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ABSTRACT OF THE DISSERTATION 

HYBRID POWER SYSTEM INTELLIGENT OPERATION AND PROTECTION 

INVOLVING DISTRIBUTED ARCHITECTURES AND PULSED LOADS 

by 

Ahmed Mohamed 

Florida International University, 2013 

Miami, Florida 

Professor Osama A. Mohammed, Major Professor 

Efficient and reliable techniques for power delivery and utilization are needed 

to account for the increased penetration of renewable energy sources in electric power 

systems. Such methods are also required for current and future demands of plug-in 

electric vehicles and high-power electronic loads. Distributed control and optimal 

power network architectures will lead to viable solutions to the energy management 

issue with high level of reliability and security. This dissertation is aimed at 

developing and verifying new techniques for distributed control by deploying DC 

microgrids, involving distributed renewable generation and energy storage, through 

the operating AC power system. 

To achieve the findings of this dissertation, an energy system architecture was 

developed involving AC and DC networks, both with distributed generations and 

demands. The various components of the DC microgrid were designed and built 

including DC-DC converters, voltage source inverters (VSI) and AC-DC rectifiers 

featuring novel designs developed by the candidate. New control techniques were 

developed and implemented to maximize the operating range of the power 



vii 

conditioning units used for integrating renewable energy into the DC bus. The control 

and operation of the DC microgrids in the hybrid AC/DC system involve intelligent 

energy management. Real-time energy management algorithms were developed and 

experimentally verified. These algorithms are based on intelligent decision-making 

elements along with an optimization process. This was aimed at enhancing the overall 

performance of the power system and mitigating the effect of heavy non-linear loads 

with variable intensity and duration. The developed algorithms were also used for 

managing the charging/discharging process of plug-in electric vehicle emulators.  

The protection of the proposed hybrid AC/DC power system was studied. 

Fault analysis and protection scheme and coordination, in addition to ideas on how to 

retrofit currently available protection concepts and devices for AC systems in a DC 

network, were presented. A study was also conducted on the effect of changing the 

distribution architecture and distributing the storage assets on the various zones of the 

network on the system’s dynamic security and stability. A practical shipboard power 

system was studied as an example of a hybrid AC/DC power system involving pulsed 

loads. Generally, the proposed hybrid AC/DC power system, besides most of the 

ideas, controls and algorithms presented in this dissertation, were experimentally 

verified at the Smart Grid Testbed, Energy Systems Research Laboratory. All the 

developments in this dissertation were experimentally verified at the Smart Grid 

Testbed. 
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Chapter 1 : Introduction 

Currently, there is a national call for improving the current electric power systems 

into smart and more distributed operational grids. The goals of having a smart grid 

include improved reliability, security, increased efficiency, sustainability and most 

importantly, increased penetration of renewable energy and storage resources. These 

goals can all be realized using hybrid AC/DC power systems involving DC distributed 

architectures, or microgrids [1]-[3]. A DC microgrid is a perfect place to integrate 

renewable energy, such as photovoltaic (PV), fuel cells (FC) or even wind [4]-[9]. It is 

also the place where battery storage can be implemented with the fewest number of 

conversion stages [10], [11]. Moreover, with this exponentially increasing penetration of 

electronic loads, variable frequency machine drives and other loads working with DC 

power, utilizing a DC bus and/or a DC distribution system architecture will have a 

significant impact on the overall system efficiency [4]. However, the idea of 

reconsidering DC microgrids has only been researched during the past few years mostly 

either from a perspective of trying to convince others of the feasibility of reconsidering 

DC systems, or trying to retrofit today’s AC technologies to DC systems. A few articles 

also investigated the feasibility of DC superconducting DC networks [12], [13]. In this 

dissertation, an initiative is taken to have a wider look at the DC microgrid while 

operating within a smart grid, where wide area measurement, protection, and control are 

activated. The element of energy management, which is a key target of smart grids, is 

investigated in this dissertation. An intelligent energy management algorithm could play 

a vital role in the solution of many power system problems. For instance, an algorithm 

aiming at shifting the demand to off-peak hours can significantly decrease the burden on 
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the utility grid while decreasing consumers’ costs. Furthermore, energy management 

cannot be just an optional privilege in the near future with an expected vast increase in 

the number of plug-in hybrid electric vehicles. The focus is also on the technologies and 

controls needed to implement an efficient intelligently-operated hybrid AC/DC 

microgrid. 

The debate of AC versus DC distribution is historical and as old as the evolution of 

the first commercial power systems themselves [14], [15]. This debate, which took place 

in the nineteenth century and was mostly led by the biggest two electrical companies at 

that time: Edison’s and Westinghouse’s companies, was significantly inflamed by the fact 

that the machines invented at that time were DC machines. AC systems, on the other 

hand, allowed the transfer of power for long distances. One of the first commercial 

applications of electrical power was arc lighting systems that were launched in the 

beginning of the nineteenth century. These lighting systems were supplied using 

batteries, which limited the practicality of these systems. However, in the 1850s, these 

lighting systems were made much more practical using dynamos as electrical power 

supply. Therefore, a single-phase 3.5 kV AC system was developed. 

In the meantime, Thomas Edison claimed in 1878 that he was capable of building a 

better lighting system than the arc lighting one; a system that would require less 

maintenance and could be used both indoors and outdoors. Since Edison was interested in 

building a power system that would work for machines as well as the incandescent 

lighting system he invented, he developed a low voltage DC distribution system. Edison’s 

first low voltage system was launched in Pearl Street, downtown Manhattan, New York 

and covered around one square mile. However, this system had a major drawback, which 
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is the limited distance of feeders due to the low voltage. In 1885, George Westinghouse 

incorporated the patents of Goulard and Gibbs AC transformers with his company and 

started to build a power system, which utilized both high voltage transmission and low 

voltage distribution. The number of these AC power systems exceeded the number of DC 

power systems. 

In 1887, Nekola Tesla, a former Edison employee, sent a number of patent 

applications for his poly-phase AC power systems including two-phase induction 

machines. Westinghouse bought Tesla’s patents to his company, hired him and worked 

on developing poly-phase AC power systems. Consequently, the first poly-phase AC 

power system that was used to supply both light and machines was launched in Chicago 

in 1893. The first large-scale long distance power transmission was built between 

Niagara Falls and Buffalo (26 miles) in November 1896. Westinghouse together with 

General Electric developed this power system that transmitted the power in AC form 

using a three-phase high voltage 10.7 kV. This voltage was transformed down into 440 V 

for distribution. Moreover, for loads requiring DC power, such as street cars, 550 V DC 

was obtained using rotary converters. 

Although the use of AC power systems increased at the beginning of the twentieth 

century, some DC power systems remained in operation. The last residential DC 

distribution system was converted into AC in the mid-1970s. 

Types of DC Distributed Power System Architectures 

DC power system architectures can be generally categorized into centralized power 

system, modular power system, and distributed power system (DPS), as shown in figure 

1.1. [16] 
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Figure 1.1  DC Distribution Architectures 

 

Centralized power systems 

Centralized power systems utilize a single power conversion stage located in one 

physical location in the system, while multiple outputs are generated and bussed to the 

various loads. In centralized power systems, all the power processing technology-

including thermal management are located in a single box that can be designed, 

subcontracted, or purchased as a stand-alone item. However, this system often fails to 

provide adequate performance for new generations of electronic equipment.  

Modular power systems 

Modular power systems utilize multiple power conversion stages or converters that 

are located in one location in the system, usually far away from the load. Voltages and 

currents can be combined to meet load requirements, when higher power is needed. The 
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modular power system is particularly suited for high power design. High power is 

achieved by paralleling multiple small power stages in a single package, producing the 

physical equivalent of a single large device. This way, power modules are easily 

standardized and traditional low-power converter design techniques can be used.  

Distributed power systems 

Distributed power systems, usually employing the modular design technique, 

incorporate the advantages of modular power systems. However, all outputs of the front-

end converters go to the intermediate bus by paralleling technology. Its basic 

characteristics are: 

 Multiple power conversion stages and/or converters can be in different locations. 

 Intermediate voltage is bussed around the system. 

 Multiple DC-DC converters located at the point-of-use are used to provide the 

local voltage. 

The major disadvantages of centralized power systems and modular power systems 

can be eliminated by introducing distributed power process technologies. Moreover, there 

are some merits that can be achieved using distributed power system architecture. These 

advantages include facilitating thermal management and packaging associated with the 

modular design of the converters, modular size reduction, reduced electromagnetic 

interference (EMI) and harmonics due to the utilization of converters having their own 

filter. The modular design and standardization help increase the availability of 

standardized off-the-shelf modules or designs that could be combined in a variety of 

ways to meet a specific application. Redundancy, reliability, availability and 

maintainability are added characteristics since repairing a single converter in a distributed 
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system is much easier than repairing the main converter in a centralized architecture. 

Furthermore, point of load regulation due to having load converters and flexible system 

structure and layout enable distributed power systems to realize complicated power 

supply architectures to meet different load requirements. 

DC Microgrids in Smart Grid Applications 

Although the term “smart grid” was given several different explanations and views, 

certain features of a smart grid seem to be agreed upon. As acknowledged by the Energy 

Independence and Security Act of 2007, the elements that most characterize the “Smart 

Grid” policy goals are as follows [4]: 

 reliability; security; storage; distributed generation 

 energy efficiency; sustainability; renewable inputs 

 IT/communications leverage/full cyber-security 

 load awareness; demand side management; plug-in vehicles 

 lowering unnecessary barriers to achieving the above 

Through the use of DC microgrids, each of these goals can be promoted, often with 

reduced cost and with greater effectiveness. Our current utilization of energy exceeds 

what the national grid in the U.S. and around the world is ready for. This forces us to 

consider the implementation of DC microgrids, which can optimize the use of electronic 

devices, electrical storage, and distributed generation. Therefore, the interest in DC 

microgrids is growing over the past 10 years. The U.S. Department of Energy (DOE), the 

California Energy Commission (CEC), the Electric Power Research Institute (EPRI), 

along with several utilities and numerous entrepreneurs and investors seek to upgrade the 

utility grid’s operation through Smart Grid initiatives. In large part, these efforts have 
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been aimed towards AC systems which currently exist. Conversely, the present 

dissertation focuses on improving the efficiency, reliability and security of the 

implementation of the Smart Grid through the use of DC microgrids.  

It is also worthy at this introductory stage of the dissertation to put a clear definition 

of the term microgrid. The DOE and the CEC jointly commissioned a report from 

Navigant Consulting in 2005 that discussed this very definition. The final report 

identified two “Points of Universal Agreement” of what constitutes a microgrid: 

 “A microgrid consists of interconnected distributed energy resources capable of 

providing sufficient and continuous energy to a significant portion of internal load 

demand.” 

 “A microgrid possesses independent controls, and intentional islanding takes 

place with minimal service interruption.” 

These two definitions are valid for both the AC and DC domain. DC microgrids can 

be deployed in a section of a building (nanogrid), building-wide (microgrid) or even 

spanning several buildings (minigrid). In the balance of this dissertation, we will refer to 

these systems as “DC microgrids,” whatever their scale. All of these grids have the 

common need to adopt standards to guarantee interoperability.  

A practical and up-to-date example of the convergence of DC microgrids and Smart 

Grid is the work of over 100 entities, including companies, universities and other bodies, 

that have come together in a non-profit organization called the EMerge Alliance to 

encourage low-voltage DC power standards for device manufacturers and systems 

integrators. With the recent rise of LED lighting technology, the Emerge Alliance expects 

the momentum of LEDs as a light source for common lighting applications to continue 
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and eventually dominate the market. LEDs typically plug into a 110-volt or 208-volt AC 

power supply that converts that power to 24-volt DC which is what the light source 

consumes to make visible light. Not coincidently, 24-volt DC is the first DC power 

standard promulgated by the EMerge Alliance. While this example demonstrates the 

potential for DC technology in the lighting market, the EMerge Alliance is devoted to 

standardizing various types of DC systems, further advancing the convergence of DC 

microgrids in the Smart Grid.  

Benefits of DC Microgrid Deployment  

Electronic devices, such as computers, routers and electronic lights (either fluorescent 

or LED) represent almost half of the electric load in many buildings today. Moreover, 

Variable Speed Drives (VFD) are increasingly used for electric motors. A DC 

environment is found to be a more convenient way to deliver power to these loads in 

order to assure reliability and redundancy. However, better redundancy is not the only 

benefit gained by applying DC Networks. DC networks do not need AC to DC 

conversion for every electronic device, which has a significant impact on the efficiency. 

Power supplies currently on the market impose losses on the power going to the device, 

typically 15% to 40%. This range of losses in a DC microgrid can be lowered to 10% to 

15% by using a higher efficiency conversion for multiple loads. This topology 

outperforms the currently existing topologies due to the superior economics of bulk 

conversion versus converter at every point-of-use [17]-[25].  

Incorporating DC microgrids has the benefit of superior compatibility of the DC 

power with storage of electricity. Grid-scale storage can improve the stability of the grid. 

It may have prevented several of the blackouts and brownouts that took place in the grid 
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over the past several years. However, grid scale battery storage is not practically sensible. 

Another sensible solution is the utilization of distributed batteries connected to a DC 

network. The summation of these distributed batteries is equivalent to bulk storage except 

for the fact that: power from the distant battery would suffer other losses the local battery 

would not. These include inversion losses (going from the DC in the battery to the AC of 

the grid), transmission and distribution losses (estimated to be 7 to 11% by the U.S. 

Department of Energy) and finally rectification losses when it gets to your electronic 

load. Collectively, these losses could add up to as much as 41% of the energy ultimately 

delivered to a DC device. These conversion losses and line losses can largely be avoided 

by use of distributed batteries in a DC microgrid.  

Another great benefit of DC microgrid is that it facilitates the integration of 

renewable energy sources that are intrinsically DC sources such as solar PV, small wind 

turbines, or fuel cells. Furthermore, DC microgrids can simplify and raise the efficiency 

of how plug-in hybrid electric vehicles (PHEV) and electric vehicles (EV) connect to the 

grid. A DC microgrid can act like a high-efficiency buffer, optimizing generation and 

storage and increasing grid reliability. Moreover, because DC power has no phase to 

match, the connection to the vehicle is simplified, providing a more efficient path to its 

DC battery. On the system scale, the DC microgrid helps activate the vehicle-to-grid 

(V2G) and vehicle-to-vehicle (V2V) functionalities and facilitates the energy 

management of the system.  

By managing sources and loads at a local level, a DC microgrid can maximize its net 

surplus of power (output to the grid) or deficit (input from the grid). Some of the burden 

on the grid can be relieved by utilizing this local management of supply and demand by 
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creating a buffer to the grid. Demand Side Management (DSM) when used alone cannot 

accomplish this advantage as efficiently. However, by using the inherent characteristics 

of DC productively, this lightening of the burden on the grid becomes a feasible 

possibility [26]-[30].  

Influence of High Penetration of DC Microgrids in Modern Smart Grids 

The Virginia Polytechnic Institute’s Center for Power Electronic Systems (CPES) 

estimates that by 2010, 80% of all electricity used will pass through power electronic 

systems. Since this estimate relies on a measure of the current status which is mainly AC, 

we can confidently assume that these conventional systems could all be improved in 

terms of efficiency by instituting higher-efficiency conversions of AC to DC networks, 

instead of converting the AC power at each point-of-use.  

Energy savings (MWH) 

As estimated by the Lawrence Berkeley National Laboratory (LBNL), the total 

amount of energy flowing into external power supplies for electronic devices in the U.S. 

is approximately 290 TWh/year. However, much of this power is lost as heat—the U.S. 

Environmental Protection Agency (EPA) and the DOE’s Energy Star program estimates 

that one-third to one-half of the power sent to these devices is lost. Ultimately, this means 

that around 100-150 TWh/year are currently being lost due to these conversions [4]. 

While most of the comprehensive national electric power data available is regarding 

the output from the grid,  it does not specific how that power is used. Borrowing largely 

from the U.S. Energy Information Administration’s (EIA) categories and data, we can 

begin to build an understanding of the energy savings possible through the use of DC 

microgrids [4]. Where savings are derived from improved power supply efficiency only, 
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70% or 75% efficiency is used as an average range for AC power supplies, which is 

generous given the LBNL estimates, and 90% is used for the bulk high-efficiency 

rectifier that would be used in a DC microgrid. These rectifiers are currently available in 

the market. Statistics show that potential percentage savings for the residential sector’s 

addressable load: 25.32%; corresponding reduction in the total U.S. load: 2.98%. 

Addressable load refers to load that can be connected to a DC microgrid. Potential 

percentage savings for the commercial building sector’s addressable load: 19.03%; 

corresponding reduction in the total U.S. load: 3.03%. Potential percentage savings for 

the manufacturing sector’s addressable load: 20.00%; corresponding reduction in the total 

U.S. load: 1.09%. Potential percentage savings for the data center sector’s addressable 

load is 28.00%, which corresponds to the reduction in the total U.S. load of 0.37%.  

All grid stakeholders would benefit if efficiency improvements were able to have an 

immediate positive impact on capacity. Using concurrent data for our load analysis, it can 

be noticed that a lower load would deliver large benefits. For example, the 337 TWh of 

power generation avoided could have allowed grid operators to shut down or avoid 

construction of about 75 GW of generating capacity.  

Since DC microgrids reduce end-use loads and facilitate on-site generations, loads on 

the transmission and distribution system can be significantly reduced. Other long-

distance high-voltage DC transmission schemes are outside the scope of this dissertation. 

It is interesting to note, however, that short high-voltage DC power lines do regularly 

operate between large service territories of the grid so that these large synchronized pools 

of AC power can stay connected to each other without the burden of precisely matching 

the phase of their neighbor. This buffer is important when a large section of the grid is 



 

12 
 

brought down for any reason. With DC connections to its neighboring grid territories, 

coming back on-line is easier when the reviving generator does not have to synchronize 

with a connected systems’ precise phase. 

Additional benefits for on-site power generation from DC Sources 

A benefit of more efficient DC microgrids is that less heat is produced inside 

buildings. Due to avoiding cooling loads, as in the data center application, electrical 

efficiently as much as double the amount. Also noted should be the fact that multiple DC 

power inputs can easily be integrated into the DC microgrid, which is not the case in AC 

systems where phase matching is required. Also observed is an extended efficiency to 

batteries, small wind turbines, fuel cells, and variable speed DC generators. The latter has 

great potential in that they could respond in near real time to increased load demand, 

providing more battery-like surge capacity. Combining multiple inputs raises the 

likelihood that several different fuels could be used at the building site, which increases 

the intrinsic security of the system. 

Obstacles against DC Microgrid Deployment 

Currently, utility regulatory practices and federal environmental law in many states 

do not recognize the full societal value of energy efficiency and renewable energy 

investments in general, or particularly of DC microgrids. Our current regulatory 

framework holds systemic flaws which are well-recognized. They include the failure to 

internalize the social costs of greenhouse gas emissions; a price on carbon and other 

GHGs will increase the cost of fossil fuel generation and thus make both energy 

efficiency and zero-carbon renewable generation more cost-effective. To go even further, 

utility profits from volume of sales are not decouples by many state utility commissions, 
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leaving in place substantial disincentives for utilities to encourage energy efficiency and 

distributed generation if they decrease utility demand. 

Information and education program for construction industry and code officials 

Having good communications about the benefits of DC microgrids is essential. The 

time-of-use (TOU) pricing have helped people appreciate the electricity in its complexity. 

Likewise, the awareness of environmental issues, such as carbon emissions and global 

warming, have piqued the interest of power industry professionals and prompted 

legislation to address these issues. These facts highlight the need for an organized effort 

to disseminate information about the benefits DC microgrids offer. Some of this work has 

already begun by the EMerge Alliance through outreach to utilities, universities, the 

electrical trades and other interested parties. State and local governments, as primary 

regulators for buildings, will find that conversion to a DC microgrid system provides a 

cost-effective method to further energy efficiency goals.  

Codes and standards 

The National Electric Code® (NEC) does not cover DC power installations below 

600-volts DC, so that DC power is accommodated under rules that govern either AC or 

DC power systems of the same voltage. For instance, for the insulation and shielding 

requirements for wires carrying electricity under 600 volts. While often not prohibited, a 

lack of references to DC can give both electricians and companies reason for concern. 

Well established sections of the code in place for decades have defined the 48-volt DC 

domain that was once ubiquitous as the voltage in plain old telephone service (POTS). 

Twenty-four volt DC has had no such history, but systems operating below 30-volts DC, 

which strictly limit current to under 100 volts-amps are designated “Class 2,” denoting 
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them as intrinsically safe from shock or fire hazard, which is an obvious advantage. The 

24-volt DC standard promoted by the EMerge Alliance is in this category. That effort, 

coordinated with NEC committees’ input and guidance, will spread the word, but a 

timely roll-out would benefit greatly from some coordinated efforts from interested areas 

of the government and standards bodies such as National Institute of Science and 

Technology (NIST), the American National Standards Institute (ANSI), the National 

Electrical Manufacturers Association (NEMA), the U.S. Department of Energy, and its 

system of National Laboratories and Technical Centers. 

Federal tax law 

Tax credits and other incentives for energy efficiency, renewable energy and other 

low- or zero-carbon technologies are provided by federal tax law. However, these 

incentives fail to provide any significant financial benefit for DC microgrid technology, 

even though these microgrids can provide extensive savings in energy use and result in 

large GHG emissions reductions [4].  

Business Model and Energy Pricing 

Implementing DC microgrids is accompanied by some energy pricing issues, the first 

being Conventional Utility Regulation. The customary electric utility regulatory model is 

cost-of-service regulation of a vertically integrated power supplier, who maintains a 

monopoly in local retail. Since this model is still customary in relatively half of the USA, 

the DC microgrid system (i) is end-user-owned, (ii) is behind-the-meter, and (iii) supplies 

no output back to the grid, and so the DC microgrid system does not prevent issues under 

this regulatory model. It is simply another way for the customer to internally distribute 

power that was purchased from the utility supplier. However, if at least one of the three 
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conditions are not being met, regulatory barriers (exploitable by incumbent utilities) can 

retard deployment of these systems, absent regulatory accommodation to this new 

technology.  

One example of such regulatory barriers is third-party systems. One of the appealing 

models for large-scale DC microgrids is a system owned by a third party—this system 

buys AC power from the utility, and resells it to individual users after it was converted to 

DC. Two important questions are raised under conventional utility regulation. First, is 

regulation of the utility sale to the system operator a wholesale sale done by FERC under 

the Federal Power Act, instead of getting regulated by a state utility commission under 

state law as a retail sale? Secondly is the question of whether the sale to the end-user is a 

retail sale that contravenes the utility’s retail monopoly. There is not a clear answer to 

either of these two questions, mostly because the answer is relying on unpredictable 

FERC precedent relating to “submetering,” and whims of state law on exclusive retail 

service areas. Since answering these questions from case to case takes both time and 

money, the most efficient answer would be a federal statutory solution. One way to do 

this would be to exempt utility sales to third-party DC microgrid systems from wholesale 

regulation under the Federal Power Act, based on the state’s regulating the utility sale to 

the third-party microgrid operator, allowing the operator to resell to end-users, and 

making sure that the utility’s rates to the microgrid are not discriminatory.  

Another example of regulatory barriers which can slow down deployment of DC 

microgrids is sales back to grid. A benefit of a DC microgrid is the ability to collect DC 

generations, such as distributed renewable sources, and to sell it back to the grid after it is 

converted to AC; however the sale to the grid is a wholesale sale and usually falls subject 



 

16 
 

to wholesale rate regulation under the Federal Power Act (FPA), unless the Public Utility 

Regulatory Policies Act (PURPA) exempts it. PURPA typically exempts smaller 

renewable power generation from regulation under the FPA, but large renewable systems 

over 20 MW and other local generation like fuel cells and small turbines are not exempt 

from FPA regulation, effecting the sales of their power to the grid. Also required by 

PURPA is that utilities purchase the output of qualifying facilities. But, large barriers 

exist both on a state’s ability to require purchase at rates above avoided cost and on the 

utility’s federal law obligation to purchase from these facilities. In major competitive 

wholesale markets (such as PJM, NY ISO, ISO New England), FERC rules have 

dismissed utilities of their purchase obligations. Where it exists the federal purchase 

obligation is limited to the cost the utility would have incurred if it had generated the 

power itself or purchased it elsewhere, as determined by the state utility regulatory 

commission. Avoided cost is mostly under retail rates and may not be sufficient enough 

to support many types of renewable generation. There is also another issue related to a 

state’s authority to require utilities to pay higher than- avoided-cost rates: FERC 

precedent from 1995 purports to preempt certain state rules requiring utilities to pay 

qualifying facilities rates in excess of avoided cost. To the extent these rules raise a 

problem for DC microgrids, they can be dealt with, at least in part, by changes in federal 

law that (1) permit these systems to sell output at avoided cost rates without regard to 

size, and (2) give states clear authority to require above avoided-cost rates. (b) DC 

Microgrids in Restructured Electric Power Markets. In much of the U.S., electric power 

regulation was restructured to allow retail competitions. DC microgrids face fewer issues 

in the markets than in cost-of-service areas. While their sale of AC power by a utility or 
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other seller may be subject to FERC regulation, the resale of DC power to end-users will 

not raise questions under exclusive services area laws (which no longer apply). However, 

sales back to the grid in restructured markets raise similar issues to those discussed in 

retail cost-of-service markets. 

A feed-in tariff is a standing offer by a utility to purchase the output of a renewable 

generator at a fixed or formula rate. A feed-in tariff applicable to DC microgrid 

renewable generation sold into the grid could significantly improve the economics of 

these systems. PURPA’s avoided cost purchase obligation, discussed above, represents 

one form of a feed-in tariff—albeit a complicated one because in many circumstances it 

requires a case-by-case determination of the utility’s avoided cost. A more useful feed-in 

tariff arrangement would entail a standardized rate set on the basis of the incentive 

necessary to deploy the resource rather than on the basis of the purchasing utility’s 

avoided cost. However, this type of tariff is not permissible under federal law if it sets a 

rate above avoided cost, and a significant question was raised as to whether it is 

permissible under state law, as we note in the discussion above. Clarifying that 

PURPA does not preempt higher than “avoided cost” feed-in tariffs should provide 

grounds for states to move forward with innovative feed-in tariff proposals, which could 

benefit DC microgrids and other renewable systems. In addition, feed-in tariffs should be 

designed to permit DC microgrid renewable generation to receive feed-in tariff credit for 

its entire renewable output, whether or not consumed within the DC microgrid. In return, 

the DC microgrid would pay the utility’s retail rate for its entire internal load. This type 

of arrangement allows the DC microgrid to take advantage of the feed-in tariff for its full 

renewable output without incurring conversion losses that would be necessary if it 
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physically delivered its full output to the grid and physically supplied its full internal load 

from the grid. 

An alternative to third-party ownership of large scale DC microgrids is utility 

ownership of the microgrid. This model could be an effective means of deploying 

systems that sell DC power from a multi-building network to multiple end-users, 

particularly in states that have exclusive retail service territory laws. If the incumbent 

utility is the retail seller, then no retail service exclusivity issue arises; however, the DC 

microgrid service must still be authorized either under the general terms of the state’s 

utility laws or by action of the state regulator. A more important issue is whether the 

utility will provide a useful and cost-effective DC microgrid service to end-users and 

whether the public is better served by having competitive offerings from a number of 

prospective microgrid operators. 

Renewable Electricity Standards 

There are current proposals for a Renewable Electricity Standard (RES) which 

necessitate a minimum percentage of renewable energy resources each year to be 

purchased or generated by retail electric utilities. Clean renewable energy generators are 

given tradable renewable energy credits (RECs). Utilities may produce renewable energy 

from their own facilities, or they may purchase RECs for use for compliance purposes. 

Saving in electricity from energy efficiency could also be used for compliance purposes. 

Full credit for renewables delivered into a DC microgrid system could be provided by the 

RES as currently formulated, but it is yet unclear what the treatment of the efficiency 

gains from these systems is. There is a need for an RES provision particularly formed to 

DC microgrids which provides explicit credit for efficiency gains (from lower conversion 
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losses) in order to solve any issues related to electricity savings being computed through 

use of the general provisions. The DOE could be directed to determine electricity savings 

by rule through such a provision, based on the difference between losses due to 

conversion for the average AC system minus demonstrated lowered losses due to 

conversion for the DC microgrid. 

Factors Influencing the AC- versus DC-Distribution Debate  

Reliability and Un-interruptible Power Supplies (UPS) 

Our growing desire for reliable information technologies requires uninterruptible 

power supplies. Each such supply must provide dc bus battery storage, which can 

continue to supply an application with power during unplanned ac outages. The 

efficiency of this type of systems, which is a must in data center applications, would 

significantly increase if it is DC-based [31]. 

Alternative Energy Sources 

There is currently a great leap towards the utilization of alternative energy sources, 

such as photovoltaic panels, fuels cells, wind turbines and microturbines. Therefore, it is 

highly expected that the penetration level of these sources will keep increasing in future. 

Some of the alternative energy sources, such as photovoltaic and fuel cells yield a DC 

output voltage, and it is easier and more efficient to connect them to a dc distribution 

system directly, or through a controlled DC/DC converter. Microturbines generating 

high-frequency AC are also easier to connect to a DC system than to an AC system, 

where generating a synchronized sinusoidal AC current is required. The electric power 

output of a wind turbine can be kept at a maximum if the speed of the turbine is allowed 

to vary. If the shaft is connected to the generator through a gearbox, the ability to vary the 
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speed is limited. To increase the speed range, an AC/DC/AC converter can be used, 

which is an expensive solution. A cheaper and simpler solution is to connect an AC/DC 

converter to a DC grid [32]. Other types of generators operating with varying speed are 

small hydro and tidal generators. Using a dc distribution system makes it easier to 

incorporate more local energy storage and sources, either standby power generation, 

which is used only when there is a fault on the utility grid, or distributed generation (DG) 

(small-scale energy sources) which are operated almost continuously. To connect an 

energy source to a DC system only the voltage has to be controlled, as opposed to the AC 

system where voltage magnitude, frequency and phase must be matched. Having local 

sources installed in the system makes it possible to run it in island mode, which means 

that it is disconnected from the utility grid. For example, if an outage occurs on the utility 

grid, the DC distribution system can still operate and supply the loads. However, this 

assumes that the sources in the DC distribution system together have a possibility to 

control the voltage [32].  

Photovoltaic Systems 

In photovoltaic systems, solar light is converted directly into electricity with modules 

consisting of many photovoltaic solar cells. Such solar cells are usually manufactured 

from fine films or wafers. They are semiconductor devices capable of converting incident 

solar energy into dc current, with efficiencies varying from 3 to 31%, depending on the 

technology, the light spectrum, temperature, design, and the material of the solar cell. 

Table 1.1 shows the theoretical and practical efficiencies of the various types of solar 

cells.  
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Table 1.1  Photovoltaic Panel Types and Their Corresponding Efficiency 

Type 

Theoretical Efficiency Practical 

Tests η (%)

Modules 

cm2 η (%) cm2 η (%) 

Monocrystalline silicon 

(Si) 

4 29 23 100 12-18 

Polycrestalline silicon (Si) 4  18 100 12-18 

Amorphous silicon (a-Si) 1 27 12 1000 5-8 

Gallium arsenide (GaAs) 0.25 31 26   

Copper indium-selenide 

(CIS) 

3.5 27 17   

Cadmium telluride (CdTc) 1 31 16   

 

A solar cell could be understood simply as a battery of very low voltage (around 0.6 

V) continually recharged at a rate proportional to the incident illumination. The series–

parallel connection of cells allows the design of solar panels with high currents and 

voltages (reaching up to kilovolts). In order to implement a full electric power system, it 

is necessary to include power electronic conditioning equipment, energy storage and 

monitoring plus protection devices. The most attractive features of solar panels are the 

nonexistence of movable parts, very slow degradation of the sealed solar cells, flexibility 

in the association of modules (from a few watts to megawatts), and the extreme 

simplicity of its use and maintenance. In addition, solar energy is a very relevant source, 

with characteristics, such as: It is autonomous, its operation does not pollute the 

atmosphere (i.e., it does not harm any ecosystem), and it is an inexhaustible and 
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renewable source with great reliability. However, up to now, manufacturing costs 

represent a major impediment to its widespread use. Power electronics is the great 

enabling technology in the diversification of solar energy applications [33]. 

Figure 1.2 shows the equivalent circuit model of a solar cell. Iλ is the photon current, 

which depends on the light intensity and its wavelength; Id is the Shockley temperature-

dependent diode current; and Ip is the PV cell leakage current. The photon current is 

proportional to the illumination intensity and depends on the light wavelength. The 

parameters of this current are related to the cell short-circuit current, Isc, and to the cell 

open-circuit voltage, Voc. The short circuit current may be obtained from the I–V 

characteristic for a given solar. The output current of a solar cell is given by, 

pd
kTqV

so RVeIII d  )1( /
                                                  

(1.1)
     

 

where 

Iλ = photon current 

Is = reverse saturated current of the diode, typically 100pA for the silicon cell 

K = 1.38047 x 10-23 J/K is the Boltzman constant 

q = 1.60210 x 10-19 C is the electron charge 

Vd = diode voltage (volts) 

η = dimensionless empirical constant 

T = 273.2+tC is the absolute temperature given as a function of the temperature (°C), 

tC, generally taken as T=298 K (i.e., 25°C)  

q/kT = 38.94452 C/J for tC=25°C; or in a more general way, for any temperature, 

q/k=11605.4677 C. 
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Figure  1.2   Solar Cell circuit model. 

Figures 1.3a and 1.3b show the I-V and P-V characteristics of solar panels 

corresponding to different solar radiation levels (S) and different temperatures (T), 

respectively. It can be seen that the relationship between current and voltage in a PV 

panel is nonlinear. The maximum power point (MPP) of a PV panel moves up on the 

power axis when the solar radiation increases, on the other hand an increase in the 

temperature decreases the output power of PV panels. Therefore, an MPP tracking 

(MPPT) algorithm has to be used to assure maximum utilization of solar energy.  

    

Figure  1.3   P-V and I-V characteristics of solar panels. 

PV systems are often operated in an MPPT mode to maximize the benefit from the 

solar power. The main MPPT algorithms can be classified into two main categories; 

direct and indirect methods. The indirect methods are based on using either a database 

containing the parameters and data that show the characteristics of the PV panel at 
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different environmental conditions, such as different temperatures and irradiances or 

some mathematical functions achieved by experience on the estimation of the MPP. The 

advantage of indirect methods is that it doesn’t need to measure voltage or current, so the 

converter is simple and the cost is relatively less. In addition, no feedback loop is needed 

in the converter circuit. But the drawback is that in most cases a prior evaluation of the 

PV panel is needed and for most of the situations, it is not easy to get the accurate MPPT. 

The indirect methods include “curve-fitting method”, “look-up table method”, “open-

circuit voltage method”, “short-circuit method” and “open-circuit voltage photovoltaic 

test cell method”. Direct methods use output voltage or/and current of PV panel and the 

relationship of the changing of them to the changing of the output power of the PV panel 

to find the maximum power point. The direct methods include “differentiation method”, 

“P&O method”, “artificial intelligence method” and so on.  The direct methods do not 

depend on prior knowledge of the PV parameters, which means that they are also 

independent from the variance of the environment variables. However, direct methods 

also have some disadvantages such as, the need for more complex calculation and 

converters, undesirable errors and high cost. A summary of these different algorithms is 

discussed as follows. 

 curve-fitting method 

The nonlinear P-V characteristic of a PV panel can be approximately expressed as 

(1.2), with the parameters a, b, c and d determined by sampling a large number of values 

of PV output voltage and current. The MPP voltage can be calculated by (1.3). In order to 

find an accurate MPP, the sampling frequency should be as high as possible. Moreover, 

this method requires accurate information of the PV panel’s parameters which are related 
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to the manufacturing specifications and material. Also because of the high sampling 

frequency, a large memory capacity for calculation might be required. 

dcVbVaVP PVPVPVPV  22                                                      (1.2) 

a

acbb
VMPP 2

42                                                                    (1.3) 

 Look-up table method 

In this method, optimized PV panel’s voltage and current values corresponding to 

different concrete environmental conditions are stored in the control system. Those 

operation points for the converter are all MPPs for different irradiance and temperature 

values. The measured values of the PV panel’s voltage and current are compared with 

those MPP points, and the converter adjusts the output of the PV panel’s voltage or 

current to the MPP. The look-up table can be built using Neural-Networks. This 

algorithm has the reputation of fast calculation speed, but in order to get accurate result a 

large capacity of memory is needed for the look-up data. And the look-up table should be 

adjusted for the specific characteristics of a certain PV panel. In addition, if we take the 

effect of ageing of the PV panel into consideration, the look-up table should be updated 

regularly. 

 Open-circuit voltage method and short-circuit method  

The open-circuit voltage and short-circuit methods are based on the assumption that 

the voltage/current of PV panel at the MPP can be approximately proportioned to its 

open-circuit voltage/short-circuit current with a constant ratio KV or KI, which is smaller 

than 1. K depends on the manufacture parameters of the PV panel. The open-circuit 

voltage method and short-circuit method can be expressed by (1.4) and (1.5). 
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These two methods are very simple, also they don't need heavy calculation, and 

therefore the price for the converter system is low. The drawback of these two methods is 

that the open-circuit voltage/ short-circuit current should be measured, which means that 

the normal operation of the system will be interrupted with a certain sampling frequency. 

By doing this, the system will have extra losses, and therefore the efficiency of the whole 

system will decrease. 

In order to overcome the possible drawbacks and increase the system frequency, 

open-circuit voltage photovoltaic test cell method is proposed. In this method, an 

additional PV is used as the test unit, and the rest of the PVs in the PV farm adjust the 

voltage based on the open-circuit voltage measured from the test unit. However, by using 

this method, the PV used as the test unit should be identical to the rest of them. 

 Differentiation method. 

This method is based on (1.6), and therefore in order to get the MPP and operate the 

system in real time, this equation should be solved quickly. The disadvantage of this 

method is that at least 8 calculations and measurements should be done to solve (1.6), 

which is not easy with a high sampling frequency in real time operation.  

dt

dV
I

dt

dI
V

dt

dP PV
PV

PV
PV

PV                                                        (1.6) 

 Artificial intelligence method 
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Artificial intelligence such as neural network (NN), fuzzy logic controller (FLC) and 

genetic algorithm (GA) play an important role in smart grid power systems. Also they 

can be applied in MPPT algorithms, The NN has the ability of approaching certain 

nonlinear functions, so this can be used to emulate the behavior of a PV array and 

generate its MPP lookup table. Furthermore, FLC can greatly improve the system’s 

control robustness, and the exact mathematical model of the PV array is not required. The 

GA has the ability of optimizing the control of the converter system for the PV utilization 

during the real time operation to optimum parameter selection, and then adjusting them 

so that the system will have a much faster response. The system can then meet the MPP 

quickly. 

 Perturbation and observation (P&O) method 

The P&O algorithm is the most commonly used MPPT algorithm. It utilizes the 

values of the input current and voltage to calculate the power. The values of voltage and 

power at the kth iteration (Pk) are stored. Then, the same values are measured and 

calculated for the (k+1)th iteration (Pk+1). The difference between Pk+1 and Pk (ΔP) is then 

calculated. Inspecting the power-voltage curve, we can see that the slope of the power 

curve (dP/dV) at the right hand side of the MPPT is negative. Moreover, dP/dV will be 

positive at the left hand side of the MPPT, while this slope will be zero right at the 

maximum power point. Finally, depending on the observation of the sign of ΔP and ΔV, 

the algorithm will decide whether the duty cycle is to be increased or decreased.  

