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ABSTRACT OF THE DISSERTATION 

LOCALIZED SURFACE PLASMON RESONANCE BIOSENSORS FOR REAL-TIME 

BIOMOLECULAR BINDING STUDY 

by 

Chang Liu 

Florida International University, 2013 

Miami, Florida 

Professor Chenzhong Li, Major Professor 

Surface Plasmon Resonance (SPR) and localized surface plasmon resonance 

(LSPR) biosensors have brought a revolutionary change to in vitro study of biological 

and biochemical processes due to its ability to measure extremely small changes in 

surface refractive index (RI), binding equilibrium and kinetics.  Strategies based on LSPR 

have been employed to enhance the sensitivity for a variety of applications, such as 

diagnosis of diseases, environmental analysis, food safety, and chemical threat detection.  

In LSPR spectroscopy, absorption and scattering of light are greatly enhanced at 

frequencies that excite the LSPR, resulting in a characteristic extinction spectrum that 

depends on the RI of the surrounding medium.  Compositional and conformational 

change within the surrounding medium near the sensing surface could therefore be 

detected as shifts in the extinction spectrum. 

This dissertation specifically focuses on the development and evaluation of highly 

sensitive LSPR biosensors for in situ study of biomolecular binding process by 

incorporating nanotechnology.  Compared to traditional methods for biomolecular 

binding studies, LSPR-based biosensors offer real-time, label free detection.  First, we 
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modified the gold sensing surface of LSPR-based biosensors using nanomaterials such as 

gold nanoparticles (AuNPs) and polymer to enhance surface absorption and sensitivity.  

The performance of this type of biosensors was evaluated on the application of small 

heavy metal molecule binding affinity study.  This biosensor exhibited ~7 fold sensitivity 

enhancement and binding kinetics measurement capability comparing to traditional 

biosensors.  Second, a miniaturized cell culture system was integrated into the LSPR-

based biosensor system for the purpose of real-time biomarker signaling pathway studies 

and drug efficacy studies with living cells.  To the best of our knowledge, this is the first 

LSPR-based sensing platform with the capability of living cell studies.  We demonstrated 

the living cell measurement ability by studying the VEGF signaling pathway in living 

SKOV-3 cells.  Results have shown that the VEGF secretion level from SKOV-3 cells is 

0.0137 ± 0.0012 pg per cell.  Moreover, we have demonstrated bevacizumab drug 

regulation to the VEGF signaling pathway using this biosensor.  This sensing platform 

could potentially help studying biomolecular binding kinetics which elucidates the 

underlying mechanisms of biotransportation and drug delivery.   
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Chapter 1 

 

Introduction 
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1.1. Motivation 

The motivation of this dissertation was to develop localized surface plasmon resonance 

(LSPR) sensors with enhanced sensitivity and capability of real-time kinetics 

measurements.  Highly sensitive LSPR allows monitoring conformational change of 

proteins, binding affinity as well as binding kinetics bwtween two organic or inorganic 

molecules.  This fundamental research could potentially benefit early diagnosis and drug 

development.  SPR was used as the platform technology as it provides several key 

advantages such as high sensitivity, fast response time and label-free detection for 

biomolecular binding measurements.  The goal of the dissertation was to develop real-

time, direct and simple LSPR sensors to measure all types of biomolecular binding, 

which can be broadly classified as organic-inorganic bindings and organic-organic 

bindings in this study. 

 

1.2. Specific Aims and Hypothesis 

Specific Aim 1: Development of highly sensitive LSPR sensor and its application on the 

detection of small heavy metal molecule binding.   

 

Protein conformational change induced by heavy metal molecule binding is small and 

undetectable using traditional surface plasmon resonance (SPR).  Thus the first aim of the 

dissertation research was to fabricate a 3D hydrogel-nanoparticle based LSPR sensing 

platform for sensitivity enhancement on this binding study.  ArsA ATPase and ArsD 

metallochaperone are two major sub-units of the arsenic detoxification pathway in charge 

of cytosolic arsenic extrusion and transportation, respectively.  ArsA-As(III) and ArsD-
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As(III) binding was used as models for sensor evaluations.   

 

We expected to achieve enhanced sensitivity on the detection of ArsA - As(III) and 

ArsD-As(III) binding with the 3D LSPR sensor comparing to the 2D LSPR sensor.  The 

association rate constant for ArsA-As(III) and ArsD-As(III) binding under different 

conditions was investigated to help understanding the arsenic extrusion pathway. 

 

Specific Aim 2: Sensing platform upgrade for biomarker study from living cell model.   

 

Biomarkers comprise of cellular molecules such as proteins or nucleic acids that can be 

detected in cells, blood, urine, or other body fluids and are over-expressed due to the 

onset of disease.  In order to measure cellular biomarkers using SPR, cells are usually 

lysed to extract cytosolic biomarkers.  The second aim deals with the development of a 

direct, in situ sensing strategy to detect biomarkers released from living cells.  Vascular 

Endothelial Growth Factor (VEGF) related to many cancers was chosen as the model 

analyte.  It is a significant angiogenic factor that plays a crucial role in tumor growth and 

metastasis.  This sensing platform possesses unique potential on tumor early diagnosis 

application, and most importantly on antineoplastic drug development.   

 

We expected to detect VEGF from cancer cells in real-time.  Some type of cancer cells 

have relatively low VEGF secretion rate, stimulation can be used to induce rapid 

exocytosis in order to measure the cell VEGF secretion level.  The sensor can be used for 

various applications such as drug development research, cellular and tissue level cancer 
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studies, etc.  The successful conception of this sensor will be an important step forward in 

investigating VEGF and other biomarker release kinetics and drug regulation studies.   

 

Specific Aim 3: Study of drug regulation on VEGF binding kinetics with living cell 

model.   

 

Monitoring biomarker release from living cells enables the study of drug regulation on 

biomarkers and their receptors.  Drug effects can be monitored on an in vitro living cells 

model which mimics the in vivo biomarker signaling pathway.  In order to evaluate the 

LSPR sensor on drug regulation studys, a VEGF specific antineoplastic drug known as 

bevacizumab was used as model analytes.   

 

We employed the sensing platform achieved in specific aim 2 to monitor the drug 

regulation of bevacizumab on the VEGF – VEGFR interaction.  We expected to observe 

high association rate between bevacizumab and VEGF.  Due to the neutralization effect 

of bevacizumab to VEGF, a lower association rate should be observed for VEGF – 

VEGFR interaction when bevacizumab presents.   

 

1.3. Biosensors 

1.3.1. Historical Survey 

Biosensors1 have received a lot of attention during the last 20 years because they find a 

very broad range of applications such as diagnosis and monitoring of diseases, 

environmental analysis, food analysis, as well as detection of illicit drugs, genotoxicity, 
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chemical warfare agents, and drug screening.2  The development of biosensors 

incorporates well established chemical sensing techniques with a bio-recognition 

element.  Recognition element’s current impact on biosensor technology rely on entities 

such as antibodies, enzymes, nucleic acids, molecular imprints, or even cells and 

tissues.3-5  Most biological systems have immune recognition systems through specific 

binding interactions.  Clark et al. and others first introduced biosensors in the 1950’s 

combining physically entrapped enzymes to an electrochemical transducer.6-7  In recent 

years, research efferts on biosensors has grown exponentially with researchers from 

different backgrounds: engineers, chemists, physicists and clinical researchers.  By the 

year of 2015, the global market for biosensors is expected to grow to $12 billion with 

point-of-care testing devices being the largest segment.  Continuous growth in population 

and aging population, and the consequent increase of chronic disease is the main driving 

force of this market, which is expected to have continuous impact for decades.  On the 

other hand, growing needs of biosensors for research activities within medicine industry 

are also innegligible.  Applications such as drug discovery, drug analysis, in vivo and in 

vitro test of pharmacodynamic effects require numerous studies with biosensors.   

 

1.3.2. Definition and classification of biosensor 

Biosensors are broadly defined as analytical devices that convert a biological response, 

based on the composition, structure or function of a biological system, into an electrical 

signal.  Biosensors are often used to determine the concentration of analytes or to monitor 

a biological system.6   
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A successful biosensor should possess the following beneficial features:   

1. Sensitivity: The response of the biosensor should be accurate and precise.  The 

signal to noise ratio of the biosensor should be high.   

2. Specificity: The bio-recognition element of the biosensor must be highly specific 

to the analysis.   

3. Stability: The biosensor must be stable within a reasonable period under normal 

storage conditions.   

4. Reproducibility: The response of the biosensor should be reproducible and linear 

over a relevant analytical range, without dilution or concentration.   

5. Biocompatibility: If the biosensor is to be used for in-vivo monitoring in clinical 

situations, the probe must be tiny and biocompatible, having no toxic or antigenic 

effects. If the sensor is reusable then it should be able to withstand standard 

sterilization procedures.   

6. Economical & labor efficiency: The complete biosensor should be cheap, small, 

portable and capable of being used by semi-skilled operators.   

7. Market needs: There should be a market for the biosensor. There is no benefit to 

developing a biosensor if other factors encourage the use of traditional methods.   

 

Biosensor generally consists of 3 parts: the sensitive biological recognition element, the 

signal transducer or the detector element, the biosensor reader device (Figure 1.1.).  
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Figure 1.1. A schematic illustration of the main components of biosensors. 

1. The sensitive biological recognition element, which can be, but are not limited to 

tissue, cells, microorganisms, cellular receptors, enzymes, antibodies, nucleic 

acids, aptamers, etc.  Generally, it should be a biologically derived material or 

biomimic component that binds or recognises the analyte under study.   

2. The signal transducer or the detector element (optical, electrochemical, thermal, 

piezoelectric, mass etc.) that transforms the signal generated by the interaction 

between the analyte and the biological recognition element into a signal that can 

be quantitivly measured.   

3. The biosensor reader device consists of associated electronics (signal processors, 

amplifiers, digital detectors, etc.) that are responsible for the display of the data in 

a user-friendly manner.   
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1.4. Surface Plasmon Resonance Biosensors 

The principle of SPR biosensors is the measurement of refractive index changes at a 

plane interface between two media with dielectric constants of opposite signs, a dielectric 

and a metal such as gold (because it gives an SPR signal at convenient combinations of 

reflectance angle and wavelength and is chemically inert), when a wedge of polarized 

light, under conditions of total internal reflection, is directed towards the glass face of the 

sensor surface (Figure 1.2.a).8  An electric field, known as evanescent wave, is generated 

when the polarized light strikes the glass. This evanescent wave interacts with, and is 

absorbed by, free electron clouds in the metal layer, generating electron charge density 

waves called plasmon that propagate parallel along the metal/dielectric interface, as can 

be appreciated in Figure 1.2.b by Badia et al., causing a reduction in the intensity of the 

reflected light. No photons exit the reflecting surface, but their electric field decreases 

exponentially with distance from the interface, decaying over a distance of ~1/4 

wavelength beyond the surface.  The resonant angle at which a minimal in intensity of 

reflected light occurs is a function of the local refractive index at or near the gold 

surface.9-11  Thus, the most important point in relation to the experiments is that a change 

in the bulk refractive index of the dielectricum medium and the adsorption or desorption 

of molecules from the metal surface changes the refractive index at the metal-dielectric 

interface and results in changes in the SPR signal.  LSPR is excited by a similar method 

to SPR excitation.  However, SPR is generated on a planar metal surface, whereas LSPR 

is generated on a nano-structure surface.  Such nano-structure causes a shorter decay 

length of light when penetrating the surface, therefore offers a higher spatial resolution 

and higher sensitivity than SPR. 
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Figure 1.2. (a) Kretschmann configuration SPR, (b) Plasmon propagation parallel along the 
metal/dielectric interface 

 

SPR is generated by linearly polarized light, with its electric (E) field vector elther 

parallel or perpendicular (Figure 1.3) to the plane of incidence.  Such polarized light is 

named p- or s- polarized light.  For the p-polarized light illustrated in Figure 1.3, there is 

an E-field component perpendicular to the interface Ez=|E|cos(θ).  As the definition of 

dielectric permittivity, ε1=(n1)2 and ε2=(n2)2 (medium 1=glass, medium 2=metal).  We 

assume that the media does not absorb light: ε0 ε1 Ez1=ε0 ε2 Ez2.   

Since ε1≠ε2 (n1≠n1)  Ez1≠Ez2, the change in Ez means the polarization charge 

distribution across the interface is discontinuous.  This change in Ez will give rise to the 

creation of electron charge density waves at the boundary.  On the other hand, s-polarized 

light has no Ez component, it cannot be utilized for generation of SPR.   
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Figure 1.3. Illustration of p-polarized light made incident on a planar interface of two medium.  
For a typical SPR instrument, medium 1 is a dielectric material such as glass, medium 2 is a metal 
such as gold. 

 

Earlier applications of LSPR biosensors were mainly focused on the interaction 

characterization of single molecules between each other: protein/protein, nucleic 

acid/protein, or nucleic acid/nucleic acid interactions.12-13 In 2008, Miura’s group 

demonstrated a prototype field portable LSPR system using monoclonal trinitrotoluene 

(TNT) antibody modified AuNPs for detection of TNT.14  They achieved a detectable 

range of 10 ppt to 100 ppb, which is four-fold more sensitive than that in the absence of 

AuNPs.  Using a similar principle, Kim’s group recently constructed an LSPR biosensor 

based on subwavelength 1D and 2D gold nanoarrays built on a thin gold film for the 

detection of avian influenza DNA hybridization.15  Their results showed that 1D 

nanogratings exhibited four-fold amplification of the SPR signal, and 2D nanohole arrays 

exhibited a 2.5-fold increase in amplification.  Although such technologies have 

successfully demonstrated high detection sensitivity in the range of picomolar of 

analytes, small molecules such as heavy metal ions have had difficulty being measured 
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using this current setup.  On the other hand, studies have addressed cellular structures,16 

such as artificial membranes17 and even whole biological organisms18 as interaction 

partners play a pivotal role.  Especially for the development of medical and 

pharmaceutical assay formats, utilizing LSPR biosensors, the shift from single-molecules 

interactions to the whole cell system with its complex regulation pathways is necessary.  

