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ABSTRACT OF THE DISSERTATION 

SWITCHING PATTERNS AND STEADY-STATE ANALYSIS OF GRID-

CONNECTED AND STAND-ALONE SINGLE-STAGE BOOST-INVERTERS FOR 

PV APPLICATIONS 

by 

Mahdi Saghaleini 

Florida International University, 2012 

Miami, Florida 

Professor Kang Yen, Major Professor 

Renewable or sustainable energy (SE) sources have attracted the attention of 

many countries because the power generated is environmentally friendly, and the sources 

are not subject to the instability of price and availability. This dissertation presents new 

trends in the DC-AC converters (inverters) used in renewable energy sources, particularly 

for photovoltaic (PV) energy systems. A review of the existing technologies is performed 

for both single-phase and three-phase systems, and the pros and cons of the best 

candidates are investigated. 

In many modern energy conversion systems, a DC voltage, which is provided 

from a SE source or energy storage device, must be boosted and converted to an AC 

voltage with a fixed amplitude and frequency. A novel switching pattern based on the 

concept of the conventional space-vector pulse-width-modulated (SVPWM) technique is 

developed for single-stage, boost-inverters using the topology of current source inverters 

(CSI). The six main switching states, and two zeros, with three switches conducting at 

any given instant in conventional SVPWM techniques are modified herein into three 
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charging states and six discharging states with only two switches conducting at any given 

instant. The charging states are necessary in order to boost the DC input voltage. It is 

demonstrated that the CSI topology in conjunction with the developed switching pattern 

is capable of providing the required residential AC voltage from a low DC voltage of one 

PV panel at its rated power for both linear and nonlinear loads. 

In a micro-grid, the active and reactive power control and consequently voltage 

regulation is one of the main requirements. Therefore, the capability of the single-stage 

boost-inverter in controlling the active power and providing the reactive power is 

investigated. It is demonstrated that the injected active and reactive power can be 

independently controlled through two modulation indices introduced in the proposed 

switching algorithm. The system is capable of injecting a desirable level of reactive 

power, while the maximum power point tracking (MPPT) dictates the desirable active 

power. 

The developed switching pattern is experimentally verified through a laboratory 

scaled three-phase 200W boost-inverter for both grid-connected and stand-alone cases 

and the results are presented.  
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CHAPTER 1 

INTRODUCTION 

 

This introductory chapter contains four sections. The first section describes the 

background of the problem. The second section presents a summary of the literature 

search of the problem. The third section articulates objectives and contributions of this 

research in advancing a new inverter system for renewable energy systems. Meanwhile, 

the fourth and final section introduces the general organization of this dissertation. 

 

1.1 Background of the Problem 

Since the last decade, the world has encountered a very serious issue that has 

effects on every aspects of modern life. The energy from the fossil fuels is not a good 

resource to address all the needs of today’s human beings. This is why so much effort has 

been put forward researching possibilities for substitution energy resources. So far, 

renewable or sustainable energy (SE) sources have attracted the attention of many 

countries because the power generated is environmentally friendly, and the sources are 

not subject to the instability of price and availability that are typical of conventional 

energy sources such as oil. SE sources make use of high-power and high-speed solid-state 

technology in order to efficiently convert the energy to useful power and connect to a 

power network (the grid and/or local loads).  For example, solar modules are variable DC 

voltage sources, and the output voltage of wind generators can be either DC or AC 

depending on the type of the wind generator. However, regardless of the type of 

generator, it is also a variable voltage source. In order to make these SE sources useful, 
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especially when considering the generation of a line-frequency AC voltage, a single-stage 

or multiple-stage power conversion is necessary.  

A multiple-stage power conversion system typically involves a DC-DC converter 

which is used to isolate and/or boost the variable low-voltage input to a constant DC 

output, and a DC-AC converter (inverter) which produces the sinusoidal output for either 

the stand-alone or the grid-connected mode of operation. Similar power conversion 

systems are also required for the energy storage systems often associated with SE 

sources. To realize the economical and environmental benefits of these SE sources, a 

significant amount of effort is required to develop novel power electronic circuit 

topologies as the interfaces between distributed generation units and local loads and/or 

the grid. In addition, the associated control schemes, as well as prognostic and self-

healing control strategies, which will lead to a broad-spectrum of control techniques to 

accelerate the move towards the so-called smart micro-grid concept [1], are in need of 

development. In these SE conversion systems, the technical challenges can be 

categorized into two groups. The first group of concerns is related to the interconnection 

issues between solid-state power converters and local networks (the grid and local loads). 

The second group of concerns is related to the power management and power flow in 

distributed generation systems. These concerns are due to the variable nature of power 

flow from SE sources, e.g., wind and solar, and the fact that the power generation units 

are not centralized in these modern power systems.  

Power electronic interface circuits are required to perform several important tasks. 

The first task is to boost the DC input voltage into a desired (rated) voltage level and 

invert the DC voltage to an AC voltage with a fixed frequency and amplitude. In the case 
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of photovoltaic systems, it is desirable to keep the number of PV panels as low as 

possible. Thus, the amplitude of the generated DC voltage (e.g., from PV arrays and 

batteries) will be lower than the grid voltage (in grid-connected cases) or the desirable 

load voltage (in stand-alone cases). Meanwhile, the power capability of SE sources 

typically varies due to their natures, e.g., the output voltage of PV arrays vary in a wide 

range according to various operation conditions such as when there is a lack of incident 

solar radiation, or even when the face of the panels are dirty or obstructed. The second 

task is to utilize the maximum available power of the SE sources, i.e., maximum power 

point tracking (MPPT). Finally, the harmonic contents of the AC voltage and current 

have to be minimized by installing line filters.  

All of the above mentioned tasks should be done by the power electronics 

interface systems, considering the cost, volume, efficiency, and reliability. There are 

currently available technologies to address these problems and perform the required 

tasks. In this dissertation, the use of current-source boost-inverter (CSBI) will be 

investigated, and its advantages over the other systems will be pointed out. Furthermore, 

a new switching pattern will be derived and implemented for the CSBI that is capable of 

doing all of the mentioned tasks in one single stage. 

 

1.2 Literature Search  

Voltage-source inverters have been widely used in industrial applications such as 

variable speed drives, uninterruptible power supplies, and also renewable energy systems. 

Since they are capable of continuous and linear control of the frequency and fundamental 

component of the output voltage, they have been extensively used in various industries. 
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The conventional voltage source inverter (VSI), sometimes referred to as buck inverter, is 

definitely the most popular and important power converter topology. There is a drawback 

in the operation of this inverter, and that is the amplitude of the inverter output voltage is 

always lower than the input dc voltage. This drawback does not allow using VSI alone as 

the inverter system for many SE sources. However, a couple of solutions have been 

proposed to tackle this issue [1-26]. 

A simple way to increase the output voltage of SE sources is to connect a number 

of them in series and use a conventional voltage source inverter. However, this series 

configuration has some drawbacks, such as low reliability and low efficiency [1]. In order 

to find solutions to these technical challenges, several power electronic circuit topologies 

have been presented in literature [1-12]. In Fig. 1-(a), a step-up transformer is utilized at 

line-frequency to boost the voltage after the inverter. However, this solution has several 

disadvantages, such as large size, loud acoustic noise, and relatively high cost. 

Furthermore, the transformer should be designed for a relatively wide range of power, 

which leads to a low system efficiency. In Fig. 1-(b), a two-stage circuit topology is used 

in which a DC-DC converter and an inverter are cascaded. In the first stage, the DC-DC 

converter boosts and regulates the DC-bus voltage, and in the second stage, the inverter 

converts the DC voltage into an AC voltage. This topology, in comparison with the 

topology displayed in Fig. 1-(a), requires two individual control systems and uses one 

more solid-state switch, as well as an electrolytic capacitor bank at the DC-bus. This will 

result in a lower reliability and efficiency, as well as a more complicated control scheme. 

[2].  
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Three-phase multi-level inverters can also be employed to interface the output of 

several SE sources to the grid [3]. Although the multi-level inverters are effective for this 

application, the added complexity of the circuit and the additional components reduce 

both the overall efficiency and reliability of the system, and may raise the overall cost of 

the power electronic interface.  

Another option is the z-source inverter that can be applied for SE systems. The z-

source inverter has the capability of boosting and inverting the DC voltage in a single-

stage, with  fewer solid-state switches in comparison with multi-level inverters and the 

above-mentioned two-stage topologies depicted in Fig. 1-(a) and Fig. 1-(b), respectively. 

