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ABSTRACT OF THE DISSERTATION 
 

GLYCOGEN SYNTHASE KINASE 3 INFLUENCES CELL MOTILITY AND 

CHEMOTAXIS BY REGULATING PHOSPHATIDYLINOSITOL 3 KINASE 

LOCALIZATION IN DICTYOSTELIUM DISCOIDEUM 

by 

Tong Sun 

Florida International University, 2013 

Miami, Florida 

Professor Lou W. Kim, Major Professor 

      Glycogen Synthase Kinase 3 (GSK3), a serine/threonine kinase initially characterized 

in the context of glycogen metabolism, has been repeatedly realized as a multitasking 

protein that can regulate numerous cellular events in both metazoa and protozoa. I 

recently found GSK3 plays a role in regulating chemotaxis, a guided cell movement in 

response to an external chemical gradient, in one of the best studied model systems for 

chemotaxis - Dictyostelium discoideum. 

      It was initially found that comparing to wild type cells, gsk3- cells showed aberrant 

chemotaxis with a significant decrease in both speed and chemotactic indices. In 

Dictyostelium, phosphatidylinositol 3,4,5-triphosphate (PIP3) signaling is one of the best 

characterized pathways that regulate chemotaxis. Molecular analysis uncovered that gsk3- 

cells suffer from high basal level of PIP3, the product of PI3K. Upon chemoattractant 

cAMP stimulation, wild type cells displayed a transient increase in the level of PIP3. In 

contrast, gsk3- cells exhibited neither significant increase nor adaptation. On the other 

hand, no aberrant dynamic of phosphatase and tensin homolog (PTEN), which 



 vii

antagonizes PI3K function, was observed. Upon membrane localization of PI3K, PI3K 

become activated by Ras, which will in turn further facilitate membrane localization of 

PI3K in an F-Actin dependent manner. The gsk3- cells treated with F-Actin inhibitor 

Latrunculin-A showed no significant difference in the PIP3 level.   

      I also showed GSK3 affected the phosphorylation level of the localization domain of 

PI3K1 (PI3K1-LD). PI3K1-LD proteins from gsk3- cells displayed less phosphorylation 

on serine residues compared to that from wild type cells. When the potential GSK3 

phosphorylation sites of PI3K1-LD were substituted with aspartic acids (phosphomimetic 

substitution), its membrane localization was suppressed in gsk3- cells. When these serine 

residues of PI3K1-LD were substituted with alanine, aberrantly high level of membrane 

localization of the PI3K1-LD was monitored in wild type cells. Wild type, 

phosphomimetic, and alanine substitution of PI3K1-LD fused with GFP proteins also 

displayed identical localization behavior as suggested by the cell fraction studies. Lastly, 

I identified that all three potential GSK3 phosphorylation sites on PI3K1-LD could be 

phosphorylated in vitro by GSK3. 

 

 

 

 

 

 

 

 



 viii

TABLE OF CONTENTS 
 

CHAPTER           PAGE 
 
I. INTRODUCTION ........................................................................................................... 1 
       1.1 Dictyostelium discoideum as a model system ........................................................ 1 
       1.2 Chemotaxis ............................................................................................................ 3 
                  1.2.1 Overview of chemotaxis .......................................................................... 3 
                  1.2.2 PIP3 signaling pathway in Dictyostelium ................................................ 4 
                  1.2.3 TORC2 signaling pathway in Dictyostelium ........................................... 5 
                  1.2.4 Other signaling pathways affecting Dictyostelium chemotaxis ............... 6 
       1.3 Glycogen synthase kinase 3 ................................................................................... 7 
                  1.3.1 Overview of GSK3 .................................................................................. 7 
                  1.3.2 GSK3 in development and transcription factor regulation .................... 11 
                  1.3.3 GSK3 in mamamlian cell movement and polarity ................................. 13 
                  1.3.4 GSK3 in Dictyostelium movement ........................................................ 15 
        
II. CELLS LACKING GSK3 ARE DEFECTIVE IN MOTILITY .................................. 17               
       2.1 Materials and methods ......................................................................................... 17 
                  2.1.1 Dictyostelium culture and pulsing .......................................................... 17 
                  2.1.2 Chemotaxis assay and random motility assay ....................................... 17  
                  2.1.3 RT-PCR.................................................................................................. 18 
                  2.1.4 Transfection by electroporation ............................................................. 18 
                  2.1.5 Antibodies and western blotting ............................................................ 19 
       2.2 Results .................................................................................................................. 20 
                  2.2.1 The gsk3- cells showed aberrant movement in both chemotaxis  
                           and  random movement .......................................................................... 20 
                  2.2.2 Re-introducing GFP fused GSK3 back to gsk3- cells rescued the  
                           chemotaxis defects ................................................................................. 23 
                  2.2.3 Expressing sodC in gsk3- cells could not rescue both 
                           chemotaxis and random movement defects ........................................... 25 
       2.3 Discussion ............................................................................................................ 29                  
 
III. ANALYSIS OF PI3K AND PTEN BEHAVIORS IN gsk3- CELLS ......................... 31 
       3.1 Materials and methods ......................................................................................... 31 
                  3.1.1 GFP-fusion Proteins and Fluorescence Microscopy .............................. 31 
                  3.1.2 cAMP stimulation .................................................................................. 31 
                  3.1.3 Latrunculin-A treatment ......................................................................... 31 
                  3.1.4 PI3K inhibition using LY294002 .......................................................... 32      
       3.2 Results .................................................................................................................. 32 
                  3.2.1 PIP3 level along the plasma membrane, PI3K1-LD localization and  
                           PTEN localization in vegetative cells .................................................... 32 
                  3.2.2 Dynamics of PIP3 level along the plasma membrane upon cAMP  
                           stimulation.............................................................................................. 34 
                  3.2.3 PI3K1-LD localization dynamics along the plasma membrane upon  



 ix

                           cAMP stimulation .................................................................................. 36 
                  3.2.4 PTEN localization dynamics along the plasma membrane upon  
                           cAMP stimulation .................................................................................. 38 
                  3.2.5 Summary of the PHcrac, PI3K and PTEN dynamics ............................ 38 
                  3.2.6 Latrunculin-A treatment ......................................................................... 42 
                  3.2.7 SPM-PI3K1-LD and SAS-PI3K1-LD localization dynamics  along 
                           the plasma membrane upon cAMP stimulation ..................................... 46 
                  3.2.8 LY294002 treated gsk3- cells still showed aberrant chemotaxis ........... 50 
       3.3 Discussion ............................................................................................................ 52 
 
IV. RAS ACTIVATION DYNAMICS............................................................................. 54 
       4.1 Materials and methods  ........................................................................................ 54 
                  4.1.1 Expression of GST-RBD protein in E. coli using IPTG-inducible 
                           stimulation.............................................................................................. 54 
                  4.1.2 GST-RBD quantification using Coomassie Brilliant Blue staining ...... 54 
                  4.1.3 Ras binding assay ................................................................................... 55 
       4.2 Results .................................................................................................................. 55 
                  4.2.1 GSK3 affected PI3K membrane localization independently from the  
                           Ras/PI3K/F-Actin feedback module ...................................................... 55 
                  4.2.2 GSK3 regulated the Ras activation after cAMP stimulation ................. 57 
       4.3 Discussion ............................................................................................................ 58 
 
V. GSK3 REGULATES PI3K1-LD PHOSPHORYLATION IN VIVO AND  
     IN VITRO ..................................................................................................................... 61 
       5.1 Materials and methods ......................................................................................... 61 
                  5.1.1 Generation of GST-PI3K1-LD expression construction ........................ 61 
                  5.1.2 Antibodies .............................................................................................. 61 
                  5.1.3 Subcellular fractionation of wild type and mutants GFP-PI3K1-LD  
                           proteins ................................................................................................... 62 
                  5.1.4 IPTG inductions ..................................................................................... 62 
                  5.1.5 GSK3 Kinase assay ................................................................................ 62 
                  5.1.6 In vitro peptide kinase assay .................................................................. 63 
                  5.1.7 GST pull-down assay and lambda phosphatase treatment ..................... 64 
       5.2 Results .................................................................................................................. 65 
                  5.2.1 PI3K1-LD proteins were under-phosphorylated in gsk3- cells .............. 65 
                  5.2.2 Localization of PI3K1-LD, SPM-PI3K1-LD and SAS-PI3K1-LD ....... 67 
                  5.2.3 Unprimed PI3K1-LD was not a substrate of recombinant GSK3.......... 71 
                  5.2.4 Induced Dictyostelium GSK3 could not phosphorylate artificially  
                           synthesized peptides............................................................................... 73 
                  5.2.5 Recombinant GSK3 could only phosphorylate one of the artificially  
                           synthesized peptides............................................................................... 75 
                  5.2.6 Peptide Kinase assay using whole cell lysate of wild type cells  
                           indicated all artificially synthesized peptides are GSK3substrates ........ 76 
       5.3 Discussion ............................................................................................................ 77 
 



 x

 
VI. Conclusions and future directions .............................................................................. 78 
 
REFERENCES ................................................................................................................. 82 
 
APPENDICES .................................................................................................................. 96 
 
VITA ............................................................................................................................... 100 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 xi

LIST OF FIGURES 

FIGURE           PAGE 

1.1   Development of Dictyostelium ................................................................................... 2 

1.2   Mammalian GSK3β regulation via phosphorylation ................................................ 10 

1.3   The role of GSK3 in both PIP3 and TORC2 pathways in Dictyostelium ................. 16 

2.1   Chemotaxis assays using 10 µM cAMP point source ............................................... 21 

2.2   Chemotaxis assays using 2 µM cAMP point source ................................................. 22 

2.3   Random movement assays for both JH10 and gsk3- cells ........................................ 23 

2.4   Expression of GFP and GFP-GSK3 in gsk3- cells .................................................... 24 

2.5   Reintroducing GSK3 in gsk3- cells rescued their chemotaxis defect ....................... 24 

2.6   RT-PCR experiment to determine the transcription level of sodC ........................... 25 

2.7   Chemotaxis assays using cells expressing sodC ....................................................... 27 

2.8   Random movement assay with cells expressing sodC .............................................. 27 

2.9   Summary of the chemotactic indices in chemotaxis assays ...................................... 29 

2.10 Summary of the speed in chemotaxis assays and random movement assays ........... 30 

3.1   GFP-PHcrac localization in vegetative cells............................................................. 33 

3.2   GFP-PI3K1-LD and GFP-PTEN in vegetative cells ................................................ 35 

3.3   GFP-PHcrac translocation after cAMP stimulation in pulsed cells .......................... 36 

3.4   Quantification of the membrane fluorescence shown on figure 3.3 ......................... 37 

3.5   GFP-PI3K1-LD translocation after cAMP stimulation in pulsed cells .................... 38 

3.6   Quantification of the membrane fluorescence shown on figure 3.5 ......................... 38 

3.7   GFP-PTEN translocation after cAMP stimulation in pulsed cells............................ 40 

3.8   Quantification of the membrane fluorescence shown on figure 3.7 ......................... 41 



 xii

3.9   PHcrac, PI3K and PTEN localization pattern upon stimulation in wild type cells .. 42 

3.10 PHcrac, PI3K and PTEN localization pattern upon stimulation in gsk3- cells ......... 43 

3.11 F-Actin polymerization induced positive feedback loop .......................................... 44 

3.12 GFP-PHcrac localization dynamics in Latrunculin-A treated vegetative cells ........ 45 

3.13 Quantification of the membrane fluorescence shown on figure 3.12 ....................... 45 

3.14 GFP-PHcrac localization dynamics in Latrunculin-A treated pulsed cells .............. 46 

3.15 Quantification of the membrane fluorescence shown on figure 3.14 ....................... 47 

3.16 Model of PIP3 signaling pathway under the regulation of GSK3 ............................ 48 

3.17 Three potential GSK3 phosphorylation sites on PI3K1-LD ..................................... 48 

3.18 Mutant PI3K1-LD-GFP tranlocation after cAMP stimulation in pulsed cells ......... 50 

3.19 Quantification of the membrane fluorescence shown on figure 3.18 ....................... 51 

3.20 Chemotaxis assays after LY294002 treatment ......................................................... 52 

3.21 Control chemotaxis assays ........................................................................................ 53 

4.1   Quantification Quantification of E.coli expressed GST-Raf1-RBD and GST- 
        Byr2-RBD using Coomassie Brilliant Blue  staining ............................................... 57 

4.2   Basal Ras activity in both wild type cells and gsk3- cells after pulsing .................... 58 

4.3   Ras activation patterns after stimulation using GST-Raf1-RBD .............................. 60 

4.4   Long time Ras activation patterns after stimulation using GST-Raf1-RBD ............ 61 

4.5   Ras activation patterns after stimulation using GST-Byr2-RBD .............................. 61 

5.1   GST-PI3K1-LD construct and full length PI3K1 ..................................................... 66 

5.2   (A) PI3K1-LD had less phosphorylation level in gsk3- cells compared to wild  
        type cells. (B) Lambda phosphatase treatment was able to reverse the different    
        phosphorylation level. ............................................................................................... 67 
 
5.3   Quantifications of the relative band intensity for figure 5.2A .................................. 67 



 xiii

5.4   Quantifications of the relative band intensity for figure 5.2B .................................. 68 

5.5   Localization of mutant PI3K1-LD in either wild type cells or gsk3- cells ................ 69 

5.6   Quantifications of the relative band intensity for figure 5.5 (top panel) .................. 70 

5.7   Quantifications of the relative band intensity for figure 5.5 (bottom panel) ............ 71 

5.8   Normalization of the total expression level .............................................................. 71 

5.9   Quantifications of the relative band intensity for figure 5.8 ..................................... 72 

5.10 Quantification of E.coli expressed GST-PI3K1-LD using Coomassie Brilliant  
        Blue staining ............................................................................................................. 73 

5.11 GST could not be phosphorylated by recombinant GSK3 ........................................ 73 

5.12 In vitro kinase assay using recombinant GSK3 ........................................................ 73 

5.13 Detection and quantifications of E.coli expressed GST-GSK3 ................................ 74 

5.14 Kinase activity of E.coli expressed GST-GSK3 ....................................................... 75 

5.15 In vitro peptide kinase assay using E.coli expressed GST-GSK3 ............................ 75 

5.16 In vitro peptide kinase assay using recombinant GSK3 ........................................... 76 

5.17 In vitro peptide kinase assay using whole cell lysate ............................................... 77 

A1   DNA sequence of PI3K1-LD (1476 bp) ................................................................... 97 

A2   Protein sequence of PI3K1-LD (492 amino acids) with potential GSK3  
        phosphorylation sites underlined .............................................................................. 97 

A3   Map of PGEX-4T-1 IPTG inducible vector .............................................................. 98 

A4   Map of expression vector EXP-4 (+) ........................................................................ 99 

A5   Map of expression vector EXP-4 (+)-GST-PI3K1-LD ........................................... 100 

 

 