Fuel Cell Systems 

The operating principles of fuel cells were demonstrated initially in 1839 at the Royal 

Institution of London by an English barrister and physicist, Sir William Grove, who 
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showed the reversibility of water electrolysis. The first practical application of fuel cells 

is credited to Francis T. Bacon of Cambridge University. In 1950, Bacon published 

groundbreaking results of an alkaline cell prototype. Fuel cells then became known 

worldwide when the National Aeronautics and Space Administration (NASA) used them 

in the Apollo program during the 1950s and later in the Gemini program. Obviously, fuel 

cells were a very convenient technology for the space program in not being polluting, 

producing electricity and heat, and having as by-product potable water from hydrogen, 

exactly what scientists wanted for a spaceship. In the past few years fuel cells have 

appeared as the most promising innovation in the market of alternative energies for 

stationary, portable, and automotive applications, as a natural energy conversion system 

from hydrogen stored from electrolysis. What appeals most about fuel cells is their 

construction, which can be clean and compact, their need for only a few movable parts, 

their modular technology, and the fact that they do not inflict on the environment 

emissions of sulfur and nitrogen oxides (SOx and NOx). Present interest in fuel cells is 

enormous. Numerous companies and research centers throughout the world are working 

on many developments related to fuel cell energy systems: Ballard Generation Systems, 

Global Thermoelectric, Fuel Cell Technologies (Canada), Sulzer Hexis (Switzerland), 

UTC Fuel Cells, Schatz Energy Research Center and Energy Partners, M-C Power, 

General Motors, Siemens–Westinghouse Corporation, GE Power Systems, Teledyne 

Energy Systems, H-Power, Avista, Ida Tech/North West Power Systems, and Plug Power 

in the United States; Toshiba, Mitsubishi Electric Corporation, and Ebara Corporation in 

Japan; ECN in Holland; Nuvera Fuel Cells in Italy; Rolls-Royce in England; and MTU, 

DaimlerBenz, Dornier, and Buderus Heiztechnik in Germany, among others. All this 
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interest in fuel cells supports the idea that direct combustion of fossil fuel is declining in 

importance. Current efforts toward commercial and regular production of fuel cells are 

intensive, primarily to improve its performance as related to the space between 

electrodes. This space is critical for the compactness of this energy source, as well as for 

the removal of sulfur and carbon monoxide, particularly in the PEM (proton exchange 

membrane) and SOFC (solid oxide fuel cell) types. These compounds contaminate the 

platinum catalysts, thus degrading fuel cell performance with time. Fuel cell 

characteristics differ from those of current dominant technologies for distributed 

generation in electric power systems, which are based on internal combustion engines 

using reciprocal primary movers or steam turbines. Such technologies are widely used at 

present and offer cheap, reliable energy with satisfactory heat use and efficiency. 

However, these types of machines cannot definitively find place in a planet concerned 

with its own survival. Characteristics such as noise, vibration, and emission of pollutant 

gases (e.g., NOx, COx) have not yet found the most appropriate optimization formula of 

acceptance. Because of that, frequent maintenance should be planned, thus increasing the 

cost of small units, which already have low overall efficiency, on the order of 30%. Fuel 

cells seem to be a good option despite not yet having a mature enough technology to be a 

feasible solution for the world market [33].  

Several fuel cell technologies are in development. The main research lines being 

currently considered: 

- Proton exchange membrane or solid polymer fuel cells (PEMFCs or SPFCs) 

- Phosphoric acid fuel cells (PAFCs) 

- Alkaline fuel cells (AFCs) 
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- Molten carbonate fuel cells (MCFCs) 

- Solid oxide fuel cells (SOFCs) 

- Direct methanol fuel cells (DMFCs) 

- Reversible fuel cells (RFCs) 

Table 1.2 summarizes the advantages and applications of the various types of fuel 

cells. Amongst these various types, SOFC is of more interest throughout this dissertation 

although most of the ideas developed for fuel cells are general and valid for the various 

types. Solid oxide fuel cells use an entirely solid oxide ion conducting ceramic of 

zirconia (zirconium oxide) stabilized with yttria (yttrium oxide) without any liquid-state 

interacting product. It works at very high temperatures, typically between 800 and 1100 -

°C. Therefore, there is no need for electrocatalysts, the most complex item commonly 

associated with research in ceramics and membranes in all the other fuel cells. It may 

operate with hydrogen with some level of carbon monoxide, and as a result, CO2 

recycling is not necessary. As a contrast to low- and medium-temperature fuel cells, the 

ions crossing the electrolyte from the cathode to the anode are the oxygen and by-product 

water formed at the anode side. At about 800 °C, zirconia allows conduction of oxygen 

ions starting up the energy production process. The open-circuit voltage of SOFCs is 

usually lower than of MCFCs but in compensation, it has lower internal resistance, 

thinner electrolytes, and therefore lower losses. For these reasons, SOFCs may operate at 

higher current densities. A zirconia mixture of ceramic and metal (cermet) is widely used 

to construct a highly resistant and stable anode for the high SOFC temperature 

environment. The metal used in this mixture is nickel because of its good electrical 

conductivity and catalyst properties, widening the operating range of this fuel cell since 



 

31 
 

the fuel-reforming process can take place at lower temperatures. On the other hand, the 

cathode composition is still a complicated matter because of the cost of effective 

conducting materials at high temperatures. Some materials presently used for this purpose 

are based on strontium-doped lanthanum manganite.  

Table 1.2 Fuel Cell Types and Their Applications 

Typical 

Applications 

Vehicles, portable 

and electrics 

equipment 

Cars, boats, and 

domestic CHP 

Distributed power 

generation, CHP, 

buses 

Power (W) 1 10 100 1k 10k 100k 1M 10M 

Main 

advantages 

Higher energy 

density than 

batteries; faster 

recharging 

Potential for zero 

emissions; higher 

efficiency 

Higher efficiency; 

less pollution; quiet 

Ranges of 

applications 

of the 

various 

types of FC 

 

 

The most challenging issues of such a slowly maturing technology are related to high-

temperature-resistant materials, combined applications with other fuel cells, heat, and 

A MCFC 

PAFC 

SOFC 

PEMFC 

AFC 
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power management. At this stage of development it is difficult to predict which fuel cell 

technology is going to be the most suitable or which is going to become a successful 

commercial version that takes the best possibilities of heat and power combination (CHP) 

and the construction of hybrid systems with various other fuel cell types. Figure 1.4 

displays a possible system for SOFC cogeneration, including the electric conversion 

oxidizer input and fuel gases, heat exchanger, and catalytic burner. There are other 

configurations considered seriously for a high-temperature combination of SOFCs with 

steam or gas turbines (combined cycle system) where the exhaustion gases of the fuel cell 

would feed the gas turbine, which would power an alternator. SOFCs of size 200 kW are 

being widely considered for large combined heat and power generation units in shopping 

centers, hospitals, military headquarters, residential condominiums, public buildings, and 

stand-alone villages. In all these applications, the natural gas has to be desulfurized 

before feeding the anode, and air is admitted into the fuel cell through preheaters using 

exhausted anode and cathode hot gases. 

 
 

Figure  1.4  Solid oxide fuel cell system. 
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Wind Systems 

Continuing development of modern society is contingent on the sustainability of 

energy. The vulnerability of the current energy chain, reliant on nonrenewable fossil fuel 

resources, will provoke a collapse in our   society with the exhaustion of its natural 

reserves. That is why Wind power energy is derived from solar energy, due to uneven 

distribution of temperatures in different areas of the Earth. The resulting movement of air 

mass is the source of mechanical energy that drives wind turbines and the respective 

generators. Wind power energy is strongly advocated in projects and studies where the 

following factors are considered [33]: 

- High cost of hydro- and thermoelectrical generation 

- Areas with fairly high average wind speeds (>3 m/s) 

- Need to feed remote loads, where a transmission network is uneconomical 

- Nonexistence of rivers or other energetic hydroresources in close proximity 

- Need for renewable, nonpolluting energy 

U.S. wind resources are large enough to generate more than 4.4 trillion kWh of electricity 

annually. There are sufficient wind intensities for power generation on mountainous areas 

and deserts, as well as in the midlands, spanning the wind belt in the Great Plains states. 

North Dakota alone is theoretically capable (if there were enough transmission capacity) 

of producing enough wind-generated power to meet more than one-third of U.S. demand. 

According to the Battelle Pacific Northwest Laboratory, wind energy can supply about 

20% of U.S. electricity, with California having the largest installed capacity.  

Loads 

Generally, loads can be divided into three categories, 
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 Resistive loads, which can be further divided into heating loads such as stoves, 

kettles, and coffee makers and lighting loads such as incandescent lamps. 

 Rotating loads, which can also be divided into two subcategories; universal and 

induction machines. Universal machines are usually used in small household 

appliances, such as mixers, food processors and vacuum cleaners. Universal machines 

have the same construction as series-magnetized dc machines, and therefore operates 

equally well with AC as DC [34]. On the other hand, larger household appliances 

such as washing machines and dryers are using induction machines. 

 Electronic loads, whose number increased significantly during the past few years. A 

common practice is to supply electronic loads such as computer equipment, screen 

monitors and televisions, and battery chargers through power electronic converters. 

Furthermore, lighting appliances such as compact fluorescent lamps and fluorescent 

tubes with HF ballasts also utilize power-electronic converters. The electronic loads 

are often designed to operate with 100–240 V, 50/60 Hz. If an electronic load is 

supplied by a DC source, only two of the diodes in the input rectifier will connect 

allowing the device to operate. However, electronic loads with inductors, such as 

fluorescent tubes or loads with a 50/60-Hz transformer cannot operate with dc.  

In conclusion, resistive loads, electronic loads with a wide range voltage input, and 

universal machines operate as expected with dc voltage [15], [34]. 

Protection 

Circuit protection is more mature for ac distribution systems than for dc systems, so it 

might be impossible to make a fair comparison. Ac circuit protection schemes benefit 

from periodic zero voltage crossings, at which times circuit breakers have an improved 
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likelihood to extinguish a fault current arc. However, some further research concludes 

that this limitation is not so severe for the protection of low dc potential circuits.   

Cables 

Generally, cables are designed and tested for AC systems but they can somehow be 

adapted to DC systems. Some other cables are available on the market for specific DC 

applications such as PV or telecommunications systems. For PV farms, cables are 

designed to sustain severe outdoor constraints, especially UV ageing. In 

telecommunications, the extra low voltage in use, 48V, cannot be compared with the 

230V of distribution grids [34]. Power cables have different voltage ratings depending on 

the size. Larger power cables are rated 1 kV, single-wire installation cables are rated at 

450/750 V and multi-wire installation cables are rated 300 V phase-to-ground and 500 V 

phase-to-phase [32], [34]. A grounded three-phase AC system requires five wires; three 

phase conductors, one neutral, and one ground. A DC system requires three wires; two 

phase conductors and one ground. An existing five-wire AC cable in a retrofit DC system 

can be used in two different configurations. The first is to use two wires for each pole and 

one for ground. The other alternative is to use one for each pole, two for neutral and one 

for ground, with the load connected between one pole and neutral. The different 

alternatives are shown in figure 1.5 The two retrofit DC configurations are compared 

with an AC case for a five single-wire installation with 1.5 mm wire rated 450/750 V and 

10 A. The loads are assumed to have an average power factor equal to 0.9 (ac case only), 

and the DC load voltage equals the peak value of the AC voltage. Also, a three-wire 

installation with AC and DC is compared. In [34], it was shown that in a five-wire 

installation, it is better to use DC, and in a three-wire installation, DC is superior to AC. 
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Figure  1.5   Use of existing cables in DC systems. 

Voltage Transformation 

Perhaps the greatest benefit available to DC systems is the ease with which AC 

voltage can be elevated for distribution over distance and again lowered, if necessary, 

near the load. DC voltage conversion is improving, but DC voltage conversion might 

never be so simple, and has not yet reached the place where DC converters can routinely 

compete with transformers or high-voltage distribution. The exception is HVDC 

transmission, which rectifies and inverts to and from high voltage DC at only a limited 

number of remote substations. However, advances in power electronics in addition to 

power electronics researchers interest in promoting the concept of DC microgrid assures 

that voltage transformation would not be a significant problem [31], [35]-[46]. 

Examples of Existing DC Power Systems 

DC power systems are already implemented in some cases depending on the 

applications. For instance, for traction purposes, DC machines are quite preferable due to 

their high starting torque. Therefore, traction power systems are usually DC [47]. Some 

other applications include data centers, telecommunications systems and shipboard power 

systems [48]. Some of these applications will be briefly explained as follows. 

Data Centers 

Data centers store and transfer tremendous amounts of digital information such as 
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cellular communications, internet, and credit card transactions. Although such systems 

demand a very high level of reliability, service is expected to be inexpensive. The energy 

consumption of these data centers is expected to be around 20% of the total cost. Hence, 

viability of a data center often rests on the reliability, efficiency, and electrical energy 

cost of the data center. Some data center power systems are AC and some DC. When 

comparing AC and DC distribution, there is an assumption that we are comparing two 

alternative approaches.  However, there are actually at least five power distribution 

designs that are commonly discussed during these comparisons, each with different 

efficiencies, costs, and limitations [49].  Therefore it is essential to identify these and 

carefully assess each method independently. These designs are;  

- The common AC distribution system in North America. In this system, the power 

goes through a UPS at 480 V and a 480/208 V transformer-based power 

distribution unit (PDU) before entering the IT device power supply.  There are 

five principal losses generated in this system:  the UPS losses, the primary 

distribution wiring, the PDU losses, the branch circuit distribution wiring, and the 

IT power supply. 

- The common AC distribution system used outside of North America. In this case, 

the PDU transformer and the associated losses are eliminated.  This is because the 

output voltage of the UPS is directly compatible input voltage range of nearly all 

IT Loads; which is 400 V. 

- The typical telecom DC power distribution. In this system, a DC UPS provides 48 

V DC for distribution to the DC powered IT loads. 
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- Systems distributing power through 380 V DC.  IT devices designed to operate 

from 380 V DC would need to exist in order for this approach to work. 

- Systems distributing power through 575 V DC.  This system utilizes IT devices 

designed to operate from 48 V DC, but uses a 575 V DC UPS and an intermediate 

575 V DC to 48 V DC step-down converters.   

With these models, efficiency, cost effectiveness, and reliability of AC and DC are 

compared. In development of an efficiency analysis, variations in device operation (full 

and partial loading) are considered. Under full load, high voltage DC showed the most 

promise with slightly improved efficiency over high voltage AC. The high voltage 

systems have lower currents and thereby lower losses. However, high voltage DC netted 

lower efficiency in relation to AC when the system is partially loaded. This is due to the 

efficiency curve of power electronic devices. Since data centers are typically oversized to 

furnish a safety margin, data centers tend to operate below full loading suggesting that 

high voltage AC is inherently more attractive. 

UPS devices tend to cost as much as 10% to 30% more than a power rectifier/battery 

plant. Although this would suggest a higher premium for AC, these savings are 

anticipated to be offset by the wiring necessary for low voltage DC, as these conductors 

would need to be larger to carry the higher current. Furthermore, equipment for DC tends 

to be more expensive due to the maturity of AC, thereby giving AC a slight advantage. 

While a decisive winner is present with efficiency and cost in this analysis, no 

definitive leader is present for reliability in this study. Similar reliability figures were 

located for both UPS systems in AC and rectifier-bridge and battery combinations in DC. 

Configurations of these devices either in AC or DC distribution networks are likewise 
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comparable, consequently, no meaningful difference could be found. Three detailed 

power system models were constructed to represent different data center systems: AC, 

DC, and DC system with an intermediate bus. The absence of reactive power, integration 

of distributed generation, and the reduction in the number of converters are reasoned to 

lead to notable benefits in DC. An intermediate DC bus system was constructed to 

provide low DC voltage to the loads thereby eliminating the high currents on the main 

bus. Enhancement in efficiency can be induced through an examination of the typical 

losses of a server card and the elimination of a converter in the UPS. Eliminating AC-DC 

rectifiers can result in an 8% savings for the overall data center system. Similarly, a gain 

of 9% is predicted in removing the converter in the UPS, producing a combined increase 

of 17% in savings. Additional savings are assumed with the elimination of reactive 

elements and the addition of DC renewables. Reliability improvements are founded on 

the reduction of converters as well and a comparison of the AC-DC and DC-DC 

converters. Power electronic converters have a low mean time between failures (MTBF) 

compared to other power system components. Hence, a decrease in the number of 

converters would improve MTBF. Moreover, AC-DC converters have worse MTBF in 

relation to DC-DC converters due to the implementation of more semiconductors. 

Spacecraft 

Spacecraft employs highly multi-connected distributed power system including 

generation, distribution, storage and loads. The system involves a fairly large number of 

DC-DC converters, batteries and their associated energy-handling converters. DC 

distribution made more sense in spacecraft applications because solar panels, batteries, 

and typical payload all are DC components. Moreover, the distributed design is used due 
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to the merits it can offer over a centralized design including high-reliability, controllable 

power quality for different loads, flexibility and expandability. The power requirements 

of spacecraft continually grow with the increased complexity of the system involving 

more communication devices and sensors, which require up to 30 kW, and space 

platforms such as the International Space Station (ISS) requiring over 100 kW. The ISS is 

composed of two relatively independent DC systems with different voltage levels. The 

American system runs at 120 V and has solar power modules with a capacity of 76 kW. 

The Russian system is divided into two voltage levels; 120 V and 28 V components, and 

it has 29 kW solar power modules. The two systems are linked with bi-directional DC-

DC converters to enable power transfer. Wind power is the conversion of wind energy 

into a useful form of energy, such as using wind turbines to make electricity, wind mills 

for mechanical power, wind pumps for pumping water or drainage, or sails to propel 

ships. 

At the end of 2009, worldwide nameplate capacity of wind-powered generators was 

159.2 gigawatts (GW). Energy production was 340 TWh, which is about 2% of 

worldwide electricity usage; and is growing rapidly, having doubled in the past three 

years. Several countries have achieved relatively high levels of wind power penetration 

(with large governmental subsidies), such as 13% in Spain and Portugal, and 7% in 

Germany and the Republic of Ireland in 2008. As of May 2009, eighty countries around 

the world are using wind power on a commercial basis [3], [14], [15].  

Large-scale wind farms are connected to the electric power transmission network; 

smaller facilities are used to provide electricity to isolated locations. Utility companies 

increasingly buy back surplus electricity produced by small domestic turbines. Wind 
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energy as a power source is attractive as an alternative to fossil fuels, because it is 

plentiful, renewable, widely distributed, clean, and produces no greenhouse gas emissions 

during operation. However, the construction of wind farms is not universally welcomed 

because of their visual impact and other effects on the environment. 

Telecommunications 

Telecommunication power systems, similar to data center power systems, are 

designed to transfer immense amount of data and serve a vast number of consumers. 

Such systems require high reliability and efficiency at a low cost. Therefore, DC 

distribution is used. The 48 V power plant in the telecommunication central office is one 

of the most well-known examples of DC power systems. The battery backup system, 

including maintenance and charge balancing along with system redundancy received 

much attention, and hence five nines (99.999%) reliability has become ubiquitous for 

telecommunication systems. The role of telephone companies evolve from only providing 

plain old telephone service to IP telephony, broadband, and datacom services. 

Researchers investigate the best way to integrate the DC 48 V telephone system with the 

traditional AC datacom systems while still meeting strict reliability criteria [14], [15].     

Feasibility of AC/DC Distribution Systems 

Several researchers have investigated the feasibility of DC and hybrid AC/DC 

distribution systems. Some of these researchers worked on the feasibility of the concept 

of DC distribution itself and its impacts, while some other researchers discussed the 

feasibility of implementing DC distribution in industrial, commercial, residential or naval 

applications. In [50], the authors investigated the possibility of using the appliances 

currently available in the market in DC distribution systems. They fed some appliances 
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with AC and DC to compare their performance. The tested appliances included compact 

fluorescent lamps, LED lamps, TVs, laptops and small motor drives. It was concluded 

that many of today’s home appliances can be operated directly with DC voltage without 

any modifications. 

In [31], the author predicted that the use of residential DC distribution by itself would 

be disadvantageous because of the inefficiency of the combined transformer rectifier 

needed to convert bulk AC power to premise DC power. However, it was shown that 

stationary DC renewable energy local generation that feed directly into a premise DC bus 

could have favorable conversion losses. In [51], the authors came up with a similar 

conclusion. Other researchers verified the applicability of DC distribution in residential 

application especially if co-generation from an alternative source is involved [52]-[56]. In 

[57], a DC system for residential complex was introduced, where each house has a 

cogeneration system such as a gas engine, and the power was shared among the houses 

by DC distribution. The results presented in that work demonstrated that the system could 

supply high-quality power to loads in those conditions. 

The authors of [8] presented a strategy for local control in a dc distribution system 

that integrates two techniques: power buffering and load shedding. They concluded that 

the power buffer is best suited for short-term system transients and allows continued 

operation of the load through the transient, while load-shed is effective when the 

transients are long-term or when turning off the load during the transient is not 

prohibited. Although the control scheme operated locally, using local information, it had 

a stabilizing effect on the entire system. In [58], the authors proposed a hybrid AC/DC 

microgrid and its coordination control. They concluded that although the hybrid grid can 
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reduce the processes of DC/AC and AC/DC conversions in an individual AC or DC grid, 

there are many practical problems for implementing the hybrid grid based on the current 

AC dominated infrastructure. The total system efficiency depends on the reduction of 

conversion losses and the increase for an extra DC link. It is also difficult for companies 

to redesign their home and office products without the embedded AC/DC rectifiers 

although it is theoretically possible. Therefore, the hybrid grids may be implemented 

when some small customers want to install their own PV systems on the roofs and are 

willing to use LED lighting systems and EV charging systems. The hybrid grid may also 

be feasible for small isolated industrial plants with both PV system and wind turbine 

generator as the major power supply. 

Regarding industrial applications, in [20], an industrial dc power supply system based 

on an inductive filtering method was proposed to simultaneously suppress the effects of 

both the harmonic and the reactive power on both the public power network and the 

industrial custom power fields that need a high-power dc supply source. The proposed 

system included a new rectifier transformer with special impedance design, a fully tuned 

circuit that can achieve the resonance at the specified harmonic frequencies, and a 

thyristor-based controlled rectifier bridge. Its main circuit topology is different from that 

of the conventional industrial DC supply system. In [32], Baran et al presented a 

discussion about the feasibility of using DC distribution in industrial applications, they 

suggested utilizing DC distribution for motor type loads driven by speed drives by 

interfacing these drives directly with the DC bus. They discussed the challenges 

accompanied with using DC such as the neutral voltage shift phenomenon; this means the 

fluctuation of the negative DC bus and generator neutral voltages. To address this 



 

44 
 

phenomenon the authors simulated a small scale system, which has two generators (4.16 

kV) feeding a DC bus (7 kV) through rectifiers, a DC-DC buck converter (7 kV- 0.8 kV) 

is connected also to this bus. AC loads are fed through 3-ph high frequency PWM 

inverter. Simulation results showed that in isolated ground operation (ungrounded 

system), the generator neutral voltage swings up to 5 kV. As a solution to this problem, 

the authors suggested reducing the phase angle difference between the carrier signals 

used for the PWM control of the two rectifiers. Furthermore they proposed to use an 

isolation transformer in the DC-DC buck converter, connected between the inverter and 

rectifier stages. They modified the system to be grounded through very high impedance 

(250 p.u). These solutions helped reduce the neutral voltage to be about 1.1 kV. 

Moreover, operation under different disturbances (generator dropout, ground fault and 

short circuit on DC bus) is investigated. The authors emphasized on the need for a fast 

and effective overcurrent protection on such systems. 

In [34], several Experiments were carried out in a scaled laboratory system including 

all main components to study the feasibility of low-voltage DC distribution systems for 

commercial power systems with sensitive electronic loads. The experimental results 

presented show that DC may well be used to supply electric loads compared with AC. In 

the DC distribution, system there will not be any associated problems with current 

harmonics. Furthermore, if the loads are modified, there is a potential to reduce the losses 

since no rectifiers or PFC circuits are needed. 

In [48], the authors have discussed current and potential distribution and propulsion 

options for U.S. surface combatant vessels. The advantages of zonal and dc zonal 

distribution were delineated and the dc stability issues introduced. The advantages of an 
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integrated power system employing an electric drive were contrasted with the current 

technical hurdles. With improvements in semiconductor devices, including new 

technologies such as silicon-carbide, new converter architectures, such as multi-level 

converters, and electric machinery design advances, such as in permanent magnet and 

homopolar machines, a suitable integrated power system candidate for a naval surface 

combatant will emerge. 

In [12], the reduction in power transmission loss and the cost of introducing DC 

superconducting distribution were considered for specific power supply networks. Based 

on the results, it can be concluded that there is a good argument for introducing DC 

superconducting systems. The issues involved in defining a DC superconducting 

distribution system were also pointed out based on the situations described here as 

potential installation scenarios. A DC superconducting power transmission system 

constructed using modified AC cable was also presented. The authors also declared that 

their future research will attempt to optimize the termination design to minimize heat 

leakage at the terminal. 

Problem Statement  

Intelligence is a key factor in the transition process in improving the conventional 

power system we have to a smart grid. An intelligent perception forces one to believe that 

futuristic smart grids must be viewed as power systems that involve a significant 

penetration level of DC microgrids and hybrid AC/DC ones, even if today’s technology 

or standards do not reveal that. The expected increasing penetration level of distributed 

generation from alternative energy sources, plug-in electric vehicles and electronic loads 

beside the global inclination towards distributed control and distributed architectures are 
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some of the factors that support this conclusion. Moreover, intelligent design, control, 

operation and protection of modern power systems are essential to achieve the goals of a 

smart grid. Zooming in for more details, we can say that intelligence is needed while 

designing the DC-DC converters that integrate renewable energy to the DC bus in a 

microgrid, in addition to their controllers. Intelligence is also needed while designing the 

bi-directional converters linking the DC microgrid to the AC side of the system or the 

utility grid and their controllers. The same statement can be made for the various power 

conditioning units in the system such as the battery chargers, load side inverters and 

rectifiers. However, intelligent design by itself is not enough to complement the picture. 

A perfectly deigned microgrid would not lead to much improvement if it is improperly 

operated and/or the energy in the system is mismanaged. This leads to a huge need for 

real-time energy management. Intelligent energy management of hybrid AC/DC 

microgrids in smart grids can be envisioned currently as a powerful enabling tool to 

achieve a variety of objectives such as overall cost reduction, mitigation of heavy loads 

or demand side management. However, it will soon become a necessity. Moreover, 

advances in the protection of modern and futuristic smart grids must be adapted and 

implemented. In order to go on the right track with the development of these modern 

power systems involving hybrid and DC microgrids, research efforts have to be directed 

towards looking for the intelligence aspect in all the stages of the development of a smart 

grid. Various types of simulations are conducted. Since DC systems inherently cause 

stability issues, they must be carefully treated and any suggested modifications or 

designed components should be accompanied with mathematical modeling, which is a 

must to study the system’s small signal as well as large signal stability. Finally, any 



 

47 
 

converter topology proposed, new controller developed, energy management algorithm 

introduced or protection scheme designed has to be experimentally verified. 

Research Objectives 

Hybrid AC/DC microgrids, as shown in figure 1.6, are essential to optimize the 

operation of our modern smart grids; they significantly facilitate the utilization of 

renewable energy and the integration of storage elements. They also manage the vast 

penetration of DC-supplied loads such as electronic loads and result in an overall boost to 

the power system efficiency. 

 

Figure 1.6   A Hybrid AC/DC power system. 

The main objectives and contributions of this dissertation can be summarized as 

follows: 

 To mathematically model, design, simulate and implement a hybrid AC/DC smart 

grid testbed at the Energy Systems Research Laboratory, Florida International 

University. This testbed is a unique hardware/software based setup that provides a 

powerful tool to conduct several types of research studies within the DC side of the 

network, on the AC side or on the interaction between the DC microgrid and the main 
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AC grid. The smart grid testbed is implemented by the efforts of a group of students 

[59], [60], however, the author of this dissertation is solely responsible for all the 

aspects related to the DC microgrid design, control and implementation, as well as the 

aspects related to the interaction between AC and DC and the ideas of how the energy 

available from renewable energy can be used to solve operational problems on the 

AC side.   

 To study, model, simulate and implement the various power electronic converters 

involved in a DC microgrid such as the DC-DC converters needed to integrate PV or 

FC energy to the common DC bus, or the controlled rectifiers and the bi-directional 

converters needed to link the DC microgrid to the main AC grid. While working on 

these converters, some new ideas and techniques were proposed as original 

contributions and tested for verification. 

 To apply an element of intelligence to the various controllers of the power converters 

within the grid, in order to enhance their performance. For instance, a novel smart 

controller was developed to overcome the limited operating range problems attached 

to some of the power electronic converters in the circuit due to the high non-linearity 

of their transfer functions. 

 To develop and implement techniques to control the DC microgrid voltage and power 

sharing, and to define the control architecture, e.g. master-slave, droop, centralized, 

distributed, etc. Another objective is to perform the common power studies and 

analyses on the developed system such as, stability, security and contingency. 

 To develop real-time energy management algorithms in order to intelligently operate 

hybrid AC/DC systems. These algorithms will be focused on solving several power 
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system issues such as optimal operation of hybrid renewable energy systems or 

mitigation of pulsed loads. 

 To study the protection of hybrid AC/DC power systems and challenges related to 

interrupting DC currents, and to also investigate the possibilities of utilizing power 

electronic switches for fast interruption. 

 Finally, to test the ideas developed throughout the dissertation. This verification 

process is done carefully by firstly simulating the various elements of the work, i.e. 

converters, control techniques or energy management-algorithms. Then, implement 

them in hardware. 

Originality of the Research 

The conventional central architecture and control of power systems led to major 

disruptions and blackouts. Moreover, current power systems encounter significant 

changes, such as the more penetration of distributed generation, electronic loads, energy 

storage and electric vehicles. These new factors are expected to lead to more problems if 

the current architecture of the power system is not reconsidered. A conventional power 

system consists of a generation stage, a transmission stage and a distribution stage. 

Typically, the power system is operated with a relatively few number of sensing and 

control terminals on the distribution side. Moreover, the system is not operated in real-

time. These drawbacks, which previously led to several blackouts, can even have a more 

aggravating impact with the introduction of distributed generation, when more customers 

start injecting power, that is not well-monitored or planned for, to the grid. 

In this dissertation, we introduce a hybrid power system involving distributed 

architectures, or what can be called microgrids, to overcome this problem. A microgrid is 
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a portion of the grid that has the capability to be operated in real-time, supply a big 

portion of its local load requirements and communicate with the main grid. These 

distributed architectures or microgrids have their local generation from renewable energy 

sources as well as energy storage elements. Since we have communication between the 

supervisor controller of each of these microgrids and the main grid, the energy available 

on a microgrid can be used to solve problems on the AC side and vice versa. For 

instance, if the AC grid has a voltage problem and requires some reactive power 

compensation, one or more of the microgrids can supply the needed reactive power if it is 

available.  

In such system, as we propose an architecture where the AC grid can benefit from the 

ancillary services that can be provided by the distributed architectures, we have to make 

sure these microgrids do not have issues themselves that can propagate to the rest of the 

system. One of the main problems that a microgrid can face is a heavy-duty load, or what 

we call here a pulsed load. This type of severe load can easily lead the microgrid to 

instability if the energy is not properly managed, given the fact that DC microgrids have 

negative incremental output impedance and resonance issues among the converters. 

Examples of pulsed loads are: the starting of a big motor, the charging of an electric 

vehicle, a rail-gun or radar system on a shipboard power system. 

In the past few years, researchers and decision-makers were reconsidering distributed 

architectures and DC distribution in the existing power systems. The researchers’ efforts 

in the literature were directed towards studying the feasibility of including DC systems in 

different applications or studying the impacts of deploying DC distribution systems in 

terms of the involved technical challenges and losses. Some researchers worked on the 
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development of laboratory-based testbed setups to examine the devised models for 

improving the performance of hybrid AC/DC microgrids. However, the idea of 

implementing distributed control and architectures of the power system is still lacking 

much development in terms of design, energy management, protection and control. 

Throughout this dissertation, advances and novel ideas are presented on different scales, 

from the component level to the system scale.  

On the component scale, the performance of the current state-of-the-art DC-DC 

converters used to integrate renewable energy sources to the DC bus was depicted. 

Moreover, a novel energy integration technique given the name series-parallel 

compensation was proposed as an original contribution. This technique is highly inspired 

by the unified power flow controller in AC systems. Furthermore, a novel smart fuzzy-

based controller was developed and implemented. This controller aimed at widening the 

operating range of a converter and improving its steady state and transient response. 

Although this proposed controller was tested on some specific converters, such as the 

DC-DC converter and the AC-DC rectifier, this controller offers a significant 

improvement to the controllers of any non-linear system. The concept can be utilized in 

any application not only electric circuits.   

On the system scale, the novel ideas presented in this dissertation were either 

targeting the achievement of smart operation and control within the DC microgrid, or 

investigating the interaction between the DC microgrid and the main utility grid such as 

the way they should communicate and how to use the energy available from renewable 

energy or storage on the DC side to solve problems on the AC side. An example of the 

significant contributions of this dissertation on the system operation scale is the real-time 



 

52 
 

energy management algorithm developed to mitigate the effect of pulsed loads while 

reducing the overall energy cost. This algorithm can offer a great solution to some 

currently existing systems such as the naval shipboard power systems, and will definitely 

be a key algorithm in several other applications in the near future. This kind of link 

bridging intelligently operated hybrid AC/DC microgrids to smart grids makes this 

dissertation have an increasing significance in the future as we get closer to approaching 

smarter power systems.  

Significance of the Research 

The introduced hybrid power system involving distributed architecture overcomes 

many of the major problems associated with the current conventional central power 

systems including brownouts and blackouts. Moreover, the energy management 

algorithms developed and presented throughout the dissertation significantly enhances 

the real-time operation of the power system and increases its redundancy, reliability and 

efficiency. Generally, the topic of hybrid AC/DC power systems involving distributed 

architectures and controls is quite up-to-date. This dissertation is one of few publications 

dealing with this concept in the literature. The way microgrids are envisioned in this 

dissertation, as distributed architectures within the smart grid, makes it unique since it 

goes beyond the typical investigations about design and operation of the microgrids, and 

the comparison studies between AC and DC systems to a much wider perspective and 

deeper insight targeting an improvement in the overall power system.  

Organization of Dissertation 

The dissertation is organized into eleven chapters including the present chapter. These 

chapters are organized as follows. 
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Chapter 1 presents a historical background about the AC versus DC distribution debate 

and an introduction to hybrid AC/DC distribution systems and the benefits, barriers and 

impacts of their deployment. It also presents an overview of DC microgrids, factors 

affecting microgrid design, currently existing DC power systems, and renewable energy 

sources, in addition to the problem statement, research objectives, originality and 

significance, and the outline of the work.  

Chapter 2 introduces a detailed description of the hybrid AC/DC smart grid testbed 

developed at the Energy Systems Research Laboratory, Florida International University, 

and utilized as a verification tool throughout the dissertation.  

Chapter 3 discusses the integration of renewable energy sources to the DC bus; the state-

of-the-art converters are investigated. In addition, some new energy integration 

techniques are presented. 

Chapter 4 focuses on the mathematical modeling, control design, simulation and 

implementation of the converters linking the DC microgrid to the AC side of the system. 

Therefore, an SPWM controlled rectifier as well as a bi-directional converter, which 

allows the power to flow bi-directionally between the AC and DC sides, are presented. 

Chapter 5 proposes a fuzzy-PID based controller that aims at widening the operating 

range of the power conditioning units used to integrate renewable energy.  

Chapter 6 presents a real-time energy management scheme that intelligently manages the 

energy within hybrid renewable energy systems. 

Chapter 7 introduces another novel real-time energy management algorithm that aims at 

mitigating the effect of pulsed loads on a hybrid AC/DC power system and reducing the 

overall cost of energy.  
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Chapter 8 presents stability and dynamic security analyses of hybrid AC/DC power 

systems against different contingencies. 

Chapter 9 proposes a new real-time energy management algorithm that aims at managing 

the energy in a smart plug-in hybrid electric vehicles’ charging park and coordinating 

their charging/discharging process. 

Chapter 10 presents the design and hardware implementation of DC distributed power 

system architecture as well as its protection scheme. It also provides several case studies 

and simulations.  

Chapter 11 addresses the main conclusions and observations that can be derived from the 

dissertation work, and suggests topics for future research. 
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Chapter 2 : Hybrid AC/DC Smart Grid Testbed 

System Description 

In this chapter, the design and development of a laboratory-based hybrid AC/DC 

smart grid test-bed is presented. This system was developed at the Energy Systems 

Research Laboratory, Florida International University. The author of this dissertation 

contributed to the development of this system along with several other graduate students 

and undergraduate assistants. However, all the aspects related to the DC microgrid, and 

the other studies and ideas in the next chapters of the dissertation are original 

contributions of the author. The hybrid AC/DC smart grid will be described in this 

chapter with an emphasis on the DC side. However, the AC side will be briefly explained 

for the sake of integrity of the dissertation, since the complete testbed will be used to 

verify and test the ideas that will be presented in the next chapters.  

The test-bed power system was developed for several applications as well as for 

studying smart grid operation concepts of a power system. Most of the power system 

laboratories have some power system elements available for education and experimental 

tests but do not provide the integrated hardware-based power system infrastructure 

required for studying issues related to interconnection, control, and protection. Although 

rarely found, there are few papers in the literature [61], [62] that present the development 

of a power system testbed. However, these papers do not provide hardware setup for 

small scaled power system lab; they mostly apply power system software emulators with 

limited hardware involvement. The objective of this work is to integrate all power system 

components together for developing a more realistic laboratory scale power system for 

research and education. The hardware/software based system includes the 
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implementation of control strategies for generating stations, and power transfer to 

programmable loads in a laboratory scale of up to 36 kilowatts in AC power and 36 kW 

in renewable sources and energy storages on the DC microgrid. Appropriate software was 

developed to monitor all the system parameters, operate and control the various 

interconnected components in various connectivity architectures [63]-[67]. Alternative 

energy sources, such as wind emulators, PV arrays, and fuel cell emulators are 

implemented, studied and integrated into this system. Educational experiences were 

drawn during the design and system development of this laboratory-based smart grid. The 

real-time operation and analysis capability provides a platform for investigating many 

challenging aspects of a real smart power system. Moreover, it is a platform for studying 

distributed control and operation of power systems. 

DC Bus and DC Microgrid Implementation 

The laboratory-based smart power system presented in this chapter is a hybrid 

AC/DC power system. The AC side of the system has all the AC alternators and loads 

connected. The DC side of the grid is used to connect the various renewable energy 

sources in addition to the battery storage system and other DC loads. The energy 

available from renewable sources on the DC side of the network should not only serve 

local loads on the DC grid, but also has to serve loads on the AC side. Power sharing can 

be used to mitigate fast load fluctuations and maintain high power and voltage stability 

levels on the AC side. Therefore, a bidirectional AC-DC/DC-AC converter was used to 

allow bidirectional power flow between the AC and DC sides. It also allows independent 

control of the active and reactive power transferred between the microgrid and the main 

AC grid. The DC grid shown in figure 2.1 consists of the following components. 
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Photovoltaic (PV) Emulator 

A 6 kW programmable dc power supply was used to emulate a typical I-V 

characteristics curve. The programmable power supply allows emulating different I-V 

characteristic curves in the form of lookup tables. Moreover, it allows including the effect 

of other parameters, such as environmental conditions i.e., ambient temperature and solar 

insolation. The V-I characteristics of a PV cell is modeled by the formula given in 

Chapter 1. 

Fuel Cell (FC) Emulator 

A programmable DC power supply is programmed to emulate solid oxide fuel cells 

(SOFC) characteristics. The DC power supply can be programmed with a lookup tables 

representing the relation between the voltage and current or voltage versus time. For 

instance, in order to examine the robustness of the DC-DC boost converter interfacing 

fuel cells energy into the grid, the voltage profile shown in figure 2.2 was programmed. 

The purpose of sharp and sudden changes in the voltage value is to examine the system 

and its components under severe conditions. 

 

Figure 2.2   Output voltage from the fuel cell emulator. 
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Controlled DC-DC Boost Converter 

The system contains two controlled DC-DC boost converters operating as interfaces 

between different renewable energy sources and the DC grid. The first DC-DC boost 

converter is used to integrate the power generated by the PV emulator to the system. This 

converter is operating in the maximum power point tracking (MPPT) mode. The other 

converter is used to integrate the FC energy to the system and is operating in a current 

control mode. These converters are designed to receive a variable input voltage ranging 

from 70 to 140-V and integrate its power into the dc bus at 300-V. The power rating of 

each is 3 kW [68]–[72]. 