As can be seen in Fig. 1-(c) [4], the z-source inverter is a combination of a voltage source 

inverter and a current source inverter. The z-source inverter contains relatively high input 

current ripples, which may result in high stresses on the DC-link inductors and capacitors 

[5]. The application of this topology was reported in [6-8] as a grid-connected single-

stage inverter for distributed generation systems, specifically for residential PV systems. 

The current source inverter (CSI) topology in conjunction with an appropriate 

control scheme can form a single-stage boost-inverter that can be used for SE conversion 

systems. The current source inverter has a DC-link inductor and AC capacitors, as one 

can observe in Fig. 1-(d). In this dissertation, a switching pattern is introduced for current 

source inverters in order to boost and invert the DC voltage to a fixed voltage magnitude 

and fixed frequency for both stand-alone and grid-connected conditions. 
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Figure 1.1: Four options for connecting SE sources (fuel cells and PVs) to the grid or loads: (a) VSI 

cascaded by transformer, (b) Boost DC-DC converter cascaded by VSI, (c) Single-stage z-source inverter, 

and (d) Single-stage CSI. 
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1.3 Objectives and Contributions of the Dissertation 

In order to utilize photovoltaic energy, power electronic interface systems are 

needed to connect them to either a local load, or a utility grid. Thus, efficiency and 

reliability of the power electronic interface systems are two important factors to make the 

energy economic and reliable. In a conventional system, a PV array in which many PV 

modules are connected in series is used to obtain sufficient dc-bus voltage for generating 

ac utility line voltage from an inverter circuit. However, due to the shadows over some of 

the PV modules, the maximum power generated by each module is not the same. Thus, 

all the modules cannot work at their maximum current, since the current must be the 

same for a series connected array. Consequently, the overall efficiency is decreased in 

such a system. To overcome this defect, a micro-inverter PV module system has been 

proposed [1]. Each micro-inverter PV module system is composed of a PV panel 

associated with a small dc/ac converter. Thus, each module can operate in its maximum 

power conditions and inject its own generated power to the grid, independently from the 

others [2].  

The benefits of such a configuration are higher efficiency (due to the single-stage 

power topology, and also separate maximum power point tracking (MPPT) for each PV 

panel), as well as higher reliability (since every PV has its own inverter). The 

manufacturing and installation cost of the system will be also decreased. The concept of 

plug-and-play single-stage boost inverters provides many advantages: (1) simple control 

strategy unlike many other proposed control methods; (2) capable of being applied to 

both stand-alone and grid-tie systems; (3) easy implementation of MPPT by controlling 
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two control parameters; (4) better stability compared to other control methods; and (5) 

easy dealing with unbalanced conditions [3]. 

Among many conversion systems for PV sources, the single-stage boost-inverter 

seems to have the best efficiency and reliability, and longest life time [3]. It is composed 

of a current-source inverter, associated with a recently proposed switching pattern that 

allows it to have an ac voltage at its output, larger than the input dc voltage. One of the 

most important features of the proposed switching pattern lies in its simplicity and ease of 

implementation. Since it is based on the well established concept of Space Vector PWM 

(SVPWM), and due to the popularity of this switching pattern in industry, the proposed 

switching pattern can have advantages over the existing technologies. 

The efficiency of a CSBI is high because it processes the energy in a single stage, 

while the others use multiple stages (at least two) to do the same job. Since there are 

losses of energy in any processing stage, the total loss will be decreased if the system 

uses only one stage. On the other hand, CSBI eliminates the need for using electrolytic 

capacitors. Since electrolytic capacitors have the least life time, and reliability among all 

used devices in any inverter systems [4], the life time and reliability of the conversion 

system will significantly improve by eliminating these capacitors. 

Having all the advantages of CSBI and the concept of a micro-inverter PV 

module system, it makes sense to combine these two technologies to make an efficient 

and reliable option for PV applications. However, according to the tasks of a conversion 

system for PV, the SCBI should be able to perform MPPT, boost, and dc-ac conversion at 

the same time. Hence, it is critical for a CSBI to have an advanced control strategy, 

capable of doing all of the tasks within the system by controlling only six switches. One 
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of the objectives of this dissertation is to propose a new switching pattern for a CSBI, 

capable of doing the mentioned tasks. 

The next step is to add more capabilities to the micro-inverter module by 

extracting the relationship between the control parameters, and the system components. 

In the stand-alone mode of operation, the relationship between the load voltage and the 

control parameters should be derived, in order to have a voltage-regulated current-source 

inverter. However, in the grid-connected case, the major task is to have the capability of 

controlling the injected active and reactive power to the grid. This is performed by 

deriving the equations of the dc link inductor current and the output injected current. The 

two dominant control parameters in the proposed switching pattern are the modulation 

index, and the switching angle. It will be shown that the injected active and reactive 

power can be controlled by regulating these two parameters. 

Accordingly, the objectives of this PhD dissertation can be summarized as 

follows: 

i. Presenting and discussing the concept and topology of the CSBI, its 

advantages over other PV conversion systems, and rooms for 

improvements with the concept of micro-inverter 

ii. Developing an appropriate switching pattern and control strategy for CSBI 

in both grid-connected and stand-alone cases, based on the SVPWM 

concept 

iii. Investigating the effects of the circuit parameters (such as the dc inductor 

and ac filter) on the system performance 
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iv. Deriving appropriate formulations and relationships between the CSBI 

output and the control parameters, i.e., regulated voltage in the stand-alone 

case, and the active and reactive power values in the grid-connected case 

v. Verifying the validity of the derived formulas and the control capability of 

the system by simulations and experiments 

 

1.4 Organization of the Dissertation 

Besides this chapter, this dissertation contains six additional chapters. Chapter 2 

presents the literature search for the boost inverter. The goal is to have a thorough 

understanding of the state-of-the-art conversion systems which do both boosting and dc-

ac conversion in one single stage. In other words, any power conversion circuit aims to 

convert a lower dc voltage to a higher ac voltage will be covered. Both single-phase and 

three-phase topologies are considered in this section, and various technologies with their 

advantages and drawbacks will be analyzed. 

Chapters 3 presents a comprehensive review of the existing dc-ac power 

conversion systems with the associated PWM methods, used for sustainable and 

renewable-based distributed generation applications. 

Chapter 4 presents the proposed switching pattern for the three-phase CSBI. All 

the steps towards developing the switching pattern are covered with complete 

mathematics, for both stand-alone and grid-connected modes of operation. It is shown 

how the concept of the classic SVPWM is taken, and a novel switching is derived based 

on the same concept, but with big differences. A comparison between the classic 

SVPWM method for VSI, and the proposed SVPWM-based method for CSI is also 
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performed and various aspects of the switching pattern for the voltage and current values 

of the inverter system are explained. 

In Chapter 5, the relationship between the control parameters with the output 

injected active and reactive power of the inverter in the grid-connected mode of operation 

will be derived. It will be shown how the desired dc current is constructed inside the dc 

inductor, and how the desired values of active and reactive power are injected into the 

grid through controlling and regulating two major control parameters: the modulation 

index, and the switching angle. 

Chapter 6 presents the experimental results for all of the previously derived 

equations. In order to verify the claimed capabilities of the proposed system, a setup was 

built in the lab, and the real waveforms of different parts of the CSBI are illustrated in 

this section. Both grid-connected and stand-alone modes of operation are taken into 

account. Furthermore, the capability of the control system on regulating the amount of 

the active and reactive power is shown. 

Chapter 7 provides a summary of this research work along with some conclusion 

regarding the significant contributions of this work. Suggestions are given for future 

work on how the presented control pattern in conjunction with the micro-inverter 

configuration can be used to form a CSBI PV micro-inverter module in order to improve 

the reliability and efficiency of the PV energy systems.  
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CHAPTER 2 

LITERATURE REVIEW 

 

In the previous chapter, the concept of the current-source boost-inverter (CSBI) 

was introduced, and its advantages over the current technologies in the renewable energy 

systems were outlined. In this chapter, a deeper review will be given on the boost inverter 

systems, with a closer look at the features (advantages and drawbacks) of each of the 

topologies. Both single-phase and three-phase topologies are considered in order to cover 

all the current technology possibilities. In the first section, the single-phase PV systems 

are considered, while the three-phase PV systems are covered in the second section. 

 

2.1 Single-phase PV systems 

There are some related works in the literature regarding CSBI converters [6-19]. 