Many cellular activities can be evaluated by the change of cell secretions.  SPR has also 

been utilized on cellular level studies through detecting proteins or biomarkers in cell 

secretions.  In 2007, Li et al. demonstrated the detection of VEGF using SPR with 

detection sensitivity down to subpicomolar.  RNA aptamer microarrays were used to 

capture the VEGF on the sensing surface.  Another antibody-horseradish peroxidase layer 

was linked on top of the VEGF as a sandwitch layer.  5, 5′-tetramethylbenzidine was also 

immobilized on the sensing surface.  The localized horseradish peroxidase - 5,5′-

tetramethylbenzidine precipitation reaction was used to amplify the SPR response.19  Yu 

et al. studied the interaction between Bevacizumab (an antibody based drug for VEGF 

regulation) and VEGF using SPR in 2008.  Bevacizumab was found to specifically bind 

to human VEGF.  It is not a suitable drug for studies involving murine VEGF.20  Similar 

to these two studies, many published studies on the detection of proteins and biomarkers 

exocytosis using SPR only demonstrated the detection of analytes from solution.  

Moreover, Kyo et al. developed a SPR sensing platform to detect proteins from crude 

cells lysate.  This study has shown the specificity of SPR with a real biological fluid.21  

Another research group developed a SPR based sensing strategy to monitor the 

intracellular superoxide dismutase in E coli..22  Both of these stuies have achieved 

sensitive, label-free detection of analytes from cells.  However, cells were lysed to collect 
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analytes for SPR measurements.  The lysing process may potentially induce variations to 

cellular secretions and cause false results.  Till date, there is a lack of a non-invasive SPR 

sensing platform for cellular secretion studies. 

 

Figure 1.4 shows the BI-2000 flow injection SPR instrument that we employed in this 

dissertation study.  The instrument consists of two modules: a control module and a 

precision syringe pump.  The control module generates a 670nm laser for the excitation 

of SPR.  This laser makes incident on the SPR sensing surface after going through a 

prism.  A flow cell is attached on top of the sensing surface.  The precision syringe pump 

and the sample injection port are connected to the flow cell to provide a continuous flow 

of environmental buffer and to introduce samples to the sensing surface, respectively.   

 

Figure 1.4. A picture of the BI-2000 flow injection SPR instrument. 

 

A typical SPR sensorgram usually consists of the following curves (Figure 1.5): 

1. Baseline: A stable baseline is the reference for SPR angle shift induced by surface 

binding.  It is usually obtained by washing the surface with flowing buffer for 3-

5min. 
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2. Association curve: After the injection of the analyte, SPR basline will increase 

and reach a maximum point.  This process indicates the analyte passing through 

the surface and binding to the surface ligand.  Binding affinity information can be 

obtained from this curve. 

3. Dissociation curve: This process occur at the end of the injection, unbound 

analyte is carried away by the flowing buffer.  The baseline shift value (mDeg) 

after the dissociation curve bears information of the concentration of analyte. 

4. Regeneration (optional): The sensing surface can be regenerated by reagent such 

as HCl or NaOH for reuse.   

 

Figure 1.5. The sensorgram of baseline, association, dissociation and regeneration processes 
during a typical SPR experiment. (laboratory for genomics and bioinformatics, University of 
Oklahoma health sciences center) 

 

Furthermore, recent developments of LSPR sensors focusing on a reduction in device 
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size,23 imaging applications,24 and multichannel sensing12 have increased their 

significance. This great interest and development of LSPR sensors is due to its high 

sensitivity, selectivity, speed, and reliability in analysis. 

 

1.5. Other Methods for Binding Measurements 

1.5.1. Current Methods to Measure Protein-Arsenic binding 

Current methods used for As (III)-Ars proteins binding study are extended x-ray 

absorption fine structure (EXAFS), fluorescence excitation spectra, gel filtration, etc.25 

However, all aforementioned methods are associated with several disadvantages and 

limitations. EXAFS is a definitive method for analyzing metal ligands but lacks 

sensitivity and real-time analysis.  It thus requires intensive labor to reveal binding 

kinetic information from uncontinuous data.  Furthermore, EXAFS technique necessitates 

highly sophisticated, expensive detection equipment.  Fluorescence excitation spectra 

provide real time data acquisition in the millisecond range but cannot offer direct binding 

information.  Binding process is studied by measuring changes in fluorescence 

anisotropy.  Gel filtration technique for protein separation lacks accuracy due to residue 

on columns.  In addition, most of these equipments require trained personnel to use and 

maintain which add to the diagnosis costs.  Therefore, these techniques are not suitable to 

be used to study real-time binding affinity and kinetics.   

 

1.5.2. Current Methods to Measure Biomarkers 

Enzyme-linked immunosorbent assay (ELISA), fluorescence correlation spectroscopy, 

electrochemistry and Western Blotting, etc. are commonly used methods for detection of 
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biomarkers.26-27 However, all aforementioned methods are associated with several 

disadvantages and limitations. For instance, ELISA technique lacks sensitivity, 

reproducibility and real-time dynamic detection capabilities. Immunoassay techniques 

also require intensive labor work from trained personnel. Fluorescence spectroscopy 

techniques may be used for highly sensitive biomarker detection, but they require 

labeling samples with fluorescence dye. Electrochemistry sensing techniques offer time 

and cost effective, highly sensitive strategy for biomarker detection.  However, the major 

limitation of electrochemistry sensing is that it requires sample to be electrochemically 

active. SPR sensing platform in this proposed work is widely used in the past two 

decades in the application of diagnosis and monitoring diseases, environmental analysis, 

food analysis, as well as drug screening. SPR constitutes a very interesting alternative 

due to their advantages in the study of biomarker:28 

• High sensitivity (subnanogram mass or subnanometer thickness of the surface 

bound layer) 

• No need to label the analyte molecules, minimizing the potential negative impact 

of the label on their biological or chemical function. 

• Real-time monitoring of recognition processes in situ; this constitutes an 

important driving force in biosensor research focused in the development of large-

scale biosensor arrays composed of highly miniaturized signal transducer 

elements that enable the real-time and parallel monitoring of multiple species. 

• Ability to detect interactions at solid/liquid interfaces, which are involved in many 

biologically relevant recognition processes.   

However, there are also several disadvantages associated to the SPR biosensor.  The main 
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disadvantages are their high cost and lack of portability.  A typical commercialized SPR 

instrument can cost $50,000 to 500,000 with a size larger than a desktop computer.  SPR 

is also lack of simultaneous measurement capability, which makes it not suitable for high 

throughput applications. 

 

1.6. Polymer Brushes for Biosensing Signal Enhancement 

Polymer brushes may form ultrathin coatings, usually from block copolymers or end-

grafted polymers that are tethered with one chain end to an interface, which is generally a 

solid substrate.29  Polymer brushes exhibit a behavior that is comparable with self-

assembled monolayer (SAM).  If appropriate monomers are used, they provide a pathway 

for the fabrication of versatile adaptive surfaces capable of responding to changes of 

temperature, solvent polarity, pH, and other stimuli, generally by reversible swelling.30  

Polymer brushes are mainly applied onto surfaces by: (a) Physisorption; (b) Langmuir-

Blodgett technique; (c) The “grafting to” approach, also called, chemisorption, which 

involves the formation of covalent bonds between a polymer previously prepared and the 

surface; and (d) The “grafting from” approach, which involves the polymerization of the 

monomer or monomers from functionalized surfaces (also called surface initiated 

polymerization, SIP, or surface mediated polymerizations, SMP). This work employed 

surface initiated radical polymerization for the following significant advantage:   

• Better control of brush thickness, composition, and architecture 

• Broad choice of monomer 

• Compatibility with both aqueous and organic media 

• High tolerance toward a wide range of functional groups 
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Poly(N-isopropylacrylamide) (PNIPAAm) is one of the most widely studied polymer.31-32   

This non-ionic polymer undergoes a sharp hydrophilic-hydrophobic transition in aqueous 

solution at 32ºC.  Such property that has a variety of applications in many fields, 

including solute extraction and separation, controlled drug release,33 artificial organs,34 

and enzyme immobilization, with the swellable hydrogels prepared by polymer 

crosslinking.  PNIPAAm brushes have previously been grafted form different substrates 

and employed for the fabrication of functional surfaces capable of a reversible transition 

between hydrophilic and hydrophobic character when subjected to changes in 

temperature, and also have been combined with nanopatterning strategies.  Other 

polymers such as poly(acrylic acid) (PAAc) and poly(vinyl pyridine) (PVP) respond to 

changes in pH.35  PAAc, which is hydrophobic in its protonated state (pH < 4) becomes 

hydrophilic after deprotonation.36  PVP is also a pH dependent polymer that behaves as a 

hydrogel;37 it is hydrophobic in its deprotonated state (pH > 5) and becomes water 

soluble in its protonated state (pH < 5).  In spite of the characteristics of the intelligent 

polymers previously mentioned, the preparation of their copolymers results more 

interesting for sensing applications, since the combination of polymers with different 

characteristics allow the modulation of the final properties of the materials in the process 

that couples molecular recognition with swelling and shrinking processes.   

 

1.7. Arsenic Detoxification Research 

Arsenic is one of the most prevalent environmental toxins.  The natural content of arsenic 

found in soils varies between 0.01 mg/kg and a few hundred milligrams per kilogram. 

Arsenic is a component of over 245 minerals.  Volcano activities and other geological 
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process are sources of the high arsenic concentrations in the environment.38  Human 

activities are also significant sources of arsenic contamination in water and soil:   

 
• The disposal of industrial waste chemicals  

• The smelting of arsenic bearing minerals   

• The burning of fossil fuels   

• The application of arsenic compounds in many products especially in the past few 

hundred years  

 

Arsenic exists in nature in the oxidation states +V (arsenate), +III (arsenite), 0 (arsenic) 

and -III (arsine). In the aqueous environment, inorganic arsenic commonly exists in 

oxidation states as arsenous acid (As(III)), arsenic acid (As(V)), and their salts.  Organic 

arsenic compounds such as monomethylarsonic acid (MMA), dimethylarsinic acid 

(DMA) are usually less toxic than inorganic arsenic compounds.  Acute and chronic 

arsenic poisoning may cause disorder of cardio-vascular, nervous, respiratory and gastro-

intestinal system.  Moreover, Arsenic is a carcinogenic and may cause lung cancer, 

bladder cancer, liver cancer and etc.   

 

 

Today, arsenic contamination in drinking water is commonly found in India (West-

Bengal), Vietnam, Taiwan, Mexico, Argentina, Chile, Hungary, Romania, and many 

parts of the United States.39-40  WHO research reveals that over 40 million people are 

acute at risk of arsenic groundwater problems in Bangladesh.  Consequently, the chronic 
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toxicity of arsenic will be a common cause of death in Bangladesh.   

 

1.8. Current Chemotherapeutic Therapy and VEGF Regulation Therapy 

Chemotherapy is the treatment of cancer with an antineoplastic drug or with a 

combination of such drugs.  It is the most commonly used treatment for a vast majority of 

human tumors.  Principally, chemotherapeutic drugs kill cells with a rapid dividing rate.   

However, they also harm cells that divide rapidly under normal circumstances, such as 

cells in the bone marrow, digestive tract and hair follicles, thus results in the most 

common side effects of chemotherapy: myelosuppression, mucositis and alopecia.41  In 

the broad sense, most chemotherapeutic drugs work by impairing mitosis, effectively 

targeting fast-dividing cells and cause cells to undergo apoptosis.   

 

The majority of chemotherapeutic drugs can be divided into following categories: 

antimetabolites, alkaloids and terpenoids inhibitors, cytotoxic antibiotics and other 

antitumour agents.  Doxorubicin is one of the most widely studied cytotoxic antibiotics.  

It is commonly used to treat a wide range of cancer but with a serious adverse effect of 

heart damage.  Doxorubicin interacts with the cell DNA by intercalation and inhibition of 

molecular biosynthesis, preventing the DNA double helix from being resealed and 

thereby stopping the process of replication.42  Bevacizumab is a humanized monoclonal 

antibody that inhibits VEGF-A.  It is currently used as an angiogenesis inhibitor to stop 

tumor growth by preventing the formation of new blood vessels.  Thrombospondin (TSP) 

is an antiangiogenic which inhibits the proliferation and migration of endothelial cells by 

interactions with CD36 expressed on their surface of these cells.   
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All aforementioned antineoplastic solutions are controversial due to adverse effects, 

molecular weight, unclear mechanism and limited availability.  Therefore, research for 

development of newer anticancer drugs one of the most funded research by National 

Institutes of Health (NIH). During the period from 2005 through 2010, the National 

Cancer Institute (NCI) budget averaged $4.9 billion per year.   

 

Human cells rely on a constant oxygen supply to maintain their cellular activity. 

