorter than RC, they can 

directly communicate with each other, otherwise, these two sensors cannot 

communicate directly. In order to provide the connectivity to the wireless sensor 

networks, RC needs to be larger than RS. The circularity of the communication area is 

not a requirement of the optimization algorithm implementation, but instead is merely 

for simplifying the problem. 

3. The sensing field for wireless sensor networks needs to cover a clear boundary. The 

sensing field will not be of infinite area. For simplicity, a rectangular area is assigned 

to be the sensing field in our analysis and simulations. This is also applicable when 
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the ideal coverage model is derived. Also, the boundary is pre-known and can be 

programmed into the sensors before being deployed. In this way, the sensors will not 

exceed the boundaries of the sensing field. 

There are some additional assumptions that deal with the type of sensing models 

used, the existence of obstacles, and the inclusion of self-localization devices, and 

centralized powerful nodes. These assumptions will be separately discussed with 

different algorithms. 

3.8 Summary 

In this chapter we described and defined the models related to our optimization 

algorithm, and we also presented the assumptions of our models. Our optimization 

algorithms focus on relocating sensors, in order to increase the coverage of WSNs and 

prolong their lifetime. We also described the coverage and energy related models. In the 

optimization of coverage, we described the binary and probability sensing models, the 

coverage model, and the ideal optimum coverage model for a field without obstacles. In 

the realm of energy savings, we described the energy model for mobile devices and 

range-adjustable sensors. The obstacle model is also described as certain situations do 

present obstacles in the sensing field. 
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CHAPTER 4 

4 DISTRIBUTED OPTIMIZATION ALGORITHM DESIGN 

In this chapter, three distributed optimization algorithms are introduced. 

Compared to the centralized algorithms, these algorithms require less computation, so 

that they can be applied in each sensor node. As there is no central node in control, sensor 

nodes work cooperatively to increase the coverage ratio of the entire sensor network in all 

algorithms. In the first two algorithms in this chapter, localization systems are required. 

However, in the third algorithm no localization systems are required. In these algorithms, 

sensors move more than one time and gradually increase the coverage. Furthermore, 

simulations and comparisons with other existing methods are performed. 

4.1 Optimization with Average Relative Position 

In this section, a distributed coverage optimization self-relocation algorithm using 

the average relative position between pairs of sensors is introduced. Both relative 

distance and direction will be used while performing the optimization. Therefore 

localization systems are required for applying this algorithm. Adjustable range sensors 

are used in order to minimize the cost of energy for sensing.  

4.1.1 Assumptions 

In addition to the general assumptions in Section 3.7, the following assumptions 

are made by this algorithm. 

1. All sensors are identical in computational ability. The algorithm will be 

performed by each sensor and no central node will be used for computing the 

optimizations. 
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2. All sensors are equipped with localization systems. They also have pre-installed 

knowledge of the sensing field, such as the position of boundaries, and obstacles. 

3. In this algorithm, only the binary sensing model is used. 

4.1.2 Optimal coverage distance threshold estimation 

As we describe in Section 3.3, there is an ideal coverage model for deployment of 

wireless sensors. Our algorithm uses the ideal coverage model to calculate a threshold for 

redployment of sensors. 

Even though the coverage threshold can be calculate by equation (3.8), due to the 

adjustable range sensors, this equation is not applicable here. In this algorithm, we use 

the average area that should be covered by each sensor to estimate the sensing radius. 

 

Figure 4.1 Distance threshold estimation. 

Consider a field with area Atotal that must be covered by N sensors. In this case, 

each sensor must cover an area of: 

 TotalA
A

N
=  (4.1) 

The distance threshold can be estimated by: 
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= =  (4.2) 
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Sensors that are close to boundaries or obstacles will cover an area less than A, as 

described by equation (4.1). Therefore, in order to compensate for this area increase, A 

must be increased thereby increasing the distance threshold. In order to account for this, 

we assume a 10% increase in our threshold calculation, which leads to: 

 
2

1.1 1.1
3

Total
th

A
d d

N
= = ×  (4.3) 

In practice, the distance threshold depends on the shape of the sensing field and 

the position of obstacles. Therefore, equation (4.3) provides only an estimation for the 

distance threshold. Also, the distance threshold should not be greater than 3  RSMax. Our 

algorithm uses equation (4.3) to estimate the distance threshold when sensors are initially 

deployed in a field. 

4.1.3 Algorithm description 

The objective of our self-deployment algorithm is to relocate the randomly 

deployed sensors and perform a sensing range adjustment so that an optimized coverage 

is achieved with minimum consumption of energy. There are three phases in this 

algorithm. The first phase performs the decision making. The second phase moves the 

sensors to a new location. The third phase performs sensing range adjustment. 

In the first phase, each sensor locates itself and broadcasts its position information 

to the other sensors within its communication range. Sensors that can communicate with 

each other are called neighbors. Therefore, each sensor has its own communication 

neighborhood. This neighborhood depends on the communication range, Rc, and the 

layout of the field (i.e. obstacles). Sensors obtain the position information of other 
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sensors through the broadcast process, and then they decide to move or not according to 

the location information they collected. In phase two, sensors move only if the movement 

criteria are met. After the sensors have moved, they broadcast their locations again and 

the algorithm restarts from phase I. The flow diagram of the algorithm is shown in Figure 

4.2. 

 

Figure 4.2 Flow diagram of algorithm. 

a) Phase I: Information collection and relocation decision 

Initially, each sensor locates themselves by GPS or other method. Each sensor 

constantly broadcasts its location information and receives the location information of 

other sensors. Every sensor generates a local map with this information. If a sensor finds 

any obstacles or sensing field boundary inside its sensing range, it will also add this 

information into its local map. Each sensor decides if it should move or not based on the 

movement criteria below and it broadcasts its decision to the neighboring nodes. 

Specifically, the movement criteria are as follows: 
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(a) A sensor must move away from other sensors if there is at least one sensor at a 

distance closer than 0.9 dth; 

(b) A sensor must move closer to other sensors if criterion (a) is not met and no more 

than one sensor is located at a distance closer than 1.1 dth; 

(c) A sensor does not have to move if neither of the above criteria are met. 

 

Figure 4.3 Example for moving criteria. 

An example of the moving criteria is shown in Figure 4.3. Eight sensors and one 

obstacle are in the sensing field. The gray area is covered by the sensors. In this example, 

sensor A meets criterion (a), since there are two sensors that are at distances from node A 

that are less than 0.9dth. Sensor B does not meet criterion (a) since no sensors are at a 

distance less than 0.9dth from it. Also, no sensor is at a distance that is less than 1.1 dth  

from sensor B. Thus, sensor B meets criterion (b). Finally, sensor C does not meet neither 

criterion (a) or (b); therefore, it meets criterion (c) and does not need to move. 

0.9dth

1.1dth

A

B

C
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b) Phase II: Destination calculation and movement 

Following the movement criteria mentioned above, a sensor may need to move 

closer to or further away from other sensors. In order to decide its destination, a sensor 

must estimate the direction and the travel distance of the movement. 

1) Calculation of Movement Direction 

The direction of movement is calculated for each sensor using the direction of the 

gradient of the average distance between the sensor and its neighbors: 

 ( )
d d

grad d i j
x y

∂ ∂= +
∂ ∂

 (4.4) 

where d  is the average distance of a sensor from other surrounding sensors. The gradient 

direction corresponds to the direction that a variable changes the fastest; therefore, we 

can use it to optimize the relocation of the sensors. 

In criterion (a), the direction of movement, aθ , is equal to the gradient’s: 

 ( ) a a
a a

d d
grad d i j

x y
θ  ∂ ∂= ∠ = ∠ + ∂ ∂ 

 (4.5) 

where da is calculated by averaging the distance of only the sensors that are within a 

distance dth from the sensor: 

 
1 1

2 2

1 11 1

1 1
( ) ( )

n n

a i i i i th
i i

d d x x y y d d
n n= =

= = − + − <   (4.6) 

and n1 is the number of sensors that met the requirement di<dth. 

In criterion (b), sensors need to move closer to other sensors (i.e., the sensors 

must move toward the direction that makes d  decrease). Since the angle of the gradient 
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indicates the direction toward which d increases the fastest, the direction of movement,

bθ , is opposite from the direction of the gradient: 

 ( ) b b
b b

d d
grad d i j

x y
θ

  ∂ ∂= ∠ − = ∠ − +  ∂ ∂  
 (4.7) 

The average distance db represents the average distance of a sensor from the 

sensors inside its communication range: 

 
2 2
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( ) ( )

n n

b i i i i c
i i

d d x x y y d R
n n= =

= = − + − <   (4.8) 

where n2 is the number of sensors that met the requirement di<Rc. 

2) Calculation of moving distance 

The aim of the algorithm is to evenly distribute sensors so that the distance 

between them is approximately dth. The travel distance for a sensor is set equal to the 

difference between the distance threshold dth and the average distance calculated by 

equation (4.6) or (4.8) as: 

 | |move thd d d= −  (4.9) 

where d = ad  for criterion (a) and d = bd  for criterion (b). If dmove<0.1dth, we set 

dmove=0 according to the 10% margin set in the criteria above. 

In order to prevent sensors from moving back and forth, we also introduce a 

control mechanism. Specifically, sensors record the direction they moved toward last 

time and compared it to the new direction, if the difference between the two times is 

greater than 90%, the sensor will not move until the next round. 
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3) Obstacle avoidance 

It is assumed the sensors can detect the location of obstacles in their sensing range. 

Therefore, in our algorithm, the sensors avoid obstacles by maintaining a certain distance 

from them. Also, sensors will move along the side of obstacles instead of choosing a 

random direction in the next round. 

c) Phase III: Sensing range adjustment 

Each sensor can generate a local Voronoi diagram based on the information it 

receives from its neighboring sensors. Each sensor adjusts its sensing range according to 

its distance to the vertices of its Voronoi subarea. The sensing range adjustment can be 

done using different strategies that in turn will provide different coverage. Voronoi 

diagrams also consider the existence of boundaries and obstacles. (see Figure 4.4) 

 

Figure 4.4 Voronoi diagram. 

The different strategies for sensing range adjustment are described in what 

follows. The distance from the center node of each Voronoi subarea to the subarea’s 

vertices is denoted as dvi, where i=0,1,…,n, and n is the number of vertices: 
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Strategy 1- Maximum radius: 

In this strategy the sensor’s sensing radius is set to be equal to the distance from 

the sensor to the farthest subarea’s vertex: 

 [ ], ( )s SMax iR Min R Max dv=  (4.10) 

In this way, each sensor will cover the entire effective Voronoi subarea it belongs 

to. Therefore, the entire sensing field will be covered. This strategy will provide the 

maximum coverage among our three strategies. 

Strategy 2- Second Largest radius: 

Sometimes the angle between two edges of subareas is very sharp. This always 

happens on the vertex that has the furthest distance from the sensor node (see Angle V in 

Figure 4.5. In this situation, if sensors still choose the maximum radius as their sensing 

range, they will consume more energy to cover a small uncovered area. In order to 

provide a better trade-off between maximum coverage and energy consumption, the 

algorithm in this Strategy 2 chooses the second largest radius. 

 

Figure 4.5 Sensing range adjustment strategy illustration. 
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In strategy 2, the sensing range of each sensor is set equal to the second largest 

distance from the sensor to the vertices of its subarea: 

 [ ], ( )s SMax iR Min R SecondMax dv=  (4.11) 

Strategy 3- Average radius: 

The sensing range of each sensor is set equal to the average distance of the sensor 

to the vertices of its subarea. 

 
1

1
,

n

s SMax i
i

R Min R dv
n =

 =   
  (4.12) 

From all the above strategies, strategy 1 will provide the largest coverage using 

the largest sensing range for the sensors. According to the energy model for adjusting 

range, in Section 3.5, the sensing range cannot exceed the maximum sensing radius RSMax. 

4.1.4 Simulation and results analysis 

There are three parts in our simulation analysis. The first part involves the 

evaluation of our algorithm’s convergence and energy consumption with respect to 

travelled distance. The second part involves the comparison of the performance of the 

three strategies for sensing range adjustment. The third part involves the evaluation of the 

self-healing capability of our algorithm. 

The sensing field for all our simulations is assumed to be a 100 meters by 100 

meters. We set the grid resolution to be 1 meter, so that a 101 × 101 grid is formed and 

used by our analysis. The sensors used here are assumed to have a communication range 

of Rc = 55 m, and a maximum sensing range of RSMax = 25 m. These values are typically 

in practical sensor networks [75]. For example, a commonly used communication 



 

55 
 

protocol for wireless sensor networks is Zigbee, which uses a communication range of 75 

m. However, considering that the sensing field here is only 100 m by 100 m, we set the 

communication range to be 55 m so that not all of the sensors can communicate with all 

others. Also, a sensing range of 25 m is a typical sensing range for a motion detector 

sensor. Finally, we assume that there is no limit for the distance that a sensor node is 

allowed to move. 

The distance threshold can be calculated based on equation (4.3) as: 

 
2 2 100 100

1.1 1.1 26.4
203 3

Total
th

A
d m

N

×= × = × =  (4.13) 

a) Convergence and energy consumption evaluation 

The performance of a relocation algorithm is evaluated here based on the 

following: 

1) The convergence rate, which corresponds to the number of rounds required to 

reach convergence; 

2) The coverage provided; 

3) The energy consumption that is closely related to the travelled distance by all 

sensors. 

Three different initial deployments are used to test our relocation algorithm. There 

are 20 sensors in each case. In the first case, all sensors are randomly deployed in the 

center part of the sensing field. In the second case, all sensors are randomly deployed in 

the entire area of the sensing field. In the third case, twenty sensors are equally divided 

into two groups that are randomly deployed near the left and right boundary. 
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The simulation results for the convergence of the sensing coverage are shown in 

Figure 4.6. In all three cases, the potential filed algorithm, [7], along with the parameters 

described in [8], is applied, in order to compare its performance with the performance of 

our algorithm. It can be seen that both algorithms converge to 98% to 99% coverage. 

However our fast converging relocation algorithm requires approximately 5 rounds 

versus the potential field algorithm that requires approximately 15 rounds. This means 

that our algorithm can save 70% of the energy used by calculations required for the 

relocation of sensors. 