In the case of the DC-DC boost converter connected to the PV source, the voltage to 

be controlled is on the input side of the converter. The PV can be equivalent to a current 

source in parallel with a resistor using Norton’s theorem [68]. Hence, the small signal 

input voltage to duty cycle transfer function used to control this converter is given by 
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pvv~

 

The small signal of the converter input voltage [V]  

d
~

 

The small signal of the duty cycle  

Vdc The large signal of the DC bus voltage [V] 

Rpv Photovoltaic equivalent resistance [Ω] 

Cpv Photovoltaic array equivalent capacitance [F] 

Lpv Converter inductance [H] 
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This transfer function was used to tune the parameters of the PI controller which is 

used to control the converter as shown in figure 2.3. 
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Figure 2.3  A block diagram of the DC-DC boost converter controller. 

 

Battery Storage Systems 

The smart power system presented here is also equipped with a battery bank 

consisting of 12 lead acid batteries connected in series with a 12-V output each. The 

battery bank is used as the main energy storage of the system. 

Bidirectional DC-DC Battery Charger/Discharger 

The output voltage of the battery storage system is not constant depending on the 

state of charge of the battery. Moreover, the amount of charge or discharge from the 

battery should be controlled depending on the energy management algorithm used for 

system operation. Thus, a 1-kW controlled bidirectional DC-DC converter was designed 

and implemented in the system. In the charging mode, the transfer function of the output 

voltage to the duty cycle is as given by (2-2) 
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Whereas, the ratio of the output voltage to duty cycle transfer function in the 

discharging mode (GBD) is given by, 
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Where: 

ov~  The small signal of the converter output voltage [V] 

d
~

 
The small signal of the duty cycle 

Vdc The large signal of the DC bus voltage [V] 

D The large signal of the duty cycle 

Lbatt Converter inductance [H] 

Cin Converter capacitance on the DC bus side [F] 

Cout Converter capacitance on the battery side [F] 

R DC Load Resistance [Ω] 

These two transfer functions for the converter in the charging and discharging modes 

were used to design the PI controller used to control the charge/discharge process of the 

battery as shown in figure 2.4. The PI controller parameters were set as follows, 

KpC=0.0035, KiC=0.3, KpD=0.0035 and KiD=0.25. Moreover, the pulse width modulation 

technique at a switching frequency of 5-kHz was used as a switching strategy for the 

bidirectional charger/discharger. More details of the design process and the maximum 

power point tracking algorithm are presented in [68]. 
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Figure 2.4  A block diagram of the Bi-directional battery charger controller. 

 

Three-Phase Controlled AC-DC Rectifier and Bidirectional AC-DC/DC-AC 

Converter 

A voltage controlled rectifier is used to regulate the voltage level on the DC side of 

the network. This rectifier allows power flow from the AC side to the DC. The converter 

is controlled using a voltage decoupling control technique that allows full control of 

active and reactive power independently. Hence, the converter is operating at unity PF. 

Sinusoidal pulse width modulation (SPWM) technique is used for switching. The 

complete details of the design and implementation of this converter can be found in [69]. 

Moreover, a current-controlled bidirectional converter was also designed. The same 

voltage decoupling control technique was utilized for this converter. Hence, any desired 

amount of active or reactive power can be transferred from the DC microgrid to the main 

AC grid, which allows the DC microgrid to supply active power, act as a reactive power 

compensator or supply active and reactive power simultaneously if required by the wide 

area control technique implemented.  
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Single Phase DC-AC Inverter 

This voltage-controlled inverter is used to connect different sensitive AC loads to the 

DC bus. This inverter has a power rating of 4-kW and is designed to output a constant 

120-V. The SPWM technique at 4-kHz switching frequency was used as a switching 

strategy. Moreover, the PI controller is used to control the output voltage. The design of 

this controller can be found in [73].  

Dynamic DC Load Emulator 

The dynamic DC load consists of a voltage-controlled buck converter connected to a 

constant resistive load. The converter is designed to respond very quickly to changes in 

the reference. Hence, by changing the reference of the output voltage the output power 

changes and the dynamic load emulator can follow a certain load pattern. An example of 

the load curves programmed in the dynamic load model is given in figure 2.5. The load 

power varies from 0 to 3 kW iteratively in six-minute intervals. 

 

Figure 2.5   Output power of the dynamic load emulator. 
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AC System Implementation 

The overall test-bed system has four AC generators connected in a ring combination 

and supply loads connected to the load buses through the developed line models. The 

system represents a scaled-down actual shipboard power system. This system also 

includes links to a common communication network infrastructure of the available DAQs 

monitoring system. This is done to implement a supervisory control and data acquisition 

(SCADA) system and power system equipment control. It also features an ability to 

access all measurement data remotely via a TCP/IP connection [74], [75]. The switching 

action was implemented by the real-time software. This involves manual switching by 

users and automatic switching when they are related to synchronizers, or operated by the 

digital relays implemented in the real-time software. For the generation switching control 

scheme, a synchronizer virtual instrument (VI) was implemented in the real-time 

environment. It measures and compares both sides of the switch for proper synchronous 

switching action according to the developed algorithm. One of the large generators (G1) 

running at a constant frequency acts as the slack bus, which maintains the power system 

frequency at 60 Hz. The other three generating stations are torque controlled, which 

allows their output power to be controlled. Once all the generating stations are 

synchronized, the VI allows the user to control the amount of output power of the 

generator by controlling the input torque command of each generator, individually. This 

method is performed incrementally to increase or decrease the output power of the 

corresponding generator. The DC bus is connected to the AC system via a bidirectional 

converter. This allows bidirectional power flow between AC and DC. The system 

described in figure 2.1 consists of two DC-DC converters integrating two sustainable 
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energy sources into a common DC bus. They have the ability to control the power 

injected to the DC network. In normal operation, the voltage on the DC bus is regulated 

via a controlled rectifier connecting both sides. However, if the system is working in an 

islanded mode, i.e., isolated from the AC side, one of the DC-DC converters interfacing 

the sustainable energy sources to the DC system must take this responsibility. A fully 

controlled rectifier was designed to tie the DC grid with the ac one. A vector decoupling 

controlled sinusoidal pulse width modulation (SPWM) technique was used to allow the 

designed rectifier to maintain a constant output voltage while being able to control the 

active and reactive power drawn from the grid independently. Moreover, a bidirectional 

AC-DC/DC-AC converter is used to allow bidirectional power flow between both sides. 

The amount of power flowing in either direction can be set to a certain pre-set value 

while the controlled rectifier working as a voltage rectifier maintains the power balance. 

This is because it is free to supply the power needed in the dc grid. In order to increase 

the operating range of the rectifier, an adaptive controller having the ability to 

dynamically change its parameters corresponding to the condition of the system was 

proposed in [71]. The emphasis of this paper is mostly on the overall design of AC/DC 

parts of the test-bed. It should be pointed out that [68]–[72] describe the DC grid 

connectivity in further details. Another real-time application was developed to monitor all 

the AC electrical parameters in every branch. All the branches were represented by a 

measurement virtual instrument panel to represent the real-time values of voltages and 

currents of the branches. In addition, by implementing the proper software including 

math functions, the zero, positive, and negative sequences of voltages and currents, the 

active and reactive power, as well as power factor characteristic of each branch are 
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calculated. The phasor diagram is also shown depicting the phase difference between the 

voltages and the currents of each phase. This can be used as a synchronized phasor 

measurement by unifying the reference time scale for all the measured signals. The 

monitoring system based on DAQ hardware and software proved to be a highly flexible 

and easy-to-use solution for our application. The overall view of the smart grid test-bed 

infrastructure is shown in figure 2.6. The values of the parameters of all the components 

in the hybrid AC/DC system are given in tables 2.1, 2.2 and 2.3. 

 
 

 

 

Table 2.1   Transmission Line Parameters 

Parameter Name 
Maximum 

Current 
Resistance Reactance Suseptance 

Line 0170 15 A 0.417 Ω 1. 264 Ω 3200 µS 

Line 0250 15 A 2.831 Ω 4.231 Ω 4350 µS 

Line 0510 15 A 0.15 Ω 1.46 Ω 2558 µS 

Line 0520 15 A 0.18 Ω 1.43 Ω 2571 µS 

Line 0530 15 A 0.14 Ω 1.2 Ω 2581 µS 

Line 0540 15 A 0.15 Ω 1.29 Ω 2574 µS 

Line 0550 15 A 0.14 Ω 1.63 Ω 2590 µS 

Line 0560 15 A 0.16 Ω 1.4 Ω 2582 µS 
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Table 2.2   Synchronous Generators Parameters 

Parameter Name G1, G3 G2, G4 

Apparent Power 13.8 kVA 10.4 kVA 

Nominal Voltage 230 V 230 V 

Nominal Power Factor 0.8 0.8 

Acc. Time Constant 0.005625 s 0.004 s 

Stator Leakage Reactance (xl) 0.09 pu 0.09 pu 

d-axis Synchronous Reactance (Xd) 2.21 pu 2.248 pu 

q-axis Synchronous Reactance (Xq) 1.1 pu 1.117 pu 

d-axis Transient Time Constant (Td’) 0.014 s 0.012 s 

d-axis Transient Reactance (Xd’) 0.23 pu 0.23 pu 

d-axis Subtransient Time Constant (Td”) 0.0035s 0.003 s 

q-axis Subtransient Time Constant (Tq”) 0.05 s 0.05 s 

d-axis Transient Reactance (Xd”) 0.14 pu 0.144 pu 

q-axis Transient Reactance (Xq”) 0.25 pu 0.258 pu 
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Table 2.3    DC Microgrid Parameters 

Component Parameter Specification 

Controlled AC-DC 

Rectifier 

Power Rating 5 kW 

IGBT Module SKM50GB123D 

Switching Freq. 8 kHz 

Lr 12 mH 

rr 0.98 Ω 

Cr 1200 µF 

Bi-directional AC-

DC/DC-AC 

Converter 

Power Rating 5 kW 

IGBT Module SKM50GB123D 

Switching Freq. 8 kHz 

Lb 24 mH 

rb 1.96 Ω 

Cb 1200 µF 

Lbdc 12 mH+0.98 Ω 

DC-DC Boost 

Converter 

Power Rating 3 kW 

IGBT Module SKM150GAL12V 

Switching Freq. 5 kHz 

LPV , LFC 3 mH+0.4 Ω 
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Component Parameter Specification 

Bi-directional DC-

DC Battery 

Charger 

Power Rating 1 kW 

IGBT Module SKM800GA126D 

Switching Freq. 5 kHz 

Lbatt 2.7 mH+0.22 Ω 

Cin=Cbatt 1200 µF 

DC Dynamic Load 

Model 

Power Rating 3 kW 

IGBT Module SKM800GA126D 

Switching Freq. 5 kHz 

LDL 2.7 mH+0.22 Ω 

Single phase DC-

AC Inverter 

Power Rating 3 kW 

IGBT Module SKM50GB123D 

Switching Freq. 6 kHz 

Lidc 3 mH 

Ridc 0.4 Ω 

Cidc 2400 µF 

Liac 12 mH 

Riac 0.98 Ω 

Ciac 196 µF 

Local/Supervisor 

Control 

dSPACE 1104 digital board TMS320F240 
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System Real-time Operation 

An integrated wide area system on the laboratory-scale hybrid AC/DC Smart Grid 

test-bed, with capabilities for WAMS, WACS and WAPS, was developed [76]-[83]. The 

implementation of this system as a real-time software creates an environment for 

studying and verifying new control and protection schemes for the whole power system. 

Moreover, it is very essential for power system students to experience, handle and 

interact with smart grid components and its innovative operational aspects. Verification 

experiments were presented to show the implemented system performance and 

capabilities. This system was used for researching integrated wide area control and 

protection systems to monitor the system status for abnormalities, such as over/under 

voltage, overloading of equipment and any other conditions. This developed system can 

also be used to monitor real-time system stability and security margin. A wide area 

monitoring system with high data resolution rate was developed. This system was 

designed to have capabilities, such as maintaining system normal operation and take a 

proper remedial action when encountered by unexpected circumstances by monitoring 

critical states in wide area system. It can also help monitor stability indices in real-time 

format. As a result, the system operator will have proper knowledge and visualization 

about the power system's current situation and the distance from stability margin. The 

developed system can be used for cascaded failures detection and applying proper 

remedies on the power system. Following a disturbance, one or more components 

overload and hence fail. The equilibrium of the load flow will consequently change and 

the load will then be redistributed to other normal components and this makes additional 

load transfer to other elements. Thus, a cascading failure is triggered by the overload 
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failures leading to network's collapse resulting in a blackout. The PMUs data can be used 

to follow the phase angle of each bus to detect the system failures, which may cause 

cascaded events. In this process, we need to detect upcoming faults by network data and 

analyze the network reaction to this outage by some algorithms such State Estimation, N-

1 Contingency, Fault calculation, OPF, etc. Therefore, the online calculation software 

was used to estimate the system states following any circumstances to apply a self-

healing reaction. Moreover, the system was used for applying online setting of the 

protection devices. The protection coordination settings in a large area network are 

completely dependent on the topology and system status, which are varying frequently. 

For instance, the application of distributed generation, whose generation depends on 

energy availability, such as photovoltaic and wind power, may cause different operational 

settings for relays connected to the same network. This system could detect the grid 

status and will run protection coordination software to achieve proper settings for relays. 

Finally, it will apply new settings by real-time software and communication networks to 

the selected system protection devices. 

DC Microgrid Operation  

In the DC microgrid, the supervisory controller is the master controller, it is 

responsible for sending the DC bus voltage reference to the controlled rectifier and 

distributing power references to the local (slave) controllers of the other source 

converters. Moreover, this supervisor controller communicates with the main AC grid 

and is the place to execute various real-time energy management algorithms in order to 

manage the power sharing among the various sustainable energy sources, the interaction 
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with the main AC grid and the battery charging and discharging. For instance, the real-

time battery charging/discharging algorithm presented in figure 2.7 is implemented.  
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Figure 2.7  A flow chart of one of the real-time algorithm used to manage the 
charge/discharge process of the batteries. 

 

This algorithm aims mainly at shifting the power demanded from the main AC grid to 

off-peak time by managing the charging/discharging process of the battery such that, 

If there is a surplus in power, i.e. the total power generated locally from the PV and 

fuel cells exceeds the demand on the DC microgrid, the charging rate of the battery is 

increased during off-peak time since the energy tariff is relatively low so it is more 

worthy to charge the battery than to sell power to the grid. On the other hand, the 

charging rate is decreased during peak time to charge the battery later on when the energy 

tariff drops. 

If there is a deficiency in power meaning that the renewable energy sources are not 

capable of satisfying the load demanded on the microgrid, the discharging rate of the 

battery is increased during peak time to increase the saving by reducing the energy 

bought from the main grid with the high tariff. Moreover, the discharging rate is 
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decreased during off-peak time since the tariff is low and the available energy in the 

battery can be more effectively utilized during the coming peak period. This algorithm 

can result in an annual saving of around 7%-9% [84]. The developed laboratory-based 

smart power system can be used to test more complex real time energy management 

algorithms involving online prediction and modeling of renewable energy sources output 

power uncertainty, load forecasting and pulsed load mitigation.  

In order to investigate the real-time operation of the DC microgrid, figure 2.8 shows 

the performance of the various components of the DC side corresponding to several step 

changes in the reference power. The curves shown (from top to bottom) are 

corresponding to the DC bus voltage (vdc), the rectifier current (ir), the bi-directional 

current (ibdc), the photovoltaic (PV) output current (ipv), the fuel cells output current (iFC) 

and the battery current (ibatt), respectively. The case study is described as follows, 

 The supervisor controller sends reference signals to the various converters in the DC 

microgrid. 

 The bi-directional converter is set to transfer 1 A from the main AC grid to the DC 

microgrid. 

 iPV is initially set to 2 A, then a step change from 2 to 0.5 A is applied after 0.1 s. 

 iFC is set to 0.25 A along the whole interval shown in figure 2.8. 

 The battery is operating in the discharging mode, ibatt is initially set to 0.2 A then the 

discharging current reference is changed to 0.7 A after 1.1 s. 

 The total loads connected to the DC bus are increased by 75% after 1.6 s. 

As can be seen in the figure, the DC bus voltage is hardly affected by the step 

changes in the PV or battery power. However, the big step change in the load creates 
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some fluctuation in the bus voltage of around 1%, which is definitely below all the 

standard limits. This transient period lasts for about 0.5 s. 
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Figure  2.8  Performance of the various components of the DC microgrid corresponding 
to step changes in the power reference. (a) the DC bus voltage (vdc), (b) the rectifier 

current (ir), (c) the bi-directional current (ibdc), (d) the PV output current (ipv). 

 

The rectifier current is free to maintain the power balance in the system. Therefore, 

when the PV power decreases from 2 A to 0.5 A, the rectifier current increases by the 
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same amount. When the battery current increases following 1.1 s, the rectifier current 

decreases to compensate for this increase. The bi-directional converter is capable of 

maintaining its reference current of 1 A during the step changes of other converters. 

However, a fluctuation of the output current can be seen at 1.6 s when the sudden change 

in the load takes place. This is due to the fluctuation in the output voltage.   

The DC-DC converter interfacing the PV successfully supplies the desired current 

with the some fluctuation during the sudden load change. In addition, the DC-DC 

converter interfacing the fuel cell is able to maintain the desired output current during the 

various states of the system with some ripple in the output when the load is suddenly 

changed. Finally, the battery charger/discharger successfully supplies the desired amount 

of current from the battery, which helps implementing any type of real-time operation 

algorithms involving the battery.   

AC Grid Operation 

The steady state parameters in the real-time monitoring software determine the 

system components loading, over/under voltage situation, frequency drop, active and 

reactive power flow, losses and so on [85]-[95]. The main generator control VI also 

presents the generator’s loadings in order to share the generation level optimally when 

one of them encounters an overload situation.  

The constant active power-voltage magnitude generators known as PV generators, 

G2, G3 and G4, should contribute to supplying the demand according to their control 

commands after the system start-up. Hence, their active power is increased to a 

reasonable value according to the system total load and the slack generator loading. This 

procedure was implemented manually by entering a proper torque command to the prime 
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mover. The system’s active power load is increased in steps of 300 W for each load in 

different times (L1, L2, L3 and L4). Without any change in generation, the slack 

generator is responsible to maintain the system frequency at 60 Hz. Therefore, the total 

load change leads to an increase in the active power generation of the slack generator, 

G1. Increasing the active power of the generators will alleviate the total generation of G1. 

The active and reactive power changes of all four generators are shown in figure 2.9. 

Practically, the reactive powers return back to their initial values since the total reactive 

load was constant during the experiment. Moreover, an automated real-time power 

controller was implemented to monitor the active power of the load buses and specify the 

same amount of power to the nearest generator.  

Figure 2.10 shows the active and reactive power change of every generator, which is 

controlled automatically by the real-time software. Similar to previous experiments, the 

same increase in load pattern is considered in this case, and the test results of this 

controller were compared with the manual generation control. Whenever a load is 

increased, the monitoring and control system recognized it. The system also changes the 

torque control command of the generator connected close to that load to change the 

amount of generated power. Since the monitoring system has a time latency of about 1 

sec, the control system will follow the load variation by a step change within with some 

time delay. The automatic control scheme is fast enough to operate the system in a smart 

manner and to share the load among the generation stations. The range of variation of the 

active and reactive power of each generator in the automatic mode is less than manual 

control because of the fast response of the control system. The automatic control system 

for the generators should be comprehensive considering system conditions, such as 
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loadings of equipment, voltage and generation limitations as well as stability issues. The 

use of the real-time software makes it possible to monitor all system conditions and 

create a proper power sharing algorithm, such as Optimal Power Flow (OPF) or any other 

energy management algorithm [96]-[105].       

Integrated Hybrid AC/DC Operation  

In order to evaluate the integration of the AC/DC system and study the system 

performance during load variations, an experiment was conducted to show the system 

behavior and AC/DC power sharing control while the load variations take place in active 

and reactive power. In this experiment, the DC microgrid quantifies its DC power 

availability during the upcoming interval of time. Hence, it will inject any amount of 

active/reactive power demanded by the AC side, through the WAMPAC considering all 

constraints. 

 

Figure 2.9  (a) Active power and (b) Reactive power of generators during load increase in 
manual control mode. 
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Figure 2.10  (a) Active power and (b) Reactive power of generators during load increase 

in automatic control mode. 

The DC system is connected to Bus-0050, see figure 2.6, through a bi-directional 

converter and injects any specified amount of active and/or reactive power to the AC 

point of common coupling (PCC). In this experiment the DC microgrid is used to 

regulate the voltage at the PCC.  As shown in figure 2.11, a unity power factor load of 

700-W is initially connected to Bus-0050. The DC microgrid is commanded to receive 

100 W and zero Vars. Hence, AC grid takes the responsibility of supplying both AC load 

and DC microgrid demand. The steady state voltage at PCC in this situation is 0.94 p.u. 

while the voltage on the DC bus is 1 p.u. After 20 sec, the DC microgrid is commanded 

by WAMPAC system to inject the total amount of demanded power on the AC side. 

Therefore, the voltage amplitude is increased to 1.02 p.u. The controlled rectifier 

regulating the voltage on the DC bus maintains a voltage of 1 p.u. after a transient period 

of around 6 sec with an overshoot of 0.02 p.u. A reactive load of 450 VARs is increased 
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to PCC after 43 sec. Consequently the voltage amplitude drops to around 0.95 p.u. The 

DC microgrid is then commanded by WAMPAC to inject 300-VARs to the AC grid. 

Hence, the voltage at the PCC increases to 0.98 p.u. The DC bus voltage is hardly 

affected by this change in its reactive power reference. The frequency variations are also 

shown in this figure. A maximum of 0.2 Hz deviation from 60 Hz is depicted in the 

measured frequency. This experiment shows that, using integrated controllers for hybrid 

AC/DC microgrids can enhance the performance of the system. Moreover, the developed 

test-bed is capable of being effectively used to test this type of research ideas.  
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Figure 2.11  Performance of the integrated hybrid AC/DC microgrid corresponding to 

step change in the load demand reference. (a) shows the load, DC and AC active power 
share, (b) the load, DC and AC reactive power share, (c) the frequency of the AC bus, (d) 

the voltage of the AC and DC buses. 
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Figures 2.12 and 2.13 show more details about the quality of the active and 

reactive power transferred between the AC and DC grids. They show the current 

and voltage waveforms, as well as the THD at the PCC and the inverter 

terminals collected using the FLUKE 435 Power Quality Analyzer after 10 s and 

70 s, respectively. Figure 2.14 shows an overall view of the developed hardware 

AC/DC smart grid setup.   

 
(a) 

 
(b) 

 
(c) 

Figure 2.12  Current and voltage waveforms, and their THD after 10 s. (a) shows the 
PCC current and voltage waveforms, (b) the inverter side current and voltage phasors, (c) 

the current and voltage THD. 
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(a) 

 
(b) 

 
(c) 

Figure 2.13  Current and voltage waveforms, and their THD after 70 s. (a) shows the 
PCC current and voltage waveforms, (b) the inverter side current and voltage phasors, (c) 

the current and voltage THD. 
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Chapter 3 : Connection of Renewable Energy Sources into DC Microgrids—for 

Energy link Integration 

Energy Link Integration 

This chapter presents an overview of the commonly used DC-DC converter for 

integrating renewable energy sources to a DC bus, which is the boost converter. Then, a 

modified boost converter topology and a new proposed converter topology, in addition to 

their modeling and control strategies, will be presented. The new topologies are derived 

from the conventional DC-DC boost converter, and are namely inductively coupled boost 

converter and parallel/series compensation topology. The sustainable energy sources 

include fuel cells, rectified wind power or photovoltaic cells. As an example, we will 

focus on the integration of fuel cells to the DC bus in a DC zonal electric distribution 

system (DC ZEDS) due to its importance in current naval shipboard power systems.  The 

performance of the new topologies was compared to that of the conventional boost 

converter. The proposed topologies were achieved by adding some components to the 

boost converter for the enhancement of sustainable energy integration to the system. The 

continuous output current is among the advantages of the new topologies over the 

conventional one [68]. 

Recently, the idea of applying DC distribution in shipboard power systems has 

acquired the attention of the U.S. Navy as an alternative to conventional AC systems due 

to the vast increase of the load demand and the need for a high reliability high quality 

power supply to feed such loads as explained earlier in chapter 1. The Navy investigates a 

form of DC distribution systems, which is called zonal DC electric distribution system. In 

DC ZEDS, the system is divided into zones of DC and AC loads served through DC-DC 
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and DC-AC converters as shown in figure 3.1. This system is very helpful from a 

protection point of view as the DC-DC converters connecting various zones to the DC 

bus and the AC-DC rectifiers connecting the generators isolate both the loads and the 

generators from the rest of the system. Moreover, there is a great leap towards the 

utilization of fuel cells on shipboard power systems, as fuel cells after exhaustive 

research seem to be the most convenient sustainable energy sources onboard of a ship. As 

an example, the recent research project called ‘Solid Oxide Fuel Cell Tactical Electric 

Power (TEP)’ supported by the US Department of Defense. This project aims at studying 

the challenges and opportunities associated with the development of a 10-15 kW SOFC 

TEP inspired by the fact that fuel cell systems offer high efficiency with extremely low 

pollution. For the aforementioned reasons, the DC ZEDS will be used as an example in 

this chapter. The current-voltage characteristics of fuel cells are not linear. Hence, a DC-

DC converter is used to regulate the output voltage [107]-[110]. 

 

 

Figure 3.1  The DC ZEDS under study, (Type 1 converter) is the one under study in this 
paper. (Type 2 converter) can be a conventional controlled DC-DC boost converter. 
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 In a typical DC zonal electric distribution system as shown in figure 3.1, the DC bus 

is the most suitable place to connect the output of fuel cells. The DC bus voltage is 

regulated via a controlled rectifier connected to the AC side of the system. The rectifier 

has to have an output filter in order to maintain the bus voltage ripple within acceptable 

limits. Hence, we can model the two terminals of the DC bus as the terminals of a voltage 

source.  

However, fuel cells yield variable DC voltage. In stand-alone systems, in order to 

make full use of the generated power and feed the loads, a controlled DC-DC converter, 

which is designated as (Type 1 converter) in figure 3.1, is used as an interface between 

the fuel cells and the DC bus.  The DC-DC converter, which could be a controlled buck 

or boost converter, receives a variable input voltage from the fuel cells and outputs a 

constant voltage where DC loads, batteries, or machine drives can be connected. These 

converters have also to be controlled in a closed-loop control system because the duty 

cycle has to change dynamically corresponding to expected simultaneous variations of 

input voltage and/or output current.  

To control the output voltage under input voltage and output current variations, a 

voltage feedback signal is needed. Moreover, if current control or maximum power point 

tracking (MPPT) is to be applied, a current feedback signal has to be also considered. 

However, in grid connected fuel cell systems, as in the case of the DC ZEDS under study 

in this paper, DC-DC converters used as interfaces to fuel cells are not assigned the task 

of regulating the output voltage as they are supplying loads connected to a DC bus whose 

voltage level is already regulated. Instead, designers have to find the best way to inject 

the generated current as continuously and efficiently as possible to this DC bus. 



 

87 
 

Converters designated as (Type 2 converters) in figure 3.1 are easier to handle as they 

receive a constant output voltage at their input terminals and yield a constant output 

voltage. They work as an interface between the DC bus and the inverters in each zone. 

Type 2 converters are out of the scope of this paper. 

Conventional DC-DC boost converters will be used as a base for the converters 

presented in this paper, i.e. they derived from it and their performance will be compared 

with its performance. If conventional boost converters are used in DC ZEDS, which is 

likely to happen, they create a discontinuous output current. The performance of such 

converters will be investigated. Moreover, two new topologies are proposed to enhance 

the performance of the simple DC-DC boost converter.  

The main contributions of this chapter are, 

 Evaluation of the performance of the DC-DC boost converter as an interface between 

fuel cells and DC ZEDS. 

 A modified topology and a new circuit configuration, which are derived from the DC-

DC boost converter, will be proposed. 

 Mathematical modeling and control system design of the proposed converters will be 

presented. 

 Simulation and experimental results of different topologies are included to validate 

the proposed topologies and conduct a comparative study among different solutions 

to the problem of integrating fuel cells into DC ZEDS.  

DC-DC Boost Converter 

Due to the importance of the conventional boost converter that will be used in the 

comparison with the new topologies, its operation is briefly described in this section. DC-
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DC boost converter is one of the most popular techniques to regulate the output voltage 

of the fuel cells and inject their power into the grid. A controlled DC-DC boost converter 

has the capability of regulating its output voltage even under input voltage or output 

current variations within a range. This operating range depends on the design of the 

control system and any stability issues related to the system itself and its loading 

conditions. DC-DC boost converter in its simplest circuit topology has a capacitive 

interface to the load. This assures a regulated output voltage and current. However, in the 

case of integrating fuel cells’ energy into a DC ZEDS, because the DC bus is already 

connected to a regulating capacitor there is no need for the output capacitor of the boost 

converter. The circuit takes the form shown in figure 3.2.  

By controlling the duty cycle of the IGBT of the boost converter using the current 

controller corresponding to a certain reference value; we can control the average of the 

output current. However, the DC-DC converter in this form cannot support continuous 

current to the DC bus because it becomes completely disconnected from the DC bus 

during one of the switching states as shown in figure 3.3. Hence, its output current 

pulsates at the switching frequency.  

Hence, if a DC-DC boost converter is to be used, the controller has to be designed 

based on the average not the instantaneous value of the output current. This limits the 

capability of the fuel cells and the converter as well, because the current drawn 

instantaneously to satisfy certain reference of average output current may exceed the 

current limiting capability of the fuel cells. There are several solutions proposed in the 

literature, such as the interleaved boost converter, however, in this chapter some other 

proposed techniques will be presented. 
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Figure 3.2  Controlled boost converter for fuel cells integration into a DC ZEDS. 

 

 

(a) (b) 
  

Figure 3.3  Circuit configuration during different states of the power electronic switch: 
(a) During turn ON state (0 < t ≤ DTs), (b) During turn OFF state (DTs < t ≤ T). 

                                

Inductively Coupled Boost Converter 

In order to solve the problem of discontinuity in the output current when using 

conventional boost converters, a modified DC-DC boost converter was proposed by 

adding an L-filter to the output side of the converter as shown in figure 3.4. The added 

inductance assures continuous conduction of the output current. The configuration of the 

circuit during the ON and OFF states of the switches are shown in figure 3.5.  

The small-signal mathematical model of the proposed converter was obtained using a 

state space averaging technique [106]. 

The state space model during the interval (0 < t ≤ DTs) is, 
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Figure 3.4  The proposed Inductively Coupled Boost Converter topology for fuel cells 
integration into a DC ZEDS. 

(a) (b) 
Figure 3.5  The ON and OFF states of the DC-DC converter with output L-filter:           

(a) (0 < t ≤ DTs) and (b) (DTs < t ≤ T). 
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Whereas, the state space model during the interval (DTs < t ≤ T) is, 
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0 2Li i                                                                                                      (3.3) 

Using the state space averaging technique, 
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If we consider a small signal perturbation, the large signal state space equations will 

be, 
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Whereas, the small signal state space set of equations will be, 
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Where,  

1 1 1 2 2 2
ˆ ˆ ˆˆˆ ˆ, , , , ,L L L L L L c c c in in ini I i i I i v V v v V v e E e d D d             

The above set of equations (3.6) can be used to design the controller. This converter 

topology is also applicable for integrating different sustainable energy sources into a 

common DC bus, which is one of the most important reasons because of which 
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researchers have started thinking about replacing the AC distribution system with a DC 

one. 

Parallel/Series Compensation….Proposed Integration Technique 

Another approach for high-performance fuel cells integration to the DC bus in a DC 

ZEDS is proposed in this section. This approach is more complex than the one proposed 

in section IV. However, there are some advantages that can be gained out of this increase 

in complexity. The circuit topology and its connectivity are as shown in figure 3.6. In this 

technique, the fuel cells are connected to a conventional controlled boost converter. Then, 

a step-down controlled fly back converter connected to the output of the boost converter 

is used as a current source to inject the desired amount of current to the DC bus through 

an output an L-filter (Lc) while keeping the output voltage of the boost converter 

constant. The input of the fly back converter is connected in parallel to the output of the 

boost converter. The output of the fly back converter is connected in series to the output 

of the boost converter. The connectivity with series and parallel compensations is close to 

that of a unified power flow controller (UPFC) in AC systems. Hence, an auxiliary bus 

(vaux) where some of the local loads (R) can be connected is obtained [110].  

 The ON-OFF states of the switch and their corresponding circuits are shown in figure 

3.7. During the ON state of the switch, the inductor (Lc) is charging. Moreover, the 

compensating current (io) is flowing from the positive terminal of the output of the fly 

back converter (vc) through the coil to the far end bus and the diode will be reverse biased 

as shown in figure 3.7. a. The inductor voltage in this case is given by (3.8) 

                                  evvv cauxcL                                                                 (3.8) 

Consequently, the current through the inductor is given by: 
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(a) 
 

 
(b) 

Figure 3.6  The proposed Parallel/series Compensation Topology for fuel cells integration 
into a DC ZEDS: (a) circuit and control diagram, (b) block diagram describing the 

connection.                        

    sDT
caux

c
o dtevv

L
i 0 ).(

1
                                                  (3.9) 

On the other hand, during the switching OFF state, the switch will turn OFF. Hence, 

the inductor will be discharged releasing the energy stored during the ON state. In this 

state the compensating voltage is completely disconnected and the compensating current 

is flowing directly from the near end bus (vin) through the diode to the far end bus (e) as 

shown in figure 3.7. b. The inductor voltage in this case is given by (3.10).  



 

94 
 

   evv auxcL                                                                  (3.10)  

And the inductor current is, 

                                   sDT
aux

c
o dtev

L
i 0 ).(

1
                                                  (3.11) 

Hence, the output current injected to the DC bus is continuous. Furthermore, 

controlling the power flow can be achieved by controlling the duty cycle of the fly back 

converter. 

From (3.8) and (3.10), the small and large signal state space equations describing the 

system if we neglect the voltage ripple at the auxiliary bus as well as the DC bus, auxv̂  and 

ê  approach zero, are given by (3.12) and (3.13), respectively, 

(a) (b) 
Figure 3.7  The ON and OFF states of the DC-DC converter with compensating fly back 

converter: (a) (0 < t ≤ DTs) and (b) (DTs < t ≤ T). 
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Since the inductor current is the same as the output current, the small signal transfer 

function used for controller design is given by, 
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Where,  

c auxV nDV                                                                           (3.15) 

Where, n is the secondary to primary turns ratio of the fly back transformer. The 

system has a single pole at (-rc/ Lc), which makes it easier to design a more stable 

controller. Thus, some of the advantages of this configuration are as follows, 

 It allows high-stability and fast control of the current injected to the DC bus due to its 

wide control band width and damping characteristics, 

 It gives an auxiliary DC bus, which does not have to have the same voltage level as 

the main DC bus and where some local loads can be connected, 

 It provides a high-quality (low ripple) output current into the DC bus, and, 

 It can be connected to any boost converter that is already connected to fuel cells and 

running in a stand-alone system with no need to modify any controllers as the current 

control is achieved separately from the voltage control in this configuration. 

The characteristics of this converter makes it applicable for connecting different DC 

microgrids.  

Results and discussion 

A prototype system was designed and implemented in hardware in order to examine 

the performance of the proposed solutions. A scaled down DC voltage of 200 V is 

assumed for the DC bus. For control purposes, the digital signal processing board 

dSPACE 1104 is used. The switching frequency for all the converters is 5 kHz. 
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Parameters designed for each of the three converters under study in this paper are given 

in table 3.1. 

 

Table 3.1   Parameters of different prototype systems used for simulation and 
experimental results. 
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Element Value 

L 2.2 mH 

C 4800 µf 

Lc 12 mH 

rc 0.49 ohm 

 

A block diagram of the controller designed for the proposed topologies is shown in 

figure 3.8. a. It can be seen that the plant is cascaded by the developed compensator to 

achieve the required controllability. Moreover, the bode plots of the open loop and closed 

loop response for proposed topologies 1 and 2 are given in figures 3.8. b and 3.8. c, 

respectively. 
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(c) 
 

Figure 3.8 Bode plots of the controllers designed for the proposed topologies: (a) a block 
diagram of the controller, where, i is 1 for the inductively coupled boost converter and 2 
for the parallel/series compensation topology, (b) bode plot for the open and closed loop 

response for the inductively coupled boost converter and (c) bode plot for the 
parallel/series compensation. 
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Conventional Boost Converter Results 

Results for the conventional boost converter are shown in figure 3.9. As can be seen, 

the average value of the output current tracks its reference. However, the instantaneous 

value of the current is pulsating, which means poor power quality injected to the grid and 

more stress on the source and the power electronic switch.   

Inductively Coupled Boost Converter Results 

Results for the inductively coupled boost converter discussed in section 3.3 are shown 

in figure 3.10. As can be seen, the output current is continuous and the ripple is as small 

as 2%, which means a high power quality injected to the grid.   

 

0.729 0.73 0.731 0.732 0.733
0

2

4

6

8

Time (Sec)

i o (
A

m
ps

)

 

(a) (b) 
Figure 3.9  Controlled conventional boost converter for fuel cells integration into a DC 

ZEDS: (a) simulation results, (b) experimental results (same scale). 
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(a) (b) 
Figure 3.10  Results for (Inductively Coupled Boost Converter): (a) simulation results, 

(b) experimental results (same scale). 
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Furthermore, another study is run to validate the applicability of this topology to 

integrate multiple sources into a common DC bus. Hence, a prototype system consisting 

of three DC-DC converters integrating three sustainable energy sources into a common 

DC bus as shown in figure 3.11 was examined. One of the DC-DC converters is a 

voltage-controlled DC-DC boost converter that is connected to source 1 in figure 3.11. 

This converter is used to regulate the voltage in the DC bus. Moreover, since it does not 

follow a current reference, it maintains the power balance in the system. Whereas, DC-

DC converters connected to sources 2 and 3 are of the type (Inductively coupled boost 

converter). They have the capability of controlling the power injected to the DC bus. 

 
 

Figure 3.11  The application of (Inductively Coupled Boost Converter) for power sharing 
among different sustainable energy sources connected to a common DC bus. 

Two experiments were run to examine the performance of the converters 

corresponding to step changes in the power reference and the load connected to the 

system. In figure 3.12, the response of the converters corresponding to step changes in 

the power reference were shown. A load of 2 kW is connected to the DC network. 

Initially, bus 1 is set to supply 800 W, bus 2 is set to supply 500 W, and bus 3 has to 

supply the remaining 700 W.  
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A step change was applied to the power reference of converter1 from 800 W to 200 

W at 2.5 sec. Another step change was applied to converter 3 at 5 sec. Figure 3.12 shows 

how the power reference of both converters was tracked with a transient of about 0.3 sec. 

One more experiment was run to examine the response of the converters under step load 

changes. Results of this experiment are shown in Figure 3.13. Initially, the same load of 2 

kW is satisfied by a 500 W from bus 1, 400 W from bus 2 and 1100 W from bus 3. Then, 

the load is suddenly dropped from 2 kW to 1 kW. We can see that converters 1 and 2 

keep their power referenced value. Whereas, the free converter drops its power from 

1100 W to 100 W to maintain the power balance.  

 

(a) (b) 
Figure 3.12  Power sharing response to a step change in the power reference, (a) 

simulation results, (b) experimental results (same scale). 

 

A comparison among different converters under study was conducted. Table 3.2 

summarizes the result of this comparison. 
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(a) (b) 
Figure 3.13  Power sharing response to a step change in the load, (a) simulation results, 

(b) experimental results (same scale). 

 

Table 3.2    Comparison between the DC-DC boost converter and the modified 
configuration 

Converter 
Output 
current 
ripple 

Weight  (PU) Cost (PU) 
Input source 
stress 

Power 
electronic 
switch stress 

Conventional 
boost 
converter 

Very 
high 

1 1 High High 

Inductively 
Coupled 
Boost 
Converter 

Low 
2.12 1.23 Low Low 

Parallel/series 
Compensation 
Topology 

Very 
low 

2.18 1.9 
Very 

low 

Very 

low 
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Parallel/series Compensation Topology Results 

Results for the proposed topology are shown in figure 3.14. As can be seen, the 

output current is also continuous and the ripple is very small which means high power 

quality injected to the DC ZEDS. 

Another experiment was run to validate this configuration for connectivity of DC 

microgrids. The circuit diagram for the case of connecting two different DC microgrids 

modeled by the output of two boost converters connected to a variable DC voltage source 

is as shown in figure 3.14.  