They use various topologies with different principles of operation. Topologies composed 

of two dc/dc boost converters [6], based on buck-boost configuration [7,8,11,15], based on 

the flyback configuration [9], full-bridge and half-bridge series-resonant buck-boost 

inverter [10,12], z-source inverter [14], current-source inverter based on the boost 

converter topology [18], and a coupled-inductor double-boost inverter [19] have been 

reported in the literature. They are different in various aspects that are important to notice. 

For instance, most of them use 2 switches as the high-frequency (HF) switches. It is 

evident that more HF switches leads to higher EMI and losses, which are two important 

factors in any power electronics circuit. Another issue is the rated power level of the 
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topologies. Most of them [7-12, 19] are for medium and low power levels (P < 2 kW), 

while there are some topologies proper for high power applications [6, 13, 14, 18]. There 

are also other issues with some topologies that should be noticed. For example, for the z-

source inverter [14], the inverter imposes high ripple on the input current drawn from the 

source. This might be undesirable in case of PV, and harmful in case of fuel-cell. 

In [6], a configuration composed of two boost converters has been proposed. This 

topology uses 4 switches, all of them work at high frequency (HF) at any time. This is the 

main drawback for this configuration, as the rest of the topologies try to have less 

switches, particularly for HF usage. It should be noted that more HF switches leads to 

more EMI which is an important concern in every power electronic system. Another 

drawback is the utilization of two electrolytic capacitors, along with two large inductors in 

the topology. The values for these parts have been reported as 40 uF and 800 uH, 

respectively. 

In [7], a single-stage topology based on the buck-boost configuration has been 

proposed. It utilizes four switches, two of which work at HF (one at any half cycle), and 

the other two work at low-frequency (either 50 or 60 Hz). The main drawback of this 

topology lies in its asymmetrical operation during the positive and negative half-cycle of 

the grid voltage. This may lead to a complex control system for this circuit [13]. The 

advantages of this topology are avoiding of electrolytic capacitor, and also low switching 

losses. Since it is a German patent, there is no information available about its 

implementation. 

Kasa et al. have introduced another topology based on the half-bridge buck-boost 

configuration [8]. The number of switches used in this topology is the same as the 



14 
 

previous one; however, this topology does not have the drawback of asymmetrical 

operation. The main disadvantage of this configuration is that it uses a pair of PV sources 

and only one of which is utilized in a given half cycle of the grid voltage [13]. In addition 

to this, high-value dc capacitors are needed to be placed in parallel with the two PV 

panels. 

In [9], a topology is introduced which contains a HF transformer based on the fly-

back converter topology. The advantage of utilizing such a transformer is the isolation that 

can be achieved between the input and output of the converter, while it has the 

disadvantage of adding to the losses, and consequently lowering the efficiency of the 

system. However, this configuration uses only three switches, which lowers the cost of 

this circuit. Another drawback is using a very large electrolytic capacitor at the input stage 

of the converter, e.g., 4700 uF for the 300 W experimental setup of this work [9]. 

A single-stage full-bridge series-resonant buck-boost inverter (FB-SRBBI) has 

been proposed in [10], which again utilizes 4 switches, 2 for HF and 2 for low-frequency 

(LF). The proposed inverter only includes a full-bridge topology and an LC resonant tank 

without auxiliary switches, and provides the main switch for turn-on at ZCS by the 

resonant tank. This configuration has a large number of devices conducting at a given 

instant resulting in higher conduction losses. On the other hand, the circuit does not need 

an electrolytic capacitor at the input stage, and it is a symmetrical topology, which is a 

benefit for it [13]. On top of that, the total number of components and their size (e.g., input 

inductors) are less comparing with other topologies. 

Another asymmetrical operation converter has been proposed by [11], which is 

again based on the buck-boost principle. This topology utilizes 4 switches, two of which 
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for HF usage, and the rest for LF. The main feature of this topology is utilizing mutually 

coupled coils that will cause a limitation on its application for high-power cases. Also, it 

does not need high value electrolytic capacitors at the input stage. 

Ming [12] has introduced a topology based on the half-bridge series-resonant 

buck-boost inverter which utilizes 5 switches, 3 of which for HF and 2 for LF. The 

proposed inverter circuit topology provides the main switch for turn-on at zero-current-

switching (ZCS) by an auxiliary resonant cell built before the output choke. The main 

drawback of this topology is the high number of utilized switches, 3 of which are for high-

frequency use. 

Other than the first topology, all of the mentioned topologies are applicable for low 

or medium power cases (i.e., P<3 kW). In [13], a high-power topology has been proposed 

that utilizes 4 switches, 2 of which for HF. A drawback of this converter is that it requires 

large electrolytic capacitors, as they have used a 2000 uF capacitor in their 500 W 

experimental setup. 

In [14], the application of single-phase z-source converter has been proposed for 

grid-connected PV systems. This topology uses 2 switches for HF (one at each half cycle) 

and two for LF. It can have symmetrical operation with simple control scheme. The 

drawback of this topology is that it needs two large electrolytic capacitors (e.g., 1000 uF 

for this reference) as well as two large inductors (e.g., 1 mH for the same reference). This 

increases the size and cost of the system. On top of that, this circuit imposes high ripple on 

the input current drawn from the source. 
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Karschny [15] has proposed another configuration based on the buck-boost 

inverter which utilizes 5 switches. This topology suffers from low efficiency (because of 

large number of switches) and also high cost and size [16]. 

In [17], a single-phase, single-stage, doubly grounded, transformer-less PV 

interface, based on the buck–boost principle, is presented. The configuration is compact 

and uses fewer components. Only one (undivided) PV source and one buck–boost inductor 

are used and shared between the two half cycles, which prevents asymmetrical operation 

and parameter mismatch problems. However, it utilized an electrolytic capacitor at the 

input stage. 

A current-source single-stage inverter has been proposed by [18] based on the 

dc/dc boost converter topology. In this topology, only 2 switches are utilized for HF, and 2 

more for LF. 

A coupled-inductor double-boost inverter (CIDBI) has been proposed in [19]. The 

main attribute of the CIDBI topology is the fact that it generates an ac output voltage 

larger than the dc input one, depending on the instantaneous duty cycle and turns ratio of 

the coupled inductor as well. This topology uses 4 switches, all for HF. 

 

2.2 Categorization of the inverter systems 

The mentioned topologies can be categorized from different points of view. These 

factors include: value of the input dc capacitance, number of required PV panels at the 

input stage of the inverter, number of HF switches, number of all switches used in the 

topology including transistors and diodes, symmetrical or asymmetrical operation of the 

inverter, whether or not utilizing a (HF or line frequency) transformer, simplicity of the 
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control system, and capability of both buck and boost operation. In the following, these 

classifications are performed. 

 

2.2.1 dc input capacitor 

In many inverter topologies, the PV panel is repeatedly connected and 

disconnected to the rest of the circuit (mostly inductors) by means of switching. This 

disconnection causes the current and voltage of the PV panel to vary in a wide range, and 

consequently decreases its efficiency dramatically. In order to suppress this problem, a 

large capacitor is usually placed at the input stage of these inverters. For instance, in [7], 

the PV panel is connected to an inductor through a switch. Neglecting the capacitor for a 

moment, once the switch turns off, the PV panel gets disconnected from the inductor, and 

consequently its current goes to zero. However, by adding a large dc capacitor, this 

process may change, and the PV panel current and voltage may remain at almost a fixed 

level in order to have the best efficiency. 

Most of the mentioned topologies suffer from this drawback. Even in the z-source 

inverter [14], where the inductor is connected directly to the panel, the two input 

capacitors need to have large values, as they should suppress the voltage and current 

fluctuations caused by the nature of the topology. However, the topologies [6, 11, 13, 18, 

19] do not need large dc capacitors at their input stage. 

In the proposed topology, the dc inductor is directly connected to the PV panel. 

Therefore, it never gets disconnected from the panel, resulting in a very smaller range of 

change in the panel current. Thus, it does not need a large electrolytic capacitor in parallel 

with the panel. However, in order for the current to have the smallest possible fluctuations, 



18 
 

the dc inductor value needs to be as high as possible, and this is one of the drawbacks of 

the proposed topology. 

 

2.2.2 Number of required PV panels at the input stage 

In some topologies, a pair of PV panels is used instead of a single panel [8]. The 

reason is to utilize different panels during the positive and negative half cycles of the grid 

voltage in order to have a symmetrical operation. In other words, one of the panels 

operates only in the positive half cycle, and vice versa for the other one. This will lead to 

lower efficiency (utilization), since the panels are not working all the time. 