 

Figure 4.6 Sensing coverage convergence. 

Also, the energy consumption for each algorithm is calculated according to the 

average travelled distance. We use the energy consumption model that was presented in 

[86]. The robots have a speed of 0.08 m/s, while the acceleration is 0.2 m/s. The energy 

consumption for constant speed is 9.34 J/m. The energy consumption can be obtained 

using these values. 
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Figure 4.7 Savings in energy consumption. 

Figure 4.7 shows the percentage of energy savings of our algorithm compared to 

the potential field algorithm. For, our three cases, the energy savings are plotted, when 

the algorithms have reached at least a coverage larger than 92%. The percentage energy 

savings are calculated by: 

 Percentange Energy Savings ( ) /F P PE E E= −  (4.14) 

where EF is the energy consumed by fast our converging algorithm, and EP is the energy 

consumed by the potential field method. Figure 4.7 shows that in all three cases, our fast 

converging algorithm provides significant energy savings. Specifically, our algorithm 

converges at its maximum coverage using 20% to 25% less energy than the one used by 

the potential field algorithm. 

Also, the performance of our algorithm is tested in two cases with obstacles. Both 

cases use the same initial deployment by initially placing the sensors near the center of 

the sensing field (see Figure 4.8). However, in the first case, there is one obstacle 
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(obstacle 1; see Figure 4.8), and in the second case, there are two obstacles (obstacles 1 

and 2; see Figure 4.8).  

The initial coverage of the cases with one and two obstacles is 30% and 29%, 

respectively. The coverage convergence of our algorithm is shown in Figure 4.9 for both 

cases with obstacles and for the case without any obstacles. When an obstacle appears, 

the algorithm converges in approximately 10 to 12 rounds, versus 5 rounds for the case 

with no obstacles. Also, the maximum coverage achieved by our relocation algorithm 

drops from 100% in the case of no obstacles to around 94% in both cases with obstacles. 

The theoretical maximum coverage in the cases of obstacles is 99% and 98% for the 

cases with one and two obstacles, respectively. 

 

Figure 4.8 Initial deployment of sensors in a field with obstacles. 
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Figure 4.9 Sensing coverage convergence. 

The results of a typical simulation for the case with two obstacles are shown in 

Figure 4.10. Figure 4.10 shows the movement traces of the sensors and the final coverage 

achieved by our algorithm. It can be seen that the obstacles block the spreading of sensors 

in the field. The sensors move along the edges of the obstacles and find ways to spread 

out. However, in the center there is still more density of sensors than the other areas. 

Potential field algorithm is not implemented here since [8] did not provide detailed how 

to handle obstacles. 
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Figure 4.10 Simulation for a sensing field with two obstacles. 

b) Sensing range adjustment strategies 

After the relocation algorithm has converged, range adjustment is applied 

according to the three strategies discussed above. Specifically, this is done for the three 

cases examined in the previous subsection: no obstacle, one obstacle and two obstacles. 

Two different energy consumption models have been introduced in Section 3.5: (a) 

linear energy consumption model, and (b) quadratic consumption model. In the linear 

energy consumption model, the energy consumption of sensors depends linearly on the 

sensing range. In the quadratically consumption model, the energy consumption of 

sensors depends quadratic on sensing range. In our simulations, we calculate the energy 

savings using both models. 

The results are shown in Table 4.1. The energy savings of each range adjustment 

strategy are calculated by comparing the energy used by these strategies to the energy 

required when the sensors use their maximum sensing range of 25 meters. For example, if 

a sensor adjusts its range to 20 meters, its energy savings is (25-20)/25=20% in linear 
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model and (252-202)/252 = 36% in quadratic model. In Table 4.1, ELSAVE is used to denote 

the percentage of energy savings in linear model and EQSAVE for quadratic model. 

Table 4.1 

SENSING RANGE ADJUSTMENT RESULT 

  NO OBSTACLE ONE 

OBSTACLES 

TWO 

OBSTACLES 

WITHOUT 

ADJUSTMENT 

AVE RS 25 M 25 M 25 M 

COVERAGE 99.9% 94.1% 94.0% 

ADJUSTMENT 

STRATEGY 1 

AVE RS 19.2 M 19.3 M 19.8 M 

COVERAGE 99.9% 94.1% 94.0% 

ELSAVE 23.2% 22.8% 20.8% 

EQSAVE 41.0% 40.4% 37.3% 

ADJUSTMENT 

STRATEGY 2 

AVE RS 17.2 M 17.5 M 18.1 M 

COVERAGE 99.1% 93.2% 93.3% 

ELSAVE 31.2% 30.0% 27.6% 

EQSAVE 52.7% 51.0% 47.6% 

ADJUSTMENT 

STRATEGY 3 

AVE RS 15.8 M 16.3 M 16.4 M 

COVERAGE 96.0% 90.2% 88.7% 

ELSAVE 36.8% 34.8% 34.4% 

EQSAVE 60.6% 57.5% 57.0% 

 

The results are shown in Table 4.1. Specifically, Table 4.1 illustrates that all three 

strategies yield energy savings by shortening the sensing ranges. Strategy 1 can achieve 
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the same coverage with the case, where no range adjustment was performed (i.e. every 

sensor uses its maximum sensing range), and provide 41.0% energy savings. Strategy 2 

provides energy savings of 50% but its coverage reduces by 1% from the coverage 

achieved by strategy 1. Strategy 3 provides energy savings of 57%, but its coverage 

decreases by 5% compared to the coverage achieved by strategy 1. 

c) Self-healing process 

In this section, we examine the self-healing performance of our algorithm. 

Therefore, we randomly remove five sensors from a field with two obstacles leaving 15 

sensors in the field. After five sensors have died, the coverage of the whole network 

drops from 94% to 89%. Then, our relocation algorithm is applied, and it converges to a 

coverage of 96.5% after 8 rounds. The movement traces of the sensors are shown in 

Figure 4.11. It can be seen that the active sensors redistribute themselves and cover the 

coverage hole created by the dead sensors. 

 

Figure 4.11 Movement traces and final coverage of sensors after self-healing process. 
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4.1.5 Conclusions 

This section describes a fast converging relocation algorithm for wireless sensor 

networks, which relies on the average relative distance between the sensors. The 

simulation results show that this algorithm converges significantly faster than the 

potential field deployment method for fields with or without obstacles. The algorithm 

also provides energy savings by requiring less travelled distance than the conventional 

potential field method. Furthermore, the algorithm performs well in field with obstacles. 

With the sensing range adjustment it also provides significant energy savings. Different 

strategies for sensing range adjustment lead to different energy savings and coverage. A 

strategy should be used based on the requirements of each application. Finally, the 

algorithm has self-healing capabilities thereby improving the coverage of sensor 

networks after some sensors have stopped working. 

4.2 Optimization with Weighted Relative Distance 

This section introduces a distributed self-relocation algorithm using weighted 

relative distance. It is appropriate for mobile wireless sensor networks with random initial 

deployments. The algorithm aims at changing the relative distance of the sensors in 

different directions. Unlike the previous algorithm, it only uses part of the relative 

distances to calculate for optimizations. This algorithm is also robust when inaccurate 

geo-location information is available. 
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4.2.1 Algorithm description 

This algorithm shares the same assumptions as the ones listed in Section 4.1 

except that we allow certain inaccuracy in the self-localization system of the sensors. 

Also, no range adjustable sensors are considered in this algorithm. 

The algorithm involves a continuous moving process of all sensors periodically. 

We call each period a round of the algorithm. In each round, three main steps are 

described. 

Setp 1: Location information gathering 

In this step, each sensor will get the location information of its neighboring nodes. 

There are two ways to get the location information of other sensors: a sensor can directly 

measure other sensors’ relative positions, or each sensor can self-locate and broadcast to 

other sensors. The latter is more applicable and is accounted for in assumption 4. 

Setp 2: Region and environmental analysis 

In this step, each sensor uses the location information to generate a local map and 

analyzes the region and environment by maintaining a region table. The region table is 

related to the ideal coverage model.  

In addition to the ideal coverage model, in this algorithm, we divide the area near 

each sensor into six regions as shown in Figure 4.12. In each region, only the sensor 

closest to the central sensor is taken into consideration, such as sensors C, D or F. The 

objective of the algorithm is to relocate the sensors so that the distance between the 

closest sensor pairs (d1, d2, and d3 correspondingly) is 3 SR . 
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Figure 4.12 Ideal coverage model and region divisions. 

The region table will include information of the closest neighboring sensor in 

each region, such as distance and relative direction. Also, a sensor will find out the 

shortest and longest distances of the sensors chosen, in all regions. The region table is of 

the form found in Table 4.2. The RC value is used if there are no sensors in a certain 

region. 

Table 4.2 

REGION TABLE 
Region 
Number 

Sensor 
Number 

Distance Direction Additional 

1 A 4 30o  
2 C 3 100o Shortest 
3 G 5 135o  
4 H 5 230o  
5 F 7 260o Longest 
6 D 3.5 320o  

 

Step 3: Decision making and movement 

We define the objective distance as a scalar: 

 0 3 Sd R=  (4.15) 
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The two vectors ds and dl are defined as the vectors with the shortest and longest 

distance to the respective node from the central sensor node, in all six regions, (region 2 

and 5 in Table 4.2): 

 s s sd Amp angle= ∠


 (4.16) 

 l l ld Amp angle= ∠


 (4.17) 

As an example from Table 4.2, ds will be a vector with Amps = 3 and angles =100o, 

and dl will be a vector of Ampl =7 and anglel = 260o. 

The direction and angle a sensor will move is set as: 

 ( ) ( )s o s l o lM Amp d angle Amp d angle= − ∠ + − ∠


 (4.18) 

Additional: Boundary avoidance 

Virtual nodes will be inserted into the algorithm to deal with boundary avoidance. 

Sensors treat the boundary as a mirror and create virtual nodes from the reflected images, 

which are included in Region Table calculations. 

4.2.2 Simulation and Results 

In our simulation, 20 sensors are deployed in a 100 meters by 100 meters square 

field. The sensing field is treated as a 100 by 100 grid when we calculate the coverage. 

The coverage ratio is fined as the ratio of the number of grid points that have a detection 

probability of 1, in binary model, or greater than 0.8, in probability model, to the whole 

coverage area. 

a) Simulations using Binary sensing model 

In this part, the sensing range is set to 17 m, which is sufficient for full coverage. 
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Three different scenarios are analyzed with random initial deployments. In 

scenario 1, sensors are deployed in the entire sensing field. In scenario 2, sensors are split 

into two groups near the left and right boundaries. In scenario 3, sensors are randomly 

deployed in the central 50m by 50m area of the sensing field. 

Statistical methods are used to analyze algorithm performance. Specifically, 

10,000 different initial deployments are applied for each scenario. Initial and final 

coverages are compared. Figure 4.13 indicates the probability density of the initial 

coverage ratio of all three scenarios. It can be seen that when all sensors are randomly 

deployed in the entire area in scenario 1, an average coverage around 80% can be 

achieved and when sensors are split as in scenario 2, 68% area can be covered on average; 

and there is only 47% coverage can be achieved on average in scenario 3. 

Figure 4.14 shows the coverage percentage after 10 rounds of the self-relocation 

algorithm. It can be seen that in all the scenarios the algorithm performs very similar and 

has the same final coverage probability distribution. On average, 95.3% area can be 

covered after 10 rounds of the algorithm. More than 99% of initial deployments will 

result in a coverage ratio that is larger than 90%. These results prove the convergence of 

our algorithm. 
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Figure 4.13 Probability of inital coverage ratio in three scenarios. 

 

Figure 4.14 Probability of final coverage ratio in three scenarios. 
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Figure 4.15 plots the coverage ratio versus the round number of the algorithm. 

Here, three typical examples are taken randomly from the 10,000 samples in each case. It 

can be seen that in all three cases the algorithm converges within 10 rounds. This shows 

that 10 rounds are enough for the algorithm to converge and guarantee a better coverage 

than the initial deployment. In this aspect, the computation and reaction cost is low. 

 

Figure 4.15 Examples in coverage ratio convergence for all scenarios. 

Since our self-relocation algorithm converges for all three scenarios, in what 

follows we only proceed with simulations of scenario 3 for the probability sensing model. 

b) Simulations using Probability sensing model 

In this part, we use the probability sensing model with parameters as follow, RS= 

17 m, RE = 3m, λ = 2, β =1. For these parameters, the sensors’ sensing probabilities are 

continuously changing from 1 to 0. 
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The initial deployment is the same as scenario 3 of binary model, with 47.6% 

average initial coverage, which is reasonably higher than the binary model. Final 

coverage after our algorithm has run has a similar distribution to the result in binary 

model, but with a 95.5% average. 

c) Simulations with inaccurate sensor locations 

We also evaluate the performance of the algorithm when the locations of the 

sensors are not accurate. Noise is added to the location of the sensors in location 

gathering process. Therefore, each sensor will have certain inaccuracy in the estimation 

of its location. This is implemented in our simulation by adding uniformly distributed 

noise to both x and y coordinates of all sensors. 

Three cases are examined: (a) case 1 with average noise of 0.5 m; (b) case 2 with 

average noise of 1 m and (c) case 3 with average noise of 2 m. Simulation results are 

shown in Figure 4.16. It can be seen that compared the noiseless case, 0.5 m and 1 m 

average noise has no big impact on the final distribution. Even when the noise has been 

increased to 2m on average, the average coverage ratio only changed from 95.3% to 

94.7%. The results show that our self-deployment algorithm is robust against the 

existence of inaccurate sensor location data. 
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Figure 4.16 Probability of final coverage ratio with different noise in sensor locations. 

4.2.3 Conclusions 

This section introduces a distributed self-relocation algorithm in order to help 

sensor networks improve coverage using the mobility property of the sensor nodes. The 

algorithm can be used in different sensing models such as the binary model and 

probability model. The statistical results show the coverage can be increased to 95% on 

average even if error in the locations of sensors occur. 

4.3 Optimization without Localization System 

In some applications, such as indoor environments, localization schemes are not 

applicable or not accurate enough to help locate the sensors. Also, the cost and accuracy 

of GPS need to be considered. For example, the GPS kits sold by TI that has accuracy 

around 3 meters cost $40 each [88]. Therefore, we developed an optimization algorithm 

without using localization systems. Here, only the received signal strength between 
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sensors is used for estimating the distance between them. This algorithm has the property 

of self-healing when some of the sensor die. 