 

Figure 3.14  Experimental results for the performance of (proposed parallel/series 
compensation technique). 

Figure 3.15 shows a case study for the case when both microgrids are at the same 

voltage level applying a step change in the desired transferred power from 0 to 0.7 kW 

after 0.2 sec flowing from bus 1 to bus 2. The results show that the proposed converter is 

perfectly tracking the desired value of transferred power. Bus 1 voltage which is the 

sending end voltage has a dip of 7 volts in about 10 msec then it settles down to the 

steady state operation. In addition, bus 2 voltage has an increase in the order of about 7 

volts that damps rapidly in about 100 msec.   
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Figure 3.16 shows another case study. Voltage level at both buses is not the same. 

However, can be injected and controlled from bus 1 to bus 2. In addition, we can see that 

voltage level at both buses is almost constant. 
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Figure  3.15  Voltage at both microgrids and power flowing between them when both 
microgrids have the same voltage level, black line is the reference and grey line is the 

actual response. 
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Figure  3.16  Voltage at both microgrids and power flowing between them when both 
microgrids have the different voltage levels, black line is the reference and grey line is 

the actual response. 
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Chapter 4 : Grid-Connectivity and Bi-directional Energy Transfer--Modeling, 

Simulation and Hardware Implementation 

Microgrid Connectivity 

In this chapter, some of the aspects related to the connectivity of DC microgrids to the 

main grid are investigated. Since the microgrid under study in this dissertation is 

dependent mainly on sustainable energy sources, a special care was given to dealing with 

this type of sources while designing the different components of the system. Certain 

features had to be maintained in the system in order to assure efficient integration of 

different sources, such as efficient and reliable load-feeding capability and full 

controllability of voltage and power flow among the various buses in the system. Due to 

the importance of having DC microgrids or distribution systems connected to the AC 

grid, in this work, we investigate the connectivity of DC systems to AC ones. Such 

connectivity should allow voltage regulation on the DC side. Furthermore, it should allow 

bi-directional power flow between AC and DC sides.  

Different studies were conducted to solve certain problems. Firstly, a fully controlled 

rectifier was used to tie the DC network to the AC grid while working at unity power 

factor and within acceptable limits of total harmonic distortion (THD) for the current 

drawn from the grid. This rectifier has a uni-directional power flow capability from the 

AC to DC grid and is responsible for voltage regulation on the DC side. Hence, at least 

one of these rectifiers has to be connected to the DC system to maintain its voltage at a 

certain level otherwise, for instance if the system is working in an islanded mode, one of 

the DC-DC converters interfacing sustainable energy sources to the DC system has to 

take this responsibility. Then, a fully controlled bi-directional AC-DC/DC-AC converter 
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was designed and implemented. This converter has the ability to control the amount of 

active and reactive power flowing between the AC and DC grid in both directions. The 

amount of power flowing in either direction can be set to a certain pre-set value while the 

controlled rectifier working as a voltage rectifier maintains the power balance as it is free 

to supply the power needed in the DC grid to maintain the power balance. 

DC Bus Voltage regulation  

Converter Description and Mathematical Modeling 

A fully controlled three phase rectifier was designed and implemented for coupling 

the DC network to the AC grid. A vector decoupling sinusoidal PWM control technique 

was used to control the output voltage of the rectifier while having the capability of 

controlling both the active and reactive power drawn from the grid independently.  

Vector decoupling PWM control of three phase rectifiers requires coordinate 

transformation to the d-q frame of references in order to obtain the desired controllability. 

Feedback and feedforward control techniques of such rectifiers are possible. However, 

they are complicated and require accurate mathematical modeling of the inverter. Hence, 

three PI controllers were utilized to assist us in building the control model although the 

mathematical model of the rectifier is very important especially in order to have a 

successful decoupling of the vectors. The three phases PWM rectifier circuit and its 

single phase equivalent are shown in figure 4.1. The voltage equation is, 

r
s

ss v
dt

di
LRie                                                                        (4.1) 

where 

es source voltage 
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is source current 

vr Converter input voltage 

R, L Resistance and inductance of the boosting inductor, respectively. 

dededeqe
de veRiwLi

dt

di
L                                                       (4.2) 

qeqeqede
qe veRiwLi

dt

di
L                                                     (4.3) 

Where w is the angular frequency of the voltage source. 

For fast voltage control, the input power should supply instantaneously the sum of 

load power and charging rate of the capacitor energy. Neglecting the resistance loss and 
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Figure 4.1  The implemented three phase SPWM rectifier; (a) circuit diagram, (b) single-
phase equivalent. 
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the switching device loss, the power balance between the ac input and the DC output is as 

follows 

dcdcqeqedede ivieieP  )(
2

3
                                                                  (4.4) 

Where vdc and idc are the DC output voltage and current, respectively. 

On the dc output side, 

L
dc

dc i
dt

dv
Ci                                                                                       (4.5) 

Where iL is the load current. From (4.4) and (4.5) 

Ldc
dc

dcqeqedede iv
dt

dv
Cvieie  )(

2

3

                                                         
 (4.6) 

Inspecting (4.6), we can see that the system is nonlinear with regard to vdc. From 

(4.2), (4.3), and (4.6), a complete state-space modeling of the system is given by 
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                    (4.7) 

When currents are selected as outputs, the vector relative degree equals to two. 

However, the model order is three and consequently internal dynamics appear. When the 

DC-voltage and the direct-axis current are chosen as outputs, simplifications can be 

proposed for obtaining a control law without internal dynamics. Nevertheless, in order to 

obtain a control law without neither internal dynamics nor model simplifications, the 

selection of other outputs must be considered. The developed load emulator consists of 

choosing outputs that allow obtaining vector relative degree equal to three. To this end, 
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an energy function ec (relative degree equal to two) is selected as output (see below h(x) 

definition). The DC-voltage will be controlled by using this output. In addition, direct-

axis current id (relative degree equal to one) will be controlled to maintain the input unity 

power factor. By choosing these outputs, the vector relative degree is equal to three. In 

this way, internal dynamics is avoided. Consequently, complete feedback linearization is 

obtained and two linear and decoupled loops are to be controlled. 

Feedback linearization is applied to the model given by (4.7). The system in matrix 

form becomes, 

uxgxfx )()(                                                                                           (4.8) 

)(xhy                                                                                                        (4.9) 
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Where x, y and u are the state, output and input vectors of the nonlinear system, 

respectively. The control law linearizing the system (4.8) yields, 

    )()(1 xuuxEee T
de

T
qede                                                             (4.16) 

where 
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Note that the matrix E is singular when 

0)]2([  qeqedcqeLdc RivCvLiiv                                                             (4.20) 

A detailed analysis of variables values allows determining that the function β does not 

become zero in the converter operation range. Notice that R is small and consequently 

2Riqe can be neglected against vqe. For this reason, Cvdc(vqe+2Riqe) is always positive. To 

our convention iL and iqe present the same sign so that iLiqe is positive. Consequently, β is 

positive. During transient, when power sign is changing both currents are crossing zero. 

Therefore, iLiqe could have negative sign because currents could have opposite directions. 

However, in such cases absolute values of the currents are near zero. Then iLiqeL ≪ 

Cvdcvqe and consequently β is also positive in this case. 

Using (4.16), the system in the transformed domain becomes linear. It is expressed as, 
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ec ue 
                                                 

                                             (4.21) 

dde ui 

                                                                                            

 (4.22) 

Using this stage, the reactive power drawn from the grid will be controlled by 

controlling the d-axis current, ide. Furthermore, the DC link voltage will be controlled by 

controlling iqe.  

Vector Decoupling Technique 

Two nested loops were utilized to realize DC voltage and input current control 

simultaneously. The outer loop is for controlling the DC bus voltage. In the inner loop, 

current control is realized. The PI controllers were tuned and utilized in the controllers. 

As we used the d-q transformation, PI controllers are now working on three DC signals, 

which helps eliminating steady state errors.  

Moreover, in order to enhance the performance of the current control loops, the 

decoupling term (wLide) and (wLiqe) were included while calculating the rectifier’s input 

voltages for cont
rqv  and cont

rdv , respectively. These voltages are the modulation signals for 

the PWM technique. The equations used in building the controller are given by (4.23),  








dtiiKiiKRiwLiv

dtiiKiiKRiewLiv

de
ref

deide
ref

depqeqe
cont

rd

de
ref

deide
ref

depqeqede
cont

rq

][.].[

][.].[
                        (4.23) 

Figure 4.2 shows a block diagram of the controller used.  

This vector decoupling control technique allows control of the active and reactive 

power drawn from the grid separately then it work at unity power factor if the reference 

value of ide is set to zero as can be seen in the equations of active and reactive power in d-

q frame of references given by (4.24) and (4.25), respectively. 
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3
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2

3
)( titetitetQ deqeqede                                          (4.25) 
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Figure  4.2  A block diagram of the vector-decoupling control implemented on the 
controlled rectifier. 

Bi-directional Energy Transfer 

An important feature of grid-connected DC microgrids or DC distribution systems is 

the ability to inject or suck power from the grid based on the generation and loading 

conditions. In order to do that, a controlled AC-DC/DC-AC converter that allows bi-

directional power flow was designed. This controlled converter is responsible for 

controlling the amount of power flowing between the AC and DC grids. Power flow from 
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the AC to DC grid is very important to cover any deficiency in the demand on the DC 

grid due to normal or pulsed loading. Moreover, Power flow from the DC to AC grid is 

needed when there is an excess power from renewable energy sources on the DC bus. 

The same vector decoupling control technique discussed earlier in this chapter is utilized 

here to allow unity power factor operation while controlling the amount of power bi-

directionally flowing. However, for this converter, the topology is slightly changed by 

adding an L-filter (L) as shown in figure 4.3. Moreover, the DC voltage controller in 

figure 4.2 is replaced by a current controller as shown in figure 4.4. Based on the 

reference current of this controller ( ref
dci ) the phase shift of the modulating signals of the 

power electronic switches is adjusted with respect to the grid voltage such that the desired 

amount of power is flowing in either directions. The current on the DC side is assumed 

positive if flowing from the Ac grid to the DC system and vice versa. Hence, if ref
qci is set 

to a positive value, the bi-directional AC-DC/DC-AC converter will autonomously 

operate in the rectifier mode and the modulating signals will be lagging the grid voltage. 

However, 

vdc 

iL idc

L Rea 
eb 
ec 

ic

C +
- 

ia

ib

ic

Sa Sb Sc

Sa
* Sb

* Sc
*

Main Grid Filter

 
Figure  4.3  Circuit diagram of the implemented three phase bi-directional AC-DC/DC-

AC converter. 
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Figure  4.4  A block diagram of the vector-decoupling control implemented on the bi-
directional converter. 

if it is set to a negative value the modulating signals will be leading and the DC network 

will inject current to the AC grid. In both modes of operation, the vector decoupling 

technique used allows unity power factor operation by setting ref
dei , which is responsible 

for the reactive power, to zero.  

Results and discussion 

DC Bus Voltage Results 

The fully controlled rectifier used is operated with at switching frequency of 8 KHz 

and a sampling time of 0.3 ms, which allow the controller to detect and respond quickly 

to variations in the loading conditions. Furthermore, the load current gives feedback 

about the capacitor time constant. Different cases of load step changes and reference 

voltage variation were applied to examine the performance of the controlled rectifier 
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under steady state and transient conditions. Simulation and experimental results were 

recorded for these case studies.  

Steady State Performance 

Figure 4.5 shows the simulation and experimental results for the grid voltages, 

respectively. Figure 4.6 shows the simulation and experimental results for the rectifier 

line currents. Both set of results were taken while the rectifier is supplying 720 W at the 

voltage of the system, which is 300 V. 

 

 

(a) (b) 
Figure  4.5  Voltages of the grid connected to the DC microgrid under study; (a) 

experimental results, (b) simulation results. 

 

 

(a) (b) 
Figure  4.6  Line currents during steady state operation; (a) experimental results, (b) 

simulation results. 
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Figure 4.7 shows the operation of the rectifier at unity power factor when the reactive 

power reference is set to zero. As can be seen the drawn current is in phase with the grid 

voltage, which means a unity power factor operation. Moreover, we can see a stable 

voltage on the DC side. This validates the performance of the controlled rectifier under 

steady state operation.  
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Figure  4.7  Unity power factor operation of the proposed controlled rectifier; (a) 

experimental results, (b) simulation results (AC current factorized by 10). 

Transient Performance 

Figures 4.8 and 4.9 examine the operation of the controlled rectifier under different 

transient conditions. In figure 4.8, a step change in the DC load from 720 to 1500 W is 

applied while the controlled rectifier is set to operate at unity power factor. As can be 

seen in the figure, the iq value increases to correspond to the increase in the output power 

while id after a short interval transient settles back at zero to assure zero reactive power. 

The DC voltage has a small dip corresponding to the step change of the load connected to 

it. The DC current increases corresponding to the step change in load. 

In figure 4.9, a step change in the reference voltage for the rectifier is applied. As can 

be seen, the rectifier corresponds to the change in the reference in about 0.2 s. The iq  
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increases to satisfy the increase in power resulting from increasing the output voltage 

across fixed resistors while id stays at zero value, which means that the rectifier is 

working at unity power factor. 
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Figure  4.8  Controlled rectifier’s response to a load step change; (a) experimental results, 

(b) simulation results. 
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Figure  4.9  Controlled rectifier’s response to a change in the output voltage; (a) 

experimental results, (b) simulation results. 

Bi-directional power flow results 

The fully controlled bi-directional converter is operated at 8 KHz switching 

frequency and sampling time 0.3 ms, which allows the controller to detect and respond 
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quickly to different load demands at either the AC or DC sides. The converter is designed 

to operate mainly at low THD and a unity power factor. A 24 mH inductor with 0.9 ohm 

losses is connected between the AC grid and the converter to filter the harmonics 

associated with the fundamental current wave form. A 1200 µF capacitor is placed at the 

converter’s DC side. Simulation results that are verified by experimental results were 

taken for the converter under different operating conditions. The bidirectional was 

operated in the current controlled rectifier mode, current controlled inverter mode and has 

also been tested to instantaneously change its mode of operation.   

Power sharing in the DC side is different from power sharing in the AC side. In case 

of sharing AC power, the voltage phase and amplitude is changed at one terminal of a 

reactive passive element and power can flow from one point to another. However, in DC 

network the only way to share continues current is by changing the DC voltage at one 

terminal of a resistor. Which leads to having a potential difference across its terminals 

and eventually DC power can flow. However, resistors are losses in the system. 

Therefore, the resistor that couples the DC grid to the controlled bi-directional converter 

must have as small value as possible. The value of the resistor has a direct relation to the 

voltage drop across the resistor terminals which must be within a sensible range in order 

for the current control to be achieved properly.  

AC-DC Power Flow Direction 

 Figure 4.10 shows the operation of the bi-direction converter at unity power factor. It 

is operated in the current controlled rectifier mode. The reference current is set to transfer 

1 A from the AC grid to the DC grid. Within 2 cycles the controller succeeds to achieve a 

new reference current of 3 A. Also in figure 4.11, the controller is tested to reduce the 
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current being sucked from the AC grid from 3 A to 1 A. The experimental results validate 

the simulation results, which also assures the credibility of the simulation model used in 

the analyses.  
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Figure  4.10  Controlled Bi-directional response to DC current reference change from 1-3 

A, (a) experimental results, (b) simulation results (AC current factorized by 10). 
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Figure  4.11  Controlled bi-directional converter response to DC current reference change 
from 3-1 A; (a) experimental results, (b) simulation results (AC current factorized by 10). 
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injecting power to the grid while drawing zero reactive power. It can also be seen that the 

converter is operating at unity power factor in this mode.  
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Figure  4.12  Controlled bi-directional converter response to DC current reference change 
(-3)-(-1) A; (a) experimental results, (b) simulation results (AC current factorized by 10). 

 

Power Flow Direction reversal 

One of the biggest advantages of the bi-directional converter is its ability to 

instantaneously change from the current controlled inverter to a current control rectifier 

and vice versa by switching the current direction. Figure 4.13 shows the simulation and 

experimental results for the converter when the current reference is changed from -3 A to 

3 A. The sign of the current indicates the direction of the current. 3A means that a 3A is 

being taken from the AC grid to the DC grid and -3A represents a 3A given to the AC 

from the DC grid. Moreover, figure 4.14 shows the results for changing the reference 

current from 3A to -3 A. In other words, the controller is commanded to switch from the 

current controlled rectifier mode to the current controlled inverter mode. It can be seen 

also that the experimental results are matching the simulation ones.  
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Figure  4.13  Controlled bi-directional response to DC current reference change (-3)-(3) 

A; (a) experimental results, (b) simulation results (AC current factorized by 10). 
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Figure  4.14  Controlled bi-directional converter response to DC current reference change 
(3)-(-3) A; (a) experimental results, (b) simulation results (AC current factorized by 10). 

Finally, figure 4.15 shows the harmonic analysis of the current drawn from the grid. 

The total harmonic distortion (THD) of the current is 5.88 %, which is acceptable 

according to IEEE Std. 519. 

 

Figure  4.15  Harmonic analysis of the grid currents. 
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LCL-Filter Based Bi-directional Converters 

Voltage source converters (VSC) are usually faced with switching noises that, in 

conjunction with other sources of disturbances, may cause the total harmonic distortion 

(THD) to go above acceptable limits. This issue becomes more defective when a current 

or voltage sensor is used. Therefore, to protect other sensitive loads/equipment on the 

grid, also to lessen the produced losses, these higher order harmonics needs proper 

filtering. In conventional voltage source converters, to have an effective filtering tool, a 

high value of input inductance is used. This approach for applications above several 

kilowatts becomes expensive and not efficient. Additionally, it may deteriorate the 

system dynamic response. To solve this problem, the LCL-filter is proposed to be 

combined with the conventional VSCs [111], [112].  With this solution, optimum results 

can be obtained in the range of hundreds of kilo-Watt, while using small values of 

inductors and capacitors. In this section, we present a comparison between the 

performance of the L-filter based converter and the LCL-filter based one. Tables 4.1 and 

4.2 summarize the comparison between the L-filter and the LCL-filter based converters 

in terms of inductor size and design. It can be seen that the filter inductance and its 

corresponding internal resistance decrease, which increases the efficiency of the 

converter.  

Table 4.1   Comparison between the inductors in LCL-filter and L-filter based converters, 
physical properties 

Inductor designed for: Inductance  (mH) Resistance (Ω) 

LCL-Filter 1.2 2 

L-Filter (×3) 12 15 
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Table 4.2   Comparison between LCL-filter and L-filter based converters, electrical 
quantities 

Quantity LCL-filter L-filter 

Efficiency (%) 97.2 94.7 

THD (%) 0.87 1.74 

Inductance (P.U) 1 10 

 

The values of inductors were selected such that they give almost the same 

performance in order to have a fair comparison. Figure 4.16 shows a case study when the 

current reverses its direction from supplying 4 A from DC to AC side, to supplying 4 A 

from AC to DC side after 0.2 s. It can be seen that the converter maintains a constant DC 

link voltage before and after the step applying the change. It can also be seen from the 

second subplot that the transient period takes about 4 s until the converter supplies the 

new value of the current. The interval designated as (x) in the curve is around the point 

when the current reverses its direction. AC voltage and current for one of the phases is 

plotted around this interval. Curves of id and iq show how the controller corresponds to 

the change in the current direction. It can be noticed that iq maintains a value of zero, 

which means that the converter is operating at unity power factor. The total harmonic 

distortion of the current signal is 0.87%, which is below all standard limits. 

Figure 4.17 shows how the L-filter based converter corresponds to the same step 

change of DC current (from -4 A to 4 A). It can be noticed the transient response in terms 

of settling time is very close to that of the case of the LCL-filter based one, which assures 

a fair comparison between the two converters. However, more ripple and harmonics can 
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be seen on the iq and ia signals. The THD in this case is 1.74%, which is still below 

standard limits. 
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Figure  4.16  Results for the LCL-filter based converter. 
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Figure  4.17  Results for the L-filter based converter. 
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Real-Time Load Emulation 

Throughout the research conducted in this dissertation, there is a need for load 

emulators that can emulate any load profile [113]. This has significant advantages while 

testing a new controller or algorithm. For instance in [114], a real-time particle swarm 

optimization-based energy management of a stand-alone hybrid wind system was 

presented. This developed algorithm promoted energy sustainability in two ways: first, by 

ensuring an optimal balance between the attached generation sources based on the 

multiple constraints, and second, by incorporating desirable energy objectives into the 

algorithm decision- making process. However, this algorithm was tested using simulation 

results not in hardware. This ideas along with other ideas developed based on the smart 

meter data can be tested experimentally by having a real-time load emulator that has the 

ability to precisely emulate the loads. Moreover, these algorithms can be optimized by 

utilizing the load emulator as a hard-ware-in-the-loop component that represents for 

instance the daily load curve of a certain household or area. In this chapter, a real-time 

dynamic load emulator that has this ability to emulate different types of loads, or in other 

words emulate any P and/or Q curves of a load simultaneously, is presented.  

Reactive Power Controller 

The power circuit of the dynamic load emulator is shown in figure 4.18. The first 

stage of the load emulator (Q-controller) is similar to the rectifier explained earlier in this 

chapter, hence the same modeling is applicable. Using this stage, the reactive power 

drawn from the grid will be controlled by controlling the q-axis current, iq. Furthermore, 

the DC link voltage, which will be the input to the P-control stage, will be controlled by 

controlling id. The active power will be controlled with the (P-controller). 
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Figure  4.18  Circuit diagram of the developed dynamic load emulator. 

Active Power Controller 

The seventh leg of the load emulator is used for active power control by controlling the 

output voltage across a constant resistance load (RLp) using the series IGBT (Sp) as shown 

in figure 4.18. The active power is controlled separately using the seventh leg not with 

the same VSI rectifier in order to have a constant DC voltage so that the active power 

control leg can be replicated to multiple legs in order to emulate several curves 

simultaneously. The small-signal mathematical model of the P-control stage was 

obtained using a state space averaging technique. 

The state space model during the interval (0 < t ≤ DTs) is, 
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Whereas, he state space model during the interval (DTs < t ≤ Ts) is, 
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Using the space averaging technique the system can be represented by 
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The small signal output voltage to duty cycle transfer function, which will be used for 

designing the controller, is   





































CL
s

CR
sCL

Dv

d

v

pp
pp

LdcLdc

11
~

~

2

                 (4.29) 

The output power is related to the duty cycle according to this formula 
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Figure 4.19 shows a block diagram of the overall controller implemented. 
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Figure  4.19  A block diagram of the dynamic emulator controller. 
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Results and Discussion 

The dynamic load emulator presented in this chapter was developed and implemented 

in hardware in the Energy Systems Research Laboratory. The DSPACE 1104 was used 

for control purposes. SEMIKRON IGBT modules were used to build the converter. The 

experiments were run at a sampling time of 0.2 µs and a switching frequency of 8 kHz.  

Generally, loads that are based on hourly average variations and can be 

considered as low-frequency variation, while the power transients that sustain for 

minutes, seconds, or milliseconds come under the high-frequency segment. In this 

section, we will examine the performance of the developed dynamic load emulator 

under different conditions. 

Steady State Load Emulation 

Figure 4.20 shows the steady state performance of the load emulator while setting 

the active power reference to 1 kW, and the reactive power to zero. It can be seen 

that the DC voltage and current, are 300 Volts and 3.5, respectively. The source 

voltage and current are shown within an interval designated x as shown in the first 

subplot in the second column of the figure. It is noticed that the voltage and current 

waveforms are in phase corresponding to this unity power factor operation. This is 

also supported by the fact that iq is maintained at zero, which means zero reactive 

power. 

Figure 4.21 shows the steady state performance while Q is set to 1000 Vars and P 

to zero. It can be noticed that the load emulator maintains the active and reactive 

power at the desired values. It can also be noticed that the va and ia are 90 degrees 

shifted and id is maintained at zero. 
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Figure 4.22 shows the case when both P and Q are set to 1 kW and 1kVars, 

respectively. It can be seen that the dynamic load emulator has the capability to 

emulate P and Q independently. 
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Figure  4.20  Dynamic load emulator steady state response when P is set to 1000 Watts 
and Q is set to zero. 

 

Low-Frequency Active/Reactive Variations 

One of the objectives of the developed load emulator is to emulate loads that vary at a 

low frequency, such as house loads or shipboard hotel loads. Figure 4.21 shows the 

response of the dynamic load emulator corresponding to simultaneous time-variant P and 

Q references at low frequency. It can be seen that the load emulator successfully tracks its 

reference and emulate the desired loading. 

High-Frequency Active/Reactive Variations 

In certain systems, some particular loads draw very high short time current in an  
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Figure  4.21  Dynamic load emulator steady state response when Q is set to 1000 Vars 
and P is set to zero. 
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Figure  4.22  Dynamic load emulator steady state response when P is set to 1000 Watts 
and Q is set to 1000 Vars. 

intermittent fashion, such as electromagnetic guns, electromagnetic launch systems, 

and free electron lasers. Henceforth, they will be referred collectively as pulsed 
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loads. Smart grid research is involved in dealing with such loads and developing 

techniques for their mitigation. In this subsection, we will examine the performance 

of the developed load emulator corresponding to pulsed loads. 

Figure 4.23 shows the response of the load emulator corresponding to a pulsed 

load reference. The train of pulses has a frequency of 0.25 Hz, a 50% duty ratio and 

750 Watts amplitude. It can be seen that the load emulator succeeds to emulate the 

short term pulsed loads. Figure 4.24 shows that the dynamic load emulator succeeds 

to emulate pulsed variations in the reactive power as well. Moreover, it has the 

capability of emulating pulsed variations in both P and Q, simultaneously as shown 

in figure 4.25.   
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Figure  4.23  Dynamic emulation of a load varying at low frequency. 
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Figure  4.24  Dynamic emulation of a short term pulsed load. 
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Figure  4.25  Dynamic emulation of a load with reactive power varying at a high 
frequency. 
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Figure  4.26  Dynamic emulation of a load with its active/reactive power varying at a 
high frequency. 

Dynamic Load Model Performance Evaluation 

Inspecting the results and discussion of the previous subsections, we can 

conclude that the developed dynamic load emulator succeeds to emulate low and 

high frequency load variations simultaneously. Figure 4.27 shows the total harmonic 

distortion (THD) of the current signal drawn by the load emulator. It can be seen that 

the THD is 7.85%, which is below the standard limits.  
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Figure  4.27  THD of the line current. 
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Figure 4.28 shows the efficiency of the dynamic load emulator. 
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Figure  4.28  Efficiency of the dynamic load emulator. 
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Chapter 5 : Smart Control of Power Conditioning Units for Performance 

Enhancement of Renewable Energy Integration 

Introduction 

Renewable energy sources, such as PV, fuel cell or wind require power electronic 

converters to act as power conditioning units (PCU) between any of them and the bus 

where they are connected. These PCUs regulate their output voltage or track their 

maximum power point. In this chapter, the focus will be on PV systems as an example of 

renewable energy sources to present the proposed controller; however, it can be used with 

many other systems. Generally, PV systems are of two types; grid-connected and stand-

alone PV systems. Although grid-connected PV systems are designed to operate in 

parallel with the utility network, grid-connected PV systems may feed local loads 

independently from the utility grid in an islanded mode during outages. Moreover, they 

may involve battery storage or other generating sources in order to increase the overall 

reliability of the system.  

On the other hand, stand-alone PV systems are designed to supply power to certain 

loads independently from the utility grid. Therefore, system planning in terms of system 

sizing and capacity is crucial to satisfy the load demand. The loads can be in a DC form. 

In this case a DC-DC converter has to be used to regulate the output voltage of the PV 

panels. Moreover, these PV systems can supply AC loads but in this case an added DC-

AC inversion has to be utilized. Generally, there are three types of stand-alone PV 

systems, PV-powered water pumping systems, Remote residential PV systems and PV-

powered lighting systems. However, in this chapter, the PV systems are divided into, 
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 PV systems supplying power in DC form    

Such systems include PV systems integrating their output power into a common DC 

bus in a DC microgrid or a DC distribution system. In this case, a current controlled DC-

DC converter is used as the only power conditioning unit interfacing the PV array to the 

DC bus. Moreover, this category also includes stand-alone PV systems supplying DC 

loads. In this case a voltage controlled DC-DC converter is used. 

 PV systems supplying power in AC form    

Such systems include grid-connected PV systems integrating their output power into 

utility grid in AC form or stand-alone PV systems supplying AC loads. The main purpose 

of this chapter is to present some ideas to improve both the steady state and transient 

responses of different types of PV systems. 

One of the major problems of PV systems is that the output voltage of PV panels is 

highly dependent on solar irradiance and ambient temperature. Moreover, the 

voltage/power characteristics of PV arrays are nonlinear [115], [116]. An algorithm has 

to be implemented to track the maximum power point (MPP). Different algorithms were 

proposed in literature for maximum power point tracking [117], [118]. Hence, loads 

cannot be directly connected to the output of PV panels. Different power electronic 

converters must be used as interfaces between the PV array and the loads. These 

converters are usually called power conditioning units (PCU). The topology of the PCUs 

used in a certain PV system is determined based on the application of that system. For 

instance, a PV system that is feeding a DC load or a common DC bus would utilize a 

single stage DC-DC conversion. However, if the PV system is to supply an AC load, one 

more DC-AC inversion stage is required. 
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In this chapter, two main ideas are investigated. The first study aims at enhancing the 

performance of PV systems supplying DC loads through DC-DC converters focusing on 

the controller used in these converters. Generally, PID controllers are commonly used for 

boost converters in PV systems. However, these controllers must be tuned according to a 

certain operating range and loading condition. This limits the operating range of the 

controller. In this work, the operating range of the controller is maximized by tuning the 

PID controller parameters; Kp, Ki and Kd at different operating points. A fuzzy controller 

[119]-[121] is then used to set the optimal values of the controller parameters based on 

the measured output current.  The controller will be utilized in this work to output a 

proper modulation index for the pulse width modulation block, which will in turn output 

the control pulses to the switches.  

Furthermore, another study was directed towards PV systems supplying AC loads. 

The study investigates different aspects related to the loadability and stability of the PV 

systems. Loadability is an essential concern in classic power system studies. Literature 

includes extensive work on this subject for conventional components of power systems, 

such as generation systems, transmission lines, distribution systems, busses, EHV and 

UHV systems, and substation transformers [122]-[125]. However, sustainable energy 

systems, which are being utilized in modern and future power system, are lacking such 

studies. In fact, because of special characteristic curves of PV systems their loadability 

could be easily affected by the behavior of the loads. This study tries to open a new field 

in PV systems research where we identify the problem details and propose solutions to 

increase the loadability of PV systems in both steady state and dynamic operating 

conditions.  
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PV Arrays Characteristics 

The relation between output voltage and current of PV panels is non-linear. 

Therefore, the output voltage of PV panels is dependent on the amount of their output 

power. Moreover, the output voltage of PV panels is dependent on solar irradiation and 

ambient temperature. On the other hand, a constant voltage level is needed for connecting 

loads to PV arrays. This imposes an imperative necessity of having a power conditioning 

unit as an interface between PV panels and the loads connected to them. Figure 5.1 shows 

the electric characteristics of the PV panels. It can be seen that fluctuations in the output 

current (ΔI), result in fluctuations in the output voltage (ΔV), which lead to fluctuations 

in the output power (ΔP). The figure indicates that any power fluctuations around the 

MPP derate the average power coming from the PV array.  
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Figure  5.1  Power and current versus voltage characteristics of a PV panel. 

In a typical PV system as shown in figure 5.2, the PV array is connected to a boost 

converter. As a result of the switching process, the input current to the boost converter 
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will oscillate around its DC value, and these oscillations result in current fluctuations at 

the PV side, which derate the array’s power. As a consequence, the loadability of the 

array decreases which is not desired. In order to reduce the fluctuations at the PV array 

side and increase the system loadability, a capacitor can be used to smoothen the output 

current and voltage profile of the array, a capacitor of capacitance Cpv=1200 µF was used 

in this chapter.  

 

Figure  5.2  A typical stand-alone PV system. 

 

Adaptive Fuzzy-PID Control for PV Systems Supplying Power in DC Form 

The DC-DC boost converter used in such systems fixes the output voltage of the PV 

system. It receives variable input voltage, which is the output of PV panels, and yields 

constant output voltage across its output capacitor where the loads can be connected. 

Normally, a DC-DC boost converter operates at a certain duty cycle. In this case, the 

output voltage corresponds to that duty cycle. If the input voltage is changed while the 

duty cycle is kept constant, the output voltage will vary. However, in the controlled boost 

converter utilized in this work, the duty cycle is controlled based on the input voltage and 
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loading conditions such that the output voltage is constant. Duty cycle is varied using a 

pulse width modulation (PWM) technique. Hence, the system under study in this section 

is as shown in figure 5.2 except that the inverter stage is eliminated since the power is 

delivered in DC form. The proposed controller is discussed in the following subsections. 

Maximizing the Operating Range 

Tuning the PID parameters 

The operating range of the boost converter is mainly defined by the input voltage and 

the output current. In order to maximize the operating range of the control system, the 

parameters of the PID controller are tuned at different operating points. The tuning 

process aims at minimizing rise time, settling time, ripple and steady state error of the 

output voltage of the boost converter corresponding to step changes in input voltage and 

load. Parameters were tuned at values of around 60º phase margin and 10 dB gain 

margin. The tuning process yields values of Kp, Ki, Kd that are tuned at different output 

current ranges and input voltage ranges. For instance, results of the tuning process at 

different loading conditions at an input voltage of 110 V are given in Table 5.1. 

Figs. 5.3a and 5.3b show the response of the PID controller corresponding to a step 

change in the loading condition using two different control techniques; firstly in figure 

5.3a when the PID controller has the same parameters values before and after the change 

in loading condition. Secondly, figure 5.3b shows the response for the controller when 

the parameters vary corresponding to table 5.1 such that a matching set of (Kp, Ki and Kd) 

constants are used after the step change is applied. We can see that the response in figure 

5.3b is better in terms of overshoot (75% less) and less ripple. 
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Table 5.1    Kp, Ki and Kd optimal values at input voltage of 110 V and different output 
current ranges 

Current range (A) Kp Ki Kd 

0.00-0.80 0.00200 0.2000 0.000000 

0.80-1.36 0.00940 0.6216 1.1765e-4 

1.36-1.76 0.00830 0.6216 1.1913e-4 

1.76-2.24 0.00320 0.6214 7.0000e-4 

2.24-3.00 0.00270 0.5300 2.7420e-5 

3.00-5.00 0.00128 0.4042 1.4527e-4 
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(a) (b) 

Figure  5.3  Load step change voltage response for: (a) conventional PI controller, 110 V 
input voltage and (b) proposed controller, 110 V input voltage. 

 

Fuzzy controller involvement for smart decision making 

Fuzzy control is based on the experience of the user about the system behavior rather 

than modeling the system under control mathematically like in linear control theory. This 

makes fuzzy control a powerful control technique especially with non-linear systems in 

which it is difficult to derive an accurate approximated mathematical model of the system 
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and expect its behavior. Fuzzy control is a rule-based control technique that is 

approached by linguistic fuzzy rules, which describe the output desired out of the system 

under different operating conditions. Fuzzy rules are in the form of if-then rules that the 

proficient should design such that they cover all the conditions the system is expected to 

go through. 

Designing a fuzzy logic controller is achieved through three basic steps; fuzzification, 

inference Mechanism and defuzzification as shown in figure 5.4. The Mamdani type 

fuzzy system was used in this work [119]. 

 

Crisp Input 1 
Crisp Input 2 

Fuzzification Inference Engine Defuzzification 

Rule Base

Crisp Outputs

 

Figure  5.4  A block diagram of the fuzzy controller utilized in this chapter. 

 

In fuzzification, different membership functions are used to map the input variables, 

which are the output current and the PV voltage into fuzzy sets. Each of the output 

current and the input voltage that are the inputs to the control system is mapped into six 

fuzzy subsets as shown in figure 5.5. Operation of the membership functions on the input 

variable yields the extent to which that variable is a member of a particular rule. The 

process of converting control variables into linguistics rules is called fuzzification.  

The fuzzy controller has three outputs which are Kp, Ki and Kd. Each is fuzzified into 

a membership function and mapped into a certain linguistic values. The Kp values are 

represented by five membership functions whereas each of the Ki and Kd is represented 

by four membership functions as shown in figure 5.6. 
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Figure  5.5  Membership functions for: (a) output current, (b) PV voltage. 
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Figure  5.6  Membership functions for: (a) Kp gain, (b) Ki gain and (c) Kd gain. 

However, in inference Engine and Rule base step, the output of fuzzy controller is 

managed through putting certain linguistic rules. These control rules are constructed 

based on given conditions (inputs) such that the fuzzy controller decides the proper 

control action. The control action here means that the controller outputs suitable Kp, Ki 

and Kd gains such that the PID controller parameters are those which give the optimal 
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performance at every operating range. The rules are designed such that the controller 

gives the values of the PID parameters that are suitable for the current loading condition. 

Finally, in defuzzification, as the output of the fuzzy controller is in the form of fuzzy 

set, it has to be transformed from linguistic form into a number that can be used to control 

the system. Many defuzzification methods like weighted average (wtaver) or weighted 

summation (wtsum) methods were proposed. In this study, we utilized the wtaver method 

[121]. Figure 5.7 shows the output of the fuzzy controller as a function of the output 

current and input voltage. 

Enhancing Transient and Steady State Response 

PI controller is the most commonly used controller in industry. It is simply a PID 

controller in which the derivative gain value is set to zero. Generally, the proportional 

integral (PI) controller is able to control a DC-DC boost converter. On the other hand, the 

derivative part of the PID controller has the characteristic of anticipating the future 

behavior of the error as it deals with the derivative of the error. Hence, it is very helpful 

in mitigating sudden and step changes that the system may be subjected to. However, it 

causes ripple in the output voltage waveform. Figure 5.8 shows the response of the PID 

controller for the same case study given in figure 5.3.  As can be seen in the figure, 

adding the derivative component (PID controller) decreases the voltage dip caused by the 

step change of the load. However, the ripple increases during steady state operation in 

this case more than it is in the case of the PI controller after. 
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Figure  5.7  Surface plots of (a) the Kp gain, (b) the Ki gain and (c) the Kd gain. 
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Figure  5.8  Load step change voltage response for conventional PID controller. 

 

In the proposed controller, we benefit the help of the derivative part only when it is 

useful to have it as a part of the controller and eliminate its effect gradually until we 

obtain a PI controller with minimum ripple. The technique is based on detecting any step 

change in the input variables using a derivative block. This transient detection pulse 

triggers the Kd gain. The derivative gain is used to mitigate the transient effect then it is 

gradually excluded from the controller to reduce the ripple in steady state operation.  

A block diagram of the proposed controller is shown in figure 5.9. As can be seen, the 

fuzzy agent receives two inputs; output current and input voltage, and yields three 

outputs; Kp, Ki and Kd. The two parameters Kp and Ki pass directly to the PWM stage, 

however Kd passes through a Kd controller that is triggered during disturbances only. 

These disturbances are detected using a load variation detector.  

Results of the proposed adaptive fuzzy-PID controller 

Figure 5.10 shows the voltage, current and PID gains responses to a load step change 

from 100 W to 500 W. Load current is an input for the fuzzy controller and based on its 

value, the PID parameters are estimated. 
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Figure  5.9  Block diagram of the proposed controller. 

 

As can be seen in the figure, the Kp and Ki gains changed instantaneously with the 

load step change with a small delay of 0.3 msec. It can also be observed that a pulse is 

generated with a period that is a function of the capacitor time constant to detect any 

loading to the boost converter. At steady state operation, the gain Kd in this case causes 

the capacitor to have a slow charge/discharge operation. However, this is undesired in 

steady state operation. On the other hand, one of the advantages of having a fast 

controller is its ability to enhance the transient response of the converter corresponding to 

changes in the output voltage. Therefore, the Kd gain is zero at steady state operation. 

However, at any loading or input voltage change, it is applied to a tuned value. This value 

is chosen by the fuzzy logic controller. It can be observed from figure 5.10 that the Kd 

gain has a fixed value of 0.7e-3 during the load detection pulse ON period.  Once the load 

detection pulse is turned off, an exponential damping factor is applied to the Kd value to 

enhance the ripple of the device at the steady state operation. However, the Kp and Ki 
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values are fixed. Figure 5.11 shows the proposed adaptive controller response when a 

load of 500 W is decreased to 100 W. As can be observed from the figure, the voltage 

transient and steady state performance of the converter using the proposed controller have 

improved. A small voltage overshoot of 0.5 % is observed due to the load step change.  