In the proposed topology, only one panel is required for the proper operation of the 

inverter. Since it has the capability of boosting the input voltage, even low-voltage panels 

(say 15V) could be used with this system. 

2.2.3 Number of HF switches 

One of the most important factors that dramatically affects the performance of the 

inverter (efficiency, reliability, EMI, control complexity, …) is the number of switches 

that operate at HF. In many topologies, there are only two HF switches that only one of 

them operates at any given half cycle of the grid voltage (The topologies [7, 8, 10-18]). 

Also, the topology [9] uses only one HF switch, and the topologies [6, 19] use 4 HF 

switches all the time. 

One of the merits of the proposed topology is that it uses only one HF switch at 

any given half-cycle of the grid voltage. It improves the efficiency and reliability of the 

inverter, while decreases the EMI and simplifies the control system. 

2.2.4 Number of all switches (transistors and diodes) 
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In addition to the HF switches, there are other semiconductor devices in the paths 

of current in each topology that increase the conduction losses, and decrease the efficiency 

of the system. For example, the topologies [15, 17] utilize 2 more diodes in the current 

path, in addition to the two transistors. This will add to the conduction loss in these 

inverters. 

2.2.5 Symmetrical or asymmetrical operation 

Every inverter has two separate states in the two (positive and negative) half-

cycles of the grid voltage. For some of the topologies, these two states have the same 

equivalent circuit and principle of operation, while for others, they might be different than 

each other. For instance, the principle of operation for the two half-cycles is different in 

topology [7]. This inverter operates like a buck-boost converter in the positive half-cycle, 

while it operates like a boost converter in the negative half-cycle [13]. This leads to 

asymmetrical operation, and the control system needs to take it into account and 

compensate for it. Other examples are the topologies in [9, 11] which use the coupled 

inductors only in the negative half-cycle. Thus, the inverter equivalent circuit is quite 

different for these two states. Also, in topology [8], two different panels are used for the 

two states, and it will evidently lead to different performances. In the topologies [15, 17], 

the number of semiconductors in the current path for the two states are different (two 

diodes for the positive, and one for the negative half-cycle). This is another example of 

asymmetrical operation. The rest of the inverters do not suffer from this drawback. 

The proposed topology acts quite the same for the two states, regarding the 

principles of operation, the equivalent circuits of the inverter, and number of devices in the 

current path during the two states. So it does not suffer from asymmetrical operation. 
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2.2.6 Need for utilizing coupling inductors (transformers) 

One of the potential elements that can be used in order to boost the output voltage 

is coupling inductors, or transformer. This transformer can be either a line frequency or a 

high frequency one. In the topologies [9, 11, 19] a means of coupling inductors has been 

used. Utilizing this component leads to larger size and higher cost for the system, as well 

as higher losses due to their stray resistors and inductors.  

The proposed topology utilizes the boost converter principle of operation in order 

to generate a larger output voltage than the PV panel voltage, and it does not need to have 

any kind of coupling inductors. This will make the system smaller, cheaper, and more 

efficient. 

2.2.7 Simplicity of the power circuit and the control system 

The power circuit of a single-phase grid-connected inverter plays a key role in the 

simplicity of the overall system. The control system is responsible for several tasks such 

as: the output power quality assurance, the maximum power extraction from the source, 

injecting proper amount of reactive power into the grid in case of necessity, performing 

various protection mechanisms, and so on.  

The proposed topology does not use a complicated power circuit; instead a simple 

H-bridge topology is used as the power circuit, which makes the control system simpler. 

Also, the continuous nature of the dc inductor current makes it easier to track the 

maximum power point of the PV source by means of control on this current. However, for 

other topologies that may have discontinuous dc inductor current, this control is not that 

easy. Topologies [8, 9, 10, 12, 13, 17] are examples of such a system. 

2.2.8 Capability of both step-down and step-up operation 
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The acceptable range of the input voltage is another important factor for a grid-

connected inverter system. Though the output dc voltage of a PV panel is within a short 

range, the output dc voltage of a rectifier connected to a wind generator may vary over a 

wide range. Therefore, if the system is intended for both PV and wind farms, it would be 

better to have a wide acceptable range of input voltage. In other words, it should be 

capable of both step-up and step-down operations. Most of the topologies mentioned in 

this review can perform both operations, (topologies [7-15, 17]). However, the rest of the 

topologies can only boost the input voltage. The proposed topology also operates based on 

the boost converter principle, and cannot accept input voltages larger than the grid voltage. 

Although this issue might seem to be a drawback for the circuit, it can be quite trivial if 

the inverter is intended only for PV, and not for wind systems. 

 

2.3 Three-phase PV systems 

Several investigations have been recently reported on the application of CSIs as 

single-stage boost-inverters for sustainable energy (SE) conversion systems [20-23]. In 

[20], a single-stage CSI-based topology has been proposed for high voltage PV systems. It 

was reported that this topology is capable of providing an output voltage of several 

hundred volts and it can directly feed the grid. The switching pattern in this work is based 

on a space-vector approach for the output line currents. A space-vector reference frame for 

the three-phase line currents was used to calculate the proper duty-cycles or time-intervals 

for the inverter switches. These time-intervals were calculated such that the average value 

of the inductor current stays constant, while power flows into the grid. Meanwhile, a 

modified modulation strategy was used to attenuate common-mode currents, and an 
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overall system efficiency of 97% has been achieved. The DC inductance value was 

relatively high (i.e., 24 mH) with a switching frequency of 25 kHz.  

In [21], a CSI-based single-stage grid-connected inverter has been introduced 

using the so-called OCC (One Cycle Control) strategy. Meanwhile, a conventional SPWM 

method was applied as the second control scheme for the CSI topology. The presented 

control schemes are used to convert DC power to an AC power in a single-stage by 

injecting synchronized, three-phase, sinusoidal currents into the grid. The DC inductance 

value can be kept low (i.e., 0.55 mH) with a switching frequency of 40 kHz, which is 

relatively high for SE conversion applications. It has been stated that with the OCC 

method, the inverter preserves the advantages of simple circuitry, good stability and fast 

dynamic response.  

In [22], a stand-alone SPWM based CSI has been introduced where a “shoot-

through” state, for so-called Tri-level PWM logic, was emphasized as the boost 

mechanism of the DC input voltage. In their experimental setup, the maximum boost ratio 

of 3.3 was achieved where the DC-link inductance value was 100 mH and the PWM 

switching frequency was about 1.2 kHz.  

In [23], a single-stage inverter has been used for a grid-connected PV-based 

energy conversion system, however, their proposed circuit topology is different than that 

of a CSI, and is closer to the circuit topology of the voltage source inverter (VSI). 

 

2.4 Summary 

In this chapter, a thorough review of all the related single-stage inverters intended 

for solar systems was given. Both single-phase and three-phase inverters were considered, 
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and the advantages and drawbacks of every category of the inverters were pointed out. 

The applicability of the inverters for PV systems, particularly in low-power cases was one 

of the main issues taken into account. Furthermore, the reliability, efficiency, cost, and 

complexity of the control system were considered. 
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CHAPTER 3 

DC-AC CONVERSION IN DISTRIBUTED GENERATION SYSTEMS 

 

This chapter provides a review of the history and contribution of existing 

literature that relates to dc-ac power conversion systems. The focus of the work is on 

sustainable- and renewable-based distributed generation systems, in which the converters 

have to produce high voltages from low voltage dc inputs.  

This chapter contains five sections. The six-step inverter is introduced in Section 

1. Four major types of pulse-width-modulated inverters are presented in Section 2. 

Section 3 reviews three common configurations of multilevel inverters. The background 

work, related to existing boost-inverting power conversion systems for distributed 

generation applications are reviewed in Section 4, and Section 5 is the summary of the 

chapter.   

 

3.1 Six-Step Inverter 

The six-step inverter, with an H-bridge topology, is the simplest type of dc-ac 

conversion system. The three-phase H-bridge converter topology, which serves as the 

basis for nearly all three-phase inverters, is presented in Figure 3.1. Metal-oxide field-

effect transistors (MOSFETs) have been used as switches in this figure. However, 

different types of semiconductor controllable switches, like bipolar junction transistors 

(BJTs), insulated-gate bipolar junction transistors (IGBTs), and metal-on-silicon 

controlled thyristors (MCTs), can be used in this inverter [28].  
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Figure 3.1: Six-step inverter 

 

 

Figure 3.2: Gate signals and line-to-line voltages of six-step inverter 
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The gate signals that are driving the switches of a six-step inverter, and its line-to-

line output voltages are shown in Figure 3.2, where the hat sign ( ) denotes the logical 

complement. As can be seen in this figure, each switch conducts for 180 electrical 

degrees per each switching cycle. Also, using this figure, one can calculate the line-to-

line rms voltage of the six-step inverter: 

                                                                            (3.1) 

This equation indicates that the output voltage of the six-step inverter is only a function 

of the applied dc voltage; therefore, the output voltage cannot be regulated unless the 

applied dc voltage is adjusted. High total harmonic distortion (THD), especially at low-

order harmonics of {5, 7, 11, 13, 17, 19, …}, is another major disadvantage of the six-

step inverter. This is due to the square waveform of the generated voltage.  