Therefore all of our cells are within a tenth of a millimeter from a blood capillary which 

delivers oxygen via blood to cells.  Tumor cells are no exception and even more hungry 

on blood supply.  A tumor larger than a millimeter will starve itself of oxygen and energy 

unless new blood vessels are built to provide a supply.  For this reason, many cancer cells 

employ the normal processes of angiogenesis in order to build their own blood supply.43   

 

VEGF is a signal protein produced by oxygen-hungry cells to promote growth of blood 

vessels.  It binds to specialized receptors on the surfaces of endothelial cells and directs 

them to build new vessels.  Tumor cells use the same process to build their own oxygen 

supply.  They produce abnormally large amount of VEGF or block the action of 

angiogenesis inhibitors.  This action is termed as “angiogenic switch”, giving the ability 

of metastasis to the tumor, since a custom-made blood supply can be constructed 

wherever new tumors begin to grow.44-45   

 

 

VEGF secretion level directly reveals the tumor size, growth stage and malignancy.  
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Therefore, VEGF secretion rate measurement from living cancer cell culture is essential 

to prediction and early diagnosis of cancers.  Taking advantage of the highly sensitive 

detection capabilities of SPR, we used it to measure VEGF secretion amount from a 

certain number of cancer cells in real-time, thus to calculate the average single cell VEGF 

secretion rate.  The time resolution of VEGF release was monitored previously on a scale 

of several hours or days due to the limitations of the detection techniques available.  By 

using SPR biosensors we were able to measure VEGF release on a scale of microseconds.  

Due to the highly sensitive detection possible using SPR even the slightest release of 

VEGF from the cancer cells can be instantaneously mapped.   

 

VEGF secretion is also an attractive process for the development of newer cancer 

therapy.  Blood supply to the tumor can be cut off by selective inhibition of VEGF 

production or binding to its receptor using drugs or antibodies.46  A large amount of drugs 

and antibodies are currently being tested by different research groups to modulate VEGF 

production in cancer cells.  To develop suitable drugs for this propose, bind process of 

VEGF-drug or VEGFR-drug interaction is a significant factor.  The unique real-time 

recoding feature of SPR enables us to monitor the association and dissociation curve of 

the binding process, which provided the binding association constant value for each drug 

sample.   
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Chapter 2 

 

Development of the highly sensitive LSPR sensor  

and its application on the detection of small heavy metal molecule binding 

 



 

23 

 

2.1. Introduction 

Surface plasmon resonance has brought a revolutionary change to in vitro study of 

biological and biochemical processes due to its ability to measure extremely small 

changes in RI, binding equilibrium and kinetics.47-51  Strategies based on plasmonic 

nanoparticles have been employed to enhance the sensitivity for a variety of applications, 

such as diagnosis of diseases, environmental analysis, food safety, and chemical threat 

detection.52  Theoretically, SPR can be induced only in free electron metals, e.g., Au, Ag 

and Cu, due to the interaction of surface electrons with the electromagnetic wave and the 

contribution from the interband transition of the d-shell electrons.53  At the end of the 

1990s, several research groups had begun exploring schemes for the development of 

LSPR biosensors using noble metal nanoparticles because of the extremely sensitive 

nature of their electron-rich surfaces to the surrounding environment.  Based on the Mie 

theory, when an electromagnetic wave is directed to the metallic nanoparticle, an induced 

oscillation of free electrons occurs at the surface, resulting in a characteristic extinction 

spectrum that depends on the type of metal, the size and shape of the nanoparticles, 

interparticle distance and most importantly, the RI of the surrounding medium.54-55  

Compositional and conformational changes within the surrounding dielectric medium 

near a nanoparticle could therefore be detected as shifts in the extinction spectrum.  

LSPR spectroscopy operates in a manner that is analogous to SPR to induce the 

extinction spectrum, however, the electromagnetic field of LSPR decays within a much 

smaller length than in SPR, which gives significant rise to the sensitivity of LSPR 

sensors.   
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The fabrication of the metallic nanostructure on the LSPR sensing layer is traditionally 

performed by “2D” methods.  DebRoy’s group immobilized polyclonal antibodies for 

Escherichia coli (E.coli) O157:H7 using biotin–neutravidin binding to detect E. coli 

O157:H7 spiked in pasteurized milk (skim-milk), apple juice, and ground beef extract.56  

They also functionalized a SPR gold chip with carboxymethylated dextran layer followed 

by Protein A to immobilize polyclonal antibodies against E. coli or Salmonella 

Enteritidis.57  In these cases, low concentration targets in the sample were difficult to 

detect because of the limited interaction time with the sensing surface due to continuous 

flow.  Signal amplification is a common strategy for detection of low concentrations of 

target molecules.  Cheng’s research group recently reported a novel SPR signal 

amplification strategy based on in situ surface-initiated atom transfer radical 

polymerization,58 in which a polymer was used as a label for small molecules.  Another 

feasible strategy is the functionalization of the SPR sensor chip with an absorbtive 

coating in addition to using bare nanoscale noble metal structures for amplifying the 

sensor response.  Radical copolymers would be ideal materials for this purpose due to 

their high capacity for absorbing the analyte via a swelling-shrinking process upon 

interacting with a water based buffer, enabling the sensing surface to capture larger 

amount of analyte.59  This property allows interparticle distance tuning.  Poly (N-

isopropylacrylamide) is a promising material that can satisfy these requirements.60  

Furthermore, copolymers obtained from the combination of polymers may result in even 

more sensing applications, as polymers with different functional groups allow the 

modulation of the material’s final properties for recognizing different analytes.  Finally, 

radical copolymers prevent non-specific binding to the remaining free gold surface in 
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between the probes.  This method is comparable to the conventional immunoassay 

approach in which the surface is masked with a high concentration of a non-specific 

protein such as bovine serum albumin or denatured casein.61   

 

Arsenic (As) is one of the most common toxic elements in the environment and is 

introduced by both geochemical and anthropogenic sources.  Exposure to this metalloid 

leads to cancer, cardiovascular and peripheral vascular diseases, diabetes and 

neurological disease.62  The field of arsenic detoxification has been studied for many 

decades.  Nearly every organism, from bacteria to humans, has an arsenic detoxifying 

system.  In bacteria and archaea, the genes for arsenic resistance are usually found in 

arsenical resistance (ars) operons.  One such operon, the ars operon of plasmid R773, 

produces resistance to trivalent and pentavalent salts of the metalloids arsenic and 

antimony in cells of E. coli catalyzed by an Adenosine-5'-triphosphate (ATP)-coupled 

As(OH)3 extrusion pump.63  The operon has five genes, arsRDABC.64  Among them, 

ArsR is a transacting repressor protein that homeostatically regulates the levels of ars 

transcription.65  ArsD is an As(III) chaperone that binds and transfers cytosolic arsenite 

to ArsA, an As(III)-activated ATPase.66  Together ArsA and ArsB, a transmembrane 

arsenite antiporter, form the ATP-driven ArsAB As(OH)3 extrusion pump.67  In 2006, 

Tao’s group reported the first application of SPR sensing for arsenic detection in 

groundwater.68  However, there are no reports that utilize this technique for kinetics study 

on arsenic transportation and detoxification to date.   

 

In this study, we integrated in situ radical copolymerization and AuNPs to construct a 
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novel LSPR sensing system.  By growing 3D AuNPs-doped PNIPAAm-co-PAAc 

hydrogel-based coating on the gold sensing surface, we observed a 6.8-fold enhancement 

of LSPR signal comparing to the traditional 2D AuNPs-decorated gold sensing surface.  

We applied this LSPR sensor to study the binding kinetics of the ArsA ATPase for 

As(III) in the presence of adenosine-5’-triphosphate and magnesium ion (MgATP) and 

ArsD. In previous studies, binding of As(III) by Ars proteins was performed by methods 

such as EXAFS.25  EXAFS is a definitive method for analyzing metal ligands but lacks 

sensitivity and real-time analysis. In contrast, our 3D hydrogel based LSPR sensing 

strategy obtained direct, real-time binding kinetic information.69  Thus, in addition to 

providing a means of amplifying the LSPR response, this work presents a novel approach 

to study the kinetic behavior of the arsenic extrusion pathway.  Finally, the functionality 

of our novel 3D hydrogel-nanoparticle coating can be easily modified by changing or 

adjusting loading of monomers, it has potential to be broadly applied to sensing a range 

of biological analytes.   

 

2.2. Experimental 

2.2.1. Materials 

Allylmercaptan, acrylic acid (AAc), N-isopropylacrylamide (NIPAAm), N,N-

methylenebisacrylamide (BIS) were purchased from Acros Organic (New Jersey), 

2,2’azobisisobutyronitrile (AIBN) and diisopropylfluorophosphate (DIFP) were obtained 

from Sigma-Aldrich (St. Louis, MO).  11- mercaptoundecanoicacid (MUA) was 

purchased from Asemblon (Redmond, WA).  Cystamine dihydrochloride was obtained 

from Spectrum (New Brunswick, NJ).  1-ethyl-3-(3-dimethylaminopropyl) carbodiimide 
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hydrochloride (EDC), N-Hydroxysuccinamide (NHS) and hydrogen tetrachloroaurate 

(HAuCl4) were obtained from Alfa Aesar (WardHill, MA).  Trisodium citrate 

(Na3C6H5O7) and dimethyl sulfoxide (DMSO) were purchased from Fisher Scientific 

(Waltham, MA).  All reagents and solvents were used as received.   

 

2.2.2. Protein expression and purification 

Cells bearing the indicated plasmids were grown in Lysogeny Broth (LB) medium over 

night at 37°C and then diluted 50-fold into 1 L of the same medium.  Proteins were 

expressed by induction with 0.3 mM isopropyl-ß-D-thiogalactopyranoside at A600 of 0.6–

0.8 for 3 h.  ArsA with a six histidine tag at the C-terminus was purified from cells of 

strain BL21 (DE3) expressing pAlter-1-dAhB plasmid, as described.70  Cells were 

harvested by centrifugation and washed once with a buffer containing 50 mM 3-(N-

morpholino)propanesulfonic acid (MOPS), pH 7.5, 0.5M NaCl, 30mM imidazole and 

10mM 2-mercaptoethanol (Buffer A).  The cells were suspended in 5 mL of Buffer A per 

gram of wet cells and lysed by a single passage through a French press at 20,000 psi.  

DIFP was added at 2.5 mL/g wet cells immediately following French press.  Unbroken 

cells and membranes were removed by centrifugation at 150,000xg for 1h at 4°C.  The 

supernatant was loaded to 10mL Probond Ni-column (Invitrogen) pre-equilibrated with 

Buffer A.  Unbound proteins were washed by 60 mL of buffer A, and ArsA was eluted 

with imidazole gradient generated by Buffer A and Buffer B (50 mM MOPS, pH 7.5, 

0.5M NaCl, 300mM imidazole and 10mM 2-mercaptoethanol), followed by addition of 

0.25 mM Ethylenediaminetetraacetic acid (EDTA) and 5 mM Dithiothreitol (DTT) to 

each fraction.  ArsA containing fractions were identified by sodium dodecyl sulfate 
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polyacrylamide gel electrophoresis (SDS- PAGE), pooled, concentrated by Amicon 

Ultra-15 Centrifugal Filter Unit with Ultracel-10 membrane (Millipore), mixed with 10% 

glycerol, aliquoted and stored at -80°C until use.  ArsD and its derivatives with a six 

histidine tag at the N-terminus were purified similarly. Purified proteins were stored at -

80°C until use, and their concentrations were determined according to the method of 

Bradford71 or from the absorption at 280nm.72   

 

2.2.3. Preparation of gold nanoparticles 

Colloidal gold nanoparticles used in this study were prepared by citrate reduction of 

HAuCl4 in aqueous solution.73  The formation of gold nanoparticles can be observed by a 

change of color.  Briefly, HAuCl4 and sodium citrate solutions were filtered through a 

22µm microporous membrane filter prior to use.  HAuCl4 (40mL, 1.0mM) was then 

added to an Erlenmeyer flask (250mL), vigorously stirred and brought to a boil on a hot 

plate.  Following this, 3.5mL of 1% trisodium citrate was added to the vortex of the 

boiling solution.  100nm Au particles were formed 2min after the addition of trisodium 

citrate and 15nm AuNPs were obtained if the solution was stirred for an additional 10 

min.  A layer of absorbed citrate anions on the surface of the nanoparticles prevents 

aggregation.  The particle size was determined by a ZEN3600 Zetasizer from Malvern 

Instruments, Inc. (Westborough, MA).   

