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ABSTRACT OF THE DISSERTATION 

DOES LANDSCAPE CONTEXT AFFECT HABITAT VALUE? 

THE IMPORTANCE OF SEASCAPE ECOLOGY IN BACK-REEF SYSTEMS 

by 

Lauren Ann Yeager 

Florida International University, 2013 

Miami, Florida 

Professor Craig A. Layman, Major Professor 

Seascape ecology provides a useful framework from which to understand the 

processes governing spatial variability in ecological patterns. Seascape context, or the 

composition and pattern of habitat surrounding a focal patch, has the potential to impact 

resource availability, predator-prey interactions, and connectivity with other habitats. For 

my dissertation research, I combined a variety of approaches to examine how habitat 

quality for fishes is influenced by a diverse range of seascape factors in sub-tropical, 

back-reef ecosystems.  In the first part of my dissertation, I examined how seascape 

context can affect reef fish communities on an experimental array of artificial reefs 

created in various seascape contexts in Abaco, Bahamas.  I found that the amount of 

seagrass at large spatial scales was an important predictor of community assembly on 

these reefs. Additionally, seascape context had differing effects on various aspects of 

habitat quality for the most common reef species, White grunt Haemulon plumierii. The 

amount of seagrass at large spatial scales had positive effects on fish abundance and 

secondary production, but not on metrics of condition and growth. The second part of my 

dissertation focused on how foraging conditions for fish varied across a linear seascape 



vii 

gradient in the Loxahatchee River estuary in Florida, USA. Gray snapper, Lutjanus 

griseus, traded food quality for quantity along this estuarine gradient, maintaining similar 

growth rates and condition among sites. Additional work focused on identifying major 

energy flow pathways to two consumers in oyster-reef food webs in the Loxahatchee. 

Algal and microphytobenthos resource pools supported most of the production to these 

consumers, and body size for one of the consumers mediated food web linkages with 

surrounding mangrove habitats. All of these studies examined a different facet of the 

importance of seascape context in governing ecological processes occurring in focal 

habitats and underscore the role of connectivity among habitats in back-reef systems. The 

results suggest that management approaches consider the surrounding seascape when 

prioritizing areas for conservation or attempting to understand the impacts of seascape 

change on focal habitat patches. For this reason, spatially-based management approaches 

are recommended to most effectively manage back-reef systems. 
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The role of surrounding landscapes in affecting community structure and ecosystem 

processes is a core area of study in ecology (Wu & Hobbs 2002; Turner 2005a). Spatial 

heterogeneity, once ignored by ecologists to simplify models or theory, is now 

recognized as a central driver for many ecological processes (Pickett & Cadenasso 1995). 

Landscape ecology is often defined as the study of how habitat identity and spatial 

configurations affect particular aspects of ecosystem function (Turner 1989). A landscape 

approach is commonly used to assess human impacts on ecosystem function, and is 

beneficial in developing effective conservation strategies (Andren 1994).  

Organisms exist in highly heterogeneous environments and landscape ecology is a 

useful approach to understand spatial patterns of abundance (Wiens 1976). A recent 

review by (Mazerolle & Villard 1999) found that patch and landscape characteristics 

were important variables explaining the distributions of a wide array of vertebrate taxa. 

Surrounding habitats may control species distributions by affecting resource availability, 

dispersal success and predator-prey dynamics (Polis et al. 1997; Turner 2005b). The 

spatial scale at which organisms respond to the surrounding habitat varies depending on 

individual life history strategies or body size (Vos et al. 2001; Goodwin & Fahrig 2002; 

Grober-Dunsmore et al. 2008); there is no single scale of variation which is relevant for a 

particular species or characteristic of interest.  

While the importance of landscape context has been well accepted in terrestrial 

environments, little is known about the role of landscape (or seascape) context and its 

effect on communities in the marine realm.  Many marine species move among different 

habitat patches or types over short (daily) and long (annual) temporal scales (Burke 1995; 

Cocheret de la Moriniere et al. 2002; Pittman & McAlpine 2003; Faunce & Serafy 2007; 
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Verweij et al. 2007).  Much research focuses on simply identifying a limited set of 

habitat types that is most important for individuals, populations or species (Beck et al. 

2001; Dahlgren & Marr 2004). Yet, habitat types exist in complex mosaics.  For example, 

in tropical marine systems, mangroves, seagrass and coral reef habitats are often 

intermixed in the nearshore environment (Parrish 1989; Dahlgren & Marr 2004). 

Therefore, application of landscape ecology to the marine realm has value to better 

understand ecological patterns in these systems (Robbins and Bell 1994). The 

surrounding seascape has been shown to affect important ecological functions for 

macroinvertebrates and fishes in temperate environments (Irlandi et al. 1995; Irlandi & 

Crawford 1997; Hovel & Fonseca 2005), and initial studies suggest that the surrounding 

seascape may also partially determine relative fish densities among habitat types in 

tropical systems (e.g., Turner et al. 1999; Kendall et al. 2003; Pittman et al. 2004; 

Pittman et al. 2007b; Drew & Eggleston 2008; Grober-Dunsmore et al. 2008; Gullstrom 

et al. 2008).  

The “back-reef” comprises all of those environments on the leeward side of the 

coral reef crest, including mangroves, seagrasses, and patch reefs (Adams et al. 2006). In 

back-reef systems, there appears to be wide variation in value of a given habitat type 

among locations. For example, it is likely that not all mangrove habitats function equally 

in their support of juvenile reef fishes (Blaber 2007). In particular, the surrounding 

seascape has the potential to change the value of a habitat to organisms, and may 

influence the recruitment success and assemblage structure of fishes associated with 

mangroves (e.g., Drew and Eggleston 2008, Pittman et al. 2007).  Similarly, the seascape 

context of coral reefs in the U.S. Virgin Islands was found to be an important variable 
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explaining fish community structure (Grober-Dunsmore et al. 2008). Gullstrom et al. 

(2008) found that distance to structured habitats like mangroves and coral reefs explained 

some of the variation in seagrass fish communities. Connectivity with other habitats, 

physiochemical variables, and larval supply, all may influence the habitat value of back-

reef environments (Faunce & Layman 2009).  

 To date, most work attempting to link seascape context to ecological patterns in 

back-reef systems have relied on correlative approaches (Grober-Dunsmore et al. 2009).  

These approaches are useful in developing hypotheses about the effects of seascape 

pattern on the structure and function of back-reef fish communities.  To truly link pattern 

and process and isolate the effects of seascape context, manipulative approaches are 

needed.  Additionally, most studies examining the importance of seascape context of 

back-reef fishes have focused on structural responses (changes in species richness or 

abundance) (Pittman et al. 2007b; Pittman et al. 2007c; Drew & Eggleston 2008; Grober-

Dunsmore et al. 2008; Gullstrom et al. 2008).  To further improve understanding the 

impacts of seascape context on habitat quality for fishes, more work on understanding 

ecological processes and functions affected by seascape context is necessary.  For my 

dissertation work, I have focused on addressing two knowledge gaps by using 

experimental approaches and moving beyond simple structural responses in fish 

communities to varying seascape context.  

For my dissertation research, I combined a variety of approaches to examine 

how habitat quality for fishes is influenced by a diverse range of seascape factors in 

back-reef tropical ecosystems. Each of my chapters contributes to this goal in a 

different way. Two of my chapters that consider empirical data were conducted in 
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seagrass/patch reef systems of The Bahamas and the other were conducted in an estuarine 

system in Florida.  Chapters II and III built upon classic landscape ecology approaches to 

link seascape factors to aspects of population, community and ecosystem ecology of reef 

fishes.  In Chapter II, I examined the “Effects of habitat heterogeneity at multiple spatial 

scales on fish community assembly.” The study was unique because it was among the first 

to use a manipulative approach to link seascape context to community assembly of fishes 

on simulated patch reefs. Chapter III built on this work and focused on the “Effects of 

seascape context on condition, abundance, and secondary production of a coral reef 

fish, Haemulon plumierii.”  Grunts (Haemulidae) were found to respond strongly to 

seascape context in the previous study, and by focusing on one species (White grunt, H. 

plumierii), I was able to gain a more detailed understanding of how seascape context can 

affect various aspects of habitat quality for this fish species.  

The next two chapters address studies that were conducted across a linear 

seascape (estuarine) gradient and focused on how trophic ecology can help elucidate 

habitat linkages and mechanisms allowing organisms to remain successful in terms of 

foraging and growth across different seascapes. Specifically, Chapter IV examines 

“Quantity for quality: foraging trade-offs for a generalist fish predator across an 

environmental gradient.”  The study identified foraging trade-offs that allowed Gray 

Snapper (Lutjanus griseus) to maintain equal levels of condition and growth among 

mangrove habitats in different seascape settings. Chapter V, entitled “Energy flow to two 

abundant consumers in a sub-tropical oyster reef food web,” compares food web linkages 

to Gray Snapper and Crested Goby (Lophogobius cyprinoides) and highlights the 

importance of species identity and body size in controlling trophic-based habitat linkages 
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among oyster reef and mangrove habitats.  All four data chapters evaluate the importance 

of seascape context in unique ways by using different approaches and metrics to evaluate 

habitat quality.  

The seascape approach to the study of back-reef ecosystems may be critical for 

proper management of reef fishes. Creation of marine protected areas is an important tool 

for management of fisheries and habitat conservation. Protected areas should include 

those habitats critical to the support of all life stages of focal species. Because of limited 

funds and resources, it is important that we prioritize conservation efforts. Furthermore, 

coastal zones are becoming increasingly developed resulting in changing seascapes 

(Millennium Ecosystem Assessment, 2005). Understanding how changing seascape 

context affects target populations as well as how organisms may be able to adapt to 

changing environments is critical to be able to predict the impacts of human 

development.  By combining a variety of approaches, I gained a more complete and 

detailed understanding of how seascape context affects the ecology of nearshore fishes.  

The results of my dissertation will contribute to our understanding of basic ecology of 

back-reef fishes as well as how to best manage and conserve habitats essential to critical 

life stages.   
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Abstract Habitat variability at multiple spatial scales may affect community structure 

within a given habitat patch, even within seemingly homogenous landscapes. In this 

context, I tested the importance of habitat variables at two spatial scales (patch and 

landscape) in driving fish community assembly using experimental artificial reefs 

constructed across a gradient of seagrass cover in a coastal bay of The Bahamas. I found 

that species richness and benthic fish abundance increased over time, but eventually 

reached an asymptote. The correlation between habitat variables and community structure 

strengthened over time, suggesting deterministic processes were detectable in community 

assembly. Abundance of benthic fishes, as well as overall community structure, were 

predicted by both patch- and landscape-scale variables, with the cover of seagrass at the 

landscape-scale emerging as the most important explanatory variable. Results of this 

study indicate that landscape features can drive differences in community assembly even 

within a general habitat type (i.e., within seagrass beds). A primary implication of this 

finding is that, human activities driving changes in seagrass cover may cause significant 

shifts in faunal community structure well before complete losses of seagrass habitat. 

 

Key words artificial reef · assembly rules · landscape ecology · habitat patch · seagrass  
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Introduction 

The importance of scale is a core tenet of the ecological sciences (Levin 1992; Schneider 

2001). Spatial heterogeneity, once ignored by ecologists in order to simplify models or 

theory, is now recognized as a central driver to many ecological processes (Pickett & 

Cadenasso 1995). In this context, landscape ecology is often defined as the study of how 

habitat identity and habitat configurations at larger spatial scales affect particular aspects 

of community structure and ecosystem function (Turner 1989). The degree of 

heterogeneity in environmental variables and resource distribution varies depending on 

the particular scale of study, necessitating a multi-scale approach to describe organism-

environment interactions (Sandel & Smith 2009).  

Causal mechanisms explaining patterns of organism abundance become 

increasingly difficult to identify with increasing scale of study (Wu & Hobbs 2002; Ims 

2005). The notable lack of mechanistic-driven experiments at a landscape-scale is 

primarily the result of feasibility (Ims 2005), as the broad spatial scales at which many 

landscape processes occur make manipulation and replication difficult. However, such 

experimental manipulations of landscapes are needed to mechanistically link ecological 

processes to landscape structure, as correlative relationships may not provide sufficient 

background to build appropriate predictive models. For example, experimental 

manipulation of habitat fragmentation in terrestrial systems have failed to consistently 

support predicted relationships between patch size and species richness from 

observational studies (Debinski & Holt 2000).  

While landscape ecology started out as primarily a terrestrial discipline, it is 

increasingly applied to explore organism-habitat relationships in aquatic environments 
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(Robbins & Bell 1994; Grober-Dunsmore et al. 2009). For example, the surrounding 

landscape, or landscape context, has been shown to affect important ecological factors 

(e.g., growth or predation risk) for macroinvertebrates and fishes in temperate seagrass 

beds and oyster reefs (Irlandi et al. 1995; Irlandi & Crawford 1997; Grabowski et al. 

2005; Hovel & Fonseca 2005). Even variations within habitat types (e.g., patchiness of 

seagrass cover at large spatial scales) have been correlated with predation risk and 

foraging efficiency of predators (Irlandi 1994; Irlandi et al. 1995). Initial studies applying 

landscape approaches to tropical marine systems indicate that landscape structure (cover 

and pattern of surrounding habitat types) likely play an important role in determining fish 

community composition, abundance and species richness (Pittman et al. 2004; Pittman et 

al. 2007b; Grober-Dunsmore et al. 2008). While such correlative evidence is 

accumulating, a mechanistic understanding of such processes is fundamentally lacking. 

Many nearshore systems are considered to be structure-limited (Hixon & Beets 

1989), and thus structurally complex habitats (e.g., patch reefs) are critical habitat for 

many ecologically and economically important species (Nagelkerken et al. 2000b). 

Further, because many of the species that use structurally complex habitats during the day 

are known to migrate to adjacent areas at night to feed (Ogden & Ehrlich 1977; 

Nagelkerken et al. 2000a; Luo et al. 2009), characteristics of preferred foraging grounds 

(e.g., distance to feeding area, cover of soft-bottom habitats) may be correlated with 

faunal abundance (Kendall et al. 2003; Pittman et al. 2007b). In such cases, it is expected 

that landscape context would be particularly important in structuring communities.  

The objective of the current study was to determine how habitat variables at two 

spatial scales (which I term patch- and landscape-scale) affect fish community assembly 
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in sub-tropical nearshore systems. By creating new structure (i.e., artificial reefs), I could 

model natural patch reef community assembly and control for variation inherent in 

observational studies of patch reef communities. I was also able to manipulate the habitat 

context of artificial reefs by creating reefs across a gradient of seagrass cover to explore 

the link between landscape structure and fish colonization. I tested if fish community 

assembly followed expected patterns of community stabilization through time, and if 

variation in landscape structure within a single matrix habitat (within seagrass beds) 

affects fish community structure independent of reef characteristics. Specifically, I tested 

the following hypotheses:  

 

H1: Overall, species richness and fish abundance will increase over time, eventually 

reaching an asymptote. 

 

H2: a) The composition of the fish community will change over time and b) variation in 

environmental variables will better predict differences in community structure among 

reefs as time increases, as deterministic processes become more important at higher fish 

densities.  

 

H3: Following community stabilization, landscape context will affect the diversity, 

abundance, and community structure of fishes on artificial reefs. Specifically, the cover 

of seagrass at a large spatial scale will positively affect species richness and fish 

abundance, and body size of fishes will determine the spatial scale at which they respond 

to their landscape, i.e., small fish abundance will be more closely related to patch-scale 
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habitat variables and larger fish, i.e., piscivore, abundance will be more closely related to 

landscape-scale variables. 

 

Methods 

 

Data Collection 

 

The study was conducted in The Bight of Old Robinson, Abaco, Bahamas (Fig. 2.1). The 

Bight of Old Robinson is a semi-enclosed bay with a mosaic of seagrass, sand, and hard-

bottom habitats. Artificial reefs were constructed in sand and seagrass habitat in the 

Bight. Artificial reefs support similar communities to natural patch reefs (Alevizon et al. 

1985), and have been used extensively as experimental units for studies of patch reef 

communities (Shulman 1985; Hixon & Beets 1989; Miller 2002). Artificial reefs were 

constructed of 40 cinder blocks (~41cm x 20 cm x 20 cm) in a pyramid shape (Fig. 2.2). 

Nine reefs were constructed along a gradient of seagrass cover in March 2009. Reefs 

were placed at least 125 m apart to minimize among-reef movements of transient fish 

species. Previous artificial reef studies support this assumption, e.g., similar artificial 

reefs placed 50 m apart have been treated as spatially independent in analyses (Hixon & 

Beets 1989). Additionally, site fidelity by fishes on my artificial reefs was supported with 

preliminary results of a tagging study on one of the dominant fish species, White grunt 

(Haemulon plumierii), where 100% of fish that were re-captured 6 months after tagging 

(n=6) were on their original reef of capture (LA Yeager, unpublished data). I confirmed 

that there was no relationship between the locations of the reefs (defined by x,y 
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coordinates) and their landscape composition (i.e., measures of patch- and landscape-

scale habitat variables, see below) with linear regression. This result further supports the 

assumption that the spatial arrangement of the reefs did not affect landscape context or 

community assembly.  

Underwater visual census was employed throughout the study period to estimate 

fish abundance and recruitment (Layman et al. 2004). All fishes within 4 m of each reef 

were surveyed until the observer was confident all fishes had been recorded. Fish 

communities were surveyed on 12 dates (1, 7, 20, 27, 34, 51, 70, 96, 126, 152, 212, 259 

days after reef construction). All fishes enumerated were identified to the lowest possible 

taxonomic level and size (total length) of each individual was estimated to the nearest 

cm. Surveys were completed by a snorkeler (LAY or CAL) trained in fish identification 

and underwater fish size estimation. 