  

3.2 Pulse-Width-Modulated Inverter 

 Similar to the six-step inverter, the output line-to-line voltage of this type of 

inverter can be at three voltage levels, i.e. , 0, and . However, a pulse-width-

modulation (PWM) strategy allows the rms voltage (and amplitude of the fundamental 

component) to be readily controlled. There are various schemes to pulse-width modulate 

the inverter switches. Four major types of these schemes, i.e. sinusoidal PWM, third-

harmonic injection, selective harmonic elimination, and space-vector modulation, will be 

discussed in the following subsections.  
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3.2.1 Sinusoidal Pulse-Width-Modulation (SPWM) 

Sinusoidal pulse-with-modulation is based on generating a sequence of voltage 

pulses at a certain frequency and sinusoidal modulated pulse-widths. This can be 

achieved through comparing three sine-wave control voltages, , , and , with a 

triangular waveform, , which is called the carrier. The ratio between the amplitude of 

the control voltages, , and peak of the triangular voltage, ,  is defined as the 

modulation index, . The frequency of the triangular waveform, which is 

usually kept constant, establishes the inverter switching frequency, and the frequency of 

the control voltages determines the output voltage frequency. Because of its simplicity 

and ease of implementation, the SPWM is widely used in industrial applications [84]. 

The concept of PWM, applied to a three-phase H-bridge converter topology is shown in 

Figure 3.3.  

By changing the modulation index, , the widths of pulses vary, which results in 

variations in the amplitude of the output voltage. Another advantage of the SPWM over 

six-step switching pattern is its higher quality voltage waveform. The harmonics in the 

output voltage appears as sidebands, centered around the switching frequency, , and its 

multiples. If the ratio between the switching frequency and the desired output frequency, 

, is defined as the modulation frequency ratio, i.e. , the frequency spectrum 

of the output voltage of a SWPM inverter contains harmonics orders around , , 

, and so forth [25]. It is also worth mentioning that for a frequency modulation ratio 

 (which is always true except for very high-power applications), the harmonic 

amplitudes are almost independent of . Moreover, odd integer modulation frequency 
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ratios are recommended for avoiding even-order harmonics, and in particular a small dc 

component, at the output voltage [85].  

 

Figure 3.3: Sinusoidal PWM: control and carrier wavefroms, gate signals, and line-to-line voltages  
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modulation frequency ratio should be an integer number, this is so-called synchronous 

PWM. On the other hand, asynchronous PWM, in which the frequency modulation ratio 

is not an integer number, can be applied when the modulation frequency ratio is 
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sufficiently large, i.e.  [25]. However, it should be kept in mind that, increasing 

 results in higher switching frequencies, which increase the switching losses and 

decrease the efficiency. 

 

Figure 3.4: Variations of  the fundamental component of the output voltage versus the modulation index 

 

The waveforms of Figure 3.3 are a case with a modulation index  (linear 

range of ), in which the amplitude of the control signal is smaller than the peak of the 

carrier signal. However, it may happen that the modulation index exceeds 1. In this 

situation, which is called over-modulation, the control voltages may not intersect the 

triangular waveform for a period of time. In general, over-modulation causes the output 

voltage to contain many more harmonics in the sidebands as compared with the linear 

range. Furthermore, during over-modulation conditions, the amplitude of the fundamental 

component of the output voltage does not vary linearly with , which is the case within 

the linear range of operation, i.e. . Moreover, it is observed that, as the modulation 

index increases beyond one, the output waveform turns more and more to square-wave, 

like that for a six-step inverter. The over-modulation effect on the fundamental 

 

0 1 3.25 

0.7 

0.9 

 

Over-Modulation Square-Wave Linear 



30 
 

component of line-to-line output voltage of the SPWM inverter, , is shown in 

Figure 3.4.  

 

3.2.2 Third-Harmonic Injection 

As was mentioned in the previous section, the maximum value of high-quality 

output voltage can be achieved at the upper bound of the linear range of operation, 

. This is one of the main limitations of SPWM. However, this limit can be increased by 

introducing a third harmonic to the control voltage. It has been shown in [28] that, with a 

proper choice of the fundamental and third-harmonic components for the control voltage, 

the inverter can output 15% more voltage without suffering from the consequences of 

over-modulation.  

 

3.2.3 Selective Harmonic Elimination 

Selective harmonic elimination is another PWM method that has low baseband 

distortion [87]. This method is particularly suitable for low switching frequency inverters, 

which are either high-power or have slow switching devices. This method is based on the 

idea of chopping the square-waveform of the six-step inverter at some certain angle-

intervals in order to eliminate some specific low-order harmonics from the output voltage 

waveform [86]. An example of selective harmonic elimination with two degrees of 

freedom, corresponding to one notch between 0 to , is demonstrated in Figure 3.5. In 

order to avoid even harmonics, it is assumed that the output waveform has quarter-wave 

and half-wave symmetry. The periodic waveform of line-to-line voltage, , can be 

written as follows: 
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                                                                              (3.2) 

where, the Fourier coefficient  is defined as: 

                                                                     (3.3) 

Because of the quarter-wave symmetry in Figure 3.5,  can be rewritten as: 

                                                                  (3.4) 

As a result: 

             (3.5) 

which can be simplified to: 

                                                              (3.6) 

This equation can be solved for  and , to eliminate two selected harmonics. For 

instance, the following set of equation provides  and  for elimination of the 3th and 

5th order harmonics from the line voltage waveform. 

                                            (3.7) 

 

Figure 3.5: Waveform of a selective harmonic elimination with two degrees of freedom 
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Accordingly, the methodology can be extended to eliminate more harmonic 

orders by introducing more notches between 0 to  (to increase the degrees of freedom 

of the equations).  

 

3.2.4 Space-Vector Modulation 

Space-vector pulse-with-modulation (SVPWM) is another technique of driving a 

voltage source three-phase H-bridge inverter, for generating voltage waveforms that are 

devoid of low-frequency harmonic content [90]. The approach is based on the space-

vector representation of the output voltages, in which the three inverter voltages are 

represented by a voltage space-vector, , defined as: 

                                                               (3.8) 

In total, the voltage source inverter (VSI) can operate in eight different states that 

are associated with eight switching positions. The switching table and the corresponding 

voltage space-vectors are presented in Table 3.1 and Figure 3.6, respectively. As can be 

seen in the figure, a reference voltage space-vector, , can be developed by adding its 

two adjacent space-vectors. For instance, when the reference voltage space-vector is 

placed in Sector (I), it can be produced by operating the inverter is States 1 and 2, for 

duty ratios of  and , respectively. These duty ratios can be calculated by the well-

known law of sines, which is: 

                                                                                   

(3.9) 

Substituting the voltage space-vectors of Table 3.1 provides  and  as the following: 
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                                                                                  (3.10) 

It should be noted that, these duty ratios are only valid if , i.e. when  lies 

within the largest circle that can be circumscribed within the boundaries of the hexagon 

connecting the voltage space-vectors in Figure 3.6. The conditions that the reference 

voltage space-vector exceed the boundaries of the incircle, which is , is 

called over-modulation, which results in an increase in the harmonic content of the output 

voltage. On the other hand, once , the inverter has to operate in the zero state 

(either State 0 or State 8, or a combination of the both) for the rest of the switching cycle. 

This interval corresponds to a duty ratio of .   

It is also worth mentioning that to obtain the minimum switching frequency of 

each inverter leg, it is necessary to arrange the switching sequence in such a way that the 

transition from one state to the next is performed by switching only one inverter leg. 