 

2.2.4. In situ polymerization 

A stock of amino group modified AuNPs was prepared by incubating bare AuNPs in 

1mM cystamine dihydrochloride solution for 12h at 4°C.  Following this, 400µmol Aac 
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was added to the amino modified AuNPs and incubated under the presence of NHS/EDC 

for 30min to form covalent linkage (pH = 7.4).  The resulting solution was then 

centrifuged at 7000 RCF for 10min and the sediment was washed and resuspended with a 

same volume of DMSO for further use (not shown in Scheme 2.1.).  A gold SPR chip 

was cleaned using piranha solution for 2 min and rinsed with copious ethanol.  The 

cleaned gold chip was incubated in a 10mM allylmercaptan/ethanol solution afterward 

for 12 h at room temperature in the absence of light.  Lastly, the chip was rinsed three 

times with ethanol and DMSO shortly prior to use to remove all the unbounded 

allylmercaptan residual.  The in situ polymerization was carried out in the following 

manner: 5mL DMSO containing 950µmol of NIPAAm, 150µmol of AuNPs linked AAc, 

250µmol of AAc, 58µmol of cross linking agent BIS and 805µmol of AIBN as the 

initiator were first added along with the gold chip into a three-neck round bottom flask 

(Figure 2.1).  The resulting solution was degassed by passage of a stream of nitrogen for 

a minimum of 20min and then heated at 60°C for 110min in nitrogen environment 

(Scheme 2.1).  After polymerization, the AuNPs doped PNIPAAm-co-PAAc polymer-

coated gold chip was  
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Scheme 2.1. (A) Cartoon representation of the swelling-shrinking process of the copolymer for 
LSPR signal amplification and immobilization of ArsA ATPase. (B) Structural illustration of the 
in situ radical copolymerization of PNIPAAm-co-PAAc hydrogel. 
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washed with DMSO, ethanol and water in order to remove any non-bonded copolymer 

and unreacted monomers.  Finally, the chip was stored under vacuum to remove any 

water absorbed in the hydrogel before LSPR experiment.  Control chips were also 

prepared by deposition of bare AuNPs on SPR chips and functionalized with carboxylic 

groups using MUA for characterization purposes.   

 

 

2.2.5. Experimental setup and conditions 

2.2.5.1. Surface characterization 

Fourier transform infrared spectroscopy by attenuated total reflectance (ATR-FTIR) was 

carried out using a FTIR-4100 spectrometer (Easton, MD) with a maximum resolution of 

0.9 cm.  A Nanoscope 3A atomic force microscope (AFM) obtained from Veeco 

Figure 2.1. Experimental setup of the in situ radical copolymerization 
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(Plainview, NY) was employed to measure the thickness of the polymer thin film on the 

gold chip.  Briefly, a 10×10 µm2 area of the polymer layer was scratched and removed 

using a contact mode AFM cantilever (spring constant 0.2Nm) under the load of 500nN 

force.  To determine the depth of the scratched area, the morphology of a 30×30 µm2 area 

covering the scratched area was imaged by AFM under a 25N force load with a scanning 

speed of 2Hz.  A JSM6330F field emission scanning electron microscopy (SEM) from 

JEOL (Peabody, MA) was employed for observing the surface morphology and 

component of the LSPR sensing surface.   

 

2.2.5.2. Preparation of LSPR measurement 

A BI-2000 SPR instrument was purchased from Biosensing Instrument (Tempe, AZ).  A 

gold SPR chip (20mm×20mm×1mm), which is a BK7 glass slide coated with a 45nm 

layer of gold over a 5nm layer of chromium, was mounted on the upper face of the BK7 

prism with the gold layer facing upward.  A 3-5 µL drop of index matching fluid (World 

Precision Instruments, Inc., FL) was applied between the glass face of the chip and the 

prism with care so that no air bubbles were trapped at the interface.  Following this, a 

biocompatible polydimethylsiloxane (PDMS) microfluidic injection chamber gasket with 

a 5mm×1.7mm×125µm channel was clamped to the gold face of the chip.  A dual syringe 

pump was attached to the injection chamber allowing both sample and reference buffer 

flow through the sensing surface.  All buffers and solutions were degassed by vigorously 

stirring and purging with nitrogen before introduction into the injection system to avoid 

oxidation of ArsA ATPase and ArsD metallochaperone protein by air.  Data collection  

 



 

33 

 

and instrument control was performed using the Biosensing Instrument SPR Control 

Program running on a PC.   

 

In the LSPR experiment, a 670nm wave length laser with a 72.2° incident angle was 

employed as the light source.  The sensing surface was flushed by 50mM MOPS buffer 

(pH 7.5) at a 150 µL/min flow rate until a stable SPR baseline was acquired.  In general, 

a 100-150mDeg SPR angle shift would be observed during this process due to the 

swelling of the PNIPAAm-co-PAAc hydrogel upon introduction of water based MOPS 

buffer.  The MOPS flow rate was then reduced to 50µL/min for optimized binding time 

and maintained during the whole LSPR measurement. All measurements were carried out 

in MPOS buffer environment unless otherwise stated.   

 

In order to demonstrate the enhanced sensitivity by the polymer hydrogel thin layer as the 

immobilization and sensing material, as well as its suitability for binding kinetic study, 

ArsA ATPase was coupled to the carboxylic groups of AAc and the specific interaction 

of As(III) with the immobilized ArsA was observed by LSPR.  Initially, carboxylic 

groups of the polymer layer were activated with a solution of EDC (75mM) and NHS 

(15mM) at an injection rate of 20µL/min (denoted as X in Scheme 2.1.).  ArsA in MOPS 

with a concentration of 50µg/mL was injected with a same rate and allowed to react with 

the activated polymer for 4min to form a covalent linkage between the surface carboxylic 

groups and the ArsA amino-groups.  This was followed by an addition of stepped 

concentration of As(III) to study the binding kinetics and capacity of the ArsA ATPase. 

Finally, the above experiment was repeated using control chips coated only with AuNPs.   
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2.3. Results and discussion 

2.3.1. Surface morphology and composition characterization 

To verify the incorporation of NIPAAm and AAc monomeric units in the copolymer 

grown from the allylmercaptan-modified gold surface, ATR-FTIR spectra were taken 

from the polymer coated gold chip surface.  As a result, Figure 2.1. shows a region of the 

ATR-FTIR spectrum obtained, which confirms the presence of both NIPAm and AAc in 

the thin film.  The main bands at located at 1651 and 1551cm correspond to the carbonyl 

stretching of the amide group (amide I band) and to the N–H stretching of the secondary 

amide (amide II band), respectively.  On the other hand, the appearance of a much less 

intense absorption band at 1716 cm, characteristic of the carboxyl group, indicates the 

incorporation of a minor acrylic acid fraction as expected.  Besides, a band at 1460cm is 

clearly observed, which can be attributed to the -CH3 and -CH2- deformation of both 

monomeric units.74   
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Figure 2.2. FTIR-ATR spectrum of the 3D PNIPAAm-co-PAAc polymer matrix on the sensing 
surface. 

 

The thickness of the PNIPAAm-co-PAAc polymer layer under hydrated and dehydrated 

condition was determined by AFM using the aforementioned manner.75  Figure 2.2(A) 
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shows the morphologies and line profiles of the scratched areas under both conditions, 

with the average thickness of each sample determined from the line profiles.  The 

hydrated polymer layer displays a thickness of 40.6±3nm, where as the dehydrated 

polymer layer exhibited a thickness of 10.1±1nm.  Fig. 2.2(B) shows a SEM image in 

which AuNPs (bright dots) can be observed along the backbone of the polymer hydrogel, 

indicating that AuNPs were successfully embedded in the PNIPAAm-co-PAAc hydrogel 

by the linkage with AAc.   

 

Figure 2.3. (A) AFM images of the polymer matrices under hydrated (upper) and dehydrated 
(lower) conditions, indicating the swelling-shrinking process. (B) SEM image of the LSPR sensor 
coated with AuNPs doped hydrogel thin film.   

 

2.3.2. Optimization of ArsA immobilization conditions 

The incubation time required for the binding reaction between ArsA and polymer matrix 

is a critical parameter that determines the performance of our kinetics sensor.  Insufficient 

incubation time causes low coverage of ArsA on the surface and leads to lower 

sensitivity, whereas over-long incubation time may results in multiple layers of ArsA and 

leads to blockage of binding sites and lower efficiency.  To optimize the time required for 
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completeness of the covalent linking, 80µg/mL ArsA solution was injected and past the 

PNIPAAm-co-PAAc modified gold sensing surface at various injection rates (5, 10, 15, 

20, 25, 30, 35µL/min).  LSPR angle shift was used to evaluate the surface coverage.  The 

experiment was repeated 3 times with each injection rate.  For each injection rate, 3 

measurements were averaged as shown in Figure 2.3(A) with standard deviation.  This 

study found that ArsA immobilization with a sample injection rate of 20µL/min or slower 

exhibited a stable response demonstrating the complete interaction between ArsA and 

PNIPAAm-co-PAAc.  Therefore, we employed optimized sample injection rate of 

20µL/min for further immobilization and analysis.   

 

In order to evaluate the amount of ArsA ATPase immobilized on the surface of the 3D 

polymer matrix, we investigated the LSPR response to different concentrations of ArsA 

injections.  Initially, polymer modified LSPR chips were activated using 75mM EDC and 

15mM NHS in MOPS buffer.  Following activation, each activated sensor was employed 

to react with different concentrations of ArsA solution (10, 20, 30, 40, 50, 60, 70, 

80µg/mL) at an injection rate of 20µL/min.  The experiment was repeated 3 times with 

each ArsA concentration.  The resulting averaged LSPR response for each concentration 

was plotted against the corresponding concentration of ArsA with standard deviation as 

shown in Figure 2.3(B).  It is evident that the amount of ArsA ATPase bound to the 

sensing surface reaches a maximum at 50µg/mL and remains constant at all concentration 

beyond.  As a result, we employed 50µg/mL as an optimum concentration for further 

binding study.   
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Figure 2.4. Optimization of immobilization conditions: (A) ArsA immobilization on the 3D 
polymer coated surface with different injection rate (5, 10, 15, 20, 25, 30, 35µL/min). Maximum 
SPR angle shift is plotted versus responding injection rate.  (B) Different concentration of ArsA 
(10, 20, 30, 40, 50, 60, 70, 80µg/mL) immobilization on the 3D polymer coated LSPR sensor 
with optimal injection rate (20µL/min).  Maximum SPR angle shift is plotted versus ArsA 
concentration. 

 

2.3.3. ArsA and As(III) interaction 

Sensitivity study was first performed with chips coated by AuNPs doped polymer layer. 

Prior to the binding test for each different concentrations of arsenite, ArsA was 

immobilized onto the activated carboxylic groups by the aforementioned protocol.  Then, 

three different concentrations of arsenite (8mM, 4mM, 2mM) were dosed separately with 

an injection rate of 20µL/min.  Figure 2.4(a) shows the LSPR response to the injection of 

each arsenite sample.  When the test solution was introduced at ~50s, ~620s and ~1100s, 

a blue shift of 25.8mDeg, 19.1mDeg and 16.5mDeg were observed corresponding to the 

introduction of 8mM, 4mM and 2mM arsenite sample, respectively.  The 2D AuNPs 

structure was not expected to induce as much LSPR enhancement as the 3D AuNPs 

doped polymer matrix according to our previous mentioned theory.  Therefore, we 

repeated the binding experiment with chips decorated by 2D AuNPs structure.  Figure 
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2.4(b) indicates that a blue shift of 3.7mDeg, 2.9mDeg and 2.4mDeg were recorded in 

response to the same concentration gradients of arsenite.  The above experiments were 

repeated 4 times for both 3D and 2D LSPR sensors.  Similar results were observed (data 

not shown).  As a result, the signal enhancement of the 3D polymer matrix was calculated 

to be about 6.8 fold (averaged from 4 repeated comparisons).  This sensitivity increase 

can be attributed to the unique swelling-shrinking property of the PNIPAAm-co-PAAc 

hydrogel, yielding a greater capacity for ArsA immobilization than that of the 2D AuNPs 

chip (Scheme 2.1.).   

 

Figure 2.5. SPR sensorgrams for the covalently immobilized ArsA interacting with As(III) 
obtained with (a) 3D AuNPs doped polymer coated sensor and (b) 2D AuNPs structure 
modifiedsensor. 
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We expected larger enhancement from the 3D polymer matrix since the previous 

mentioned AFM measurements demonstrate that the thickness of the hydrated polymer is 

40.615nm, indicating an ideal capacity increase of 180 fold for ArsA (63kDa, a=73.34, 

b=75.64, c=223.42Å) compared to the ArsA monolayer formed on the 2D chip.  One 

possible explanation for this discrepancy is the heterogeneous distribution of carboxylic 

groups during the random copolymer reaction resulting in a lack of available binding 

sites for ArsA.  We also suspect that the injected ArsA bound to the surface of the 

polymer matrix has blocked the access of the unbound ArsA ATPase to binding sites 

inside the polymer matrix.   

 

2.3.4. Kinetics study of ArsA-As(III) binding 

ArsD is a metallochaperone that delivers As(III), as well as other trivalent metalloids, to 

the ArsA ATPase.  Previous studies have shown that interaction with ArsD increases the 

affinity of ArsA for As(III), conferring resistance to environmental concentrations of 

arsenic.76  However, there is a lack of research on the binding affinity of ArsA for ArsD 

till now.  Based on measurements on the effect of the As(III) chelator dimercaptosuccinic 

acid on the transfer reaction, it is suggested that As(III) transfer is directly channeling 

from one protein to the other, rather than dissociating from ArsD and reassociating with 

ArsA.  Therefore, affinity study between ArsA and ArsD is essential to understanding the 

structure of ArsA-ArsD complex and improve understanding of the transfer reaction.   

 

Initially, ArsA was immobilized to the activated carboxylic groups of the polymer as 

previously mentioned.  Following this, 1% ethanolamine was injected to block the free 
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carbonyl groups.  ArsD metallochaperone (50µg/mL) was then introduced to the flow 

chamber at 20µL/min.  For comparison, ArsD was substituted by bovine serum albumin 

(BSA) in the negative control experiment.  Figure 2.5 shows the LSPR sensorgram for 

the ArsA-ArsD interaction study.  The binding between ArsA and ArsD (red) results in 

an angle shift of 356.2 mDeg, whereas the binding between ArsA and BSA (black) only 

results in an angle shift of 45.5 mDeg.  The above experiments were repeated 4 times for 

both ArsD and BSA binding.  Similar results were observed (data not shown).  Thus, it is 

evident that ArsA is able to specifically bind ArsD without the presence of As(III) and 

MgATP.  This result is consistent with the direct transfer of As(III) in the ArsA-ArsD 

complex.   