Habitat variables were measured for each reef and were then grouped at patch and 

landscape spatial scales (the term “habitat variables” will be used to describe variables 

measured at either spatial scale, Table 2.1). Patch-scale was used to describe habitat 

variables measured in close proximity to the reef (extent of measurement = 4 m). 

Previous studies have reported 100 m to be the scale at which the most abundant species 

in this study respond to their environment (Kendall et al. 2003; Pittman et al. 2007b), and 

therefore this was chosen as the focal landscape extent. Exploratory data analysis using 

landscape areas with smaller radii (e.g., 50 m) gave similar results, but with poorer model 

fit, so 100m was retained as the focal landscape extent.  

Patch-scale variables included depth, mean seagrass shoot density within 4 m of 

the reef and mean seagrass shoot height within 4 m of the reef. Tide-corrected depth to 
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the base of each reef was measured to the nearest 0.1 m. In order to quantify the amount 

of seagrass (Thalassia testudinum) around each reef, 18 - 0.01m2 quadrats were placed 

haphazardly between 2 m and 4m from the base of the reef. Within each quadrat, all 

seagrass blades were counted and the heights of five haphazardly selected blades were 

measured to the nearest cm. Shoot densities and shoot heights measured in each quadrat 

were averaged among all 18 quadrats to estimate patch-scale values for each reef. 

Seagrass shoot density and shoot height within 4 m of the reef were used to assess fine-

scale differences in seagrass bed characteristics, as these metrics (as opposed to seagrass 

percent cover at a scale of 100s of meters) accurately capture seagrass heterogeneity over 

small spatial scales (Fonseca et al. 2002). While other seagrasses or macroalgae may 

affect the function and fauna associated with seagrass beds within the study area (Seese et 

al., unpublished data), seagrass beds surrounding the reefs were dominated by T. 

testudinum and, therefore, I focused only on this species.  

Landscape-scale variables included distance to open ocean, distance to structure, 

mean seagrass cover within 100 m of the reef, habitat diversity within 100 m of the reef 

and habitat contrast within 100 m of the reef. Distance to open ocean (mouth of the 

Bight) was included as a proxy for the larval recruitment source. Alternatively, distance 

to the nearest structure (natural patch reefs or large artificial structure such as sunken 

boats) could affect the recruitment rate of sub-adult and adult individuals to reefs. 

Distance to open ocean and distance to structure were estimated using Google Earth® 

(Google 2010). To assess seagrass densities at larger spatial scales, estimates of percent 

cover were used. One-m2 quadrats were placed at 609 haphazard points throughout the 

study area and the percent cover of seagrass was estimated using the modified Braun-
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Blanquet method (Fourqurean et al. 2001). The distribution of seagrass in the study area 

was mapped by using the measured percent cover of seagrass at these fixed points and 

interpolating these coverages to a 31,000m2 area (circle with 100 m radius) around each 

reef with an Inverse Distance Weighted Interpolation (Lirman & Cropper 2003). Seagrass 

cover mapped within 100 m of each reef (Fig. 2.2) revealed a gradient in percent cover of 

seagrass and patchiness. While there may be some seasonality in the cover of seagrass 

(Fourqurean et al. 2001), seagrass was mapped near the end of the growing season when 

seagrass cover would be at its maximum (August 2009). The map of seagrass cover 

around each reef was used to calculate the remaining landscape-scale variables described 

below.  

The mean percent cover of seagrass was estimated within 100 m of each reef 

using ArcGIS v 9 (ERSI 2008). Patches of varying seagrass cover were defined by 

grouping seagrass cover in 5 categories (0-10.0%, 10.1-25.0%, 25.1-50.0%, 50.1-75.0%, 

and 75.1-100%). Habitat diversity around each reef was calculated by the same method 

as Shannon-Weiner diversity (Pielou 1966) indices for community data, but with the area 

of patches used instead of species abundance. Habitat diversity within 100 m for each 

reef was calculated in Fragstats 3.3 (McGarigal et al. 2002). Habitat contrast (a measure 

of patchiness) was also computed in Fragstats 3.3 by calculating the “difference” in the 

value of seagrass cover between each 1m2 cell and those bordering it, where differences 

were weighed by the change in percent cover (e.g., a cell with 50.1-75.0% cover was 

weighted as 0.25 different from one of 75.1-100% cover). When adjacent cells vary 

greatly in percent cover of seagrass, the contrast index is higher and the landscape is 

considered to be patchier.  
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Data Analysis  

 

All fish taxa were assigned to a functional group based on trophic guild (herbivorous, 

omnivorous, invertivorous, piscivorous) and foraging habitat (benthic, pelagic) following 

previously reported dietary information based on stomach contents (Randall 1967; 

Layman & Silliman 2002; Cocheret de la Moriniere et al. 2003) and observations from 

my study system. Forty-five taxa observed on the reefs were classified as benthic feeders. 

These species (referred to as “benthic”) may be most likely to respond to habitat variables 

because they utilize resources that were dependent on the benthic habitat type. As such, 

some analyses only focused on this particular functional grouping. Other analyses 

required consideration of the entire fish community (e.g., diversity metrics) and included 

14 additional taxa that were more transient and are expected to be primarily pelagic 

feeders (e.g., tomtates, Haemulon aurolineatum, and jacks, Carangidae). These transient 

taxa often comprised large schools that may have been loosely associated with reefs 

during a survey event. 

Patterns in species richness and benthic fish abundance were evaluated over time 

(H1). Benthic fish abundance was ln transformed in order to homogenize variance among 

reefs over time. Next, the mean of species richness and ln(benthic fish abundance) for 

each survey date was calculated across all reefs. In order to evaluate the overall trajectory 

of species richness and fish abundance over time, the relationships between time and both 

mean species richness and mean ln(benthic fish abundance) were modeled with various 

linear, polynomial and asymptotic models selected after visual inspection of the data. 

Specifically, I fit linear, second order polynomials, inverse first and second order 



21 
 

polynomials, exponential rise to maximum models with 2 and 3 parameters, and 2nd order 

power functions. I evaluated candidate models using adjusted r2 values, where the 

coefficient of determination (r2) is adjusted for the number of parameters in the model.  

The adjusted r2 value is useful in determining if adding new parameters into the model 

increases overall model fit (Draper & Smith 1998). For this reason, I used the adjusted r2 

to select the most appropriate and parsimonious model that best modeled trends in each 

of species richness and fish abundance over time. Data met the assumption of normality 

in both cases (P = 0.69 and P = 0.61, respectively).  

 Next, analyses of community structure were performed for all benthic species 

and evaluated over time. Community data were analyzed using species-by-sample 

matrices that were square-root transformed to down-weight the influence of dominant 

taxa (Clarke 1993). The similarity between community structure over time and among 

reefs was evaluated graphically using non-metric Multidimensional Scaling (nMDS), 

where communities that are more similar are closer together in space (PRIMER© v 6, 

Clarke 1993, (Clarke & Gorley 2006). This nMDS was used to visualize the clustering 

among surveys through time (H2a).  

Additionally, the strength of the correlation between benthic fish community 

structure and habitat variables was evaluated over time (H2b). First a BIOENV algorithm 

was employed, which predicts which habitat variables best explain differences in 

community structure and reports the correlation between habitat variables and fish 

community structure in PRIMER© v 6 (Clarke 1993). The BIOENV algorithm 

maximizes the rank correlation between the Bray-Curtis similarity matrix of square-root 

transformed abundance data for each taxa and a resemblance matrix of normalized habitat 
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data to select the habitat variables that explain most of the variation in community 

structure. Similar to the treatment of species richness and abundance data, linear, 

polynomial and asymptotic regression models were used to test the relationship between 

time and the variation in fish community structure explained by habitat variables 

(correlation output from the BIOENV). Data met the assumption of normality (P = 0.93). 

I selected the last three survey dates (days 152, 212, and 259) for the remaining 

analyses investigating which habitat variables were most important in driving differences 

in community structure, fish abundance and species richness among reefs (H3). I selected 

these dates, as species richness, fish abundance, and community structure remained 

relatively constant following this time period, and thus I considered the community to be 

relatively stable.  First, I treated communities surveyed on each date separately and used 

the results of the BIOENV algorithm described above on these dates to identify the most 

important variables driving differences in community structure.  Next, because mean 

seagrass cover within 100 m was suspected to be one of the most important variables 

explaining community structure, I a priori grouped sites into “high” (reefs 1, 5, 11, 13, 

20; mean seagrass cover within 100 m >20%) and “low” (8, 9, 10, 18; mean seagrass 

cover within 100 m <20%) seagrass groups. A Similarity Percentages (SIMPER) analysis 

was used to determine which fish taxa were most important in driving differences 

between these two groups for the last three survey dates (PRIMER© v 6, Clarke 1993). 

The SIMPER analysis uses similarity matrices of fish abundance data and examines 

which species contribute most to the Bray-Curtis dissimilarity between groups of reefs 

(high and low seagrass).  
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Next, I examined the relationship of species richness and fish abundance with 

habitat variables. For the following analyses, I took the mean of species richness and fish 

abundance estimates for each reef across the last three survey dates. To reduce the 

number of predictor variables used, all habitat variables were grouped by factor analysis 

to account for co-linearity. A principal component analysis was used to generate 

orthogonal axes of habitat variables. Next an equimax rotation of principal component 

axes was performed to reduce the number of axes and number of variables loading 

heavily onto these axes (SPSS® v 14.0, SPSS, Inc. (2005). Separate General Linear 

Models were used to analyze the relationship between each of the following biotic 

variables: species richness (all taxa), abundance of all fishes, abundance of benthic fishes, 

abundance of small fishes (≤ 5cm) or large fishes (> 15cm), with habitat components 

(n=3 principal component axes) using SAS® software v 9.2 (Institute 2007). I calculated 

η2, the proportion of variation in the biotic variable explained by each predictor, as a 

measure of effect size. I used partial regression plots to graphically illustrate the 

relationship between principal component axes and biotic variables. These plots are 

useful in isolating the effect of a given predictor variable when multiple predictor 

variables are used, and the slope of the line for each plot is equal to the parameter 

estimate for a given predictor variable (Velleman & Welsch 1981; Draper & Smith 

1998).  
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Results 

 

 An estimated 13,969 fishes representing 59 different taxa were recorded in 

surveys on the 12 sampling dates. Of these, 7,344 individuals in 45 taxa were classified 

as benthic. Over 95% of all benthic fishes observed were: White grunt, settlement size 

unidentified grunt (Haemulon spp.), Slippery dick (Halichoeres bivittatus), French grunt 

(Haemulon flavolineatum), Juvenile parrotfish (Sparisoma spp.), Reef squirrelfish 

(Sargocentron coruscum), Surgeon fish (Acanthurus chirurgus amd A. bahianus), 

Cottonwick (Haemulon melanurum), Blue tang (Acanthurus coeruleus), Squirrelfish 

(Holocentrus adscensionis), Spotted goatfish (Pseudupeneus maculatus), Beaugregory 

(Stegastes leucostictus), Blackear wrasse (Halichoeres poeyi), unidentified drum 

(Equetus spp.), Gray snapper (Lutjanus griseus), and Stoplight parrotfish (Sparisoma 

viride).  

 

Fish community assembly 

 

The relationship between time and species richness was best modeled by a sigmoidal 

curve (Y = 17.53 (1 + e –(x-68.75)/32.03), df = 2, r2 = 0.95, P < 0.0001, Fig. 2.3a). The 

relationship between time and ln (benthic fish abundance) was best modeled by an 

exponential, asymptotic curve (Y = 2.08 + 2.87(1-0.98X), df = 2, r 2 = 0.91, P < 0.0001, 

Fig, 2b). Both models appeared to reach an asymptote by the end of the study period (Fig. 

2.3).  
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 Community structure shifted over time, as communities were relatively similar 

across the beginning survey dates (days 1, 7), then became less similar to one another, 

followed by a period of relatively similarity during the last 3 survey dates (Fig. 2.4). The 

relationship between day following reef creation and the correlation between habitat 

variables and benthic fish community structure was best represented by a quadratic 

function, although this model was only marginally significant, with time explaining 47% 

of the variation in the correlation (Y = 0.18 + 0.0049X + 0.000014X2, df = 2, r 2 = 0.47, P 

= 0.055, Fig. 2.3c).  

On the basis of results from the previous analyses, I considered the fish 

community over the last three survey dates to be relatively stable, as species richness and 

fish abundance had both reached an asymptote, and community structure was changing 

relatively little among survey dates (Fig. 2.4). On the last three survey dates (days 152-

259), the spearman rank correlation between the habitat variables and fish community 

structure ranged between 0.438 and 0.819 (BIOENV, Table 2.2). While multiple habitat 

variables were important in explaining differences in fish community structure among 

reefs, mean seagrass cover within 100m was among the most important on all 3 dates, 

and was only the only habitat variable included the best model for all 3 dates.  

Twenty-four taxa were found to contribute to differences in community structure 

between reefs with “high” and “low” amounts of seagrass (SIMPER, contributing to 90% 

of the dissimilarity in communities between groups, Table 2.3). The two most important 

taxa driving differences in community both belonged to one family of benthic, 

invertivorous fishes (grunts, Haemulidae). White grunts were the most important taxa, 

being more abundant at “high” seagrass reefs (mean abundance ± SE, 80.2 ± 16.4 
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fish/reef) than on “low” seagrass reefs (28.4 ± 8.4 fish/reef). The second most important 

taxon explaining these differences was the French grunt, which were more common on 

“low” seagrass reefs (“high” seagrass = 10.3 ± 4.2 fish/reef vs. “low” seagrass = 19.6 ± 

5.9 fish/reef). 

 

Fish abundance and diversity 

 

In the principal component factor analysis, three component axes explained 86.4 % of the 

variation in habitat variables (Table 2.4). The distance to open ocean and habitat diversity 

loaded heavily on the first component axis. Reefs that are positively related to this axis 

are far from larval recruitment sources in more patchy (diverse) seagrass habitat. Mean 

seagrass cover within 100 m and depth loaded heavily on the second axis. Reefs that are 

positively related to this axis are relatively deep with a greater amount of seagrass at the 

landscape-scale. Only mean seagrass shoot density within 4 m loaded heavily on the third 

component axis; reefs positively related to this axis had a greater amount of seagrass at 

the patch-scale.  

Species richness and total fish abundance were not predicted by any of the 

groupings of habitat variables (Table 2.5, Fig 2.5a-f). In contrast, habitat variables 

explained 75% of the total variation in benthic fish abundance, although the overall 

model was only marginally significant (Table 2.5). Benthic fish abundance was greater 

on deeper reefs with more seagrass at the landscape scale than shallower reefs with sparse 

seagrass (Fig. 2.5h). Although less important in predicting benthic fish abundance than 

cover of seagrass at the landscape and depth, the amount of seagrass at the patch scale 
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was also positively related to abundance (Fig 2.5i). The abundance of small fishes (≤ 5 

cm) was positively related to the amount of seagrass at the landscape scale and reef 

depth, although this relationship was only marginally significant (Fig 2.5k) and the 

overall model was not significant (Table 2.5). Abundance of large fishes (≥ 15 cm) could 

be predicted by habitat variables (Table 2.5), and was greater on reefs that were in more 

patchy landscapes that were farther from the open ocean than reefs in more homogenous 

landscapes and close to the open ocean.  Additionally, the abundance of large fishes was 

great on deeper reef with more seagrass at the landscape-scale than shallow reef 

surrounded by sparse seagrass. 

 

Discussion 

 

 My data support the idea that even seemingly homogeneous habitat types can 

have sufficient degrees of intra-habitat variation to drive significant differences in faunal 

community structure. Both patch- and landscape-scale variables related to the seagrass 

beds were important predictors of fish community assembly in the artificial reef system. 

The amount of seagrass at landscape- and patch-scales, as well as habitat patchiness, all 

emerged as important drivers for various components of fish community assembly. The 

amount of seagrass at the landscape-scale was the most important variable driving 

differences in the abundance of fishes (as well as with overall community structure). As 

such, I provide evidence that links habitat heterogeneity at patch- and landscape-scales to 

fish community assembly. 
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Previous studies of reef fish communities have reported that both stochastic and 

deterministic processes may be important in determining community assembly. 

Stochastic processes such as larval supply were at one time thought to be the dominant 

driver of reef fish community assembly (Sale & Douglas 1984). But deterministic factors 

have since been found to be important, including mechanisms such as priority effects 

(Shulman et al. 1983; Almany 2003), post-settlement mortality (Shulman & Ogden 

1987), and availability of refugia (Hixon & Beets 1989; Syms & Jones 2000). In my 

study, the strength of the relationship between fish community structure and habitat 

variables changed over time, generally increasing (although the last survey point 

indicates it may have started to decline by the end of the study period, perhaps a result of 

seasonal effects associated with the onset colder winter water temperatures). This pattern 

might be expected if community assembly was at first random, and species interactions 

and/or habitat associations became stronger over time as fish densities increased 

(Arrington et al. 2005).  

The patterns I found in similarity of fish communities through time supports this 

notion. Within the first week following reef creation communities were fairly similar, as 

fishes on reefs were mostly represented by individuals common in surrounding seagrass 

(e.g., slippery dick wrasse). Next, as larval and other fishes began to recruit to the 

artificial reefs, communities became less similar to one another, and less similar among 

sampling dates for a given reef, with stochastic processes apparently driving assembly. 