 

Table 3.1: Switching table and output voltages of a three-phase inverter 

 Stat
e 

Sector
s    

   Space-Vector,   

 0 All 0 0 0 0 0 0   

 1 VI, I 1 0 0  0  
 

 

 2 I, II 1 1 0 0   
 

 

 3 II, III 0 1 0   0 
 

 

 4 III, IV 0 1 1  0  
 

 

 5 IV, V 0 0 1 0   
 

 

 6 V, VI 0 0 1   0 
 
 

 7 All 1 1 1 0 0 0   
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Figure 3.6: Inverter output voltage space-vectors 

 

3.3 Multilevel Inverter 

The multilevel inverter is another type of dc-ac converter which is more suitable 

for high-voltage and high-power applications. A major advantage of this inverter is a 

reduction in the harmonic content without increasing the switching frequency, or 

decreasing the inverter output power [91-93]. Besides the ability to provide a proper 

harmonic spectrum (making possible the use of smaller and less expensive filters), the 

multilevel inverter has a good dynamic response and relatively low voltage ratings for the 

switches. Moreover, multilevel inverters are a good tradeoff solution between 

performance and cost in high-voltage and high-power systems [11].  

The output voltage waveform of the multilevel inverter is composed of a number 

of levels of voltage, typically obtained from capacitors or dc voltage sources. The so-
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called multilevel inverter starts at three levels, and as the number of levels increases the 

output THD decreases, and once the number of levels reaches infinity, the THD reaches 

zero. Multilevel inverters are categorized into three general topologies; diode-clamped 

multilevel inverter (DCMI), flying-capacitor multilevel inverter (FCMI), and cascaded 

multilevel inverter with separate dc sources.  

 

3.3.1 Diode-Clamped Multilevel Inverter (DCMI) 

This multilevel inverter has series capacitors at the dc-bus in order to divide the 

voltage into a set of voltage levels. In general, M-1 capacitors are used in an M-level 

diode-clamped inverter. It should be noted that the level of multilevel inverters are 

defined as the number of phase voltage levels, while the number of line-to-line voltage 

levels of a M-level inverter is 2M-1. A three-phase three-level diode-clamped inverter is 

shown in Figure 3.7. Each of the three phases share a common dc-bus, which has been 

subdivided by two capacitors into three levels. The voltage across each capacitor is 

, and the voltage stress across each semiconductor switch is limited to  

through the clamping diodes. Table 3.2 lists the output phase voltage levels, with the 

negative dc rail voltage as a reference (point n), and the corresponding output line-to-line 

voltages are presented in Figure 3.8. 

 

Table 3.2: Switching table of a three-level diode-clamped inverter 

           
   1  1  0  0  
   0  1  1  0  
 0  0  0  1  1  
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As can be seen in Figure 3.8, the output voltage waveform of a multilevel inverter 

has half-wave and quarter-wave symmetry. Thus, its Fourier series can be written as (3.2) 

and the Fourier coefficients can be obtained according to (3.4). In general, the Fourier 

coefficients of the line-to-line output voltage of an M-level inverter are obtained as the 

following: 

                                                (3.11) 

 

 

 

Figure 3.7: Three-phase three-level diode-clamped inverter 
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Figure 3.8: Line-to-line voltage waveform for a three-level diode-clamped inverter 

 

 

Figure 3.9: Three-phase three-level flying-capacitor inverter 
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3.3.2 Flying-Capacitor Multilevel Inverter (FCMI) 

The flying-capacitor multilevel inverter has a similar structure to the diode-

clamped inverter except that is uses capacitors instead of clamping diodes. This inverter 

uses a ladder structure of dc-side capacitors, where each capacitor has a different voltage 

from the other capacitors [94-96]. The size of the voltage increment between two 

capacitors determines the size of the voltage levels in the output waveform. The circuit 

topology of three-level flying-capacitor inverter is shown in Figure 3.9. 

 

Figure 3.10: Three-phase three-level flying-capacitor inverter 

 

 In addition to the (M-1) dc-bus capacitor, an M-level flying-capacitor inverter 

requires (M-1)×(M-2)/2 inner-loop (auxiliary) capacitors. It can be seen in Figure 3.9 that 

all phase legs share the same dc-link capacitors,  and . Also, the inner-loop balancing 
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capacitors for each phase leg ( ,  and ) are independent from those for the other 

legs. An advantage of the flying-capacitor multilevel inverter is that several switching 

combinations may be used to synthesize an output voltage. For instance, the switching 

table of Table 3.2 is one of the possible switching combinations for the three-level flying 

capacitor inverter of Figure 3.9.   

 

3.3.3 Cascaded-Inverters with Separate dc-Sources  

Cascaded-inverters with separate dc-sources are another prevalent structure for 

the multi-level inverter. Its functionality is similar to the other two types of multilevel 

inverters of the previous subsections, but it synthesizes a desired output voltage 

waveform from several independent dc-sources. Photovoltaic panels, fuel cells, and 

batteries, can be some of the possible choices. A three-phase, three-level configuration of 

the cascaded-inverter is illustrated in Figure 3.10. As can be seen, it is a combination of 

three Y-connected single-phase cascaded-inverters. Each inverter level can generate three 

different voltage outputs, e.g. , 0, and , by connecting the dc-source to the ac 

output by different combinations of the switches. 

 

3.3.4 A Comparison among the Multilevel Inverters  

A comparison between the three introduced types of multilevel inverters is 

presented in Table 3.3. It shows that all inverters need the same number of switches and 

main diodes in order to generate the same number of levels. The flying-capacitor and 

cascaded-inverters do not require clamping diodes, while the flying-capacitor inverter 

needs inner-loop balancing capacitors. Technically, the cascaded-inverter requires the 
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least number of components, apart from the voltage sources. It has a modular circuit 

layout and its packaging is simple. The reason is that all levels have the same structure 

and no clamping diodes or balancing capacitors are needed. Moreover, by adding or 

removing the H-bridge cells, the number of output voltage levels can be easily adjusted.  

 

Table 3.3: Comparison of power components, required per phase leg, among the multilevel inverters 

 Inverter Configuration  Diode-Clamped  Flying-Capacitors  Cascaded-Inverters  
 Switches  2(M-1)  2(M-1)  2(M-1)  
 Main Diodes  2(M-1)  2(M-1)  2(M-1)  
 Clamping Diodes  (M-1)× (M-2)  0  0  
 dc-Bus Capacitors  (M-1)  (M-1)  (M-1)/2  
 Balancing Capacitors  0  (M-1)× (M-2)/2  0  

 

3.4 DC-DC Converters for DG Applications 

Dc-ac power converters (inverters) play key roles in connecting sustainable 

energy (SE) sources, and energy storage (ES) devices, to local loads and the utility grid. 

The power electronic interface circuits of the DG units perform several important tasks in 

order to make the output power of the SE sources and ES devices adequate for electric 

appliances. Typically, the first task is to boost the dc input voltage to a desired (rated) 

voltage level and invert the dc voltage to an ac voltage with a fixed frequency and 

amplitude. In the case of photovoltaic (PV) systems, it is desirable to keep the number of 

PV panels as low as possible. This means that the amplitude of the generated dc voltage 

will be lower than the grid voltage (in grid-connected mode) or the desirable load voltage 

(in stand-alone mode). Meanwhile, due to the nature of the ES sources, their generated 

power is usually varying by time. For instance, the output voltage and power of a PV 

panel vary in a wide range based on the operating conditions. Some of the affecting 
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variables are incident solar radiation, ambient temperature, deposited dust and dirt on the 

panel surface, and the load current. The second task of the power electronic conversion 

system is to utilize the maximum available power of the SE sources. Besides the 

aforementioned functionalities, DG inverters have to meet some requirements like 

stability, efficiency, reliability, and power quality, which are common to all conversion 

systems. Several power electronic circuit topologies, along with the associated switching 

patterns and control algorithms, have been presented in literature, which perform the 

discussed tasks and address the aforementioned issues [1-22]. 

 

Figure 3.11: Basic single-stage power conversion system, consisting of series connected dc-sources 

 

3.4.1 Basic Single-Stage Conversion System 

A simple way to increase the output voltage of SE sources is to connect a number 

of them in series (to develop a high dc voltage without utilizing a boost circuit), and use a 

central pulsed width modulated (PWM) buck voltage source inverter (VSI) to produce an 

ac voltage [7] (see Figure 3.11). However, because of the high cost of PV panels, this 

series configuration seems as an expensive solution. In addition, putting a number of 

components in series usually lowers the reliability of the system. This is because the 

failure of one of the panels, or outage of the inverter, results in a complete loss of 
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generation [7]. Moreover, mismatch of the series PV panels results in a reduction in the 

utilized energy, which can be interpreted as low efficiency [1].   