 

Figure 2.6. SPR sensorgrams for covalently immobilized ArsA interacting with (red line) ArsD 
and (black line) BSA as control. 
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2.3.5. Effects of ArsD and MgATP on ArsA-As(III) binding 

We have previously shown that ArsD transfers As(III) and Sb(III) to ArsA in the 

presence of MgATP.77  Herein, binding kinetics of ArsA-As(III) interaction was 

compared using the 3D LSPR sensing platform under MgATP catalytic, ArsD promotion, 

and noncatalytic conditions.   

 

ArsA was bound to the 3D LSPR sensing surface using the same manner.  As(III) 

samples of 10 different concentrations (0.1-1mM) were prepared in MOPS buffer.  First, 

ArsA-As(III) binding kinetics was measured without catalysis as a control experiment.  

Samples with 0.1-1mM As(III) were injected in 10 min interval between each other to 

allow for baseline stabilization.  Following this, ArsA-As(III) binding kinetics 

measurement was repeated under the presence of ArsD or MgATP, respectively.  The 

measurements were repeated 4 times for each condition.  SPR angle shift-time curve 

(data not shown) was obtained for each measurement in realtime.  In this experiment, the 

surface interaction [ArsA + As(III) ArsA-As(III)] was measured by the rate of ArsA-

As(III) complex production.  Such interaction can be described as a second order 

reaction: 

 

by the pseudo-second-order kinetic equation: 

  

where k is a second order rate constant, [A] and [B] are the concentrations of reactants A 

and B, respectively. 
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In the association phase of the SPR sensorgram, we used the modified pseudo-second-

order kinetic equation to describe the reaction: 

 

where R is the SPR signal at time t, ka is the association rate constant which indicates the 

binding affinity between two reactants, [ArsA] and [As(III)] are the concentrations of 

ArsA and As(III), respectively.  The maximum value of (dR/dt) for each sample was 

determined by calculating the maximum slope of the association curve using Matlab.  

Linear fitting was utilized to obtain ka since [ArsA] is constant.  Figure 2.6(A) shows the 

averaged max(dR/dt) for each As(III) concentration with standard deviation.  After linear 

fitting, ka was calculated to be 1.07M/min with a 0.06 standard error for noncatalytic 

ArsA-As(III) interaction.  Based on the aforementioned study, interaction with ArsD 

increases the affinity of ArsA for As(III). Therefore, association rate constant was also 

determined for the ArsA-As(III) interaction under the presence of ArsD in the 

environmental buffer and ka was calculated to be 2.79M/min with a 0.41 standard error 

using the same method, as shown in Figure 2.6(B).  It appears that the max(dR/dt) vs. 

As(III) concentration plot fits a quasi-exponential shape under the presence of ArsD,  

which  does not agree with the linear fitting of our model.  Such mismatch can be 

attributed to the unexpected change of the surface ArsA concentration.  Due to the 

comformational and functional similarity between ArsA and ArsD, it is likely that the 

ArsD in the flowing buffer affected the binding equilibrium between the surface and 

ArsA.  Furthermore, ArsA contains two nucleotide binding sites (NBSs) and a binding 

site for arsenic, and crystallizes in the presence of As(III) and MgATP.78  Based on these 



 

44 

 

structural features, we tested association rate constant under the MgATP catalysis.  

Results show that the ka was significantly raised to 16.09M/min with a 0.66 standard 

error (Figure 2.6(C)).  By comparing these three sets of experiments, it is obvious that the 

binding efficiency is significantly raised under the presence of MgATP, indicating that 

the activity of the arsenic binding site is dependent on the binding status of the two NBSs 

for ATP.79  Based on the result, As(III) transfer occurs only under conditions where ArsA 

hydrolyzes ATP, suggesting that ArsD transfers As(III) to an ArsA conformation 

transiently formed during catalysis and not simply to the closed conformation that ArsA 

adopts when As(III) and MgATP are bound.   
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Figure 2.7. Comparison of ArsA-As(III) association rate constant (slope) under the effect of 
different binding status. Figure showing: linear fitting curve of the relationship between 
maximum binding rate and As(III) concentration under (A) noncatalytic, (B) ArsD bounded and 
(C) MgATP catalyzing conditions of ArsA. 

 

2.4. Conclusions 

We have demonstrated the fabrication of AuNPs decorated 3D PNIPAAm-co-PAAc 

hydrogel modified LSPR sensors.  Sensitivity enhancement of 7fold was achieved for 

measurement of changes in bulk refractive index using LSPR spectroscopy, compared to 

the conventional 2D nanostructural LSPR sensor.  Not only can the 3D hydrogel matrix 

act as a molecular sponge to increase the analyte absorbing capacity, but it also provides 

specificity, tunable size of porous structure and interparticle distance for different 

potential applications.  Furthermore, we have demonstrated the ability of ArsA ATPase 
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specifically bind ArsD metallochaperone without presence of As(III) and MgATP, thus 

proving the existence of the structure of ArsA-ArsD complex, which indicates direct 

channeling of As(III) from ArsD to ArsA.  We also applied the 3D LSPR sensor to study 

the binding kinetics of the arsenic detoxifying systems found in E. coli.  Results indicates 

that transfer of As(III) from ArsD to ArsA is dependent on the binding and hydrolysis of 

MgATP.   

 

Overall, this work presents a novel combination of a highly sorbtive polymer with AuNPs 

for enhanced sensitive LSPR spectroscopy.  Real-time binding kinetics data were 

obtained by the LSPR sensor for further understanding of a biochemical process.  The 

flexibility of this sensing platform to accommodate different ligands provides a practical 

strategy to detection and kinetic study of other biomolecules.  
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Chapter 3 

 

Sensing platform upgrade for biomarker studies from a living cell model 
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3.1. Introduction 

SPR based biosensing has been a very hot topic drawing substantial research interests in 

the past decade.  Promising biomedical applications of SPR have also been widely 

studied such as detection of binding activity between cells, proteins, DNA and even small 

inorganic molecules.80-84  In the previous chapter, a LSPR with enhanced sensitivity for 

detecting bindings between proteins and heavy metal molecules was successfully 

achieved.  However, this sensing platform is only capable for detection of analytes in 

solution.  An upgraded SPR sensing platform with the ability of direct measurement of 

cellular secretion (proteins, DNA, RNA, etc.) from living cells is needed for both 

fundamental and clinical research. 

 

The principle of SPR biosensors is the measurement of refractive index changes at a 

plane interface between two media with dielectric constants of opposite signs, a dielectric 

and a metal, such as gold.  SPR can be excited when a wedge of polarized light is 

directed towards the glass face of the sensor surface under the condition of total internal 

reflection.  The resonant angle at which a minimal intensity of reflected light occurs is a 

function of the local refractive index at or near the gold surface.  Such refractive index 

changes associate intimately with the adsorption or desorption of molecules from the 

surface, and thus one can expect its great potential in biorecognition measurements.53  

This is a newly emerged technique for biomarker detection that is sensitive, fast and 

realtime.  To date, all previously established SPR based sensing platforms have been 

limited to detection of analyte in a prepared sample.19, 85-86  In these strategies, collection 

of analytes from cell culture media, purification and pretreatment of analytes are usually 
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required for the purposes of cellular exocytosis and cellular signaling pathways studies.87-

88  These redundant steps are time consuming, and also introduce unpredictable errors to 

the experiments.  Therefore, it is desirable to find an alternative method for direct 

measurement of secretions from living cells.   

 

Among all types of cellular secretions, biomarkers are no doubt the most significant ones 

for clinical, medical and biochemical applications.  According to the FDA’s definition, 

there are four different types of biomarkers: (1) Prognostic biomarkers are used to 

determine the disease progression in a patient; (2) Predictive biomarkers are a baseline 

characteristic that indicate the likelihood a specific patient will respond to a given 

treatment; (3) Pharmocodynamic biomarkers test the biological response that occurres in 

a patient after receiving a particular drug, such as a change in blood pressure or 

cholesterol.  Drug companies usually test these biomarkers in phase II clinical trials and 

submit the results to the FDA; (4) Surrogate endpoints biomarkers are used as a substitute 

for a clinical efficacy endpoint.   

 

Biomarker based cancer diagnosis and treatment on the molecular level have emerged 

recently.  Compared to traditional antineoplastic solutions, such as chemotherapy, 

radiation therapy, and cryosurgery etc., biomarker therapy revealed mild side effects in 

clinical studies.89  Biomarkers comprise of cellular molecules such as proteins or nucleic 

acids that can be detected in cells, blood, urine, or other body fluids and are over-

expressed due to the onset of disease.  Proteomic biomarkers are widely involved in the 

development of many types of cancer.  Like all other types of human cells, cancer cells 
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also rely on a constant oxygen supply to maintain their cellular activity.  A tumor larger 

than a millimeter will starve itself of oxygen and energy unless new blood vessels are 

built to provide a supply.  For this reason, many cancer cells employ the normal 

processes of angiogenesis in order to build their own blood supply.43   

 

VEGF, a 43 to 46 kDa glycoprotein, is a widely studied angiogenic signal protein 

biomarker produced by oxygen-hungry cells to promote the growth of blood vessels.90  It 

binds to specialized receptors on the surfaces of endothelial cells and directs them to 

build new vessels.  Some types of tumor cells produce abnormally large amounts of 

VEGF or block the action of angiogenesis inhibitors.  This action is termed as 

‘‘angiogenic switch’’, giving the ability of metastasis to the tumor, since a custom-made 

blood supply can be constructed wherever new tumors begin to grow.44   

 

In this work, we report a new concept of a SPR biosensing system for realtime VEGF 

secretion study.  A novel design by integrating a mini cell culture module to the SPR 

system will be introduced.  Unlike the traditional configuration of SPR systems for 

biomarker detection, living cells are cultured on the ceiling of a customized SPR flow 

cell chamber, and biomarker secretion from cells is rapidly monitored by an immune SPR 

sensing device (Scheme 3.1).  As a model system, the SKOV-3 ovarian cancer cell line is 

used to demonstrate VEGF secretion lifetime measurement.  To the best of our 

knowledge, this new SPR based biosensing strategy for direct measurement of biomarker 

from living cells has not been reported previously.   
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Scheme 3.1 Configuration of the SPR based biosensor integrating a mini cell culture module for 
direct measurement of biomarker from living cells.   

 

3.2. Experimental 

3.2.1. Materials 

Human ovarian carcinoma cell line (SKOV-3), McCoy's 5A medium, and fetal bovine 

serum were purchased from American Type Culture Collection (Manassas, Virginia).  6-

well tissue culture plates, d-poly coverslips, and formalin were purchased from Fisher 

Scientific.  VEGF, monoclonal anti-VEGF antibody, KREB’s buffer and Penicillin were 

obtained from Sigma-Aldrich (St. Louis, MO).  MUA was purchased from Asemblon 

(Redmond, WA).  Calcium Ionophore (A23187) was purchased from Acros Organic 

(New Jersey).  EDC and NHS were obtained from Alfa Aesar (WardHill, MA).  Protein 

G was purchased from Fisher Scientific (Waltham, MA).  All reagents and solvents were 

used as received unless otherwise stated.   
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3.2.2. Instrumentation 

A BI-2000 SPR instrument purchased from Biosensing Instrument (Tempe, AZ) was 

used for data collection.  A 670nm wave length laser with a 72.2° incident angle was 

employed as the light source of the SPR instrument.  The gold SPR chip 

(20mm×20mm×1mm) is a BK7 glass slide coated with a 45nm layer of gold over a 5nm 

layer of chromium.  A 3-5 µL drop of index matching fluid (World Precision 

Instruments, Inc., FL) was to be applied between the glass face of the chip and the prism 

with care so that no air bubbles were trapped at the interface.  Following this, a 

biocompatible PDMS microfluidic injection chamber gasket with a 5mm×1.7mm×125µm 

channel was clamped to the gold face of the chip.  A dual syringe pump was attached to 

the injection chamber allowing both sample and reference buffer flow through the 

sensing surface.  An Olympus IX81 fluorescence microscopy (Japan) with a 20x 

objective was employed for cell fluorescent imaging.  A CCD camera was used to 

capture the signals and the images were software-merged with pseudo color.   

 

3.2.3. Surface treatment for SPR flow chamber 

SPR flow chamber gasket (Figure 3.1) was detached from the SPR flow cell.  Several 

drops of 0.1% w/v gelatin solution made by boiling distilled water were applied onto the 

PDMS gasket to cover the whole surface.  The gasket was then dried for 12h in a 

biological fume hood to prevent contamination.  A cell culture petri dish and a uncoated 

PDMS gasket were also prepared as positive and negative control substrates, 

respectively.   
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Figure 3.1. SPR Flow Cell and Flow Chamber Gasket. 

 

3.2.4. Human cell culture 

SKOV-3 cells were cultured in McCoy's 5A medium added with 1% penicillin and 10% 

fetal bovine serum, and kept in a 37°C cell incubator with a humidified atmosphere of 

5% CO2 and 95% air.  200,000 cells were seeded on the gelatin coated SPR flow chamber 

gasket and kept in a 6-well tissue culture plates with cell culture media for 48h before 

each experiment.  The same cell culture was repeated on an uncoated PDMS gasket and a 

tissue culture plate as control experiments. 