Finally, near the end of the survey period, fish communities were similar to one another, 

and more similar over time, and habitat variables explained a larger portion of the 

variation in fish communities among reefs. While patch reef fish communities are 
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typically dynamic, my results indicate that habitat context can still explain a large 

proportion of the variability in community assembly once fish densities reach a particular 

threshold, thereby supporting a model of reef fish community assembly containing both 

stochastic and deterministic components. 

 The amount of seagrass at the landscape-scale seemed to be the most important 

driver of community structure and explained most of the variation in fish abundance once 

communities had stabilized. For analyses assessing effects of habitat variables on species 

richness and abundance, principal component analysis could not separate variation in 

depth completely from variation in seagrass cover at the landscape-scale, likewise 

between distance to the open ocean and habitat patchiness. However, in these cases, 

depth (percent variation = 16.7%) and distance to the ocean (11.5%) varied less among 

reefs than variation in the cover (43.6%) or patchiness of seagrass (20.0%). Further, 

Gladfelter et al. (1980) found environmental context did not seem to drive differences in 

community structure for natural patch reefs in St. Croix that varied more in of depth, 

distance to other structure, and oceanic influence than reefs in my study.  Therefore, it is 

reasonable to assume that seagrass variables were more important in driving the observed 

differences in fish abundance than these other variables.  

Seagrass plays two primary critical roles for fishes. First, seagrass habitat is 

known to harbor greater densities of benthic invertebrates than unvegetated bottom 

(Ansari et al. 1991; Nakamura & Sano 2005), providing more food for benthic 

invertivores. Similarly, seagrass and associated epiphytes provide a food source for 

herbivorous fishes (Kirsch et al. 2002). Therefore, greater cover of seagrass likely 

represents increased food availability for many fish species. Second, seagrass structure 
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may provide shelter from predators (Heck et al. 2003). More generally, the relationship 

between seagrass cover and predation risk likely depends on the body size and behavior 

of the focal organism. Since most fishes in my study had a relatively small body size, it is 

reasonable to suspect that protection provided by seagrass structure contributed to the 

positive relationship between fish abundance and cover of seagrass across the landscape.  

In general, landscape-scale effects emerged as more important in predicting fish 

community structure and the abundance of fishes than patch-scale effects, regardless of 

fish body size; the result contradicts my original hypothesis, where I predicted that 

smaller fishes would respond to factors at smaller spatial scales. Small fishes may still be 

able to move large distances, and thus select optimal habitat, despite their size. 

Alternatively, many of the small fishes are juveniles and recruited to these reefs as larvae. 

Larval fish may select settlement habitat on the basis of based on landscape-scale habitat 

features that will be important for post-settlement development, possibly using visual, 

auditory or chemical cues (Montgomery et al. 2001; Atema et al. 2002; Huijbers et al. 

2008). Larger fish were also more abundant on reefs with more seagrass at the landscape-

scale, which may be associated with increased abundance of prey organisms. Large 

piscivores also may find it easier to locate prey in patchy seagrass (Hovel & Lipcius 

2002), possibly explaining the greater abundance of large piscivores in patchy 

landscapes.  

  The high abundance of benthic species on reefs with more seagrass cover at the 

landscape-scale was primarily driven by the abundance of White grunts. Conversely, the 

congeneric French Grunt was more abundant on reefs with less seagrass (more sand) at 

the landscape level. Both species feed on benthic invertebrates in soft bottom habitats 
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(Ogden & Ehrlich 1977; Cocheret de la Moriniere et al. 2003), yet they do not seem to 

respond to the landscape in the same way. The observed separation in daytime habitat 

preference may be an effect of habitat partitioning by these two potential competitors for 

nighttime foraging grounds. These results are consistent with those from a study in the 

U.S. Virgin Islands that observed partitioning of nocturnal foraging habitat between these 

two species, with White grunts feeding primarily in seagrass beds and French grunts 

feeding primarily over sand flats (Ogden & Ehrlich 1977). These data emphasize the 

importance of exploring organism-habitat relationships on a species-by-species basis.  

I did not see significant differences in species richness among reefs in different 

landscape contexts. My study only dealt with differences in α diversity, i.e., differences 

in species diversity among sites within a single habitat type. At 10-100 m spatial scales, 

structural complexity (which was held constant in this study) has been found to be the 

most common variable affecting species richness in coral reef ecosystems (Mellin et al. 

2009). Similarly, Grober-Dunsmore et al. (2008) found only a weak relationship between 

species richness and landscape matrices (cover of seagrass) on similar patch reefs. In my 

study, because the amount of structured habitat was held constant, it is not surprising that 

I observed no significant difference in diversity measures among reefs. 

Recently, ecologists have emphasized the variability within marine habitat types 

that have long been considered homogenous (Faunce & Layman 2009; Kraan et al. 

2009). Heterogeneity at both patch- and landscape-scales may contribute to these 

observed differences in structure and function of habitats. To truly link various aspects of 

ecosystem function accurately to the surrounding landscape, manipulation of both focal 

habitats and the surrounding landscape would be necessary, although logistically 
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prohibitive in most cases. In this study I take a first step towards an experimental 

approach by utilizing natural spatial variation in landscapes and manipulating the 

locations of artificial reefs. Reef location did not affect the characteristics of the 

surrounding landscape, so it is reasonable to assume the difference in community 

assembly among reefs was driven by differences in the surrounding landscape. This 

landscape-scale effect may have critical implications for conservation and management 

efforts, especially as back-reef habitats are included in marine protected area design 

(Beck et al. 2001; Mumby 2006). More specific habitat characterizations, i.e., more 

refined than just “mangrove” or “seagrass’, may be critical for optimal reserve design 

(Mumby 2006; Grober-Dunsmore et al. 2009).  

Coastal development and land-use change are among the most serious threats to 

coastal ecosystems (Lotze et al. 2006). Land-use change has the potential to rapidly alter 

landscape characteristics in these systems, including wide-spread habitat loss or 

alterations in the spatial arrangement of habitat types (e.g., Orth et al. 2006). Specifically, 

coastal development may result in increased habitat fragmentation (Montefalcone et al. 

2010), which is known to cause loses in ecosystem function and diminished ecosystem 

services (Bell et al. 2001; Layman et al. 2007). Furthermore, seagrass fragmentation is 

often concomitant with declines in seagrass cover or decreased spatial coverage (Fonseca 

& Bell 1998). My study demonstrates that even subtle changes in landscape 

characteristics have the potential to alter fish community dynamics in nearshore 

ecosystems.  
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Table 2.1 Description of habitat variables measured with range, mean, and standard 
deviation among reefs.  

Habitat Variable Explanation 
Spatial 
scale 

Range 
Mean ± 
standard 
deviation 

Depth Water depth of reef 
base at mean low 
water 

Patch 1.3 – 2.5 m 1.8 ± 0.3 m 

Mean seagrass 
shoot density 
within 4 m 

Density of seagrass 
blades averaged 
within 4 m of the 
reef 

Patch 6.1 – 20.2 
blades/100cm2 

15.7 ± 4.3 
blades/100cm2 

Mean seagrass 
shoot height 
within 4 m 

Height of seagrass 
blades averaged 
within 4 m of the 
reef 

Patch 5.5 – 9.6 cm 6.7 ± 1.6 cm 

Distance to 
open ocean 

Distance to larval 
recruitment source 

Landscape 2.1 – 2.8 km 2.6 ± 0.3  km 

Distance to 
structure 

Distance to 
recruitment source 
of non-larval fishes 

Landscape 170 – 950 m 550 ± 200 m 

Mean seagrass 
cover within 
100 m 

Mean percent cover 
seagrass within 100 
m of each reef 

Landscape 15.2 – 49.3 % 
cover 

25.7 ± 11.2 % 
cover 

Habitat contrast Index of habitat 
patchiness; 
measures variability 
in percent cover of 
seagrass between 
adjacent cells 
within 100 m of 
each reef 

Landscape 1130 – 1600 1480 ± 150 

Habitat 
diversity 

Index of diversity 
of seagrass patches; 
alternate measure 
of habitat 
patchiness within 
100 m of each reef 

Landscape 0.6 – 1.3 1 ± 0.2 
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Table 2.2 Results of BIOENV indicating habitat variables that best explain the 
differences in community structure among reefs. Day indicates day following reef 
creation. The best three models for each day are included. ρ represents the Spearman 
correlation coefficient.  

 

Day Model ρ Habitat Variables 

152 1 0.819 1, 2, 3, 4 

 2 0.809 1, 2, 3, 4, 5 

 3 0.803 1, 2, 3, 5 

212 1 0.654 1, 5 

 2 0.595 1, 5, 6 

 3 0.586 1 

259 1 0.438 1, 2, 4, 5, 6 

 2 0.425 1, 2, 6 

 3 0.415 2, 4, 6 

1. Mean seagrass percent cover within 100m  
2. Mean seagrass shoot height within 4 m 
3. Habitat contrast 
4. Distance to structure 
5. Depth 
6. Mean seagrass shoot density within 4 m 
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Table 2.3 Results of similarity percentages (SIMPER) analysis examining which species 
contribute most to the Bray-Curtis dissimilarity between reefs with “high” (mean 
seagrass cover within 100 m > 20 %) and “low” (mean seagrass cover within 100 m < 
20%) amounts of seagrass within the landscape. Mean abundance ± standard error (SE) 
was calculated across all reefs within each group over the last three survey dates (days 
152-259). 

Taxa 
common 
name 

Scientific 
name 

Mean 
abundance 
± SE for 
“high” 

seagrass 
reefs 

Mean 
abundance 
± SE for 
“low” 

seagrass 
reefs 

% 
contribution 
to difference 

Cumulative 
% 

difference 

White grunt Haemulon 
plumierii 

80.2 ± 16.4 28.4 ± 8.4 16.1 16.1 

French grunt Haemulon 
flavolineatum 

10.3 ± 4.2 19.6 ± 5.9 10.8 26.9 

Slippery 
dick 

Halichoeres 
bivittatus 

9.5 ± 2.6 12.7 ± 3.4 6.5 33.5 

Juvenile 
parrotfish 

Sparisoma spp. 5.9 ± 1.8 7.9 ± 3.5 5.7 39.2 

Cottonwick Haemulon 
melanurum 

1.3 ± 0.6 3.7 ± 1.7 5.0 44.2 

Surgeonfish Acanthurus 
spp. 

4.5 ± 1.2 5.6 ± 0.7 4.5 48.7 

Juvenile 
grunt 

Haemulon spp. 1.2 ± 0.7 3.5 ± 2.4 4.2 52.9 

Blue tang Acanthurus 
coeruleus 

2.9 ± 0.7 3.4 ± 0.9 3.5 56.4 

Squirrelfish Holocentrus 
adscensionis 

1.5 ± 0.5 1.5 ± 0.5 3.3 59.7 

Lane 
snapper 

Lutjanus 
synagris 

0.2 ± 0.1 1.1 ± 0.3 3.0 62.7 
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Beaugregory Stegastes 
leucostictus 

1.1 ± 0.2 1.7 ± 0.5 3.0 65.7 

Gray 
snapper 

Lutjanus 
griseus 

0.7 ± 0.4 1.1 ± 0.5 2.9 68.6 

Reef 
squirrelfish 

Sargocentron 
coruscum 

6.5 ± 1.0 5.4 ± 0.8 2.7 71.2 

Stoplight 
parrotfish 

Sparisoma 
viride 

1.0 ± 0.3 0.8 ± 0.2 2.5 73.7 

French 
angelfish 

Pomacanthus 
paru 

0.0 ± 0.0 1.3 ± 1.0 2.4 76.1 

Drum Equetus spp. 0.9 ± 0.3 0.5 ± 0.3 2.4 78.5 

Blackear 
wrasse 

Halichoeres 
poeyi 

0.6 ± 0.3 0.4 ± 0.2 2.0 80.5 

Queen 
angelfish 

Holacanthus 
ciliaris 

0.5 ± 0.1 0.6 ± 0.3 1.9 82.4 

Yellow 
goatfish 

Mulloidichthys 
martinicus 

0.0 ± 0.0 1.3 ± 1.1 1.9 84.3 

Lionfish Pterois 
volitans 

0.5 ± 0.2 0.5 ± 0.2 1.9 86.2 

Bluehead  Thalassoma 
bifasciatum  

0.7 ± 0.5 0.1 ± 0.1 1.3 87.5 

Blue 
parrotfish 

Scarus 
coeruleus 

0.3 ± 0.2 0.4 ± 0.2 1.2 88.7 

Goby Gobiidae 0.2 ± 0.1 0.3 ± 0.2 1.1 89.8 

Sharpnose 
puffer 

Canthigaster 
rostrata 

0.3 ± 0.1 0.1 ± 0.1 1.1 90.9 
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Table 2.4 Loadings for variables making up principal components from factor analysis of 
habitat variables relating to each reef. * values indicate the strongest explanatory 
variable(s) for each component. 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 Component 

Variable 1 2 3 

Depth 0.08    0.88* -0.02 

Shoot Density 4 m -0.16 0.06    0.94* 

Shoot Height 4 m 0.58 0.19 0.73 

Distance to Ocean    0.88* -0.08 -0.25 

Distance to Structure 0.60 0.74 0.19 

Percent Cover 100 m -0.15    0.85* 0.50 

Habitat Diversity    0.93* 0.09 0.27 

Habitat Contrast 0.65 0.42 -0.04 

Percent variation 35.0 28.4 23.0 
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Table 2.5 Results of General Linear Models of species richness and different abundance 
measures predicted by principal component groupings of habitat variables. Source = 
source of variation, df = degrees of freedom, MS = mean squares, F = F-statistic, P = P-
value based on F-test, η2 = proportion of variation in dependent variable explained by 
each predictor, C = component.  

 

Overall Model Individual Predictors 

Source df MS F P Source df MS F P η2 

1. Species Richness, R2 = 0.20 

Model 3 4.42 0.41 0.75 C 1 1 11.06 1.04 0.36 0.17 

Error 5 10.7   C 2 1 0.34 0.03 0.87 0.01 

     C 3 1 1.86 0.17 0.69 0.03 

2. Total Fish Abundance, R2 = 0.13 

Model 3 5554.1 0.26 0.85 C 1 1 12069.73 0.56 0.49 0.10 

Error 5 21534.6   C 2 1 3398.56 0.16 0.71 0.03 

     C 3 1 1194.07 0.06 0.82 0.01 

3. Benthic Fish Abundance, R2 = 0.75 

Model 3 3932.1 4.94 0.059 C 1 1 709.78 0.89 0.39 0.05 

Error 5 796.0   C 2 1 7418.38 9.32 0.028 0.47 

     C 3 1 3668.05 4.61 0.085 0.23 

4. Small Fish Abundance, R2 = 0.57 

Model 3 306.4 2.21 0.21 C 1 1 2.07 0.01 0.91 <0.01

Error 5 138.8   C 2 1 719.02 5.18 0.072 0.45 

     C 3 1 198.02 1.43 0.29 0.12 

5. Large Fish Abundance, R2 = 0.82 

Model 3 110.8 7.42 0.027 C 1 1 100.39 6.73 0.048 0.25 

Error 5 14.9   C 2 1 222.48 14.91 0.012 0.55 

     C 3 1 9.61 0.64 0.46 0.02 
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 Fig. 2.3 Trajectory of (a) species richness, (b) benthic fish abundance (mean # fish/reef), 
and (c) the correlation between habitat variables and fish community structure through 
time. Note y-axis of (b) is plotted on a natural log scale but labels are back-transformed 
to represent true abundance values. 

S
pe

ci
es

 r
ic

hn
es

s

0

4

8

12

16

20

B
en

th
ic

 f
is

h 
ab

un
da

nc
e

Y = 17.53 ( 1 + e-(X-68.75)/32.03)
P < 0.0001
r2 = 0.95

Y = 2.08 + 2.87 ( 1 - 0.98X)
P < 0.0001
r2 = 0.91

a

b

c

0

10

20

50

100

200

5

Days following reef creation

0 50 100 150 200 250 300

C
or

re
la

tio
n 

be
tw

ee
n

ha
bi

ta
t 

va
ria

bl
es

 a
nd

 f
is

h 
co

m
m

un
ity

 s
tr

uc
ut

ur
e

0.0

0.2

0.4

0.6

0.8

1.0

Y = 0.18 + 0.0049X - 0.000014X2

P = 0.055
r2 = 0.47

c



43 
 

  

Fig. 2.4 Non-metric Multidimensional Scaling plot of community structure on reefs 
through time. Triangles represent an individual survey for each reef (n = 9 per day) and 
are shaded according to survey date. 
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Fig. 2.5 Partial regression plots derived from General Linear Models showing the 
relationship between principal component axes of habitat variables (x axes) and (a-c) 
species richness, (d-f) total fish abundance, (g-i) benthic fish abundance, (j-l) small fish 
(≤ 5 cm TL) abundance and (m-o) large fish (≥15 cm TL) abundance. The habitat 
variables loading most heavily on each principal component are listed under the x-axes. 
P-values are included for each parameter as well as η2, i.e., the proportion of total 
variation explained by each component. Trend lines are shown for significant and 
marginally significant (P < 0.1) relationships. 
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EFFECTS OF SEASCAPE CONTEXT ON CONDITION, ABUNDANCE, AND 

SECONDARY PRODUCTION OF A CORAL REEF FISH 
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ABSTRACT: 

 Variation in seascape composition has the potential to impact habitat quality for 

fishes, and characteristics of the surrounding seascape have been correlated with 

abundance of organisms in many systems. How seascape context may affect other aspects 

of habitat quality including growth, condition, or production of focal species has not been 

well-studied. Juvenile White grunts (Haemulon plumierii) are known to rest on patch 

reefs during the day and move into seagrass habitat at night to feed, linking multiple 

habitats through these daily foraging migrations. I created artificial reefs across a gradient 

of seagrass cover and determined the relationship between juvenile White grunt 

condition, growth, abundance, and secondary production with seagrass cover within the 

seascape.  White grunt abundance was positively correlated with the cover of seagrass 

within the seascape, while condition (relative condition factor, Kn) and growth rate 

(measured using RNA:DNA) did not vary among reefs within different seascapes. 