 



 xiv

LIST OF ACRONYMS AND ABBREVIATIONS 

AL Activation loop 

Ala Alanine 

APC Adenomatous polyposis coli 

AX3 Dictyostelium wild type strain 

aPKC Atypical protein kinase C 

BSA Bovine serum albumin  

cAMP 3’-5’-cyclic adenosine monophosphate 

CFP Cyan fluorescent protein 

CRAC Cytosolic regulator of adenylyl cyclase 

CREB Cyclic AMP response element binding protein 

CRMP-2 Collapsin response mediator protein- 2  

Ci  Curie 

DB Developmental buffer 

DNA Deoxyribose nucleic acid 

DTT Dithiothreitol 

EDTA Ethylenediaminetetracetic acid 

EGF Epidermal growth factor 

EGTA Ethylene glycol tetraacetic acid 

F-Actin Filamentous actin 

GAP GTPase-activating protein 

GEF Guanine nucleotide exchange factor 

GFP Green fluorescent protein 



 xv

GSK3 Glycogen synthase kinase 3 

GST Glutathion S-tansferase 

GTT Glutathion 

HEPES N-2-Hydroxyethylpiperazine-N’-2-ethanesulfonic acid 

HM Hydrophobic motif 

Hr Hour  

HRP Horse radish peroxidase 

IGF Insulin-like growth factor 

IMPA Inositol monophosphatase 

IPTG Isopropyl β-D-1-thiogalactopyranoside 

JH10 Dictyostelium auxotrophic wild type strain 

jgsk3- JH10 with disrupted gsk3 gene 

kD Kilo Dalton 

Kpa Kilo Pascal 

kV Kilo Volt 

L  Liter 

LB Luria broth 

LD Localization domain 

Lef Lymphoid enhancer factor 

MAP1B Microtubule associated protein 1B 

Mb Mega base pairs 

MBP Myelin basic protein 

mg Milligram 



 xvi

min Minute 

ml Milliliter 

mm Millimeter 

mM Millimolar 

ng Nanogram 

nm Nanometer 

nM Nanomolar 

OD Optical density 

p Pico- 

PCR Polymerase chain reaction 

PDGF Platelet derived growth factor  

PDK Phosphoinositide-dependent kinases 

PH Pleckstrin homology 

Phe Phenylalanine 

PI3K Phosphatidylinositol-3-kinase  

PI3K1-LD Phosphatidylinositol-3-kinase 1 localization domain  

PIP2 Phosphatidylinositol 4,5-bisphosphate 

PIP3 Phosphatidylinositol 3,4,5-triphosphate 

PIPES Piperazine-1,4-bis[2-ethanesulfonic acid] 

PLA2 Phospholipase A2 

PLD Phospholipase D 

PKB Protein kinase B 

PKBR Protein kinase BR 



 xvii

PKC Protein kinase C 

PP2A Protein phosphatase 2A 

PTEN Phosphatase and tensin homolog 

RBD Ras binding domain 

rpm Round per minute 

RNA Ribonucleic acid 

ROS Reactive oxygen species 

RTK Receptor tyrosine kinases 

RT-PCR Reverse transcription polymerase chain reaction 

SAS Sextuple alanine substitution 

SD Standard deviation 

s/sec Second 

Ser Serine 

sGC Soluble guanylyl cyclase 

SHIP SH2 domain-containing inositol-polyphosphate 5’- 
  phosphatase 

SPM Sextuple phospho-mimetic 

Tcf T-cell factor 

TORC2 Target of rapamycin Complex 2 

Tyr Tyrosine 

μF MicroFarad 

μg Microgram 

μl Microliter 



 xviii

μm Micrometer 

μM Micromolar 

μ Micro- 

Wt Wild type 

Zak Zaphod kinase 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 xix

LIST OF SYMBOLS 

SYMBOL FULL NAME 

oC Degree Celsius 

% Percentage 

:: Over-expressing 

/ is expressed in 

~ Approximately 

’ Minute  

” Second 

 

 

 

 

 



 1

CHAPTER I 

INTRODUCTION 

1.1 Dictyostelium discoideum as a model system 

      A unicellular social amoeba, Dictyostelium discoideum, has received a great deal of 

research attention and has become a model system to study development, survival, 

chemotaxis, and motility since the 1930s (Bonner, 1947; Bonner and Eldredge, 1945; 

Raper and Smith, 1939). It is one of the eight model systems chosen by the National 

Institutes of Health (NIH) for biomedical-related research. Dictyostelium lives in the soil 

and feeds on several species of bacteria. It can reproduce both sexually and asexually 

(Chang and Raper, 1981; Gerisch and Huesgen, 1976). In the asexual life cycle of 

Dictyostelium, deprivation of the food source triggers an important reversion in its life 

cycle. Around a hundred thousand cells aggregate together and form a multicellular 

organism. The aggregation process is organized by an autonomous secretion of 3’-5’-

cyclic adenosine monophosphate (cAMP), which serves as a chemoattactant. The cAMP 

wave is sent out from the aggregation center in an oscillatory manner. Cells can sense 

each cAMP gradient wave and directionally migrate toward the aggregation center. 

Because of the direction sensing ability along the cAMP gradient, Dictyostelium has long 

been used as a model system for chemotaxis study (Gerisch, 1982; Konijn and Van 

Haastert, 1987; Newell et al., 1987). Upon aggregation, cells start to express cell type-

specific genes and secrete extracellular matrix material to form an acellular covering 

named the sheath. Finally Dictyostelium develops into a fruiting body structure which is 

characterized by a ball of spores sitting on top of a long stalk and a basal disk (Figure 

1.1). The spore head, which is fully encapsulated, is full of spores that are dispersed. One 
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entire round of aggregation and development process takes about 24 hours (Devreotes, 

1989; Nagano, 2000). 

 

Fig 1.1 Development of Dictyostelium. Numbers in the figure represent time after cells 
are deprived of a food source (Modified from Figure 8.12, Dictyostelium - Evolution, 
Cell Biology and Development of Multicellularity, 2001). 
 
      In 2005, the genome of Dictyostelium discoideum was sequenced using the whole-

chromosome shotgun (WCS) strategy, which greatly facilitated the research on the role of 

each individual gene (Eichinger et al., 2005). The 34 million base pair nuclear genome of 

Dictyostelium is distributed in six chromosomes. Systematically, it is relatively easy to 

study the regulatory strategies using Dictyostelium, through which one can predict the 

control networks in animals or plants. It is a haploid system which makes it a very 

powerful system for functional analysis of gene function. Out of the whole genome, the 

protein-coding genes are predicted to be at the range of 10,000-10,600. Among those 

genes, many of their encoded proteins are currently found to have homologs in higher 

eukaryotic cells and play a role in all kinds of cellular events such as development, 

chemotaxis, metabolism, signaling transduction, differentiation and endocytosis (Chen et 
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al., 2005; Davidoff, 1964; Eichinger et al., 2005; Kim et al., 2005; Lardy et al., 2005; 

Parent, 2004). What makes this model organism attractive is that the gene product 

information such as their function, their homologs in other organisms, signaling pathway 

they contribute to, the family they belong to and the protein they bind to can all be easily 

accessed at the Dictyostelium homepage (http://dictybase.org). A large number of 

Dictyostelium knockout and over-expression strains can be obtained from the 

Dictyostelium Stock Center.  

1.2 Chemotaxis 

1.2.1 Overview of chemotaxis  

      In one way or another, life is closely linked to motility. All cells are able to detect 

external stimuli in their living environment. In a broad point of view, chemotaxis is 

involved in numerous processes both at the cellular level and organism level. The way a 

butterfly finds a flower to the way sperm finds the ovum, and from how bacteria find 

their food and avoid enemies to how the germ cells know where to migrate during 

embryogenesis, the event of chemotaxis is almost ubiquitous and exerts crucial functions 

in numerous ways. Chemotaxis is defined as a guided cell movement in response to a 

chemical gradient of either chemoattractant or chemorepellent (Rappel and Loomis, 

2009). In the long process of evolution, a chemosensory system would be one of the 

earliest systems to appear and is probably well conserved. Some of the well-studied 

examples include localization of optimal living environment, finding mating target and 

colonization coupled with differentiation or growth (Adler, 1987; Grebe and Stock, 1998; 

Palanivelu and Preuss, 2000; Rappel and Loomis, 2009; Schwartz et al., 1958). Because 

of the significant roles played by chemotaxis, its molecular mechanism has been one of 



 4

the foci of recent researches. Generally, across both prokaryotic and eukaryotic 

kingdoms, chemotaxis is triggered by external stimuli that bind to the cell surface-located 

receptor protein. The binding between the external stimuli and receptor protein further 

causes binding or dissociation of a molecule from the receptor protein, through which the 

external signal is transmitted from outside of the cell into inside of the cell. The 

downstream signaling cascades often involve remodeling of the cytoskeleton protein or 

stimulate the motor organ such as flagella (King and Insall, 2009; Sagi et al., 2003; 

Scharf et al., 1998; Spohn and Scarlato, 2001). In eukaryotic cells such as Dictyostelium 

and neutrophils, as low as a ~2% concentration difference of chemoattractant between the 

leading front and the back of the cell can be detected, underscoring that the gradient 

sensing mechanisms are impressively sensitive (Parent and Devreotes, 1999). 

1.2.2 PIP3 signaling pathway in Dictyostelium 

      Early researches using green fluorescent protein (GFP) fused the cytosolic regulator 

of adenylyl cyclase (CRAC) showed that upon cAMP stimulation, CRAC transiently 

localized to the leading edge of a cell undergoing chemotaxis and the PH domain on  

CRAC seems to be mainly regulating this event (Parent et al., 1998).  Later on, it was 

found that the second messenger phosphatidylinositol 3,4,5-triphosphate (PIP3) is the key 

product after cAMP stimulation which serves as a docking site for a number of PH 

domain containing proteins and further regulates the localized production of actin 

filament at the leading edge (Funamoto et al., 2002; Funamoto et al., 2001). In the 

Dictyostelium system, PIP3 is produced by five of the class I phosphatidylinositol 3-

kinases, PI3K1-5, which phosphorylate phosphatidylinositol 4,5-bisphosphate (PIP2) to 

PIP3 in the inner leaflet of the plasma membrane. The N-terminal region preceding the 
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catalytic domain of PI3K is necessary and sufficient for its membrane localization. Ras 

GTPases, a group of membrane localized proteins, activate PI3K activity. At the same 

time, inhibition of PI3K activity blocks autonomous Ras activation indicating Ras and 

PI3K form a positive feedback loop (Funamoto et al., 2002; Sasaki et al., 2004; Sasaki 

and Firtel, 2005; Sasaki and Firtel, 2006; Sasaki et al., 2007). On the other hand, one of 

the known tumor suppressor-phosphatase and tensin homolog (PTEN) shuts down PIP3 

signaling by switching PIP3 back to PIP2. The membrane localization of PTEN is 

dependent on its PIP2 binding domain and is independent of PIP3 and its localization 

dynamics in response to cAMP stimulation shows an opposite pattern from PI3Ks. Cyclic 

AMP triggers dissociation of PTEN from the leading edge and accumulation on the sides 

and rear of the cells. pten- cells have elevated basal PIP3 levels on the membrane and 

aberrant chemotaxis in the cAMP gradient (Iijima and Devreotes, 2002; Iijima et al., 

2002; Iijima et al., 2004). In neutrophils, the SH2 domain-containing inositol-

polyphosphate 5’-phosphatase (SHIP1 and SHIP2) are able to dephosphorylate PIP3 at 

the 5’ position and produce phosphatidylinositol 3,4-bisphosphate. There are several of 

Dictyostelium SHIP homolog proteins that can catalyze similar reactions (Loovers et al., 

2007; Mondal et al., 2012; Nishio et al., 2007; Vlahou and Rivero, 2006). 

1.2.3 TORC2 signaling pathway in Dictyostelium 

      Parallel to PIP3 signaling, a signaling cascade which includes target of rapamycin 

complex 2 (TORC2), protein kinase B (PKB), protein kinase BR (PKBR) and Ras 

GTPase as main regulators, also significantly modulates chemotaxis of Dictyostelium 

(Cai et al., 2010; Kamimura et al., 2008; Lee et al., 2005; Liao et al., 2008). One of the 

dozen Dictyostelium Ras proteins, RasC, becomes activated in response to cAMP 
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stimulation, and subsequently turns on TORC2 complex, which is composed of TORC2, 

Lst8, RIP3 and Pia, at the leading edge. Then, PKB and PKBR are sequentially 

phosphorylated by TORC2 complex and phosphoinositide-dependent kinases (PDKs) on 

their C-terminal hydrophobic motif and activation loops respectively, which further 

modulates Filamentous Actin (F-Actin) polymerization. Intriguingly, RasC-TORC2 

signaling is likely to crosstalk with PIP3 signaling through PKBA activation (Cai et al., 

2010; Charest et al., 2010; Kamimura and Devreotes, 2010). Recently, it was reported 

that TORC2 signaling negatively regulates the activity of RasC in a feedback loop, which 

is independent of PIP3 signaling.  The transient membrane localization of the RasC GEF 

(Aimless)/PP2A/Sca1 complex to the plasma membrane is responsible for the RasC 

activation after cAMP stimulation. Cells lacking either PKBR or both PKBR/PKB 

displayed strong and persistent RasC activation, indicating that PKB and PKBR 

antagonize RasC activation and form a negative feedback loop in response to 

chemoattractant stimulation (Charest et al., 2010). 

1.2.4 Other signaling pathways affecting Dictyostelium chemotaxis 

      There are still other signaling pathways that contribute to the chemical gradient 

sensing ability in Dictyostelium. These pathways mainly include phospholipase A2 

(PLA2) pathway and soluble guanylyl cyclase (sGC) pathway (Chen et al., 2007; 

Kortholt et al., 2011; van Haastert et al., 2007; Veltman et al., 2005). The PLA2 signaling 

acts independent of PIP3 signaling but deletion of both PLA2 homologs and two main 

PI3Ks almost completely obliterates chemotactic response of Dictyostelium. It was also 

suggested that the function of PLA2 is mediated through its catalytic product, arachidonic 

acid (Chen et al., 2007). In the cAMP gradient, similar to TORC2 and PI3K situation, 
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sGC was found to be located at the leading cortex of the cells as well. Virtually all the 

cGMP are produced by sGC and are essential in regulating chemotaxis via the 

accumulation of Myosin II near the plasma membrane at the rear of a cell doing 

chemotaxis (Veltman et al., 2005; Veltman and Van Haastert, 2006). Intriguingly, 

another phospholipase, Phospholipase D (PLD), was also reported to be an important 

player in actin-derived motility in Dictyostelium. Inhibition of PLD activity not only 

causes a completely mis-localization of F-Actin inside of the cells, but also results in a 

significant reduction of moving speed. And these defects were suggested to be the results 

of the role of PLD in supporting PIP2 synthesis (Zouwail et al., 2005). 

      The results indicated that all four pathways mentioned above contribute a significant 

portion of the total chemotactic ability in Dictyostelium in which some of them contribute 

more in the direction sensing and others contribute more on the remodeling of F-Actin 

(splitting of current pseudopods). What is more, when several signaling pathways are 

operating simultaneously, strong synergistic effects were observed which together induce 

the sensitivity to around 150 fold (Bosgraaf and Van Haastert, 2009; Kortholt et al., 

2011). 

1.3 Glycogen synthase kinase 3 

1.3.1 Overview of GSK3 

      More than three decades ago, in the process of searching for an enzyme that could 

regulate the glycogen synthase activity using the rabbit skeleton muscle extract, an 

unique kinase was found to be able to phosphorylate glycogen synthase independent of 

either cAMP or calcium ion, the reaction mechanism of which is totally different from 

the previously discovered Glycogen Synthase Kinase 1 and Glycogen Synthase Kinase 2 
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(Embi et al., 1980). Thus, the name Glycogen Synthase Kinase 3 (GSK3) was given 

(Embi et al., 1980). The two homolog copies of GSK3 in mammalian system, GSK3α 

and GSK3β which are 52 kD and 46 kD respectively, were first cloned by Woodgett and 

was reported at the same time that both kinds of GSK3 are expressed in most tissue 

especially in the brain (Woodgett, 1990). Since its discovery, much of the initial work 

was concentrated on its purification, characterization and role in metabolism. An 

interesting characteristic of GSK3 is that in a number of cases, phosphorylation by GSK3 

requires prior phosphorylation by a priming kinase such as casein kinase II in case of 

glycogen synthase on the consensus sequence of GSK3 to form the motif of –S-X-X-X-

S-X-X-X-S(P)-, where ‘X’ represents any amino acid and ‘P’ represents phosphate 

group, an event known as ‘priming’ (DePaoli-Roach, 1984; Fiol et al., 1988; Fiol et al., 

1990; Hemmings and Cohen, 1983; Hemmings et al., 1981; Woodgett and Cohen, 1984). 