 

3.4.2 Conventional Two-Stage Conversion System 

In Figure 3.12, a step-up transformer is utilized at line-frequency to boost the 

output voltage of the PWM buck inverter. This well-known topology is robust and 

relatively efficient and reliable. Additionally, it can be used in module-integrated (or 

module-oriented) applications, which provides a higher flexibility than the topology of 

Figure 3.11. Besides that, each module has its own maximum power point tracking 

(MPP) system that increases the overall energy utilization. Its plug-and-play feature is 

also attractive, in which a complete PV system is achieved at a low investment cost [7]. 

On the other hand, this solution has some disadvantages, such as huge size, loud acoustic 

noise, and relatively high cost. Furthermore, the transformer should be designed for a 

relatively wide range of power, which leads to a low system efficiency. Overall, this 

topology is regarded as a poor solution [1]. 

 

Figure 3.12: Transformer-based two-stage conversion system 
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Figure 3.13: Transformer-less two-stage conversion system, consisting of a dc-dc boost converter cascaded 

with a PWM buck VSI 

 

Transformer-less two-stage power conversion systems are one of the most 

commonly used interface circuits in SE-based DG applications. As can be seen in Figure 

3.13, in this two-stage conversion topology, a dc-dc converter and an inverter are 

cascaded. In the first stage, the dc-dc converter boosts and regulates the dc-bus voltage at 

a fixed level, and in the second stage, the PWM buck VSI converts the regulated dc 

voltage into an ac voltage. Since this topology does not contain a transformer, it has less 

magnetic components and higher efficiency. In comparison with the topology displayed 

in Figure 3.12, this topology requires two individual control systems and uses one more 

solid-state switch, as well as an electrolytic capacitor bank at the dc-bus. This will result 

in a lower reliability (and perhaps efficiency), and a more complicated control scheme 

[7].  

 

3.4.3 Multilevel Inverter 

Three-phase multilevel inverters can also be employed to interface the output of 

several SE sources with the grid [2, 8]. Figure 3.7 presents the circuit diagram for the 
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connection of a generic SE source to the output circuit by means of a diode-clamped 

three-level inverter. The SE source and additional components are represented as a 

voltage source, connected to the dc-side of the inverter. Like most inverters, multilevel 

inverters are connected to a grid through an inductive filter. A general model for the 

three-level inverter is presented in [9-10]. This model describes the dynamics of the dc- 

and ac-sides, including the dynamics of dc and ac neutral points. Although the multilevel 

inverters are effective for this application, the added complexity of the circuit and the 

additional components reduce both the overall efficiency, and reliability of the system, 

and may raise the overall cost of the power electronic interface [2].  

 

3.4.4 Z-Source Inverter 

The z-source inverter has the capability of boosting and inverting the dc voltage 

in a single stage, with fewer solid-state switches in comparison with the multilevel 

inverters and the above-mentioned two-stage topologies depicted in Figures 3.13 and 

3.14 [3].  

The z-source inverter is a combination of a voltage source inverter, and a current 

source inverter. The circuit diagram of this inverter topology is shown in Figure 3.14. 

This inverter topology transforms the dc input voltage into the grid voltage, while the dc 

voltage can be above or below the grid voltage. The z-source inverter contains relatively 

high input current ripples, which may cause high stresses on the dc-link inductors and 

capacitors [12]. The application of this topology was reported by [13-15] as a grid-

connected single-stage inverter for distributed generation systems, specialized for 

residential PV applications. 



45 
 

 

Figure 3.14: Single-stage Z-source inverter 

 

3.4.5 Single-Stage Boost Inverter 

In the last several decades, current source inverters have been replaced with 

voltage source inverters in many industrial applications. However, the CSI topology in 

conjunction with an appropriate control scheme can form a single-stage boost inverter 

that can be used for SE conversion systems. Several investigations have been recently 

reported on the application of CSIs as single-stage boost inverters for SE conversion 

systems [16-19]. As can be seen in Figure 3.15, the current source inverter utilizes a 

series inductor at the dc-link and a capacitor bank at the ac-side. In [4], a new switching 

pattern has been proposed for the CSIs in order to boost and invert the dc voltage to a 

fixed voltage magnitude and fixed frequency for both stand-alone and grid-connected 

conditions. Besides the simplicity of the control scheme, elimination of dc-bus 

electrolytic capacitors is one of the greatest advantages of the single-stage boost inverter 

over the conventional two-stage converter, the multilevel inverter, and the Z-source 

inverter. This will significantly improve the reliability of the overall system, particularly 

in photovoltaic (PV) energy conversion systems, in which the mean-time-to-the-first-
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failure of inverters is about 5 years and the average lifetime of PV panels is about 20 

years [6]. These attractive features have turned the attention of some of the latest research 

studies in the field of power electronics, to modeling and control of single-stage boost 

inverter [20-22]. This topology, along with a modified space-vector pulse-width-

modulation (SVPWM) technique, the so-called phasor pulse-width-modulation (PPWM), 

is the core of this dissertation, which will be elaborated upon in Chapter 4, and its state-

space-averaged model will be derived in Chapters 5 and 6.  

 

Figure 3.15: Single-stage current source boost inverter 

 

3.5 Summary 

 Extensive research has been carried out on the related work to dc-ac power 

conversion systems, used in distributed generation applications. The most common 

converter topologies for grid-connected and stand-alone operations of sustainable energy-

based distributed generation system have been reviewed and compared. It should be 

mentioned that, besides the converter topologies reviewed in this chapter, the resonant 

converters are another major type of power electronic converters, which can be used for 
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the same applications. However, since they are not related to the subject of this 

dissertation, they have not been discussed.  

In the next chapter, the new switching pattern for the CSBI is covered using the 

associated formulations of the converter topology and performance.  
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CHAPTER 4 

THE PROPOSED SWITCHING PATTERN 

 

4.1 System Description 

In this dissertation, a single-stage CSI-based boost-inverter with a novel control 

strategy is proposed for SE (particularly for PV and fuel-cell) applications. A new 

method is developed based on the concept of SVPWM. However, the developed 

switching pattern is formulated based upon the phasor quantities, and not the space-

vectors. Nevertheless, this strategy preserves all the advantages of an SVPWM technique 

such as simplicity, robustness, and ease of programming in digital processors. Figure 4.1 

shows the power circuit of the three-phase boost-inverter, where  is a DC voltage 

source (representing an SE source),  is the DC-link inductor,  represents the AC 

side film capacitors,  represents the line inductors, and  represents the high-

frequency filter capacitors. In the laboratory scaled power circuit, the above-mentioned 

design parameters were = 2.0 mH,  = 5.6 µF line-to-line (in a Δ-connection),  = 

0.12 mH per phase, and  = 0.1 µF per phase (in a Y-connection). In this circuit 

topology, at any given instant, one of the upper IGBTs and one of the lower IBGTs are 

kept ON. During the charging times the IGBTs in a same leg are simultaneously ON, so 

that the magnetic energy in  is increased to boost the output voltage and inject power 

to the output circuit. This will be further elaborated upon in next sections. 
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Figure 4.1: The complete power circuit schematic of the case study CSI-based 

boost-inverter. 

 

4.2 Presented Control Scheme 

In this section, the control method, which is utilized for the CSI based boost-

inverter topology, will be elaborated upon through mathematical formulations. The PWM 

switching pattern and formulation developed herein is very close to the conventional 

SVPWM, however the space-vector of the currents and voltages are not applied in the 

development of the new formulations. It should be also emphasized that in the 

conventional space-vector formulation, the inverter switching time-intervals (or duty 

cycles) are in direct proportion to , where the time-intervals in the presented 

formulation for CSI-based boost-inverters are in direct proportion to . Meanwhile, 

the six main switching states, and two zeros, with three switches conducting at any given 

instant in conventional SVPWM techniques, are adapted to six states with only two 

switches conducting at any given instant, as well as three charging states in the 

proposed/developed switching pattern for the CSI based boost-inverter. These charging 
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states are necessary in order to boost the DC input voltage. The control scheme is capable 

of being applied to both grid-connected and stand-alone cases. The calculations for 

obtaining the control parameters are presented in the next two subsections. In the first 

case, the inverter is grid-connected, therefore the output voltage is maintained by the grid, 

and the inverter has to regulate the output current in such a way as to control the delivery 

of power to the grid. In this situation, the inverter operates in a current-source, current-

regulated mode. In the second case, the inverter is merely connected to a local load (R-L), 

and therefore has to regulate the output voltage. While the inverter is still a current-

source, it operates in current-source voltage-regulated mode. The following calculations 

further elaborate upon the difference between these two modes. 