Secondary production of White grunts was found to be highest on reefs in seascapes with 

dense seagrass.  My results are consistent with the hypothesis that increased food 

resources associated with higher seagrass cover contributed to increased grunt 

production. However, differences in habitat quality among reefs in different seascapes 

were manifest at the population (abundance) and ecosystem function (secondary 

production) levels, and not at the individual level (individual growth rate or condition 

factor). These results highlight the importance of considering multiple levels of 

individual and population responses in assessments of habitat quality, and add evidence 
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that seascape composition should be considered in spatially-explicit management 

strategies. 

 

KEY WORDS: artificial reef, fitness, Haemulon plumierii, landscape, predator-prey 

dynamics, RNA:DNA, seagrass  
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INTRODUCTION 

 

Landscape ecology is a useful framework to examine the consequences of spatial 

heterogeneity on aspects of ecosystem structure and function (Turner 1989, 2005a), and 

the same approaches are increasingly applied in marine systems.  In the marine context, a 

seascape may be defined as an area of heterogeneous habitat that can be viewed at a 

range of spatial scales, and the seascape context of a focal patch is the position of the 

patch relative to surrounding seascape elements (Grober-Dunsmore et al. 2009).  The 

surrounding seascape has the potential to influence access to resources, exposure to 

predators, or connectivity among habitats, and therefore can be a central driver of local 

habitat quality (Sheaves & Johnston 2009). Many studies have used this framework to 

link variation in organismal abundance and diversity in focal patches to the seascape 

context (Robbins & Bell 1994; Irlandi et al. 1995; Hovel & Lipcius 2001; Grabowski et 

al. 2005; Pittman et al. 2007b; Grober-Dunsmore et al. 2008; Yeager et al. 2011).   

  While the importance of seascape context is increasingly acknowledged in the 

evaluation of habitat quality, few studies have evaluated the impacts of the surrounding 

seascape on measures of habitat value beyond structural characteristics of fish 

communities (i.e., beyond fish abundance and community composition). The surrounding 

seascape can affect access to food resources or predators, possibly resulting in differences 

in habitat quality of focal habitat types at an individual level (i.e., in terms of condition or 

growth). For example, patchiness of temperate seagrass systems has been shown to affect 

growth of the bay scallop Argopecten irradians (Irlandi et al. 1995).  In mangrove tidal 
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creeks, habitat fragmentation results in decreased food availability and slower growth 

rates in Gray snapper (Lutjanus griseus) (Rypel & Layman 2008). Animals that 

experience faster growth rates, or are in better condition, may experience decreased 

predation risk (Sogard 1997; Booth & Hixon 1999; Booth & Beretta 2004; Johnson 2008) 

or higher reproductive output (Hutchings 1993; Fox 1994; Slotte & Fiksen 2000; Neff & 

Cargnelli 2004). Therefore, understanding how the surrounding seascape affects 

individual-based measures of habitat quality, like condition or growth, may provide 

useful information regarding optimal fish habitat.  

Effects of the seascape on individual-level traits and population-wide parameters 

can be combined to provide insight into overall ecosystem function. For example, 

secondary production, the accumulation of animal biomass over time, is a valuable 

measure of ecosystem function because it integrates density, growth, and survival into a 

single metric (Krebs 1994; Benke 2010). A previous study by Valentine-Rose et al. 

(2011) found that secondary production estimates may be the most informative variable 

for evaluating the effects of habitat fragmentation in tidal creek wetlands in The 

Bahamas. Irlandi (1995) found that spatial patterning of seagrass within the seascape 

determined the transfer of secondary production to higher trophic levels by affecting 

foraging success of invertebrate predators. Secondary production integrates multiple 

underlying processes and provides quantitative, functional information about effects of 

seascape on relative habitat values.   

Grunts (Haemulidae) are common coral reef fishes that may be highly dependent 

on the attributes of the surrounding seascape because of their feeding strategy. Juveniles 
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and adults of many species of grunts are known to shelter in structured habitats during the 

day (e.g., patch reefs, mangroves; (Starck & Davis 1966; Ogden & Ehrlich 1977; Verweij 

& Nagelkerken 2007). At dusk grunts have been observed to migrate into nearby soft 

bottom habitats (e.g., sand, seagrass) to feed (Starck & Davis 1966; Ogden & Ehrlich 

1977; Robblee & Zieman 1984; Burke 1995; Nagelkerken et al. 2000a). Through these 

daily foraging migrations, grunts link multiple habitat types over large spatial scales and 

represent important nutrient vectors to coral reef ecosystems (Meyer & Schultz 1985).  

The nature of these habitat linkages may be dependent on the spatial juxtaposition of 

resting and foraging habitats (Nagelkerken et al. 2008). As a result, access to preferred, 

nocturnal foraging grounds within the seascape has the potential to affect the quality and 

function of focal habitats for grunts.   

 My overall objective was to identify how the seascape surrounding artificial reefs 

affects their relative value as habitat. By using experimental patch reef units, I controlled 

for patch habitat size and quality, so any differences among sites were expected to be a 

function of aspects of the surrounding seascape. I evaluated whether the amount of 

seagrass within the seascape surrounding these artificial patch reefs affected various 

measures of grunt habitat quality measured at the individual level (condition and growth), 

the population level (abundance), and the ecosystem function level (secondary 

production). Specifically, I expected that increased cover of seagrass in the seascape 

surrounding artificial reefs would result in better fish condition, faster growth rates, 

increased fish abundance, and increased secondary production of White grunts than on 

reefs in seascapes with lower cover of seagrass. 
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MATERIALS AND METHODS 

 

Study area.  The study was conducted in the Bight of Old Robinson, Abaco, Bahamas 

(Fig. 3.1). The Bight of Old Robinson is a semi-enclosed bay that has a complex benthic 

mosaic comprised of sand, seagrass, hard-bottom and patch reef habitat, as well as tidal 

creeks with mangrove-lined shorelines. The depth of the Bight ranges from <1 to 4 

meters. I used a series nine of artificial patch reefs created in March 2009 within the 

Bight to test the importance of seascape factors on reef fish communities (Yeager et al. 

2011).   Forty concrete cinder blocks were used to create each artificial reef (reef 

dimensions: 122 cm L x 76 cm H x 81 cm D, Fig 1 c).  Benthic habitats surrounding the 

reefs were composed of sandy bottom and Thalassia testudinum-dominated seagrass 

beds. Artificial reefs were located at least 500 m from natural patch reefs.  

The percent cover of seagrass within the study area was mapped in August 2009. 

These maps were generated from estimates of percent cover within 1-m2 quadrats at 609 

haphazardly selected points within the study area. The distribution of seagrass around the 

reefs was mapped using the measured percent cover of seagrass at these fixed points and 

interpolating these coverages to a 31,000m2 area (circle with 100 m radius) around each 

reef with an Inverse Distance Weighted Interpolation in ArcGIS (Lirman & Cropper 

2003).  
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Study Species.  In this study, I focused on White grunt (Haemulon plumierii), one of the 

most important species driving differences in community structure on the experimental 

reefs across the seascape gradient (Yeager et al. 2011).  Juvenile White grunts are known 

to form large, daytime, resting schools on patch reef habitats and show high site fidelity 

for periods of months (Ogden & Ehrlich 1977; Helfman et al. 1982; Appeldoorn et al. 

1997; Appeldoorn et al. 2009).  At dusk, individuals of these schools make repeated 

nightly migrations into surrounding soft bottoms habitat (Ogden & Ehrlich 1977; 

Helfman et al. 1982; Appeldoorn et al. 2009), queued by decreased light levels after 

sunset (McFarland et al. 1979).  Once in the soft-bottom habitat, these schools begin to 

spread out and solitary individuals feed within a small area throughout the night (Ogden 

& Ehrlich 1977; Helfman et al. 1982; Robblee & Zieman 1984; Burke 1995). Juvenile 

White grunts may migrate up to 300 m from their diurnal resting habitat, although many 

individuals may stay within 100 m of the reef if seagrass beds are in close proximity 

(Ogden & Ehrlich 1977; Burke 1995; Appeldoorn et al. 2009).  Prior to sunrise, these 

schools re-aggregate and return to the same reef, where they spend the day primarily 

inactive (Ogden & Ehrlich 1977; McFarland et al. 1979; Appeldoorn et al. 2009).  White 

grunts feed mainly on benthic invertebrates (Randall 1967; Appeldoorn et al. 1997; 

Appeldoorn et al. 2009; Clark et al. 2009) and seagrass habitats are known to support 

increased densities of benthic invertebrates when compared to unvegetated bottom (Orth 

et al. 1984; Ansari et al. 1991; Heck et al. 1997; Nakamura & Sano 2005). Furthermore, 

previous studies have reported observations of White grunts feeding in seagrass habitat, 

as opposed to unvegetated bottom, during their nightly foraging migrations (Ogden & 

Zieman 1977; Appeldoorn et al. 1997).   



59 
 

Data collection. The cover of seagrass within the seascape was evaluated within 100 m 

of each artificial reef.  The mean percent cover derived from previous seagrass mapping 

was calculated in ArcGIS (ERSI 2008).  Previous studies have found that congeneric 

species of grunts (H. flavolineatum and H. scirus) respond most strongly to the seascape 

within 100 m of their daytime resting habitats (Kendall et al. 2003; Pittman et al. 2007a).   

Furthermore, differences in seagrass cover at this scale were previously found to be a 

better predictor of fish community structure on this artificial reef array than seagrass 

cover at smaller scales (4 m, 50 m, Yeager et al. 2011).   

In order to support the assumption that seagrass density may affect food 

availability for White grunts, benthic cores were used to evaluate the abundance of White 

grunt prey items at sites with varying seagrass densities. These sites were located at least 

100 m away from natural or artificial reefs, but within the general study area, and were 

used to examine natural densities of invertebrates in the absence of significant predation 

from reef-associated predators. The percent cover of seagrass within 18 - 1 m2 quadrats 

was estimated using a modified Braun-Blanquet method (Fourqurean et al. 2001).  The 

benthos from each quadrat was subsampled using 10-cm diameter core to collect the top 

3 cm of sediment. Sediment samples were with stained with Rose Bengal to aid in the 

location of benthic organisms. In the laboratory, benthic sediment samples were sifted 

using 2 mm and 500 μm sieves. Sieved samples were sorted under a dissecting 

microscope. All organisms enumerated were identified to the lowest feasible taxonomic 

level.   
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The abundance of White grunts on artificial reefs was estimated using underwater 

visual census by trained observers (LAY and CAL).  Sizes of all fish were estimated to 

the nearest cm total length with the aid of a graduated dive slate.  Fish communities were 

surveyed on 15 dates from March 2009 to April 2010 (see Yeager et al. [2011] for more 

details on fish surveys). I restricted all my analyses to juvenile White grunts < 15 cm SL 

(<19 cm TL) in an attempt to include only juveniles that had settled on the reefs, and not 

larger individuals that may have migrated from other habitats.  Only 15 individuals, 

representing less 1 % of all individuals observed during the study period, were excluded 

using this criterion.   

Measures of fish condition and growth rate were used to evaluate individual-level 

measures of habitat quality. Fish condition was evaluated using the morphometric relative 

condition factor (Le Cren 1951). Fish which are heavier than average for their length may 

be considered to be in better condition than fish that are lighter than average. To estimate 

growth rate, I used the ratio of RNA to DNA in muscle tissue. Examination of 

RNA:DNA content to investigate growth rate is based on the fact that the amount of 

DNA in cells remains constant, while the amount of RNA increases with growth rate as 

more protein synthesis is required. This technique has been used successfully as a 

measure of relative growth in fishes (Buckley 1984; Folkvord et al. 1996; Garcia et al. 

1998; Buckley et al. 1999) and has been shown to typically integrate growth rates over a 

period of weeks (Johnson et al. 2002; Piazza & La Peyre 2010).   

White grunts were collected from artificial reefs using mesh wire traps with mesh 

sizes of 1 and 2 cm in April 2010. Traps were deployed in the benthos surrounding the 
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artificial reefs and were allowed to soak for 2-14 h before being retrieved. White grunts 

were removed from the traps and placed into coolers of fresh ocean water with aerators 

before being transferred by boat to land to be processed. Fish were euthanized with an 

overdose of eugenol, a known fish anesthetic (following Florida International University 

IACUC # A3096-01, 10-013). White grunts were euthanatized individually to ensure 

tissues were promptly preserved to prevent degradation of RNA. The standard length 

(SL) of each fish was measured to the nearest mm and blotted wet weight was measured 

to the nearest 0.01 g.  A small muscle tissue sample was removed and placed into a 

1.5mL microcentrifuge tube filled with RNAlater to prevent degradation of RNA, then 

kept frozen (-20⁰C) until further processing.  

Fish muscle samples were processed for RNA and DNA concentrations in the 

laboratory at Florida International University following a protocol modified from Bolnick 

and Lau (2008). My protocol differed only slightly from Bolnick and Lau (2008); White 

grunt muscle tissue used weighed between 2 - 8 mg and a homogenized sample of 

mosquitofish (Gambusia affinis) was used for the control homogenate.   

 

Data analysis. The relationship between the cover of seagrass and the density of benthic 

invertebrates in core samples was examined using linear regression. Benthic invertebrate 

densities were fourth-root transformed prior to analysis in to meet assumptions of 

normality (P = 0.1) and homogeneity of variances (P = 0.2). 
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Fish length and weight were used to calculate the predicted length-weight 

relationship for White grunts in this system. The relationship between fish length and 

weight was modeled with the following equation: 

W = aLn  (Equation 1) 

where W = the weight in g, L = fish standard length in mm and a and n are constants. 

Relative condition factor can be calculated using this empirically derived length-weight 

relationship as follows: 

K୬ = 	 ୛ୟ୐౤  (Equation 2) 

(Le Cren 1951).  When Kn > 1 means a fish is heavier than expected on the basis of its 

size (i.e., higher condition) and Kn < 1 indicates an individual is lighter than expected for 

its size (i.e., lower condition).  The mean relative condition factor was calculated for each 

reef. The RNA:DNA ratios were first corrected for fish length and sample run using 

linear regression procedures (Sokal & Rohlf 1981) before the mean of corrected 

RNA:DNA ratios were calculated for each reef.    

I focused the analysis of grunt abundance on artificial reefs over the time period 

after which fish communities had become relatively stable (i.e., fish abundance, species 

richness and community structure changed little over time, Yeager et al. 2011). The mean 

number of grunts from July 2009-April 2010 on each reef was calculated.   

Secondary production was calculated as the accumulation of new biomass over 

time (Benke 2010). Growth rates were estimated by following some cohorts for periods 
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of months to find a mean linear growth rate (G) of  0.03 cm/day, which was within the 

range of growth rates reported for juvenile French grunts (Grol et al. 2008). A linear 

growth rate was used to model fish growth as opposed to an exponential growth model 

(e.g., von Bertalanffy growth equation [von Bertalanffy 1938]), as the former is more 

appropriate for modeling growth of juvenile fishes (Faunce & Serafy 2008a). Production 

estimates were calculated for each individual size class (1 cm) for each survey interval 

using a modified version of the removal-summation method (Waters & Crawford 1973; 

Benke 1976).  Secondary production (g WW*t-1) was calculated as: 

Ps(Δt) 	= 	 (B s(t + 1) 	− B s(t)	) 	∗ 	N s(Δt)	  (Equation 3) 

 where Ps(Δt) is the production of individuals belonging to size class s from the start to the 

end of time interval t. The time interval t varied based on the number of days between 

surveys. B s(t) represented the average biomass for an individual from size class s at the 

beginning of the time interval t.  Biomass (B) was calculated based on measured length-

weight relationship (Log W = 3.10 * Log L - 4.75, W = weight in g and L = standard 

length in mm, R2 = 0.99).  The total length of an individual from size class s at the end of 

the time interval t was estimated using the linear growth rate (G).   The B s(t+1) was then 

calculated using the estimated total length at the end of the t and length-weight 

relationship as described above.  N s(Δt) is the mean number of individuals in the size 

class over the time interval. I summed my secondary production estimates across all size 

classes between 0 and 19 cm TL (corresponding to 0 to 15 cm SL) from July 2009 to 

April 2010 to estimate total secondary production per reef over the study period.   
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The relationship between individual- (condition and RNA:DNA), population- 

(abundance) and functional- (secondary production) derived estimates of habitat quality 

and the mean percent cover of seagrass within 100 m of each reef were tested with 

separate linear regression models (SAS software v 9.2).   

 

RESULTS 

 

Percent cover of seagrass at patch habitats from which benthic cores were 

sampled ranged from 0-90%. Major taxonomic groupings of invertebrate taxa from 

benthic cores included (ordered from most to least abundant): Gastropoda (33.3%), 

Annelida (24.7%), Ostracoda (13.6%), unidentified worms (9.3%), Bivalvia (13.6%), 

Copepoda (6.2%), Ophiuroidea (1.9%), Tanaidacea (1.2%) and Decopoda, Mysidacea, 

and unidentified Crustacea making up less than 1%, each, of the total benthic invertebrate 

abundance. The abundance of benthic invertebrates ranged from 1 to 25 individuals per 

core (corresponding to density of 1.3 to 31.8 individuals/100cm2). The density of benthic 

invertebrates (fourth-root transformed) was positively related to the percent cover of 

seagrass (y=1.58 + 0.0052x, r2 = 0.24, P = 0.04, Fig. 3.2).  