In the metabolic pathway, besides its crucial inhibitory role on the glycogen synthase 

activity, it was also found to be able to phosphorylate the Type-II regulatory subunit of 

cAMP dependent protein kinase, inactive inhibitor-2, which inhibits protein phosphatase-

1 by phosphorylation (Hemmings et al., 1982a; Hemmings et al., 1982b; Henry and 

Killilea, 1993). What is more, GSK3 can phosphorylate ATP citrate lyase (Hughes et al., 

1992). In Dictyostelium, there is one GSK3 homolog, known as GskA, which was first 

cloned by Harwood and his colleagues. Earlier studies on Dictyostelium GSK3 was 

focused on its roles in multicellular development, while recently, it was reported that 

GSK3 play a role in movement as well (Harwood et al., 1995; Kim et al., 2011; Plyte et 

al., 1999; Teo et al., 2010). 
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      Glycogen Synthase Kinase 3 itself is subjected to different regulatory mechanisms. 

Purified GSK3α and GSK3β were constitutively active and highly phosphorylated in 

tyrosine residues in their conserved region. Phosphorylation of the tyrosine 216 residue is 

essential for the activation of GSK3 (Figure 1.2). Mutation of Tyr216 to Phe led to a 

reduction of its activity by 10 fold (Hughes et al., 1993). In another study, treatment of 

GSK3 by a tyrosine phosphatase results in a decrease in its activity which further proved 

that tyrosine phosphorylation is necessary for the full activation of GSK3 (Wang et al., 

1994). Furthermore, tyrosine phosphorylation of GSK3 was shown to be decreased in 

response to insulin treatment, which led to phosphorylation of GSK3 at serine residues at 

the amino terminal side, which was further underscored by the finding that GSK3 mutant 

lacking the first 9 amino acids containing the Akt target site still displayed diminished 

tyrosine phosphorylation in response to insulin treatment (Murai et al., 1996). 

Consistently, tyrosine kinases such as Fyn and Zak1/2 were shown to be able to activate 

GSK3 in human and Dictyostelium respectively (Kim and Kimmel, 2006; Kim et al., 

1999; Lesort et al., 1999). Increasing the intracellular calcium level was initially found to 

have a positive role in the tyrosine phosphorylation of GSK3 and later it was found that 

protein tyrosine kinase 2 (PYK2), a calcium activated tyrosine kinase, is responsible for 

this event (Hartigan and Johnson, 1999). Intriguingly, the mitogen-activated protein 

kinase kinase (MEK1/2) was also found to be able to directly phosphorylate Tyr216 

residue on GSK3 in skin fibroblast (Takahashi-Yanaga et al., 2004).  

      On the contrary, point mutation results showed that the phosphorylation on the either 

Ser21 residue of GSK3α or Ser9 residue of GSK3β exerts an inhibitory role on the 

activity of GSK3 (Figure 1.2). Pioneer researches indicated that p90rsk-1 kinase and p70 
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ribosomal S6 kinase could phosphorylate Ser9 on GSK3β thus inhibit GSK3 activity in 

vitro, a phenomenon which can be reversed by protein phosphatase 2A (Sutherland et al., 

1993). In the insulin-induced signaling cascade, Akt is activated in a phosphatidyl 

inositol 3-kinase and 3-phosphinositide-dependent kinase 1 dependent manner (Cross et 

al., 1995; Delcommenne et al., 1998). The activated Akt phosphorylates the Ser9 on 

GSK3β and inhibits GSK3β (Cross et al., 1995; Cross et al., 1997). Later on, some other 

stimuli were discovered which initiate signaling pathways that merge with insulin 

triggered signaling at the point of Akt in both PI3K dependent and independent ways, all 

of which consequently inhibit the activity of GSK3 resembling the action of insulin. 

These stimuli include growth factor in PC12 cells (Pap and Cooper, 1998), insulin-like 

growth factor I (IGF-I) in mouse cerebellar granule cells (Cui et al., 1998), epidermal 

growth factor (EGF) in human myoblasts (Halse et al., 1999), isoproterenol in rat 

epididymal fat cells (Moule et al., 1997), and isoproterenol in myocytes (Morisco et al., 

2000). Distinct from the insulin mediated GSK3 inhibition, Wnt ligands were also shown 

to suppress GSK3 activity via protein kinase C (PKC) activation. GSK3 can be 

inactivated by protein kinase C delta fragment in apoptosis as well (Cook et al., 1996; 

Tsujio et al., 2000).  

 

Fig 1.2 Mammalian GSK3β regulation via phosphorylation. ‘P’ indicates phosphate 
group. 
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      Besides direct phosphorylation mediated regulation, GSK3 was later found to be 

regulated by certain GSK3 binding proteins which can form protein complexes with 

GSK3. Similar to the insulin signaling pathway, activation of Wnt signaling pathway also 

decreased GSK3 activity. However, it was reported in different systems that the 

phosphorylation status of Ser9 residue on GSK3β is not affected (Ding et al., 2000; Ruel 

et al., 1999). It was found that a family of GSK3-binding proteins (GBP) is able to 

suppress the activity of GSK3 by forming protein complexes. In Xenopus, expression of 

GBP decreased GSK3β activity and reduced GSK3 facilitated β-catenin degradation 

(Yost et al., 1998). Given the fact that GBP bound GSK3β can still phosphorylate a 

peptide substrate, GBP inhibits GSK3 activity by steric hindrance effect, which 

discourages large substrate protein from approaching the kinase catalytic domain of 

GSK3, without affecting the kinase activity of GSK3 (Farr et al., 2000). On the contrary, 

forming a protein complex with Axin stimulates the activity of GSK3. Phosphorylated by 

GSK3β, Axin is stabilized which was proved by the fact that inhibition of GSK3β by 

lithium decrease Axin level. Axin, together with adenomatous polyposis coli (APC) and 

β-catenin, all bind to GSK3β and facilitate the phosphorylation and degradation of β-

catenin (Behrens et al., 1998; Hedgepeth et al., 1999; Kishida et al., 1998; Rubinfeld et 

al., 1996; Yamamoto et al., 1999). 

1.3.2 GSK3 in development and transcription factor regulation 

      Thirty years after discovery, the cellular events orchestrated by GSK3 have greatly 

exceeded what its name implies. In the field of development, GSK3 was found to be one 

of the key regulators of early embryogenesis in Drosophila. In the embryonic epidermis, 
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non-functional mutant of GSK3 disrupts denticle belts development while non-functional 

β-catenin mutant, results in the loss of naked cuticle (Kim and Kimmel, 2000; Peifer et 

al., 1994). In Xenopus, binding with GSK3, axin inhibits axial development. Injecting 

catalytically inactive GSK3β into embryos resulted in the ectopic formation of another set 

of dorsal and anterior structures (Dominguez et al., 1995; Itoh et al., 1998). In C. elegans, 

during the asymmetrical division of four-cell-stage blastomere, GSK3 promotes 

endoderm specification and mitotic spindle orientation (Schlesinger et al., 1999; Walston 

and Hardin, 2006). Similarly, GSK3 also plays a significant role in the development of 

Dictyostelium. Dictyostelium cells lacking GSK3 displays an abnormally enlarged basal 

disk and a greatly reduced spore head. At the molecular level, compared to wild type 

cells, gsk3- cells showed a precocious and elevated expression of prestalk/stalk-specific 

gene while prespore marker genes reduce dramatically compare to those in wild type 

cells (Harwood et al., 1995; Insall, 1995). In the area of transcription factor regulation, a 

number of transcription factors have been found to be targets of GSK3. Upon 

stabilization in response to Wnt signaling, β-catenin forms a bipartite transcription factor 

T-cell factor (Tcf)/Lymphoid enhancer factor (Lef), and regulates target genes. Wnt 

signaling is known to be able to inhibit GSK3 mediated phosphorylation of β-catenin. 

Mutant β-catenin lacking the GSK3 phosphorylation site is more stable than the wild type 

β-catenin (Hart et al., 1998; Papkoff and Aikawa, 1998; Yost et al., 1996). Another 

transcription factor AP1, which is a heterodimer of jun and fos gene products, is also a 

substrate of GSK3, of which phosphorylation by GSK3 decreases its DNA binding 

capability (Boyle et al., 1991; de Groot et al., 1993; Nikolakaki et al., 1993). Cyclic AMP 

response element binding protein (CREB) is yet another example of transcription factor 
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which is under the control of GSK3. It seems that GSK3 can modulate CREB activity in 

a cell type or tissue specific manner (Fiol et al., 1994; Grimes and Jope, 2001a; Tullai et 

al., 2007). Besides what is mentioned above, there are other transcription factors that are 

either positively or negatively regulated by GSK3, such as Heat shock factor-1 (Bijur and 

Jope, 2000; Xavier et al., 2000), Nuclear factor of activated T cells (Neal and Clipstone, 

2001; Sheridan et al., 2002; van der Velden et al., 2008), Myc (Galletti et al., 2009; 

Gregory et al., 2003) and C/EBP (Grimes and Jope, 2001b; Ross et al., 1999). In this 

dissertation, the function of GSK3 in eukaryotic cell migration is the primary study focus. 

1.3.3 GSK3 in mammalian cell movement and polarity 

       In neuronal development, early neurites which are indistinguishable between 

dendrites and the axons are formed by the extension of neurons. One of the neurites will 

develop into an axon with a longer shape than the dendritic neurites. It was found that a 

requirement for neuronal polymerization is to decrease GSK3β activity. On the contrary, 

expressing a constitutively active form of GSK3β suppresses the formation of axon. 

Glycogen Synthase Kinase 3β plays a central role in both establishing and maintaining 

neuronal polarity. There is high GSK3β activity and low Akt activity in the dendrites, but 

the opposite is displayed in axons (Jiang et al., 2005). Downstream of GSK3β, collapsin 

response mediator protein- 2 (CRMP-2) was found to be a direct substrate of GSK3β 

(Yoshimura et al., 2005a). The role of CRMP-2 is to bind to tubulin heterodimers and 

thus establish and promote neuronal polarity. Phosphorylation of CRMP-2 by GSK3β 

decreases its tubulin binding affinity thus suppresses the neuronal cell polarization 

(Yoshimura et al., 2005a; Yoshimura et al., 2005b).  
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      Rho GTPases has long been established as a key regulator of F-Actin cytoskeleton. 

GTPase-activating proteins (GAPs) inactivate Rho GTPase, while guanine nucleotide 

exchange factors (GEFs) activate it. Two of the RhoGAPs, p190A and p190B were 

demonstrated to have essential roles in mouse embryonic tissue morphogenesis (Brouns 

et al., 2000; Brouns et al., 2001). Recently, p190A was found to be under the direct 

regulation of GSK3β. After phosphorylation by a priming kinase, GSK3β directly 

phosphorylates p190A at the C-terminal region and inhibits the RhoGAP activity of 

p190A. Consistent with the Brouns and others (2000), a phosphorylation-defective 

mutant of p190A showed a greatly increased cell motility, which is reminiscent of those 

seen in the Rho GTPase inhibited cells (Jiang et al., 2008). 

      On another occasion, small GTPase Cdc42 regulates atypical protein kinase C 

(aPKC) complex, which further regulates directed cell migration. Using rat primary 

astrocytes, Par6-PKCζ complex was shown to directly contact with GSK3β and 

phosphorylates the Ser9 residue on GSK3β at the leading front of migrating cells, which 

inhibits GSK3β. The inhibition of GSK3β is essential for the binding of adenomatous 

polyposis coli (APC) with the plus ends of microtubules, which is important for cell 

polymerization. Expression of a nonphosphorylatable GSK3β mutant and a kinase dead 

mutant of GSK3β  block centrosome reorientation and induce aberrant cell polarization 

(Baluch and Capco, 2008; Etienne-Manneville and Hall, 2003).  

      Besides APC mentioned above, GSK3 regulates the microtubule stability in other 

ways. GSK3β destabilizes microtubule by phosphorylating microtubule-associated 

protein 1B (MAP1B), which contributes to the dynamics in growing axon. Introducing 

MAP1B with mutated GSK3β sites partially rescues the microtubule destabilization. The 
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microtubule binding protein tau can also be phosphorylated by GSK3β at multiple serine 

residues. Co-transfection of tau together with GSK3β induces microtubule destabilization 

and phosphorylation on tau. Inhibition of GSK3β by lithium ion stimulates microtubule 

assembly and the binding of tau to microtubules (Cho and Johnson, 2003; Cho and 

Johnson, 2004; Ciani et al., 2004; Sun et al., 2009; Sun et al., 2002; Trivedi et al., 2005).  

1.3.4 GSK3 in Dictyostelium movement 

      Several recent studies demonstrated that GSK3 modulates cell polarization and 

chemotaxis in Dictyostelium (Kim et al., 2011; Kolsch et al., 2012; Teo et al., 2010). The 

gsk3- cells display not only aberrant differentiation, but also greatly reduced migration 

speed and direction sensing ability. A GSK3 activator, ZAK1 is shown to be essential for 

proper chemotaxis of Dictyostelium cells (Kim et al., 2011). Transient increase in the 

level of PIP3 on the plasma membrane is generally observed from wild type cells. In 

contrast, gsk3- cells exhibit high basal level of PIP3 uniformly through the entire plasma 

membrane, which does not further increase in response to chemoattractant stimulation. 

The lack of chemoattractant dependent generation of PIP3 in gsk3- cells seems to be the 

central defect, given that gsk3- cells were able to undergo chemotaxis when proper PIP3 

response was restored upon increasing the level of PI3K substrate PIP2 by over-

expressing PIP2 producing enzyme inositol monophosphatase (IMPA). Furthermore, 

gsk3- cells over-expressing IMPA displays normal activation of PKBA, but not PKBR, 

indicating that the operation of chemoattractant mediated PIP3/PKBA signaling can 

effectively restore gsk3- cell chemotaxis in the absence of proper PKBR signaling (Teo et 

al., 2010). In contrast to the study by Teo and colleagues (2010), a recent study by Kolsch 

and colleagues (2012) showed that gsk3- cells display greatly extended activation of both 
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PKBA and PKBR. A recently found Ras activator-Daydreamer (DydA), which was 

revealed to be another important regulator of chemotaxis, was reported to be a direct 

target of GSK3. Re-introducing Daydreamer with non-phosphorylatable GSK3 

recognition sites back into dydA- cells could neither rescue the chemotaxis defects nor 

fully suppress the extended phosphorylation of the activation loop (AL) and hydrophobic 

motif (HM) of Akt/PKB and PKBR1 exhibited in dydA- cells, which indicate that the 

function of DydA requires GSK3 phosphorylation (Figure 1.3). In this dissertation, a 

novel finding that GSK3 affects chemotaxis through regulating PI3K membrane 

localization is described. 