 

 

Figure  5.10  oposed adaptive controller load step change, 100 W-500 W, response and 
controller parameters variations. 
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Figure  5.11  Proposed adaptive controller load step change, 500 W-100 W, response and 
controller parameters variations. 

 

A PI controller is used in comparison with the proposed adaptive controller to 

highlight its advantages. The two results of figure 5.12 show the voltage and current 

responses corresponding to load step change of 100 W to 500 W and 500 W to 100 W, 

respectively. The same load step changes were applied previously to the adaptive 

controller illustrated in figures 5.10 and 5.11, respectively. The Y-axes ranges used in 

figure 5.12 for the voltage and current are the same as in Figs. 5.10 and 5.11 to facilitate 

the comparison. In the first case study when the load suddenly changes from 100 W to 

500 W, the voltage dip in the case of traditional PI controller is around 19 V. This voltage 
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dip is around 1 V in case of the proposed controller. Whereas, in the second case study 

the voltage overshoot using the traditional PI controller is around 13 V, which is big as 

compared to that overshoot in the case of the proposed controller. The Kp, Ki and Kd 

gains in case of the traditional controller do not change when the load changes. 

Therefore, the error of the voltage is compensated through fixed gains, which causes the 

controller to take a longer time to converge and eliminate the error.  

 
(a) 

 
(b) 

Figure  5.12  Traditional PI controller response to a load step change (a) from 100 W to 
500 W, (b) from 500 W to 100 W. 
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Experimental results have also been taken to justify the validity of the proposed 

control strategy. A photograph of the experimental setup used is shown in figure 5.13. 

Firstly, the load is changed from 220 W to 1 kW. As seen in figure 5.14a, a transient of 

0.05 sec has occurred and a small voltage dip can be observed. To illustrate the effect of 

having the derivative gain in the controller, figure 5.14b shows the voltage and current 

transient responses corresponding to a load step change of 220 W to 1 kW. This is the 

same exact case in figure 5.14a. However, the fuzzy controller here is choosing only the 

PI parameters. Whereas, the derivative gain value is set to zero at all loading conditions. 

It can be observed that a voltage dip of approximately 10 V occurred when the load was 

switched and it took the controller 0.35 sec to stabilize. These experimental results 

indicate that when adding the derivative gain component in the PID controller during the 

transient interval, a better transient response is achieved. Figure 5.14c show the voltage 

and current transient response of the traditional PI controller for the same step changes 

from 220 W to 1 kW. It can be seen that there is voltage undershoot and overshoot of 

around 20 V in both case studies, respectively. 

 

Figure  5.13  A photograph showing the experimental setup. 
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Figure  5.14  Experimental results showing the response of various controllers to a load 
step change from 220 W to 1 kW: current (1.1 A/div) and voltage (65 V/div), (a) 

proposed adaptive PID controller, (b) proposed controller (with Kd gain set to zero), (c) 
traditional PI controller. 
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Controllers Coordination of Power Electronic Converters for PV Systems Supplying 

Power in AC Form 

This section investigates two different aspects of such systems, i.e. steady state and 

dynamic performance. In the steady state analysis, the load voltage quality, in particular 

THD, and the steady state loadbility are taken into consideration, while in the dynamic 

analysis we consider the system stability, speed, and accuracy. We are specifically 

concerned about load switching effects on the system stability. 

For this section, the system in figure 5.2 is used. A PV array containing two PB 175B 

panels connected in series have been used, where each panel has the specifications given 

in table 5.2 at the standard test conditions (STD, temperature=25 C and solar 

irradiance=1 kW/m2). In the stable operating conditions the output voltage of the PV 

array, depending on the load, varies between 70 to 90 V, which is not a proper level for 

converting to 120 VAC. As a result, a boost converter is used to step up and fix the array 

output voltage (The parameters of the DC-DC boost converter used here are, LDC=2.7 

mH+0.59 Ω, and CDC=1200 µF, and fs=2 kHz).  

Table 5.2   Specifications of PB 175 solar panels 

Pmax Vmax Imax Voc Isc 
175 
W 

35.7 
V 

4.9 
A 

44.
5 V 

5.
4 A 

 
An anti-windup PI controller controls the boost converter by means of adjusting the 

duty cycle, which leads to the proper PWM pulses for triggering the IGBT switch. The 

anti-windup controller prevents the integrator from accumulating the error, when the 

controller output goes to the saturation region, i.e. duty cycle greater than 1 or less than 0. 

In our experiments, the duty cycle is limited between 0 and 0.9. This approach helps the 
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controller to quickly recover from the saturation region, after observing a change in the 

sign of error signal [126]. 

A full bridge single-phase IGBT inverter that converts the DC link voltage to 120 

VAC at 60 Hz, which is suitable for home applications, was used. The IGBT gates are 

fired by PWM signals, which are provided by the inverter controller. In general, a 

sinusoidal PWM operates in the non-linear range when its amplitude modulation ratio 

(ma) exceeds 1 (over-modulation), and saturates when ma reaches 3.24 [127]. Hence, in 

the same manner as the boost controller, the PI should be augmented with an anti-windup 

block for fast recovery from the saturation region. 

An LC filter was used to refine the square wave output voltage of the inverter. This 

filter reduces the harmonic content of the AC voltage before injecting it to the load. The 

filter parameters are: LAC=12 mH+2.23 Ω, and CAC=49 µF. Total Harmonic Distortion 

(THD) was used as a measure of the quality of the load voltage. In this study, the DC link 

reference voltage, i.e. boost reference voltage, and the frequency modulation ratio (mf) 

[127] for the inverter are set such that the minimum THD is achieved over the operating 

range of the system.  

The hardware of the DC-DC boost converter and DC-AC inverter beside the 

maximum power point tracking (MPPT) algorithm are out of the scope of this chapter. 

Rather, ideas related to the control of these power conditioning units will be presented in 

details. 

Steady state performance 

Figure 5.15a shows the variations of the load voltage THD versus, the DC link 

reference voltage for mf=38. Figure 5.15b shows the same graph for a smaller range of 
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load power Pload=[270, 292 W], i.e. a zoomed-in picture. In addition to the THD profile, 

these figures are helpful in investigating the loadability, or in other words steady state 

stability of the system. The dark red regions on the right sides of the figures with higher 

THD indicate the loadability margin of the system. It can be observed that, increasing Vdc 

from 160 to 240 V deteriorates the system loadability.  

On the other hand, for small Vdc values the THD may exceed 5% which is beyond the 

distortion limits for general low voltage systems [128]. From this figure, Vdc=210 V 

offers a tradeoff between THD profile and loadability over a wide range of operation 

specifically around the rated power. For the given set point, the system can run up to 286 

W, which is about 82% of the rated capacity of the two panels. This deration is a result of 

the fluctuations in the array side as well as the losses caused by the boost and inverter 

switching and the heat dissipated in the system resistors, such as the boost and LC filter.  

 

 

Figure  5.15  (a) Variations of THD versus Vdc, optimum Vdc=210 V, (b) Steady state 
stability of the system with respect to DC link voltage. 
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Dynamic performance 

As discussed earlier, the power capability of a PV panel is very sensitive to its 

operation point. If under any condition, large current is drawn from the PV panel, its 

voltage and consequently its power collapse. This problem can be faced during the 

charging periods of the boost converter and the inverter. This means that the array may 

not afford the large currents during the start up or voltage build up process of the boost 

converter and the inverter. To solve this problem, instead of applying step inputs, the 

reference voltages of both of these components, should gradually increase from zero to 

their final value. Here, the two rate limiters were employed, one for the boost controller 

(200 V/sec) and another one for the inverter controller (400 V/sec). It should be noted 

that, although these rate limiters slow down the system start up process, since the system 

usually starts only once and serve the load for a long period, this delay is not considered 

as a big issue in load connectivity.   

Apart from the start up, load switching is a major aspect that must be investigated. 

Actually, all the regular loads, such as home appliances are just plugged and run, 

instantaneously. So, we cannot deal with them in a similar manner to the boost converter 

and the inverter. This means that soft start is not applicable. The goal is to set the 

controllers in such a way that the largest possible load can be switched and then served 

with a satisfactory quality. Our experiments show that a slow PI controller for the boost 

converter can reduce the effects of switching large loads at the array side. In fact, it does 

not matter if the DC link voltage drops or increases for a few seconds and stabilizes with 

some delays. This is because it is usually not connected to any load or any other voltage 

sensitive device. Hence, we employ a slow controller for the boost converter which, 



 

156 
 

somehow, isolates the PV array from instantaneous fluctuations in the load side and use a 

fast PI controller for the inverter which fixes the load voltage at its desired value within a 

fraction of second and with a small over shoot. In this study, we set proportional gains 

(Kp) of the boost and inverter controllers at 0.004 and 0.002, and the integrator gains (Ki) 

are 0.02 and 1, respectively.  

In order to examine the effect of the proposed controller’s coordination, two controllers 

are compared. The fast controller represents the traditional way of tuning the PI 

parameters without coordinating them with the inverter’s parameters. The fast controller 

has a Kp and Ki values of 0.004 and 0.002, respectively. Whereas, the slow controller 

recommended in this dissertation has a Kp and Ki values of 0.004 and 2, respectively. 

Two experiment were conducted to compare these two systems. 

Experiment 1 (Switching a 220 W load) 

This experiment aims at studying the performance of both the fast and slow 

controllers corresponding to switching a relatively big load. The simulation and 

experimental results of this experiment for the fast and slow controllers are shown in 

Figs. 5.16 and 5.17, respectively. First of all, it can be observed that the experimental 

results are in consistency with the simulation results, which verifies the validity of the 

simulation model. Also, comparing these figures indicates that for a 220 W load the fast 

controller has better transient performance (in terms of speed and overshoot) than the 

slower one. Moreover, the top figures show the effectiveness of using a capacitor 

between the PV array and the boost converter in reducing the current, and as a 

consequence voltage, fluctuations of the array and enhancing its loadability. However, 

although the performance of the fast controller is significantly better, in both cases the 
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inverter’s controller handles the DC voltage dip and maintains a stable AC voltage output 

where the loads are connected with around 1% dip.  

 

Figure  5.16  Results for voltage and current variations during switching of a 220 W load 
for the fast controller: (a) simulation, (b) experimental. 

 

 

Figure  5.17  Results for voltage and current variations during switching of a 220 W load 
for the slow controller: (a) simulation, (b) experimental. 
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Experiment 2 (Switching a 265 W load) 

Figure 5.18 present the waveforms for switching a 265 W load in the fast system. It 

can be seen that the system with the fast boost controller fails to respond the load 

switching.  On the other hand, figure 5.19 shows that the slow system can fulfill the load 

demand during both the transients and steady state. A 265 W load at t=2.5 sec and 20 W 

at t=4 sec are switched (totally 285 W in two switchings, out of 286 W possible capacity). 

Hence, this controllers’ coordination achieved by having a relatively slow controller in 

the boost converter helps achieving higher loadability of the system because the burden 

on the controllers caused by any switching is directed towards the DC link. Then, the 

inverter takes the responsibility to handle slight voltage fluctuations on its output 

terminals.  

 

 

Figure  5.18  Results voltage and current variations during switching of a 265 W load for 
the fast controller: (a) simulation, (b) experimental. 
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Figure  5.19  Results for Voltage and current variations during switching of a 265 W load 
for the slow controller: (a) simulation, (b) experimental. 
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Chapter 6 : Real-Time Energy Management Scheme for Hybrid Renewable 

Energy Systems in Smart Grid Applications 

In this chapter, an effective algorithm for optimizing distribution system operation in 

a smart grid, in terms of cost and system stability points, was proposed. This proposed 

algorithm mainly aims at controlling the power available from different sources such that 

they satisfy the load demand with the least possible cost while giving the highest priority 

to renewable energy sources. Moreover, a smart energy commitment technique was 

designed to control the batteries in such a way that they are allowed to discharge only 

when there is no very big load predicted within the coming period. Consequently, they 

act as a buffer for the predicted large loads to increase the stability of the system and 

reduce voltage dips. In addition, the batteries are used to serve another economic purpose, 

which is peak-shifting during the day. Mathematical techniques were applied to build 

accurate forecasting models for the different sources and for the load. These models help 

in monitoring and predicting the total power generation and demand online. Various case 

studies were investigated to verify the validity of the proposed algorithm and define the 

system behavior under varying conditions. The results verify the validity of the proposed 

energy commitment scheme. 

Energy Management Concept 

Challenges related to distribution systems, such as demand response, distributed 

energy source integration and distributed energy storage impose an imperative necessity 

to leap forward towards smart operation of distribution systems. High penetration of 

intermittent renewable resources can introduce technical challenges including grid 

interconnection, power quality, reliability, protection, generation dispatch, and control 
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[129]. Therefore, the industry will need to confront the challenges associated with higher 

levels of penetration. Researchers have worked on different ways to make a power 

system able to easily integrate renewable energy sources. In [130], the authors have 

investigated different renewable energy sources available and presented an effort on 

finding the optimal mix to minimize the system energy losses. They achieved a 

significant reduction in the annual energy losses for the proposed scenarios. In [131], the 

integration of different renewable energy sources into the smart grid was investigated. As 

the levels of penetration of renewable energy rise, the technical impact of renewable 

energy on grid operation led to the application of energy storage for renewables [132]. 

Recent papers proposing this application include a simple scheme to charge and 

discharge the battery energy storage system, such as storing excess power when the 

solar/wind power output exceeds a threshold and discharge it back to the grid when the 

load demand is high [133]–[137]. Hence, battery systems and energy storage systems 

generally are also involved in these efforts. Smith et al. discussed the state-of-the-art 

status of renewable energy sources and energy storage systems in rural areas [138]. The 

authors also introduced methods to deal with non-dispatchable renewable sources. The 

idea of dispatching a power system with renewable sources was also investigated in 

[139]-[141].  

Energy management of hybrid energy systems is essential for ensuring optimal 

energy utilization and energy sustainability to the maximum extent. In addition, the 

increase in penetration of renewable energy in power systems, particularly at the 

distribution level, introduces new challenges for frequency and voltage regulation since 

they can change the generation/demand balance of the network almost instantaneously as 
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compared to conventional alternators whose dynamics are governed by their inertia 

constant. These frequency and voltage regulation problems can be looked at as problems 

for the power system, but at the same time with proper energy management renewable 

energy can provide ancillary services for future microgrids. Several researchers worked 

on the development of such algorithms; for instance in [142], the authors presented a 

comprehensive central DR algorithm for frequency regulation, while minimizing the 

amount of manipulated load, in a smart microgrid. In [143], the authors presented a 

survey on the key issues and new challenges of frequency regulation concerning the 

integration of renewable energy units into power systems. They also investigated the 

impact of power fluctuation produced by variable renewable sources (such as wind and 

solar units) on system frequency.  Given the intermittent nature of the renewable energy 

sources involved and the multiple objectives that need to be satisfied, the energy 

management system is complex and needs to operate quickly and continuously. In 

general, conventional optimization techniques are too slow to be used for real-time 

optimization. As a result, recently, research in this area was focused on the application of 

intelligent control for unit sizing and energy utilization of hybrid energy systems, e.g., 

[144]–[148]. However, most of the reported work is on off-line applications, such as 

generation unit sizing and optimal power dispatch, and little work was reported on real-

time management of energy systems using multiobjective optimization [149].  

A system that is mainly dependent on renewable energy sources should have another 

backup supply to cover any deficiency in the power during peak loads. A battery system 

can then be used for this purpose. However, the power that can be drawn out of batteries 

depends on its state of charge (SoC). In this study, a novel energy commitment problem 
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that may face a grid-connected distribution system that depends mainly on renewable 

energy sources to supply its loads is presented. Typically, systems that depend on a 

renewable energy source as the main source of power use only photovoltaic (PV) arrays 

with a rated power around the capacity of the system described in this study. However, 

energy commitment algorithms and the original ideas presented here are tested on a 

hybrid system containing PV arrays and wind generation. This example system resembles 

commercial facilities using both PV and wind for energy generation rather than a large 

utility.  

The main contributions of this chapter can be summarized as follows [150]: 

1. In order to deal with the fluctuating nature of renewable energy sources, 

mathematical models for PV, wind and load demand power were obtained based on 

previous actual data from databases. This is done to quantify the energy available and 

anticipated from these sources in order to enhance the whole vision of such systems. 

Consequently, more efficient system operation can be achieved. 

2. The energy commitment problem of a grid-connected system containing PV, wind 

and battery storage was investigated. 

3. A fuzzy controller was designed to control the amount of power that should be 

taken out of the battery system in case of power deficiency to cover the load demand. 

This is while maintaining a high level voltage stability of the system based on the idea of 

shifting big load demands from the utility grid to off-peak hours. 

This chapter is organized as follows; firstly, the system under study and the problem 

are described in the second section. In the third section, the data forecasting techniques 

utilized are presented. In the fourth section, the energy commitment algorithm developed 
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in this chapter is described. Then, in the fifth section, the fuzzy logic controller is 

investigated. In the sixth section, results of the developed algorithm are presented and 

investigated. Finally, some of the conclusions that can be derived from the study are 

presented in the seventh section.  

System and Problem Description 

In order to examine the proposed commitment scheme, an example system was used 

as shown in figure 6.1. This system consists of a DC microgrid that depends mainly on 

renewable energy sources to supply its local loads. However, the system includes a 

backup battery array that can support load deficiencies. In addition, the system is 

connected to the main grid (AC distribution feeder), which also can supply the load if the 

power available from different renewable energy sources is not enough. In this chapter, 

the system under study is targeted to be as self-satisfied as possible. This means that the 

power drawn from the grid is to be minimized. The maximum peak load is assumed as 

300 kW. The PV system has a capacity of 100 kW, while, the wind system has a capacity 

of 150 kW. The battery capacity is about 500 AH. 
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Figure  6.1  A schematic diagram of the investigated system. 

Since the developed energy management algorithm requires bi-directional power flow 
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between AC and DC sides, the bi-directional AC-DC/DC-AC converter used which was 

explained earlier in this dissertation, is a key component. It allows the amount of power 

flowing in either direction be set to a certain pre-set value while the controlled rectifier 

working as a voltage regulator maintains the power balance as it is free to supply any 

power needed in the DC grid. Figure 6.2 shows the response of this converter to a step 

change in the DC current reference from -4 A to 1 A; this means that the current will 

reverse its direction instead of sending power from DC microgrid to the AC side to 

receiving power. More simulation and experimental results on this converter as well as 

the other components of the system can be found in [68]-[70], [108], [151].  

 

 
Figure  6.2  Bi-directional converter response to a step change in the DC current 

reference from -4 to 1 A. (a) DC current, idc (4 A/div, 10 ms). (b) DC voltage, vdc (1000 
V/div, 10 ms). (c) AC phase voltage, ea (30 V/div, 10 ms). (d) AC current, ia (5 A/div, 10 

ms). 

 

Table 6.1 summarizes the efficiency (η) of each of the power electronic 

components at the rated output power as well as the THD of the AC-DC converters. In 

table 6.2 shows the parameters of the converters utilized. Notice that every component 

explained in this section was shown only once in figure 6.1 although several units of the 

same component may be connected in parallel in the real system under study. 
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Table 6.1   Efficiency and THD of the various components of the system 

Component η (%) THD (%) 

AC-DC controlled rectifier 94.6% 5.88 

AC-DC/DC-AC bi-directional converter 94.1% 2.15 

DC-AC Inverter interfacing AC load 92.3% 3.21 

DC-DC converter interfacing PV 90.5% - 

DC-DC converter interfacing DC Load 91.1% - 

Battery charger 92.6% - 

 

Table 6.2   Parameters of the system under study 

Parameter Value 

Lf 12 mH 

Rf 0.49 Ω 

LDC 12 mH+0.49 Ω 

LL1 9.62 µH 

RL1 1.875 mΩ 

CL1 6 nF 

LL2 12 µH 

RL2 2 mΩ 

CL2 7 nF 

CPV 1200 µF 
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Data Forecasting 

Data Collection and Filtering 

In order to solve the commitment problem involving renewable energy sources and 

coordinate the sources in an economic way, information about the total generation 

available out of renewable energy sources as well as the load demand should be known in 

advance. Hence, real data forecasting of PV and wind output power as well as load 

demand was counted on.  

The data forecasting process was based on PV data collected over 15 years on an 

hourly basis for an example PV system in the state of Texas. The wind and load data 

were collected over a four year period on an hourly basis for the same example site. The 

power data was used as the output data to be forecasted, while the day of the year (1-365) 

and the hour of the day (1-24) were used as inputs. However, all these historical data 

were initially filtered, before being used to find the forecasting models, using Support 

Vector Machines (SVM) in order to find the most influential vectors on the final model. 

These influential data are those that should be included in the process of formulating the 

mathematical models, and are called the support vectors [152], [153]. More details about 

this filtering process are given in Appendix A [153]. Different model evaluation indices 

were used to validate the developed mathematical models.   

Online PV Data Modeling 

The forecasting model used to predict the PV output in this study is regenerated from 

the model derived in [154] using the historical PV data described in the previous 

subsection. In this model, the clear sky model approach is firstly used to normalize the 

solar power. This model is based on statistical smoothing techniques and quantile 
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regression [155]. Then, adaptive linear time series models are applied for online 

prediction. Such models are linear functions between values with a constant time 

difference, where the model coefficients are estimated by minimizing a weighted residual 

sum of squares. The coefficients are updated regularly, and newer values are weighted 

higher than old values, hence the models adapt over time to changing conditions [154]. 

The final form of the model is as given in (6.1) 

t
T
tkt XY ̂ˆ                                                                                                         (6.1) 

Where ktY 
ˆ  is the k-step prediction at time t, T

tX is the regressor at time t and t̂  is the 

solution at time t of a weighted least squares function with exponential forgetting. A 

detailed description of the employment of the mathematical model developed in [154] is 

given in Appendix B.  

Non-Linear Regression Modeling for Wind and Load Data 

A non-linear regression modelling technique was employed to mathematically model 

the output power of each of the wind system and the load demand. This non-linear 

regression model has the ability to cope with the non-linearity of the data and form an 

accurate model. It is based on the idea of transformation of the data using a pre-defined 

set of non-linear functions in order to achieve linearity [156]. 

The non-linear model utilized here and designated as Ynlm, which will be used to 

model the load and wind data, has the following form: 

.,...,2,1,...
1

0210 miybyyybY
m

i
imnlm 


                                                          (6.2) 
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where: 

k is the total number of non-linear functions.  

m   
is the total number of variables to  be included in the 

model. 

yi, i=1, 2,..., m.         

is a non-linear model for each variable and is the 

summation of all terms resulting from transforming the 

input xi through a pre-selected set of non-linear 

functions.  

aij, bij are constants to be determined,  j=1, 2, ..., k. 

 f1, f2, ..., fk 

are pre-selected set of non-linear functions that will be 

used for transformation of inputs. The set of non-linear 

functions may contain xα, 1/x, e-x and ln(x).  

xi 
is the numerical values for a given input to be used for 

deducing the model. 

A detailed description of the way to calculate the non-linear regression model 

parameters is given in Appendix C [156]. Non-linear regression was selected in this 

research due to its short computation time. However, any mathematical model that can be 

easily run in real time with acceptable accuracy, such as artificial neural networks, can be 

used.  

Model Evaluation Indices 

Various model evaluation indices were implemented to measure the accuracy of the 

proposed mathematical models. One of the indices is the mean absolute percentage error 

(MAPE) calculated by (6.4) and the other is the coefficient of determination Rd
2 
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computed by (6.5) [157]: 
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                                                                                      (6.4)  
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                                                                                             (6.5) 

Where, d


and y


 are the vectors of the real and predicted data, respectively, and yavg is 

the average value of y


.   

The value of Rd
2 for a model, which measures the goodness of fit of the regression as 

an approximation of the linear relationship between the predictor and response variables 

[157], ranges from 0 to 1 and it implies that Rd
2 of the sample variation is attributable to 

or explained by one or more of the variables as long as it approaches unity. The better 

regression fits the data the closer the value of Rd
2 is to one. 

Results of the Mathematical Model 

The PV mathematical model was trained using the sets of data of fourteen previous 

years. However, the model was tested using the data of the most recent year, which were 

not included during the training process. Figure 6.3 shows the mathematical model results 

of the PV data versus the support vectors (filtered) of the actual data. It can be seen that 

the model results are successfully tracking the actual ones along the whole year. The 

maximum absolute percentage error is 1.68%. The MAPE of this model is 0.97%, which 

is a reasonable value.  

Mathematical models for wind systems output power in addition to the load demand 

were deduced. These mathematical models are given by (6.6) and (6.7), respectively. 
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  4.08.07.04.07.04.08.0 2.03.171002.4821062.62 DHDHDHDHPWind                         (6.6) 

  4.04.07.08.04.0 1.310024.71026.455.32 DHHDDHPLoad                                        (6.7) 

Where, H and D are the hour and month, respectively. 

The Wind data were categorized into two groups. The data of the first three years 

available were used as training data while the data of the most recent year was used as 

testing data. Figure 6.4 shows the mathematical model results versus the support vectors 

of actual data results of the wind. It can also be seen that the model is successfully 

representing the actual data. The maximum error between real and prediction data is 

2.85%. The MAPE is 2.12%, such a small value proves the accuracy of the model. 

Moreover, the value of Rd
2 is 0.972, which is again acceptable. 

The load data of four consequent years were used to model the load duration curve 

and they were categorized in such a way as data of three years as training data. A set of 

data of another year as testing data. Figure 6.5 shows the results of the obtained load 

demand model. The support vectors representing actual data  and the model data are close 

to each other, which validates the obtained model. The maximum error of this model is 

3.08%. Moreover, values of the MAPE and Rd
2  are 2.45 % and 0.968, respectively. The 

value of MAPE is relatively small. The value of Rd
2 is close to one. These two facts 

support our conclusion that the mathematical model is well representing the actual data. It 

should here be noticed that although the graphs show the modeling results versus the 

support vectors which are the filtered data, the MAPE is calculated based on the actual 

data with no filtration. 
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Figure  6.3  PV filtered actual data, support vectors (dots) versus modeling (surface) data 
for one year. 
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Figure  6.4  Wind filtered actual data, support vectors (dots) versus modeling (surface) 
data for one month. 
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Figure  6.5  Load demand filtered actual data, support vectors (dots) versus modelling 
(surface) data for one year. 
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The Energy Commitment Problem 

The main objective of the energy commitment problem solved in this work is to 

minimize the power drawn from the grid, keep the battery’s SoC above 60%, which could 

be any other user pre-defined value, to be ready as a buffer for sudden large load changes. 

Furthermore, the SoC level would enable the use of the energy stored in the batteries to 

shift peaks and as a consequence becomes a money saving measure.   

Hence, intuitively both the PV and the wind systems were committed to supply all the 

power available at them. This means that both of them are working in the maximum 

power point tracking mode in all situations.  

In this type of systems there are generally two different scenarios;  

Firstly, if the power available from renewable energy sources exceeds the load 

demand, the power is injected back to the grid or used to charge the batteries. 

Secondly, if the load demand is larger than the power available from the renewable 

energy sources, then there is power deficiency as given by (6.8). 

)( WindPVloadd PPPP                                                                                 (6.8) 

Where, Pd is the power deficiency. Generally, there are two different sources to 

supply this deficiency in power. That is either by using the power stored in the battery 

system or from the grid. In this case, as we previously stated the objective here is to make 

the system as self-dependent as possible. Hence, the priority is given to the batteries to 

supply the deficiencies. However, if it is predicted to have a large peak load within the 

coming few hours the priority is given to have the batteries ready with a relatively high 

state of charge (SoC) by the time of occurrence of that peak load. The purpose of this is 

to minimize the overall energy cost while meeting the demand. 
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Moreover, a special care was given to whether it is a peak or an off-peak hour as the 

cost of energy is different in both cases. Managing the power differently corresponding to 

peak and off-peak hours reduces the total annual cost. The commitment problem is run 

continuously. This means that the futuristic load and total supply powers are continuously 

predicted and based on these values in addition to the time at which the next peak load is 

taking place and the current SoC of the batteries, the percentage of power that will be 

taken from each of the grid and the batteries will be decided. The mathematical models 

derived are used to forecast the peak load and the hour of its occurrence as well as the 

renewable energy power. In addition, in one of the cases they will be used to calculate the 

energy that will be required during the future peak hours by integrating the area under the 

power curve. Moreover, a fuzzy system is used here to solve a part of this commitment 

problem. This is due to the fact that fuzzy systems have the ability to solve this type of 

complicated problems.  

The mathematical models derived here were used to predict the peak load and 

generation available at the time it occurs. At peak load, the partial derivative of the curve 

with respect to hours tends to go to zero. Hence the hour at which the peak load will take 

place at a given day can be calculated as in (6.9) 

0

1






DD

load

H

P
                                                                                  (6.9) 

Where, D1 is the day on which the calculation is being done.  

The solution of (6.9) yields the hour H1, which is the hour at which the next peak load 

is taking place. Substituting in PV, wind and load models with the value of H1, the values 

of the load demand, PV and wind output power are obtained. These values are Pload1, PPV1 
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and Pwind1, respectively. The energy during the future peak hours, used in the energy 

management algorithm proposed in this chapter, is predicted as follows: 

dH
H

H
PE load .

max

min

                                                                               (6.10) 

Where, Hmax and Hmin are the starting and end hour of the future peak period. 

Customers can save an average of 6%-7% annually over their normal plan by shifting 

some energy use to off-peak hours. This was taken into consideration in order to have the 

economic operation of the system. 

The available sources are, PV and Wind (PPV + PWind), the battery during the 

discharging mode (Pd,batt) and Utility Grid (Pu). The loads are normal loads (Pload) and the 

battery during the charging mode (Pc,batt). 

The proposed algorithm has three inputs; the difference between the renewable power 

(PPV + PWind) and the load demand, if the current time is within peak hours or not, the 

SoC of the battery, predicted renewable power at the hour of the coming week and the 

hour at which it occurs. 

There are two possible cases: 

Case 1-Power Surplus 

In this case, there is a surplus in power PPV + PWind - Pload ≥ 0 

1. If H lies within the Off-peak hours, since the electric energy price is expected to 

be lower than its value within the peak hours, priority is given to charge the battery. 

However, the portion of the surplus power (Psurplus) that charges the battery system 

(Pc,batt) follows the proposed pattern shown in figure 6.6 while the rest is injected to the 

grid. 
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Figure  6.6  Battery power as a function of its SoC when there is an excess in power 
within the OFF-peak period. 

2. If H lies within the peak hours, since the electric energy price is relatively high, 

priority is given to sell power to the grid then charge the battery system. Hence, the 

power assigned to charge the battery follows the proposed pattern shown in figure 6.7. 

This proposed pattern and the patterns in Figs. 6.5 and 6.6 were proposed by the 

authors. 
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Figure  6.7  Battery power as a function of its SoC when there is an excess in power 

within the peak period. 

Case 2-Power Deficiency 

In this case 2, there is a deficiency in power Pload - PPV - PWind ≥ 0, if the SoC is less 

than 60%, the battery is disconnected to be charged  when there is a surplus in power. If 

the SoC is greater than 60%, the algorithm continues with the following conditions: 
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1. If H lies within the peak hours, priority is given to the power stored in the battery 

system to supply the loads to help satisfying the power deficiency (Pdef), whereas the rest 

of load demand is satisfied from the grid. The portion of Pdef that discharges from the 

battery system (Pd,batt) is implemented mathematically using the exponential curve shown 

in figure 6.8. 

2. If H lies within the off-peak hours, Pdef is covered partially by the battery system 

according to a fuzzy system proposed here. This fuzzy system was based on the 

forecasted data of the expected next peak period and the energy needed within it. The 

proposed fuzzy system is explained next. 
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Figure  6.8  Battery power as a function of its SoC when there is a deficiency in power 
within the peak period. 

Proposed Fuzzy System Model 

In this model, a fuzzy system was used only in the case when the instantaneous load 

demanded is higher than the instantaneous available power from renewable energy 

sources and the system is not in at the peak period. At this state, the battery will be 

operated in the discharge mode. Hence, Fuzzy determines the amount of power to be 

drawn from the battery while taking into consideration the time left for the peak period 
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and the relation between the current energy available in the battery to the total energy 

needed during that peak period (R). It should be mentioned here that the SoC of the 

battery is also playing a significant role as explained earlier in a previous section of this 

chapter. Designing a fuzzy logic controller is achieved through three basic steps; 

fuzzification, inference mechanism and defuzzification as explained earlier, in more 

details, in chapter 5. The Sugeno type fuzzy system was used in this work [158]. 

In fuzzification, the time left for the future peak period and the current SoC of the 

batteries are the inputs to the control system which are mapped into a certain linguistic 

values. The output of the fuzzy logic is a percentage that determines the percentage of 

load to be satisfied by the batteries. Three fuzzy variables; two inputs and an output, were 

involved in this work as shown in figure 6.9. Each variable has some membership 

functions. For the first input, which is the time left for the future peak period, three Fuzzy  
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Figure  6.9  Membership functions of different variables of the fuzzy controller: (a) and 
(b) show the membership functions of the two inputs to the Fuzzy system, (c) shows the 

membership functions of the output variable. 
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subsets are used; small (S), medium (M) and big (B). For the second input, which is the 

ratio between the current energy available in the battery to the total energy needed during 

that peak period, four subsets were used; very small (VS), small (S), medium (M) and big 

(B). On the other hand, the output is represented by six Fuzzy subsets; small (S), small 

big (SB), medium (M), medium big (MB), big (B) and big big (BB). These membership 

functions are used to map the input variable into a fuzzy set. The operation of the 

membership functions on the input variable yields the extent to which that variable is a 

member of a particular rule. The process of converting control variables into linguistics 

rules is called fuzzification. However, in inference engine and rule-based step, the output 

of the fuzzy controller is managed through including certain linguistic rules. The rules 

used here are given in table 6.3. 

Results and Discussion 

A simulated environment based on the forecasted data was built to show the validity 

of the proposed method for estimating the amount of power to be supplied by the battery 

array each day. A dynamic operation of power flow in a one day-period is shown in 

figure 6.10. The amount of power supplied by the battery array is controlled every day of 

the year and it is a function of the PV power forecasted data and the wind power 

forecasted data. The amount of power generated by wind and PV are added and 

subtracted from the load demand at every time instant. There are four conditions that can 

be encountered: 

1. The load demand is higher than the available renewable energy Pload ≥ PPV + PWind 

not during peak period 
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2. The load demand is less than available renewable energy PPV + PWind ≥ Pload during 

peak hour 

3. The renewable energy is higher than load demand not during peak hour PPV + PWind 

≥ Pload  

4. The renewable energy is less than load demand during peak hour Pload ≥ PPV + PWind 

Figure 6.10 shows a simulation for the application of the algorithm, it is divided into 

7 sections to illustrate the operation of the battery at the four different possibilities stated 

above. It should be noticed here that Section 6 represents the peak period. Section 1, 

section 3 and section 5 of the figure represent the same state when there is a deficiency in 

renewable power not during the peak hour. Hence, the fuzzy logic is used to determine 

the percentage of power the battery will share with the grid in order to minimize the 

power taken from the grid and at the same time make sure the battery has enough energy 

for the future peak period. To illustrate the use of forecasting, the SoC in section 3 and 

section 5 have a smaller slope than in section 1, since it is near the peak hour, the battery 

will discharge slower, i.e. based on the forecasting models, there is a peak hour that is 

going to take place at section 6, and there will be a deficiency in power during that 

period. Hence, the algorithm tends to keep the energy available in the battery to be 

discharged during the peak period. The discharging rate of the battery decreases before 

the peak period, which means a smaller slope. Section 2 represents the state when the 

renewable sources are satisfying loads and having excess energy that can be either sold to 

the grid or used to charge the battery. In this case, since this period does not fall in the 

peak period, it would be more beneficial to utilize the excess energy from renewable 

sources to charge the battery array. When the battery is charged to 100%, the extra 
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energy available is sold to the grid. During peak hour the battery should satisfy a large 

portion of the load or sell its energy to the grid. Section 6 represents the peak hour. It can 

be observed from the SoC of the battery in that section, the slope is large and the battery 

is used as the main source to satisfy the loads during this period. During the peak hour, 

the battery SoC is reduced from 97% to 64%. Therefore, the battery was successful in 

satisfying a big portion of the load during the peak hour. In section 7, the battery will 

continue discharging until it reaches the minimum limit of SoC, which is 60%.  

 

Figure  6.10  Case study 1, dynamic operation of the proposed algorithm in a one day-
period. 

The power flow operation of another day is shown in figure 6.11. The renewable 

power and load demand are different from the previous case. The graph is divided into 4 

sections to illustrate the battery controller operation. Sections 2 and 3 represent the peak 
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period. Section 2 represents a surplus in power. However, section 3 represents a 

deficiency in power. Sections 1 and 4 represent a surplus in power and a deficiency in 

power, respectively during the non-peak period. The battery SoC is used to demonstrate 

the charge or discharge operations. During the OFF-peak period, in section 1 and section 

4, the battery controller predicts the time remaining to the peak hour then decides the 

charge or discharge speeds. The battery is assumed to have a 100% initial SoC. Hence, 

the battery will not be discharged in section 1 since there is a surplus in power during this 

period. The surplus power from the renewable energy sources will be directly injected to 

the grid. However, after the peak period, in section 4,  the load is higher than the 

renewable power and the  time of the future peak period is considered large according to 

the fuzzy membership function in figure 6.9 c. Based on the energy available in the 

battery, calculated by the SoC%, the battery is classified from very small power 

availability to large availability according to the fuzzy membership function in figure 6.9 

b. Based on the fuzzy rules in table 6.3, the battery will share some percentage of the load 

demand. On the other hand, the peak period is treated differently. When there is a surplus 

in power, as in section 2, the energy is directly fed to the grid. During peak hour, it is 

more worthy to minimize the power utilization from the grid. Therefore, the battery will 

satisfy the deficiency in power to its limits as seen in figure 6.11. It can be seen that 

during peak hour the grid was not used to satisfy the load demand and the system was 

able to sell the surplus energy to the grid while keeping all its constraints.  

As can be seen from Figs. 6.10 and 6.11, one of the advantages of the dynamic energy 

commitment scheme developed in this research is that the energy in the battery is handled 

in such a way that the system draws power from the grid during off-peak hours; when the 
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energy tariff is low. Hence, the energy available in the battery is preserved to be 

discharged during peak hours. This operation can be seen in figure 6.12, which shows an 

experimental case, the peak hour took place at around 07:15 PM that day. Although there 

is deficiency in power starting from 1600h, the battery starts contributing by a significant 

amount of power only during the peak period. 

 

Figure  6.11  Case study 2, dynamic operation of the proposed algorithm in a one day-
period. 

Figure 6.13 shows the performance of the developed algorithm on the long term, a 

ten-day interval. It can be seen that the algorithm is performing as expected on the long 

term. The forecasting models along with the developed algorithm assure that the battery 

energy is available every day during the peak period to minimize the energy drawn from 

the grid. This results in an overall saving in the energy cost due to the relatively high 
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energy tariff during peak hours. 
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Figure  6.12  Performance of the energy commitment algorithm close to and around the 

peak period. 

 

Figure  6.13   Performance of the energy commitment algorithm for a 10-day interval. 
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Chapter 7 : Real-Time Energy Management Algorithm for Mitigation of Pulsed 

Loads in Hybrid Microgrids    

This chapter presents a real-time energy management algorithm for hybrid AC/DC 

microgrids involving sustainable energy and hybrid energy storage. This hybrid storage 

system consists of super capacitors (SC) for ultra-fast load matching beside lithium-ion 

batteries for relatively long term load buffering. The energy management algorithm aims 

mainly at managing the energy within the system such that the effect of pulsed (short 

duration) loads on the power system stability is minimized. Moreover, an average annual 

saving of around 7% is achieved by shifting loads to off-peak hours. The expected energy 

needed during a future peak, the time of its occurrence and the current state of charge of 

both elements of the hybrid storage system are all examples of the inputs to the 

algorithm. A non-linear regression technique is used to obtain mathematical models for 

the uncertain quantities including load and sustainable energy curves. The results show a 

significant improvement for the system in terms of voltage and power stability by 

applying the proposed algorithm.  