 

3.2.5. Cell stain and fluorescent imaging   

200 μM MitoTracker Red CMXRos dye stock solution and the 1.0 mM Hoechst 33342 

dye were diluted into HBSS or appropriate cell medium with serum.  The concentration 

for MitoTracker Red CMXRos dye is 10-50 nM; The concentration for Hoechst 33342 
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dye is 1.0 μg/mL.  Both dyes may be combined in a single staining solution.  Then apply 

a sufficient amount of labeling solution to cover cells adhering to substrates.  Incubate for 

15 minutes at 37°C. When labeling is complete, remove the labeling solution and wash 

cells twice in cell medium.  Labeled cells will then be fixed with 4% formaldehyde for 15 

minutes at 37°C, followed by washes in buffer and staining with any additional 

counterstains.   

 

The substrates were then removed and mounted on glass microslides with antifade 

reagent/mounting medium mixture.  Then, the specimens were observed by fluorescence 

microscopy (Olympus IX81, Japan) with a 20x objective.  The fluorescence was imaged 

at Hoechst channel (nucleus stain dye, ex/em: 358/461 nm), and λex (570), λem (590 nm) 

for mitotracker red.  A CCD camera was used to capture the signals and the images were 

software-merged with pseudo color.  The fluorescence microscope settings were kept the 

same throughout the experiment with the exception of the exposure time.  The images 

were recorded at the same exposure time for Hoechst and MitoTracker Red.   

 

3.2.6. Calibration of SPR for VEGF measurements 

A previously reported method was used for immobilization of monoclonal anti-VEGF 

antibody on the SPR gold chip.91  Briefly, SPR gold chip will be emerged in 1mM MUA 

(ethanol) solution for 12h at 4°C to form a layer of carboxylic groups on the gold surface.  

The gold chip will then be washed with copious ethanol and mounted on the SPR system.  

Carboxylic groups were then activated with a solution of EDC (75mM) and NHS 

(15mM).  Following this, an activated SPR chip was immobilized by injecting 50 µg/mL 
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protein G solution to capture the Fc portions of the antibody in order to assure proper 

antibody orientation.92  50 µg/mL monoclonal anti-VEGF was bounded on top of the 

protein G layer as the biorecognition ligand.  All injections to the SPR microfluidic 

system were performed with a 20 µL/min rate.  SPR experiments were performed in 

phosphate buffered saline (PBS) as the flowing buffer, and each solution was also 

prepared in PBS (pH=7.4) unless otherwise specified.  The sensor calibration was 

performed using VEGF samples with 8 different concentrations (0.25, 0.5, 1, 1.5, 2, 2.5, 

3, 4 µg/mL).  The calibration was repeated 4 times for reproducibility test. 

 

3.2.7. Direct measurement of VEGF from living cancer cells   

In order to demonstrate direct measurement of VEGF from living carcinoma cells, 

SKOV-3 cells were cultured for 48h on gelatin coated gaskets using the aforementioned 

method.  The same functionalization protocol described above will be used for 

immobilization of monoclonal anti-VEGF antibody on the SPR sensing chip.  The PDMS 

flow chamber gasket with SKOV-3 cell culture was then removed from cell culture 

media and throughly rinsed with Kreb’s buffer to remove cell culture media and 

unattached cells.  Following this, the PDMS gasket with cells was mounted on the SPR 

flow chamber, and SPR flowing buffer was changed from PBS (pH = 7.4) to Kreb’s 

buffer (pH = 7.4) in order to maintain cell viability during experiments.  After resuming 

the buffer flow, 500µm Ca2+ ionophore (A23187) was injected to induce rapid exocytosis 

of VEGF from the SKOV-3 cells.  The above VEGF measurement was repeated 4 times. 
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3.3. Results and discussion 

3.3.1. Calibration for VEGF 

Initially, reproducibility and linearity of the functionalized Au sensing surface were 

examined using different concentrations of the VEGF sample.  Figure 3.2.A shows the 

time resolved SPR spectra in response to VEGF binding (3, 4 µg/mL samples not 

shown). VEGF binding can be clearly characterized by the SPR angle shift upon 

introduction of the VEGF sample solution.  Figure 3.2.B depicts the calibration curve 

obtained by a linear fit of SPR response to different concentrations of VEGF samples.  

The SPR sensor allows real-time and sensitive VEGF detection within a linear dynamic 

range of 0.1-2.5 µg/mL.  For each VEGF concenration, the SPR response was determined 

by the average of 4 measurements.  The maximum value of the inter-assay relative 

standard deviations was 13.6% (n = 4).  This indicates that our detection strategy offers 

an acceptable reproducibility towards the detection of VEGF.   
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Figure 3.2. (A: upper) SPR sensor responses to VEGF solution at different concentration levels: 
(a) at 0.25µg/mL, (b) at 0.5µg mL, (c) at 1µg/mL, (d) at 1.5µg/mL, (e) at 2µg/mL and (f) at 
2.5µg/mL.  (B: lower) Calibration curve: the linear relationship between change of SPR angle 
shift and VEGF concentration.   
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3.3.2. Fluorescent imaging   

For the purpose of measuring VEGF secretion directly from living cancer cells, we first 

demonstrated cell viability in the SPR flow chamber.  Fluorescent imaging was 

performed using a previously reported method in order to examine cell confluency on 

each substrate.93  As shown in Figure 3.3, cell counts on the tissue culture plate, gelatin 

coated gasket and uncoated gasket are 174, 218 and 76, respectively. Since the gelatin 

coated gasket showed significant enhancement of cell attachment compared to the 

uncoated gasket, it is a suitable substrate for the living cell experiment in the SPR flow 

chamber.   
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Figure 3.3. Fluorescence images of SKOV-3 cell culture on: (upper) petri dish, (middle) gelatin 
coated PDMS and (lower) uncoated PDMS.   

 

3.3.3. Direct measurement of VEGF from living cancer cells 

The time resolved SPR response upon Ca2+ ionophore injections is shown in Figure 3.4.  

Each arrow in the figure indicates an injection of Ca2+ ionophore.  A 87 ± 6mDeg (n=4) 

SPR angle shift was observed after the first injection (data not shown for repeated 



 

61 

 

measurements).  However, the following two injections did not induce obvious angle 

shift. It seems that all intracellular VEGF was released during the first stimulation.  

According to our calibration curve for different concentrations of the VEGF samples, 

SKOV-3 cells released about 1µg/mL VEGF during the stimulation.94   

 

Figure 3.4. SPR sensor responses to living SKOV-3 cells secretion stimulated by injections of 
500µm Ca2+ ionophore (A23187).  Each arrow indicates an injection of Ca2+ ionophore. 

 

3.3.4. Cell number study 

We also performed a cell number study to investigate the relationship between the 

amount of VEGF secretion and total cell number.  Different numbers of cells (50000, 

100000, 200000) were seeded on three similar PDMS gaskets and cultured under the 
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same conditions as previously mentioned.  After 48 h, the cell numbers reached 80000, 

160000 and 320000, respectively.  SPR measurements were then performed 4 times for 

each of the 3 samples with different cell numbers.  Figure 3.5 shows the SPR responses to 

induced VEGF secretion from different numbers of cells (data not shown for repeated 

measurements).  SPR angle shift for each cell number group was determined by the 

average of 4 repeated measurements.  From each averaged SPR angle shift, we can obtain 

the VEGF concentration secreted by the 3 different cell number groups.  The SPR flow 

chamber volume is 2 mL.  Finally, we calculated the amount of VEGF released from 

each cell to be 0.0137 ± 0.0012 pg (n=12) by averaging the VEGF singal cell release 

amount yielded for each of the 3 cell number groups.  Due to the capacity limitation of 

our SPR flow chamber, the sample of 320000 cells had reached 100% confluency inside 

the chamber.  Therefore, we were not able to further investigate the VEGF release 

amount from a larger group of SKOV-3 cells.  However, this sensing platform has 

provided a strategy for accurate prediction of carcinoma cell number.   
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Figure 3.5. SPR sensor responses to stimulated VEGF secretion from groups of cells with 
different cell numbers.  VEGF secretion from (a) 80000 cells induced 43.4±5.7 mDeg (n=4) SPR 
angle shift; (b) 160000 cells induced 100.6±8.9 mDeg (n=4) SPR angle shift; (c) 320000 cells 
induced 214.2±15.1 mDeg (n=4) SPR angle shift.   

 

3.4. Conclusions 

In conclusion, this work demonstrates the new concept of a SPR biosensor for biomarker 

study.  On the basis of integration of a mini cell culture system within the traditional SPR 

sensing platform, this biosensor is capable of direct measurement of VEGF biomarker 

secretion from living SKOV-3 carcinoma cells.  Because the configuration of this SPR 

biosensor mimics the in vivo microenvironment of the VEGF signaling pathway, this 

platform possesses great potential on cellular signaling pathways study and antineoplastic 

drug development.  By modifying the surface functionalization of the SPR assay, this 
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biosensor might open up new horizons for detection and analysis of biomarker from 

living cells and tissue for different diseases. 



 

65 

 

Chapter 4 

 

Study of drug regulation on the VEGF binding kinetics with a living cell model 
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4.1. Introduction 

We have constructed an upgraded SPR biosensor with the ability of direct detection of 

disease biomarkers from living cell models in the previous chapter.  This sensing strategy 

also possesses the potential of drug regulation study with living cell models.  In this 

chapter, we will further investigate the feasibility of performing antineoplastic drug 

regulation studies on the cellular level by SPR biosensors. 

 

For the past decade, cancer ranked the second leading cause of death in the United States.  

In 2012, a total of 1,638,910 new cancer cases and 577,190 deaths from cancer occurred 

in the United States alone.95  According to the defination of the American Cancer 

Society, cancer is the general name for a group of more than 100 diseases.  Although 

there are many kinds of cancer, all cancers start because abnormal cells grow out of 

control.96-99  Cancer types can be grouped into 5 main categories: (1) Carcinoma - cancer 

that begins in tissues or in the skin that cover internal organs; (2) Sarcoma - cancer that 

begins in connective or supportive tissue such as: bone, muscle, cartilage, fat, blood 

vessels, etc.; (3) Leukemia - cancer that starts in blood-forming tissue such as the bone 

marrow and causes large numbers of abnormal blood cells to be produced and enter the 

blood; (4) Lymphoma and myeloma - cancers that begin in the cells of the immune 

system; (5) Central nervous system cancers - cancers that begin in the tissues of the brain 

and spinal cord.100-102  Although some cancers, like leukemia, lymphoma and myeloma, 

rarely form tumors; in most cases, cancer cells form a tumor.  A tumor larger than a 

millimeter will starve itself of oxygen and energy unless new blood vessels are built to 
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provide supplies.103-104  A process known as angiogenesis is found to be involved in 

building new blood vessels for many types of cancer.   

 

Angiogenesis is a complex process defined as the growth of new blood vessels from 

existing vessels.105-106  Normal embryogenesis and embryonic development occurs under 

normal physiological conditions in adults, whereas angiogenesis occurs during tissue 

repair, ovulation and endometrial regulation.107-108  Mediators of angiogenesis such as 

VEGF stimulate endothelial cells to secrete proteases and plasminogen activators.  Cells 

will then migrate, proliferate and eventually differentiate to form a new lumen vessel.109  

Many pathological conditions involve or mimic the angiogenic process, such as: 

atherosclerosis, rheumatoid arthritis, diabetes, heart disease and solid tumor growth.110  It 

is well established that tumor progression requires angiogenesis for blood and oxygen 

supply.  Cancers switch on angiogenesis by breaking the balance between production of 

angiogenic stimulus and inhibitor factors.43, 111-112  The angiogenesis process consists of 

several steps: (1) Angiogenic factor production; (2) Release of angiogenic factor; (3) 

Endothelial cell receptor binding and activation; (4) Endothelial cells proliferation; (5) 

Membrane formation and stabilization.113  VEGF is a very common angiogenic factor 

and VEGF receptor (VEGFR) is a very common endothelial cell receptor.  VEGF-

VEGFR binding process is the key point of neovascularization.114-115  Targeting the 

endothelial cells receptor binding and activation process is a potential strategy for cancer 

repression.  However, many questions about the VEGF signaling pathway remains not 

clearly understood.   
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The VEGF family and its receptors include: (1) VEGF-A for endothelial cells migration 

and mitosis, creation of blood vessel; (2) VEGF-B specifically for myocardial tissue; (3) 

VEGF-C for lymphangiogenesis; (4) VEGF-D for the development of lymphatic 

vasculature surrounding lung bronchioles; (5) PlGF for vasculogenesis, also involved in 

cancer; and VEGFR-1, VEGFR-2, VEGFR-3 (Scheme 4.1).90  Among these members, 

VEGF-A and VEGFR-1 are most widely involved in different types of cancer.116   

 

 

Scheme 4.1. Schematic diagram of the relationships between VEGF and VEGF receptors. 