 

Fig 1.3 The role of GSK3 in both PIP3 and TORC2 pathways in Dictyostelium. Arrows 
with solid line represent directly regulate, arrows with dotted line represent indirect 
regulation. 
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CHAPTER II 

CELLS LACKING GSK3 ARE DEFECTIVE IN MOTILITY 

2.1 Materials and methods 

2.1.1 Dictyostelium culture and pulsing 

      Dictyostelium discoideum thymidine auxotrophic strain JH10 and gsk3- cells 

generated from JH10 were cultured axenically in D-3T media (14.3 g/l Bacto peptone #3, 

15.4 g/l glucose, 7.15 mg/l yeast extract, 0.525 g/l Na2HPO4, 0.48 g/l KH2PO4,) with 0.5 

mg/ml thymidine at 20oC (Kim et al., 2002; Louis et al., 1994). Cells with selection 

markers were grown with D-3T supplemented with either 20 μg/ml of Neomycin (G418) 

or 5 μg/ml of Blasticidin as needed. For the chemotaxis assay, cells were inoculated and 

cultured in a sterilized culture flask with a shaking speed of 150 rpm at 20oC. After 

reaching log phase (exponential growth phase), 100 million cells were spun down, 

washed once with ice-cold developmental buffer (DB) (2 mM MgCl2, 0.2 mM CaCl2, 7.4 

mM NaH2PO4•H2O and 4 mM Na2HPO4•7H2O) and re-suspended in 5 ml of DB. Cells 

were then shaken at room temperature for 1 hr and pulsed with 50 nM of cAMP every 6 

min for a total period of 4 hr (cells after pulsing are referred to as ‘pulsed cells’ 

henceforth).  

2.1.2 Chemotaxis assay and random motility assay 

      After pulsing, aggregation competent cells were placed in a 35 x 10 mm tissue culture 

dish coverslip (Becton Dickinson Labware) filled with DB at a density of 6x104 

cells/cm2. Five minutes were allowed for cells to adhere to the bottom of the coverslip. A 

micromanipulator (Narishige) controls the positioning of the micropipette (Femtotip, 

Eppendorf) filled with either 2 μM or 10 μM cAMP solution. The tissue culture dish 
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coverslip was placed on the inverted microscope (Leica DM IRB). A pressure of 20 Kpa 

was provided by a FemtoJet pump (Eppendorf) to generate a cAMP gradient. Images 

were taken at 100X total magnification every 6 min using Openlab software 

(PerKinElmer) and a CoolSNAP digital camera. For the random movement assay, the 

procedures were the same as the chemotaxis assay, except that no cAMP gradient was 

provided when recording the cell movement. The recorded images were later analyzed 

using Openlab (PerKinElmer) and Microsoft Office. Chemotactic indices, which is 

defined as the distance moved in the direction of the pipette divided by the total distance 

moved, were obtained from the centroid positions of the cells, which is described 

previously, and the position of the micropipette (Loovers et al., 2006). Speed is defined 

as the total distance moved divided by the total time elapsed. 

2.1.3 RT-PCR 

      After reaching log phase, 107 cells were harvested. Total RNA were isolated using 

Trizol reagent. The RNA concentrations were adjusted to 1 µg/μl which is confirmed by 

using spectrophotometry and one step RT-PCR reaction was performed by using 

Masterscript RT PCR kit (5 PRIME) and 0.3 g of total RNA. Levels of sodC messages 

were assessed by RT-PCR using forward primer 5’-ATGAGACTTTTATCTGTATTAG-

3’ and reverse primer 5’-TTAAAGCAAAGCAAAGATAATT-3’. IG7 messages were 

detected by using forward primer 5’-GGTGAGCGAAAGCCGAGGAGAG-3’ and 

reverse primer 5’-GCAACAGTTACGGGTTCCGCC-3’.  

2.1.4 Transfection by electroporation 

      Five hundred thousand log phase cells were centrifuged and washed twice with ice-

cold H-50 buffer (20 mM HEPES, 50 mM KCl, 10 mM NaCl, 1 mM MgSO4, 5 mM 
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NaHCO3, 1 mM NaHPO4) and re-suspended in 100 µl H-50 buffer. Around 10 µg of 

DNA were then mixed with the cells and the whole suspension was transferred into 1 mm 

gap electroporation cuvette (Fisherbrand). The cells were electroporated at 0.85 kV and 3 

µF twice with 5 sec break using Gene Pulser Xcell (Bio-Rad). After 10 min incubation on 

ice, the cells were plated in a 100 x 20 mm tissue culture plate (BD Falcon). Proper 

antibiotics were added the next day. 

2.1.5 Antibodies and western blotting 

      Anti-GFP antibodies were purchased from Covance (1:1000 dilution in 2% BSA).  

      For western blotting, protein samples were run on 10% SDS - polyacrylamide gel and 

later on transferred to a nitrocellulose membrane (Immobilon) using western system 

purchased from Biorad. Membranes were then blocked 30 min in 2% bovine serum 

albumin (BSA) solution, and incubated in corresponding primary antibody for 2 hr at 

room temperature. Membranes were washed three times at 10 min intervals using TBST 

(0.2% Tween 20, 10 mM Tris HCl at pH7.7, 0.12 M NaCl, 1 mM EDTA) and incubated 

using proper HRP-conjugated secondary antibody for 1 hr at room temperature. 

Membranes were subsequently washed three times at 10 min intervals using TBST with 

an additional final wash with TBS (10 mM Tris HCl at pH7.7, 0.12 M NaCl, 1 mM 

EDTA) for 5 min and incubated with ECL reagent (GE Health care) to obtain the final 

images. 
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2.2 Results 

2.2.1 The gsk3- cells showed aberrant movement in both chemotaxis and random 

movement 

      Aggregation competent cells of both wild type and gsk3- cells were either challenged 

in different cAMP gradients or were subjected to random movement assay. The gsk3- 

cells showed significant defects in both chemotactic indices and speed compared to wild 

type cells. The chemotactic indices of gsk3- cells were around 14% of wild type cells. 

Also, the speed of gsk3- cells was only about 20% of the wild type level (Figure 2.1). The 

severe abnormalities for gsk3- cells in both chemotactic indices and speed were shown 

not only during the first 20 min after challenged with 10 µM cAMP point source, but also 

during the second 20 min (Table 2.1). Similar defects of chemotactic indices and speed 

for gsk3- cells were observed under a shallow cAMP gradient. The chemotactic indices in 

gsk3- cells using a 2 µM cAMP point source dropped below zero indicating that the cells 

completely lost their direction sensing ability. In the meantime, the speed of gsk3- cells 

dropped to around 50% of the wild type level (Figure 2.2). 

      Furthermore, gsk3- cells displayed 5.1 µm/min of random movement, whereas wild 

type cells moved at the speed of 8.93 µm/min (Figure 2.3). It is worth to mention here 

that the relatively large standard deviation in the random movement assays were because 

of the cells were not challenged with any cAMP gradient. 

      The gsk3- cells displayed severe chemotaxis and random movement defects under 

both weak and steep cAMP gradient and showed compromised polarization during the 

period of assays. 
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Fig 2.1 Chemotaxis assays using 10 µM cAMP point source. Both JH10 cells and gsk3- 
cells were challenged with a point source of 10 µM cAMP. Superimposed tracing images 
were grouped. For JH10 cells, a total time period of 20 min were recorded and 40 min 
were recorded for gsk3- cells. Numbers are shown as mean ± standard deviation (SD). 
Data are representative of at least three independent experiments. 
 

 

Table 2.1 Summary of chemotactic indices and speed of gsk3- cells in different time 
frames. The unit for the speed is µm/min. 
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Fig 2.2 Chemotaxis assays using 2 µM cAMP point source. Both JH10 cells and gsk3- 
cells were challenged with a point source of 2 µM cAMP. Superimposed tracing images 
were grouped. For JH10 cells, a total time period of 20 min were recorded and 35 min 
were recorded for gsk3- cells. Numbers are shown as mean ± standard deviation (SD). 
Data are representative of at least three independent experiments. Scale bars represent 
100 µm. 
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Fig 2.3 Random movement assays for both JH10 and gsk3- cells. Both assays were 
recorded for 40 min. Superimposed tracing images were grouped. Numbers are shown as 
mean ± standard deviation (SD). Data are representative of at least three independent 
experiments. Scale bars represent 100 µm.  
 

2.2.2 Re-introducing GFP fused GSK3 back to gsk3- cells rescued the chemotaxis 

defects 

      The GFP and GFP-GSK3 fusion proteins were introduced into gsk3- cells separately. 

Expression was confirmed by western blotting (Figure 2.4). The gsk3- cells expressing 

GFP served as a negative control. As shown in Figure 2.5, GFP alone could not improve 

either chemotactic indices or speed in gsk3- cells. However, expressing GFP-GSK3 in 

gsk3- cells was able to partially restore wild type like chemotactic indices and speed 
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compared to those in wild type situations indicating GSK3 indeed played a crucial role in 

Dictyostelium chemotaxis. 

 

Fig 2.4 Expression of GFP (left lane) and GFP-GSK3 (right lane) in gsk3- cells.  
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Fig 2.5 Reintroducing GSK3 in gsk3- cells rescued their chemotaxis defect. gsk3- cells 
expressing either GFP alone or GFP-GSK3 were challenged with a point source of 0.1 
µM cAMP. Forty minutes were recorded in each assay. Superimposed tracing images 
were grouped. Numbers are shown as mean ± standard deviation (SD). Data are 
representative of at least three independent experiments. Scale bars represent 100 µm. 
 
2.2.3 Expressing sodC in gsk3- cells could not rescue both chemotaxis and random 

movement defects 

      It was previously shown by microarray and proteomics studies that in the early 

development stage, sodC gene is under-expressed in gsk3- cells, which was further 

confirmed by my RT-PCR data (Figure 2.8). Since a GPI-anchored outer membrane 

superoxide dismutase (encoded by sodC) has been proven to be another key regulator of 

chemotaxis, we expressed sodC into both wild type and gsk3- cells (designated Wt::sodC 

or sodC/Wt, gsk3-::sodC or sodC/gsk3-. ‘::’ referred to as ‘expressing’ while ‘/’ referred 

to as ‘is expressed in’ henceforth), while Wt::sodC served as a control here. The 

expression levels after pulsing were confirmed by RT-PCR experiments (Figure 2.6).  

 

 

Fig 2.6 RT-PCR experiment to determine transcription level of sodC. IG 7 transcript 
serves as a control. The sodC was under-expressed in gsk3- cells compared with wild type 
cells (first two lanes). The sodC was over-expressed in both wild type cells and gsk3- 
cells by using transfection (lane three and lane four). 
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      The level of sodC messages in wild type cells and gsk3- cells expressing sodC under 

constitutively active Actin-15 promoter were higher than that of wild type cells. 

Wt::sodC showed modestly reduced chemotactic indices and significant reduction in the 

speed compared to those of wild type cells. gsk3-::sodC also failed to show any 

statistically meaningful improvement in terms of both chemotactic indices and speed 

(Figure 2.7). Wt::sodC cells displayed 40-50% reduction in random motility speed 

compared to that of wild type cells while gsk3-::sodC showed no significant change from 

gsk3- cells (Figure 2.8). sodC- cells with reintroduced sodC under Actin-15 promoter also 

showed sodC messages were higher than the endogenous ones, and displayed 

significantly improved chemotactic indices (from 0.0 to 0.7), but not the speed (5.2 to 3.5 

µm/min) (Veeranki et al., 2008), which is reminiscent of Wt::sodC cells. These data 

together suggest that the level of sodC needs to be tightly controlled for optimal speed of 

chemotaxing cells, and SodC is not likely to function at upstream of GSK3 in the context 

of cell motility regulation. 
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Fig 2.7 Chemotaxis assays using cells expressing sodC. Both JH10 cells and gsk3- cells 
expressing sodC were challenged with a point source of 10 µM cAMP after pulsing. 
Superimposed tracing images were grouped. A total time period of 30 min were recorded. 
Numbers are shown as mean ± standard deviation (SD). Data are representative of at least 
three independent experiments. Scale bars represent 100 µm. 
 

 

Fig 2.8 Random movement assay with cells expressing sodC. Both assays were recorded 
for 30 min. Superimposed tracing images were grouped. Numbers are shown as mean ± 
standard deviation (SD). Data are representative of at least three independent 
experiments. Scale bars represent 100 µm. 
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      Summary of all the chemotactic indices and speed obtained from either the 

chemotaxis assay or the random movement assay described above were shown as bar 

charts (Figure 2.9 and 2.10). In short, under the same treatment used in wild type cells, 

gsk3- cells exhibited severe defects in both directional sensing ability (chemotactic index) 

and moving speed. Under the same experimental condition, gsk3- cells displayed 

compromised speed and almost no sense of direction under all assay conditions tested.  

What is more, these defects could not be rescued by increasing the level of sodC, which 

was shown to be under-expressed in gsk3- cells during the developmental aggregation 

stage. In the following chapters, the molecular basis of GSK3 mediated regulation of 

chemotaxis and regulation of motility speed will be described.  

 

Fig 2.9 Summary of the chemotactic indices in chemotaxis assays. White bars represent 2 
µM cAMP point sources were used and grey bars represent 10 µM cAMP point sources 
were used. Averages and standard deviations were calculated out of at least three 
independent experiments.  
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Fig 2.10 Summary of the speed in either chemotaxis assays or random movement assays. 
Black bars represent 2 µM cAMP point sources were used, light grey bars represent 10 
µM cAMP point sources were used and dark grey bars represent random movement 
assay. Averages and standard deviations were calculated out of at least three independent 
experiments.  
 
2.3 Discussion 

      In Dictyostelium discoideum system, it has been established that GSK3 plays a crucial 

role in regulating cell fate choice (Harwood et al., 1995). The GSK3 stimulates prespore 

cell fate while it inhibits prestalk cell fate (Harwood et al., 1995; Kim et al., 2002). Here, 

I discovered that gsk3- cells in aggregation competent stage exhibited severe movement 

abnormality in terms of both direction sensing and speed, which indicating GSK3 is also 

a key player in regulating cell motility and chemotaxis. The facts that gsk3- cells failed to 

undergo chemotaxis under both relatively steep and relatively shallow chemoattractant 
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gradient as well as that the chemotactic deficiency of gsk3- cells persisted in both of the 

20 minutes time frames in chemotaxis assays suggest that GSK3 may influence multiple 

parallel signaling pathways which regulate chemotaxis in Dictyostelium. What is more, 

since GSK3 is found to be able to suppress the transcription levels of some of the key 

chemotactic regulatory proteins (Strmecki et al., 2007; Teo et al., 2010), I tested one of 

them, SodC, by over-expressing sodC in gsk3- cells. The result that gsk3- cells over-

expressing sodC showed no improvement in both chemotactic indices and speed together 

with the finding that wild type cells over-expressing sodC displayed compromised speed 

and slightly reduced chemotactic indices, suggested that either under-expression of sodC 

in gsk3- cells has minor role for the chemotactic defects or the expression level of sodC 

need to be tuned to a level which is comparable to the sodC level in wild type cells in 

order to fully or partially rescue the chemotactic defects in gsk3- cells. It would be 

interesting in the future to express sodC in gsk3- cells to a similar level to wild type cells 

and see how the cells behave under a cAMP gradient. 

      It is worth to mention here that Teo and others (2010) was able to rescue the defective 

chemotaxis in gsk3- cells in both chemotactic indices and speed by over-expressing 

inositol monophosphatase gene IMPA. The gsk3- cells over-expressing IMPA showed 

partial rescue in both PIP3 signaling and TORC2 signaling, which may have synergistic 

effects and partially rescue the chemotactic defects in gsk3- cells.  
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CHAPTER III 

 ANALYSIS OF PI3K AND PTEN BEHAVIORS IN gsk3- CELLS 

3.1 Materials and methods 

3.1.1 GFP-fusion Proteins and Fluorescence Microscopy 

      The GFP-RBD, PI3K1-LD-GFP, SPM-PI3K1-LD-GFP and SAS-PI3K1-LD-GFP 

constructs were either described as previously (Sasaki et al., 2004; Veeranki et al., 2008) 

or have been generated via site-directed mutagenesis. All constructs were introduced into 

either wild type cells or gsk3- cells via electroporation. Fluorescent images were obtained 

from Leica DM IRB inverted epifluorescence microscope using 100X oil-immersion lens 

and recorded using CoolSNAP digital camera with Openlab software (PerKinElmer). 