4.3.1 Assumptions 

In addition to the general assumptions in Section 3.7, there are additional 

assumptions for this algorithm. 

1. All sensors are range adjustable sensors. 

2. All sensors know the approximate, total area A of the sensing field before being 

deployed. The sensors also know the approximate locations of the boundaries of the 

required sensing field. 

3. There will be no localization system installed on the sensor nodes. They can only use 

received signal strength to obtain the distances between their neighbor sensors. 

4. Obstacles may occur in the sensing field and they will follow the obstacle models 

described in Section 3.6. 

5. No sensor will die in the early self-relocation time. 

6. Only the binary sensing model is used in this algorithm to analyze the performance, 

for simplicity. 

4.3.2 Algorithm Description 

a) Algorithm Outline 

Our aim is to design a distributed self-relocation algorithm for sensor networks 

that optimizes their coverage while using the least amount of energy. Our algorithm must 

also be able to perform self-healing when sensors die. Our algorithm relies only on the 

distance between sensors, which can be obtained by the received signal strength. In fact, 
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no location or relative location information is used. Specifically, our algorithm has three 

parts: self-relocation, sensing range adjustment, and self-healing. 

In the first step, sensors calculate the distance from other sensors by using the 

received signal strength of the “hello” information. Based on the distance information 

obtained, sensors move and relocate to spread themselves to optimal locations. In this 

step, sensors also need to avoid obstacles. After their relocation, sensors perform a 

sensing range adjustment. The sensors will not move in this step. If sensors die because 

of energy failure or are physically destroyed, a self-healing process is activated. Then, 

sensors recalculate the sensing range and relocate again. 

b) Key concepts of the algorithm  

There are some key concepts of our relocation algorithm. The objective of the 

algorithm is to achieve the ideal optimized deployment. In pursuit of this, there are 

calculation-related decision-making and destination-setting methods in the relocation 

process. Additionally, there are the methods that deal with sensing field boundaries and 

obstacles. 

1) Ideal optimized deployment and threshold calculation 

The threshold calculation is the same as in the optimization with Average Relative 

Position in Section 4.1.2. However, in this algorithm, locations and relative positions of 

sensors are unknown and the Voronoi diagrams are not applicable for deciding the 

sensing radius. Instead, we use the relationship between sensing radius and distance 

threshold to obtain the sensing radius each sensor should use: 

 
3
th

S

d
R =  (4.19) 
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where dth can be calculated with equation (4.2) and we can obtain the RS values by using 

the sensing field area information (ATotal) and total sensor number (N): 

 
2

3 3
Total

S

A
R

N
=  (4.20) 

Also, considering the sensor nodes in the boundary areas, they will have smaller 

effective areas than other ones. The real threshold and sensing radius needs to be 

increased, so a 15% increase is used here. 

2) Distance calculation between sensors 

The free space transmission propagation model, [89], is used in our deployment 

algorithm for obtaining the distance between sensors: 

 
( )2
4 /

t t r
r

PG G
P N

dπ λ
= +  (4.21) 

where Pr is the received signal strength. Pt, is the transimitted power. Gt is the gain of 

transmitter, Gr is the gain of the receiver, and d is the distance between the transmitter 

and receiver. N is the noise component. Here, we consider the distance between the 

transmitter and receiver to be the distance between sensors. 

Since the values of Pt, Gt, Gr, and λhere are fixed before the sensors’ deployment, 

they can be preprogrammed into the sensors. Furthermore, the sensors can compute the 

distance between themselves and other sensors by using the equation below once they 

obtain the received signal strength and by neglecting noise: 
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t t r
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π

=  (4.22) 
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3) Virtual Nodes 

For the sensors close to the boundary of sensing field, the algorithm generates 

virtual nodes along the boundary. Virtual nodes do not exist but their location 

information will be used in our calculations to prevent sensors from getting too close to 

the boundary. An example of virtual nodes is shown in Figure 4.17. Virtual nodes will be 

used in sensors’ initial relocation and self-healing process. 

 

Figure 4.17 Virtual nodes in ideal optimized deployment. 

4) Moving Criteria 

The goal of our relocation algorithm is to provide a deployment as close as 

possible to the ideal optimized distribution. It should be pointed out that sensors have no 

information about the direction of other sensors. Therefore the only information that 

should be used for relocation is the distance between the sensors. A sensor that needs to 

move is either too close or too far from other sensors. The moving criteria is described as 

follows: 

Criterion 1: A sensor S needs to move away from other sensors if there is at least 

one sensor in its communication range of a distance less than 0.9dth; 
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Criterion 2: A sensor S needs to move closer to other sensors if criterion 1 is not 

met and no more than 2 sensors are at a distance from S that is less than 1.1dth; 

Criterion 3: If criteria 1 or 2 are not met, a sensor does not need to move. 

Here, a 10% margin is used so that sensors can achieve a distance close to dth 

from other sensors. 

5) Moving destination 

Since there are two criteria for each sensor, our algorithm will calculate the 

moving distance for each sensor based on the following equation: 
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  (4.23) 

where dj and di are the distances between sensor S and other sensors, and in Criterion 1 

only the sensors that are closer than the distance threshold dth are counted, and the total 

number of such sensors is m1; in Case 2 all the neighbors that sensor S knows are counted 

and the total number of those sensors is m2. 

The relative locations of neighboring sensors are unknown. Therefore, our 

algorithm chooses randomly the direction to move. In order to avoid sensors from 

moving back and forth, a direction control scheme is used. The change of direction 

between each movement will be less than 90 degrees. Each sensor records the direction α 

it used in its last movement, and randomly picks another direction within the range of α-

90o to α+90o, for the direction of its next movement. The goal of movement for criterion 
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1 is to increase the average distance between sensors, and the goal for criterion 2 is to 

decrease the average distance between sensors. Therefore, after sensors randomly choose 

direction, they will check if going to those directions will meet the goals by moving a 

short distance to the chosen direction and checking the received signal again. If the 

random movement does not produce the desired outcome, the sensor moves back and 

stays at the same position in that round. 

6) Self-healing process 

We assume that a sensor has n1 neighbors it can communicate with after the 

relocation is finished. After the WSN operates for some time, some sensors lose their 

functionality and stop working. The sensor now has only n2 neighbors. It will recalculate 

the distance threshold and sensing range, and then follow the relocation procedure to 

adjust their locations using the following: 

 1
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where all subscripts “1” refer to the value before self-healing process starts, and the 

subscripts “2” refer to the new calculated value. 

7) Obstacle avoidance 

When an obstacle blocks the sensors’ relocation path, the sensor has to stop 

before it hits the obstacle. In the next round the sensor plans its route to move around the 

obstacle, it can choose to go clockwise or counterclockwise, which depends on which 
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direction satisfies the moving destination calculation. For program simplicity, only 

regularly shaped (rectangular) obstacles are considered. 

c) Relocation Process 

The detailed process of the relocation scheme is as follows: 

Step 1: Pre-knowledge installation 

• Load sensing range, sensing area and sensors number to sensors memory. 

• Load desired round number, set the current round to be round 1 

• Calculate dth, r. 

Step 2: Round Initialization 

• Broadcast and receive “hello” information; 

• Calculate the average distance d between sensors by the receiving signal 

strength; 

• Compare the distance condition with the criteria condition and make a 

moving decision 

• Calculate dtravel if needed 

• Broadcast moving decision; 

• Receive moving decision from other sensors 

• Record the number of neighboring sensors that need to move 

Step 3: Self-relocation 

• If no other sensor nodes declared moving direction choosing process in 

Set Random time T (conflict avoidance) 

 Broadcast “Self-relocation ON” 
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 Choose random direction and move short distance 

 Broadcast message “Reference node”; 

 Receive “hello” message respond to message “Reference node”; 

 Re-calculate average distance d’; 

 Decide moving direction according to the criteria objective; 

 Move to destination position and send message “Self-relocation OFF”; 

• If a “Self-relocation ON” is received, a sensor will not start the timer T. It 

will wait until a message “Self-relocation OFF” is received.  

• When all sensors finish relocating, this round of the algorithm is finished. 

 If the round number is equal to maximum allowed round number, go 

to step 4. 

 Otherwise, go to step 2 and start a new relocation round 

Step 4: All sensors stop and adjust sensing range to r 

Step 5: Self-healing 

• If a sensor detects loss of other sensors, perform self-healing process. 

4.3.3 Simulation and Results analysis 

In this simulation, a 100 m by 100 m square sensing field is used. The minimum 

distance between grid points is 1 m. In this example, we use a sensor network for 

surveillance that is comprised of motion detector sensors. The sensing range is usually 

between 18 – 25 m. Therefore, we set the maximum sensing range for our algorithm to be 

25 m. Also, the communication range is set to be 55 m, i.e., two times larger than the 

sensing range in order to guarantee network connectivity. This is also a practical 
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communication range since, for example the zigbee communication range is 75 m. In this 

case we did not set the communication range as 75 m because the sensing field is only 

100 by 100 m. 

a) Self-relocation algorithm performance in non-obstacle environment 

In the first part, 20 sensors are deployed in the sensing field. Assuming a 15% 

increase as explained in Section 4.3.2, the distance threshold and sensing range can be 

calculated by equation (4.2) and (4.20): 
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Three scenarios are simulated, in which all sensors are randomly deployed 

initially. In the first scenario, all sensors are deployed in the central 50 by 50 meters area; 

in the second scenario all the sensors are randomly deployed in the entire area; and in the 

third scenario, sensors are split into two groups and deployed near the left and right 

boundary. The initial coverage of the three scenarios are 50%, 68% and 51%, 

respectively, when we use RS=15.9 m. 

• Coverage Analysis 

Since the algorithm is based on a random selection of directions, a statistical 

method is used for analyzing the results. Each scenario is run 10,000 times and the 

desired round number is 20 for all the scenarios. Results are shown in Figure 4.18. 

Figure 4.18(a) shows how the average coverage increases as the relocation 

process runs. Specifically, on average 88% coverage is achieved after 10 rounds. Also, 
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the coverage converges to approximately 94% in all scenarios. We also apply the 

potential field method with the parameters described in [8] in order to compare it with 

our algorithm. The potential field algorithm provides a converged coverage of 95% after 

20 rounds. Therefore, our algorithm and the potential field algorithm converge to 

approximately the same coverage. Also, our algorithm and the potential field algorithm 

exhibit the same convergence rate. However, our algorithm does not require the use of 

GPS or any other self-localization hardware that increase the complexity and cost of the 

sensor nodes. Also, our algorithm can be used in environments where GPS does not work, 

such as, indoor, underground, underwater, etc. 

Figure 4.18 shows the Cumulative Distribution Function (CDF) for the coverage 

achieved after 20 rounds. It is seen that the final coverage after 20 rounds is between 85% 

and 100% for all three scenarios. It can also be seen that the probability of achieving at 

least 90% coverage is larger than 90%. Finally, the standard deviation of the final 

coverage after 20 rounds for scenarios 1 and 2 is 2.2%, and for scenario 3 is 2.6%. 

 

(a) Average coverage vs round number 
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(b) Coverage after 20 rounds in statistic probability 

Figure 4.18 Simulation results for self-relocation algorithm. 

• Energy analysis 

Energy models described in Section 3.4 are applied here for our energy analysis. 

We assume the sensors in the algorithm move in a constant speed and also turn in 

constant speed. Therefor, the energy consumed by a sensor while moving and turning is 

linearly related to the distance it travels and the direction change in angle. Specifically, in 

each round, the energy consumption is cacluating using the following two parts: 

Travel: the energy consumed by movement in one direction for each node in each 

round is calculated by: 

 9.34 ( )dis travelE d Joules= ⋅  (4.28) 

Direction Change: In step 3 in our relocation algorithm, a sensor needs to move a 

short distance and recalculate the signal strength. After this calculation, a sensor needs to 
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decide to follow that direction or go back to the original position. The energy consumed 

by the turning process can be calculated by: 

 
( / 90)*2.35 ( )

(360 / 90)*2.35( )
diff

Turn

A Joules Keep Moving
E

Joules Turning Back


= 


 (4.29) 

where Adiff is the direction difference of the direction before and after the step. If the 

direction does not meet the requirement for signal strength, the sensor node has to turn 

back to the original position and the original direction. This is equivalent to turning 360 

degrees. 

The energy consumed by Potential Field algorithm is also calculated as a 

comparison. In additional to the energy consumed by travel and direction changing, 

energy consumed by GPS chip is also included. According to [16], the GPS chip 

consumes 198 mW. Assuming that sensors move at a speed of 0.08 m/s and neglect the 

time in between each round for sensors to stop and calculate, so that the GPS consumes 

0.198*(1/0.08) = 2.475 Joules per meter. 

Figure 4.19 shows the average energy consumption of sensors versus the coverage 

percentage for our algorithm and the potential field method. It can be seen that the 

potential field algorithm uses less energy compared to our algorithm. The provided 

savings in energy consumption are around 25% to 30% depending on the initial 

deployment. This happens because in the potential field algorithm every sensor knows 

the location or relative location of all other sensors thereby making better decisions for 

the directions that the sensors need to move toward. On the contrary, our algorithm 

consumes more energy when it turns back and forth. However, our algorithm does not 

require that sensors know others location or transmit their location information to other 
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sensors. This can provide significant savings in terms of hardware cost since no GPS 

hardware is required. 

 

Figure 4.19 Simulation results for average coverage and energy consumption. 

b) Simulation for self-healing algorithm 

After the execution of the self-relocation algorithm, we randomly choose five 

sensors to die. The initial deployment for our self-healing simulation is shown in Figure 

4.20. The 5 nodes without coverage are assumed dead. 

 

Figure 4.20 Five sensors die out of 20 originally deployed sensors. 
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The simulation results are shown in Figure 4.21. This simulation is also run 10000 

times. Figure 4.21 shows the average, best case and worst case coverage. After the 

sensors have died, only 80% coverage is provided. However, our algorithm increases the 

coverage by increasing the sensing range of each sensor. After the first round, the 

coverage ratio increases slowly because the sensors need to move slowly toward the areas 

that are not covered. After 20 rounds, our algorithm achieves an average coverage of 93%. 