The mean percent cover of seagrass within 100 m of the artificial reefs ranged 

from 16.4 % to 49.3 %. A total of 221 individual White grunts ranging from 4.1 – 14.9 

cm SL were examined for individual-based measures of habitat quality (relative condition 

factor and RNA:DNA ratios).  Relative condition factor (Kn) ranged from 0.58 to 1.21 
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and mean (± SE) relative condition factor ranged from 0.91 ± 0.02 to 1.07 ± 0.01 among 

reefs. The mean relative condition factor was not related to the mean percent cover of 

seagrass within 100 m (r2 = 0.04, P = 0.6, Fig. 3.3a). Corrected RNA:DNA ranged from 

0.29 to 2.76 among individuals and mean (± SE) RNA:DNA ranged from 1.12 ± 0.11 to 

1.44 ± 0.06 among reefs. Like relative condition factor, the mean RNA:DNA was not 

related to the mean percent cover of seagrass within 100 m  (r2 = 0.06, P = 0.5, Fig. 3.3b).   

The mean number (± SE) of White grunts per reef from July 2009-April 2010 

ranged from 6.7 ± 1.1 to 104.6 ± 27.6 individuals/reef.  The mean number of grunts per 

reef was positively related to the mean percent cover of seagrass within 100 m (r2 = 0.64, 

P = 0.007, Fig. 3.3c).  White grunt secondary production ranged from 135 to 2246 g wet 

weight per reef per year. Secondary production was positively related to the mean percent 

cover of seagrass within 100m (r2 = 0.48, P = 0.04, Fig. 3.3d).  

 

DISCUSSION 

 

My experiment, employing a set of artificial reefs, provided clear evidence that 

seascape context affects aspects of habitat quality and ecosystem function.  However, 

seascape effects on habitat quality for White grunts appeared to be limited to population-

level and functional responses; increased cover of seagrass within the seascape resulted in 

higher abundance of White grunts on reefs and increased secondary production. In 

contrast, I did not find any relationship between seascape context and individual-based 
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traits. Combining measures of individual fitness with population and functional measures 

may reveal a more complex view of the relationship between organisms and the seascape. 

Increased cover of seagrass within the seascape likely provides grunts with higher 

quality foraging habitat by increasing prey availability. While I did not map prey 

availability around the reefs explicitly, my benthic core sampling results support the 

hypothesis that seagrass represents higher quality foraging habitat, as densities of benthic 

invertebrates increased with seagrass cover.  Reports from previous studies of White 

grunts feeding preferential in seagrass at night, as opposed to sandy bottom (Ogden and 

Zieman 1977, Appeldoorn et al. 1997), are likely a result of increased resource 

availability.  Additionally, seagrass may provide increased shelter from predators when 

compared to sandy bottom, affording grunts with lower predation risk during their 

foraging bouts. Increased prey availability and structural complexity associated with this 

habitat likely explain the positive effects of seagrass availability within the seascape on 

White grunt habitat quality observed within this study.   

While there was not a clear relationship between seascape context and individual-

based measures of habitat quality, more grunts were found on artificial reefs in seascapes 

with higher seagrass cover than on reefs in seascapes with lower seagrass cover. This 

pattern could be explained in part by an ideal free distribution model, where individuals 

distribute themselves proportionally to the suitability (e.g., resource availability) of 

various habitat patches (Fretwell & Lucas 1970). Under this scenario, all habitat patches 

are similar in terms of suitability at the individual level because the ratio of consumers to 

resources is similar across patches. In this study, reefs with more seagrass in the seascape 
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likely represent the most suitable foraging habitat, mediated in at least part through 

increased availability of grunt prey items, causing more grunts to utilize those reefs in 

close proximity to preferred foraging areas. However, increased abundance of grunts on 

reefs with more seagrass may have led to greater competition for prey, making per capita 

resource availability similar across reefs. As a result, reefs in different seascape contexts 

may represent similar habitat quality at an individual-level; the benefit of increased 

resource availability associated with higher seagrass seascapes appeared to be manifest 

only at the population level in my study.  

These population-level differences in abundance led to increased secondary 

production on reefs within seascapes with more seagrass.  Because growth rates were 

assumed to be similar across reefs, differences in secondary production were driven by 

differences in fish abundance and size structure through time, as opposed to differences 

in growth rates.  If my assumption of similar growth rates was not reasonable, this could 

have affected trends in secondary production. However, I did not find a trend between my 

proxy for growth (RNA:DNA) and seascape context in this study.  Furthermore, it has 

been suggested that differences in secondary production among sites is likely driven by 

fish abundance and size structure when these metrics vary greatly among sites, as 

opposed to small differences in growth (Rypel & Layman 2008; Valentine-Rose & 

Layman 2011; Valentine-Rose et al. 2011).  Increased fish secondary production on reefs 

with more seagrass within the seascape likely translates to an increased contribution to 

the adult population, as well as increased transfer of energy to higher trophic levels 



68 
 

through predation (Randall 1967).  For this reason, secondary production may be a useful 

tool to evaluate effects of seascape context on habitat quality.  

While artificial reefs have been found to be good experimental representations of 

natural patch reef habitats (Alevizon et al. 1985; Hixon & Beets 1989, 1993; Yeager et 

al. 2011), there are a few limitations that should be considered when applying the results 

of this study to natural systems.  First, reefs in this study were relatively small compared 

to many natural patch reefs.  The additional structure provided by larger reefs would 

likely support more individuals, potentially resulting in increased interspecific 

competition for resources.  Also, the close proximity of some reefs may lead to overlap in 

nighttime foraging areas, although the mean overlap was only 14% (range 0% - 29%) of a 

seascape area of 31,000 m2. Furthermore, in this study, individual-based measures of 

habit quality (condition and RNA:DNA) were assessed only once, providing a snap-shot 

of these metrics. Yet, this single sampling event was necessary to avoid affecting grunt 

assemblages during the course study. How these measures vary temporally is unknown.  

Finally, while not my objective, it was not possible to definitively differentiate between 

“new” secondary production of White grunts versus attraction of fish from surrounding 

habitat.  However, I observed continual recruitment of the fish to these reefs as early 

juveniles (1-2 cm in size) and the artificial reefs were relatively isolated from natural, 

structured habitats (at least 500 m away from the nearest natural reef) from which larger 

grunts could have moved. Moreover, a previous study found that juvenile grunts are not 

recruitment limited and availability of post-settlement, structured habitat appears to 

control population sizes (Shulman & Ogden 1987).  These factors support the notion that 
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secondary production of juvenile White grunts associated with these artificial reefs likely 

represents new production.     

Results of my study highlight the importance of considering higher-order 

response variables when attempting to evaluate habitat quality. Data needed to evaluate 

the importance nursery areas for marine species are typically divided into hierarchical 

levels: (1) presence/absence, (2) density, (3) growth or predation risk, and (4) production 

(Able et al. 1999; Beck et al. 2001; Dahlgren et al. 2006).  Examinations of habitat 

quality defined by individual traits in isolation may lead to inaccurate estimates of habitat 

value, if density dependence, selective mortality and connectivity are not considered 

(Searcy 2007). Higher order estimates of habitat quality, such as production, are often 

considered to be the most rigorous estimators and integrate across other metrics (Searcy 

2007; Faunce & Serafy 2008a; Valentine-Rose et al. 2011). In this study, if I had focused 

on metrics of growth and condition alone, I would have failed to detect differences in 

habitat quality. Incorporation of abundance and secondary production provided for a 

more complete view of habitat quality for White grunt populations.   

 Integrating habitat variables across ecologically-relevant scales is critical for 

effective conservation and management programs (Mumby 2006; Sheaves 2009; 

Edwards et al. 2011). Incorporating various individual- and population-based measures of 

habitat value is crucial in advancing my understanding of the importance of seascape 

characteristics in determining the suitability of focal habitat types for populations of 

marine organisms. Populations of fisheries species, such as White grunts, may suffer 

multiple threats, including loss/alteration of habitat, and overharvest. Results of this study 
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support the notion that even relatively minor changes in the surrounding seascape have 

the potential to affect ecosystems function (i.e., secondary production). Since reefs with 

more seagrass in the surrounding seascape support greater production of White grunts, a 

loss of seagrass cover could result in overall declines in production in such systems.  
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Fig. 3.2 Density of benthic invertebrates versus the percent cover of seagrass for benthic 
cores. Note that the density of benthic invertebrates is plotted on a fourth-root scale, but 
axis labels represent untransformed densities. 

 

% cover of seagrass

0 20 40 60 80 100

B
en

th
ic

 in
ve

rt
eb

ra
te

 d
en

si
ty

(i
nd

iv
id

ua
ls

/1
00

cm
2

)

32

16

8

4

2

1

y = 1.58 + 0.0052x
r2 = 0.24
P = 0.04



73 
 

 

Fig. 3.3 Relationship between the mean percent cover of seagrass within the seascape and 
(a) mean relative condition factor, (b) mean RNA:DNA, (c) abundance, and (d) 
secondary production of White grunts.  A trend line is shown for the relationships where 
P < 0.05.  
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CHAPTER IV 

QUANTITY FOR QUALITY: FORAGING TRADE-OFFS FOR A GENERALIST 

FISH PREDATOR ACROSS AN ENVIRONMENTAL GRADIENT 
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Abstract: 

Human alteration of natural landscapes often results in species-poor communities 

dominated by resilient, generalist species.  A foraging trade-off may be one mechanism 

by which generalists remain successful in degraded environments. I examined diet, prey 

quality, growth, and condition for a generalist fish predator, Gray snapper (Lutjanus 

griseus), at five sites across an estuarine gradient in the Loxahatchee River estuary, 

Florida.  Snapper diets shifted from dominance by low quality, intertidal crabs upstream 

to an increased reliance on higher quality shrimp, fishes, and benthic crabs downstream. 

Concurrently, the frequency and volume of food in snapper stomachs decreased moving 

downstream.  Measures of snapper growth and condition did not vary among sites.  

Results suggest fish compensate for lower quality prey upstream by eating more, and thus 

individuals are able to maintain a similar level of fitness across the environmental 

gradient in the estuary. Elucidating mechanisms - like compensatory feeding - that enable 

generalist species to thrive in sub-optimal habitat conditions is critical to understand 

organismal ecology in the context of landscape alteration. 

 

Key words: Compensatory feeding, prey quality, prey quantity, landscape, seascape, 

mangrove, Lutjanus griseus, condition, growth 
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Introduction 

Biodiversity loss is one of the most severe global environmental crises, and is 

caused primarily through human-mediated habitat loss and landscape alteration (Pimm et 

al. 1995; Vitousek et al. 1997). However, all species are not equally susceptible to these 

anthropogenic threats, and degree of niche specialization or generalization may be an 

important predictor of vulnerability to extinction (McKinney & Lockwood 1999; Clavel 

et al. 2011). Specifically, specialist species are often lost before generalist species (Fisher 

et al. 2003; Munday 2004; Rooney et al. 2004), leading to increased prevalence of 

generalists and greater biotic homogenization in degraded environments (Wiegmann & 

Waller 2006; Clavel et al. 2011). Therefore, understanding factors which allow 

generalists to remain successful in changing or degraded environments is critical to 

predict the effects of biodiversity loss on functioning of ecosystems.  

Generalization is associated with trading-off the costs and benefits of being able 

to use varying resources (Futuyma & Moreno 1988). For instance, specializing on high 

quality resources is profitable when they are abundant. However, being able to consume 

lower quality resources when competition for resources is high, or when resources vary 

greatly through time or space, may allow fitness to be maximized (Stephens & Krebs 

1986; Futuyma & Moreno 1988).  One mechanism by which generalist species may be 

able to compensate for lower food quality in habitat patches with sub-optimal foraging 

conditions is by increasing the quantity of food resources they consume. A compensatory 

feeding strategy has been demonstrated for many taxa when environmental conditions 

limit the availability of high quality foraging sites (Targett & Targett 1990; Rueda et al. 

1991; Pennings et al. 1993; Taillon et al. 2006).  Yet, the mere presence of compensatory 
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feeding does not necessarily mean similar levels of individual fitness are maintained.  For 

example, Cruz-Riverva and Hay (2000) found only one of three species of herbivorous 

amphipods was able to maintain fitness by compensating for low food quality by eating 

more.  Most of the studies to date that have examined how increasing consumption of low 

quality forage may affect consumer fitness have focused on phytophagous insects or 

crustacean mesograzers, especially when host plants are chemically defended (Cruz-

Rivera & Hay 2001, 2003; Lavoie & Oberhauser 2004; Roslin & Salminen 2009).  

Whether such compensatory feeding strategies are found in higher-order consumers 

remains unclear (but see Kadin et al. 2012 and Schrimpf et al. 2012 for examples with 

seabirds).   

 My objective was to investigate foraging trade-offs of a generalist fish predator 

across an estuarine, environmental gradient. Additionally, I linked differences in trophic 

niche to growth rates and fish condition to determine the profitability of such trade-offs. 

Specifically, I hypothesized that (1) diet composition and quality would vary across the 

estuarine gradient, (2) the quantity of prey consumed would be inversely related to prey 

quality, and (3) growth rates and individual condition would be similar across sites if 

compensatory feeding was found. 

  

Materials and Methods 

 

Study site 

The Loxahatchee River (26°57’ N, 80°06’ W) is located on the southeast coast of 

Florida, USA and flows into the Atlantic Ocean through The Jupiter inlet (Fig. 4.1). The 
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river drains a 700 km2 watershed, of which 63% is still dominated by natural habitats 

(South Florida Water Management District 2006).  Diverse habitats are found across this 

landscape, transitioning from riverine cypress swamps upstream to marine-dominated 

mangrove and seagrass habitat closer to the river mouth. I focused on five sites across 

this gradient representing the range of habitats utilized by Gray snapper, Lutjanus griseus 

(Table 4.1).  Sites span an 11 km gradient across this ecotone and represent a significant 

environmental gradient for Gray snapper. Data from acoustic telemetry studies within the 

Loxahatchee support the assumption that Gray snapper do not regularly move among the 

five study sites (Layman, C.A., unpublished data).  

 

Study species 

Gray snapper (Lutjanus griseus) is an ecologically important fisheries species 

common throughout Florida and the Caribbean (Starck & Schroeder 1970). Gray snapper 

are considered to be generalist in both their diet (Layman et al. 2007) and habitat use 

(Starck & Schroeder 1970).  Juvenile and sub-adult Gray snapper can tolerate a wide 

range of salinities (Serrano et al. 2011) and inhabit a diverse suite of habitats including 

seagrass beds, oyster reefs, mangroves and human-made habitats (Eggleston et al. 2004; 

Tolley & Volety 2005; Faunce & Serafy 2007). While some adult snapper may move 

offshore as adults, many may remain as estuarine residents throughout their lifetime 

(Faunce & Serafy 2008b). 
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Data collection 

Fish were collected for growth and diet analysis by fishing with baited hooks (all 

sites), supplemented by electrofishing upstream. Fish were euthanized using a high 

dosage of eugenol (a known fish anesthetic, Cotter and Rodruck 2006, Sladky et al. 

2001). The standard length (SL) of each fish was measured to the nearest millimeter. 

Stomach contents of each fish were extracted by dissection and visually identified to the 

lowest taxonomic level possible. When necessary, stomach contents were brought back to 

the laboratory and identified with the aid of a dissecting microscope. Otoliths were 

extracted from the fish and taken to the laboratory for processing so that fish could be 

aged. Fin tissue was taken for isotopic analysis. Muscle tissue samples were collected for 

lipid content analysis.  

Once a sufficient number of fish had been sampled for age analysis, additional 

fish were sampled non-lethally for stomach contents (i.e., to reduce the number of fish 

sacrificed) (Layman & Winemiller 2004). These fish were anesthetized using eugenol 

and forced to regurgitate their stomach contents by pressing on the abdomen while using 

a metal spatula to help invert the stomach (Hammerschlag-Peyer & Layman 2012). A fin 

clip was also taken from these fish for stable isotope analysis. After sampling their 

stomach contents, fish were returned to water from the study site in a cooler and allowed 

to recover before being released.  

 Carbon stable isotope analysis was used to examine shifts in basal carbon 

resource pools for snapper among sites.  Only a subset of snapper collected in the 

summer of 2009 were used for stable isotope analysis (between 11 and 15 individuals per 

site). Fin tissue was processed for δ13C according to Post et al. (2007). 
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 Prey species identified from Gray snapper stomachs were collected 

opportunistically from benthic, intertidal and pelagic habitats throughout the estuary 

using a variety of methods (nets, traps, and by hand). Proximate composition of prey taxa 

(percent water, lipid, lean mass (protein), and inorganic components) was used to assess 

prey quality.  Percent water was determined by subtracting wet weight from the dry 

weight after drying whole organisms to a constant weight at 60ºC. Each organism was 

then ground to a powder with a mortar and pestle and a sub-sample of the homogenized 

powder was taken. Percent total lipid in the tissue was determined gravimetrically by 

solvent extraction following a version of the Bligh-Dryer method (Bligh & Dyer 1959), 

modified for use with a less toxic dichloromethanol solvent following Erickson (1993).  

Percent lean mass (protein) and inorganic material was found after burning lipid-

extracted tissue in a furnace at 550ºC for 4 hours.  Percent inorganic material was found 

by weighing the remaining ash and the amount of lean mass was calculated by 

subtraction (Van Pelt et al. 1997). 

Fish age was determined by examination of annual rings on sagittal otoliths. 