 

There are more than 100 antibodies currently approved by FDA or under development for 

cancer therapy by regulating VEGF-VEGFR binding interaction.117-118  One such 

approved antibody is bevacizumab, a humanized anti-VEGF monoclonal antibody 

generated by engineering the VEGF binding residues of a murine neutralizing antibody 

into the framework of the consensus human immunoglobulin G1 (IgG1).89, 119  

Bevacizumab recognizes VEGFR-1 (flt-1) and VEGFR-2 (KDR) receptors and thus binds 
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and neutralizes all biologically active forms of VEGF that interact with these receptors.120  

The efficacy of bevacizumab against various cancer types has been demonstrated in 

several clinical studies (Table 4.1).121-125 

 

Indication Sample 

Number 

Conclusions 

Colorectal 

Cancer  

104  Bevacizumab combined with chemotherapy was well 

tolerated and may be effective in increasing response rates 

and prolonging time to disease progression in patients with 

metastatic colorectal cancer  

Non-small 

cell lung 

cancer  

99  The addiction of bevacizumab (15 mg/kg) to 

carboplatin/paclitaxel chemotherapy increased time to 

disease progression and improved response rates in patients 

with advanced non-small cell lung cancer  

Breast cancer  28  Bevacizumab was well tolerated and might offer some 

benefit in patients with solid tumors in progression  

Other Cancer  12  Bevacizumab combined with chemotherapy was safe and 

may be effective in patients with advanced cancer  

Table 4.1. Summary of bevacizumab clinical studies. 

 

Although there are numerous clinical studies and trials on the drug efficacy of 

bevacizumab on cancers, only a few fundamental studies on the interaction between this 

widely used drug and VEGF have been reported.20, 126-129  Kinetics study on VEGF-
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bevacizumab binding helps elucidate the fundamental mechanism of bevacizumab 

inhibition to angiogenesis.  Tranditional techniques to measure the binding kinetic of 

VEGF and bevacizumab are Western blot and ELISA.130-131  These techniques can 

monitor cells only at a single time point and therefore do not allow for real-time 

monitoring.  Another previous study has shown an in vitro real-time monitoring of 

VEGF-bevacizumab binding using SPR.20  However, the experimental condition was not 

similar to the in vivo VEGF signaling pathway since it was performed with the 

commercial VEGF solution.   

 

In our previous studies, we have successfully demonstrated real-time monitoring VEGF 

expression from living human ovarian carcinoma cells using SPR.132  By intergrating a 

mini cell culture system into the SPR flow system, we were able to maintain live cell 

culture on the ceiling of the SPR flow chamber in order to realize VEGF measurements 

from living cells.  In this study, we have measured and compared the binding affinity of 

VEGF to VEGFR and VEGF to bevacizumab.  Finally, we employed this living cell 

sensing platform to mimic the in vivo condition of the VEGF signaling pathway.  

Competitive binding to VEGF between VEGFR and bevacizumab was monitored in real-

time.  The results have shown significant blockage of VEGF-VEGFR binding by 

bevacizumab.   
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4.2. Experimental 

4.2.1. Materials 

Bevacizumab (200 mg) were friendly donated by Genentech, Inc. (San Francisco, CA) 

VEGF, VEGFR, KREB’s buffer and Penicillin were obtained from Sigma-Aldrich (St. 

Louis, MO).  SKOV-3 cells, McCoy's 5A medium, and fetal bovine serum were 

purchased from American Type Culture Collection (Manassas, Virginia).  6-well tissue 

culture plates, d-poly coverslips, and formalin were purchased from Fisher Scientific.  

MUA was purchased from Asemblon (Redmond, WA).  Calcium Ionophore (A23187) 

was purchased from Acros Organic (New Jersey).  EDC and NHS were obtained from 

Alfa Aesar (WardHill, MA).  Protein G was purchased from Fisher Scientific (Waltham, 

MA).  All reagents and solvents were used as received unless otherwise stated.   

 

4.2.2. Instrumentation 

A BI-2000 SPR instrument purchased from Biosensing Instrument (Tempe, AZ) was 

used for data collection.  A 670nm wave length laser with a 72.2° incident angle was 

employed as the light source of the SPR instrument.  The gold SPR chip 

(20mm×20mm×1mm) is a BK7 glass slide coated with a 45nm layer of gold over a 5nm 

layer of chromium.  A biocompatible PDMS microfluidic injection chamber gasket with 

a 5mm×1.7mm×125µm channel was clamped on top of the gold face of the chip.  A dual 

syringe pump was attached to the injection chamber allowing both sample and reference 

buffer flow through the sensing surface.  An Olympus IX81 fluorescence microscopy 

(Japan) with a 20x objective was employed for cell fluorescent imaging.  A CCD camera 

was used to capture the signals and the images were software-merged with pseudo color.   
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4.2.3. SPR flow chamber surface pre-treatment and human cell culture 

SPR flow chamber gasket was detached from the SPR flow cell.  Several drops of 0.1% 

w/v gelatin solution made by boiling distilled water were applied onto the PDMS gasket 

to cover the whole surface.  The gasket was then dried for 12h in a biological fume hood 

to prevent contamination.133  A cell culture petri dish and a uncoated PDMS gasket were 

also prepared as positive and negative control substrates, respectively.   

 

SKOV-3 cells were cultured in McCoy's 5A medium added with 1% penicillin and 10% 

fetal bovine serum, and kept in a 37°C cell incubator with a humidified atmosphere of 

5% CO2 and 95% air.  200,000 cells were seeded on the gelatin coated SPR flow chamber 

gasket and kept in a 6-well tissue culture plates with cell culture media for 48h before 

each experiment.  The same cell culture was repeated on an uncoated PDMS gasket and a 

tissue culture plate as control experiments. 

 

4.2.4. Cell stain and fluorescent imaging   

We diluted 200 μM MitoTracker Red CMXRos dye and the 1.0 mM Hoechst 33342 dye 

stock solutions into cell medium with serum.  The concentration for MitoTracker Red 

CMXRos dye is 10-50 nM; The concentration for Hoechst 33342 dye is 1.0 μg/mL.  Both 

dyes may be combined in a single staining solution.  A sufficient amount of labeling 

solution was then applied to cover cells adhering to substrates followed by incubation for 

15 minutes at 37°C.  After that, the labeling solution was removed and cells were washed 

twice in the cell medium.  Labeled cells will then be fixed with 4% formaldehyde for 15 
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minutes at 37°C, followed by washes in buffer and staining with any additional 

counterstains.   

 

The substrates were then removed and mounted on glass microslides with antifade 

reagent/mounting medium mixture.  Then, the specimens were observed by fluorescence 

microscopy (Olympus IX81, Japan) with a 20x objective.  The fluorescence was imaged 

at Hoechst channel (nucleus stain dye, ex/em: 358/461 nm), and mitotracker red channel 

(ex/em: 570/590 nm).  A CCD camera was used to capture the signals and the images 

were software-merged with pseudo color.  The fluorescence microscope settings were 

kept the same throughout the experiment with the exception of the exposure time.  The 

images were recorded at the same exposure time for Hoechst and MitoTracker Red.   

 

4.2.5. Preparation of SPR gold sensing surface 

A similar method reported in our previous study was used for surface modification of the 

SPR gold chip.132  Briefly, SPR gold chip will be emerged in 1mM MUA (ethanol) 

solution for 12h at 4°C to form a layer of carboxylic groups on the gold surface.  The 

gold chip will then be washed with copious ethanol and mounted on the SPR system.  

Carboxylic groups were then activated with an injection of EDC (75mM) / NHS (15mM) 

solution.  All injections to the SPR microfluidic system in this study were performed with 

a 20 µL/min rate.  Surface modification and immobilization experiments were performed 

in PBS as the flowing buffer, and each solution was also prepared in PBS (pH=7.4) 

unless otherwise specified.   
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4.2.6. Comparison of VEGF-VEGFR and VEGF-bevacizumab binding kinetics 

In order to demonstrate the drug efficacy of bevacizumab, binding affinity of VEGF-

VEGFR and VEGF-bevacizumab interactions was measured and compared.  Following 

the surface modification of the SPR gold chip, an activated SPR chip was immobilized by 

injecting 50 µg/mL protein G solution to capture the Fc portions of the bevacizumab 

antibody in order to assure proper antibody orientation.  30 µg/mL bevacizumab was then 

bounded on top of the protein G layer.  Another SPR chip was immobilized by direct 

injection of 30 µg/mL VEGFR onto the activated surface.  2 µg/mL VEGF was injected 

to the flow chamber after surface functionalization.  SPR sensorgram was collected by 

Biosensing Instrument SPR Control Program running on a PC.   

 

4.2.7. Drug regulation study on VEGF-VEGFR binding 

A biomimic system was constructed to evaluate the bevacizumab drug regulation on the 

VEGF signaling pathway.  VEGFR was immobilized on the SPR gold sensing surface by 

aforementioned method.  The flowing PBS buffer was paused once VEGFR was 

immobilizaed.  The PDMS flow chamber gasket used for surface immobilization (no 

cells) was removed. 

 

The PDMS flow chamber gasket with SKOV-3 cell culture was then removed from cell 

culture media and throughly rinsed with Kreb’s buffer to remove cell culture media and 

unattached cells.  Following this, the PDMS gasket with cells was mounted on the SPR 

flow chamber, and SPR flowing buffer was changed from PBS (pH = 7.4) to Kreb’s 

buffer (pH = 7.4) in order to maintain cell viability during experiments.  After resuming 
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the buffer flow, 500µm Ca2+ ionophore (A23187) was injected to induce rapid exocytosis 

of VEGF from the SKOV-3 cells.  We added 30 µg/mL bevacizumab to the flowing  

buffer to capture the VEGF secretion.  Therefore, we have built an in vitro system to 

mimic the VEGF-VEGFR release, transportation, binding processes to monitor the 

bevacizumab drug regulation in real-time (Scheme 4.2). 

 

 

Scheme 4.2. Schematic illustration of the biomimic system for bevacizumab drug regulation 
study. 
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4.3. Results and discussion 

4.3.1. Optimization and calibration for surface concentration of bevacizumab 

In order to determine the optimal dose of bevacizumab for this study, we investigated the 

SPR response to different concentrations immobilized on the gold sensing surface.  

Initially, 50 µg/mL protein G solution was injected to the activated SPR chip followed by 

injection of a certain concentration of bevacizumab (5µg/mL, 10µg/mL, 30µg/mL, 

50µg/mL, 70µg/mL).  Three gold chips were prepared for each concentration.  3µg/mL 

VEGF was then injected to pass through the sensing surface.  The SPR measurement was 

repeated 3 times for each bevacizumab concentration.  Figure 4.1 shows the results from 

one set of measurements.  The resulting SPR response for each bevacizumab 

concentration was plotted against time (70µg/mL data not shown).  It is evident that the 

amount of VEGF bound to the 50µg/mL bevacizumab sensing surface did not show a 

significant difference than the amount of VEGF bound to the 30µg/mL bevacizumab 

sensing surface (Figure 4.2).  This observation can be attributed to two possible reasons: 

(1) 30µg/mL is the saturation concentration of bevacizumab on the surface or (2) 3µg/mL 

VEGF injection can be completely captured by 30µg/mL surface bound bevacizumab.  

Our previous study showed that even SKOV-3 cells reached 100% confluency in the SPR 

flow chamber, the VEGF release did not reach 3µg/mL.  As a result, we employed 

30µg/mL as the maximum concentration of bevacizumab for further binding studies.  

Linear responses of bevacizumab-VEGF binding are obtained between 5µg/mL and 

30µg/mL of surface bound bevacizumab concentrations.   
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Figure 4.1. SPR response to 3µg/mL VEGF for each surface bound bevacizumab concentration: 
5µg/mL (red), 10µg/mL (blue), 30µg/mL (purple), 50µg/mL (green).  
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Figure 4.2. Calibration curve: the linear relationship between SPR baseline shift and the surface 
concentration of bevacizumab (n=3). 

 

4.3.2. Specificity study of VEGF-bevacizumab binding 

Bevacizumab is a humanized anti-VEGF monoclonal antibody generated by engineering 

the VEGF binding residues of a murine neutralizing antibody into the framework of the 

human IgG.  Therefore, it is only expected to bind with VEGF specifically.134  Any non-

specific binding to other biomolecules is going to affect the efficacy of this drug.  We 

have already demonstrated the affinity and reproducibility of VEGF-bevacizumab 

binding in the previous experiment.  In this experiment, we further investigated the 

specificity of the VEGF-bevacizumab interaction.  VEGF-VEGFR binding and activation 

is the most important step of the angiogenesis process, which is also the target of most 



 

79 

 

angiogenesis regulation therapy strategies, including bevacizumab.  Thus it is crucial to 

investigate the interaction between bevacizumab and VEGFR.  Similarly, a bevacizumab 

layer was formed on the activated SPR gold surface by injecting 10µg/mL bevacizumab.  

Following this, 3µg/mL VEGF and VEGFR were injected and passed the two 

bevacizumab covered gold chips, respectively.  As shown in Figure 4.3A, a 25.1mDeg 

baseline shift was observed on the SPR sensorgram due to the VEGF-bevacizumab 

binding.  However, no significant baseline shift was detected for VEGFR-bevacizumab 

interaction (Figure 4.3B).  The results indicate that bevacizumab regulates the 

angiogenesis process by blocking the active binding site on VEGF.  The specificity study 

was then repeated for 3 times.  Similar results were observed. 
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Figure 4.3. (A) SPR sensorgram of surface bound bevacizumab interacting with VEGF.  Inset: 
enlarged sensorgram of the response upon VEGF binding. 
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Figure 4.3. (B) SPR sensorgram of surface bound bevacizumab interacting with VEGFR.  Inset: 
enlarged sensorgram of the response upon VEGFR binding. 