In this case, the average sensing range of the sensors is approximately 18.3 m thereby 

providing 26.8% energy savings compared to the case where the sensors use their 

maximum sensing range of 25 m. The average traveled distance in the self-healing 

process is around 7.5 m. 

 

Figure 4.21 Coverage using the for self-healing algorithm. 
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not move enough to completely cover this area. However, for the other two places, where 

only one sensor has died (middle and bottom of the sensing field), the self-healing 

algorithm provides almost complete coverage of the area that the dead sensors used to 

cover. 

 

Figure 4.22 A sample simulation of self-healing process. 

c) Self-relocation algorithm performance in environment with obstacles 

In this part, two obstacles are placed in the sensing field and 20 sensors are in the 

middle part of the sensing field which is shown in Figure 4.23. Due to the appearance of 

obstacle, 10% increase in sensing radius is applied. The initial coverage is 19% with the 

sensing radius of 17.5 meters. 
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Figure 4.23 Initial deployment in field with two obstacles. 

Figure 4.24 shows the CDF of the final coverage after 20 rounds. In fact, 90% 

coverage is achieved on average over 20 rounds. The standard deviation of the final 

coverage is 3%. Since the obstacles occupy 150 m2 in total, the maximum coverage 

cannot exceed 98.5%. 

 

Figure 4.24 Statistical coverage result in self-relocation algorithm with obstacles. 
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4.3.4 Conclusions 

In this section, we developed a self-relocation and self-healing algorithm based on 

average distance. The sensors only need to know the approximate area of the sensing 

field and the total number of sensors before they are deployed. The sensing range of each 

sensor is adjusted to reduce the redundancy and provide energy savings. No geo-location 

or relative location knowledge is needed thereby providing significant savings for each 

node since the GPS hardware is not required. However, the tradeoff is that the sensor 

nodes have to consume more energy to achieve a certain percentage of coverage 

compared to the algorithms using GPS devices. The algorithm works in both 

environments with and without the appearance of obstacles. The disadvantage of this 

algorithm is that the direction movement is random and not always the best direction 

thereby resulting in a larger travelled distance. The algorithm is suitable for emergency 

surveillance where sensors do not have GPS devices. Therefore, this algorithm is 

preferred when sensor nodes can localize themselves by cooperating with other sensors, 

only in emergencies or when triggered events occur in their sensing range. 

4.4 Summary 

Three distributed optimization algorithms were introduced for relocating the 

sensors in order to optimize sensing coverage. In these algorithms, sensors work 

cooperatively with each other. 

Optimization with relative-position algorithms are developed for sensors networks 

that have geo-location devices. Instead of incrementally moving each sensor every round, 

the algorithm optimizes the average relative distance so as to reach the ideal optimum 
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layout as soon as possible. The algorithm estimates the destination distances using the 

global information, and then it separately considers the sensors that should move apart 

from each other and those that should get closer to avoid uncovered areas between them. 

This enables the algorithm to converge in approximately 5 rounds after the sensors are 

deployed. The trade-off for the fast convergence is that the optimized sensing range will 

be 1-2% less than the one obtained by existing algorithms. 

Optimization with weighted, relative-distance algorithms is designed for the 

sensors networks with inaccurate localization systems. The algorithm separates each 

sensors’ neighboring area into six subareas and calculates the most weighted relative 

distances. Two of the most weighted relative distances among in the six subareas are used. 

Therefore, the error in the localization systems from the other four subareas is eliminated 

so that the algorithm can perform well against the total error due to the collective 

localization systems of these sensors. As a tradeoff, 3% less coverage can be achieved 

compared to existing solutions. 

The algorithm that does not use the sensors’ locations can also provide optimized 

coverage, but with increased energy consumption as a trade-off. It uses the randomly 

chosen directions to decide its relocation destination. As a consequence of not optimizing 

the direction, a greater total travelled distance of all the sensors is required. Compared to 

the potential field algorithm, when optimal layout is achieved, sensors consume 25% to 

30% more energy in movement. However, our algorithm is the first approach in coverage 

optimization without sensor location information. It is particularly useful for indoor 

applications for which self-localization systems cannot provide accurate location 

information.   
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CHAPTER 5 

5 CENTRALIZED OPTIMIZATION ALGORITHM DESIGN 

This chapter details two centralized algorithms for optimizing the coverage of 

wireless sensor networks. The first algorithm is based on a Genetic Algorithm, and the 

second algorithm is based on Particle Swarm Optimization. Both of the algorithms 

require large amounts of computation, so they cannot be performed by regular sensor 

nodes. Instead, these algorithms are only possible when powerful central nodes are 

available. For both algorithms, theoretical analysis and simulations are performed. 

5.1 Multi-Objective Genetic Algorithm 

In this section, we propose a Multi-Objective Genetic Algorithm (MOGA) based 

on the sensor relocation algorithm. In this algorithm, we especially focus on the optimal 

coverage and minimum distance travelled for sensors, after their initial, random 

deployment. The two objectives of coverage and distance travelled by sensors are always 

in conflict. Therefore, trade-offs need to be made between the two. The fitness function is 

designed with respect to the different objectives, and the genetic algorithm is used to 

optimize the fitness function to deliver the best tradeoffs.  

5.1.1 Assumptions for MOGA 

In additional to the general assumptions in Section 3.7, there are more 

assumptions for this MOGA. 

1. A powerful processor is needed. The algorithm will be performed by the 

processor. The processor can be installed in the base station. 



 

91 
 

2. The base station needs to know the location of each sensor after the sensors have 

been deployed. The base station also knows the map of the entire sensing field, 

such as the limits of the boundaries and obstacles. Obstacles in sensing field will 

not degrade the performance of the algorithm. 

3. All sensor nodes can communicate to the base station directly or by multi-hopping. 

In this way, the base station can instruct the sensors to move as determined by the 

algorithm. 

4. All sensors have a fixed sensing radius. No range adjustable sensors are required. 

5. For simplicity, only the binary sensing model is used in these simulations of the 

algorithm. 

5.1.2 Algorithm Outline 

The objective of the MOGA is to relocate the sensors after their random 

deployment, with the aim of improving coverage. The main steps of the algorithm are 

described below: 

1. Randomly deploy the sensors. 

2. The base station collects the location information of all sensors. Sensors can 

perform self-localization and send their location information to the base station. 

3. The base station uses the location and the pre-installed map information to design 

the fitness function needed to be optimized. 

4. The base station performs the MOGA to determine the destination of the sensors’ 

relocation position and sends the result to them. 

5. All sensors relocate according to the instructions given by the base station. 
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It can be seen that the genetic algorithm will only be performed once and all 

sensors will only need to move once after they are deployed. However, if some sensors 

die, the sensing field coverage will decrease. In this situation, the algorithm can run again 

with the surviving sensor nodes and perform a self-healing process to achieve the desired 

maximum coverage. 

5.1.3 Algorithm objective and fitness function design 

There are two main objectives of the MOGA. The first objective of our algorithm 

is to maximize the coverage ratio. The coverage ratio (RCoverage) is defined in Section 3.2 

equation (3.5). The second objective is to reduce the sensor’s use of energy for 

mobilization, which is defined in Section 3.4. The energy for turning is negligible since 

the sensor only move once after initial randomly deployed. Therefore, in order to 

maximize the energy savings for the relocation of sensors we must minimize the travelled 

distance. 

Here, the average travelled distance is used. Since the sensors are only going to 

move once, equation (3.20) for calculating the travelled distance can be simplified. 

Assume there are N sensor nodes in the sensor network, the initial and final locations of 

the sensing nodes are (xi,yi) and (xi’,yi’) correspondingly. Then, the average travelled 

distance is equal to: 

 

2 2

1 1

( ) ( )
=

N N

i i i i i
i i

D x x y y
D

N N
= =

′ ′− + −
=
 

  (5.1) 

where Di is the travelled distance of one sensor obtained by equation (3.20) 
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If an obstacle appears in between the initial and final locations of a sensor, the 

travelled distance will not be the direct distance calculated by equation (5.1). Instead, it 

has to be calculated segmentally as shown in Figure 5.1. 

 

Figure 5.1 Distance calculation when an obstacle appears. 

In our algorithm, the fitness function is designed according to our objectives. Our 

genetic algorithm is designed to seek the minimum value of the fitness function. 

Therefore, the coverage ratio, which we need to maximize, should be changed to a 

function that needs to be minimized. Specifically, we use here the uncovered area ratio: 

 1UNCOV CoverageR R= −   (5.2) 

where RCoverage is obtained from equation (3.5). 

The aim of our genetic algorithm is to minimize both the average travelled 

distance and the uncovered area ratio. It should be noted that there is a trade-off between 

the two objectives. Once the N sensors are deployed, the sensors remain at their 

positions, before the algorithm is executed. The larger the coverage needed, the longer 

the movement of the sensors will be. Conversely, such long movements of the sensors do 

not guarantee larger coverage. By using a multi-objective genetic algorithm, the best 

tradeoff between the coverage and the travelled distance can be achieved. 
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The fitness function of our problem is written as: 

 UNCOVF R w D= + ×   (5.3) 

where w is the weight of the average travelled distance. The selection of w is related to 

the size of the sensing field and the number of sensors. The value of w is to balance 

RUNCOV and w D×  at similar orders of magnitude. Our results will demonstrate that the 

chosen value of wcontrols the tradeoff between the two outcomes. 

5.1.4 Algorithm description 

Genetic algorithms are heuristic search algorithms that come from the idea of 

natural evolution. They are suitable for solving nonlinear optimization problems and for 

finding the global optimization value of fitness functions. Since the initial population 

covers only a group, local optimized values will be avoided. 

In optimization problems with multiple conflicting-objectives, such as, 

minimizing energy and maximizing coverage ratio, the optimized fitness function will 

provide the Pareto optimal front. The Pareto optimal front represents the optimal trade-

off between objectives. There will be no better fitness values unless at least one objective 

gets worse. In our case, this means if the optimized fitness function indicates that the 

average travelled distance of m1 meters will result in R1 for the coverage ratio, there will 

be no average travelled distance less than m1 meters that will result in a coverage ratio 

larger than R1. Also, (m1, R1) will be on the Pareto optimal front. 

Our algorithm uses the genetic algorithm to minimize the fitness function value. 

In our problem the variables that are needed to be optimized are the final positions of the 
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sensors. Therefore, the input variables to the genetic algorithm are the coordinates of the 

sensor nodes: 

 1 2 1 2[ , , , , , , , ]N NC x x x y y y′ ′ ′ ′ ′ ′= ⋅⋅⋅ ⋅⋅⋅   (5.4) 

which is a vector of length 2N. Different final positions of the sensors will result in 

different coverage ratios and travelled distances. 

Detailed process of genetic algorithm is described as follow: 

1. In the first generation, a certain number M  (defined as population size) of vectors 

Care randomly generated. Since C is composed of the coordinates of sensors, the 

values of the components are limited by the boundary of the sensing field. 

2. In each following generation, the coordinates x’ and y’ are exchanged and may 

also mutate with a certain percentage (i.e., the mutation ratio). If the ratio is too 

small, the optimal value may not be achieved, and if the ratio is too large, good 

‘chromosomes’ of one generation may be changed, thereby making it hard to find 

the optimal value. For each generation, the vectors of M  with the best fitness 

values will be kept, and the others will be discarded. 

3. The algorithm will come to an end when either of the following two conditions 

are met: a) the value of optimum fitness function does not change between 

generations; b) the generation number has achieved the desired maximum 

generation number. 

5.1.5 Simulations and results 

In all our simulations, the sensing field is a 100 m by 100 m square. All the 

sensors are assumed to have the same sensing range of Rs= 25 m. The sensors are 
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randomly deployed before the simulation starts. The population size for our genetic 

algorithm is 100 and the mutation ratio is 1%. 

a) Sensing field without obstacles 

There are three cases without any obstacles, where 10, 9 and 8 sensors are used. It 

should be pointed out that 9 sensors are sufficient to provide full coverage. Therefore, for 

the 10 sensors’ case, a redundant sensor exists. Also, for the 8 sensors’ case, full 

coverage cannot be achieved by any spatial distribution of the sensors. The initial 

deployment of 10 sensors is shown in Figure 5.2. 

 
Figure 5.2 Initial position of 10 randomly deployed sensors. 

Figure 5.3 shows the simulation results of our algorithm. Specifically, Figure 5.3 

illustrates the trade-off between the two objectives, that is, the uncovered area ratio and 

the average travelled distance. When the travelled distance increases, the uncovered area 

decreases as expected. This outcome is an example of the Pareto optimal front. All the 

points above these curves are not optimal outcomes, because when we consider the same 
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travelled distance, the maximum coverage that can be achieved lies on the curves of 

Figure 5.3. 

 
Figure 5.3 Relation between uncovered area and the average travelled distance. 

Figure 5.3 also shows the area coverage versus distance travelled by sensors. 

When the travelled distance is equal to 0, (i.e., sensors are in their initial positions), 10 

sensors and 9 sensors provide a coverage of approximately 84%, and 8 sensors provide 

coverage of 82.8%. The coverage increases as the average travelled distance by the 

sensors increases. Figure 5.3 shows that for the same travelled distance, the case of 10 

sensors always provides the best coverage. This is expected, since the more sensors we 

use, the higher the coverage we can achieve. Also, Figure 5.3 illustrates that when the 

travelled distance is less than 10 m, the coverage increases much faster as the travelled 

distance increases. This empirical observation indicates that limiting the sensor average 

movement to 10 m achieves the best tradeoff between coverage and travelled distance 

(i.e., energy consumption).  
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Two Pareto optimal layouts for ten sensors are shown in Figure 5.4. Case A has 

an average travelled distance of 7.9 m and the coverage is about 97.6%, versus case B 

that has an average travelled distance of 16 m and 100% coverage. The shaded areas in 

Figure 5.4 correspond to uncovered areas, and the stars correspond to the locations of the 

sensors. 

 
Case A                                                               Case B 
Figure 5.4 Different Pareto optimal layouts. 