Fluorescence intensities were quantified using Image J software (NIH). At least three 

independent assays were performed for each assay. 

3.1.2 cAMP stimulation 

      After pulsing, cells were spun down and washed once with ice cold DB. Then, the 

cells were re-suspended in DB and plated in eight-well chambers (Nalge Nunc 

International, 155409) at a density of 6x104 cells/cm2. Five minutes were allowed for the 

cells to settle down at the bottom of the chamber before cells were challenged with a final 

concentration of 10 µM cAMP. Right before and at different time points after cAMP 

stimulation, images were recorded as mentioned earlier (3.1.1). 

3.1.3 Latrunculin-A treatment 

       Aggregation competent (cAMP pulsed) cells were spun down and washed once with 

ice cold DB buffer, re-suspended in DB and plated in eight-well chambers at a density of 

6x104 cells/cm2. Five minutes were allowed for the cells to settle down at the bottom of 
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the chamber before 0.5 µM Latrunculin-A was added. Images were taken before and at 

different specific time points after Latrunculin-A treatment. 

3.1.4 PI3K inhibition using LY294002 

       After pulsing (described in chapter II), cells were plated in a 35 x 10 mm tissue 

culture dish coverslip filled with DB containing 15 μM LY294002 which is a PI3K 

inhibitor. Cells were treated for 20 min before subjected to chemotaxis assay. 

3.2 Results 

3.2.1 PIP3 level along the plasma membrane, PI3K1-LD localization and PTEN 

localization in vegetative cells 

      GFP-PHcrac was expressed both in wild type cells and gsk3- cells. PHcrac is the 

Pleckstrin Homology domain of the cytosolic regulator of adenylyl cyclase, which binds 

to PIP3 along the plasma membrane, and served as an indirect indicator of the PIP3 level 

on the plasma membrane (Veeranki et al., 2008). In vegetative state, gsk3- cells showed 

an increased membrane PIP3 level compared to wild type cells (Figure 3.1).  

 

Fig 3.1 GFP-PHcrac localization in vegetative cells. Images were taken from cells at 
vegetative stage. gsk3- cells showed higher basal membrane localization of GFP-PHcrac 
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compared to wild-type cells. Data are representative of at least three independent 
experiments. 
 
      I then determined the chemoattractant induced regulation of PI3K and PTEN, which 

are two main regulators of PIP3 (Figure 3.2). In Dictyostelium, PI3K1 and PI3K2 are 

largely responsible for generating PIP3 from PI(4,5)P2. Cells lacking pi3k1 and pi3k2 

displayed greatly reduced polarity, aberrant directional sensing, and speed (Funamoto et 

al., 2002; Funamoto et al., 2001). Upon cAMP stimulation, PI3K1 and PI3K2 translocate 

to the plasma membrane, which is dependent on the amino terminal membrane 

localization domain (LD). The membrane localization domain is composed of 1-492 

amino acids of PI3K1 (Picture A1 and A2). Although it was reported that under certain 

laboratory conditions, complete blocking PIP3 signaling by eliminating all class I PI3Ks 

in Dictyostelium does not affect orientation of the cells doing chemotaxis but impairs the 

moving velocity, it was reported later on that PI3K mediated PIP3 signaling influences 

the direction sensing ability of the cells especially in shallow cAMP gradient. What is 

more, the synergistic effect performed by PI3K together with other parallel signaling 

pathways can further amplify cAMP gradient sensing (Hoeller and Kay, 2007; Kortholt et 

al., 2011). On the other hand, PTEN, which dephosphorylates PIP3 at 3’ position on the 

inositol ring thus change PIP3 back into PIP2, is located on the plasma membrane mainly 

through its N-terminal PIP2 binding motif. In response to cAMP stimulation, PTEN 

transiently dissociates from the plasma membrane, an event independent of intracellular 

PIP3 level and the actin cytoskeleton (Iijima et al., 2004). The phosphatase activity of 

PTEN, although not essential for its localization, is critical for chemotaxis. Knocking out 

pten or introducing phosphatase inactive PTEN caused a great reduction in the direction 
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sensing and moving velocity of the cells (Funamoto et al., 2002; Iijima et al., 2004). Wild 

type and gsk3- cells expressing either GFP-PI3K1-LD or GFP-PTEN were analyzed using 

fluorescent microscopy. PI3K1-LD proteins were aberrantly enriched at the plasma 

membrane of gsk3- cells, whereas no such misregulation was observed for PTEN (Figure 

3.2). 

 

Fig 3.2 GFP-PI3K1-LD and GFP-PTEN in vegetative cells. Images were taken from cells 
at vegetative stage. gsk3- cells showed higher basal membrane localization of GFP-
PI3K1-LD compared to wild-type cells. Membrane levels of GFP-PTEN in both cell 
types were similar. Data are representative of at least three independent experiments. 
 

3.2.2 Dynamics of PIP3 level along the plasma membrane upon cAMP stimulation 

      Funamoto and colleagues (2002) showed that there is a transient increase of PIP3 on 

the plasma membrane in response to cAMP stimulation, using GFP fused PH domain-

containing protein PhdA as an indirect PIP3 indicator. Here, I used GFP-PHcrac as used 

in the previous study to test the dynamics of membrane PIP3 level after cAMP 
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stimulation in gsk3- cells (Sasaki et al., 2004). Wild type cells expressing GFP-PHcrac 

served as a control. After pulsed cells were treated with 10 µM cAMP, the PIP3 level 

along the plasma membrane in wild type cells increased 30% at 10 sec, then the amount 

of PIP3 gradually went down to basal level after 30 sec. In gsk3- cells, however, there 

was a higher basal amount of PIP3 on the plasma membrane compared to wild type cells 

and this level stayed flat without any significant changes during the whole 30 sec period 

of time (Figure 3.3 and 3.4). 

 

Fig 3.3 GFP-PHcrac translocation after cAMP stimulation in pulsed cells. Images were 
taken at the indicated time points. Data are representative of at least three independent 
experiments. Scale bars represent 10 µm. Double apostrophe indicates second. 
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Fig 3.4 Quantification of the membrane fluorescence shown on figure 3.3. Horizontal 
axis represents the time that passed after cAMP stimulation in seconds. Vertical axis 
represents the relative membrane fluorescence ratio compared to the fluorescence at time 
zero. Error bars represent standard deviations. Numbers were obtained from at least three 
independent experiments. For each cell at different time points, at least three random 
position along the plasma membrane were picked, fluorescence intensity were obtained 
using Image J software. Black bars indicate Wt::GFP-PHcrac, white bars indicate gsk3-

::GFP-PHcrac. 
 

3.2.3 PI3K1-LD localization dynamics along the plasma membrane upon cAMP 

stimulation 

      Previous study of PI3K localization using GFP fused PI3K1 and CFP fused PI3K2 

showed that after challenged with cAMP, there was a transient localization of PI3K to the 

plasma membrane in wild type cells (Funamoto et al., 2002). I thus globally stimulated 

both aggregation competent wild type cells and gsk3- cells expressing GFP-PI3K1-LD. 

Consistent with the previous reports, wild type cells displayed maximal membrane re-

localization of PI3K around 10 sec which subsided to the basal level after 30 sec. In 
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contrast, gsk3- cells exhibited constitutive membrane localization of PI3K1-LD in a 

cAMP insensitive manner (Figure 3.5 and 3.6). 

 

 

Fig 3.5 GFP-PI3K1-LD translocation after cAMP stimulation in pulsed cells. Images 
were taken at the indicated time points. Data are representative of at least three 
independent experiments. Scale bars represent 10 µm. Double apostrophe indicates 
second. 
 

 

Fig 3.6 Quantification of the membrane fluorescence shown on figure 3.5. Horizontal 
axis represents the time that passed after cAMP stimulation in seconds. Vertical axis 
represents the relative membrane fluorescence ratio compared to the fluorescence at time 
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zero. Error bars represent standard deviations. Numbers were obtained from at least three 
independent experiments. For each cell at different time points, at least three random 
position along the plasma membrane were picked, fluorescence intensity were obtained 
using Image J software. Black bars indicate Wt::PI3K1-LD-GFP, white bars indicate 
gsk3-::PI3K1-LD-GFP.  
 

3.2.4 PTEN localization dynamics along the plasma membrane upon cAMP 

stimulation 

      As previously mentioned, the pre-stimulus PTEN subcellular localization in gsk3- 

cells did not seem to be aberrant. In response to cAMP stimulation, GFP-PTEN 

translocalized to the cytoplasm in both wild type and gsk3- cells, maximally around 10 

sec. Around 30 sec post-stimulation, GFP-PTEN re-localized to the plasma membrane in 

both wild type and gsk3- cells (Figure 3.7 and 3.8). These findings are consistent with a 

recent study by Teo and colleagues (2010). 

3.2.5 Summary of the PHcrac, PI3K and PTEN membrane localization dynamics 

      Membrane localization patterns of PI3K and PTEN were mutually exclusive in wild 

type cells and there was a transient increase of PIP3 level on the plasma membrane upon 

cAMP stimulation as detected by GFP-PHcrac. I also noticed that the membrane 

localized PHcrac protein went back down to the basal level slightly faster than PI3K did 

after cAMP stimulation (Figure 3.9). In contrast, gsk3- cells displayed constitutive high 

level of PIP3 on the plasma membrane and constitutive PI3K membrane localization 

whereas PTEN was normally regulated (Figure 3.10), which indicated that either the 

kinase activity of PI3K could not be stimulated by cAMP signaling cascade or that gsk3- 

cells were deficient of PI3K substrate PIP2.  
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Fig 3.7 GFP-PTEN translocation after cAMP stimulation in pulsed cells. Images were 
taken at the indicated time points. Data are representative of at least three independent 
experiments. Scale bars represent 10 µm. Double apostrophe indicates second and single 
apostrophe indicates minute. 
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Fig 3.8 Quantification of the membrane fluorescence shown on figure 3.7. Horizontal 
axis represents the time that passed after cAMP stimulation. Vertical axis represents the 
relative membrane fluorescence ratio compared to the fluorescence at time zero. Error 
bars represent standard deviations. Numbers were obtained from at least three 
independent experiments. For each cell at different time points, at least three random 
position along the plasma membrane were picked, fluorescence intensity were obtained 
using Image J software. Black bars indicate Wt::GFP-PTEN, white bars indicate gsk3-

::GFP-PTEN. Double apostrophe indicates second and single apostrophe indicates 
minute. 
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Fig 3.9 PHcrac, PI3K and PTEN localization pattern upon stimulation in wild type cells. 
X-axis represents time after cAMP stimulation. Y-axis represents the relative membrane 
fluorescence. Dotted line indicates the localization of PI3K on the plasma membrane, 
solid line indicates the localization of PHcrac on the plasma membrane, and dot-dash-dot 
line represents localization of PTEN on the plasma membrane 
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Fig 3.10 PHcrac, PI3K and PTEN localization pattern upon stimulation in gsk3- cells. X-
axis represents time after cAMP stimulation. Y-axis represents the relative membrane 
fluorescence. Dotted line indicates the localization of PI3K on the plasma membrane, 
solid line indicates the localization of PHcrac on the plasma membrane, and dot-dash-dot 
line represents localization of PTEN on the plasma membrane 
 
3.2.6 Latrunculin-A treatment 

       Sasaki and colleagues (2004) proposed previously that stochastic Ras activation 

depends on the PI3K activity and F-Actin synthesis, the three of which form a positive 

feedback loop in cells moving at random directions (Figure 3.11). To determine whether 

GSK3 interacts with the F-Actin mediated feedback loop, wild type and gsk3- cells were 

treated with Latrunculin-A (Figure 3.12 through and 3.15). Five minutes after 0.5 µM 

Latrunculin-A treatment, cells lost their pseudopods and became circular indicating 
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significantly reduced level of F-Actin synthesis in the presence of Latrunculin-A. In 

contrast, GFP-PHcrac signals on the plasma membrane of gsk3- cells persisted during the 

course of Latrunculin-A treatment indicating that the high basal level of PIP3 in gsk3- 

cells is not induced through the F-Actin feedback loop. 

 

Fig 3.11 F-Actin polymerization induced positive feedback loop. Localized F-Actin 
polymerization can stimulate PIP3 signaling through a positive feedback loop by 
recruiting more PI3K to the plasma membrane. 
 

 



 44

 

Fig 3.12 GFP-PHcrac localization dynamics in Latrunculin-A treated vegetative cells. 
Cells at vegetative stage were treated with 0.5 µM Latrunculin-A. Images were taken at 
the indicated time points. Data are representative of at least three independent 
experiments. Scale bars represent 10 µm. Double apostrophe indicates second and single 
apostrophe indicates minute. 
 

 

Fig 3.13 Quantification of the membrane fluorescence shown on figure 3.12. Horizontal 
axis represents the time that passed after 0.5 µM Latrunculin-A was added. Vertical axis 
represents the relative membrane fluorescence ratio compared to the fluorescence at time 
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zero. Error bars represent standard deviations. Numbers were obtained from at least three 
independent experiments. For each cell at different time points, at least three random 
position along the plasma membrane were picked, fluorescence intensity were obtained 
using Image J software. Black bars indicate Wt::GFP-PHcrac, white bars indicate gsk3-

::GFP-PHcrac. Double apostrophe indicates second and single apostrophe indicates 
minute. 
 

 

Fig 3.14 GFP-PHcrac localization dynamics in Latrunculin-A treated pulsed cells. 
Aggregation competent cells were treated with 0.5 µM Latrunculin-A. Images were taken 
at the indicated time points. Data are representative of at least three independent 
experiments. Scale bars represent 10 µm. Double apostrophe indicates second and single 
apostrophe indicates minute. 
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Fig 3.15 Quantification of the membrane fluorescence shown on figure 3.14. Horizontal 
axis represents the time that passed after 0.5 µM Latrunculin-A was added. Vertical axis 
represents the relative membrane fluorescence ratio compared to the fluorescence at time 
zero. Error bars represent standard deviations. Numbers were obtained from at least three 
independent experiments. For each cell at different time points, at least three random 
position along the plasma membrane were picked, fluorescence intensity were obtained 
using Image J software. Black bars indicate Wt::GFP-PHcrac, white bars indicate gsk3-

::GFP-PHcrac. Double apostrophe indicates second and single apostrophe indicates 
minute. 
 
3.2.7 SPM-PI3K1-LD and SAS-PI3K1-LD localization dynamics along the plasma 

membrane upon cAMP stimulation 

      In the light of the fluorescent microscopic data described above, I hypothesized that 

in Dictyostelium, GSK3 affects PIP3 signaling pathway by negative control of the plasma 

membrane localization of PI3K (Figure 3.16).  