Pulsed Loads 

It is expected that the rapidly growing implementation of smart grids and microgrids 

will continue to change current systems in terms of design and operation. New designs 

may include much larger local generation, storage elements, hybrid AC/DC distribution 

systems and more extensive involvement of power electronic converters and pulsed loads 

[159]-[162]. An example would be a shipboard power system, which resembles the 

concept of a microgrid operating in a smart grid system where the system is capable of 

self-diagnosing, self-healing, and self-reconfiguring [163], [164]. In these systems, some 
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particular loads draw very high short time current in an intermittent fashion, such as 

electromagnetic rail weapon launch systems and free electron lasers. Henceforth, they 

will be referred to collectively as pulsed loads [165]. Such current behavior can 

potentially cause the system voltage and frequency to drop in the entire microgrid, 

momentarily. This disturbance can trip other sensitive control loads off-line.  

In the shipboard example, when a large magnitude, and prolonged voltage/frequency 

sag occurs, the propulsion system may shut down, or perhaps the fighting loads 

themselves may be thrown off-line. Therefore, there is a great concern about how these 

loads can co-exist in the same electrical environment and share the same energy storage 

systems while allowing a diverse range of operational scenarios [166], [167]. However, 

pulsed loads are not limited to shipboard power systems. For instance, a plug-in hybrid 

electric vehicle (PHEV), or a group of PHEVs during their charging process, or a big 

machine during its starting can be considered as pulsed load in residential and industrial 

applications, respectively. 

Loads based on hourly average variations and can be considered as low-frequency 

variation, whereas power transients, which sustain for minutes, seconds, or milliseconds 

come under the high-frequency segment. To buffer out the low-frequency oscillations and 

to compensate for the intermittency of the renewable energy sources, energy storage with 

high energy density is required. To provide the high-frequency component of power and 

also to supply or absorb the high-power transients, energy storage with high power 

density is required [168]. Recently, high-power capability of super capacitors hybrid 

energy with batteries or fuel cells are exploited in pulse operating modes for portable 

power systems, electric vehicle and digital telecommunication systems [169]-[171]. 
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Advanced storage technologies now allow extraordinary energy densities where the load 

draws large power impulses. This deficiency can be solved by using more batteries in 

parallel. Technically, hybrid power sources that utilize batteries with advanced 

charge/discharge strategies in parallel with super capacitors can overcome the power 

deficiency problems and increase the operating time [172], [173].     

Real time or dynamic energy management in smart grids whether directed towards 

microgrids or electric vehicle applications was investigated in several publications [168], 

[173]-[176]. These papers generally aim at handling renewable energy and its 

uncertainty, managing the demand side in an intelligent way in order to enhance 

performance of the microgrid as well as the main grid, and/or achieving an optimal 

economic operation of the system. However, all these energy management algorithms do 

not take into consideration the occurrence of pulsed loads. In this work, an energy 

management algorithm that aims at handling the energy in a system involving renewable 

energy sources such that pulsed loads are mitigated is developed. Furthermore, this 

developed algorithm assures economic operation of the microgrid. 

PV and Load Data Forecasting 

Non-linear Regression Modeling and Model Evaluation Indices  

In order to design the energy management algorithm such that mitigation of pulsed 

loads is achieved, prior knowledge about the total energy generation available from 

renewable sources should be known. The solution to the energy commitment problem 

involving renewable energy sources also requires this information in advance. Hence, the 

mathematical modelling for these uncertain quantities is obtained using a non-linear 

regression technique. Different model evaluation indices were used to validate the 
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developed mathematical models. The non-linear regression model and model evaluation 

indices used in this chapter are the same as the ones explained earlier in chapter 6, and 

described in more details in Appendix C.  

Mathematical Modeling Results 

The mathematical models for PV output power in addition to the load demand were 

deduced. These mathematical models are given by (7.1) and (7.2), respectively. 

8.07.08.04.0 5.118.795923.96 DHDHPPV 
                                                     (7.1) 









D
HDHPLoad

100
3.04.83212 7.04.08.0

                                                    
  (7.2) 

Where, H and D represent the hour and month, respectively.  

The data forecasting process was based on scaled-down PV data collected over 15 

years on an hourly basis for an example PV system namely Texas Energy Park in Dallas, 

Texas. This system consists of 288 modules; four rows with 72 modules in each row. 

Each row has a length of 104 m and each module is rated 430 Wp.  

The power data was used as output data to be forecasted, while the day of the year (1-

365) and the hour of the day (1-24) were used as inputs. The PV mathematical model was 

trained using the sets of data of the fourteen previous years. However, the model was 

tested using the data of the most recent year, which were not included during the training 

process. The MAPE of this model is 4.65%, which is a reasonable value taking into 

consideration that we are minimizing the inputs to the model (variables of the non-linear 

functions) to only time bases. However, if we were to take other inputs related to 

environmental variations corresponding to sun radiations, we could obtain a more 

detailed model as these inputs are more correlated to the output power of the PV than just 
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time. Moreover, the value of Rd
2 is 0.951, which means that the transformed inputs used 

are representative to the output power of the PV system. In this work, we try to count on 

only time to predict the output power. Non-linear regression is helpful in this case as it 

transforms the sets of inputs into other forms that are more correlated to the desired 

output [177]. 

 The load data of four consequent years were used to model the load duration 

curve and they were categorized in such a way that data of three years were used as 

training data whereas data of another year were used as testing data. Values of the MAPE 

and Rd
2 are 6.45% and 0.934, respectively. The value of MAPE is relatively small while 

the value of Rd
2 is close to one. These two facts support our conclusion that the 

mathematical model is well representing the actual data. 

Hybrid Storage System 

According to Ragone Plot [178], which is usually employed to classify the available 

energy sources according to their power/energy density, high energy Li-ion rechargeable 

batteries have the highest energy density of all modern batteries 50–500 Wh/kg and low 

power density of 10–500 W/kg. On the other hand, super capacitors have a high power 

density of 1000-5000W/kg and a very low energy density of 1-10 Wh/kg. Moreover, the 

internal resistance of super capacitors is much lower than that of a battery resistance. 

Therefore, it has much higher charging/discharging efficiency [179], [180].  

In order to possess the benefits of high specific power and high specific energy, a 

hybrid Li-ion/super capacitor storage system is utilized in this research in order to 

mitigate pulsed loads and use the batteries for relatively longer time for normal loads 

feeding as well. 
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 The hybrid storage system is modelled with the circuit shown in figure 7.1. a. The 

battery is modelled by an ideal voltage source in series with its internal resistance Rb 

while the super capacitors were modelled by the nominal capacitance Cc in series with an 

equivalent series resistance Rc. 
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Figure  7.1  Battery/SC hybrid storage system: (a) Passive hybrid, (b) Active hybrid. 

 

 The Thevenin equivalent voltage and impedance of the parallel system in the 

frequency domain are described by the following set of equations [181]: 
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where s is the complex frequency, Vco is the initial voltage of the super capacitor, and 

ccCR

1
                                                     (7.5) 
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 Now, assuming a pulsed load current with pulse frequency f (the period T=1/f) 

and pulse duty ratio, the current for the first N pulses can be expressed as: 
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where Io is the amplitude of the current and ɸ(t) is a unit step function at t = 0. The 

current in frequency domain can be found by performing the Laplace transform operation 

on (7.7), yielding the result: 
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 The average value of the load current can be expressed as the product of the 

pulsed amplitude times the duty factor D as: 

 

oL DII                                           (7.9) 

 

 The output voltage is a linear combination of the Thevenin voltage source 

and the internal voltage drop. The inverse Laplace transform of the Thevenin voltage 

source, according to (7.3), is: 
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 The second term of (7.10) is due to the energy redistribution between the super 

capacitor and the battery at the beginning of the discharge. When t∞, vTh(t)=Vb. For the 

current waveform it is defined by (7.7), the internal voltage drop Vi(s) as 
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 The corresponding expression in the time domain is 
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From the circuit shown in figure 7.1, the output voltage can be found as: 

)()()( sVsVsV iTho                                    (7.13) 

 Applying the linear property of the Laplace transform to (7.13) and using (7.10) 

and (7.12), one obtains: 
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 The currents from the battery and the ultra-capacitor can be found once the output 

voltage is resolved. These currents are: 
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 A hybrid storage system with battery and super capacitors only, without utilizing 

any DC-DC converters as shown in figure 7.1. b, is called a passive hybrid. However, if a 
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DC-DC converter is used, as an interface between the batteries and the super capacitor, a 

significant improvement can be achieved. This was experimentally verified in [182]. For 

instance, the battery current can be controlled to a constant value. Moreover, there will be 

no need for voltage matching between the battery and the load. Furthermore, the active 

hybrid yields a peak power that is 3.2 times that of a passive hybrid, and a specific power 

of 2.7 times that of a passive hybrid [182].  These features allow the active hybrid 

storage systems to mitigate pulsed loads efficiently if properly designed.  

Real Time Energy Management Algorithm 

The main objective of the real time energy management algorithm developed in this 

chapter is to mitigate pulsed loads. Besides, the total cost of energy is to be reduced using 

this algorithm by minimizing the energy drawn from the main grid and/or shifting it to 

off-peak hours. Therefore, we can define two main modes of operation namely; the 

pulsed load mitigation mode and the normal operation or cost minimization mode. A flow 

chart of this algorithm is shown in figure 7.2. The priority setting of the algorithm can be 

listed as follows. 

Super Capacitors are always Fully Charged to Mitigate Possible Pulsed Loads 

In order to achieve this in real time, the amount of energy available in the super 

capacitor (ESC) must be monitored and compared to the energy that would be available in 

fully charged super capacitors (EFSC) to assure having all the super capacitors initially 

charged and ready to operate. If the super capacitors are not fully charged, in case they 

are connected to the DC bus through a DC-DC converter, they are immediately charged 

using the batteries and/or the grid power according to the availability of energy in the 

battery.  
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Figure  7.2  A flow chart of the developed energy management algorithm. 
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Li-ion Batteries have Enough Energy to Help Super Capacitors Mitigate Pulsed 

Loads  

Li-ion battery is used along with super capacitors to mitigate the effect of pulsed 

loads. Therefore, the batteries are controlled such that they are 100% charged, according 

to the design of the storage system in the developed algorithm, before the moment of 

occurrence of the pulsed loads. However, if the future pulsed load is predicted to take 

place after time (TPL) that is more than the time needed to fully charge the battery (TFB), 

the battery is used normally in the cost minimization mode.  

Normal Loads on the Smart Microgrid are Supplied Using PV System 

Operating at its Maximum Power Point 

Loads on the DC microgrid are supplied by the PV generation. If there is a surplus in 

power, which means that the difference Pdiff > 0, where  

Pdiff =PPV - PLoad                                                                                           (7.17) 

 There will be two options; either to charge the battery or to sell this surplus power 

to the grid. In order to minimize the annual overall cost of energy and maximize the 

saving, the decision is made based on the energy tariff. Utility grids increase the tariff 

during peak hours. Hence, if it is a peak period, which is defined as two hours around the 

peak of the daily load curve, priority is given to selling the power to the utility grid. 

Otherwise, batteries are charged. However, this all depends on the state of charge (SoC) 

of the batteries as shown in Fig 7.2. If there is a surplus power during a peak period, the 

percentage of the surplus power that goes to the battery (Pbatt) follows the formula 

proposed in [150] as: 
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  diffbatt PeP   SoC05.0100
                    

   (7.18) 

However, if the surplus power is available during an off-peak period, the percentage 

of the surplus power that goes to the battery (Pbatt) follows the following formula [150]: 

 

  diffbatt PeP   100109287.1 SoC5.020

           
(7.19) 

 

 The batteries’ SoC can be estimated as follows: 
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 where, EFB (Ah) is the full charge or total energy capacity of the battery. The hour 

at which the next peak load is taking place (TPK) can be calculated using the predicted 

load curve of the day. At peak instance, we have:   
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Where, D1 is the day in which we are calculating. The solution of (7.21) yields the 

peak hour TPK. The peak period is defined as 

 

11  PKPK TtT                            (7.22) 

 

Any Load Deficiency on the Microgrid is Supplied from the battery if it is 

during a Peak Period or from the Grid if it is an Off-peak Period 

If there is a deficiency in power defined by, Pdiff < 0, priority is given to satisfy this 

deficiency using the energy stored in the batteries. However, the energy tariff is again 
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taken into consideration. If t lies within the peak period, the energy stored in the battery 

system is used to satisfy the biggest possible share of the load demand. The rest is 

satisfied from the grid. The percentage of the power deficiency that will be shared by the 

battery system is implemented mathematically using the following exponential curve 

[150]: 

  diffbatt PeP  SoC01.07879.36
                     

(7.23) 

 

 If t lies within an off-peak period, Pdiff is covered partially by the battery system 

based on TPK. If there is enough time to recharge the batteries and have them ready during 

the future peak period, the batteries are more involved in satisfying the load deficiency. 

However, if the time needed to charge the batteries is less than TPK, the batteries are 

carefully discharged. This algorithm is implemented using a fuzzy agent within the 

algorithm. Inputs to the fuzzy agent are TPK and R, which is the ratio between the energy 

available in the batteries to the energy needed during the future peak period. The fuzzy 

system is explained in details in the following subsection by the battery system. This 

fuzzy system was based on the forecasted data of the expected next peak period and the 

energy needed within it.  

 The energy demand during the peak period EPK can be calculated by substituting 

in (7.2) with the value of (H=TPK) and (D=D1). The energy demand during the peak 

period is: 

dtPE
PKT

PKT
loadPK .
1

1




                                        (7.24) 
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Fuzzy Agent Involvement during Power Deficiencies 

 In this model, the fuzzy system was used only in the case when the instantaneous 

load demanded is higher than the instantaneous available power from the renewable 

energy sources and the system is not at the peak period as explained in chapter 6. 

However, the membership functions are modified in this chapter. The Fuzzy system 

determines the amount of power to be drawn from the battery while taking into 

consideration the time left for the peak period and the ratio between the current energy 

available in the battery to the total energy needed during that peak period (R). The 

Sugeno type fuzzy system was used [158]. In the fuzzification step, TPK and R are the 

inputs to the control system which are mapped into certain linguistic values. The output 

of the fuzzy logic is the percentage of load to be shared by the batteries. Three fuzzy 

variables; two inputs and an output, were involved as shown in figure 7.3. Each variable 

has some membership functions. For the first input, which is the time left for the future 

peak period, three Fuzzy subsets are used; small (S), medium (M) and big (B). For the 

second input, which is the ratio between the current energy available in the battery to the 

total energy needed during that peak period, four subsets were used; very small (VS), 

small (S), medium (M) and big (B). On the other hand, the output is represented by four 

fuzzy subsets; very small (VS), small (S), medium (M) and big (B). These membership 

functions are used to map the input variable into a fuzzy set. The operation of the 

membership functions on the input variable yields the extent to which that variable is a 

member of a particular rule. The rules used here are given in Table 7.1. Many 

defuzzification methods, such as weighted average (wtaver) or weighted summation 

(wtsum) methods, were proposed [158]. In this work, we utilized the wtaver method. 
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Figure  7.3  Operation of the system for a 24 hours interval, while applying Algorithms 1 
and 2. 

 

Table 7.1   Fuzzy rules 
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Results and Discussion 

In order to evaluate the performance of the algorithm under pulsed loads, an example 

hybrid AC/DC system was simulated. The example system, shown in figure 7.4 

resembles a shipboard power system with scaled down ratings. This system includes two 

13.8 kW main generators (MTG) and two 10.4 kW auxiliary generators (ATG) connected 

in a ring bus configuration. The bulk of the load consists of two 50 kW propulsion 

motors, modeled as permanent magnet machines supplied by PWM drives, with 

hydrodynamic propeller models as the mechanical load. Each rectifier supplies one of 

two 0.318 kV DC busses. The DC distribution zone is supplied by one of the two 

available rectifiers. Although various models for the loads may be used, constant 

impedance models were used in this work. 
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Figure  7.4  The example system simulated in this chapter. 

 Furthermore, a photovoltaic (PV) system of 10 kW rated capacity, lithium-ion 

batteries with 3000 Ah rated capacity and super capacitors with 200 F are included in the 
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DC microgrid. A PWM controlled DC-DC converter is used as an interface between the 

PV system and the DC bus. Moreover, a vector decoupling PWM controlled AC-DC/DC-

AC bidirectional converter was used for connectivity between the AC and DC sides. In 

the steady state case, the system voltages and loadings are within the normal limits. 

For transient simulations, we considered a pulse train of four pulses with a rate of 0.2 

Hz, a duty ratio of 10% and amplitude of 20 kW. 

Cost Minimization 

In order to evaluate the performance of the developed algorithm designated 

(Algorithm 1), its operation is compared with the operation of another algorithm 

designated (Algorithm 2). Algorithm 2 does not take into consideration any variation in 

the power tariff during the day, and its operation can be summarized as follows; if there 

is a surplus in power (Pdiff > 0), the batteries will be charged until they are fully charged 

then the extra power will be sold to the grid. However, if there is a deficiency in power, 

the batteries will be discharged until they reach their lower discharge limit then power 

will be drawn from the grid.  

In normal operation with no pulsed loads predicted or taking place in the system, the 

developed algorithm aims at minimizing the total cost of energy. This is achieved by 

handling the battery and controlling the power flow between the AC and DC sides based 

on the changes of the power tariff. Figure 7.5 shows the PV and load data of the 24 hours 

at a certain day (D1=200) of the year. As can be seen, there is a deficiency (Pdiff < 0) at 

that day until around hour 7 (7:00 am), then there is a surplus in power until around hour 

14.67 (2:40 pm), and finally there is a deficiency in power until the end of the day. The 

peak load of that day takes place at hour 18, hence TPK=18. Moreover, EPK can be found  
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Figure  7.5  Operation of the system for a 24 hours interval, while applying Algorithms 1 
and 2. 

by integrating the area under the load curve within the interval 17-19. The second subplot 

of figure 7.5 shows the power surplus/deficiency during the day, the power shares from 

the battery and the grid using both algorithms. The sampling time Ts is 0.1 ms, while the 

initial SoC is 90%. During the power deficiency taking place at the beginning of the day, 

both algorithms tend to satisfy the load using the energy stored in the battery. Moreover, 

when there is a surplus in power, the battery is charged to its full capacity and the extra 

power is injected back to the grid. However, during the second deficiency interval 

starting at 2:40 pm, there is a significant difference between the operations of both 

algorithms. Since the future peak period is approaching soon, Algorithm 1 saves the 

energy stored in the battery and satisfies the load demanded using the grid power. This 

stored energy can be used to minimize the power drawn from the grid during the peak 

period when the power tariff is the highest during the day. On the other hand, Algorithm 2 
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tends to satisfy the load deficiency using the energy stored in the battery without 

considering the future peak period. Consequently, when the peak period starts, there is no 

means to supply the load other than drawing the power from the main AC grid with the 

high tariff. The difference in the energy supply is the highlighted area between the two 

curves; Pbatt1 and Pbatt2. Hence, a significant saving in the total energy cost during the 

year can be achieved by applying Algorithm 1. The saving during a day can be calculated 

as 

dtPPTARTARS
PKT

PKT
battbattPKOFFPK .)()(

1

1
12 




          (7.25) 

Where TARPK and TAROFF-PK are the power tariffs during the peak and off-peak 

periods, respectively.  

 Assuming that TARPK is 100% higher than TAROFF-PK [183], a total annual saving 

of 7-9% can be achieved. It has to be noticed here that the developed algorithm was 

based on forecasted data of PV generation and load demand, which will definitely include 

some prediction error, hence the total annual saving is dependent on that error. For 

instance if the PV and load models used are replaced with models having MAPE values 

of 10% and 13%, respectively, the total saving drops to 5.8-7.2%.      

This operation can be also seen in the third subplot of figure 7.5 by noticing the SoC 

of the battery using both algorithms. It can be seen that at the beginning of the peak 

period, Algorithm 1 enables the battery to have an SoC of almost 98% while Algorithm 2 

depletes the battery to almost its lower limit.       

Pulsed Load Mitigation 

As explained in a previous section, if there is a pulsed load predicted to take place, 
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the real time energy management algorithm developed in this chapter assures that the 

battery is fully charged to assist the super capacitors mitigate the effect of pulsed loads on 

the electrical power system, especially on the AC side. In order to verify the validity of 

the algorithm, two cases were investigated; the case when there is a pulsed load while the 

proposed algorithm is implemented (Case 1) and another case when the occurrence of 

pulsed loads are not predicted and/or planned for, while dealing with the 

charge/discharge process of the batteries. The main difference between these two cases is 

that in the first case, the batteries are ready and fully charged when the pulsed loads take 

place. In the second case the battery SoC is independent and random; this means that the 

charge/discharge process of the batteries is based on other factors (Case 2).  

Case 1: Fully Charged Battery 

In this case, the real time energy management algorithm assures that the batteries are 

fully charged and will be available during the occurrence of the pulsed loads. Figure 7.6 

shows the active power of the pulsed loads and the power sharing among AC generators, 

super capacitor and battery. Initially, the battery is not injecting any power to the DC bus 

since it is dedicated to mitigate the pulsed load. Hence, the battery voltage is maintained 

at the same voltage level of the DC bus. At the beginning of the pulsed load, the super 

capacitor satisfies the whole demanded power because of the high rate of discharge. 

Then, the battery starts to increase the injected power to the demanded pulse, while the 

power share from the super capacitor is exponentially decaying. Therefore, the sizing of 

the battery and the super capacitor is a very crucial subject in the design of hybrid 

microgrids with pulsed loads. According to inertia time constant of AC generators, they 

start to maintain the system frequency on 60 Hz and react to the pulsed loads. This can be 
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seen by noticing the oscillations of the AC generators’ power. By the end of the first 

pulse, the battery will discharge energy to the DC bus due to the drop of its voltage level, 

which needs some time to be recovered as shown in figure 7.6. Because of the 

oscillations in AC generation, the DC bus voltage oscillates between the pulses. Hence, 

the super capacitor power charges and discharges before the consequent pulse as well. 

This will also affect the battery power as can be seen in figure 7.6. After passing the four 

pulses, the system comes back to its initial steady state condition. 

Figure 7.7 shows the voltage amplitude of the AC buses, which is almost within the 

over/under voltage limits. The loading of the main generators are also presented in figure 

7.8, it can be seen that the system does not suffer from any overloading condition. Figure 

7.9 shows the system frequency under pulsed loads and fully charged battery operation, 

the system frequency remains between 59.5 Hz and 60.4 Hz. 
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Figure  7.6  Active power of the pulsed loads and the power sharing among AC 
generators, super capacitor and full-charged battery (Case 1). 
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Figure  7.7  Voltage amplitude of AC buses during pulsed-loads (Case 1). 
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Figure  7.8  Loading of the main generators during pulsed-loads (Case 1). 
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Figure  7.9  System AC side frequency during pulsed-loads (Case 1). 

Case 2: Half Charged Battery 

In this case, we assume that the energy available in the battery is just enough for the 

first two pulses of the pulses train, which represents the case when the SoC drops to its 

lower limit after the second pulse. Technically, it means that the battery voltage will 

dramatically drop after the second pulse and the converter controller will disconnect the 
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battery from the DC bus. Figure 7.10 shows this situation in terms of generation and load 

levels. After the second pulse, the battery injected power is zero, and then the AC 

generators are totally responsible for the next two pulses. As can be seen, there are large 

oscillations in AC generation levels and the super capacitor’s power. The DC bus voltage 

drops to 0.823 p.u. because of the effect of the pulsed load as shown in figure 7.11. 

Moreover, there are over and under voltage violations reported on the AC buses as shown 

in figure 7.12, which has the same axis length as figure 7.7 to facilitate the comparison. 

Figure 7.13 shows the frequency variations during the pulse train, after consuming the 

whole battery energy, during the third and fourth pulses, we can see large frequency 

oscillations in the range of 58.4 to 61.12 Hz. The frequency of these oscillations is almost 

the same as the pulsed load frequency of 0.2 Hz. As in the previous case, the loading of 

the main generators is shown in figure 7.14, we can see some overloading situations. 

Hence, the design and planning of the generators capacity and their protection settings 

have to be matched with the system pulsed loads characteristics and the available storage 

system. 
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Figure  7.10  Active power of the pulsed loads and the power sharing among AC 

generators, super capacitor and half-charged battery (Case 2). 
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Figure  7.11  DC bus and battery voltage during pulsed-load (Case 2). 
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Figure  7.12  Voltage amplitude of AC buses during pulsed-loads (Case 1). 
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Figure  7.13 System AC side frequency during pulsed-loads (Case 2). 
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Figure  7.14  Loading of main generators during pulsed-loads (Case 2). 

The voltage changes in the buses depend on the pulsed-load parameters such as the 

magnitude of the pulse, its duration and the number of iterations. The voltage controller 

parameters, such as the AVRs settings of the generators also affect the system behavior 

during pulsed-load conditions, and after its departure. One of the key factors of transient 

stability is the rotor angle of each generator during and after an event, such as a pulsed-

load. During the pulsed-load, the power and angle jump to a new operating range for both 

generators. After the end of the pulsed-load, the power and rotor angle return to their 

normal values with some oscillations around the steady state values. The magnitude and 

duration of these oscillations depend on the system inertia, the generator voltages, and the 

power controller parameters. Figures 7.15 and 7.16 show the transmitted power versus 

rotor angle of the main generator during the pulsed load for Cases 1 and 2, respectively. 

The amplitude of the transferred power in Case 2 and the rotor angle changes during the 

pulses are more than Case 1 due to the absence of battery energy for last two pulses, but 

the system remains stable and the rotor angles return to the steady state point. 
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Figure  7.15  Power-Delta Curve for main generator during Pulsed Load (Case 1). 
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Figure  7.16  Power-Delta Curve for main generator during pulsed Load (Case 2). 

System Performance under Auxiliary Generator Outage 

In order to clarify the system performance under real-time management algorithm, 

another simulation was performed in a case that one of the auxiliary generators, ATG1, 

experiences outage before the pulsed load and the battery charging status plays an 

important role here. The system generators equipped by frequency relays, which are all 

set to 58 Hz, and whenever the system frequency drops, they will disconnect the system 

immediately after 0.1 s. Similar to the first case we assumed that the battery is charged 

totally and at t=1 s ATG1 is disconnected and at t=6 s pulsed-load occurs. As shown in 
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figure 7.17, the system can recover after pulsed loads and maintain the frequency more 

than 58 Hz. But for half charged battery, after second pulse the battery’s remained energy 

becomes zero and the system frequency drops dramatically to 58 Hz as shown in figure 

7.18. Therefore, the protection system disconnected the AC generators at t=22.902 s. 

Figure 7.19 shows the active powers of the pulsed loads and the power sharing among the 

AC generators, super capacitor and half-charged battery during this simulation case. 
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Figure  7.17  Active power of the pulsed loads and the power sharing among AC 
generators, super capacitor and full-charged battery (Outage of ATG1 at t=1s). 
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Figure  7.18  System AC side frequency and voltages during pulsed-loads with half-

charged battery (Outage of ATG1 at t=1s). 
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Figure  7.19  Active power of the pulsed loads and the power sharing among AC 
generators, super capacitor and half-charged battery (Outage of ATG1 at t=1s) 
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Chapter 8 : Stability and Security Analyses of Hybrid AC/DC Power Systems 

Involving Pulsed Loads 

In the development of intelligent operation and control techniques for hybrid AC/DC 

power systems, several of the conventional power system issues, such as system stability 

and security, must be fully taken into consideration.  In this chapter, the focus is on the 

stability and dynamic security of hybrid AC/DC power systems. In order to add more 

value to this study, these stability and security analyses will be conducted during the 

occurrence of pulsed loads (explained in chapter 7) beside the normal loads, and in order 

to add a practical essence to the work, a shipboard integrated power system (IPS) was 

taken as a hybrid AC/DC power system example for our case studies. 

Hybrid AC/DC Power System Stability 

The issue of voltage stability on DC networks is an interesting topic, especially lately, 

according to the many publications related to this topic [184]-[191]. The available energy 

from renewable sources or batteries on the DC microgrid can be used to maintain voltage 

stability indices on the AC grid within acceptable limits by supplying active or reactive 

power. However, this process must not negatively affect the operation of the DC 

microgrid. This chapter also gives some theoretical basis on the performance of DC 

microgrids during pulsed loads instances.  

Before attempting to define the stability regions and margins of DC microgrids, the 

power flow concept in DC circuits has to be quite understood. The power flowing into a 

resistive load connected to a bus in the DC microgrid is given by, 
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Where, the system at that bus is represented by its Thevinin’s equivalent consisting of 

a voltage source, Vth, and a resistor in series, Rth. Here, PL and RL represent the load 

power and resistance, respectively. It can be noticed that the power flowing to the load is 

non-linear. Figure 8.1 shows the power curves at different values of source voltage and 

internal resistance. It can be seen that, increasing Rth results in a decrease in the peak of 

the curve and its shifting to the right. However, an increase in Vth results in an increase in 

the peak with no effect on its position on the RL access. The peak of this curve can be 

found by taking the derivative of (8.1) with respect to RL and equating it to zero. This 

yields the well-known condition for maximum power Rth=RL. 
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Figure  8.1  Effect of source voltage and internal resistance on maximum power point in 
DC systems. 

The power flowing between any two DC buses in the network, such as the link 

between the renewable sources and the common DC bus is given by, 

LineRRR
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Where, P1-2 is the power flowing in the connecting line between buses 1 and 2, Rline is 

the resistance of the connecting line and {V1, R1} and {V2, R2} are the bus voltage and 

internal resistance values at buses 1 and 2, respectively. Therefore, the only condition for 

power flow from bus 1 to bus 2 is having V1 > V2. This condition is analogues to the 

condition of having a leading phase at the sending end in AC circuits.  

Generally, most of the loads have either constant impedance shown, with the dashed 

line in figure 8.2, such as an incandescent light bulb, or constant power, shown with the 

dash-dotted line, such as a television. The operating point of the system is when the load 

curve intersects with the P-V curve. Hence, point 1 represents the initial operating point 

of both loads in the nominal system. Now, if the system is weaker, as shown in the figure, 

the constant impedance load will intersect with the new P-V curve at a new point (point 

3). Since point 3 is at a lower voltage, while the load resistance is constant, the load tends 

to draw less current and correspondingly less power. The constant power load operates at 

a new point (point 2) as well. However, the reduced voltage of point 2 along with the 

constant power demanded by the load increases the current drawn by the load. If the 

system gets further weaker, the system may no longer be capable of supplying the loads 

leading to a voltage collapse as shown in the figure. 

If the system is modeled by a single DC voltage source connected to several load 

converters through LC-filters [185]. This modeling is feasible considering the relative fast 

dynamics of the high bandwidth converters as compared to the source. The negative 

incremental impedance of converters may cause stability problems [192]; it can cause 

voltage oscillations on the distribution line. There are two instability regions in such 

system. The upper instability region is caused by violating the lower limit of load 
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resistance; the load resistance must be greater than the source converter output resistance. 

For multiple load converters, the following voltage stability index can be identified, 

    1
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A proper design of the system and selection of its parameters assures no violation of 

this stability criterion. However, the lower instability region, caused by the possible 

resonance between the filter parameters L and C, may take place if the source resistance 

or the filter capacitance is small [57]. 
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Figure  8.2  P-V curves of DC networks. 

Power System Security 

Security analysis and assessment are very essential for any power system architecture. 

In this chapter, dynamic security was studied on a shipboard power system, as a hybrid 

AC/DC system example, during the occurrence of pulsed loads. Shipboard IPSs have 

some challenging unique features from a power system point of view. First of all, IPS is 
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an isolated power system, not supported with a relatively larger grid. Therefore, the 

system encounters faster dynamics due to the finite generation inertia and is more 

susceptible to disturbances. Secondly, transients on the load side may cause considerable 

transients in the system since load/generation ratio is close to 1. Moreover, the system is 

physically small hence the connecting cables have negligible impedance, which may 

cause instability issues among the different components of the system. Finally, the IPS is 

more subjected to severe damages, especially during battle conditions, which has to be 

taken into account while operating security analysis. 

 

Table 8.1    Security constraints. 

Parameter Secure Range 

AC Voltage Amplitude 0.9 < |Vac| < 1.1 

AC Voltage Frequency 59.5 < f < 60.5 

Loading of System Components Loading < 100% 

DC Voltage Level 0.9 < Vdc < 1.1 

 

With the existence of pulsed loads on such systems, dynamic security analysis has to 

be performed during different contingency conditions and corresponding to different 

storage distribution techniques. The main security constraints considered are the voltage 

limits on the AC and DC buses in steady state and transient conditions during pulsed load 

occurrence. In addition, the AC voltage frequency is allowed to oscillate only within 

acceptable limit. Finally, none of the system components, such as cables and 

transformers, should be overloaded. Table 8.1 shows the security constraints considered 

in this study. 

In this research, the IPS configuration used in chapter 7 is changed to a zonal DC 
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distribution system. The DC side consists of four different buses. Figure 8.3 shows a 

single line diagram of the IPS studied.  

 

 

Figure  8.3  A single line diagram of the hybrid AC/DC system studied in this chapter. 

 

The example system resembles a shipboard power system with scaled down ratings. 

This system includes two 13.8 kW main generators (MTG) and two 10.4 kW auxiliary 

generators (ATG) connected in a ring bus configuration. The bulk of the load consists of 

two 50 kW propulsion motors, modeled as permanent magnet machines supplied by 

PWM drives, with hydrodynamic propeller models as the mechanical load. Each rectifier 

supplies one of two 0.318 kV DC busses. Furthermore, a DC generation system of 10 kW 

rated capacity, lithium-ion batteries with 3000 Ah rated capacity and super capacitors 

with 200 F are included in the DC microgrid. A PWM controlled DC-DC converter is 
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used as an interface between the PV system and the DC bus. Moreover, a vector 

decoupling PWM controlled AC-DC/DC-AC bidirectional converter was used for 

connectivity between the AC and DC sides. In the steady state case, the system voltages 

and loadings are within the normal limits. For transient simulations, we considered a 

pulse train of four pulses with a rate of 0.2 Hz, a duty ratio of 10% and amplitude of 20 

kW. Each of the four DC zones may include, a pulsed load, battery, SC, a normal load or 

a combination of these elements based on the event studied. 

As shown in figure 8.4, with no contingencies and applying the algorithm developed 

in chapter 7, the super capacitors quickly respond at the beginning of the pulsed load due 

to its power density, however its power drops and the battery takes over due to its higher 

energy density. The main and auxiliary generators encounter some swinging and 

oscillation. Super capacitor and battery, are capable of riding the system through the 

disturbance caused by the pulsed load. The system frequency oscillations are within the 

±0.5 Hz limit, and we have no overloading at any generator according to figure 8.4 c. 

Transient values of voltages are within limits according to figure 8.4 d and in addition the 

steady state values of voltages are within limits. Generators rotor angle and MTG1’s 

power delta-curve were shown in 8.4 e and 8.4 f. 

The security analysis that was performed aimed at studying the effects of, 

1. System contingencies: in which the system security will be examined under several 

outage conditions along with the pulsed load. 

2. Storage distribution: in which the effect of distributing the battery storage system 

(for thermal management, increased reliability, etc) was examined during the 

occurrence of pulsed loads. 
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(a) (b) 

(c) (d) 

 
(f) 

Figure  8.4  Response of the hybrid power system to the pulsed load when the system is 
encountering no contingencies. 
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A list of the studied events is shown in Table 8.2. The first set of events is related to 

contingencies of the main elements during the pulsed load occurrence. The pulsed load 

consists of 4 pulses, while the contingency of the equipment takes place after the second 

pulse, i.e. after 9 s. The pulsed load is placed at zone 1, and this zone includes the super 

capacitor and battery storage. We will study the behavior of the system by inspecting the 

power, voltage, frequency and power-delta curve during. In addition to contingency 

situations, the effect of storage distribution on different zones was studied. 

Table 8.2   A list of the events studied 

No. Event Description Type 

1 Cable 1-2 Outage 

C
on

ti
n

ge
n

ci
es

 

2 Cable 1-4 Outage 

3 MTG2 1-2 Outage 

4 ATG2 1-2 Outage 

5 PMSM Outage 

6 Pulsed Load and Storage at Zone 1 
S

to
ra

ge
 D

is
tr

ib
u

ti
on

 

7 Pulsed Load at Zone 1 and Storage at Zone 4 

8 Pulsed Load at Zone 1 and Storage distributed between Zones 1&4 

9 Pulsed Load at Zone 1 and Storage distributed between Zones 1, 2,3 
& 4 

10 Pulsed Load at Zone 1 without storage 
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System Security against Contingency Conditions 

Cable 1-2 Outage 

Figure 8.5 shows the results for the case of cable 1-2 outage. Figure 8.5 a shows the 

single line diagram of the system with the steady state results after contingency and 

pulsed load occurrences (i.e. t=30 s). The portions of the system in blue encounter under-

voltage after steady state is reached. It can be noticed that buses 2, 3 and 4 as well as 

zones 2 and 4 encounter under voltage. Figure 8.5 b shows the power sharing among the 

generators, super capacitors and battery storage. The super capacitor tends to supply the 

demanded pulsed power once the pulses start due to its high power density. However, the 

power shared from the super capacitor drops before the end of the pulse due to its low 

energy density. The battery help the super capacitor supply the pulsed loads. The system 

frequency and generators loading are shown in figure 8.5 c, it shows that the oscillations 

are within the ±0.5 Hz limit and there is no overloading reported. According to figure 8.5 

d, there is an under-voltage violation during transient, which infers that the system is not 

secure during this contingency event. The rotor angle changes during the system 

transients are shown in figures. 8.5 e and f. It can be seen that the rotor angle of all the 

generators either return to its previous value or, as in the case of MTG2, reach a new one. 

Cable 1-4 Outage 

Figure 8.6 shows the results for cable 1-4 outage. Similar to the previous cases, the 

super capacitor is the fastest source to supply the pulses. Batteries contribute in all the 

four pulses to mitigate their effect on the generators. Under voltage violation happens 

during transients only at AC buses 3 and 4. No voltage violation occurred on the DC bus. 

Frequency oscillations are within the ±0.5 Hz limit and there is no overloading reported. 
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(a) (b) 

(c) (d) 

(e) (f) 

Figure  8.5  Response of the hybrid power system to the pulsed load when the system is 
subjected to cable 1-2 outage. 
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(a) (b) 

(c) (d) 

(e) (f) 
Figure  8.6  Response of the hybrid power system to the pulsed load when the system is 

subjected to cable 1-2 outage. 



 

225 
 

Main Turbine Generator (MTG2) Outage 

Figure 8.7 presents the results for a more severe case, which is the outage of one of 

the main units in this system (MTG2). As can be seen in the single line diagram shown in 

figure 8.7 a, overvoltage (red lines) and under voltage (blue lines) are reported at 

different parts of the system after few seconds of the outage occurrence. Moreover, the 

SC power oscillates significantly during the instability due to the outage of MTG2. 

Frequency oscillations are out of the ±0.5 Hz limit. Overloading is reported before the 

instability occurrence; hence it is very essential to monitor the loading of the generators 

dynamically to ensure the system security. It can be concluded that this contingency does 

not lead to system stable operation. 

Therefore, the role of using energy storage systems on the case of MTG2 outage was 

studied by distributing energy storage at the four zones. The energy stored in the batteries 

is utilized to delay the instability of the system, which gives more time for a remedial 

action. In this case the battery storage is distributed among all the four zones, and the 

oscillations of all the sources are within limits according to figure 8.8. No voltage 

violation or loading problem is reported and the frequency is almost at its limits. 