Annual rings were examined under a dissecting microscope and counted by two readers 

(LAY and CMHP). Blind counts were recorded with no knowledge of fish size. If counts 

between readers differed and no consensus in count could be made, the sample was 

excluded. Fish were aged to fractions of a year defined by the month the fish was 

captured, where January 1 was always considered the start of the year by convention.   

  Fish condition was evaluated by the lipid content found in muscle tissue.  Fish 

with greater percent lipid may be considered to have a higher fitness, as higher lipid 

stores are often associated with faster growth rates and increased reproductive output 
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later in life (Hutchings 1993; Fox 1994; Sogard 1997; Booth & Beretta 2004; Johnson 

2008).  Fish muscle samples were taken from the dorsal (epaxial and hypaxial) region of 

the posterior side of the fish.  Muscle samples were dried and ground to a fine powder 

using a mortar and pestle. A 100 mg subsample was used to assess lipid content.  Lipids 

were extracted from the muscle using a version of the Bligh-Dryer method (Bligh & Dyer 

1959) as described for prey quality analysis.   

 

Data analysis 

For diet analysis focusing on frequency of feeding and quantity of prey 

consumed, only snapper captured during the morning (8:30-12:00, n = 291 individuals) 

were used.  First, effects of fish size and site within the estuary on the frequency of 

snapper having food in their stomachs was tested with logistic regression.  Because 

differences were found among sites, I tested whether distance from the mouth of the 

estuary predicted the proportion of snapper with food in their stomach using linear 

regression. Next, a general linear model (GLM) was used to test whether gut fullness 

(volume of food in stomach) could be predicted by site or fish size. As a measure of 

effect size, I also calculated η2 values, which represent the proportion of unique variation 

explained by individual predictor variables.  Whether distance from the mouth of the 

estuary predicted the mean gut fullness at each site was tested using linear regression. 

To examine differences in diet composition among sites, stomach contents were 

evaluated on the basis of both the volume of prey items as well as the number.  Prey were 

grouped into taxonomically similar categories so that each group represented at least 5% 

of the total diet (by volume and number) across all sites (n = 8 groups). A multivariate 
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analysis of variance (MANOVA) was used to test whether the volume of major prey 

groups in snapper stomachs differed among sites. Next, a χ2 test of independence was 

used to test whether the number of individuals from different prey groups differed among 

sites. If significant results were obtained for the MANOVA or χ2 test of independence, 

post-hoc tests were used to determine which sites and prey taxa were driving the 

differences. Additionally, prey were categorized by their primary habitat type: intertidal, 

benthic, or pelagic, depending on life history information and observations of prey 

behavior and habitat use at the study sites. A similar MANOVA and χ2 test of 

independence was used to test whether the volume and number of prey, respectively, 

from different habitat types varied among sites.  To test whether there was a shift in basal 

resource pool across sites, the δ13C were compared among sites using a Kruskal-Wallis 

non-parametric analysis of variance, as data did not meet assumptions of normality (P < 

0.05). The relationship between mean δ13C and distance to the mouth was tested with 

linear regression.  

 Energy density for different prey items was calculated on the basis of the 

proximate composition and published caloric values for lipid and lean mass (Schmidt-

Nielson 1997). Differences in energy density among prey taxa were tested with a one-

way analysis of variance (ANOVA). Prey were then divided into high (mean energy 

density > 5.0 kcal/g DW) and low energy density (mean energy density between 3.0 and 

4.0 kcal/g DW) groups.  A MANOVA was used to test whether the volume of high and 

low energy density prey consumed by snapper differed among sites. Whether the 

frequency at which snapper ate high and low energy density foods differed among sites 

was tested with a χ2 test of independence.  
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Growth curves were created from on size and age data of snapper from sites 1, 3, 

and 5, the only sites with sufficient sample sizes to develop the curves. Linear growth 

models regressing log (age) and log (length) best fit observed data. Because fish used 

within this study were mostly juvenile and sub-adult snapper, log-linear growth models 

were most appropriate (Faunce & Serafy 2008a).  Growth analysis was restricted to fish 

between 1-3 years old as this age range was well-represented at all sites. A GLM was 

used to determine whether size at age and growth rates differed among sites.  Differences 

in individual condition as measured by the percent lipid in muscle were compared among 

sites using a one-way ANOVA.  All statistical tests were performed in SAS v 9.2 except 

the χ2 which were performed in SPSS v 19.  

 

Results 

A total of 340 snapper were caught in the summers of 2007-2009 ranging in size 

54 – 204 mm SL.  The probability of a snapper having food in its stomach varied among 

sites (df = 4, W = 21.9, P = 0.0002), but was not related to fish size (df = 1, W = 0.47, P 

= 0.49). The proportion of snapper with food in their stomachs was positively related to 

distance from the mouth of the estuary (y = 4.01x + 38.92, R2 = 0.99, P < 0.001, Fig. 2a). 

Gut fullness varied among sites (df = 4, F = 9.79, P < 0.0001, η2 = 0.12), and was 

positively related to fish size (df = 1, F = 14.75, P = 0.0002, η2 = 0.04).  The mean gut 

fullness was positively related to distance from the mouth of the estuary (y = 0.066x – 

0.15, R2 = 0.98, P < 0.001, Fig. 4.2b). 

Snapper diets were composed of sixteen prey taxa across the five sites, including 

(ordered from most to least abundant): fiddler crab (Uca sp.), mud crabs (Xanthidae), 
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green mangrove tree crab (Aratus pisonii), penaeid shrimp (Penaeidae), blue crab 

(Callinectes sapidus), grass shrimp (Palaemonidae), shore crab (Pachygraspus 

transversus), isopod (Isopoda), snapping shrimp (Alpheus sp.), plant material, anchovy 

(Anchoa sp.), green porcelain crab (Petrolisthes armatus), mojarra (Eucinostomus spp.), 

Crested goby (Lophogobius cyprinoides), ribbed mussel (Guekensia demissa), and 

amphipod (Amphipoda).  

There was a difference in diet composition for binned prey categories (listed in 

Fig. 4.3a) by volume (df = 32, F = 4.2, P < 0.0001) and number (df = 20, χ2 = 308.6, P < 

0.001) among sites. Post-hoc tests revealed this difference was driven by an increased 

reliance on blue crabs and shrimp downstream; green mangrove tree crabs and mud crabs 

in the mid-estuary, and fiddler crabs upstream.  The habitat source of snapper prey items 

also differed among sites based on both volume (df = 12, F = 3.2, P = 0.0003) and 

number (df = 8, χ2 = 137.9, P < 0.001). The difference was driven by an increased 

reliance on intertidal prey items and a decreased reliance on benthic prey items at 

upstream sites compared to downstream. The δ13C values of snapper fin samples differed 

among sites (H = 53.4, P < 0.001). The mean δ13C of snapper fin tissue was negatively 

related to distance to the mouth (y = 0.85x – 17.8, R2 = 0.93, P = 0.007, Fig. 4.2c). 

A total of 103 individuals from 10 prey taxa were processed for proximate 

composition (percent water, lipid, lean mass and inorganic material). Energy density 

differed significantly among prey categories (df = 7, F = 81.3, P < 0.0001, Fig. 4.4).  The 

volume (df = 8, F = 2.60, P = 0.001) and number (df = 4, χ2 = 74.83, P > 0.001) of prey 

from high and low energy density groups varied among sites (Fig. 4.3c). Post-hoc test 

revealed that differences in volume were driven by a difference in the volume of low 
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energy density foods, which was greatest at sites 4 and 5. Difference in the number of 

high and low energy density food consumed was driven by a greater than expected 

number of high energy density prey consumed downstream (site 1) and low energy 

density prey consumed upstream (site 5).  

The size of Gray snapper increased with age (df = 1, F = 16.94, P < 0.001), but 

did not vary among sites (df = 2, F = 1.45, P = 0.24, Fig. 4.5). Growth rates (size*site) of 

snapper did not differ among the three sites examined (df = 2, F = 0.38, P = 0.68).   

Fifty-four snapper from across the five study sites were examined for lipid content 

in muscle as a proxy for individual condition.  The percent lipid in muscle tissue ranged 

from 5.1% to 7.3% and did not vary among study sites (df = 4, F = 0.28, P = 0.9, Fig. 

4.6). 

 

Discussion 

 I found significant variation in the composition of Gray snapper diets and the 

quality and quantity of prey consumed across an environmental gradient.  As may be 

predicted by optimal foraging models (MacArthur and Pianka 1966), the quality of prey 

consumed appeared to be inversely related to the quantity of prey consumed.  Snapper 

exhibited similar growth rates and individual condition across sites, indicating that 

trading-off the quality and quantity of prey consumed may have allowed snapper to 

maintain similar measures of condition across the gradient.  These results suggest that 

niche plasticity and compensatory feeding may be mechanisms through which Gray 

snapper are able to thrive across gradients of resource quality and availability.   
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Snapper diets shifted substantially across the environmental gradient in terms of 

taxonomic composition and habitat sources.  Snapper downstream fed mostly from soft 

bottom habitats surrounding the mangrove island from which the snapper were caught.  

In contrast, snapper upstream shifted to a diet more heavily reliant on intertidal prey.  

Carbon isotope analysis of snapper tissue supported this diet shift, as carbon values of 

snapper upstream were more characteristic of intertidal food webs while values of 

snapper downstream were reflective of more marine-based production (Yeager & 

Layman 2011). Although I did not quantify the distribution of prey, benthic, pelagic, and 

intertidal prey were present at all sites (L.A. Yeager, personal observation).  However, 

distribution of specific prey taxa did vary across sites and much of the variation in 

snapper diet composition is likely a result of these differences.  For example, blue crabs 

are rarely observed upstream; little muddy intertidal habitat precluded fiddler crabs from 

downstream sites.  It is likely that the estuarine gradient was an important driver of the 

distribution of certain prey taxa, as some of the more marine-associated prey (e.g., penaid 

shrimp) were excluded from upstream sites because of salinity tolerances.   

While it appears that snapper have a trade-off between quality and quantity of 

prey consumed across the estuarine gradient, much is still to be studied about the 

underlying mechanisms driving diet choice.  Specifically, it is not known if differences in 

snapper diet across this gradient are the result of differences in prey availability, prey 

choice, and/or time spent foraging. The question remains at sites where the quality of 

prey consumed is high, why not consume more?  For instance, the high frequency of 

empty stomachs observed downstream suggests that snapper should be able to consume 

more if more prey were available.  Increased competition downstream may have resulted 
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in lower per capita prey availability.  Additionally, if predator encounter rates were 

greater downstream, increased mortality risk may have resulted in less foraging time or a 

smaller foraging range. Regardless of the mechanism, it is apparent that such a trade-off 

between quality and quantity of prey consumed was sufficient for maintaining similar 

levels of growth and condition for snapper across the environmental gradient examined.  

Other factors besides diet may affect condition and growth of individual Gray 

snapper.  For example, environmental conditions such as temperature or salinity can 

affect physiological costs for snapper (Wuenschel et al. 2005, Serrano et al. 2011).  

Water temperatures varied little among my five sites, and thus likely had little effect on 

differences in fish condition and growth.  A previous study on physiological costs 

associated with varying salinities indicated physiological stress in Gray snapper is 

unlikely to occur between 5 and 50 ppt (Serrano et al. 2011).  Only at the site farthest 

upstream may any physiological cost be associated with decreased salinities, and the 

mean salinity for this site of 4 ppt falls only just outside the “no-stress” range. Therefore, 

variation in diet seems to be a more likely potential driver of snapper condition or growth 

as opposed to environmental factors in my system.   

While I did not find evidence of reduced individual fitness for Gray snapper 

associated with reduced forage quality, I focused on naturally varying differences in 

forage quality.  In contrast, in studies on fragmented tidal creek ecosystems in The 

Bahamas, Gray snapper were found to have reduced growth rates and lower body 

condition when compared to those from unfragmented creeks (Rypel & Layman 2008).  

In fragmented systems in The Bahamas, prey diversity was greatly reduced and snapper 

were found to have a much smaller trophic niche width at these sites (Layman et al. 
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2007).  One hypothesis is that reduced prey availability in fragmented systems prevents 

snapper from compensating for reduced quality by eating more.  A comparison of this 

system with that of the current study suggests if habitat degradation becomes too severe, 

foraging trade-offs may be inadequate to compensate for reduced forage quality or 

quantity.  

Generalist species are able to thrive in numerous ecological niches because of 

their plastic responses to biotic and abiotic environmental variation.  As species richness 

declines with habitat degradation, the contribution of the remaining species becomes even 

more critical to maintaining overall ecosystem function.  Trade-offs such as 

compensatory feeding may be critical in allowing generalist species to deal with sub-

optimal conditions.  However, factors such as foraging mode or the availability of 

alternate prey sources may limit this efficacy of this compensatory mechanism.  In light 

of the rapid rate of species loss and landscape change, it is critical to understand how, 

when, and where generalist species may be able to undergo trade-offs to maintain critical 

functions of altered environments.  
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Table 4.1. Description of five studies sites.  Salinity and temperature data courtesy of the 
Loxahatchee River District from averages over 2008-2009. NA = not available.  

 

Site 
number 

Site name Distance 
from mouth 
of estuary 
(km) 

Mean 
salinity 
(ppt) 

Mean 
temperature 
(°C) 

Site description 

1 Bird 
Island 

2.6 33 25.9 Red mangrove (Rhizophora 
mangle) islands bordered 
by sub-tidal channels and 
mud flats with sparse 
seagrass 

2 Eagle’s 
Nest 

5.3 26 25.8 Red mangrove and concrete 
rip-rap shoreline bordered 
by patches of muddy 
bottom and oysters  

3 Oyster 
Island 

6.8 19 25.6 Red mangrove islands 
surrounded by extensive 
oyster reefs 

4 Boy 
Scout 
Camp 

9.9 9 NA Red mangrove shorelines 
bordered by muddy bottom 
with sparse oyster clumps 

5 Kitching 
Creek 

13.1 4 25.1 Freshwater cypress 
(Taxodium distichum) and 
riverine mangrove-lined 
shoreline, bordered by 
muddy bottom 
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Fig. 4.1. Map of the Loxahatchee River and estuary. Black dots indicate locations of the 
five study sites. 
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Fig. 4.2. Aspects of snapper diet along an estuarine gradient: (a) percent of snapper with 
food in their stomachs, (b) mean (± standard error) gut fullness, and (c) mean (± standard 
error) δ13C of Gray snapper fin tissue from 5 sites along the gradient. Gray bars to the 
right of plot represent range of δ13C values from marine or mangrove/intertidal carbon 
source pools in the estuary.   
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Fig. 4.3. Composition of Gray snapper diets by volume based on (a) major taxonomic 
groupings of prey, (b) habitat source of prey items, and (c) quality of prey from 5 study 
sites. I present only data based on volume for simplicity, as patterns for diets based on 
number were generally similar.  
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Fig. 4.4. Mean (± standard error) energy density of snapper prey items in kcal/g DW.  
Similar letters denote groups that do not differ statistically at α = 0.05. 
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Fig. 4.6. Box plots of % lipid in muscle based on dry weight for Gray snapper from 5 
sites along an environmental gradient.  
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ABSTRACT Oyster reefs are among the most threatened coastal habitat types, but still 

provide critical habitat and food resources for many estuarine species. The structure of 

oyster-reef food webs is an important framework from which to examine the role of these 

reefs in supporting high densities of associated fishes. I identified major trophic pathways 

to two abundant consumers, Gray snapper (Lutjanus griseus) and Crested goby 

(Lophogobius cyprinoides), from a sub-tropical oyster reef using stomach content and 

stable isotope analysis. The diet of Gray snapper was dominated by crabs, but shrimp and 

fishes were also important. Juvenile Gray snapper fed almost entirely on oyster reef-

associated prey items, while sub-adults fed on both oyster reef- and mangrove-associated 

prey. On the basis of trophic guilds of the Gray snapper prey, as well as relative δ13C 

values, microphytobenthos is the most likely basal resource pool supporting Gray snapper 

production on oyster reefs at my study site. Crested goby had omnivorous diets 

dominated by bivalves, small crabs, detritus, and algae, and thus were able to take 

advantage of prey relying on production from sestonic, as well as microphytobenthos, 

source pools. In this way, Crested goby represent a critical link of sestonic production to 

higher trophic levels. My results highlight major trophic pathways supporting secondary 

production in oyster reef habitat, thereby elucidating the feeding relationships that render 

oyster reefs critical habitat for many ecologically and economically important fish 

species. 

 

Key words Diet, Estuary, Lutjanus griseus, Lophogobius cyprinoides, Predator-prey 

dynamics, Stable isotope analysis 
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Introduction 

 

Oyster reefs have suffered severe declines worldwide as a result of overharvest and 

anthropogenic habitat degradation, driving oysters to ecological extinction in many 

temperate estuaries (Jackson et al. 2001; Beck et al. 2009). Yet, oyster reefs remain one 

of the most important estuarine habitat types because of the number of ecosystem 

services they provide. One such service includes provision of habitat structure, as oysters 

form structurally complex reefs thereby providing refuge for diverse communities of 

fishes and invertebrates (Tolley & Volety 2005; Boudreaux et al. 2006; Shervette & 

Gelwick 2008). Many of these organisms are direct food resources for commercially 

important species, such as Blue crabs and Striped bass (Harding & Mann 2001, 2003; 

Grabowski et al. 2008). As such, the structure of oyster-reef food webs can provide a 

context to evaluate one of the important ecosystem services that these habitats provide, 

i.e., trophic support for ecologically and economically important estuarine species.  

Two food web approaches are typically employed to explore trophic relationships: 

interaction webs and energy flow webs (Paine 1980; Polis & Winemiller 1996). 