      I recognized that PI3K1 contains three potential GSK3 phosphorylation sites in the 

localization domain (Figure 3.17 and A2). In order to determine whether the 
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phosphorylation on these sites affects the subcellular localization of PI3K, I generated 

serial substitution mutants of PI3K1 (Table 3.1). The sextuple phosphor-mimetic PI3K1-

LD (SPM-PI3K1-LD) mimics constitutively phosphorylated PI3K1-LD, whereas the 

sextuple alanine substitution mutant (SAS-PI3K1-LD) represents non-phosphorylatable 

PI3K1-LD (Table 3.1). I then introduced GFP fused SPM-PI3K1-LD into both wild type 

cells and gsk3- cells and GFP fused SAS-PI3K1-LD into wild type cells. These cells at 

pulsed stage were stimulated with cAMP and GFP images were recorded at time points 

described in Figure 3.18. 

 

Fig 3.16 Model of PIP3 signaling pathway under the regulation of GSK3. A single 
aggregation competent cell was challenged with cAMP gradient with cAMP point source 
coming from the right side. The leading edge of the cells is on the right and its rear region 
is on the left. See the test for the details. 
 

 

Fig 3.17 Three potential GSK3 phosphorylation sites on PI3K1-LD. The localization 
domain of PI3K1 (amino acids 1-492) was shown. Three potential GSK3 phosphorylation 
sites were boxed. Among the numbered Serine residues, Ser11, Ser113 and Ser181 are 
predictive phosphorylation sites of priming kinase. Ser7, Ser109 and Ser177 are 
predictive phosphorylation sites of GSK3. 
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Table 3.1 GFP fused sextuple phosphor-mimetic mutant and sextuple alanine substitution 
mutants of PI3K1-LD. 
 

      The phosphomimetic mutant SPM-PI3K1-LD suppressed the aberrant basal plasma 

membrane localization of PI3K1-LD in gsk3- cells. Similar to the membrane localization 

dynamic pattern of Wt::PI3K1-LD, SPM-PI3K1-LD translocalized to the plasma 

membrane upon cAMP stimulation in both wild type cells and gsk3- cells which reached 

the peak level at 15 sec. On the other hand, the sextuple serine to alanine substitution 

mutant SAS-PI3K1-LD exhibited high basal plasma membrane localization and this 

membrane SAS-PI3K1-LD level persisted in response to cAMP stimulation in wild type 

cells, which is reminiscent of the situation of PI3K in gsk3- cells (Figure 3.18 and 3.19).   

      The time-lapse fluorescent microscope assays using PI3K1-LD mutant suggested that 

phosphorylation is important for the membrane recruitment of PI3K. 
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Fig 3.18 Mutant PI3K1-LD-GFP translocation after cAMP stimulation in pulsed cells. 
Images were taken at the indicated time points. Data are representative of at least three 
independent experiments. Scale bars represent 10 µm. Double apostrophe indicates 
second. 
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Fig 3.19 Quantification of the membrane fluorescence shown on figure 3.18. Horizontal 
axis represents the time that passed after cAMP stimulation. Vertical axis represents the 
relative membrane fluorescence ratio compared to the fluorescence at time zero. Error 
bars represent standard deviations. Numbers were obtained from at least three 
independent experiments. For each cell at different time points, at least three random 
position along the plasma membrane were picked, fluorescence intensity were obtained 
using Image J software. Gray bars indicate gsk3-::SPM-PI3K1-LD-GFP, black bars 
indicate Wt::SPM-PI3K1-LD-GFP and white bars indicate Wt::SAS-PI3K1-LD-GFP. 
 
3.2.8 LY294002 treated gsk3- cells still showed aberrant chemotaxis 

      If the chemotaxis defects of gsk3- cells were mainly caused by the elevated 

localization level of PI3K along the plasma membrane, inhibition of PI3K would at least 

partially rescue this defect. Previous study in my laboratory demonstrated that inhibition 

of PI3K in cells exhibiting high basal PIP3 level (sodC- cells) significantly improved 

chemotaxis. In contrast to sodC- cells which served as a positive control (Figure 3.21), 
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inhibition of PI3K in gsk3- cells displayed no such attenuation even with extended time 

periods tested (Figure 3.20 and Table 3.2). 

 

Fig 3.20 Chemotaxis assays after LY294002 treatment. Both JH10 cells and gsk3- cells 
were treated with 15 µM LY294002 after pulsing and then challenged with a point source 
of 10 µM cAMP. Superimposed tracing images were grouped. For JH10 cells, a total 
time period of 20 min were recorded and 40 min were recorded for gsk3- cells. Numbers 
are shown as mean ± standard deviation (SD). Data are representative of at least three 
independent experiments. Scale bars represent 100 µm. 
 

 

Table 3.2 Summary of chemotactic indices and speed of gsk3- cells treated with 15 µM 
LY294002 for 15 min in different time frames. Single apostrophe indicates minute. 
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Fig 3.21 Control chemotaxis assays. sodC- cells were challenged with a point source of 
10 µM cAMP with or without 15 µM LY294002 treatment for 20 min. Superimposed 
tracing images were grouped. A total time period of 20 min was recorded Numbers are 
shown as mean ± standard deviation (SD). Data are representative of at least three 
independent experiments. Scale bars represent 100 µm. 
 

3.3 Discussion 

      In response to cAMP stimulation, gsk3- cells exhibited wild type like PTEN 

localization dynamics while there were no detectable changes in PIP3 and PI3K level 

along the plasma membrane. Iijima and others (2002) reproted before that PTEN 

localization along the plasma membrane is dependent on PIP2 but not PIP3 level on the 

plasma membrane, which suggested that in gsk3- cells there should be a transient switch 

of PIP2 into PIP3. The reason that the PIP3 pattern here in gsk3- cells showed flat upon 

cAMP stimulation could be because of the relatively high basal level of PIP3 on the 

plasma membrane in gsk3- cells is much more than the dynamic pool of PIP3, thus 
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masked the PIP3 level change upon cAMP stimulation. Teo and others (2010) reported 

that gsk3- cells shows normal PIP2 level on the plasma membrane compared to wild type 

cells, and the reason I did not detect any significant PIP3 level change in gsk3- cells upon 

cAMP stimulation could also be that GSK3 is able to stimulate the phosphatase activities 

of certain inositol 5-phosphatases so that the transiently produced PIP3 is quickly 

switched back to PIP2. The use of Latrunculin-A ruled out the possibility that GSK3 

contributes to the high basal membrane level of PIP3 and high basal membrane 

localization of PI3K through pre-stimulation of F-Actin positive feedback loop. On the 

other hand, fluorescence assays using PI3K mutants supported the idea that 

phosphorylation of the potential GSK3 recognition sites on PI3K1-LD is important for 

the localization of PI3K between plasma membrane and cytosol and given that SAS-

PI3K1LD mutant stayed persistently on the plasma membrane, the phosphorylations on 

those potential GSK3 recognition sites by both GSK3 and other priming kinase(s) are 

important prerequisites for the PI3K1 subcellular localization. Upon been phosphorylated 

by GSK3 and other priming kinase(s), PI3K1 membrane trans-localization in response to 

cAMP stimulation is independent of any de-phosphorylation events. Finally, chemotaxis 

assays followed by LY294002 treatment indicated that GSK3 affects chemotaxis through 

multiple ways. Not only through the PIP3 signaling pathway, by also likely through other 

pathways and factors such as TORC2 pathway and SodC (Teo et al., 2010; Veeranki et 

al., 2008). 
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CHAPTER IV 

RAS ACTIVATION DYNAMICS 

4.1 Materials and methods 

4.1.1 Expression of GST-RBD protein in E. coli using IPTG-inducible stimulation 

      GST-Raf1-RBD and GST-Byr2-RBD in PGEX constructs were described previously 

(Kae et al., 2004; Sasaki et al., 2004). For the Isopropyl β-D-1-thiogalactopyranoside 

(IPTG) induction, E. coli containing either GST-Raf1-RBD or GST-Byr2-RBD in PGEX-

4T vector were inoculated into 50 ml of Luria broth (LB) containing 50 μg/ml ampicillin 

and incubated overnight at 37oC until the cells reached log phase. The OD value at 600 

nm (OD600 nm) was measured and then the cells were diluted with LB containing 50 μg/ml 

ampicillin to reach a final OD600 nm value of 0.1. The cells were further incubated at 37oC 

to reach an OD600 nm value of 0.4-0.6 before IPTG was added to a final concentration of 

0.1 mM. After another incubation of 3-4 hr at 37oC, cells were lysed with complete E. 

coli lysis buffer [20 mM TrisCl (pH7.7), 5% glycerol, 1% Triton X-100, 150 mM NaCl, 2 

mM EDTA, 0.1% β-mercaptoethanol and 1 x Roche Protease Inhibitor mix] and further 

sonicated on ice until the cell suspension became clear.  

4.1.2 GST-RBD protein quantification using Coomassie Brilliant Blue staining 

      Different volume of E. coli lysate obtained from 4.1.1, together with the known 

amount of BSA, were loaded on a 10% SDS-polyacrylamide gel. After running, the gel 

was stained with Coomassie Brilliant Blue R-250 followed by de-staining and gel-drying. 

The amount of IPTG induced GST-RBD were estimated by comparing with the band 

intensity of BSA control. 
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4.1.3 Ras binding assay 

      Aggregation competent cells were lysed with cell lysis buffer [20 mM TrisCl (pH7.7), 

5% glycerol, 1% Triton X-100, 150 mM NaCl, 1 mM EDTA, 1 mM Na3VO4, 40 μM 

sodium molybdate, 0.1% beta-mercaptoethanol, and 1 x protease inhibitor cocktail 

(Roche)]. E. coli lysate including about 10 μg of GST-RBD (Ras Binding Domain) was 

mixed with 50 μl of 50% slurry of glutathione (GTT) Sepharose beads (GE Healthcare) 

and incubated 1.5 hr at 4oC with agitation. The beads were then spun down and washed 

three times with cell lysis buffer containing 10 mM MgCl2. The whole cell lysates were 

mixed with the beads and further incubated for 1.5 hr at 4oC. The glutathione Sepharose 

beads bound with GST-RBD and active Ras were washed three times with cell lysis 

buffer containing 10 mM MgCl2. The active Ras proteins bound with GST-RBD were 

visualized by western blotting using anti-Pan-Ras antibody (Calbiochem, Ab-3). 

4.2 Results 

4.2.1 GSK3 affected PI3K membrane localization independently from the 

Ras/PI3K/F-Actin feedback module. 

      Randomly moving cells exhibit spontaneous activation of Ras proteins which 

spatiotemporally coincide with PI3K activation and F-Actin synthesis (Sasaki et al., 

2007). Detailed biochemical and imaging analysis demonstrated that this stochastic 

activation of Ras depends on the functional PI3K and F-Actin synthesis, and thus it was 

proposed that the three components form a self-organizing feedback loop (Sasaki et al., 

2007). To determine whether the PI3K mis-localization was caused by aberrant high Ras 

activity in gsk3- cells, I measured Ras activities in wild type and gsk3- cells.  
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      Ras binding domains (RBD) from either Raf1 or Byr2 were tagged with GST and 

induced in the E.coli system. According to the quantification by using Coomassie 

Brilliant Blue staining that around 10 µg of GST-RBD were used for each binding 

(Figure 4.1).  

 

Fig 4.1 Quantification of E.coli expressed GST-Raf1-RBD and GST-Byr2-RBD using 
Coomassie Brilliant Blue staining. Compared with the bands using specific amount of 
BSA, approximately 10 µg of either GST-Raf1-RBD or GST-Byr2-RBD were used for 
each binding. 
 
      GFP-RBD assays using either GST-Raf1-RBD or GST-Byr2-RBD showed that there 

were no obvious difference of basal active Ras level in between wild type cells and gsk3- 

cells indicating that GSK3 affects PI3K membrane localization independently from the 

Ras/PI3K/F-Actin feedback module (Figure 4.2). 
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Fig 4.2 Basal Ras activity in both wild type cells and gsk3- cells after pulsing. Amount of 
total Ras proteins were first normalized by total amount of Ras. Amount of active Ras 
proteins was detected by GST-RBD assays. 
 
4.2.2 GSK3 regulated the Ras activation pattern after cAMP stimulation. 

      As previously described, gsk3- cells generated no further PIP3 in response to cAMP 

stimulation (Figure 3.3 and 3.4). It was shown that RasG is an upstream regulator of 

PI3K activation (Sasaki and Firtel, 2006). Furthermore, a specific PI3K mutant (K736E),  

which is unable to bind to active Ras, displays normal cAMP mediated membrane 

translocation but fail to activate its downstream effector Akt (Funamoto et al., 2002). I 

thus hypothesized that gsk3- cells may have compromised cAMP induced Ras activation. 

      cAMP induced regulation of Ras in wild type and gsk3- cells were determined using 

GST-RBD pull down assay (Kae et al., 2004; Sasaki et al., 2004). Briefly, the active Ras 

which bind to GST tagged RBD protein is separated using GTT Sepharose beads through 

centrifugation, and the amount of active Ras is further detected through western blot. 

Wild type cells exhibited a transient activation of Ras proteins, which peaked at 5 sec 

after cAMP stimulation and subsequently decreased to the basal level after 1 min. In 

contrast, persistent Ras activation was observed in gsk3- cells in response to cAMP 
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stimulation. Active Ras proteins persisted and showed no sign of adaptation even at 90 

sec after stimulation (Figure 4.3).  

      I thus analyzed Ras activation pattern in gsk3- cells beyond the normal 

activation/adaptation time frame. Wild type cells displayed usual transient Ras activation 

around 5 sec post-stimulation with additional activations, which were likely caused by 

paracrine Ras activation by autonomous secretion of cAMP. In contrast, gsk3- cells 

displayed persistent Ras activation up to 12 min. In addition, no additional Ras activation 

peak was observed from gsk3- cells. Previous study demonstrated that gsk3- cells are 

unable to produce extracellular cAMP (Teo et al., 2010), and thus it is likely that no 

paracrine Ras activation pathway was operating in gsk3- cells (Figure 4.4).  

      To determine if other Ras proteins, such as RasC, which does not efficiently associate 

with Raf1-RBD, were misregulated in gsk3- cells, Byr2 from Schizosaccharomyces 

pombe was used. Ras binding domain of Byr2 was shown to have good affinity to both 

active RasC and RasG (Kae et al., 2004). Pull-down assay using Byr2 demonstrated that 

a subset of Ras proteins that bind to Byr2 were normally and transiently activated in 

response to cAMP stimulation gsk3- cells compared to wild type cells (Figure 4.5).  

4.3 Discussion 

      The data above suggested that certain Ras species, likely RasD and RasB, were 

persistently activated by cAMP in gsk3- cells, whereas RasC and RasG were normally 

regulated. Both groups of Ras proteins showed normal basal activity in gsk3- cells. It is 

thus likely that misregulation of RasD may interfere with cell differentiation, but not 

chemotaxis of gsk3- cells (Louis et al., 1997). It could also be that GSK3 regulate some 

other yet to be defined Ras species which are able to interact with Raf1-RBD proteins. 
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Unlike sodC- cells situation reported by Veeranki and others (2008), GSK3 is able to 

stimulate persistent activation of certain Ras species while leaving the basal Ras activity 

unaffected. How GSK3 achieve this kind of Ras activation dynamics still needs further 

investigation. It is likely that GSK3 is able to regulate certain specific GEF or GAP 

proteins. It would be interesting in the future to firstly find out which specific type of Ras 

is misregulated upon cAMP stimulation by using specific Ras antibidies before further 

investigate the potential role of GSK3 on certain GEF or GAP proteins.  