Auxiliary Turbine Generator (ATG2) Outage 

The outage of ATG2 was also studied and the results are shown in figure 8.9. It 

shows that the steady state values of the power shared from MTG1, ATG1 and ATG2 are 

higher than their initial values because of losing ATG2. Under voltage violation was 

reported during transient only at buses 3 and 4. However, under frequency violation and 

overloading of MTG1, ATG1 and ATG2 are the main problems in this case. The rotor 

angle curves for the main generators show the system instability for this case. 
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(a) (b) 

(c) (d) 

(e) (f) 
Figure  8.7  Response of the hybrid power system to the pulsed load when the system is 

subjected to MTG2 outage. 
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(a) (b) 

(c) (d) 

 
(f) 

Figure  8.8  Response of the hybrid power system to the pulsed load when the system is 
subjected to MTG2 outage with distributed storage. 
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(a) (b) 

(c) (d) 

(e) (f) 
Figure  8.9  Response of the hybrid power system to the pulsed load when the system is 

subjected to ATG2 outage. 
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Permanent Magnet Synchronous Machine (PMSM) Outage 

The last contingency study performed was related to the outage of one of the 

propulsion motors (PMSM). This case represents a challenging case on a shipboard 

power system since the loss of a big load is as problematic as the loss of generation in 

such a confined system. The loss of the load takes place in a very short time as compared 

to the time the mechanical system, controlling the prime mover of the generators, take to 

reach the new equilibrium point. The excess mechanical energy will lead the generator 

shaft to accelerate then fluctuate around the synchronous speed causing unwanted 

oscillations on the shipboard. In addition, it leads to problems on the power system in 

terms of frequency and loading.  

The results for this event are shown in figure 8.10. Bus 3 (where the PMSM was 

connected) and an adjacent bus (bus 4) encounter over voltage violation. The DC bus 

voltage has no voltage violation as shown in figure 8.10 a. This reflects the impact of 

having the battery and super capacitor storage system on the DC bus. The steady state 

values of the power shared from all the generators are less than their initial values as 

shown in figure 8.10 b. However, we can notice the oscillations on the output power of 

the generators right after the loss of the PMSM, especially on the two main generators. 

Moreover, figure 8.10 c shows that there was over frequency violation and overloading at 

the main turbine generator (MTG2), where the PMSM was connected. This overloading 

condition of MTG2 takes place for a very short time due to the oscillations in its rotor 

angle frequency as shown in figure 8.10 e. The rotor angle depicts no stability issue. 

However, the oscillations that take place after the disconnection of the permanent magnet 

synchronous propeller can be seen. 
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(a) (b) 

(c) (d) 

(e) (f) 
Figure  8.10  Response of the hybrid power system to the pulsed load when the system is 

subjected to PMSM outage. 
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Effect of Storage Distribution on System Dynamic Security 

In this section, we will study the effect of distributing storages on the different zones 

of the system while the pulsed load is occurring at the first zone. Distributing the storage 

has a significant impact on the reliability of the storage system, especially in battle 

conditions. The aim of this study is to analyze the performance of distributed voltage 

control in different zones of microgrids. Hence, the pulsed load and super capacitor are 

connected to bus 1 and we distributed the storages over different zones based on the 

event studied.  

Pulsed Load at Zone 1, Storage Bulked at Zone 1 

The first case studied is when all the storage assets are connected to the same zone 

where the pulsed load occurs (i.e. zone 1), which can be considered as the least reliable 

distribution for the storage assets. Figure 8.11 shows the results for this simulation. In 

this case, both the super capacitor and battery contribute to supplying the pulsed load. No 

voltage violation was reported on AC or DC buses.  The frequency of all the buses is 

within limits and no overloading was reported. 

Pulsed Load at Zone 1, Storage Bulked at Zone 4 

Figure 8.12 shows the results for the case when the storage is placed at a zone that is 

different from the zone where the pulsed load takes place, i.e. zone 4. According to this 

figure, the SC power oscillates more significantly and it takes more time to be charged 

(batteries are on another zone). Batteries start discharging not in synchronism with the 

pulsed load. In addition, they do not supply the same amount of energy they can supply 

while connected at the same bus where the pulsed load occurs. Overvoltage violation at 

busses 3 and 4 and under voltage violation at bus 1 and the DC bus are reported. 
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(a) (b) 

(c) (d) 

 
(e) 

Figure  8.11  Response of the hybrid power system to the pulsed load with the storage 
connected at zone 1 (with the pulsed load). 



 

233 
 

(a) (b) 

(c) (d) 

 
(e) 

Figure  8.12  Response of the hybrid power system to the pulsed load with the storage 
connected at zone 4 (far from the pulsed load). 
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Pulsed Load at Zone 1, Storage Distributed Over Zones 1 and 4 

In another case study, storage is distributed over two zones: zone 1 and zone 4; and 

the simulation results are shown in figure 8.13. In this case, oscillations take place at bus 

4, similar to the previous case, the battery at the far bus (bus 4) starts discharging not in 

synchronism with the pulsed load. While, the battery (or the portion of energy storage) at 

bus 1 significantly assists the super capacitor in mitigating the effect of the pulsed load. 

No voltage, frequency or loading violation was reported in this case. 

Pulsed Load at Zone 1, Storage Distributed Over Zones 1, 2, 3 and 4 

The most reliable distribution of battery storage during sever conditions is when the 

storage is divided into all the four zones. The results for this case are shown in figure 

8.14. All the generators encounter significantly less oscillations when the battery storage 

is distributed over the different zones. The batteries contribute to mitigating the pulsed 

loads, the voltage oscillations are within the ±10% limit and no frequency violation was 

reported and the loading of all the generators is within limits, and is relatively low. 

Pulsed Load at Zone 1, No Storage Placed 

In this last case study, there is no storage on the microgrid. Figure 8.15 shows the 

results for this case and it illustrates that all the sources in the system including the 

generators and the SC encounter big oscillations corresponding to the pulsed load. 

Voltage violation is reported on the AC buses, and on the DC bus and frequency violation 

and over loadings are reported as well. Table 8.3 presents a summary of all the results for 

the security and stability assessment of the system for better comparison, The system 

violations in different cases were also shown in terms of voltage, frequency and loading 

of the equipment. 
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(a) (b) 

(c) (d) 

 
(e) 

Figure  8.13  Response of the hybrid power system to the pulsed load with the storage 
distributed between zones 1 and 4. 



 

236 
 

(a) (b) 

(c) (d) 

 
(e) 

Figure  8.14  Response of the hybrid power system to the pulsed load with the storage 
distributed among zones 1, 2, 3 and 4. 
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(a) 

 
(b) 

 
(c) 

Figure  8.15  Response of the hybrid power system to the pulsed load with no battery 
storage. 



 

238 
 

 
Table 8.3  Dynamic security analysis summary 

# Event Description Voltage Frequency Loading Security
Event 
Type

1 Cable 1-2 Outage    Unsecure

C
on

ti
ng

en
ci

es2 Cable 1-4 Outage    Unsecure

3 MTG2 Outage    Unsecure

4
MTG2 Outage with Energy 
Storage Distribution

   Secure

5 ATG2 Outage    Unsecure

6 PMSM Outage    (on limit) Unsecure

7 Pulse Load and Storage at Zone 1    Secure

St
or

ag
e 

D
is

tr
ib

ut
io

n

8
Pulse Load at Zone 1 and Storage
at Zone 4

   Unsecure

9
Pulse Load at Zone 1 and Storage 
distributed between Zones 1&4

   Secure

10
Pulse Load at Zone 1 and Storage 
distributed between Zones 1, 2,3 
& 4

   Secure

11
Pulse Load at Zone 1 without 
storage

   Unsecure
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Chapter 9 : Real-Time Energy Management Algorithm for Plug-In Hybrid 

Electric Vehicle Charging Parks Involving Sustainable Energy 

Another form of hybrid AC/DC power systems could be a grid-connected smart 

charging park. In this chapter, a real-time energy management algorithm (RTEMA) for a 

grid-connected charging park in an industrial/commercial workplace is developed and 

presented. The charging park under study involves Plug-in hybrid electric vehicles 

(PHEVs) with different sizes and battery ratings as well as a photovoltaic (PV) system. 

Statistical and forecasting models were developed as components in the developed 

RTEMA to model the various uncertainties involved, such as the PV power, the PHEVs 

arrival time and the energy available in their batteries upon their arrival. The developed 

energy management algorithm aims at reducing the overall cost of charging the PHEVs 

per day, mitigating the impact of the charging park on the main grid and contributing to 

shaving the peak of the load curve. Hence, the benefits of implementing this RTEMA is 

shared among the customers individually, the charging park considering all customers as 

a bulk of power connected to the grid and the AC grid, which makes it applicable for 

various business models. The developed RTEMA utilizes a fuzzy controller to manage 

the random energy available in the PHEVs’ batteries arriving at the charging park and 

their charging/discharging times, power sharing among individual PHEVs within the 

charging park (V2V functionality) and power charging between the charging park and the 

main AC grid (V2G functionality). The developed RTEMA will be simulated using the 

standard IEEE 69-bus system at different penetration and distribution levels. Obtained 

results verify the effectiveness of the developed RTEMA, its validity and applicability.  
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EVs Batteries’ Charging/Discharging Coordination 

Plug-in hybrid electric vehicles and Plug-in electric vehicles are gaining much 

popularity due to the global call for clean energy. Several pioneer automation companies 

are in the process of making EVs a better option for vehicle buyers. Therefore, it is 

almost certain that the penetration level of these EVs into our national grid will keep 

growing. However, the grid, in its current status, is not fully prepared yet to a high EVs 

penetration level. There are some problems related to their charging process; the process 

of charging a random number of batteries with random energy demand represents a 

demand side management dilemma. For instance, it is expected, since EV owners within 

the same society are very likely to share the general outlines of their life styles, that the 

grid will be subjected to a big demand from EVs batteries at the same time when people 

are back from work. Therefore, researchers have developed some ideas and algorithms to 

manage this process [183], [193]-[199]. The output charging rate setting of each EV 

according to these algorithms is constant during the charging period. In this work, an 

RTEMA that is based on a set of priority levels of the EVs is developed. EVs will be 

moved from a priority level to another, and hence treated differently, based on their SoC 

and time remaining for their departure time. Moreover, they did not consider the 

inclusion of renewable energy sources in the system, which holds the implementation of 

these algorithms back since we know that the concept of EVs is attached with obtaining 

the power to charge them from renewable energy. Otherwise, we end up burning more 

fossil fuels and hence polluting the environment even more. Saber et al. discerned this 

drawback and directed their work towards systems that involve renewable energy sources 

considering the added complexity and uncertainty involved with them in [200], [201]. 
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They aimed at minimizing the cost and emission attached with the charging process of 

EVs distributed in the network.  

In this study, the energy management of a large number of EVs connected to the grid 

at the same point as a charging park [202] is developed. The main contributions of this 

chapter can be summarized as follows: 

1. To develop statistical probability density distributions for the uncertain variables 

involved. 

2. To develop energy management algorithm for a grid-connected charging park. 

3. To involve a PV system as a renewable energy source in the developed algorithm. 

4. To vary the charging rates of the EVs dynamically in real-time according to their 

SoC. 

Charging Park Architecture 

A single-line diagram of the system under study is as shown in figure 9.1. It consists 

of a grid-connected charging park involving a PV system with a total capacity of 500 kW, 

whose maximum power point (MPP) is continuously tracked and integrated into the DC 

bus linking the PHEVs’ batteries to the main grid. Hence, the charging park appears as a 

DC microgrid with local generation from the PV system and a storage system 

representing the PHEVs batteries. The charging park is connected to the main grid 

through a bi-directional converter. The bi-directional converter is a fully controlled AC-

DC/DC-AC voltage source inverter (VSI) that has the capability of controlling the 

amount of power flowing between the AC and DC grid in both directions. Hence, the 

amount of power flowing in either direction can be set to a certain pre-set value, which is 

decided by the developed RTEMA.  
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Figure  9.1  One-line diagram showing a lumped model of the PHEVs charging park 

power system. 

 

Modeling System Uncertainties 

The developed smart charging park is a parking garage in a workplace, possibly a 

university campus, which contains 1500 parking spaces. We assume that 60% of the 1500 

cars parking daily in this charging park, i.e. 900 cars are PHEVs. These 900 PHEVs are 

the ones managed in this study. Among the 900 PHEVs considered, around 32.5% are 

compact sedan with an energy consumption of 0.3 kWh/mi, 37.5% are mid-size sedan 

with an energy consumption of 0.45 kWh/mi, 20% are mid-size SUV or pickup with an 

energy consumption of 0.6 kWh/mi, and 10% are full-size SUV or pick up with an 

energy consumption of 0.75 kWh/mi.  

It can be noticed that the smart charging operation involves several uncertain 

quantities, such as the power available from the PV system, the arrival and departure 

times of the PHEVs and their initial SoC when they arrive to the charging park. These 

quantities, although their randomness, are crucial parameters when the energy within this 

system is to be managed and controlled. Therefore, various models were developed as an 

attempt to model these uncertain quantities using regression techniques based on 

historical data or statistical techniques based on probability distribution, or density, 
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functions (PDF). The developed predictive models will be used for the decision making 

process of the RTEMA.  

Online PV Modeling 

For the study implemented in this study, the same forecasting technique presented in 

chapter 6 was used. The data forecasting process was based on PV data collected over 15 

years on an hourly basis for an example PV system in the state of Texas. The power data 

was set as output data to be forecasted, while the day of the year (1-365) and the hour of 

the day (1-24) were used as inputs.  

PHEVs Arrival and Departure Times 

The estimated power demanded by a PHEV  iPHEVp ,ˆ  can be represented by (9.1) 

tt

md
iPHEV

AD

EM
P

ˆˆ

ˆ
ˆ

,



                                             (9.1) 

Where: 

iPHEVP ,
ˆ  is the estimated power demanded by the ith PHEV,  

dM̂  is the estimated number of miles driven daily, 

mE  is the energy consumption per mile for the PHEV, 

tD̂  is the estimated departure time, and 

tÂ  is the estimated arrival time. 

However, there are bounds for the values obtained from (9.1). In order to extend the 

life time of the batteries, upper and lower limits for their SoC are enforced. In this work, 

the lower limit of SoC (SoCL) is set to 10%, which is enforced inside the PHEV itself 

during its operation, while the upper limit (SoCU) is set to around 80%. The upper limit is 
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enforced in the charging park. The developed algorithm will be responsible for charging 

the batteries of the PHEVs connected to the charging park up to that upper limit. Hence, 

the estimated energy needed by a PHEV for a coming day (the term, md EM ˆ ) will be set 

to a maxim saturation point at 70% of the total battery capacity (BC). 

In this work, the charging park is located in a place that is active from 9:00 am to 

18:00 pm. Inspecting a large number, around 30000 samples, of random PHEVs arrival 

and departure times, a probability distribution trend can be envisioned. Based on the 

Central Limit Theorem; stating that  the conditions under which the mean of a 

sufficiently large number of independent random variables, each with finite mean and 

variance, will be approximately normally distributed, the parameters of the distribution 

are as given in Table 9.1. 

Table 9.1   Parameters of the duration time probability distribution 

Time 

Parameter 

Arrival Departure 

Weekday Weekend Weekday Weekend 

µT[h] 9 11 18 15 

(σT)2[h] 1.2 1.5 1.2 1.5 

Combining the PDFs of At and Dt, the joint probability density function of Dt-At can 

be founded, which is the daily parking duration.  It’s a normally distributed random 

variable with µd=9.0 and σd=1.92. The PDF of the daily parking duration time is shown in 

figure 9.2 [203]. 

According to [204], the average yearly total miles driven of U.S.A is 12,000 miles 

with 50% of drivers drive 25 miles per day or less, and 80% of drivers drive 40 miles or 

less.  
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Figure  9.2  PDF of the parking duration time of PHEVs (Dt-At). 

 

Therefore, a log normal distribution is utilized to approximate the PDF of Md. The results 

show that the total yearly driving distance average is 12,018 miles, 48% of the vehicles 

drive 25 miles or less each day, and 83% of the vehicles drive 45 miles or less each day. 

These results, shown in figure 9.3, closely approximate the actual driving distance 

statistics in [204]. The distribution is then represented by (9.2)  

  
}

2

ln
exp{

2
),,(

2

2

m

md

md

p
mmdM

M

M
Mf

d 





                    (9.2) 

Where µm=3.37 and σm=0.5.  
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Figure  9.3  PDF of the miles driven daily for PHEVs. 
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PHEVs Energy Demand 

Using the PDF of the daily duration time, the PDF of the daily travel distance and the 

power consumption of each class of the PHEVs, the PDF of the power needed by each 

PHEV when it is connected to the parking lot is finally found as an inverse Gaussian 

distribution with µp=1.573 and σp=3.652 as shown in figure 9.4. 
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              (9.3) 

 The mean value of this distribution for a given day will be used to estimate the 

power needed by PHEVs. At a certain time t, the total power needed by the PHEVs 

which will arrive during the current sample is calculated as follows, 

  iPHEVPfNdttfP
tAtA

Tt

t
tAPHEV ,,,ˆ  


                (9.4) 

This model along with the forecasting model of the power generated by the PV, the 

hourly price of the utility grid energy and the daily load curve will be used to develop our 

RTEMA. 
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Figure  9.4  PDF of the daily power needed by PHEVs. 
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Real Time Energy Management Algorithm 

PHEVs Charging Priority Levels 

The charging process of the PHEVs is handled such that its impacts on the utility grid 

are mitigated and the overall cost of energy consumed by the PHEVs is reduced. The 

developed RTEMA will tend to vary the charging rates of the connected PHEVs in order 

to achieve these goals. The charging priority of these PHEVs is carefully considered so 

that we get the capability of managing the energy in the system without affecting the 

constraint of having all the PHEVs leaving with the desired SoC.  The priority level of a 

PHEV is determined based on its demanded power assuming that it will be charged from 

its initial SoC when it arrives to the charging park to the maximum SoC desired at the 

same power decrement.  

 
tD

SoCSoCBC
P

t

U
PHEV,i 


                       (9.5) 

Where PPHEV,i is the power demanded by the ith PHEV. Moreover, the total power is 

given by (9.6) 





N

i
PHEV,iPHEV PP

1
                                     (9.6) 

The charging rates of different PHEVs with different SoCs and power requirement 

and correspondingly different priority levels will be handled differently. For instance, a 

PHEV that is connected to the parking park at 9:00am, its departure time is set by the 

consumer to 6:00pm, with an SoC of 65% which is relatively high, will be charged at a 

relatively small charging rate. On the other hand, a PHEV that is connected to the 

charging park also at 9:00am but leaving at 10:30am with an SoC that is only 10%, will 
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be probably set by the RTEMA to be charged at the maximum charging rate. This is the 

role of the priority levels in the algorithm. Moreover, since the first car is staying for 

eight hours, its battery can be used as an energy storage facility for V2V or V2G service. 

Furthermore, the charging priority of a PHEV is dynamically changing during its 

existence in the charging park, i.e. a PHEV may jump from a certain priority level to a 

higher one right before its departure. On the contrary, at a certain time if the energy price 

is below the daily average price and the generated PV power is more than the total power 

required by the PHEVs, then the extra power can be saved in some existing PHEVs and 

hence the priority level of these PHEVs will consequently decrease. The charging priority 

is as shown in table 9.2. PHEVs in levels 1, 2 and 3 can only be charged because they 

need much energy either because their SoC is low, e.g. close to 10% when connected to 

the parking station, or their departure time is approaching but the desired SoC have not 

been met yet. PHEVs in levels 4 and 5 can be discharged to fulfill the V2G and V2V 

service.  

Table 9.2   Charging rate for different charging levels 

Priority level Power requirement 
Maximum 

charging rate 

Minimum 

charging rate 

Level 1 PPHEV,i ≥ 15kW 12kW 12kW 

Level 2 10kW < PPHEV,i < 15kw 12kW 6kW 

Level 3 5kW < PPHEV,i < 10kW 8kW 0kW 

Level 4 2kW < PPHEV,i < 5kW 5kW -5kW 

Level 5 PPHEV,i ≤ 2kW 2kW -8kW 
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Real-Time Decision Making Process 

A fuzzy agent will be responsible for yielding the charging rate of each PHEV (Pbatt,i) 

based on the current and estimated power needed by the PHEVs, the estimated power 

generated by the PV and the daily energy tariff. Without V2V and V2G service, the 

power flow for the current sample between the utility AC grid and the charging park can 

be calculated as, 

PHEVPHEVpvGV pppp ˆˆˆ 2                           (9.7) 

 GVp 2ˆ  along with the energy tariff (Tar) will be used as the inputs for the real-time 

Mamdani-type fuzzy logic power flow controller to determine the charging index, which 

will finally determine the charging rates of each charging priority level. The power flow 

between the utility AC grid and the DC charging park will be fuzzified as negative “N”, 

positive small “PS”, positive medium “PM”, positive “P” and positive big “PB”. 

Similarly, the energy price will be described as very cheap “VC”, cheap “C”, normal 

“N”, expensive “E”, and very expensive “VE”. The method implemented for 

defuzzification is the centroid based method. Within the model, minimum and maximum 

are used for AND and OR operators, respectively. The output of the fuzzy controller is 

the charging index (δP), which is used for adjusting the charging rates for PHEVs in 

different priority levels. The parameter can be described as “NB”, “N”, “Z”, “P”, and 

“PB”, which stand for negative big, negative, zero, positive and positive big. The 

Mamdani-type model based fuzzy rules of the fuzzy logical power flow controller is 

given in figure 9.5/table 9.3. The membership functions of GVp 2ˆ , Tar, δP and the surface 

of the rules are shown in figure 9.5. 



 

250 
 

 

Figure  9.5  A flow-chart showing the developed RTEMA. 

After gaining the charging index δP, which varies from [-1 1], the charging rates of 

each charging priority levels can be calculated as follows, 
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                                  (9.8) 

The sign of δP along with the PHEV priority level indicates whether a PHEV is 
charging or discharging. 

Daily Load Curve Consideration 

Based on different values of δp, the PHEVs in different priority levels in every sample 

will be charged with different charging rates. In order to limit the impacts of the charging 

process of PHEVs to the utility AC grid even more, the charging algorithm may also take 

into consideration the local load curve. For example in the winter, the daily load curve 
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has two peaks; one takes place at around 9AM and the second at around 9PM. Moreover, 

the load is almost minimum at around 3 PM, so it’s the best time to charge the PHEVs if 

we want to decrease the impacts of the PHEVs to the utility AC grid. 

Hence, another index σP will be used to adjust the power flow between the AC grid 

and the hybrid parking system. This index is designed based on the load curve at the main 

feeder. When the load demand is relatively low, below 60kW in our design, we don’t 

need to consider the local load and the charging rate will be just dependent on δP, which 

is the output of the fuzzy controller depending on the PHEVs demand and the energy 

tariff. If the load demand is between 60kW and 80kW, δP will be decreasing linearly from 

1 to 0.9. When the load demand exceeds 80kW, the local load is high and near the peak, 

so a quadratic equation with 0.9 at load 80kW and 0 at load 100kW will be used, which 

can limit the impacts from the charging parks to the AC utility grid  by decreasing the 

charging rate. This is mathematically represented by, 
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Where, 
LP̂ is the normalized load data. After obtaining σP, the final charging rates for 

PHEVs in different priority levels can be achieved by, 
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Results and Discussion 

In order to examine the operation of the developed RTEMA, the IEEE 69-Bus Radial 

Distribution System was used. Figure 9.6 shows a single line diagram of this system 

which includes 69 Buses and 7 Lateral Branches. The feeder voltage is 12.66 kV and the 

total load in the base case is 3.82 MW and 2.85 MVar. Load Flow calculations in the base 

case presents 4.03 MW and 2.85 MVar power infeed from the external grid and a 

minimum voltage of 0.9 p.u. at Bus-54. The network loss is 0.23 MW or %5.7 of total 

system active power. In order to study the behavior of the developed algorithm under the 

daily load characteristic we defined typical daily load curves for summer and winter, 

which are obtained from Florida Electric Utility as shown in figure 9.7 [204]. Because the 

vast majority of customers in Florida are residential, peak demand in the summer season 

begins to climb in the morning, peaks during the hottest part of the day (4:00 PM), and 

levels off as the evening approaches. 

 

 

Figure  9.6  69-Bus Radial Distribution Test Feeder. 

 

This usage pattern corresponds to the increase of loads due to air conditioning for 

residential customers. In the winter season, the usage pattern has two distinct peaks: a 
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larger one (8:00 AM) in the mid-morning and a smaller one (8:00 PM) in the late 

evening, which correspond to residential heating loads [204]. In order to hold a consistent 

comparison of the cases under study, it is assumed that the normalized summer and 

winter curves have the same daily peak and the same daily energy consumption (kWh). 

Hence, we made a little change in winter curve to have the same integration as the 

summer curve during a 24-Hour day time.  

Therefore, the PHEVs daily consumption in both cases is intended to be 11.453 

MWh. This amount of load is 15.5% of the total load before adding PHEVs (73.78 

MWh). figures 9.8 and 9.9 show the voltage profile in all buses for 24-hour. Minimum 

voltage of summer happens at Bus-54 at 4:12PM. Accordingly, minimum voltage of 

winter load occurs at the same bus, but at 8:24 AM. The RTEMA algorithm was 

implemented in different cases with different techniques as follows. 

 

 

 

 

Figure  9.7  Florida’s normalized summer and winter daily load curves. 
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Figure  9.8  69-Bus daily voltage profile with no PHEVs for summer load. 
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Figure  9.9  69-Bus daily voltage profile with no PHEVs for winter load. 

All PHEVs Connected to Bus-20  

In this case, all PHEVs are connected as an integrated car park to bus-20. Without 

any optimization the lumped load has the daily curve as shown in figure 9.10 with a solid 

line.  

 
Figure  9.10  PHEVs daily load profile with different optimization types. 
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The daily peak is 3.383 MW which occurs at 9:10 AM. Without any energy 

management procedure some buses at the ends of the feeders experience high voltage 

drop, i.e. 0.751 p.u. with summer load and 0.72 p.u. with winter load characteristics, 

which are shown at figures 9.11 and 9.12. This drop may harm the sensitive loads on the 

distribution feeder and need to be improved by using the developed RTEMA. The daily 

active power consumption of PHEVs is show in figure 9.10 with a Dash-Dot curve. The 

PHEVs consumption is distributed in long- hourly-based manner and hence the peak of 

this load is decreased considerably and shifted to 11:00 AM. The voltage daily profiles 

are also shown for summer and winter loads in figures 9.13 and 9.14 respectively which 

present better voltage behavior during 24-hour operation. Not only voltage is affected by 

using the developed RTEMA, but also the feeder losses decreased from 6.89% to 5.66% 

in summer and from 7.15% to 5.33% in winter load.  

Since the winter power losses improved more than summer losses, the results show 

that the performance of the RTEMA is dependent on the feeder load curves, too. 

Therefore, the load curves of summer and winter loads of this feeder have been included 

in the RTEMA as described previously. The results of the RTEMA are also demonstrated 

at figure 9.10 with considering summer and winter load characteristics in the energy 

management process. As shown in figure 9.7 the peak load of summer occurs at 4:00 PM. 

Therefore, by considering the load curve, the RTEMA tries to put less loading stress 

around this time which is obvious at figure 9.10 with a long-dash curve. Accordingly, for 

winter load curve with two peaks, main one at 8:00 AM and minor one at 8:00 PM, the 

RTMEA tends to charge the PHEVs after the first peak and before the second peak. The 

daily voltage profiles improved in these cases and are similar to Figs. 9.13 and 9.14.   
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Figure  9.11  Daily voltage profile with no RTEMA for summer load. 
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Figure  9.12  Daily voltage profile with no RTEMA for winter load. 
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Figure  9.13  Daily voltage profile with RTEMA considering energy function for summer 
load. 
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Figure  9.14  Daily voltage profile with RTEMA considering energy function for winter 
load. 

PHEVs Distributed Equally among 5 Buses 

In order to study the effect of the PHEVs load distribution in radial distribution 

feeder, in this case all the PHEVs are distributed equally at buses 20, 30, 41, 48 and 67. 

Hence, the same amount of load which was considered in the previous case is equally 

distributed at these nodes and the RTEMA uses the PHEVs’ same daily distribution curve 

and feeder total daily load curve to manage the PHEVs charging process. Therefore, the 

results of the RTEMA are similar to the previous cases for the summer and winter 

optimized daily load curves. The 24-hour daily load-flow results in better voltage 

profiles, which are shown in Figs. 9.15 and 9.16 for summer and winter loads, 

respectively. The RTEMA objective function is based on energy by considering feeder 

load characteristic. The voltage profiles in this case are similar to feeder main profiles 

before connecting PHEVs, i.e. Figs. 9.8 and 9.9. Table 9.4 presents a summary of the 

results for all cases studied in this chapter. Obviously, the feeder total losses and voltage 

profile improved in this case, too. For example in the summer load case, the feeder total 

loss is decreased from 5.59% to 4.53%.  
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Figure  9.15  Daily voltage profile with RTEMA considering energy function and 
summer load curve. 
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Figure  9.16  Daily voltage profile with RTEMA considering energy function and winter 
load curve. 

 

PHEVs Distributed Equally among 10 Buses  

In this last case, all the PHEVs are distributed equally among ten buses in order to 

study the PHEVs parking distribution effect in radial feeder. These nodes are: 20, 26, 30, 

34, 41, 48, 54, 58, 67 and 90. Similar to the previous case, the RTEMA will improve the 

system voltage profiles. The response will be more similar to previous case and is 

comparable to the case with no PHEVs. The results of minimum voltage, total loss of 

feeder and its maximum loading and peak hours are also presented at table 9.4, and they 

illustrate that more distribution of PHEVs does not have a significant effect on radial 

distribution system parameters anymore.  
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Chapter 10  : Design and Protection of Distributed DC Power System 

Architectures 

Laboratory Setup 

In this chapter, the design and implementation of a laboratory-based distributed DC 

power system testbed is presented. The developed testbed was implemented at the Energy 

Systems Research Laboratory, Florida International University. It consists of five zones; 

four of these DC zones are connected to four AC generators, two 10.4 kVA and two 13.8 

kVA, through controlled AC-DC converting power electronic converters, while the fifth 

zone is connected to a 6 kW photovoltaic (PV) emulator, and 6 kW battery storage. The 

values of the parameters of the power electronic converters utilized, in addition to the 

various filters in the system, are given. Moreover, the control techniques and the 

controllers designed to operate the developed testbed are discussed. Several experimental 

results were included to verify the validity of the developed testbed and its applicability 

as an educational and research tool to study modern design, operation and control aspects 

related to DC microgrids and distribution system, as well as renewable energy integration 

to DC networks. 

In addition, a complete protection system for the developed DC distribution system 

was designed and presented. The developed protection scheme targeted faults on the AC 

side as well as faults on the DC side. Moreover, a coordination scheme among the 

various protection devices in the system, and corresponding to different types of faults, 

was designed. The challenges associated with protecting DC systems, such as arcing and 

system time constant, were investigated. The results obtained verify the validity of the 

developed protection system.  
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 System Design 

System Layout 

The system consists of five main zones as shown in figure 10.1. There are four 

identical (in terms of circuit connection) zones that correspond to the four generators of 

the system and a fifth subsection that corresponds to the renewable energy source. Each 

of the four AC generator-based zones consists of six components: a motor (emulating the 

prime mover), a three-phase generator, an AC filter, an uncontrolled bridge rectifier, a 

DC filter and a DC/DC controlled boost converter as shown in figure 10.2. The values of 

the parameters for each of the components are shown in table 10.1. 

 

Supervisor	Controller
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DC Bus

DC Filter 

DC Filter Diode Rectifier
Diode Rectifier
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M2

Boost Converter
Boost Converter Boost Converter

Boost Converter
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G2

DC Filter 
DC Filter 

Bidirectional Converter
DC/DC converter MPPT Control

AC Filter Diode Rectifier
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M3G3
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AC Filter
AC Filter
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Zone	5

-

Local	Controller

 

Figure  10.1  A Schematic diagram of the developed laboratory based testbed setup. 
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Figure  10.2  A circuit diagram of each zone. 

 

Table 10.1   System Parameters 

Component Value 

Lac 24 mH 

Rac 0.9 Ω 

Ldc 2.7 mH 

Cdc 1200 µF 

Lb 6 mH 

Cb 1200 µF 

  

Uncontrolled Rectifier Design 

Diode rectifiers are the most commonly used in the industry due to their simplicity. 

They do not need control signals. The voltages across the diodes of the rectifier change 

periodically, following the cycles of the supply voltage. As a result, the switching of the 

conducting diode is consummated by natural cycling of the supply voltage. This process 

is known as natural commutation. For the current to flow, at least one diode must be ON 

in each half of the bridge.  Consecutively, the proper line to line voltage is supplied to the 

load. The uncontrolled bridge rectifier design using six diodes can be observed in figure 
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10.2. The average output voltage can be obtained using the following formula 

 
LLV

V 
23

0                                                              (10.1) 

Filter Design 

AC filter 

A three-phase line reactor was used at the input side of the uncontrolled rectifier to 

make the current waveform less discontinuous resulting in lower current harmonics. 

Since the reactor impedance increases with frequency, it offers larger impedance to the 

flow of higher order harmonic currents. The value of the inductors (Lac) was selected 

based on the value of effective impedance that forces the total harmonic distortion to be 

less than 5%. Adding this filter inductance, between the generator output and the input 

terminal of the rectifier, causes overlap of conduction between outgoing diode and 

incoming one. Although this overlap reduces the average DC bus voltage, it will be 

compensated by the boost converter. 

DC filter 

Inspecting the output voltage of an uncontrolled rectifier, it can be seen that the 

output DC voltage pulsates at a frequency of six times that of the fundamental of the 

source voltage. Therefore, an LC filter (Ldc, Cdc) was used to decrease the ripple and 

increase the average value of the DC voltage at the input terminals of the boost converter.  

Photovoltaic Generation and Battery Storage 

A 6 kW programmable DC power supply was used to emulate a typical I-V 

characteristics curve according to the following formula, 
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Where ILG is the light generated current in [A], IOS is the reverse saturation current in 

[A], q is the Electronic charge in [C], A is a dimensionless factor, K is the Boltzmann’s 

constant in [m2kg/ks2], Rs is the series resistance of the cell [Ω], Rsh is the shunt resistance 

of the cell [Ω] and T is the Ambient temperature in Kelvin [ºk]. 

Furthermore, the developed testbed was equipped with a battery bank consisting of 12 

lead acid batteries connected in series with a 12-V output each. The battery bank is used 

as the main energy storage of the system. 

DC-DC Converter Design 

The boost converter was used to boost and control the output voltage of the 

uncontrolled rectifiers in the first four zones, and to control the PV output voltage and 

track its maximum power point (MPP) in the fifth zone. A boost converter includes a 

power semiconductor switch (IGBT), a diode, an inductor and a capacitor. The boosting 

action is achieved by storing energy in the inductor during the ON conduction mode and 

releasing this stored energy during the OFF mode. The input inductor (Lb) value was 

selected such that the boost converter operates in a continuous conduction mode, while its 

capacitor was designed such that its output ripple does not exceed 5%. A proportional 

integral (PI) controller was used to control the output of each of the boost converters used 

throughout the system. The values of the proportional gain (Kp) and the integral gain (Ki) 

were obtained such that the phase margin of the boost converters is within 45°-60°. 

Figure 10.3 shows pictures for the hardware components of the developed system. 
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(g) 

Figure 10.3  Hardware components developed for the implemented system: (a) 
uncontrolled rectifier, (b) AC filter, (c) DC filter, (d) controlled DC-DC boost converter, 
(e) AC measurement and protection box, (f) DC measurement and protection box and (g) 

load emulator. 

System Control and Operation 

Normally, the battery charger is operated in a current-control mode for charging and 

discharging the battery. In addition, the converter connected to the PV source is operated 

in a maximum power point tracking (MPPT) mode. Each of the boost converters is 

equipped with a local controller, moreover, a supervisor controller is used to monitor the 

operation of the various parts of the system, and act as a supervisory controller for the 

other local controllers. Several operational scenarios can be implemented using the 

developed testbed. 

Master-Slave (Communication-Based) Control Mode 

In this control technique, one of the DC-DC converters takes the charge of regulating 

the voltage on the DC bus, while the other converters operate in a current-control mode. 

The supervisory controller is responsible for selecting the converter that operates in the 

voltage-control mode, and sending current reference signals to the other converters. The 
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voltage-controlled converter in this case is analogous to the slack bus of an AC system, 

which regulates the frequency of the network and maintains the system power balance, 

however in this case it regulates the DC bus voltage. Moreover, the current-controlled 

converters are similar to the power-controlled buses in an AC network. Voltage-

controlled converters correspond to a voltage reference and yield a regulated DC voltage 

disregarding the load current and the input voltage, within a range. Current-controlled 

converters correspond to a reference current signal. 

A drawback of the master-slave control technique is its dependence on 

communication, which may decrease the reliability of the system. However, in modern 

smart grids, which are highly-based on reliable communication infrastructures, this 

architecture is more applicable since it can be integrated in wide are monitoring, control 

and protection systems and real-time management systems.  

Droop Control Mode 

Droop control is used to distribute a load between the source converters without any 

communication required among them. Each source converter’s DC bus voltage is 

measured as a feedback signal, and then each of the source converters supply a portion of 

the power necessary to keep the system balanced, taking into consideration the losses of 

the DC power system. The droop characteristics of each controller can be designed such 

that the power sharing from each source is proportional to its rated capacity, or depending 

on its location, etc. The DC bus voltage decreases as the output current from the 

converter increase in order to provide a stable function.  

Heavy Load Mitigation Mode 

In order to mitigate the effect of these loads in the developed testbed, the converter in 
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the closest zone to the pulsed load is switched to the voltage-control mode, no matter 

what its initial stage is, in order to compensate for the voltage fluctuations expected. 

Moreover, the battery converter will be switched to a voltage-controlled mode so that it 

can supply as much energy as possible during the pulsed load, however, a saturation limit 

for the current drawn from the battery has to be pre-defined based on its power capacity. 

Several energy management algorithms can then be also implemented. 

Operational Results and Discussion 

In order to evaluate the performance of the developed DC distributed power system 

under different loading conditions and using different control architectures, several 

experiments were conducted. For control purposes, several dSPACE 1104 controller 

development systems were used as master and slave controllers. The switching frequency 

of the controlled converters used is 2 kHz. 

In the first case study, the system is controlled such that the sharing from each zone is 

controlled. Each of the zones then corresponds automatically to any load changes and 

adjusts its output power to maintain the desired percent of demand it is controlled to 

follow. In this case, the four zones are controlled such that they equally share the 

demanded power as shown in figure 10.4. Initially, a load of 1.9 kW is connected to the 

DC bus, it can be seen that each of the zones is sharing almost one fourth of the needed 

power. The load is then doubled to 3.8 kW, as can be seen, when the load is increased, 

the sharing from each zone increases as well, to maintain the load supplied, while 

maintaining the 25% sharing reference. This mode of operation is applicable when the 

generators of the system have close ratings and there is no preference on which generator 

should supply the load; if there is no consideration for the sharing, such as economic 
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dispatching or optimal load flow. Figure 10.5 shows the DC bus voltage in addition to the 

AC currents while running this experiment. It can be noticed that the DC voltage is 

stable; some voltage dip takes place when the load demand is increased then it settles 

down at its initial point.  

 
 
Figure  10.4  DC output currents from each of the four zones corresponding to a total load 

of 1.9 kW (initial), then a step change in the load to 3.8 kW (1.5 A/div, 16.67 ms/div). 

 
 

Figure  10.5  AC currents and DC voltage response to a total load of 1.9 kW (initial), then 
a step change in the load to 3.8 kW (Vdc: 300 V/div, 33.3 ms/div, Ia,b,c: 2 A/div, 33.3 

ms/div). 

In case two, zones two, three and four were controlled through a PI current-controller. 

In this mode, a current reference value can be set. However, the boost converter 
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connected to one of the zones (zone 1 in this case) has to keep the voltage of the DC bus 

regulated. Hence, a voltage controller was used in zone 1. In order to examine this mode 

of operation, a set of current reference changes for zones 2, 3 and 4 were applied,  

 I4 is initially 2 A, then decreased to 1.6 A at zone 2. 

 I3 is initially 2 A, then decreased to 1.2 A at zone 3. 

 I4 is initially A, then decreased to 1.2 A at zone 4. 

Here, Vdc that is controlled by zone 1 is set to 318 V. 

It can be seen that from figure 10.6 that zone 1, which is responsible for regulating 

the voltage is playing another essential role, which is to maintain the power balance in the 

network. When I4, I2 or I3 decrease, I1 increases to compensate and balance the power. 

Figure 10.7 shows the AC and DC voltages during the same experiment. It can be seen 

that the DC voltage is stable. Moreover, the AC voltages are not perfectly pure sinusoidal 

due to the fact that the system is relatively small; the generators’ ratings are not big 

compared to the demand. Hence, harmonics are of significant impact on the voltage wave 

shape. 