 

4.3.3. Study of SKOV-3 cell viability in the SPR flow chamber 

For the purpose of constructing the VEGF signaling pathway biomimic system for the 

drug efficacy study, we first demonstrated cell viability in the SPR flow chamber.  

Fluorescent imaging was performed using the aforementioned method in order to 

examine cell confluency on each type of substrate.  As shown in Figure 4.4, the cell 

confluency on tissue culture plates and gelatin coated gaskets both reached 100%, 

whereas the cell confluency on uncoated gaskets only reached 60%.  Gelatin coated 

gaskets showed significant enhancement of cell attachment compared to uncoated 

gaskets.  Therefore, it is a suitable substrate for living cell experiments in the SPR flow 
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chamber.   

 

Figure 4.4. Fluorescent images of SKOV-3 cells at Hoechst channel, MitoTracker Red channel 
and merged images on different type of substrates: petri dishs (exposure time 400ms), gelatin 
coated gaskets (exposure time 200ms) and uncoated gaskets (exposure time 200ms). 

 

4.3.4. Binding kinetics study of VEGF-VEGFR and VEGF-bevacizumab interactions 

We have previously shown the binding affinity of VEGF-bevacizumab interaction.  

Herein, binding kinetics of the VEGF-bevacizumab interaction was compared to that of 

the VEGF-VEGFR interaction using the biomimic sensing platform.   

 

Initially, bevacizumab was immobilized on the SPR gold sensing surface using the 

aforementioned protocol.  Following this, 2µg/mL VEGF solution was injected to pass 

the sensing surface.  A similar experiment was then performed with VEGFR immobilized 
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on the SPR gold sensing surface.  Both experiments were repeated 4 times for 

reproducibility test.  The SPR sensorgram of the responses on VEGF binding to 

bevacizumab (blue) and VEGFR (red) is shown in Figure 4.5 (data not shown for 

repeated measurements).   

 

Figure 4.5. SPR sensorgram of VEGF binding response to bevacizumab (blue line) and VEGFR 
(red line). 

 

A modified equation of a previous reported pseudo-first-order kinetic equation135 was 

used to determine the association rate constants: 

 

where R is the SPR signal at time t, ka is the association rate constant which indicates the 

binding affinity between two reactants, [VEGF] and [ligand] are the concentration of 
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VEGF and the surface bound binding ligand (bevacizumab or VEGFR), respectively.  

The maximum value of (dR/dt) for each sample was determined by calculating the 

maximum slope of the association curve using Matlab.  The weight concentration of 

VEGF was converted to molar concentration (47.6nM).  The concentration of the surface 

bound bevacizumab is 30µg/mL (201.3nM).  As shown in Figure 4.5, the maximum slope 

of the VEGF-bevacizumab binding curve was calculated to be 0.91±0.04 (n=4).  Thus the 

ka for bevacizumab is 9.5±0.4×1013 M-2 (n=4).  Similarly, the concentration of the surface 

bound VEGFR is 30µg/mL (166.7nM), the maximum slope of the VEGF-VEGFR 

binding curve was calculated to be 0.43±0.01 (n=4).  Therefore the ka for VEGFR is 

5.4±0.2×1013 M-2 (n=4).  We also obtained the binding affinity information for both 

interactions from Figure 4.5 by measuring the SPR baseline shift upon VEGF binding.  

VEGF-bevacizumab binding induced a 92.7±4mDeg (n=4) baseline shift, whereas 

VEGF-VEGFR binding induced a 60.2±3mDeg (n=4) baseline shift.  All aforementioned 

calculations were obtained by the average of 4 repeated measurements.  These results 

indicate that bevacizumab captures VEGF with a higher rate and affinity compared to 

VEGFR.20   

 

4.3.5. Bevacizumab drug regulation study on VEGF-VEGFR interaction 

According to the aforementioned protocol, the drug efficacy of bevacizumab was 

evaluated using the VEGF signaling pathway biomimic system, as shown in Figure 4.6.  

Briefly, VEGFR was immobilized on the SPR gold sensing surface.  PDMS flow 

chamber gasket with SKOV-3 cell culture was mounted on top of the sensing surface.  

We employed pure Kreb’s buffer and Kreb’s buffer with 30 µg/mL bevacizumab as the 
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SPR flowing buffers for the control experiment and the drug regulation experiment, 

respectively.  Ca2+ ionophore (A23187) was used to stimulate rapid exocytosis of VEGF 

from the SKOV-3 cells.  Both the control experiment and the drug regulation experiment 

were repeated 4 times under similar condition.  In Figure 4.6, the red line depicts the SPR 

response of VEGF exocytosis binding to VEGFR on the sensing surface (control 

experiment).  The peak between ~50s and ~250s can be attributed to the refractive index 

change induced by the Ca2+ ionophore (A23187) passing through the sensing surface.  

Following the plateau, the baseline is stablized at 103.7±8.4mDeg (n=4).  This SPR 

baseline shift indicates that VEGF released from SKOV-3 cells has bound to the VEGFR.  

The blue line depicts the SPR response of VEGF exocytosis binding to surface VEGFR 

under the regulation of bevacizumab (drug regulation experiment).  By comparing this 

data to the control experiment, the SPR base line has dropped by 82.5±9.6mDeg (n=4) 

after the Ca2+ ionophore (A23187) stimulation.  We anticipate this sudden drop of 

baseline is due to the surface refractive index decrease caused by the fast binding 

between VEGF and bevacizumab in the flowing buffer.  However, further experiments 

are needed to confirm this assumption.  Following the plateau, the baseline is slowly 

increasing towards the original position, since the VEGF exocytosis was being carried 

away from the sensing surface.  No significant baseline increase was observed in this 

experiment, which indicates that the VEGF-VEGFR pathway was successfully blocked 

by bevacizumab in the flow chamber.  The amount of VEGF bound to VEGFR was 

significantly decreased under the regulation of bevacizumab.136 
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Figure 4.6. SPR response of VEGF (SKOV-3 cells released) – VEGFR interaction (red line) and 
VEGF (SKOV-3 cells released) – VEGFR interaction under bevacizumab regulation (blue line) in 
the biomimic system. 

 

4.4. Conclusions 

In this study, we have constructed a biomimic system for the VEGF-VEGFR signaling 

pathway in SPR and investigated its potential application on antineoplastic drugs 

development.  To the best of our knowledge, this is the first report showing direct and 

real-time measurements of drug effect to the VEGF-VEGFR signaling pathway on living 

carcinoma cells.  SKOV-3 cells and the bevacizumab antibody were used as the cell 

model and the drug model for the evaluation of the strategy.  SPR exhibits excellent 

sensitivity and linear dynamic range towards VEGF and bevacizumab interactions.  

SKOV-3 cells were incubated in the modified SPR flow chamber for the drug efficacy 
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study.  VEGF-bevacizumab binding showed a higher association rate constant and 

binding affinity than VEGF-VEGFR binding.  The bevacizumab drug regulation study 

reveals successful blockage of VEGF-VEGFR binding and activation process.  We have 

outlined a highly sensitive and simple strategy for the direct and real-time measurements 

of bevacizumab drug efficacy to the VEGF-VEGFR signaling pathway on living SKOV-

3 cells.  It is hopeful that a similar strategy may be employed to develop and evaluate 

other type of medicine.   
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Chapter 5 

 

Conclusions and Future Work 
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5.1. Conclusions 

This dissertation demonstrates real-time, direct and sensitive LSPR based biosensors for 

biomolecular binding kinetics measurements.  We have achieved a LSPR sensing 

platform for the detection of small heavy metal molecule bindings.  The performance of 

this sensor was evaluated on the study of arsenic detoxification pathway of E. coli.  We 

also successfully incorporated a mini cell culture system into the flow chamber of the 

SPR based biosensors.  This novel feature enables the in vitro detection of biomarkers 

from living cells.  Following this, the SPR based biosensors with the capability of 

biomarker measurements from living cells were employed on the drug regulation study of 

the VEGF signaling pathway in cancer cells. 

 

Chapter 1 introduces the objectives, the background and literature review on the 

dissertation topic.  Three specific aims of this dissertation are also presented.   

 

Chapter 2 addresses the specific aim 1.  It deals with the development of highly sensitive 

LSPR sensor and its application on detection of small heavy metal molecule binding.  A 

self-assembled 3D hydrogel–nanoparticle composite integrated LSPR sensor is reported.  

The novel assembled substrate was developed by means of a surface mediated radical co-

polymerization process to obtain a highly sensitive hydrogel-based thin film that 

possesses specific binding sites for target analytes.  Initially, amino group modified 

AuNPs were covalently linked to acrylic acid monomer.  NIPAAm and AuNPs linked 

AAc monomers were randomly co-polymerized by the “grafting from” method in the 

presence of initiator and crosslinker onto the sensing surface.  Surface charecterization 
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techniques were utilized to evaluate the thickness and composition of the hydrogel-

nanoparticle film.  The sensing platform was employed to study the binding kinetics and 

conformational changes of the ArsA ATPase as a consequence of binding trivalent 

arsenicals under a variety of conditions.  ArsA, the catalytic subunit of the ArsAB As(III) 

translocating ATPase, is one of the five proteins encoded by the ars operon of plasmid 

R773 in cells of E. coli, that confers resistance to trivalent and pentavalent salts of the 

metalloid arsenic.  LSPR measurements indicate that the 3D hydrogel-nanoparticle 

coated sensors exhibited a higher sensitivity than that of the 2D AuNPs decorated 

sensors.  Binding of As(III) to ArsA is greatly facilitated by the presence of magnesium 

ion and ATP.   

 

Chapter 3 addresses the specific aim 2.  It describes the sensing platform upgrade for 

biomarker study from living cell model.  A SPR biosensor which is capable of 

monitoring proteomic biomarker secretion from living cells is reported here.  The sensing 

strategy is based on the integration of a mini cell culture system within the traditional 

SPR sensing platform.  SKOV-3 cells were incubated in the gelatin coated SPR flow 

chamber during the experiment.  VEGF secretion from living SKOV-3 ovarian cancer 

cells was measured for concept demonstration.  Fluorescent imaging was utilized to 

demonstrate cell viability in the SPR flow chamber.  Rapid VEGF secretion from SKOV-

3 cells induced by Ca2+ ionophore was successfully monitored.  The amount of VEGF 

released from SKOV-3 cells was determined by VEGF calibration curve.  Cell number 

study reveals the relationship between SKOV-3 cell number and VEGF secretion amount, 

which helps to provide a strategy for accurate prediction of carcinoma cell number.  By 
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modifying the surface functionalization of the SPR assay, this biosensor might open up 

new horizons for detection and analysis of biomarker from living cells and tissue for 

different diseases.   

 

Chapter 4 addresses the specific aim 3.  It involves the evaluation of drug regulation on 

VEGF binding with living cell model.  VEGF is one of the most important and best 

documented angiogenic factors, which is involved in the instigation of various types of 

tumor.  VEGF-VEGFR binding process is the key point of angiogenesis, which is also the 

target of many angiogenesis inhibition therapy strategies.  The purpose of this study was 

to construct a biomimic system of VEGF-VEGFR signaling pathway based on the 

platform described in chapter 3 for drug regulation study.  Bevacizumab is a humanized 

anti-VEGF monoclonal antibody which is a FDA approved medicine for cancer therapy 

by regulating VEGF-VEGFR binding interaction.  It has been proven to be clinically 

effect on angiogenesis inhibition.  In this study, we employed bevacizumab as a model to 

demonstrate and evaluate our biomimic system for drug regulation study.  Binding 

affinity and kinetics were studied for VEGF-VEGFR and VEGR-bevacizumab 

interactions.  Results indicate that bevacizumab has higher binding affinity and 

association rate constant towards VEGF comparing with VEGFR.  Biomimic study of 

bevacizumab regulation to the VEGF-VEGFR signaling pathway of living SKOV-3 cells 

shows successful blockage of the VEGF-VEGFR binding and activation process.  A 

similar protocol can be used to evaluate drug regulation mechanisms in other disease 

models.   
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5.2. Future Work 

The LSPR biosensors developed for the arsenic detoxification pathway study will be 

further employed for the study of other proteins encoded by the ars operon.  Binding 

kinetics of ArsA-As(III) interaction under the combined effect of ArsD and MgATP can 

be further investigated.  Based on previous publication, the ars operon is also able to 

detoxify organic arsenic components.  The LSPR biosensors could be useful for the study 

of interactions between ars proteins and organic arsenic components. 

 

The signaling pathway biomimic system is capable of living cell studies, but it is lack of 

long term study capability.  A temperature and CO2 controled mini cell culture system 

will be intergrated to the SPR biomimic systems to achieve long term real-time 

measurement.  Regulations by other medicine on the VEGF-VEGFR signaling pathway 

can also be investigated in the future.  The SPR biosensors will also be tested for their 

sensitivity, specificity, reproducibility, etc. on the detection of biomarkers in body fluid 

from real patients.  We have demonstrated the detection and kinetics studies on proteins 

using SPR.  It will be very interesting to test the ability of detecting other types of cellular 

secretion (DNA, RNA, exosomes, etc.) on this sensing platform.  The most promising 

potential of SPR in medical applications is early diagnosis.  However, as we mentioned in 

chapter 1, SPR instruments are expensive and lack of portability.  Research efforts should 

be put onto the development of cheaper, smaller and lighter SPR sensing platforms to 

make this technology more accessable for early diagnosis.   
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