 

Fig 4.3 Ras activation patterns after stimulation using GST-Raf1-RBD. Aggregation 
competent cells were stimulated with 10 µM cAMP as indicated. Amount of total Ras 
proteins were first normalized by total Ras level. Amount of active Ras proteins were 
detected by GST-Raf1-RBD. Data are representative of at least three independent 
experiments. 
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Fig 4.4 Long time Ras activation patterns after stimulation using GST-Raf1-RBD. 
Aggregation competent cells were stimulated with 10 µM cAMP as indicated. Amount of 
total Ras proteins were first normalized by total Ras level. Amount of active Ras proteins 
were detected by GST-Raf1-RBD. Double apostrophe indicates second and single 
apostrophe indicates minute. 
 

 

Fig 4.5 Ras activation patterns after stimulation using GST-Byr2-RBD. Aggregation 
competent cells were stimulated with 10 µM cAMP as indicated. Amount of total Ras 
proteins were firstly normalized by western blotting using anti-Pan-Ras antibody. 
Amount of active Ras proteins were detected by GST-Byr2-RBD. Double apostrophe 
indicates second and single apostrophe indicates minute.       
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CHAPTER V  

GSK3 REGULATES PI3K1-LD PHOSPHORYLATION IN VIVO AND IN VITRO 

5.1 Materials and methods 

5.1.1 Generation of GST-PI3K1-LD expression construction 

      A coding sequence of GST with 5’ BamHI and 3’ EcoRI sites were generated by PCR 

using pGEX-4T-1 as a template and a primer set 5’- GAAGATCTATGTCCCCTATAC 

TAGGTTATTGG-3’ and 5’-GAAGATCTGAATTCCGGGGATCCACG-3’ (Figure A3). 

The EXP-4(+)-PI3K1-LD-GFP expression construct was a generous gift from Dr. Firtel 

(Funamoto et al., 2002). GFP was first excised from pEXP-4(+)-PI3K1-LD-GFP by KpnI 

digestion, and GST was subcloned to the upstream of PI3K1-LD by utilizing a BglII site. 

A stop codon immediate downstream of PI3K1-LD (open reading frame of 1476 bp) was 

added by annealing two oligo nucleotides 5’-CGATTGTAAAATCAATGATTAAGG 

TAC-3’ and 5’-CTTAATCATTGATTTTACAAT-3’ and utilizing both ClaI and KpnI 

sites (Figure A4 and A5). All constructs were confirmed by sequencing. 

5.1.2 Antibodies 

      Western blot analysis was performed as described in chapter II. Anti-phospho-serine 

antibody was purchased from Introgen and 250 X dilution was made for each western 

blot to achieve a final concentration of 1 µg Ab/ml. Anti-GST antibodies were purchased 

from Santa Cruz Biotech (1:1000 dilution). Anti-GFP antibodies were purchased from 

Covance (1:1000 dilution). Anti-Pan-Ras antibodies were purchased from Calbiochem 

(Ab-3). Anti-GSK3 (4G-1E) antibodies were from Millipore. Intensities of the bands 

were quantified by using UN-SCAN-IT program (Silk Scientific Corporation). 

 



 62

5.1.3 Subcellular fractionation of wild type and mutants GFP-PI3K1-LD proteins 

      Cell fractionation assay were performed as described previously with minor 

modifications (Han et al., 2006). Twenty five million aggregation competent cells were 

spun down and washed once with ice-cold PBS (137 mM NaCl, 2.7 mM KCl, 10 mM 

Na2HPO4, 1.8 mM KH2PO4) and the cell pellets were treated with 400 µl of 0.02% 

TritonX-100 and incubated 10 min at 4oC with agitation. All solutions contained protease 

inhibitors (Roche, Complete Mini). Mixtures were centrifuged at 12,000 x g for 5 min at 

4oC. The supernatants were then mixed with 4 x SDS protein loading dye and the pellet 

were mixed with 100 µl of 1 x SDS protein loading dye. Forty microliters of cytosolic 

fractions and 1 µl of membranous fractions were loaded onto SDS-PAGE and analyzed 

by western blotting using anti-GFP antibody. Ras proteins were used as a marker 

enriched at the pellet fraction.  

5.1.4 IPTG inductions 

      IPTG mediated GST-GSK3 induction was performed similar to the GST-RBD 

induction described in chapter IV except that the fusion proteins were induced at room 

temperature. The induction levels were checked by western blotting using either anti-

GST antibodies or anti-GSK3 antibodies.  

      IPTG Induction and quantitative analysis of GST-PI3K1-LD by Coomassie Brilliant 

Blue staining were as described in chapter IV. 

5.1.5 GSK3 kinase assay 

      Twenty units of recombinant GSK3β (New England Biolabs) and ~10 µg of 

recombinant GST-PI3K1-LD were mixed in the kinase assay buffer (50 mM HEPES, pH 

7.5, 4 mM MgCl2, 0.5 mM EGTA, 2 mM DTT, 100 µM ATP, [γ-32P]ATP to 500-1000 
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counts/minute per pmol). The same amount of MBP protein was used as positive control. 

The reaction mixtures were resolved by SDS-PAGE, exposed to an X-ray film, and 

autoradiographs were obtained.  

5.1.6 In vitro peptide kinase assay 

       Three types of GSK3 were used for in vitro peptide kinase assay. Twenty units of 

recombinant mammalian GSK3β (New England Biolabs) or 1 µg of recombinant 

Dictyostelium GST-GSK3 were used for each assay. Alternatively, whole cell lysates 

were used as a GSK3 source: ten million cells were lysed using ice-cold GS lysis buffer 

(0.5% NP40, 10 mM NaCl, 20 mM PIPES, pH 7.0, 5 mM EDTA, 50 mM NaF, 0.1 mM 

Na3VO4, 0.05% 2-mercaptoethanol, 5 µg/ml aprotinin, 5 µg/ml benzamidine) and 

insoluble fractions were removed by centrifuging at 10,000 x g. Five microliters of whole 

cell lysate was used for each assay.  

     The GSK3 peptide kinase assay was performed as described previously (Plyte et al., 

1999). The sequences of primed peptide substrates are as follows: GSM peptide - 

RRRPASVPPSPSLSRHSS-PHQRR, P1 peptide - RRRMNSIESS7SNDS11
-PNRR, P2 

peptide - RRRNDSNCSS109GSSS113
-PGRR, and P3 peptide - RRRGSSSGSS177SGGS181

-

PDRR. For each assay, 20 µg of each peptide, together with a source of GSK3 mentioned 

above, were mixed in the assay buffer (50 mM HEPES, pH 7.5, 4 mM MgCl2, 0.5 mM 

EGTA, 2 mM DTT, 100 µM ATP, [γ-32P]ATP to 500-1000 counts/minute per pmol) at 

room temperature in a final volume of 20 µl. The same amount of GSM peptide was used 

as a positive control (Plyte et al., 1999). Eight minutes were allowed for the reaction 

before stopped by an equal volume of 15 mM phosphoric acid. Incorporation of [γ-

32P]ATP was detected by binding to P81 phosphocellulose paper (Whatman), washed 
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extensively for three times with 7.5 mM phosphoric acid and were counted with 

scintillation counter. Control samples were assayed in the presence of 50 mM LiCl, a 

GSK3 inhibitor, and lithium sensitive specific activities were calculated by subtracting 

the counts in control samples from the total counts. Specific activity was expressed as 

picomole of phosphate transferred per assay. Each experiment was repeated three times. 

5.1.7 GST pull-down assay and lambda phosphatase treatment 

      Twenty five million of either wild type cells or gsk3- cells expressing GST-PI3K1-LD 

were lysed with 1 ml of cell lysis buffer [20 mM TrisCl (pH7.7), 5% glycerol, 1% Triton 

X-100, 150 mM NaCl, 1 mM EDTA, 1 mM Na3VO4, 40 μM sodium molybdate, 0.1% 

beta-mercaptoethanol, and 1x protease inhibitor cocktail (Roche)]. Two hundred and fifty 

microliters of cell lysate was mixed with 50% slurry of glutathione (GTT) Sepharose 

beads (GE Healthcare) and incubated 1.5 hr at 4oC with agitation. The beads were then 

spun down and washed three times with cell lysis buffer. GST-PI3K1-LD proteins on the 

glutathione Sepharose beads were detected by western blotting using anti-GST antibody 

(Santa Cruz Biotech). PI3K1-LD phosphorylation levels were detected by western 

blotting using anti-phospho-serine antibody (Introgen). 

      Lambda phosphatase was purchased from New England Biolab and lambda 

phosphatase treatment of GST-PI3K1-LD, which was purified from Dictyostelium cell 

lysate was performed as suggested by the provider. In short, the reactions were carried 

out at 30oC for 20 min and stopped by heating to 65oC for 1 hr before the mixture was 

subjected to SDS-PAGE. 
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5.2 Results 

5.2.1 PI3K1-LD proteins were under-phosphorylated in gsk3- cells 

      Full length PI3K1 consists of several domains (Figure 5.1), among which the 

localization domain resides at the amino terminus. To determine whether PI3K1-LD is 

phosphorylated in a GSK3 dependent manner in vivo, a GST tagged PI3K1-LD construct 

was generated and expressed in both wild type and gsk3- cells (Figure 5.1). 

 

Fig 5.1 GST-PI3K1-LD construct and full length PI3K1. Full-length PI3K1 is 
characterized by a localization domain, a Ras binding domain, a C2 domain, a kinase 
accessory domain and a kinase catalytic domain. The localization domain of PI3K1 is 
fused with a GST tag and expressed in both wild type cells and gsk3- cells. 
 
      The expression levels in both wild type cells and gsk3- cells were firstly normalized 

using both whole cell lysate and purified GST-PI3K1-LD. The phosphorylation level on 

serine residues of PI3K1-LD in gsk3- cells revealed a ~60% decrease compared to that in 

wild type cells. Consistent with this, I noticed a slight increase in GST-PI3K1-LD 

motility purified from gsk3- cells on SDS gels compared to that from wild type cells 

(Figure 5.2A and 5.3). Upon treatment of the samples with lambda phosphatase, the 

levels of phosphorylation on serine residues of PI3K1-LD declined significantly. 
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Furthermore, there were no more mobility shift differences between GST-PI3K1-LD 

proteins purified from wild type and gsk3- cells (Figure 5.2B and 5.4). 

 

Fig 5.2 (A) PI3K1-LD had less phosphorylation level in gsk3- cells compared to wild 
type cells. (B) Lambda phosphatase treatment was able to reverse the different 
phosphorylation level. Data are representative of at least three independent experiments. 
 

 

Fig 5.3 Quantifications of the relative band intensity for figure 5.2A (top and middle 
panel). gsk3- bands were compared with wild type bands. Data are representative of at 
least three independent experiments. Error bars represent standard deviations. 
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Fig 5.4 Quantifications of the relative band intensity for figure 5.2B (top and middle 
panel). The gsk3- bands were compared with wild type bands. Data are representative of 
at least three independent experiments. Error bars represent standard deviations. 
 
5.2.2 Localization of PI3K1-LD, SPM-PI3K1-LD and SAS-PI3K1-LD 

      To further determine the role of phosphorylation on PI3K1-LD for its localization at 

molecular level, I used the GFP-PI3K1-LD mutants mentioned in chapter III (Table 3.1) 

and performed cell fractionation assay. Consistent with the fluorescent imaging data, 

GFP-PI3K1-LD localized almost two-fold more on the plasma membrane than in the 

cytosol of gsk3- cells. In wild type cells, GFP-PI3K1-LD showed ~40% more PI3K1-LD 

localization in the cytosol than on the plasma membrane. In contrast, phosphomimetic 

mutant (SPM-PI3K1-LD) of GFP-PI3K1-LD in gsk3- cells displayed more cytosolic 
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localization resembling PI3K1-LD in wild type cells. On the other hand, sextuple serine 

to alanine substitution mutant (SAS-PI3K1-LD) showed more membrane localization in 

wild type cells, which was reminiscent of PI3K1-LD subcellular localization in gsk3- 

cells (Figure 5.5 and 5.6). Two controls were performed in this assay. In all cell types, 

Ras proteins displayed consistent membrane enrichment. The ratios between Ras proteins 

localized to the membrane (the pellet fraction) and cytosol (the supernatant fraction) were 

all around 2:1, indicating that all fractionations were of equivalent quality (Figure 5.5 and 

5.7). Also, the total expression levels of PI3K1-LD and PI3K1-LD mutants were 

comparable (Figure 5.8 and 5.9).   

 

Fig 5.5 Localization of mutant PI3K1-LD in either wild type cells or gsk3- cells. Ras, 
which is a membrane localized protein, served as a control. The ratios between Ras 
proteins localized to the membrane and cytosol were all around 2:1 (Figure 5.6) 
suggesting all types of cells were fractionated to the similar extent. Data are 
representative of at least three independent experiments. ‘M’ stands for membraous 
fraction, while ‘C’ stands for cytosolic fraction. 
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Fig 5.6 Quantifications of the relative band intensity for Figure 5.5 (top panel). Black 
bars indicate membranous fractions and grey bars indicate cytosolic fractions. Band 
intensities for membranous fractions were compared with those for cytosolic fractions. 
Data are representative of at least three independent experiments. Error bars represent 
standard deviations. 
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Fig 5.7 Quantifications of the relative band intensity for Figure 5.5 (bottom panel). Black 
bars indicate membranous fractions and grey bars indicate cytosolic fractions. Band 
intensities for cytosolic fractions were compared with those for membranous fractions. 
Data are representative of at least three independent experiments. Error bars represent 
standard deviations. 
 

 

Fig 5.8 Normalization of the total expression level. For each cell type, same amount of 
membranous fraction and cytosolic fraction, which were used in Figure 5.5, were 
combined before subjected to SDS-PAGE. The expression level of either GFP fused 
PI3K1LD or GFP fused mutated PI3K1LD are similar in all cell types. Data are 
representative of at least three independent experiments.  
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Fig 5.9 Quantifications of the relative band intensity for Figure 5.8. The band intensities 
were all compared to those for JH10 cells expressing PI3K1-LD. Data are representative 
of at least three independent experiments. Error bars represent standard deviations. 
 
5.2.3 Unprimed PI3K1-LD was not a substrate of recombinant GSK3 

      To determine whether PI3K1-LD can be directly phosphorylated by recombinant 

GSK3 without being pre-phosphorylated by another kinase, GST-PI3K1-LD were 

express in E.coli and in vitro kinase assays were performed (Figure 5.10). First, GST was 

not a substrate of recombinant GSK3 compared to the positive control myelin basic 

protein (MBP), which is a known GSK3 substrate (Figure 5.11). However, GST-PI3K1-

LD was not utilized by recombinant GSK3 indicating that without pre-phosphorylation 

by another kinase, PI3K1-LD could not be phosphorylated by GSK3 (Figure 5.12). 
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Fig 5.10 Quantification of E.coli expressed GST-PI3K1-LD using Coomassie Brilliant 
Blue staining. 
 

 

Fig 5.11 GST could not be phosphorylated by recombinant GSK3. Commassie blue 
stained gel showed there was comparable input amount of with GST protein or MBP 
protein. The autoradiography images after kinase assay showed that GST was not a 
GSK3 substrate while the positive control (MBP), as well as the GSK3 inhibitor LiCl, 
worked fine. 

 

Fig 5.12 In vitro kinase assay using recombinant GSK3. Around 10 µg of GST-PI3K1-
LD was used for each reaction. IPTG induced GST-PI3K1-LD could not be 
phosphorylated by recombinant GSK3 (left panel) while the positive control worked fine 
(right panel). Data are representative of at least three independent experiments. 
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5.2.4 Induced Dictyostelium GSK3 could not phosphorylate artificially synthesized 

peptides 

      According to the data above, I reasoned that GSK3 may phosphorylate only the 

primed PI3K1-LD. To pursue that, the pre-phosphorylated peptides P1, P2, and P3 

(phosphoserine at position 11, 113, and 181) containing three potential GSK3 sites of 

PI3K1-LD were synthesized. GST-GSK3 construct and E.coli expression were described 

previously (Kim et al., 2002). Dictyostelium recombinant GST-GSK3 was quantified and 

proved to be able to phosphorylate MBP as mammalian recombinant GSK3 does (Figure 

5.13 and 5.14). However, all three pre-phosphorylated peptides (referred to as P1, P2 and 

P3 henceforth) could not be phosphorylated by GST-GSK3 compared to GSM positive 

control (Figure 5.15). I also cut off the GST tag from GST-GSK3 after purification and 

repeated the same experiment, and similar results were obtained (data not shown). 