 
 

Figure  10.6  DC output currents response from each of the four zones corresponding to a 
set of step changes in the current reference (2 A/div, 0.2 s/div). 
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Figure  10.7  AC voltages and DC voltage response to a set of load step changes (Vdc: 
300 V/div, 33.3 ms/div, Va,b,c: 70 V/div, 33.3 ms/div). 

 

Protection Design and Equipment 

There are some technical challenges while designing a protection scheme for DC 

distribution systems, such as the fact that there is no zero crossing point for DC voltages 

and that fault interruptions must be done at high voltages, which is challenging and can 

reduce the life of the breakers. Moreover, the relatively low cable impedance of DC 

systems, along with the fast discharging of the DC link capacitor [205], may make the 

fault current rise to a very high value for a very short time in the range of <10 ms (down 

to less than 1ms). Hence, any breaker implemented on DC systems should have a reaction 

time that is in the range of 1 ms to 5 ms and even less. There is still research being 

conducted for developing better and more reliable ultra-fast circuit breakers in the order 

of µs reaction time. The protection coordination among the circuit breakers in DC 

systems is not well developed like in in the case of AC systems. The problem in DC 

systems is that the rise time of fault current is very high so it is practically difficult for the 

 Vdc 

Va,b,c 
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breakers to differentiate the faults in different sections until there is an observable 

difference in any of the given parameters. The lack of standard DC voltage levels for DC 

distribution systems adds to the complexity of handling such systems. Another 

challenging issue related to the protection of DC systems is grounding. The grounding 

used on the AC side cannot be used directly for the DC side. A new ground should be 

created for the DC side separately. This way the DC and AC systems can be` separately 

protected from any ground faults. 

Case Study Description 

A protection system was designed to be implemented on the DC system that was 

presented earlier in this chapter. A schematic diagram of the system, from a protection 

point of view, is as shown in figure 10.8; it consists of four AC generators (two 13.8 kVA 

plus two 10.4 kVA) linked to a DC distribution system through an AC/DC conversion 

stage consisting of an uncontrolled rectifier in cascaded by a controlled boost converter. 

Moreover, the system also includes a battery storage system. 

AC Feeder 

For the AC feeder, being the bridge connecting the uncontrolled rectifiers to the 

generators, all the protection devices should be AC based. There are several protection 

schemes and devices already used in the industry for AC feeders. Some of these schemes, 

which are effective for the DC distributed power system application considered in this 

chapter, were implemented. Since the AC feeder is connected to the rectifiers directly, 

any fault might either influence the diodes of the rectifier or the inertia of the generators. 

Moreover, an AC feeder has some filtering characteristics since it can be modeled by an 

RL circuit at this length. Therefore, considering the limitations on the generator, filters 
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and the rectifier, the protection design and devices are selected. In this application, the 

under-frequency, over-frequency, under-voltage, over-voltage and over-current relay 

element schemes are designed. When any of the above relay scheme logic gets satisfied, a 

signal from the relay will be sent to open the AC breakers. The solid state breakers are 

used in this chapter, which has an operating voltage range of 48-530 V. The transient 

peak overvoltage can go up to 1200 V with a maximum load current of 25 A. It has a 

good reaction time due to its maximum turn-on time and minimum turn-off time of ½ 

cycles. These specifications suit this application.  

 

 
(a) 

 

 
(b) 

Figure  10.8  A schematic diagram of the system under study; (a) layout of the system 
and faults locations, (b) snubber circuit. 
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The Converter 

The conversion from AC to DC is done here using two stages; an AC/DC 

uncontrolled rectifier stage cascaded by a DC/DC boost converter stage. As this 

combination is acting as a unit, any fault inside the converter is considered similar to a 

fault that occurs just outside the converter. The reason for this assumption is that 

separating the converter from the sources would obviously stop supplying power to the 

fault, which can be done by using the breakers right before and after the converter. Even 

though the converter is not included as one of the points of fault occurrence, its 

parameters, such as voltage and/or current, are very useful in controlling the fault 

situations and setting the critical limits for the protection devices. The diodes used in the 

uncontrolled rectifier have a specific current carrying capacity; beyond which they can be 

damaged. Therefore, using this parameter to set a limit would be one of the ideas to 

protect the converter. In this case, the overcurrent limit for the diodes is set to 3.08 p.u.     

DC Bus 

The DC bus is the place to which all the sources, loads and static storage elements are 

connected. The protection devices are placed right after the DC capacitor link of each 

sub-system. Disturbances on one of the sub-systems should not affect the power supplied 

to the load from any other sub-systems. Hence, using proper coordination schemes, the 

sub-section having the fault can only be isolated without interrupting the rest of the 

system.  

Another situation would be a disturbance right on the DC bus. In this case, there is an 

effect on the DC loads as well as the DC feeders connecting the supply and the converter 

to the DC bus. To protect the complete system, the breakers on the DC feeders have to 
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operate in order to separate all the sub-systems providing power to the DC bus. 

Moreover, the DC loads should be separated. Due to the very quick change in the DC 

current, practically it is difficult to identify and operate the breakers in that short time 

using the values of the current as relaying signals. Therefore, using the absolute value of 

the derivative of the current would help us detect the fault since the rise of the current 

will be faster than the actual current rise. This could help the circuit to react faster when 

the fault occurs. The interruption of this fault can be done using ultra-hybrid circuit 

breakers [206]. Using the voltage of the DC link would also be another way to interrupt 

the faults at the DC bus. Looking at the derivative of the converter current and the DC 

link voltage, the operation of the breakers are done in this study. The DC solid state 

breakers are used, which have a maximum turn-off time of 1 ms. They can be used in the 

voltage range of 0-400 V at a maximum load current of 12 A. However, using molded 

case circuit breakers (MCCB) would also be another good option for this application.          

DC Loads 

Every sub-system has some local loads, just before the DC bus.  There are two loads 

and a battery connected directly to the DC bus of the system. One load is the main high-

priority load, while the other load and battery are of low priority. If there is any fault near 

the loads, using proper protection techniques and devices, the faulted areas or loads 

should only be separated to assure selectivity and maintain the operation for the rest of 

the system. In order to achieve this, separate ultra-fast DC fuses are installed near the 

loads. These DC fuses have a maximum turn-off time of 250µs, which is faster than any 

breaker in this system. The derivative of the DC current and the voltage across the DC 

link capacitor are also used to detect any faults that occur near the load location. So any 
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faults at the DC load will be disconnected with fuses and after the fault clearance they are 

manually changed. 

Grounding 

Grounding is mainly used in any system to protect it from any ground faults, 

moreover protective earthing is used to protect the personnel from electrical hazards. The 

AC generators are grounded through their star connections; this is used as the ground for 

the AC side. There are several grounding techniques for DC systems, such as isolated 

ground, high impedance grounding and low impedance grounding. However, the 

essential point to be considered is to have a separate grounding for AC and DC. To 

achieve this separate grounding scheme, an isolating transformer (star-star) [207] of 5 

KVA on the AC feeder is used for each of the four subsystems. Now the question is 

which grounding scheme should be implemented on the DC side that well suits this 

application. Isolated ground would not be a good technique; firstly it is not safe to be 

implemented in a lab environment and secondly for any ground faults it would be 

difficult to detect and stabilize the system back to normal operation. Any of the two 

techniques, low impedance grounding and high impedance grounding can be used. The 

resistor value used for these grounding techniques should be a proper trade-off between 

ground currents and line to ground voltage [32]. In this application, the negative pole of 

the DC bus is grounded through a high resistance of 800 Ω as in IT-DC systems [208]. 

The ground current in normal conditions is observed to be around 3 mA, which is 

reasonably safe for the system.    

Fault Analysis and Coordination Scheme 

An exhaustive fault analysis is crucially needed in the process of developing an 
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efficient protection system. In this chapter, the focus is not just on analyzing the faults 

but also to explain some methods to interrupt those faults with suitable breakers, switches 

and fuses. Depending on the requirement, the protection devices are either used 

separately or in conjunction with other devices to protect the circuit. As the protection 

devices are set up at 4 different points in every sub-system, in addition to separate 

protection for the loads and battery, proper coordination among these protective devices 

has to be assured. This coordination of protection is dealt with while discussing each fault 

and the results collected for it. Initially, the fault analysis is done in PSCAD/EMTDC and 

the results are shown and explained. However, this same simulated environment is 

designed in the DC distributed architecture testbed providing a separate control center to 

observe all the measurements and control the protection equipment through dSPACE 

1104. 

AC Side Faults 

The AC grid can face different faults, such as line to line fault, line to ground fault at 

the point shown in figure 10.8. The sensitive components to be considered during the 

faults are the diodes of the converter and the DC link capacitor, with filters and cables 

being considered. In this application, since the system is small, any fault on AC side will 

have an insignificant impact on the DC loads. The current and voltage limits of the circuit 

are set based on the levels up to which the components can withstand. The overcurrent 

value is set to 1.23 p.u, overvoltage to 1.25 p.u, under-voltage to 0.75 p.u, over-frequency 

limit to 63 Hz and under-frequency to 57 Hz. 

Line-Line Fault 

A line to line fault at point 1 (FP1) on the AC side is shown in figure 10.8. It can be 
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seen that the current levels on the AC side as well as the DC side rise for the faulted 

phases, while the voltages drop down. As observed from figure 10.9(a), the AC current is 

crossing the overcurrent limit of 1.23 p.u after 3.5 ms, and the signal started from zero 

(fault being between phases A and B). While the line to ground voltage (peak) of phases 

A and B shown in figure 10.9(b) drops down below the under-voltage limit of 0.75 p.u 

and this happens after 8.0 ms, the signal started from zero. Moreover, what can be also 

observed in this scenario is that the phase angle of current between phases A and B 

became 1800 after the fault, while the current in the un-faulted phase becomes almost 

zero. This can be used as an effective detection parameter if synchronized measurements 

are available. Moreover, if the response of this fault on the DC side is observed, the bus 

voltage and the DC bus current stay within the safe limits because of the filter 

capacitance and inductance present after the un-controlled rectifier.  

Next, the aim would be to clear this fault in the shortest possible time because the AC 

current crosses the current limit of the circuit, which is 1.23 p.u. The AC solid state relays 

detect the fault, to operate the breakers in 8.3 ms to clear the fault. The frequency remains 

the same after the fault, but the under-frequency and over-frequency limits are set in any 

emergency situations. With the operation of the AC breakers, the generator is separated 

from the circuit and the diode current is within limits. However, the DC breakers must be 

operated to isolate this sub-system. The relays used are accompanied with a reclosing 

scheme, so that after the fault clearance, the breakers reclose to continue the normal 

operation of the circuit. After 180 ms from the fault occurrence, the breakers are reclosed 

as observed from the graph considering the fault is cleared before this reclose. Due to this 

reclosing action, the DC current can rise to a high level. Therefore, in order to limit this 
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high current, a DC RL- snubber circuit is used. This snubber circuit was designed, Fig 

10.8(b), to control the arc during the reclosing phenomena. When the breaker is open, the 

IGBT blocks the current flow through it by using the relay signal from breaker. This relay 

signal first opens the IGBT and then the breaker. While reclosing, before the breaker 

closes, the IGBT closes in that very short time gap. So the arc goes through the snubber 

and reduces its impact on the main circuit.    
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(b) 

Figure  10.9  Line to Line fault at FP1; (a) current in phases A and B 180° apart and 
crossing limit of 1.23 p.u, (b) line to ground voltage going less than undervoltage limit of 

0.75 p.u. 

Line-Ground Fault 

At the same point FP1 in figure 10.8, the possibility of a line to ground fault is 
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discussed. As observed from figure 10.10(a) the phase voltage of phase A became zero 

after the fault and the current value in that phase observed from figure 10.10(b) rose to a 

high value of about 3.0 p.u. As the overcurrent limit is set at 1.23 p.u, the relay operates 

as the current value crosses this limit. Having a good response time of 8.3 ms for the 

breakers, it is flexible to protect the circuit and isolate it. Inspecting the effect of the fault 

on the DC side, no significant effect can be noticed. The snubber design assures a 

reduction in the effect of the arc. 

Coordination on the AC side 

To operate the breakers in a proper coordination for these faults, some priority setting 

has to be kept in mind. Looking at the results of figures 10.9 and 10.10 the AC breaker 

should be operated first to isolate the AC supply followed by the DC breakers to protect 

the sub-system. However, the DC breakers are operated from the signal generated by the 

AC relays. As for the Line-Ground fault, the same coordination scheme used for the line 

to line fault and the line to ground fault is operated and cleared.  

DC Side Faults 

DC grid faults are discussed in this section analyzing each fault separately while 

explaining the possible relaying and protection coordination. The relays are operated 

based on over-current, over-voltage and under-voltage limits settings for the circuit. 

There are two sections involved in this case; one with the DC bus connecting each of the 

sub-systems and the other one would be the loads and the battery connected to the bus. 

Proper coordination is required to differentiate faults at the crucial points of the system. 

The over-current limit is set at 1.23 p.u, under-voltage and over-voltage limits at 1.875 

p.u and 3.125 p.u, respectively.  
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(b) 

Figure  10.10  Line to Ground fault at FP1; (a) current crossing the limit of 1.23 p.u, (b) 
line to ground voltage going less than undervoltage of 0.75 p.u. 

Fault at the DC Bus (FP2) 

The possible faults that might occur on the DC side are at FP2, FP3, and FP4 of the 

system. These points are dealt with separately then the coordination scheme to 

differentiate these faults is analyzed. Firstly, considering a fault at FP2, which is the DC 

bus location, the results are depicted in figure 10.11. At the instant of fault, there is a 

sudden change in the DC current due to the fast capacitor discharge. As explained earlier 

in this chapter, using the derivative would help us quickly detect the fault and 

consequently use ultra-hybrid circuit breakers to interrupt the fault. The limit for the 
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derivative of DC current is set at 1.23 p.u/ms. As can be observed in figure 10.11(a) the 

derivative of the DC current reaches the limit of 1.23 p.u/ms in less than 500 µs. 

Therefore, using an ultra-hybrid circuit breaker, a 300 µs interruption time can be reached 

[206], which is quite sufficient for this application. Furthermore, the derivative of the 

voltage at the DC link, figure 10.11(b) drops down to 0.85 p.u, which crosses the under-

voltage limit. The relay operation is done using the derivative of the DC current along 

with the DC link under-voltage in combination.  The effect of this fault is observed on the 

AC current and voltages which are interrupted by the AC breakers. The load voltage 

drops down very low due to the fault on the bus, which affects all the sources connecting 

the load. 

Fault at the DC load (FP3) 

FP3 is the point of concern when it comes to the load because it is considered as high-

priority load. This fault has an influence on the complete system, and has more influence 

on the load. The effect of this fault is very similar to FP2 but there will be difference at 

the time scale of ms between the two of them. This is discussed during coordination. The 

detection of this fault is done using the derivative of the DC current along with the DC 

link voltage. It is observed that the separation of load is done very fast before the AC and 

DC breakers could receive the relay signal. Fault at the battery can be interpreted the 

same way as the loads, but with different protection limits which can be much higher than 

those for the loads.     

Coordination Scheme on the DC Side 

The most important operation of the complete protection system lies in the 
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coordination of breakers. For any specific fault, the breaker that is responsible and 

required to clear the fault should be operated. A normal breaker cannot differentiate faults 

at different points in the system. It just opens and closes based on the relay signals. So the 

relays are responsible to operate the breakers in a coordinated scheme.  
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Figure  10.11  Pole to Pole fault at point FP2; (a) derivative of the DC current, (b) DC 
bus voltage.                                                                          

In this application, the fault points to be differentiated are (FP2, FP3) and (FP2, FP4). 

The first task would be to pick up the parameter that best differentiates the fault and the 

second task would be to select the appropriate breaker to open.  From figure 10.12 (a), it 

is clear that the derivative of the DC current due to FP2 has more slope than the 

derivative of the DC current due to FP3. Moreover, the DC bus voltage reaches zero, 
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figure 10.12 (b) due to FP2 faster than that due to FP3, where the derivative of the DC 

link voltage can depict the difference. These two parameters can differentiate the faults 

FP2 and FP3. The next situation would be between FP2 and FP4. For this case, the ultra-

fast fuses installed at the DC load are the primary reason to distinguish the faults. For any 

fault at FP4, the load branch, being the high-priority load separates itself very fast so that 

there will be no fault in the system to open the DC breakers and AC breakers. The 

remaining loads open even faster than the high-priority load as the ultra-fast fuses have 

<250µs reaction time.    
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Figure  10.12  Coordination between the faults at FP2 and FP4; (a) derivative of the DC 
current, (b) derivative of the bus voltage. 
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Distribution Architectures Implementation 

The developed testbed has a reconfiguration capability, which enables us to compare 

the performance of the various distribution architectures in a power system. As an 

example, the four distribution architectures that may be used on a shipboard power 

system will be compared. These architectures are the Radial AC, Medium Voltage DC 

and Zonal DC distribution systems and they will all be implemented on the developed 

power system testbed. Figure 10.13 shows a general overview of the testbed and its 

reconfiguration capability. The system consists of 5 busses; four of which are AC buses 

and bus 5 represents the microgird. Each of the AC busses consists of a prime mover-

generator set cascaded by two possible paths for the power entering the bus giving two 

options. If Sac is ON and Sdc is OFF, the power will flow in an AC form to the bus. 

However, if Sdc is ON and Sac is OFF the power will flow to the bus through an AC/DC 

rectifier yielding DC power. This flexibility of supplying the system with AC or DC 

power allows the reconfiguration of the system to test different architectures. The DC 

microgrid involves fuel cell generation, battery storage and super capacitors. Sac and Sdc 

do the same role here as explained earlier. Switches designated S1:S8 give more 

flexibility and reconfiguration capability to the system. 

AC Radial Distribution  

 In this architecture, the power flows in a radial manner. Every bus is just 

connected to the bus/buses physically existing around it. This will be implemented on the 

testbed by switching S1, S3, S6, S8 and Sac ON; and switching S2, S4, S5, S7 and Sdc 

OFF. Figure 10.14 shows the power flow in the testbed with the radial architecture 

implemented.   
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Figure 10.13 The developed reconfigurable testbed. 

 

 

Figure 10.14  Radial AC distribution. 

Medium Voltage DC Distribution  

 Medium voltage DC power distribution systems are being considered for future 

naval warships. There are several design considerations attached to them. In this case, all 

the generators will be sharing DC power. This will be implemented on the testbed by 

switching S1:S8 and Sdc ON; and switching Sac OFF. Figure 10.15 shows the power 

flow in the testbed with the medium voltage DC distribution architecture implemented.   
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Figure 10.15  Medium voltage DC distribution. 

AC Zonal Distribution 

 In zonal architectures, the generator in a zone supplies the load within that zone, 

and shares its power when needed with other zones. This has an advantage in terms of 

protection limiting a fault taking place in a zone from propagating in the rest of the 

system. Zonal approach also has an economic impact reducing the material and labor 

costs. This will be implemented on the testbed by switching Sac ON; and switching 

S1:S8 and Sdc OFF. Figure 10.16 shows the power flow in the testbed with the zonal AC 

distribution architecture implemented.   

 

 

Figure 10.16  Zonal AC distribution. 
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DC Zonal Distribution 

 This case is similar to zonal AC distribution. However, the power here is 

transferred in the form of DC using rectifiers. This will be implemented on the testbed by 

switching Sac ON; and switching S1:S8 and Sdc OFF. Figure 10.17 shows the power 

flow in the testbed with the zonal DC distribution architecture implemented.   

 

 

Figure 10.17  Zonal DC distribution. 

Response to Pulsed Loads 

In order to investigate the various architectures, their performance under pulsed load 

condition is examined. The pulsed load implemented is connected at bus 5. It has an 

amplitude of 5 kW and a duration of 0.05 s, and it takes place after 0.1 s. Figures 10.18-

10.21 show the performance of the radial AC distribution, medium voltage DC 

distribution, zonal AC distribution and zonal DC distribution, respectively. It can be seen 

that DC architectures generally encounter relatively less voltage drop due to the absence 

of the inductive drop in the lines. It can be also noticed that zonal architectures, beside 

the fact that they have higher efficiency, have less voltage due to the deactivation of the 

connecting lines between the zones. Figure 10.18 shows that that the maximum voltage 
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drop is 0.05 PU while the power losses are 16%, which is relatively high as compared to 

the other architectures. Figure 10.19 shows that the response to pulsed loads in the case 

of medium voltage DC distribution is significantly improved, since the maximum voltage 

drop reported is 0.012 PU and while the power losses are reduced to 10%. Figure 10.20 

shows the performance of the zonal DC distribution architectures. It can be noticed that it 

results in the minimum voltage drop of 0.008 PU during the occurrence of the pulsed 

load. It also gives the minimum power losses of 7%. The response of the zonal AC 

distribution network is shown in Figure 10.21. It shows that the maximum voltage drop 

reported in this case is 0.09 PU, while the average power losses are 13%.  

 

 

0.05 0.1 0.15 0.2
0.9

1

1.1

V
1 (

P.
U

)

0.05 0.1 0.15 0.2
0.9

1

1.1

V
2 (

P.
U

)

0.05 0.1 0.15 0.2
0.9

1

1.1

V
3 (

P.
U

)

0.05 0.1 0.15 0.2
0.9

1

1.1

V
4 (

P.
U

)

0.05 0.1 0.15 0.2
0.9

1

1.1

V
5 (

P.
U

)

Pulse load

Vmin=0.95 P.U

 

Figure 10.18  Radial AC architecture response. 
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Figure 10.19  Medium voltage DC architecture response. 
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Figure 10.20  Zonal AC architecture response. 
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Figure 10.21  Zonal DC architecture response. 
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Chapter 11 : Conclusions and Recommendations for Future Work 

Conclusions 

Different aspects related to the design, implementation, protection and energy 

management of hybrid AC/DC power systems and DC distributed architectures were 

presented throughout this dissertation. Regarding the design and hardware 

implementation, the application of DC-DC boost converters as an interface between 

renewable energy sources and the DC bus in a DC zonal electric distribution system was 

investigated. Several modifications were applied to the conventional boost converter in 

order to enhance its performance. Two novel topologies were proposed, namely: the 

inductively-coupled converter and the series-parallel compensation converter. The 

proposed converters outperformed the conventional ones. Different aspects related to the 

connectivity between DC microgrids were investigated. DC bus voltage control and grid 

connectivity were addressed. A vector decoupling controlled SPWM rectifier was 

designed and implemented to connect a DC system to the main grid. Results show very 

good response for the rectifier during steady state and transient operation. Moreover, a 

vector decoupling controlled SPWM bi-directional AC-DC/DC-AC converter was 

designed and implemented to allow power sharing between the AC and DC grids.  

A comparison between L-filter based and LCL-filter based converters was presented. 

The results show that, replacing the L-filter with an LCL filter increases the average 

efficiency of the bi-directional converter from 94.7% to 97.2% mainly due to the 

reduction of the size of the inductors and consequently their internal resistance. The THD 

decreases significantly by using LCL filters. The design and implementation of a 

programmable load emulator that has the ability to emulate the active power-versus-time 
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and reactive power-versus-time load curves was presented. The dynamic load emulator 

was experimentally tested under steady state, low frequency load profiles as well as 

pulsed loads. The results show that the developed dynamic load emulator has the ability 

to emulate loads active and reactive power simultaneously. Moreover, it has the ability to 

emulate short and medium term pulsed loads. The THD was found to be 7.85% and an 

average efficiency of 94% was also recorded. Furthermore, some contributions were 

achieved in terms of smart control of the power conditioning units. An adaptive fuzzy-

PID controller was proposed. This controller was designed to operate in PV systems 

supplying DC output current. The controller aimed at maximizing the operating range of 

the DC-DC converter by tuning the PID parameters at different operating points and 

selecting the most suitable parameter values dynamically. Moreover, a technique was 

proposed to enhance the transient response of the converter by controlling the derivative 

gain of the PID controller. 

In terms of intelligent operation, a real-time energy management algorithm in 

order to mitigate pulsed loads’ effects on system performance in smart microgrids 

was developed. The main objective of the algorithm was to manage the energy 

storage devices in real-time in order to maintain system stability and performance in 

the short-term operation and minimize the energy cost in the long-term operation, 

particularly for peak shaving purposes. The algorithm involved non-linear 

mathematical models for PV and load data as well as smart techniques including 

fuzzy logic and adaptive control concepts.  An investigation on the system 

performance under pulsed loads showed that when the battery’s state of charge is 

managed by the developed algorithm, the system has a better stability margin and the 
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battery is sustained to share all its stored energy to pulsed loads. The comparison 

with the system performance without a fully charged battery results in more system 

parameter changes, which may cause a stability problem or protection reaction due to 

the high drop in frequency/voltage and hence the system may be thrown off-line.  

Another real-time energy management algorithm for a grid-connected smart 

charging park based on charging priority levels was also developed. The developed 

algorithm allowed V2G and V2V functionalities and aimed at minimizing the total 

cost of charging by handling the charging rates of the EVs. An advantage of the 

developed algorithm was that the charging rates of the PHEVs during their parking 

period vary according to their state of charge. A Fuzzy agent was used as a 

component within the developed algorithm. Energy tariff, load demand and 

photovoltaic output power profiles were elements within the algorithm. The 

performance of the developed algorithm was tested by simulating its implementation 

on a charging park connected to the IEEE standard 69-bus system at different 

penetration and distribution levels. The results show a reduction in the overall cost of 

charging as well as a significant improvement in the voltage profile and the losses in 

the system.  

Moreover, the stability of hybrid AC/DC power system was presented. It was 

shown that the negative incremental resistance of some DC microgrid loads may 

cause stability issues that must be taken into consideration. In addition, a dynamic 

security study was conducted on a shipboard power system during the occurrence of 

pulsed loads. The most important conclusion of that study, besides investigating the 

response of the system corresponding to various contingencies, was that distributing 
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the battery storage over the various zones of the system significantly increases, not 

only its reliability but also its security margin.   

Finally, the design and protection of DC distributed power system architectures 

were studied, by designing a DC distribution testbed system. The system involved 

four AC generators that are coupled to a common DC bus through an AC/DC 

conversion stage. The system was tested experimentally and the results prove the 

validity of the system design and the proposed protection scheme. 

Recommendations for Future Work 

The hybrid AC/DC power system introduced in this dissertation involved power 

electronics, communication and distributed control as key enabling technologies. The 

basic foundation and platform to research distributed power system architectures was 

developed in this dissertation. Moreover, several operational schemes were proposed. 

However, there are many other ideas and technical aspects that need to be addressed, 

mainly in terms of the design and performance of the power electronic components used, 

the role of communication within the developed power system, and the hardware 

implementation of distributed and multi-agent control.  

The design and operation of the power electronic converters linking the microgrids to 

the main grid were presented. These energy links were controlled such that they allow the 

microgrids to provide ancillary services, such as active/reactive power compensation to 

the main grid. However, the control of these bi-directional converters can be modified to 

perform more functions including harmonic filtering, unbalancing compensation and DC 

offset cancellation. 
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The developed hybrid AC/DC power system is operated in a smart grid environment 

where communication plays a significant role. More investigations on the best 

communication architecture and its implementation are essential. The future work on this 

topic should also discuss the communication type and protocols, the types of transferred 

messages, the needed storage databases and the required devices. 

This dissertation introduced a good basis to visualize the benefits of distributed power 

system control over central control. More ideas are required on how to coordinate the 

operation of the distributed architectures and their interaction with the main grid such that 

the performance of the overall hybrid system is optimized. It is recommended to work on 

the idea of distributed or multi-agent control and investigate their practical 

implementation as embedded systems using microprocessors, microcontrollers or FPGAs. 

The agents may also be included as features within the smart meters used at the 

consumers’ side. 
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Appendices 

Appendix A. Support Vector Machines 

      Support Vector Machines can cope with the high non-linearity between inputs 

and outputs. They suggest that the data are mapped into a higher dimensional space 

namely, feature space Φ(x). Thus, the data are linearly separable in this space. The 

proposed SVM model has the designation YSVM and has the form given by (A.1) 

bxwYSVM  )(                                                                       (A.1) 

The coefficients w and b in (A.1) can be determined by minimizing the 

regularized risk function given by (A.2) 
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where, d is the vector of experimental measurements and y is the vector of 

prediction results. ε is a prescribed constant. ),( ydL  is the loss function and C is a 

prescribed regularization constant determining the trade-off between the training 

error and the generalization performance. The term 2

2

1
w  measures the flatness of the 

prediction model. Introducing slack variables ξ and ξ* leads to the following problem  

Minimize 
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The computations related to the non-linear function Φ are reduced to the form 

ΦT(x) Φ(y), which can be replaced by a kernel function )()(),( iji xxxxK  . 

Substituting with the kernel function in (A.1), it becomes 
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where, αi and αi
*  are Lagrange multipliers. It should be noted that vectors with 

0i  are called support vectors, they contribute to the final model. 

Appendix B. Online PV Data Prediction 

The available historical PV data are used to form the time series {PPV,t; t = 1,…, N}, 

where N is the total number of the hourly based observations available for fifteen years, 

i.e. N=131400. Moreover, forecasts of meteorological data are obtained using public 

websites. The numerical weather predictions (NWPs) of global irradiance are updated at 

00:00 and 12:00 each day. The ith update of the forecasts is the series  12...,,1,ˆ
, kP tPV , 

which is given in W/m2. The normalized solar power (τ) is defined as  

CSPV

PV

P

P

,

                                                                                     (A.6) 

Where PPV is the solar power and PPV,cs is the clear sky solar power. The clear sky model 

is defined as 

),(max, HDfP CSPV                                                                        (A.7) 

Where D is the day of the year and H is the time of the day. The function fmax is assumed 

to be a smooth function and thus can be estimated as a local maximum. Whereas, the 

estimated clear sky solar power designated ( maxf̂ ) is then used to form the output of the 

clear sky model as the time series 

 NtPCS
tPV ,...,1,ˆ
,                                                                            (A.8) 

Where CS
tPVP ,

ˆ  is the estimated clear sky solar power at time t. The normalized solar power 

is now defined as 
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And this is used to form time series of normalized solar power {τt ;t = 1,…, 131400}. For 

each (Dt, Ht) pair corresponding to the solar power observation PPV,t, weighted quantile 

regression estimates the q quantile by a Gaussion two-dimensional smoothing kernel. The 

estimated clear sky model CS
tPVP ,

ˆ is found as the quantile of the probability distribution 

function of the solar power time series.The problem is reduced to estimating CS
tPVP ,

ˆ  as a 

local constant for each (Dt, Ht). This is done by weighted quantile regression in which the 

loss function is 
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Where CS
tPVii PP ,

ˆ . The fitting of CS
tPVP ,

ˆ  is then done by 
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Is the two-dimensional multiplicative kernel function, which weights the observations 

locally to (Dt, Ht). In each dimension, a Gaussion kernel is used  
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Where fstd is the standard normal probability density function. A similar function is found 

for H dimension and the final two-dimensional kernel is found by multiplying the two 
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kernels. 

Adaptive linear time series models are applied to predict future values of the normalized 

solar power . The PV model uses lagged observations of  and NWPs as inputs. The 

model is given by 

  kt
NWP

tktksttkt ebaam    ˆ1)(21                                                       (A.14) 

Fitting of the prediction models is done using k-step recursive least squares (RLS) with 

forgetting. The regressor at time t is )ˆ,,,1( )(
NWP

tktkstt
T
tX   . The parameter vector is 

),,,( 121 baamT   and the dependent variable Yt = τt  

Hence, the model can be written as 
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The estimates of the parameters at t are found such that  
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Where the loss function is  
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This provides weighted least squares with exponential forgetting. The solution at time t 

leads to, 

ttt hR 1ˆ                                                                                     (A.18) 
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The k-step RLS-algorithm with exponential forgetting is 

T
ktkttt XXRR   1                                                                       (A.19) 
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And the k-step prediction at t is 

t
T
ttkt XY  ˆˆˆ                                                                                 (A.21) 

Equation (A.21) is used to predict the PV data online. 

Appendix C. Non-Linear Regression 

The set of non-linear functions selected for transforming input vectors contains 1
ix , 

2
ix , 3

ix , ix  and )(ln ix . These functions are useful to be used for transforming input 

vectors to achieve linearity between them and the output vector. The constants µ1, µ2, µ3, 

β are determined so as to maximize the correlation index r given by (A.22), which 

represents the linear relationship between any two vectors,  

22
)()(

)}(){(

  

 


avgavg

avgavg

UUTT

UUTT
r                                                       (A.22) 

Where, 

T, U are the two vectors representing 

iijjxfxf ijij  ,for)(),( simultaneously and, 

Tavg, Uavg are the average values of T, U. 

 The trial and error method was used for such determination; the constants were 

set to a small value (0.01) and varied in a wide range until the maximum correlation 

between the resulting transformed input vector and the output is obtained. Values of the 

constants µ1, µ2, µ3, β are 0.4, 0.8, 0.7 and 100, respectively. Hence, the set of non-linear 

functions selected to model each input vector were {xi
0.4, xi

0.8, xi
0.7, 100/xi, ln (xi)}   
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Therefore, the non-linear model for each variable (yi) for modelling the power is as given 

by (A.23): 

)ln(100 1144
7.0

33
8.0

22
4.0

11 iiiiiiiiiiiiiiii xbaxbaxbaxbaxbay                                     (A.23) 

Determination of constants {ai1, ai2, ... , aik} 

 The constants {ai1, ai2, ... , aik}have just two possible values 0 or 1, so they control 

the presence of the transformed vectors in the model. These constants are determined 

through correlation analysis through two subsequent steps, 

 Firstly, the correlation index r between fj(xi), y is determined by (A.22), where y is 

the real output values (experimental data which are required to be evaluated by the 

model). ai will equal 1 if the absolute value of the correlation index is greater than pre-

specified index r1 (r1 was taken as 0.5 for the non-linear model) and will equal 0 if the 

correlation index is less than r1.  

Through this step, only the functions having substantial effect on    the output y is 

retained for further processing. 

   The correlation index r between T and U is determined. If the absolute value of the 

cross correlation is smaller than a pre-specified value r2 (r2 was taken as 0.8 for the non-

linear model) both terms are retained otherwise only the term with the greater correlation 

with respect to y is retained and the other is eliminated to avoid information overlap. 

Up to this step, the non-linear basic matrix X is updated to a number of d1 basic 

columns. The reduced matrix is given the designation Xr and any linear combination of 

any of the vectors included in the reduced matrix forms a basis for the non-linear model. 
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Determination of constants {bi1, bi2, ... , bik} 

 If Xr1 is one of the combinations of the reduced basic matrix Xr having dimension 

d2 so the non-linear multivariable model has the following form 

22101
... dr

T yyybXbY                                             (A.24) 

The unknown vector of constant coefficients is given by:    

T
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Where  T
nyyyy )...,,,( 21  is the vector of real outputs and Q is the following weight 

matrix 
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and w is a weighting factor. Here, w was varied from 0.8 to 1 in step of 0.01 for the 

non-linear model.  

The final model has the lowest value of MAPE. 

 
 
 
 
 
 
 
 
 
 
 



 

324 
 

VITA 

AHMED MOHAMED 

1984 Born, Minia, Egypt 

2001-2006 B.Sc., Minia University, Minia, Egypt 

2006-2009 Research/Teaching Assistant, Minia University, 

Minia, Egypt 

2012 Teaching Assistant, Florida International University, 
Miami, Florida, USA 

2012 Awarded the Doctoral Evidence Acquisition 
Fellowship, Florida International University, Miami, 
Florida, USA 

2009-2013 Research Assistant, Florida International University, 
Miami, Florida, USA 

SELECTED PUBLICATIONS AND PRESENTATIONS 

A. Mohamed, V. Salehi and O. Mohammed, “Real-Time Energy Management 
Algorithm for Mitigation of Pulse Loads in Hybrid Microgrids,” IEEE Transactions 
on Smart Grid, vol. 3, no. 4, pp. 1911-1922, Dec. 2012. 

A. Mohamed and O. Mohammed, “Real-Time Energy Management Scheme for 
Hybrid Renewable Energy Systems in Smart Grid Applications,” Electric Power 
System Research, vol. 96, pp. 133-143, March. 2013. 

A. Mohamed, M. Elshaer, O. Mohammed, “Control Enhancement of Power 
Conditioning Units for High Quality PV Systems,” Electric Power Systems 
Research, vol. 90, pp. 30-41, Sept. 2012.  

V. Salehi, A. Mohamed, A. Mazloomzadeh, O. Mohammed, “Laboratory-Based 
Smart Power System, Part I: Design and System Development,” IEEE Transactions 
on Smart Grid, vol. 3, no. 3, pp. 1394-1404, Sept. 2012. 

V. Salehi, A. Mohamed, A. Mazloomzadeh, O. Mohammed, “Laboratory-Based 
Smart Power System, Part II: Control, Monitoring and Protection,” IEEE 
Transactions on Smart Grid, 2012, vol. 3, no. 3, pp. 1394-1404, Sept. 2012. 

O. Mohammed, A. Khan, A. Mohamed, A. Nejadpack, M. Roberts, “A Wavelet 
Filtering Scheme for Noise and Vibration Reduction in High-frequency Signal 



 

325 
 

Injection Based Sensorless Control of PMSM at Low Speed,” IEEE Transaction on 
Energy Conversion, vol. 27, issue, 2, pp. 250-260, 2012. 

M. Wahab, M. Hamada, A. Mohamed, “Artificial Neural Network and Non-linear 
Models for Prediction of Transformer Oil Residual Operating Time,” Electric Power 
System Research, vol. 81, issue 1, pp. 219-227, Jan. 2011. 

A. Mohamed, V. Salehi and Osama Mohammed, "Reactive Power Compensation in 
Hybrid AC/DC Networks for Smart Grid Applications," in Proc. of Innovative Smart 
Grid Technologies Conf., ISGT Europe 2012, Berlin, Germany, October 14-17, 2012. 

A. Mohamed, A. Nejadpack and O. Mohammed, “Design and Implementation of 
LCL-Filtered Three-Phase Active Rectifier for Bi-Directional Power Flow in 
Microgrid Applications,” in Proc. of the North American Power Symposium, NAPS, 
University of Illinois at Urbana-Champaign, Sept. 9-11, 2012. 

A. Mohamed and Osama Mohammed, "Real-Time Load Emulator for 
Implementation of Smart Meter Data for Operational Planning," in Proc. of the IEEE 
PES General Meeting 2012, San Diego, California, USA, July 22-26, 2012. 

A. Mohamed and O Mohammed, "Smart Control of Power Electronic Converters in 
Photovoltaic Systems," in Proc. of American Society of Engineering Education 2012 
Annual Conference, San Antonio, Texas, June 10-13, 2012. 

A. Mohamed and O Mohammed, "A Study of Electric Power Distribution 
Architectures on Shipboard Power Systems," in Proc. of the 2012 Electric Machine 
Technology Symposium, EMTS, Philadelphia, PA, May 23-24, 2012. 

A. Mohamed and O. Mohammed, “Connectivity of DC Microgrids Involving 
Sustainable Energy Sources,” in Proc. of Industry Application Society General 
Meeting, IAS 2011, Orlando, Florida, October 9-13, 2011. 

A. Mohamed, M. Elshaer and O. Mohammed, "Smart Operation for AC Distribution 
Infrastructure Involving Hybrid Renewable Energy Sources," in Proc. of the 18th 
IFAC World Congress, vol. 18, Part 1, pp. 13679-13684, Milano, Italy, Aug. 28-Sept. 
2, 2011. 

A. Mohamed, M. Elshaer and O. Mohammed, “High-quality integration of fuel cells 
energy into electric grids,” in Proc. of 4th International Symposium on Resilient 
Control Systems, ISRCS 2011, Boise, Idaho, USA, Aug. 9-11, 2011. 

A. Mohamed, M. Elshaer and O. Mohammed, "Bi-Directional AC-DC/DC-AC 
converter for Power Sharing of Hybrid AC/DC Systems," in Proc. of IEEE PES 
General Meeting 2011, Detroit, Michigan, USA, July 24-28, 2011. 


	Florida International University
	FIU Digital Commons
	3-21-2013

	Hybrid Power System Intelligent Operation and Protection Involving Distributed Architectures and Pulsed Loads
	Ahmed A. Mohamed
	Recommended Citation


	Hybrid Power System Intelligent Operation and Protection Involving Distributed Architectures and Pulsed Loads