Furthermore, Figure 5.5 illustrates the relationship between the weight coefficient 

w  and the optimized travelled distance, which shows that when w  increases, the sensors 

tend to move less. 
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Figure 5.5 Average travelled distance versus the weight coefficient w. 

b) Sensing field with obstacles 

In our last simulation case, we incorporate the presence of obstacles in the sensing 

field. Specifically, we add an obstacle with the dimensions of 0.3 m by 6 m. If the genetic 

algorithm shows that the path between initial and final positions of the sensor is blocked 

by an obstacle, the travelled distance of that sensor will be calculated as the shortest path 

required to go around the obstacle. In this case, 8 sensors are initially deployed and the 

initial coverage is 72%. This initial layout is shown in Figure 5.6. 
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Figure 5.6 Random deployment of 8 sensors along with the coverage. 

Figure 5.7 shows the simulation result of this case. As we can see, with about 5 m 

average travelled distance, the coverage can be increased from 72% to 91%. Further 

improvements of coverage require significantly larger travelled distance. 

 
Figure 5.7 Simulation results for 8 sensors with obstacle. 

Figure 5.8 shows two Pareto optimal layouts. Case A has a coverage of 92% and a 

travelled distance of 4 m, while case B has a coverage of 97% and a travelled distance of 

53 m. 
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Case A      Case B 
Figure 5.8 Different Pareto optimal layouts. 

5.1.6 Conclusions 

This section introduces a genetic algorithm for relocating nodes of a WSN in 

order to provide the trade-off between coverage and the travelled distance by the sensros. 

Both the coverage and the energy conservation are considered in our optimization. For 

each different layout, the shortest travelled distance route is found. Also, for a fixed 

travelled distance of all sensors, the coverage can get optimized using our algorithm. The 

results show that best coverage can be achieved by reducing the weight between travelled 

distance and coverage. The larger the weight on travelled distance is, the smaller the 

average travelled distance of the sensors is; this also provides reduced coverage. Also, 

our algorithm can simulate obstacles and provide the optimum distribution of sensors. 

Furthermore, the algorithm can be used in dynamic environments. It can also perform 

applied to sensor network healing when sensors die. 
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5.2 Particle Swarm Optimization 

In this section, we propose a Particle Swarm Optimization (PSO) based on a 

centralized algorithm to relocate sensors after random deployment. Similar to the 

previous algorithm, this algorithm also aims at providing optimized coverage and energy 

consumption. The main difference between this algorithm and the one presented before is 

that Voronoi diagrams are used to ensure sensors with adjustable range can cover the 

entire sensing field. Thus, the problem is how to use energy in a manner that prolongs the 

lifetime of the sensor network. Both the sensing radius and travelled distance are 

optimized to save energy. 

5.2.1 Assumptions for PSO 

In addition to the general assumptions in Section 3.7, there are more assumptions 

for our PSO. 

1. As the PSO is also a centralized algorithm, similar to the GA based algorithm in 

Section 5.1, it also needs a powerful processor in a central node to perform the 

algorithm. Also, the central node needs to know the map of the sensing field and the 

location of sensors. The sensors can communicate with the central node. 

2. No obstacles are present in the entire sensing field. This assumption is made because 

the Voronoi diagram is used for getting the minimum sensing radius. If an obstacle 

appears, this method is not applicable. 

3. All sensors are range adjustable sensors that can adjust their range as instructed by the 

central node. 

4. Both energy models for adjustable range sensors are considered in this algorithm. 
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5. Only the binary sensing model can be applied in this algorithm. 

6. It is assumed that the sensor network is functioning correctly only when all sensors 

are operating properly. If any sensors die, the central node has to restart the 

optimization algorithm to optimize the coverage and maximize the sensor network 

lifetime. 

5.2.2 Optimization goals 

There are two goals in our algorithm. First, we aim to provide or guarantee full 

coverage of the sensor network. Second, we aim to reduce the energy consumption of the 

sensors so as to extend the life of the sensor network. 

The first goal has priority since the coverage is one of the most important qualities 

of service that sensor networks provide. Full coverage can be guaranteed by calculating 

the sensing radius using Voronoi diagrams. 

The second goal aims at saving energy of sensors. As in our assumptions, the 

algorithm is performed by a central node with unlimited energy. The energy spent on the 

computation of our algorithm will not be considered in our energy consumption 

calculations. Each mobile sensor node usually has several components, such as, a CPU 

with memory, a communication module, a sensing module, a mobility module and other 

functional modules like GPS for self-positioning. All of these components will draw their 

power from a single source with limited power supply. In our algorithm, we mostly focus 

on the energy consumed by the mobility and sensing modules. This is mainly because the 

algorithm will not increase the amount of calculation of the sensor nodes, and very little 

communication overhead is involved. 
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The sensors in this algorithm will only be required to move, after being deployed; 

therefore, the energy consumed in moving the sensors is a short-term consideration. 

However, compared to the long-term energy consumption used in sensing, the energy for 

moving the sensor is much larger. For example, a smoke alarm or a light sensor 

consumes 0.1 mWatts [90] which means it consumes 0.36 Joules per hour. Whereas, a 

small robotic platform invented by Mei, et al., [91], consumes more than 9 Joules per 

meter when moving in a straight line. Therefore, the energy used to move the sensor one 

meter is equal to the energy used for sensing for more than an entire day. If the terrain is 

not flat, it will cost even more energy for the nodes to move around. Therefore, both 

energy components must be taken into consideration. 

5.2.3 Fitness function design 

In order to maximize the lifetime of a sensor, the energy consumed must be 

minimized. The relationship between a sensor’s lifetime, L, and the energy consumed by 

sensors can be described as follows: 

 total M S other M S otherE E E E E L P L P= + + = + ⋅ + ⋅   (5.5) 

where Etotal is the total battery energy, EM is the energy consumed in movement, ES is the 

energy consumed in sensing and Eother is the energy used for other things, such as, 

computation and communication. The energies ES and Eother can be represented by the 

sensor’s lifetime L and the corresponding powers PS and Pother as shown in (5.5).  

A sensor’s lifetime L can be estimated using the known battery capacity and the 

approximate energy usage. For example, let’s assume the battery inside of a sensor node 

can supply a total of 10,000 Joules. Also, if this sensor moves 50 meters on average 
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spending 8 Joules/meter, the total energy for moving the sensor will be 50*8= 400 Joules. 

Assume the power consumed for sensing is around 0.2 Watts and the power for other 

activities is 0.3 Watts, we can calculate the lifetime L by doing the following: 

 10000=50 8+L 0.2+L 0.3⋅ ⋅ ⋅   (5.6) 

 32000L Seconds=   (5.7) 

We define an equivalent estimation of power PM  for movement, which is related 

to the estimated lifetime L and energy EM consumed in movement: 

 M ME P L= ⋅   (5.8) 

Therefore, equation (5.8) can be substituted in equation (5.5) and derive: 

 total

M S other

E
L

P P P
=

+ +
  (5.9) 

In order to maximize L, PM+PS must be minimized as Etotal and Pother are both 

constant. 

According to assumption 5 in Section 5.2.1, if any sensors die because of battery 

exhaustion, the sensor network cannot maintain its functionality. Thus, to prolong the 

lifetime of the entire sensor network, we have to prolong the lifetime of every sensor. In 

fact, the sensor that drains its battery the fastest will create a bottleneck in prolonging the 

entire sensor network’s lifetime. Therefore, we design the algorithm to maximize the 

lifetime of the sensor node that has the shortest life. This sensor has the maximum power 

consumption among the other sensors in the network. These objectives can be achieved by 

minimizing the fitness function: 

 ( )M SF Max P P= +   (5.10) 
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In the redeployment process, according to the energy model for mobile sensors in 

Section 3.4, PM is proportional to the sensor’s traveled distance, Dtotal, that is calculated by 

equation (3.20). PS is related to the sensors’ sensing radius RS, as described by equation 

(3.24) or (3.25) for the linear or quadratic models respectively, from Section 3.5. We 

calculate RS using the Voronoi diagram to ensure the entire sensing field can be covered. 

Voronoi diagrams divide the sensing field into subareas. There is one sensor in 

each of the subareas, which is comprised of all points closer to that sensor than all others. 

If each sensor can cover the subarea it belongs to, the entire sensing field will be covered. 

Therefore, in order to cover an entire sensing field, the sensing radius of each sensor must 

be set equal to the distance between the sensor and the furthest Voronoi diagram subarea 

vertex: 

 ( )S jR Max dv=   (5.11) 

where dvj is the distance between a sensor node and the subarea vertex. 

An example of Voronoi diagram is shown in Figure 5.9. Five sensors S1, S2,…, S5 

are deployed in the sensing field. Therefore, the sensing field is divided into five subareas 

by the Voronoi diagram. The blue straight lines indicate the edges of the subareas. 

Consider the subarea surround sensor S3 in the middle. It has four vertexes. Among these 

four vertexes, v4 has the longest distance from the central node S3. Therefore, in this case, 

the sensing radius of S3 should be dv4. 
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Figure 5.9 Voronoi diagram and sensing radius calculation. 

According to the above, the fitness function equation (5.10) can be obtained using 

the travelled distance and sensing radius as follows: 

 ( )dis
i l Si

k
F Max D k R

L
= +   (5.12) 

 2( )dis
i q Si

k
F Max D k R

L
= +   (5.13) 

where i = 1,2,…N and N is the total number of sensors, Di and RSi denote each sensor’s 

travelled distance and sensing radius, respectively, L is the lifetime of the sensor network 

and kdis, kl, and kq are energy related coefficients described in Section 3.4 and 3.5. The 

first fitness function in equation (5.12) is used for linear energy model of range adjustable 

sensors, and equation (5.13) is used for quadratic energy model. 

The normalized fitness function below is derived to assist in designing the weight 

coefficients. At first, we rewrite the fitness function using the normalized travelled 

distance and sensing range: 

1dv

2dv

3dv

4dv
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 ( )dis
est i l est Si

k
F Max D D k R R

L
= ⋅ ⋅ + ⋅ ⋅   (5.14) 

 2 2( )dis
est i q est Si

k
F Max D D k R R

L
= ⋅ ⋅ + ⋅ ⋅   (5.15) 

where iD  is normalized sensing travelled distance, SiR is the normalized sensing range. 

They can be calculated using the estimated maximum travel distance Dest and estimated 

maximum sensing radius Rest: 

 i
i

est

D
D

D
=   (5.16) 

 Si
Si

est

R
R

R
=   (5.17) 

For simplifying the fitness function and normalizing the weight, the fitness 

functions are rewritten as follows: 

 1 2( )i SiF Max w D w R= +   (5.18) 

 2
1 2( )i SiF Max w D w R= +   (5.19) 

For simplifying the fitness function and normalizing the weight, the fitness 

functions are rewritten as follows: 

 1 2 1w w+ =   (5.20) 

Also, comparing equations (5.18) and (5.19) with (5.14) and (5.15), it can be 

found that w1 and w2 also have to follow a certain relationship: 

 ( )1 2: :dis
est l est

k
w w D k R

L
 = ⋅ ⋅ 
 

  (5.21) 
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 ( )2
1 2: :dis

est q est

k
w w D k R

L
 = ⋅ ⋅ 
 

  (5.22) 

Equation (5.21) is used to normalize fitness function (5.18) for linear energy 

model, and (5.22) is used in (5.19), which is used for the quadratic energy model for 

range adjusting. 

5.2.4 Particle Swarm Optimization 

As introduced in Section 2.2.2, the particle swarm optimization (PSO) algorithm 

is an evolutionary optimization algorithm developed for optimizing fitness functions. In 

our algorithm, PSOs are used to find the minimized value of fitness function described in 

(5.18) and (5.19). 

During a PSO, an initial group population of candidate solutions will be generated 

first. In each generation a fitness function will be evaluated for each of the candidate 

solutions. The optimizer will record two types of best fitness values and the candidate 

solution values corresponding to them. The first type of fitness is global best (gbest), 

which corresponds to the best fitness among the total population. The second type is 

personal best (pbest), which corresponds to the best fitness each specific population has 

ever achieved among the generations. In each generation, the candidate solutions will 

move toward the gbest and pbest in random velocities. The main idea can be described as 

follows: 

 ( ) ( )i i p p i i g g iv v a r p S a r g Sω← + − + −   (5.23) 

 i i iS S v← +   (5.24) 
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where vi is the velocity of the ith population, Si denotes the position of it, ω is the weight 

related to the speed in last round, ap and ag are the acceleration toward the personal (pi) and 

global best (g) positions, and rp and rg are random real numbers in [0,1]. Equation (5.23) 

shows the calculation of velocity and equation (5.24) shows the next position is the current 

position plus the velocity. 

In our algorithm, the objective of the PSO is to minimize the fitness function 

defined by (5.18) or (5.19). The population is a vector with the positions of sensors and 

the sensing radius of each sensor: 

 1 2 1 2[ , ,..., , , ,..., ]i N NS x x x y y y=   (5.25) 

where x and y are the coordinates of the sensors, and N is the total number of sensors. 

Also, the velocity vector has the same length as the population vector. 

There are several coefficients that need to be designed in this algorithm, namely, 

the weight ω and the acceleration rates ap and ag. Also, we need to design the boundary 

of the population and velocity. The boundary of the population we designed here is the 

boundary of the sensing field. The boundary of the velocity is chosen as one quarter of 

the sensing field length. In this way, the algorithm will converge quickly. 

5.2.5 Algorithm Procedure 

The algorithm contains four main steps: 

1) Parameter estimations: Before deployment, the central node estimates the parameters 

(ω, w1, ap, ag, and the boundaries) for the algorithm using the pre-known battery 

capacity and power consumption of sensors components. These estimations are based 

on the prior knowledge of the sensors and sensing field, such as the energy capacity 
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of each sensor, the power consumption of different parts of each sensor node, the size 

of the sensing field, and the total number of sensors that are deployed. 

2) Collection of information: After deployment, the central node collects the location 

information of all the sensors. 

3) Algorithm calculation: The central node performs the optimization algorithm and 

finds out the best relocation positions for sensors. The central node sends the 

destination position to each sensor. 

4) Movement to destination: After receiving the relocation positions, the sensors move 

immediately to their destinations. 

5) Self-healing process: If any sensor dies due to any reason, the coverage cannot be 

maintained. Therefore, a self-healing process must be undertaken, by repeating steps 

1 through 4. 