 

Fig 5.13 Detection and quantifications of E.coli expressed GST-GSK3. E.coli expressed 
GST-GSK3 was clearly detected by western blot using either anti-GSK3 or anti-GST 
antibodies. Commassie blue stained gel showed that the input amount of GST-GSK3 for 
each assay was around 1 µg. 
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Fig 5.14 Kinase activity of E.coli expressed GST-GSK3. Compared to positive control, 
IPTG induced GST-GSK3 was able to phosphorylation MBP. Data are representative of 
at least three independent experiments. 
 

 

Fig 5.15 In vitro peptide kinase assay using E.coli expressed GST-GSK3. Three primed 
artificially synthesized peptides were not substrates of GST-GSK3 while positive control 
using GSM peptide worked fine. Data are representative of at least three independent 
experiments. Error bars represent standard deviations. 
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5.2.5 Recombinant GSK3 could only phosphorylate one of the artificially 

synthesized peptides 

      I also performed in vitro peptide kinase assay mentioned above using recombinant 

GSK3. In this case, only P2 peptide was shown to be a substrate of recombinant GSK3 

compared to GSM positive control (Figure 5.16). 

 

 

Fig 5.16 In vitro peptide kinase assay using recombinant GSK3. Compared to positive 
control, only the second artificially synthesized primed peptide could be phosphorylated 
by GSK3. Data are representative of at least three independent experiments. Error bars 
represent standard deviations. 
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5.2.6 Peptide Kinase assay using whole cell lysate of wild type cells indicated all 

artificially synthesized peptides were GSK3 substrates 

      When I performed in vitro peptide kinase assay using whole cell lysate, all three 

peptides were revealed to be substrates of GSK3 compared to the positive control (Ryves 

et al., 1998). No significant kinase activity toward GSM was detected using whole cell 

lysate of gsk3- cells. Same set of experiments were performed in the presence of lithium 

chloride, a GSK3 inhibitor, to determine the nonspecific kinase activities. The GSK3 

specific activities were calculated by subtracting nonspecific activities from the raw 

values (Figure 5.17).  

 

 

Fig 5.17 In vitro peptide kinase assay using whole cell lysate. Data are representative of 
at least three independent experiments. Error bars represent standard deviations. 
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5.3 Discussion 

      Given that PI3K1-LD is significantly less phosphorylated in gsk3- cells, it is likely 

that the serine phosphorylation of PI3K1-LD serves as a prerequisite signal for 

chemoattractant induced regulation of PI3K1. In vitro peptide kinase assay support the 

possibility that GSK3 is able to directly phosphorylate these sites upon primed by another 

kinase. Furthermore, biochemical fractionation assay indicated that GSK3 regulated 

serine phosphorylation of PI3K1 membrane localization domain served as a permissive 

signal for chemoattractant induced plasma membrane localization of PI3K1. Thus, it is 

possible that chemoattractant signal modifies PI3K1 localization by modulating binding 

partners of PI3K1 either in the cytosol or on the plasma membrane. I hypothesize that a 

cytosolic PI3K1 retention factor and a membrane component would both associate with 

PI3K1-LD and are susceptible to chemoattractant signaling mediated modification. It is 

also possible that the chemoattractant signal may modify PI3K1-LD in addition to the 

GSK3 dependent serine phosphorylation. 
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CHAPTER VI  

CONCLUSIONS AND FUTURE DIRECTIONS 

      In this dissertation, I reported that gsk3- cells generated from JH10 parental cells 

showed severe defectives in motility and direction sensing ability towards cAMP 

gradient. The main goal was to determine the mechanism of GSK3 mediated PI3K 

regulation. 

      Loss of GSK3 caused a biased membrane localization of PI3K and an elevated basal 

PIP3 level on the plasma membrane. Upon cAMP stimulation, unlike wild type cells, 

which experienced a transient PIP3 increase on the membrane, the membrane PIP3 level 

in gsk3- cells showed no such increase in the PIP3 level even during the course of the 

stimulation. Consistently, PI3K also exhibited no further membrane localization in gsk3- 

cells in response to cAMP stimulation. Given that PI3K generates PIP3, I reasoned that 

the loss of GSK3 could facilitate PI3K plasma membrane localization and thus increase 

basal PIP3 level. I also showed both in vivo and in vitro that PI3K1 was phosphorylated 

on its membrane localization domain in a GSK3 dependent manner. Furthermore, I 

identified several serine residues are likely the targets of GSK3 phosphorylation and play 

a critical role in the subcellular localization of PI3K1. It was likely that PI3K1-LD was 

phosphorylated upon primed by a yet to be identified priming kinase. I proposed that 

phosphorylated PI3K1 is likely the target of chemoattractant mediated signaling since 

that sextuple phosphomimetic substitution mutant displayed transient membrane 

localization in response to chemoattractant stimulation similarly to the wild type PI3K1. 

It is thus plausible that phosphorylated PI3K1 interacted with a putative cytosolic 

retention factor, of which interaction with PI3K will be weakened upon receiving 
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chemoattractant signaling. It is also possible that a chemoattractant signal may augment 

interactions between phospho-PI3K1 and a membrane component that interacts with 

PI3K1. In both scenarios, it is possible that the chemoattractant signal regulated 

interactions by modifying either PI3K1 or its binding targets (the cytosolic retention 

factor or a plasma membrane-associated component). Further studies will be necessary to 

determine the molecular mechanism of chemoattractant mediated regulation of PI3K 

subcellular shuttling besides the GSK3 mediated phosphorylation of PI3K.   

      One of the puzzling observations from gsk3- cells is that there was no further increase 

in the level of PIP3 in response to chemoattractant stimulation. A previous study of Teo 

et al. (2010), demonstrated that an increase in the level of PIP2 by altering 

phosphoinositide metabolism restored transient increase in the PIP3 level in response to 

chemoatteractant stimulation, suggesting that PI3K1 may not have sufficient PIP2 to 

generate PIP3. Furthermore, it was suggested that there are two pools of PIP2 – one 

smaller pool which is mainly responsible for PIP3 synthesis and one much larger pool 

that is slowly metabolized and bound to cytoskeleton regulating proteins (King et al., 

2009). This may explain the previous finding that both wild type and gsk3- cells contain 

similar total levels of PIP2, which might make the difference of the smaller PIP2 pools 

for PI3K invisible. 

      The other possibility is that gsk3- cells may not be able to properly activate PI3K in 

response to cAMP stimulation. Upon stimulation with cAMP, gsk3- cells displayed a 

persistent Ras activation, detected by GST-Raf1-RBD. However, normal Ras activation 

pattern was observed with GST-Byr2-RBD. Given that Byr2-RBD binds RasC and RasG 

and Raf1-RBD binds RasB, RasD, and RasG, it is likely that GSK3 was essential for 
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regulating RasB or RasD, but not RasC and RasG. It is thus likely that RasC or RasG 

were properly activated in gsk3- cells by chemoattractant stimulation, and the lack of 

transient increase in the levels of PIP3 were not caused by a misregulation of RasC or 

RasG but likely caused by the lack of sufficient PI3K substrate PIP2. It will be interesting 

and significant to determine the nature of misregulated Ras species in gsk3- cells, which 

may be a cause for their developmental abnormalities. 

      It is worthy to mention that GSK3 affects motility and chemotaxis through regulating 

expression of key regulators of chemotaxis and motility. It was reported that GSK3 is 

able to reduce the transcription level of sodC, which encodes a superoxide dismutase, 

pdsA which encodes a cAMP phosphodiesterase, and acaA which encodes the adenylyl 

cyclase (Strmecki et al., 2007; Teo et al., 2010; Veeranki et al., 2008).  

      Studies shown in this dissertation demonstrated that GSK3 played multiple roles in 

orchestrating cell motility and chemotaxis by regulating pre-stimulus membrane 

localization of PI3K as well as regulating expression of sodC.  

      The PI3K-mediated PIP3 signaling pathway is also prevalent in mammalian systems. 

In mammalian systems, PI3Ks are classified into three different groups: class I, class II 

and class III (Weiger and Parent, 2012). Among all these classes of PI3Ks, class I PI3Ks 

act through similar mechanisms compared to Dictyostelium. Upon activation of class IA 

PI3Ks through receptor tyrosine kinases (RTKs), class IA PI3Ks display a trans-location 

from the cytosol to the plasma membrane by binding to the Src-homology (SH2) domains 

on the RTKs, which further turns on the PIP3 signaling pathway (Weiger and Parent, 

2012). Unlike class IA PI3Ks, class IB PI3Ks are mainly activated through G-protein-

coupled receptors and Ras (Weiger and Parent, 2012). In mouse macrophages, PI3K has 
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crucial role in regulating macrophage-colony stimulating factor (M-CSF) stimulated 

chemotaxis through further activation of Rac GEF, Vav (Vedham et al., 2005). Also, 

neutrophils and macrophages with disrupted PI3Kγ in mouse system exhibit reduced 

chemotaxis in vitro. In vivo, less accumulation of neutrophils and macrophages at the 

sites of inflammation were observed (Hirsch et al., 2000; Sasaki et al., 2000). In 

fibroblasts, platelet derived growth factor (PDGF) triggers the activation of class IA PI3K 

through RTKs, and the activation of class IA PI3K is important for the chemotaxis 

(Hawkins et al., 1992; Wennstrom et al., 1994). It has been well established before that in 

mammalian systems, PI3K lies upstream of GSK3 and PI3K could indirectly inactivate 

GSK3 by activating PKB (Grimes and Jope, 2001). Based on the evidence obtained in 

this dissertation, it would be worthy and interesting to test whether GSK3 is able to 

influence class I PI3Ks in mammalian system, which may contribute to the study of 

certain inflammatory diseases and the wound healing process. 
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APPENDICES 

Figure A1 DNA sequence of PI3K1-LD (1476 bp). 

1        ATGAATAGTA TTGAAAGTTC TTCTAATGAT AGCAATGAGA TAAATAAAAA 
51       TTCAAACAAA AATAATACAC ACTTAAACTC CAACTATAAT AATATTTATA 
101      AAAATAATAG CACTAGTAGT AATAATAATA ATAATCATAA TAATATTGAA 
151      ATTATTGGGA TAGATAATAA TAAAAATAAT AATAAAAATA ATAACGATAA 
201      TAATAATAAT AATAATAATA TAGATAAAAA AAGAAAGGAT AGTAAAAATA 
251      AACAAAACCA AGAAATAAAT CAAGAAATGT CAGAAAATAA AAAAATTTAT 
301      AATAGTAATG ATAGTAATTG TAGTAGTGGT AGTAGTAGTG GAGGACATGT 
351      AAATAATGGT CATCATATAT TAATTGAAGA GAATGAAAGA TTAGAACATG 
401      AAAATCAAGA GATTCAAGAA ATTTATAAAC AAAAGGGTAT GGAATTTCAA 
451      AAAAAAGATT TAAGATTTGG ATATGATGTT AATAGTAATA ATAATAATAA 
501      TAATGGTGGT GGTAGTAGCA GTGGTAGTAG CAGTGGTGGT AGTGATGAAT 
551      CTGCTTCAAA TCAACCTATA ATTAGAACTA GAAATAGAGA AGGTTCAATT 
601      TTAAATTTAA AGAAACAAGG TCTTGTAAAA GAAATTAGTC AAAGATTTCA 
651      AACACCAGAT ACAGCATCAT ATACAAGACC AAATGCAAAT AATATTTCAA 
701      TTAAAGATAA AATTTCTATA TTAAAAAAGG AGCAAGAAAG AAGAAAACAA 
751      GATTCAGAAG TACAACAACG AGAAAAGGTT ATAGTATTAT CAGCAGATAG 
801      TTCAAATATT CAAATTTATC ATCCCTCTGT TTTAATAGAA AAAATGAATA 
851      GTAAATTGGA TACCGAAGAA AAGCCAGCAA CAACGACAAC AACTACTACT 
901      ACAACATCAA CATCAATATC AACATCAACA CCAACAACTA CTACTACTAC 
951      TACAACTAAT ACTTCTACTA CTAATGATAT TACAATTAAA CCAAAAACAT 
1001     CACCAACAAA AAATAATGAA GAAAGATCAC AATCACCAAT TACAACACCA 
1051     AAACAACCAG TTGAAGAAAT TGTTAAAAAA GTATCAACAC CAAAATCAAA 
1101     TAATACTTCT AAAAAGACAT CATCCGATAC AACACCAACA GGAAAAACAA 
1151     CTAAAAAAGA TAAAAAAGAT AAAAAAGATA AATCAAGAGA TAGTGGTAAT 
1201     TTAGTAATTG TTAATAATAC TAATAATACT AGTAGTAATA ATAACAATAA 
1251     TAATAATAAT AATAATAATA ATGAAACAAT TATAAAACGT AGAGGTAGAG 
1301     TTTTAGTTAC ACCATCAAGT GATTTAAAAA AGAATATTCA AATTTATTTT 
1351     ACAATTCCAA TAAATCCACC AGTAAATAAA ACCAATAAAC CAAATCAATT 
1401     ATTATCAAAT ACATCACAAC AATTTTTAAA AACATTAATT TCAAATGAAA 
1451     TTCCAATCGA TTGTAAAATC AATGAT 
 

Figure A2 Protein sequence of PI3K1-LD (492 amino acids) with potential GSK3 
phosphorylation sites underlined. 

1        MNSIESSSND SNEINKNSNK NNTHLNSNYN NIYKNNSTSS NNNNNHNNIE 
51       IIGIDNNKNN NKNNNDNNNN NNNIDKKRKD SKNKQNQEIN QEMSENKKIY 
101      NSNDSNCSSG SSSGGHVNNG HHILIEENER LEHENQEIQE IYKQKGMEFQ 
151      KKDLRFGYDV NSNNNNNNGG GSSSGSSSGG SDESASNQPI IRTRNREGSI 
201      LNLKKQGLVK EISQRFQTPD TASYTRPNAN NISIKDKISI LKKEQERRKQ 
251      DSEVQQREKV IVLSADSSNI QIYHPSVLIE KMNSKLDTEE KPATTTTTTT 
301      TTSTSISTST PTTTTTTTTN TSTTNDITIK PKTSPTKNNE ERSQSPITTP 
351      KQPVEEIVKK VSTPKSNNTS KKTSSDTTPT GKTTKKDKKD KKDKSRDSGN 
401      LVIVNNTNNT SSNNNNNNNN NNNNETIIKR RGRVLVTPSS DLKKNIQIYF 
451      TIPINPPVNK TNKPNQLLSN TSQQFLKTLI SNEIPIDCKI ND 
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Figure A3 Map of PGEX-4T-1 IPTG inducible vector. 
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Figure A4 Map of expression vector EXP-4 (+). 
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Figure A5 Map of expression vector EXP-4 (+)-GST-PI3K1-LD. which is generated 
from EXP-4(+) in figure A4. PI3K1-LD contains no intro and has a stop codon at its 
C-terminal. A thrombin cutting site lies immediate downstream of GST. 
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