Interaction models are usually derived from controlled experimental manipulations to 

determine the per capita impact of one species on another (Paine 1992). Most studies of 

oyster-reef food webs have utilized this approach (Grabowski 2004; Fodrie et al. 2008; 

Grabowski et al. 2008; O'Connor et al. 2008). Alternatively, food web models developed 

using direct dietary information or stable isotope values depict the flow of energy among 

species in an ecosystem. Such “energy flow models” are most useful for understanding 

which production sources and trophic pathways support particular species of interest 
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(Paine 1980; Winemiller & Polis 1996; Layman et al. 2005). An energy flow approach 

has rarely been taken in studies of oyster-reef food webs (but see (Dame & Patten 1981; 

Lenihan et al. 2001; Wilson et al. 2009), and thus underlying trophic pathways 

supporting consumers are typically only inferred from functional relationships for many 

oyster reef systems. Furthermore, most studies examining trophic relationships in oyster 

reef food webs are restricted to temperate reefs, and little is known about oyster reef food 

webs in sub-tropical settings. 

In this study, I use an energy flow approach to identify important trophic 

pathways supporting the production of fish consumers. I combine stomach content and 

stable isotope data to analyze the trophic role of these consumers. Direct diet observation 

through stomach content analysis provides detailed information on typical prey items. 

However, stomach content analysis gives only a snapshot of an individual’s diet and may 

bias the importance of individual taxa towards the most common or those with longer 

residence times in the gut. Conversely, stable isotope analysis is widely employed in food 

web studies to provide insight into an individual’s integrated diet over longer time scales 

(Layman & Post 2008). The δ13C value (derived from the ratio of 13C to 12C) often varies 

among primary producers with different photosynthetic pathways and is useful in 

inferring basal carbon resource pools supporting a consumer, since there is little change 

with trophic transfers (Peterson & Fry 1987; Wada et al. 1991; Post 2002). Alternatively, 

the δ15N value (derived from the ratio of 15N to 14N) becomes more enriched with each 

trophic transfer, and therefore is useful in estimating trophic position within a food web 

(Cabana & Rasmussen 1996; Vander Zanden & Rasmussen 1999; Post 2002). I use these 
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two complementary techniques to gain insight into the major trophic pathways which 

support production of consumers.  

I focused my study on two of the most abundant consumers found on sub-tropical 

oyster reefs: (1) the predatory Gray snapper (Lutjanus griseus Linnaeus 1758) and (2) the 

omnivorous Crested goby (Lophogobius cyprinoides Pallas 1770). Gray snapper is one of 

the most ecologically important species in sub-tropical estuaries of the southeast U.S. and 

the Caribbean region, as well as an important fishery species (Layman & Silliman 2002; 

Serafy et al. 2003; Layman et al. 2007; Pittman et al. 2007b; Valentine-Rose et al. 

2007b). Crested goby are one of the most numerically dominant fish species on sub-

tropical oyster reefs (Tolley et al. 2006), and thus likely play an important role in their 

structure and dynamics. My objectives were to describe the trophic pathways supporting 

Gray snapper and Crested goby and, simultaneously, reveal detail as to the structure of 

the overall oyster reef food web.  

 

Materials and Methods 

 

Study site 

 

The Loxahatchee River (26°57’ N, 80°06’ W) is located on the southeast Atlantic coast 

of Florida, United States of America, draining a 620 km2 watershed and connecting to the 

ocean through Jupiter Inlet. The Northwest Fork of the Loxahatchee River has been 

nationally designated a Wild and Scenic River, making it the first river in Florida to hold 

such a designation (Chapter 83-358, Laws of Florida, approved June 1983). Sixty-three 
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percent of the watershed is still dominated by natural environments (South Florida Water 

Management District 2006). The Loxahatchee River and estuary encompass diverse 

aquatic habitats including freshwater cypress swamps, mangrove shorelines, seagrass 

beds and oyster reefs. Oyster reefs are common in the mesohaline section of the river 

(Fig. 5.1). A 2008 survey of oyster reef habitat by the Loxahatchee River District mapped 

91 oyster reefs covering more than 60,000 m2 (Howard & Arrington 2008). The present 

study will focus on an area of extensive natural oyster habitats surrounding mangrove 

islands (26°58’16 N, 80°07’41 W) in the Northwest Fork of the river (Fig. 5.1). 

 

Study species 

 

Gray snapper is an important estuarine species and is a conspicuous predator in multiple 

estuarine habitat types. They are often associated with mangroves, seagrass and coral reef 

environments (Eggleston et al. 2004; Layman et al. 2004; Faunce & Serafy 2007; 

Valentine-Rose et al. 2007a; Faunce & Serafy 2008b, a), and also are abundant on oyster 

reefs (Tolley & Volety 2005). The species supports economically important recreational 

and small-scale commercial fisheries (Valentine-Rose et al. 2007b). Gray snapper are 

known generalists with respect to both trophic role (Layman et al. 2007) and 

physiological tolerances (Serrano et al. 2007). Juveniles are one of the most numerically 

dominant fishes on oyster reefs in the Loxahatchee River, Florida (C. Layman, 

unpublished data) and likely play an important role in the estuarine food web.  

Crested goby is one of the most abundant fish species on sub-tropical oyster reefs 

(Tolley et al. 2006) and is the dominant benthic fish consumer in terms of biomass in the 
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study area (Layman, CA, unpublished data). Crested goby are suspected to have 

omnivorous diets (Darcy 1981). Furthermore, Crested goby may serve as important prey 

for piscivores in oyster-reef food webs, including Gray snapper (Odum & Heald 1972). 

For this reason, they may represent an important energy flow pathway to higher order 

consumers, including commercially important fishery species.  

 

Data collection 

 

All fishes were collected from one oyster reef (~2,000 m2 area) at the study site. Gray 

snappers were collected during the summers of 2008 and 2009 using hook and line 

fishing. Upon capture, snapper were euthanized using an overdose of eugenol. Stomach 

contents were extracted by dissection, all prey items identified to the lowest taxonomic 

level possible, and the stomach content volume was estimated using graduated cylinders. 

Additional individuals were collected and anesthetized using eugenol. These snapper 

were sampled non-lethally using stomach regurgitation following methods modified from 

Layman and Winemiller (2004) and finally released. Goby were collected for stomach 

content analysis during the summer of 2008 using benthic tray “traps” filled with oyster 

shell (Rodney & Paynter 2006). Goby were euthanized and stomach contents were 

analyzed in the laboratory under a dissecting microscope and volume estimated as above.  

Fin tissue for stable isotope analysis was collected from a subset of snapper used 

for stomach content analysis. Fin tissue was used so the tissue type was consistent among 

all individuals, because muscle was not taken from individuals sampled non-lethally. The 

δ13C and δ15N of Gray snapper fin and muscle tissue is highly correlated within 
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individuals (δ13C fin = 1.11(δ13C muscle) + 2.73, R2 = 0.95; and δ15N fin = 0.998 (δ15N 

muscle) + 0.459, R2 =0.93, N=37 individuals; C.A. Layman, unpublished data). Using 

these relationships, the small correction was made from Gray snapper fin isotope values 

to that of muscle values, as muscle tissue was used for other fish species in this study. 

Crested goby were collected from the summers of 2008 and 2009 and muscle tissue was 

used for isotope analysis.  

On the basis of the stomach content analysis, identified taxa (Table 5.1) were 

collected from oyster reef habitat for stable isotope analysis using benthic tray traps 

described above. Live oyster (Crassostrea virginica) and ribbed mussels (Guekensia 

demissa) were also collected by hand from the site. Additional invertebrates and primary 

producers were collected from mangrove prop roots and the intertidal zone. Encrusting 

algae was collected by hand from mangrove prop roots. Seston (suspended organic matter 

and plankton) was filtered from water collected at the site with pre-combusted glass fiber 

filters (0.7 μm). Benthic algae and associated organic material (hereafter referred to as 

microphytobenthos) were collected by hand by scraping the top 1mm surface of intertidal 

sediments. Red mangrove (Rhizophora mangle) and white mangrove (Lagunculara 

racemosa) leaves were collected from live trees. Other fish species were collected with 

hook and line fishing to determine isotope values of other predators for comparison with 

Gray snapper and Crested goby (Table 5.1). All collections were made in the summers of 

2008 and 2009 to reduce seasonal variability in isotope values and seasonal differences in 

prey abundance.  

For all mollusks, only the soft tissue was extracted for isotope analysis. For 

arthropods, the whole organism was used, but separate analyses were done for δ13C and 
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δ15N with the sample for δ13C being first acidified to remove inorganic carbon. Similarly, 

all tissue was acidified before δ13C analysis for seston, microphytobenthos, and epiphytic 

algae mats. All tissue samples were processed and analyzed for δ13C and δ15N isotopic 

content following Post et al. (2007). A quantitative model, such as IsoSource (Phillips & 

Gregg 2003), was not used to identify the exact proportions of resource pools supporting 

consumers because my sampling of primary producers was not sufficient to encompass 

primary producer spatial and temporal variability in isotope values. But snapshot δ13C 

values of primary producers provide a valuable complement to information gained from 

direct stomach content and isotope data on consumers (Layman & Post 2008).  

 

Data analysis 

 

The proportion of prey from various taxonomic groups in the consumer diets was 

analyzed. Because body size can affect the diet and trophic role of consumers (Werner & 

Gilliam 1984), and Gray snapper collected in this study spanned a large range in body 

size, I divided them into juvenile (<100 mm SL) and sub-adult (100-200mm SL) groups 

following Faunce and Serafy (2007). The diets of juvenile Gray snapper, sub-adult Gray 

snapper and Crested goby were compared using the Schoener index (1968) of diet 

overlap: 

D = 1- ½ Σ│pij - pik│       (Equation 1) 

Where D is the diet overlap and pij and pjk are the proportions of the ith prey taxa for 

species/ group j and k, respectively. Diets with overlap less than ~60% typically are 

considered to be a biologically different (Zaret & Rand 1971; Mathur 1977; Wallace 
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1981). Additionally, prey were categorized according to their primary habitat: (1) 

benthic, oyster reef-associated, or (2) intertidal, mangrove-associated, defined by their 

collection locations and extensive observations of prey behavior at the site. None of the 

prey taxa are commonly found in both habitat types. Proportion of prey from each habitat 

was compared among juvenile Gray snapper, sub-adult Gray snapper and Crested goby 

with a Chi-squared test. Stomach contents from unknown sources were excluded in this 

analysis.  

Because Gray snapper varied greatly in size and both consumers were collected in 

two years for stable isotope analysis, I determined whether these two variables affected 

aspects of their diet. For Gray snapper, the relationship between fish size and frequency 

of empty stomachs was tested with logistic regression, with year included as an additional 

predictor variable. Two separate Mixed Linear Models (PROC MIXED, SAS 9.2) were 

used to test for differences in δ13C or δ15N between Gray snapper and Crested goby. The 

effects of year (2008 and 2009), fish size, and interactions between fish species and year 

(species x year) and size (species x size) were included as additional predictor variables. 

In the event of a significant interaction term, least square means with a Tukey-Kramer 

adjustment were calculated. Data were log-transformed when necessary to meet 

assumptions of normality (Kolmogorov-Smirnov test, P > 0.05 in all cases).  

 

Results 

  

Ninety-six Gray snapper ranging in size from 54-190 mm standard length were collected 

during the summers of 2008 (N=44) and 2009 (N=52). Snapper were observed to have 



116 
 

empty stomachs in 33% of individuals examined. The probability of a snapper having an 

empty stomach was not predicted by fish size (W = 0.50, P = 0.5) or collection year (W = 

0.66, P = 0.5). Thirteen taxa were identified in snapper diets, including (ordered from 

most to least important in terms of volumetric proportions) mangrove tree crab (Aratus 

pisonii), black-fingered mud crab (Eurypanopeus sp. and Panopeus sp.), grapsid crab 

(Sesarma sp.), snapping shrimp (Alpheus sp.), goby (Gobidae), ribbed mussel, isopod 

(Isopoda), amphipod (Amphipoda), grass shrimp (Palaeomonetes sp.), shore crab 

(Pachygraspus transversus), fiddler crab (Uca sp.), and plant material. Amphipod was 

only present in snapper diets in 2008 and fiddler crab in 2009, but were represented by 

only one individual in each case. The order of importance for the remaining prey taxa in 

snapper diets varied slightly between years, but this difference was largely the result of 

the proportion of juvenile snapper sampled relative to sub-adults sampled varying slightly 

between years and dietary differences between these two groups (see below). Overall, 

snapper diets were dominated by crabs by volume (85.4%), with lesser contributions of 

fish (4.2%) and shrimp (2.8%).  

 Diet overlap between juvenile and sub-adult Gray snapper was low (25.8 %). 

Juvenile Gray snapper diets were dominated by mud crabs (53.0% of diet by volume), 

whereas sub-adult diets had a larger proportion of green mangrove tree crabs (40.6%, Fig. 

5.2a). Primary habitat of Gray snapper prey items also differed between size classes (Fig. 

5.2b). Juvenile diets were dominated by benthic, oyster reef prey items (93.0% of diet by 

volume, only 2 individual isopods were consumed by juveniles from mangrove habitat) 

while sub-adult Gray snapper shift to a diet where the majority of prey items were from 

intertidal, mangrove habitat (65.3%).  
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 Fifty-four Crested goby (26-52 mm SL) were collected for diet analysis in the 

summer of 2008. Goby had empty stomachs 63% of the time. Analysis of goby diets 

revealed seven distinct taxa, including (ordered from most to least important by 

volumetric proportions) mud crab, ribbed mussel, clams and other mussels (Bivalvia), 

detritus, green porcelain crab (Petrolisthes armatus), filamentous algae, and snapping 

shrimp (Alpheidae). Goby diets were dominated in volume by bivalves (35.3 %), crabs 

(32.3 %), and detritus and algae (23.5 %). Diet overlap between Crested goby and 

juvenile snapper, and between Crested goby and sub-adult snapper was low (25.8% and 

19.8%, respectively). The source of goby prey was entirely from within benthic oyster 

habitat (100%). The proportion of prey from the two habitats (benthic, oyster vs. 

intertidal, mangrove) varied significantly between juvenile snapper, sub-adult snapper, 

and Crested goby (df = 2, χ2 = 140, P < 0.0001).  

 The δ15N values did not differ significantly between Gray snapper and Crested 

goby (df = 1, F = 0.95, P = 0.3), between years (df = 1, F = 1.79, P = 0.2), nor with fish 

size (df = 1, F = 0.34, P = 0.6). The δ13C did not differ overall between species (df = 1, F 

= 0.05, P = 0.8) or with fish size (df = 1, F = 0.94, P = 0.3). There was a significant 

difference in δ13C between years (df = 1, F = 22.41, P < 0.0001). However, this 

difference between years was driven by a significant interaction between species and year 

(df = 1, F = 11.39, P = 0.002) Post-hoc tests revealed that δ13C varied between years for 

Gray snapper only (P < 0.0001), being more depleted in 2008 (mean± SD = -23.5 ± 1.08) 

when compared to 2009 (-21.2 ± 1.4).  

 The mean δ15N value for other oyster reef-associated species ranged from 2.3 for 

periwinkle snails (Littorina sp.) to 13.3 for dog snapper (Lutjanus jocu). The δ15N of 
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Gray snapper and Crested goby were among the highest measured (Table 5.1). Both 

consumers had intermediate δ13C values compared to the range of δ13C from all oyster 

reef fauna sampled (-13.5 to -26.7), and were within the range of prey items identified 

from diet analysis (Table 5.1, Fig. 5.3). While δ13C values were variable for primary 

producers, seston were isotopically-depleted compared to other producers (Fig. 5.3). 

Likely because of this depleted resource pool, filter feeding bivalves were more depleted 

in δ13C than all other oyster reef consumers.  

 

Discussion 

 

Oyster reef-associated fauna were found to be important food resources for both Gray 

snapper and Crested goby. Gray snapper relied on food resources from both oyster reef 

and intertidal mangrove habitats, while Crested goby diets were composed entirely of 

oyster reef fauna. Gray snapper at my study site shifted from a diet almost completely 

composed of oyster-reef fauna as juveniles, to consuming a large proportion of intertidal 

prey associated with mangroves as sub-adults. Therefore, oyster reefs may be most 

important to the production of newly settled, juvenile Gray snapper. While juvenile Gray 

snapper and Crested goby both feed almost exclusively within the oyster matrix, they 

exhibited little diet overlap.  

 Relative predation risk may drive foraging patterns and habitat choice of 

organisms inhabiting oyster reefs (Werner & Hall 1988; Dahlgren & Eggleston 2000). 

Even though all fish were collected from within oyster reef habitat, sub-adult Gray 

snapper were found to forage in adjacent mangrove habitats. In my system, mangroves 
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and oyster are in close proximity (the distance between mangrove prop root habitat and 

the oyster matrix ranges from one to tens of  m), but the structure provided by the 

mangrove fringe is larger and devoid of clumps of oyster or other small structure. 

Furthermore, the mangrove fringe is only flooded at high tide, forcing fish back into the 

oyster matrix at low tide. Therefore, it is likely that body size contributes to the dietary 

differences between sub-adults snapper and juvenile and Crested goby. Sub-adult Gray 

snapper are larger than juvenile Gray snapper and Crested goby, possibly allowing to 

them escape risk from gape-limited predators. It may be more risky for the smaller 

juvenile snapper and Crested goby to leave the protection provided by the oyster matrix 

to feed in adjacent habitat. The ability of sub-adult Gray snapper to leave the oyster 

matrix and feed within intertidal mangrove habitats at high tide could represent a critical 

resource subsidy for reef-associated organisms.  