5.2.6 Simulations and analysis 

In our example simulation, the sensing field is 100 meter by 100 meter. Two 

scenarios are simulated. In both scenarios, 20 sensors are deployed. In the first scenario, 

sensors are initially randomly deployed near the center of the sensing field, and in the 

second scenario, sensors are randomly deployed throughout the entire sensing field. 

Initial deployments of sensors in both scenarios are shown in Figure 5.10. Both the linear 

and quadratic energy models for range adjustment of sensing are tested. 

In order to analyze the cases in which sensing and travelling have different weight 

relationships, we use the range of w1 from 0.9 to 0.1. The population size is set to 200 and 

the generation limit is set to 400. The two parameters ap and ag are both 2. 
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     (a) Scenario 1                                                   (b) Scenario 2 

Figure 5.10 Sensor random initial deployments. 

Figure 5.11 shows the outcome of our algorithm for both energy models for the 

two scenarios. The x and y axes respectively show the sensor’s sensing radius and 

travelled distance that has the maximum energy consumption. Trade-offs can be seen 

between the sensing radius and travelled distance and they are controlled by weights w1 

and w2. Decreasing the weight of the distance travelled (w1) will lead to more travelled 

distance by the sensors and less sensing radius. When w1 is 0.1, the sensor that has 

maximum energy consumption tends to have the smallest sensing radius, which is around 

19 meters compared to other w1 values. The travelled distance of that sensor is 48 and 38 

meters for scenarios 1 and 2, respectively. When w1 is 0.9, sensors do not move 

significantly from their initial position and the sensing radius is around 63 meters and 30 

meters for scenarios 1 and 2, respectively. Figure 5.11 shows that in both scenarios, the 

linear and quadratic models lead to a similar optimal layout. However, it should be 

pointed out that the same optimal points correspond to a different weight w1 in different 
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energy models. Figure 5.11 also shows, in the second scenario, that sensors travelled less 

than in the first scenario. This is because the sensors are more uniformly distributed in the 

second scenario than the first scenario. 

 

Figure 5.11 Best fitness value outcome of PSO algorithm. 

Figure 5.12 is an example of the sensors’ relocation after the PSO algorithm in 

scenario 1 has run using the linear energy model. The sensor that consumes the most 

energy, the sensor that has the largest sensing radius, and the sensor that travels the 

largest distance are shown. The sensor that travels most is the same as the sensor that 

consumes the most energy. It can be clearly seen that the sensor, which travels most, has 

smaller sensing radius than the sensors that are close to the center of the field. This is 

because the sensors near the center need to travel less. Also, Figure 5.12 indicates that the 

sensor node with the highest sensing radius is the sensor closest to the center, which 

needs to move the least. 
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Figure 5.12 Optimal relocation simulation outcome example. 

In order to see the benefit of the relocation algorithm, we calculate the energy 

consumption before running the algorithm and the energy consumption of the optimal 

outcomes after the algorithm for each case. Since the fitness function value is the 

representation of the energy consumption of the sensors in travel and sensing, we 

compare the energy savings for different weight values. The results are shown in Figure 

5.13, where w1 ranges from 0.1 to 0.9 with a 0.1 step. The savings are calculated by using 

difference of fitness function value divided by the fitness value of the initial deployment. 

For example, assume the value of the fitness function is 1.5 when sensors are initially 

deployed, and the best fitness function value is 0.9 after the algorithm, the savings is 

calculated as (1.5-0.9)/1.5 = 0.4 = 40%. Figure 5.13 shows that our algorithm can provide 

up to 89%, 65%, 47% and 28% energy savings in different scenarios. 
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Figure 5.13 Energy savings of optimization algorithm. 

Figure 5.13 shows that PSO can provide more energy savings for the lower values 

of the weight w1 of distance travelled. The reason for this is that sensors move more when 

w1 is smaller, and the deployment outcome changes more from the initial deployment. It 

also shows, in the same scenario, that the algorithm provides more energy savings for the 

quadratic model. This is because in the quadratic model, the sensing radius has heavier 

weight compared to the linear model. Therefore, the fitness function value is more 

sensitive to changes of the sensing radius. 

As in real applications, it is not likely to have static sensors just deployed in the 

center part like scenario 1. However, scenario 2 is always the case when sensors are 

initially randomly deployed. In scenario 2, the maximum savings for the linear and 

quadratic models are approximately 28% and 47%, respectively. This happens when w1 is 

relatively small (0.1), which means energy consumption for sensing has much larger 
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weight than energy consumption for relocating. When w1 is in the range 0.6 to 0.8, 

travelling costs significantly more energy than for sensing. Thus, sensors prefer not 

moving and adjust their sensing radius to prolong their lifetime. 

5.2.7 Conclusions 

This section introduced a centralized relocation algorithm for wireless sensor 

networks, which uses the Particle Swarm Optimization (PSO) aiming to prolong their 

lifetimes. The maximum total energy consumed is optimized. Our simulations use 

different weights between sensing radius and travelling energy consumption that lead to 

different relocation optimal layouts. Our simulation results clearly show that sensor that 

needs to travel more have a smaller sensing radii. Also, our results show that energy 

savings are more significant when the sensing energy has a heavier weight. 

5.3 Hybrid PSO with distributed algorithm 

As we have indicated in Section 5.2, PSO is a centralized optimization algorithm 

that we have used it for the purpose of minimizing the energy consumption of sensors. It 

can also be hybrid with the distributed algorithm for prolonging the lifetime of wireless 

sensor networks and the hybrid PSO will provide a better solution. 

In this section, the distributed relocation algorithm for WSN we derived in 

Section 4.2 is hybridized with PSO is proposed. The convergence of the PSO is faster and 

the result will be closer to the global optimal value. This algorithm addresses the problem 

of maintaining full coverage for a WSN while prolonging the sensor network’s lifetime 

by optimizing the energy consumption. First, a hybrid algorithm, which solves both the 

energy consumption and coverage maximization problems, is developed. Then, our 
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distributed relocation algorithm is hybridized with the PSO algorithm in order to 

significantly improve the algorithm’s optimization performance. 

5.3.1 Algorithm Description 

Our objective of this algorithm is to guarantee the entire sensing range will be 

covered by the wireless sensor network and also prolong the life time of the sensor 

network. 

a) Assumptions for Hybrid PSO 

Here are our assumptions and used models for the algorithm. 

Full coverage is part of our optimization goal, and thus only the binary model is 

applied. To cover the entire sensing area with a more efficient energy usage than the 

fixed range sensors, the range-adjustable sensors are used here also. The sensing radius of 

each sensors are calculated in the same way using equation (5.11) in Section 5.2.3. The 

performance on both the linear and quadratic energy model for range-adjustable sensors 

are examined in our algorithm. 

b) Fitness function design 

There are two goals in our optimization: 

Ensuring that the entire sensing field is covered by the sensor network. This can 

be achieved by applying equation (5.11). 

Minimize the energy consumption of the sensors so that the lifetime of the sensor 

network can be maximized. This can be done by minimizing the energy consumption 

function: 

 total M S otherE E E E= + +  (5.26) 
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where Etotal is the total energy stored in each sensor’s battery and EM, ES and Eother are the 

energy consumed by the sensor’s relocation, sensing and other activities such as 

communication, computation, self-localizations. 

The energy can be expressed by the lifetime L and power: 

 total M S otherE E L P L P= + ⋅ + ⋅  (5.27) 

where PS is the sensing power which can be calculated by equation (3.24) or (3.25)

depending on the energy model and Pother can be estimated by the type of sensor used. 

Sensor lifetime L can be rewritten as: 

 total M

S other

E E
L

P P

−=
+

 (5.28) 

In a wireless sensor network, if any sensor dies, a relocation optimization will be 

required. Therefore, we define the fitness function as the lifetime of the sensor that has 

the shortest life: 

 ( )F Min L=  (5.29) 

 total M

S other

E E
F Min

P P

 −=  + 
 (5.30) 

c) Hybrid PSO 

The detail of traditional PSO has been described in Section 5.2.4. The main 

process can be described in the following process: 

 ( ) ( )i i p p i i g g iv v a r p S a r g Sω← + − + −  (5.31) 

 i i iS S v← +  (5.32) 
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Here, our relocation algorithm presented in Section 4.2 is hybridized with PSO to 

provide enhanced optimization results. This is based on the fact that distributed relocation 

algorithms naturally increase the coverage and energy savings of sensors because they 

redistribute the sensors more evenly. 

The relocation algorithm uses relative locations of sensors in order to relocate the 

sensors more uniformly in the sensing field. This algorithm in our PSO will help decrease 

the sensing radius of the sensors. 

In the distributed relocation algorithm, each sensor divides its neighboring area 

into six subareas and finds out the nearest neighboring sensor in each subarea. It creates 

two vectors pointing from itself to the closet and farthest sensor from those six sensors: 

 s s sd A ϕ= ∠


 (5.33) 

 l l ld A ϕ= ∠


 (5.34) 

where sd


and ld


are the vectors to the closest and farthest sensor respectively. A 

and φ represent the amplitude and angle of the vectors. Virtual image nodes will be used 

when a sensor is close to the sensing field boundary. 

Then, a moving vector is defined for each sensor as below: 

 ( ) ( )s o s l o lm A d A dϕ ϕ= − ∠ + − ∠


 (5.35) 

where d0 is a threshold distance between sensors and we set it to be 3 RS here. We also 

define a moving vector of the entire group of sensors: 

 1 2[ , ,..., ]NM m m m=
   

 (5.36) 

It can be seen that both vectors vi and M


have the same physical meaning in terms 

of sensor relocation. Specifically, vi is related to global and individual optimization 
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positions obtained by any PSO and M


 arises from the natural properties of redeploying 

the sensor network. Therefore, these vectors are combined in order to improve the 

performance of traditional PSO. This hybridization is formulated by the following 

equation: 

 ( ) ( )i i p p i i g g i M Mv v a r p S a r g S a r Mω← + − + − +


 (5.37) 

This will be used in our hybrid PSO instead of (5.31). In our algorithm, ω is 0.5, 

both ap and ag are 2, and aM is 1. 

5.3.2 Simulation and Results analysis 

In our simulation, sensors are deployed in a 100 meters by 100 meters field. The 

initial energy related coefficients are the same. Assume that two rechargeable AA 

batteries contain 1,600 mAh energy are used in each sensor, so the total energy for each 

sensor will be 17,280 Joules. Sensors use the low energy cost mobile device [9] to carry 

the sensors, so kM is 8 J/m. For a typical sensor with 0.2 watts in a range of 10 meters, kl 

will be 0.02 W/m when the linear model is used, and kq will be 0.002 W/m2 when the 

quadratic model is used. Other energy consumed by the CPU and other components is 0.5 

watts. 

Three initial deployments are examined which 20, 30, and 40 sensors initially 

deployed. All sensors are randomly deployed in the sensing field. Both linear and 

quadratic models are applied for each case. In order to evaluate the performance of the 

hybrid PSO, we compare the results with the traditional PSO and Genetic Algorithm (GA) 

which is another centralized heuristic search comparable with PSO. The same initial 

populations are taken. The population sizes of all cases are 50 and the maximum 
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generation number is set to be 100. As it is indicated in Section 5.2.6, when we analyzed 

the performance of traditional PSO, we use 200 populations and 400 generations. The 

different settings here also show that the hybrid PSO has significant improvement beyond 

the traditional PSO. 

Figure 5.14 shows an example of redeployment outcome when hybrid PSO is 

used. In this example, the linear energy model is applied. Figure 5.14 (a) shows the initial 

deployment of 20 sensors. All sensors are randomly deployed. It can be seen that with 

random deployment, some sensors have to use large sensing ranges, two to four times 

larger than the range of other sensors. This situation causes the lifetime of the sensor 

network to be short, since some of the sensors drain their batteries much faster than other 

ones. In Figure 5.14 (b) we can see that after optimization, sensors are more evenly 

distributed. Therefore the lifetime of sensor network can be prolonged. 

 

(a) Initial deployment 
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(b) Optimization outcome 

Figure 5.14 Optimization example of 20 sensors using linear energy model 

Simulation results are shown in Figure 5.15 and Figure 5.16 for linear and 

quadratic models separately. The convergence process is shown. A significant increase of 

the lifetime of the sensor networks can be seen in both energy models after optimization. 

It can be seen that both the PSO and the hybrid PSO have the ability to optimize the 

energy consumption; therefore, they provide a longer lifetime to the sensor network. Both 

algorithms converge to the optimal result in less than 40 generations. However, the 

hybrid PSO achieves 4%~20% longer higher optimal lifetimes than the traditional PSO 

algorithm. 
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Figure 5.15 Lifetime optimization when the linear energy model is applied. 

 

 

Figure 5.16 Lifetime optimization when the quadratic energy model is applied. 

0 20 40 60 80 100
0.8

1

1.2

1.4

1.6

1.8

2

2.2
x 10

4

Generation Number

O
pt

im
al

 L
ife

tim
e 

(S
ec

on
ds

)

 

 

10 Sensors with PSO

10 Sensors with Hybrid PSO
10 Sensors with GA

20 Sensors with PSO

20 Sensors with Hybrid PSO

20 Sensors with GA

30 Sensors with PSO
30 Sensors withHybrid PSO

30 Sensors with GA

0 20 40 60 80 100
0

2000

4000

6000

8000

10000

12000

14000

16000

18000

Generation Number

O
pt

im
al

 L
ife

tim
e 

(S
ec

on
ds

)

 

 

10 Sensors with PSO

10 Sensors with hybrid PSO
10 Sensors with GA

20 Sensors with PSO

20 Sensors with hybrid PSO

20 Sensors with GA

30 Sensors with PSO
30 Sensors with hybrid PSO

30 Sensors with GA



 

124 
 

The distributed relocation algorithm, which has been hybridized to a PSO, moves 

the sensors to more evenly distributed locations, thereby requiring sensors with the 

shortest sensing range. This in turn yields energy savings and prolongs the lifetime of 

sensor networks. Therefore, the hybrid PSO will provide better improvement when 

energy spent on sensing is larger than energy spent on movement. This corresponds to 

sensor networks that have long lifetime. For example, when the linear model is used, it 

can be seen that when there are 30 sensors (case with the longest lifetime), the hybrid 

PSO has 7% longer lifetime than the one of traditional PSO. This increase in lifetime is 

larger than the corresponding lifetime increase for the other two cases with 10 and 20 

sensors. 

The lifetime extensions achieved by both algorithms for both models of 

optimization are listed in Table 5.1. It can be seen  that the optimization process can 

significantly increase the lifetime of the sensor network, especially in instances when the 

initial deployment results in short remaining lifetime (e.g., 385% increased lifetime was 

achieved when the original lifetime was only 2020 seconds). Also, when the required 

sensing range is decreased, the quadratic model exhibits more energy savings and longer 

lifetime than the linear model, due to its quadratic dependence on the sensing range. This 

optimization algorithm can also be used throughout the entire lifetime of the sensor 

network. Therefore, the location of sensors will be optimized according to the remaining 

energy of each sensor. When any sensor dies, the algorithm can be performed so that the 

remaining sensors can still provide maximum possible service as long as possible. 
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Table 5.1 Lifetime optimization result. 

Number of 

sensors 

Linear Energy Model 

Original 

Lifetime 

Increased percentage from 

Original lifetime 

Increased percentage 

by Hybrid PSO 

compare to PSO PSO Hybrid PSO 

10 9767 s 66% 74% 4.3% 

20 14588 s 26% 32% 5.1% 

30 14247 s 37% 46% 7.0% 

 

Quadratic Energy Model 

Original 

Lifetime 

Increased percentage from 

Original lifetime 

Increased percentage 

by Hybrid PSO 

compare to PSO 

PSO Hybrid PSO  

10 2020 s 361% 385% 5.3% 

20 6079 s 103% 148% 22% 

30 5683 s 163% 190% 10% 

5.3.3 Conclusions 

This paper introduced a hybrid PSO optimization algorithm for prolonging the 

lifetime of mobile wireless sensor networks. Simulation results show after relocation 

optimization by hybrid PSO, sensors are more evenly distributed therefore providing a 

longer lifetime of the entire sensor network. Compared to traditional PSOs and GAs, the 

hybrid PSO can provide 5% to 20% more lifetime. The lifetime of the sensor network can 
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be extend more than 30% when linear energy model is used and more than 150% when 

the quadratic energy model is used. The lifetime of the sensor network is highly depend 

on the initial deployment. 

5.4 Summary 

This chapter introduced three centralized optimization algorithms aiming at 

saving the energy of wireless sensor networks and prolonging their lifetime while 

providing optimal coverage. All of the algorithms require large amount of computation, 

therefore they can only be applied in the powerful central node, and not in each sensor 

node. 

These three optimization algorithms focus on applications with two types of 

hardware. The Genetic Algorithm based optimization is applied to sensors with fixed 

sensing range and provides the optimal tradeoff between sensing coverage and the 

distance travelled of sensors. The Particle Swarm Optimization and hybrid Particle 

Swarm Optimization algorithm uses range adjustable sensors to ensure optimal coverage 

of the sensing field and optimal tradeoff between sensing range and travelled distance of 

sensors so that the lifetime of sensor network can be maximized. 

The Genetic Algorithm can be used to estimate the best tradeoff before the sensor 

relocation occurs. The application can choose the target percentage of coverage and use 

the optimum outcome to decide the relocation destinations. 

Both Particle Swarm Optimization and Hybrid Particle Swarm optimization focus 

on extending the lifetime of wireless sensor networks by making savings in terms of both 

long term energy and short term energy consumption. Both algorithms can extend the 
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lifetime of wireless sensor networks by more than 60%. Our hybrid Particle Swarm 

Optimization algorithm can achieve more than a 5% lifetime extension compared to the 

traditional Particle Swarm Optmization. 

Furthermore, all algorithms can continue to optimize the sensor network lifetime, 

in the event that sensors die due to the exhaustion of their battery power. This means that 

both optimization algorithms are self-healing and robust. 
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CHAPTER 6 

6 DISTRIBUTED SENSING RANGE ADJUSTMENT 

All the algorithms discussed above only consider equal, non-adjustable range 

sensors. This constraint makes for algorithms that cannot reach a goal of simultaneously 

providing 100% coverage and energy-efficiency, because there is too much overlap in the 

sensor ranges. In our algorithm, we developed a distributed method of using range-

adjustable sensors for providing 100% coverage, as well as saving the energy for 

prolonged sensing. Our algorithm can be used either in a multitude of different cases, 

including directly after random deployment, after selecting and grouping sensor nodes or 

after the relocation of sensors. 

6.1 Assumptions 

In addition to the assumptions we declared in Section 3.7, we have two more 

assumptions to our distributed sensing range adjustment algorithm: 

1. All sensors have adjustable sensing radius. Each sensor can shorten their sensing 

radius by lowing the power they use. 

2. All sensors know their current locations within the sensing field, and the details of 

the sensing field, such as the coverage area boundaries, are pre-installed into their 

memories 

6.2 Voronoi Diagram 

The Voronoi diagram is a method for partitioning an area. If a set of N points is in 

the area A, the area will be divided into N subareas that each have only one point inside. 

Any location L(xl, yl) in the ith subarea (Ai), will have the shorter distance to the point I(xi, 
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yi) in that subarea than compared to any other point J(xj, yj). This can be formulated using 

the following equation: 

 { }| ,i i jA l A D D for all i j= ∈ ≤ ≠  (6.1) 

where Di is distance between L and I and Dj is the distance between L and J. 

In our work, the area A will be our target sensing field required to be covered, and 

the points will be our sensors providing the coverage. From assumptions 3 and 4 above, 

each sensor can compute the Voronoi diagram locally by broadcasting their location and 

receiving the location information from other sensors. Therefore Voronoi diagrams can 

be used to decide the partitions of the area closest to each sensor. Voronoi diagrams have 

been used in mobile sensor networks for relocation in [12]. Two sensors that share the 

same Voronoi subarea vertex are called neighbors. 

6.3 Algorithm description 

In previews algorithms that use equal and non-adjustable range sensors coverage 

holes and redundant coverage always exists (see Figure 6.1). Six equal-range sensors are 

deployed to cover a rectangular area. The area in green is covered by three sensors, i.e., 

the coverage is redundant. The area in red is not covered by any sensor and represents a 

coverage hole. 
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Figure 6.1 Redundancy and Coverage holes. 

Our algorithm has addressed the following question: how can we use range 

adjustable sensors to avoid coverage holes and redundant coverage? Our first goal is to 

maintain full coverage, since this is required by many surveillance applications. Our 

second goal is to shorten the sensing range, such that, redundancies would be reduced 

thereby saving energy. For example, the problem shown in Figure 6.1 can be solved if the 

coverage can be adjusted to the dashed lines shown for sensors A and B.  In this way, 

sensor A saves some energy, but will not create any uncovered areas. Additionally, 

sensor B uses more power to ensure that the sensing area is fully covered. 

6.3.1 Divide and Conquer 

In distributed algorithms, it is not easy for each sensor to know if the entire field 

is covered. A more direct and easier way to monitor the coverage ratio of the entire field 

is to partition the sensing field and have every sensor be responsible for covering only the 

area close to it. This method of “divide and conquer” is implemented using Voronoi 

diagram as described above. 
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Theorem 1: A sensing field is completely covered if, and only if, all of the 

Voronoi subareas that make it up are completely covered. 

This can be seen in the fact that the entire sensing field is covered completely by 

the Voronoi diagram subareas. Additionally, from the definition of Voronoi diagram, 

each subarea is completely exclusive of all others. Thus, any area belonging to a Voronoi 

subarea not covered will result in an uncovered area of the sensing field. If all subareas of 

the diagram are covered, then the entire sensing field has 100% coverage. 

Theorem 2: A sensor can cover its entire Voronoi subarea if it can cover all the 

vertexes of the subarea it belongs to. 

This can be achieved by setting the sensing radius as the distance to the farthest 

vertex from the sensor. Sensor I, at location (xi, yi), will set its sensing radius RSi 

according to the following equation: 

 ( )2 2max ( ) ( ) , 1,...,Si i vj i vjR x x y y j K= − + − =  (6.2) 

where (xvj, yvj) are the locations of the vertices of the subarea it belongs to, and K is the 

total number of vertices of that subarea. Also, we consider the boundaries of the sensing 

field as edges of Voronoi subareas, so that each area is a closed area. 

6.3.2 Sensing range shortening 

In the previous section, we described a method for accomplishing our first goal of 

achieving complete coverage. However, solely following that method leads to wasted 

energy. An example of this is shown in Figure 6.2. Five sensors are deployed in a 10 by 

10 square meter sensing field. The red lines indicate the farthest vertex for each sensor. 

Sensors adjust their sensing range according to equation (6.2). Although the entire 
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sensing field is covered by the five sensors, Voronoi subarea for sensor D is mostly 

covered by other sensors surrounding it. Sensor D can just turn down its sensing range to 

the distance DMതതതതത, in which M is the intersection point of the sensing ranges of sensors B 

and E. On the contrary, if any of sensors A, B, C and E use a shorter sensing radius, some 

parts of the sensing field will be uncovered. We define certain sensors as important to 

distinguish them from others and treat them differently within our algorithm. 

 

Figure 6.2 Voronoi diagram based sensing radius choosing. 

Definition 1: A sensor is important if reducing any portion of its sensing range 

leads to some uncovered area in the sensing field. 

In our algorithm, we consider a sensor as “important” if it can be described by any 

of the following three cases which are shown in Figure 6.3: 
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1. If a sensor’s sensing radius is equal to the distance between itself and a corner of 

the sensing field, this sensor is “important” (Sensor A in Figure 6.3) 

2. If two neighboring sensors set their sensing range to cover a shared subarea vertex 

on the sensing field boundary, then both sensors are considered “important” 

(Sensors B and C in Figure 6.3) 

3. If three neighboring sensors set their sensing range to cover the same point, all 

three sensors are considered “important”. (Sensor D, E and F in Figure 6.3) 

 

Figure 6.3 Sensor important definition. 

All other sensors that do not meet these conditions are considered “not important”. 

Our algorithm seeks to iteratively convert all “not important” sensors into important 

sensors by shortening sensing radius to the minimum possible thereby providing an 

energy savings. 
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In order to avoid the problem of two sensors simultaneously shortening their 

sensing radius, which could subsequently result in the creation of uncovered areas, each 

sensor performs the range shortening process individually one at-a-time based on a set of 

priorities. 

Definition 2: The priority of the ith sensor is defined as the following: 

 
1

i
i

pr
L

=  (6.3) 

where Li is the estimated lifetime of the sensor which is related to its remaining battery 

energy and sensing radius. A sensor with larger sensing radius will have shorter lifetime, 

and therefore, larger priority (according all sensors have the  same battery and 

components). 

This definition of the priority is to have all sensors consuming energy more 

evenly. A sensor closer to dying will have a higher priority to shorten its radius. 

6.3.3 Detailed range-adjustment process 

The entire sensing range adjustment follows the steps below. 

1. Step 1: Information collection and sensing range initialization 

a) Each sensor broadcasts its locations and uses the location information it obtains 

to create a local Voronoi diagram around itself. 

b) Each sensor adjusts its sensing radius to cover its own Voronoi diagram using 

equation (6.2) 

c) Each sensor broadcasts the initial sensing radius it receives. 

d) Each sensor calculates if it is “important” and broadcasts its decision. 

2. Step 2: Redundant sensor filtering 
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a) Each sensor checks if its entire covered area is covered by any other sensor by 

the information they get from step 1. 

b) If yes, it turns itself to sleep and notifies all the other sensors of the change in 

its status. 

c) Other sensors that are still on working mode will redo the Voronoi diagram 

calculation and range adjustment initialization.  

d) This step is repeated until no sensor is redundant. 

(In the simulation, we found that step 2 is not necessary when the sensors are 

evenly distributed.) 

3. Step 3: Priority setup and making a waiting list 

Here, sensors will decide if they will start the sensing range shortening process or 

if they will wait for other sensors. Each “not important” sensor creates a waiting list 

including each of its neighboring sensors with a higher priority that have not completed 

their sensing range adjustment. Only if its waiting list is empty can a sensor start the 

process of shortening its sensing radius, with the updated sensing radius of its 

neighboring sensors. 

4. Step 4: Range shortening 

Once a sensor finds out that there is no other sensor on its waiting list, it starts the 

sensing range shortening process. 

a) A candidate solution list is created by each sensor. The candidate solutions are 

initialized as the distances from the sensor to all the subarea vertices. For ease 

of explanation, we name these vertices as V1, V2, V3…, from farthest to closest 

from the sensor. The corresponding values of distance are v1, v2, v3…. Our 
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initial solution is v1, but in the case that the sensor is not important, we need 

the solution value until the sensor is considered important. This is depicted for 

sensor D in Figure 6.2. 

b) The sensor finds out which subarea vertex is farthest from it, which is V1 as 

shown in Figure 6.2. 

c) Since each vertex is surrounded by exactly three sensor nodes, it then finds the 

other two neighboring sensors in the subareas that share vertex V1, which are 

sensors B and E in Figure 6.2. 

d) The sensor first checks if its location is within the sensing range of both 

neighboring sensors (B and E). If yes, v1 will be changed to 0. 

e) If 4d is not met (if the sensor is outside of the neighboring sensors’ range), then 

the sensor calculates if the circles of the two neighboring nodes’ sensing ranges 

intersect. If not, the sensor calculates what the intersection points would be if it 

selected a larger sensing range among relevant points on the edges of the 

subarea. There should be at least one intersection point because the sensor is 

not redundant, as we determined in step 2. Then it calculates the distance 

between the sensor and the intersection points that are on the edges next to 

V1(if any) and selects the larger value to replace the value of v1. If neither of 

the intersection points is on either of the two edges, we conclude that V1 is 

completely covered and set v1 to be 0. 

f) If the sensing ranges of two neighboring nodes intersect, calculate the distance 

from the sensor to the closer neighboring node and replace the value of v1 with 

this distance, only if it is less than the original v1. 
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g) In parts 4a through 4f, we modify one value in the candidates of solution 

values. We now set our solution as the largest value among the candidate 

solutions. Check if the sensor is now important. If yes, go to step 5, otherwise, 

repeat part 4b through 4g for other vertices from largest to smallest. For 

example, it can be seen that if part 4f is met and that value is larger than v2, the 

sensor is important after the sensing radius has been set to v1. However, in the 

case of Figure 6.2, all values of v1 to v4 will be modified to the circle 

intersections, and at last we choose the distance DM . This is because eventual 

values of v2, v3, and v4 are all smaller than that of v1. As such, the repetitions of 

steps 4a through 4g for each candidate is needed to modify the solutions until 

the largest modified value, in this case v1, is picked as final solution in an 

attempt to make the sensor important. 

h) If after all candidate solution values, have been modified, and the sensor is still 

not important, then set the sensing radius to be 0 and go on to step 5. 