 Previous food web studies in oyster-reef habitats have been conducted from a 

different viewpoint, i.e., examining the per capita interaction strength among species. 

Such food webs in temperate oyster reefs focus on interactions linking filter feeding 

bivalves, to bivalve predators (e.g., mud crabs or oyster drills, Stramonita haemastoma), 

and then to top predators such as stone crabs (Menippe spp.) or oyster toadfish (Opsanus 

tau) (Grabowski 2004; Grabowski & Kimbro 2005; Hughes & Grabowski 2006; Fodrie et 

al. 2008; Grabowski et al. 2008). In particular, multiple studies have highlighted the 

importance of trophic cascades, where top predators can reduce predation by mud crabs 

on juvenile oysters (Grabowski 2004; Grabowski & Kimbro 2005; Grabowski et al. 

2008). In my study, I also found that mud crabs may represent a critical link in the 

transfer of production to higher trophic levels, since they were important components of 
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the diets of both Gray snapper and Crested goby. However, on the basis of the large 

difference in δ13C values, it seems unlikely that filter feeding bivalves compose a large 

portion of mud crab diets in this system. Instead, other consumers, e.g., Crested goby and 

checkered puffer (C. Layman, unpublished data) prey directly on filter feeding bivalves. 

As such, piscivorous predators could be more important in controlling the abundance of 

bivalve predators in my study system, although these functional relationships warrant 

more study in sub-tropical oyster-reef food webs.  

  Inferences regarding trophic linkages made from stable isotope data may be 

ambiguous in estuarine foods, since these webs are characterized by high species 

diversity and numerous basal resource pools (Layman 2007). Additionally, my sampling 

regime did not enable me to identify all sources of variability in isotope signatures (such 

as those driving differences in δ13C of Gray snapper between years). However, the 

isotope data support information from consumer stomach content analysis, and by 

combing these two data sources, I was able to identify the most important pathways 

linking consumers in this oyster reef food web. In my study, production derived from 

sestonic sources via filter feeding organisms did not appear to contribute substantially to 

the diet of snapper. Instead, benthic feeding crabs, that possibly derive energy from 

various microphytobenthos resource pools, seem to support snapper production. 

Conversely, Crested goby did feed on filter-feeding bivalves, and in doing so, represent a 

link from sestonic production into the benthic oyster reef food web. Exotic green 

porcelain crabs (Knott 1999), another filter feeding organism, were also important 

components of the diet of Crested goby. Stable isotope data suggest that green porcelain 

crabs have different diets than bivalve filter feeders, perhaps because filter feeders are 
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known to partition food by particle size (e.g., (Stuart & Klumpp 1984). As such, green 

porcelain crabs may represent an additional trophic pathway supporting secondary 

production in oyster reef food webs.  

 The current study has focused on one large natural oyster reef, and as such, the 

transferability of these results across systems is largely unknown. However, I did focus 

on the largest natural reef within the estuary, which is similar in physiological conditions, 

habitat structure, and benthic community structure to other natural oyster reefs in the 

system (C. Layman, unpublished data).  Additionally, oyster reef communities from my 

study site are similar in species composition to those of other sub-tropical reefs in Florida 

(Tolley & Volety 2005; Tolley et al. 2005). Creating an energy flow model represents a 

critical first step in the development of new hypotheses related to the structure and 

function of these sub-tropical reef-associated food webs. I assert that more studies on the 

structure of sub-tropical oyster reefs are warranted in order to better understand the 

overall structure of these sub-tropical oyster reef food webs. 

 In sub-tropical and tropical ecosystems, much research has focused on the role of 

“nursery habitats,” i.e., habitats that typically provide abundant food and/or shelter from 

sources of mortality (Beck et al. 2001; Dahlgren et al. 2006). Although nursery species, 

such as Gray snapper, are common on oyster reefs as juveniles (Tolley et al. 2005), 

oyster reefs do not receive the same attention as potential nurseries as do other structured 

habitats (e.g., seagrasses or mangrove). Herein, I have shown that oyster reefs provide 

important food resources for juvenile Gray snapper where they occur, as they are feeding 

almost entirely on prey from within the oyster matrix. In addition to providing adequate 

shelter, oyster habitat may provide more concentrated sources of prey compared when to 
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other potential nursery habitats in the Loxahatchee River and other South Florida 

estuaries. Settlement-size Gray snapper have been found to recruit directly to oyster 

habitat (C. Layman, unpublished data) and other potential recruitment habitats, such as 

seagrass, are not common in the Loxahatchee. Recruitment substrate with suitable shelter 

may be a limiting factor for populations of nursery species (Shulman 1984; Shulman & 

Ogden 1987), especially in cases where the amount of suitable juvenile habitat is small 

compared to adult habitat (Halpern et al. 2005). Therefore, it is likely that available 

oyster reef habitat may be a bottleneck limiting Gray snapper production, and that oyster 

reefs are critical nursery habitat within the study system. 

 Oyster reef habitat in the Loxahatchee has suffered severe declines (Howard & 

Arrington 2008), similar to declines observed in many estuaries around the world. In the 

Loxahatchee estuary, this loss is primarily attributed to changing salinity regimes caused 

by the permanent opening of the Jupiter Inlet, as well as alteration of upstream freshwater 

inflows from channelization and diversion. The optimal salinity zone for oyster has 

shifted upstream, resulting in the death and subsequent burial of old oyster reefs. Oyster 

recruitment further upstream where salinities are optimal is now limited by available hard 

substrate. In other systems, oyster reef restoration has been shown to be an effective tool 

in increasing fish production (Peterson et al. 2003). Ongoing restoration of oyster habitat 

including increasing substrate for oyster settlement in the Loxahatchee may be critical to 

maintain ecosystem function (Beck et al. 2009). My study illustrates the important role 

oyster reefs play in supporting fish production, in particular the juvenile stage of an 

important fishery species, and thus the importance of including oyster reef habitat in 

ecosystem-based management strategies.  
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Table 5.1. Isotope values and sample size for oyster reef fauna. Taxa are ordered by 
increasing δ15N values, with the two focal consumers listed at the bottom. If more than 
one measurement was made for a given taxon, the mean delta-value (standard deviation) 
is reported.  

Taxa    

Common Name Scientific name δ13C δ15N N 

Periwinkle Littorina sp. -24.4 (1.1) 2.3 (2.0) 5 

Green mangrove 
tree crab 

Aratus pisonii -23.6 (0.73) 5.6 (0.84) 7 

Fiddler crab Uca sp. -21.1 (0.74) 6.1 (1.2) 3 

Ribbed Mussel Guekensia demissa -26.7 (0.20) 6.9 (0.27) 4 

Green porcelain 
crab 

Petrolisthes armatus -23.6 (0.73) 7.1 (0.19) 6 

Shore crab Pachygraspus 
transversus 

-21.2 (0.61) 7.2 (0.03) 3 

Juvenile mud crabs Xanthidae -20.3 (1.0) 7.2 (0.31) 8 

Black-fingered mud 
crab 

Eurypanopeus sp. -21.2 (0.74) 7.8 (0.37) 10 

Eastern oyster Crassostrea virginica -25.8 (1.2) 8.0 (0.30) 4 

White mullet Mugil curema -13.3 (1.4) 8.6 (1.0) 3 

Black-fingered mud 
crab 

Panopeus sp. -22.2 (1.6) 8.9 (0.66) 16 

Barnacle Balanus sp. -22.3 (1.2) 9.1 (0.46) 2 

Snapping shrimp Alpheus sp. -22.9 (0.79) 9.2 (0.40) 10 

Striped mullet Mugil cephalus -13.5 (1.8) 9.6 (1.2) 2 

Pinfish Lagodon rhombiodes -21.8 (0.23) 10.9 (0.29) 2 

Other Goby Gobiosoma sp. -24.6 (0.32) 11.0 (0.68) 3 

Checkered puffer Sphoeroides 
testudineus 

-24.1 (0.87) 11.2 (0.25) 34 
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Sheepshead Archosargus 
probatocephalus 

-21.0 (3.6) 11.3 (0.43) 2 

Frillfin goby Bathygobius soporator -23.4 (0.96) 11.4 (0.40) 10 

Mojarra Eucinostomus sp. -22.9 (1.1) 11.6 (0.69) 10 

Mojarra Diapterus spp. -22.0 (2.0) 11.7 (0.51) 4 

Schoolmaster Lutjanus apodus -20.5 11.9 1 

Sailor's choice Haemulon parra -20.5 11.9 1 

Highfin blenny Lupinoblennius 
nicholosi 

-23.4 12.6 1 

Jack Carangidae -20.3 (0.79) 12.6 (0.36) 2 

Dog snapper Lutjanus jocu -20.7 (0.07) 13.3 (0.30) 2 

Crested goby Lophogobius 
cyprinoides 

-23.0 (0.55) 11.7 (0.34) 11 

Gray snapper Lutjanus griseus -22.7 (1.4) 12.4 (0.75) 46 
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Fig. 5.1. Map of the Northwest Fork of the Loxahatchee River. Areas in black represent 
oyster reefs. 
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Fig. 5.3. Model food web highlighting trophic pathways leading to Gray snapper 
(Lutjanus griseus) (a) and Crested goby (Lophogobius cyprinoides) (b). Black dots 
indicate mean isotopic value for each species. Bars around Gray snapper and Crested 
goby dots represent standard deviation. Error bars were omitted from other species for 
simplicity but are given in Table 5.1. Arrows indicate a direct trophic link as determined 
by stomach content analysis. The width of arrows leading to a consumer reflects the 
proportion (by volume) of that prey item in snapper diets. The δ13C ranges of primary 
producers are represented by gray bars below the x-axis. 
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Landscape (and seascape) ecology has been increasingly recognized as an 

important framework from which to view ecological systems (Turner 2005b; Grober-

Dunsmore et al. 2009).  Context dependency of various processes regulating ecological 

communities may often be explained by landscape setting.  For example, landscape 

context may determine predator abundance or shelter availability, thereby influencing the 

relative importance of predation pressure on focal species (Irlandi et al. 1995; Hovel & 

Lipcius 2002; Schmitz 2005).  In this way, a landscape ecology approach may be useful 

in creating better predictive models of population and community dynamics.  The results 

of my research support this assertion; seascape context may be useful in predicting the 

structure and function of marine communities.  On the basis of my findings, I suggest that 

seascape context be taken into account more frequently in ecological studies to gain a 

more complete understanding of coastal marine systems.  

 In Chapter II, I found experimental evidence that seascape context alone can 

affect the structure of reef fish communities using model patch reefs.  While there was a 

positive relationship between the amount of seagrass at large spatial scales and benthic 

fish abundance, differences were species specific.  These results suggest that changes in 

the coverage of seagrass around patch reefs can affect the overall abundance of fishes on 

reefs as well as the structure of the fish community.  Future work may focus on other 

types of landscape-scale habitat features, such as connectivity with other structured 

habitats like mangroves.  Additionally, some of the more vagile species may be 

responding to the seascape at even larger spatial scales than those evaluated in this study.  

For example, seascape context was not a good predictor of spiny lobster (Panulirus 

argus) abundance on reefs, and these species may make even larger foraging migrations 
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than the most common fishes on the reefs (primarily Haemulidae).  More research is also 

needed to determine how differences in fish abundance and community structure may be 

related other ecosystem functions on focal patch reefs, like nutrient cycling.  

Complementary research suggests that fishes may be important nutrient vectors in these 

systems and increased nutrient availability mediated by fish excretion may affect primary 

and secondary production on the reef and in surrounding seagrass habitat (Meyer & 

Schultz 1985; Allgeier et al. In press; Layman et al. In press).  How seascape context 

may mediate this interaction has not yet been explored.   

 Chapter III demonstrated that seascape context may have varying effects on 

habitat quality for one species of reef fish (White grunt, Haemulon plumierii) depending 

on the level at which it is viewed.  Specifically, increased availability of seagrass within 

the seascape was positively related to White grunt abundance and secondary production, 

but not metrics of condition and individual growth.  Had I only attempted to evaluate 

habitat quality based on individual-level metrics, I would have failed to detect the 

importance of seascape context in affecting grunt populations at higher levels of 

organization (i.e., population and ecosystem function levels).  This finding underscores 

the importance of multi-faceted approaches to gain a more complete understanding of 

habitat value for focal species.   

 While I did not find a consistent pattern between mean individual condition and 

seascape context in this study, some interesting patterns were found.  Namely, there 

seemed to be a negative relationship between conspecific density (once corrected for the 

amount of seagrass in the seascape) and mean fish condition.  The patterns suggest a 

density-dependent response of White grunt, although this study was not designed to test 



137 
 

for such a result.  An ongoing study is currently examining whether seascape context may 

mediate the nature of density-dependent condition for White grunts.  If such a 

relationship is found, this would provide evidence that seascape context can affect the 

very nature of population regulation and provide more support for the necessity to 

incorporate seascape context into studies on population dynamics.  

A major finding of Chapters II and III was that experimental approaches to link 

seascape context to various aspects of grunt population ecology generally supported what 

was predicted from known life-history characteristics and observational studies.  For 

example, seagrass availability at larger spatial scales (100 m radius around reefs), as 

opposed to small-scale patterns, was an important predictor of White grunt abundance 

and secondary production on artificial reefs.  The finding agreed with other observational 

studies that suggested 100 m is the approximate scale at which other grunt species 

respond to their seascape (Kendall et al. 2003; Pittman et al. 2007a).  Therefore, my work 

is among the first to experimentally isolate the effects of seagrass context on reef fish 

communities, which proved to be a useful approach to validate previously observed 

patterns. 

 Chapter IV took a more detailed approach to understand how seascape context 

can affect foraging trade-offs for individuals by affecting prey availability and quality.   

Foraging trade-offs may be one important mechanism allowing generalist species, like 

Gray snapper (Lutjanus griseus), to be able to use such a wide range of habitats (Layman 

et al. 2004; Munday 2004; Clavel et al. 2011).  I found that snapper were able to 

effectively compensate for lower food quality or availability in some parts of their 

seascape, leading to similar rates of growth and condition across study sites.  
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Compensatory feeding strategies such as these may be one method by which generalist 

species remain successful in changing or degraded seascapes. 

 While I found that Gray snapper were able to maintain similar measures of 

condition and growth through compensatory feeding in the Loxahatchee, this may not 

always be the case.  For example, in The Bahamas, Gray snapper suffered reduced 

growth rates in fragmented wetlands, presumably a result of degraded foraging conditions 

(Layman et al. 2007; Rypel & Layman 2008).  The comparison of these two study 

systems suggests that compensatory feeding may not be an effective strategy if habitat 

degradation is severe.  Additionally, other factors like competition and predation risk may 

affect the capacity for compensatory feeding strategies to be successful.  How these 

factors varied across the seascape gradient studied in Chapter IV is unknown and 

warrants more study.  

  Chapter V described major energy flow pathways to two common consumers in 

an oyster reef food web.   My study found that these consumers, Gray snapper and 

Crested goby (Lophogobius cyprinoides), were supported mostly by algal production, 

although Crested goby did consume some sestonic feeders. For these consumers, oysters 

(Crassostrea virginica) may be more important in providing physical habitat that a food 

resource.  Additionally, trophic links between oyster reef and mangrove food webs 

through snapper foraging were found to be dependent on body size.  Only sub-adult 

snapper fed on mangrove-associated prey items.  This difference in diet may have been 

caused by gape limitation or release from predation risk, allowing them to venture into 

adjacent mangrove habitats to feed. Whatever the mechanism, consumption of mangrove 
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associated prey items by larger snapper may represent an important food web subsidy for 

oyster reef food webs in the Loxahatchee.   

 While my study examined the structure of the food web from an energy flow 

perspective, previous work on functional relationships between oyster reef consumers 

found different results.  Specifically, most previous studies on functional relationships 

have focused on the importance of predation on oysters by mud crabs (Panopues 

herbstii), and how higher-order predators may affect this relationship by controlling mud 

crab behavior and abundance (Grabowski 2004; Grabowski et al. 2008). I found that 

from an energy flow perspective, oyster (sestonic-based) production did not seem to be 

an important prey source for mud crabs.  The comparison of my findings to published 

studies has led to ongoing collaborations to assess the spatial and temporal importance of 

mud crab predation on oysters from these two different food web approaches.  Such work 

could be very important in understanding the factors controlling populations of this 

foundation species.  

 All four of my data chapters provide support for the importance of a seascape 

approach to understand the structure and function of coastal communities and 

ecosystems.  Not only does this research advance our ecological understanding of these 

systems, it also has important implications for how we manage and conserve them. 

Results of Chapters II and III suggest that seascape context of reef systems should be 

taken into account when designing protected areas, as it has the potential to affect fish 

communities on focal reefs.  Furthermore, changes in seagrass habitat around reefs, due 

to pollution or coastal development, can affect adjacent reef fish communities.  

Therefore, reef and seagrass habitat cannot be managed in isolation from one another. 
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Chapter IV highlighted how compensatory feeding may be one way in which generalist 

species are able to deal with changing seascapes.  However, this mechanism may be 

ineffective if seascape degradation is severe.  Results of Chapter V also suggest habitat 

connectivity through foraging migrations, this time between oyster reefs and mangrove 

ecosystems. Similar to what has been found in temperate systems (Grabowski et al. 

2005), my study suggests oyster reef restoration projects should consider surrounding 

seascape context in sub-tropical systems.  All of these chapters demonstrate a high degree 

of connectivity between nearshore habitats in the sub-tropics.  As such, spatially-explicit 

management approaches are our best strategy to effectively conserve coastal, marine 

ecosystems.  
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