5. Step 5:Finish 

After finishing adjusting the sensing radius, each sensor will broadcast a message 

of its new radius. Therefore, the other sensors that were waiting on that sensor can delete 

the sensor from their waiting list and update the new radius for use in their adjustment 

process. 

In the above steps, we focus mainly on the method of reducing the sensing range 

while maintaining the coverage for the sensors in the interior of the sensing field. In the 

case that a sensor node is close to the boundaries of the sensing field, we treat those 

boundaries as Voronoi subarea edges made by the sensor node and some virtual nodes 
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outside the sensing range with zero sensing radius. In this way, we can perform the steps 

listed above to all sensors. 

6.4 Simulation and Results 

In order to evaluate the performance of our algorithm, simulations were 

conducted with two different scenarios. In both of the scenarios, sensors are initially, 

randomly deployed. In the first scenario, we perform a potential field algorithm as 

discussed in [7] first, and then apply our sensing range adjustment. In the second scenario, 

we directly perform our algorithm. Since the initial deployment is random, we perform 

the algorithm significantly large amount of times and then analyze the average outcomes. 

In each scenario, we developed three cases with 20, 30, and 40 sensors deployed 

respectively. We consider situations of both continuous and discrete range adjustment. 

The discrete ranges are in the set [1, 2, 3,…] meters. 

6.4.1 Sensing radius adjustment 

Figure 6.4 shows the results of both scenarios for continuous range adjustments. 

As our first goal is to reach 100% coverage, we compare our results of average sensing 

radius after our algorithm (black lines) with the value that originally was necessary in 

order to get 100% coverage (blue lines). For example, in scenario 1, if all sensors are 

with equal sensing radius, in order to cover the entire sensing field, a 20.9 meters sensing 

radius on average is required after 10000 runs of the simulation. After we perform our 

range adjustment process, we can cover the area using an 18.2 meters sensing radius. It 

can be seen, in both scenarios, that our algorithm can greatly reduce the sensing radius, 

compared to when the equal sensing radius sensors are used. On average, the sensing 
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radius can be shortened by 13% - 20% for scenario 1, and 55% to 58% for scenario 2. 

The improvement is very significant in scenario 2, when sensors are randomly deployed 

without any prior relocation schemes. This is because the density of the sensors cannot be 

balanced under these circumstances, and a very large sensing radius is required to cover 

the entire sensing field when initially using the same sensing range for all sensors. 

 
Figure 6.4 Simulation outcomes with different number of sensors 

The simulation results for discrete range sensors are very similar to the ones we 

get from the continuous range adjustable sensor. In the discrete range case, the sensors 

need to use 0.4 meters more on average compared to the continues range. In theory, if the 

sensing range is uniformly distributed, the difference between the continues value and the 

rounded-up discrete value is 0.5 meters on average. Our results obtain 0.1 meters less 
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because when some of the sensors round up their sensing radius, other neighboring 

sensors are able to use less sensing radius. 

 
(a) 

 
(b) 

Figure 6.5 Example outcome for scenario 2. 

In order to specifically evaluate our shortening process, we also show the average 

sensing radius after step 1 which is obtained only by Voronoi diagram before the 
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shortening process. It can be seen that even when the sensors are distributed fairly evenly, 

our shortening process can still result in a shorter sensing radius on average to save some 

energy. With the scenario 2, the shortening process has a more significant benefit. It can 

provide 29%-30% savings in sensing radius on average for the entire sensor network. 

6.4.2 Communication overhead 

In WSNs the communication overhead is also an important part related to the 

energy consumption. Therefore, we examine the communication overhead of the 

algorithm. 

From our simulations above, we found out that in the scenario 1 which applies our 

algorithm after using potential field, no redundant sensor are found in step 2: redundant 

sensor filtering. Therefore, we conclude that there is no redundant sensor if the sensors 

are evenly distributed such as after the potential field algorithm. Thus it is not necessary 

to do the redundant sensor filtering step in this scenario. By skipping the step 2, one less 

package will be send from each sensor. 

In order to check the communication overhead, we calculate the average number 

of packets that are sent in order to run the algorithm. Figure 6.6 shows the relationship 

between the number of sensors and the number of packets. It can be seen that the number 

of packets is approximately linear to the scale of the sensor network. The packets sent in 

scenario 1 that includes the potential field algorithm are less than in the scenario 

executing our algorithm directly after random deployment. This is because in the scenario 

including a potential field algorithm, sensors do not need to check if they are redundant, 

and one less packet will be sent from each sensor. 
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Figure 6.6 Communication overhead of algorithm 

6.5 Conclusions 

This chapter addressed the complete area coverage problem of WSNs. Range-

adjustable sensors are used so that the coverage holes and redundant problem in non-

adjustable equal range sensors networks can be solved. Up to more than 50% energy can 

be saved compared to the equal non-adjustable sensor networks while the coverage of 

WSNs can be achieved at 100%. The algorithm can work for both uniform and 

nonuniformly distributed sensor networks. It has more significant sensing range 

adjustment performance when sensors are not uniformly distributed. Also, the algorithm 

can be incorporate with the existing solutions with sensor relocation, scheduling or other 

coverage related algorithms so as to provide better coverage and energy savings. 
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CHAPTER 7 

7 CONCLUSIONS AND FUTURE WORK 

7.1 Conclusions 

As stated in the beginning of the dissertation, coverage and energy consumption 

are two major aspects of wireless sensor networks that are considered in delivering 

quality of service. This dissertation addressed the coverage and the energy consumption 

optimization problems of mobile, wireless sensor network with different application 

requirements. In this dissertation, we first summarized the existing solutions for 

optimizing coverage and lifetime of sensor networks. Second, we described the models 

and calculations related to sensing coverage and energy models. Third, seven novel 

optimization algorithms with self-healing properties were developed. Different 

algorithms deal with different application requirements and hardware availabilities. 

Simulations for testing the algorithms have been carried out for a variety of cases.  

Three different centralized optimization algorithms have been derived for sensor 

networks that have a powerful central node. The optimizations are based on evolutionary 

optimization algorithms, such as, the Genetic Algorithms (GA) and the Particle Swarm 

Optimization (PSO). Both are suitable for finding for solutions to non-deterministic, 

polynomial-time hard (NP hard) optimization problems. Compared to GAs, PSOs are 

easier to design and implement. With the help of the central node, the substantial amount 

of calculation in optimization algorithms can be executed. Simulation results have shown 

that optimal tradeoffs between sensor network coverage ratio and the travelled distance of 

the sensors with fixed sensing radius can be achieved. In other situations 100% coverage 
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is achieved using range adjustable sensors by finding optimal tradeoffs between the 

sensing radius and travelled distance. This also prolongs the lifetime of the sensors. Also, 

significant energy savings can be achieved by enlarging the sensing radius.  

Three distributed algorithms have been developed for wireless sensor networks 

without any central nodes. The sensors use limited information to relocate themselves 

cooperatively toward the ideal coverage configurations. Significant improvement of 

sensing coverage has been achieved in all algorithms after approximately 10 to 20 rounds 

of  the algorithms. Our algorithms are 50% to 75% faster than the existing potential field 

solutions.  

Also, our work considered cases in which self-localization systems are available. 

When sensor localization information is available, the presented algorithms have similar 

coverage outcomes, while typically having about 20% energy savings when compared 

potential field algorithms. If the sensors do not have self-localization systems or their 

localization systems are not accurate enough, our algorithm can still provide a significant 

increase in coverage ratio. This is very important because a lot of the sensing and 

monitoring applications happen for in indoor environments. The accuracy of these 

systems within these environments is around 2 meters, which is much larger than the 

thickness of the walls. This renders the use of location information non-applicable for 

indoor application optimizations because the algorithm cannot use such erroneous data 

provided by the sensors. However, this dissertation solves this problem. The tradeoff of 

not knowing the locations of sensors is the increase in travel distance. In general, this 

costs 25% to 30% more energy for the sensors to move. 
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One distributed algorithm is designed specially for range-adjustable sensors to 

maintain the 100% coverage and also using short sensing radius so as to save energy. 

This algorithm is combinable with the relocation algorithms above and providing more 

than 10% energy savings. It can also be used directly after sensors got randomly 

deployed. 

Table 7.1 is a list of summary with our algorithms and some other typical existing 

algorithms. 

The contributions of each of our algorithms are detailed below: 

 The Average Relative Position algorithm in Section 4.1 is a low complexity 

distributed sensor relocation algorithm. It converges more than 2 times faster than 

the existing solutions with similar computation complexity and also provides 

some energy savings in the mobilization of sensors. This is achieved by averaging 

the relative position of sensors. The disadvantage of the algorithm is that the 

coverage it can reach is 1%-2% less than the algorithms that converge slower. 

 The Weighted Relative Distance algorithm in Section 4.2 has a similar 

convergence rate to the first algorithm we listed above. It only uses the two most 

important relative distances for calculating the relocation position. Therefore, the 

error in the localization system can be reduced so that the algorithm can provide 

enough tolerance to the inaccuracy of the sensor locations. This is very useful in 

indoor environments which have inaccurate sensor localizations. The 

disadvantage of the algorithm is that the coverage it can reach is 3% less than the 

existing solutions. 
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 The algorithm without location in Section 4.3 uses the relocation energy as a 

tradeoff, but provides a stable algorithm that increases coverage even without 

location information. This can reduce the hardware cost of the sensor. However, 

the travelled distance of sensors will be 20% more than compared to the algorithm 

using localization systems. 

 Our Multi-objective Genetic Algorithm in Section 5.1 is a centralized algorithm 

with high computation complexity. This will provide more than 40% energy 

savings in relocating the sensors compared to the distributed solutions. It can 

provide 100% coverage, while the existing solution in [26] can only provide about 

95% coverage. 

 We provide two PSO algorithms in Section 5.2 and 5.3 that can use range 

adjustable sensors to provide energy savings in the WSN. Both can provide 

significant energy savings while maximizing coverage to 100% of the sensing 

field. We hybridized our distributed algorithm into the PSO, and the resulting 

hybrid PSO improved the performance of the PSO by up to 20%. 

 A range adjustment algorithm is separately developed for range-adjustable 

sensors. It can provide 20% - 50% energy savings in sensing. The algorithm can 

cooperate with all algorithms listed above or scheduling sensor problems, and still 

provide 100% coverage 
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Table 7.1 Summary of Algorithms  

Algorithm Section or 
Reference 

C/ D Location Major Problem Complexity Coverage Energy Convergence Fault 
tolerant

Average Relative 
Position 

4.1 D YES Coverage Low 95%+ 80% 5 NO 

Weighted Relative 
Distance 

4.2 D YES Coverage Low 95% 100% 10 YES 

Without Localization 4.3 D NO Coverage Low 94% 130% 20 NO 
Potential Field [7][8] D YES Coverage Low 95%+ 100% 20-30 NO 

Virtual force [9] D YES Coverage Low 93% 110% 20 NO 
Voronoi based 

relocation 
[12] D YES Coverage Medium 95% 80% 10 NO 

Multi-objective 
Genetic Algorithm 

5.1 C YES Coverage & 
Moving Energy 

High 100% Less 
50% 

N/A N/A 

Particle Swarm 
Optimization 

5.2 C YES Coverage & 
Sensing Energy 

High 100% 35% N/A N/A 

Hybrid PSO 5.3 C YES Coverage & 
Sensing Energy 

High 100% 30% N/A N/A 

MOGA by Jourdan [19] C YES Communication 
& Coverage 

High N/A N/A N/A N/A 

Non-dominated 
sorting GA 

[20] C YES Sensor 
Scheduling 

High N/A N/A N/A N/A 

Limited-mobile WSN 
optimization 

[36] C YES Coverage High 95% Less 
60% 

N/A N/A 

Particle Swarm Gentic 
Optimization 

[39] C YES Coverage High 6% More 5% 
mobile 

N/A N/A 

Sensing range 
adjustment 

6 D YES Coverage & 
Sensing Energy 

Medium 100% 20%-
50% 

N/A NO 
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In conclusion, a complete analysis of coverage optimizations for mobile wireless 

sensor networks has been made in this thesis. We enhance the energy performance 

beyond that of existing solutions, even though they produce similar outcomes in 

optimized coverage. We also addressed the problem of inaccurate localization systems. 

This is a new way of solving this type of problem and no existing works has addressed 

this problem. The algorithms derived in the thesis are also self-healing so that they can be 

used in severe environments as well. 

7.2 Future Work 

This work focuses on optimizing the deployment of mobile wireless sensors so 

that coverage and lifetime of the sensor network can be optimized. Our work can be 

expanded for further research. 

Our work focuses on analytical design and produces algorithms tested in the 

software simulations. Based on the simulations, experimental works can be implemented 

with the deployment of real mobile wireless sensor networks. For example, we can use 

the programmable mobile sensor kits and test the relocation algorithms in indoor and 

outdoor environments. Different hardware modules can be added or removed from the 

sensor nodes to more closely resemble specific applications. 

The algorithms we designed are mainly for monitoring sensors which have 

specific sensing radii. These algorithms can also be expanded to work with the sensors 

that collect data at single points. For example, mobile sensors are deployed for 

monitoring air pollutions. Sometimes it is desirable to redeploy the sensors for an even 
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distribution. In such cases, the distributed optimization algorithms can be applied for 

deploying the sensors evenly using less energy. 

Beyond the sensing coverage problem, the radio frequency coverage is also an 

active topic in mobile wireless research. Methods for increasing the coverage of sensor 

networks while maintaining or increasing the radio frequency reception are other ways to 

proceed from this work.  
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