 

4.2.1 Control Method for the Grid-Connected Case 

In Figure 4.2, there are six sectors separated by six line-to-line voltage phasors, 

,  ,  , and . The desired volt-second, , is demonstrated in Sector 

(I) of Figure 4.2 and its corresponding discharging and charging time-intervals can be 

calculated as shown in Figure 4.3. In each switching cycle, , there are three time-

intervals; one time-interval for charging the DC-link inductor and two time-intervals for 

injecting current into two different phases. For example, while Sector (I) is passing the x-

axis in Figure 4.2, is when  falls in between  and , this is when the voltage of 

Phase-A is in its positive extreme. Thus, the proposed method uses Phase-A in the entire 

sector to close the path of the load current, i.e.  stays ON over this switching cycle. 

On the other hand, Phase-B and Phase-C are intermittently used for the negative part of 



51 
 

the load current, see Figure 4.4. Thus, there are three states and consequently three time-

intervals in Sector (I):  

(1) The charging time-interval, , in which two switches from Leg-A are closed and the 

DC-link inductor is being charged, see I-C1 ( ) of Figure 4.4, 

(2) The first discharging time-interval, , where the inductor current is directed into 

Phase-A. During this period of time, the upper-switch of Leg-A and the lower-switch of 

Leg-B of the inverter are closed, see I-D2 ( ) of Figure 4.4, 

(3) The second discharging time-interval, , where the inductor current is directed into 

Phase-A. During this period of time, the upper-switch of Leg-A and the lower-switch of 

Leg-C of the inverter are closed, see I-D3 ( ) of Figure 4.4.  

It should be noted that within a given sector one of the switches does not have to 

be switched at all, as shown in Figure 4.4. The six sectors along with the proper 

switching time-intervals are summarized in Table 4.1 for all six sectors. In this table,  

and  denote the associated first and second voltage vector in each sector in Figure 4.2, 

 and  represent the positive (upper) and negative (lower) switches in each leg of the 

inverter, see Figure 4.1, and , , and  illustrate the time-intervals of the charging 

states, as well as, the two consecutive discharging states corresponding to each sector.  
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Figure 4.2: The line-to-line voltage phasors indicating the six sectors of the proposed control scheme. 

 

Figure 4.3: Sector (I) and the discharging time-intervals,   and , as well as charging time-interval, , 

calculations. 
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Table 4.1: Sectors and switching states 

 
         

I     0  0  
II    0  0   
III   0    0  
IV      0  0 

V   0  0    
VI    0    0 

 

Let us assume that the DC-link inductance,  and the DC input voltage, , 

stay constant over a switching cycle, .  Figure 4.5 shows the voltage and current 

waveforms of the DC-link inductor under this assumption. Using Figure 4.5, one can 

write the following equations based on the applied voltage across the DC-link inductor, 

 over one switching cycle in Sector (I): 

     for                    (4.1) 

 for             (4.2) 

 for           (4.3) 

where,  and  are the DC-link inductor currents at the beginning and the end of one 

switching cycle, respectively. Also,  is the DC input voltage,  is the value of the 

inductor,  is the time elapsed for charging the DC-link inductor,  and  are the 

time-interval of injecting power from Phase-A to Phase-B and Phase-C respectively, and 

 and  are the instantaneous line-to-line voltages. Adding up the three above 

equations yields: 
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                                  (4.4) 

Thus, one can write as follows: 

            (4.5) 

For a fixed switching frequency, , is constant and also . 

Thus, (4.5) can be simplified as: 

                               (4.6) 

Substituting, , by , one can write: 

                            (4.7) 

 

 

   

   

   

III-D4 ( ) III-D3 ( ) III-C2 ( ) 

II-D3 ( ) II-D2 ( ) II-C3 ( ) 

I-D2 ( ) I-D1 ( ) I-C1 ( ) 



55 
 

   

   

   

Figure 4.4: The charging (C1 – C3) and discharging (D1 – D6) states of operation for the CSI-based boost-

inverter in each sector (three charging states and six discharging states in six sectors); the Roman numeral 

shows the sector number, and it is followed by the state number along with the time-interval in the state. 
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Figure 4.5: The voltage and current waveforms of the DC-link inductor over one switching cycle in Sector 

(I). 

Notice, one can write the line-to-line voltages of the grid (or desired output 

voltages) as follows: 

  

 and  

                                                     (4.8) 

Thus,  is given by: 

                                                         (4.9) 

Let us pick the discharging time-intervals,  and , as follows: 

, and 

,     for                     (4.10) 
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Accordingly, one can write the following expressions: 

              (4.11) 

       (4.12) 

Substituting  by (4.11) and   by (4.12) in (4.7) yields: 

           (4.13) 

In order to keep (4.13) always valid, the right side term of this equation should be 

a time-independent expression. Accordingly,   must follow  at the same angular 

speed, i.e.,  Hence, (4.13) can be rewritten as: 

                           (4.14) 

where,   for Sector (I), see Figure 4.2, From (4.14),  can be obtained as: 

                                                            (4.15) 

where, for the valid range of  , the coefficient  can vary within a range of 

. Therefore, if  in (4.10) is substituted 

by (4.15), the discharging times, and  , can be calculated, in steady-state and 

balanced conditions (i.e. ), from the following equations; 

                                          (4.16) 

                            (4.17) 

Therefore, the charging time is obtained as; . Meanwhile, for 

, equations (4.16) and (4.17) can be rewritten as: 

                                                   (4.18) 
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                                                            (4.19) 

It should be noted that these are exactly identical to what one can obtain from the 

trigonometric identity illustrated in Figure 4.3, if  and  are replaced by . 

 

4.2.2 Control Method for the Stand-Alone Case 

For stand-alone conditions, one can consider the circuit topology shown in Figure 

4.1, while the circuit breakers are open. Again, let us consider Sector (I) in Figure 4.2. 

Accordingly, one can write the following expression for the voltage phasor quantities: 

                                                     (4.20) 

For simplicity, let us assume that the output circuit is a series R-L load, i.e.  

,. In this case, the line-to-line phasor voltages are obtained as   and  

 in term of , , and  , which are the line currents of “A”, “B” and 

“C” phases, respectively. Notice that the line-to-line voltage, , , and , 

waveforms become sinusoidal when the line current waveforms are sinusoidal. If the 

PWM switching pattern is applied in the presence of the output AC capacitors, , as 

shown in Fig.2, the line current waveforms will be very close to sinusoidal. This means 

that the final equations in (4.16) and (4.17) will be valid for the stand-alone case, where 

the line-to-line voltages, , , and  in (4.8) can be considered as the reference 

voltages. In this case, a closed-loop PI controller is required to regulate the output voltage 

through tuning the  coefficient. This will be further discussed in the following 

subsection. 
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4.2.3 Controlling DC-link Inductor Current 

In the previous subsections, the method of maintaining the DC-link inductor current at a 

fixed level was discussed and the charging and discharging time-intervals were 

formulated. It is now necessary to discuss the method of controlling the DC-link inductor 

current for both stand-alone and grid-connected applications. The question is, “what 

change must be applied to the previously defined coefficient , if the average current of 

the DC-link inductor is to be increased or decreased?” To answer this question, let us 

assume an incremental change,  , between the DC-link inductor at the beginning 

and end of each switching cycle, this can be formulated as: 

                                                            (4.21) 

Using (4.7), one can write: 

                                       (4.22) 

Hence,  in (4.10) has to be adjusted as: 

                                                                    (4.23) 

Again, the charging time-interval, , and discharging time-intervals, , and  

 , are obtained as: 

                                                            (4.24) 

                                                                   (4.25) 

                                                            (4.26) 

Accordingly, the modified coefficient, , must be applied to adjust the level of 

DC current at the DC-link inductor. Furthermore, a closed-loop PI controller is required 

to minimize the steady-state error. This can control the amount of injected power in the 
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case of grid-connected applications and regulate the output voltage in the case of stand-

alone applications. 

 

4.4 Summary 

In this chapter, the importance of single-stage converter systems for SE (PV 

arrays and fuel-cells) applications has been presented. A novel switching pattern has been 

proposed based on the CSI topology. The proposed pattern is based on the SVPWM 

concept. However, the presented switching pattern contains a total of nine switching 

states, including three charging states and six discharging states with only two switches 

conducting at any given instant. In this method the charging states are necessary in order 

to boost the output voltages of PV arrays or fuel-cells. It has been also demonstrated that 

the CSI topology in conjunction with the developed switching pattern is capable of 

providing the required residential AC voltage from a low DC voltage of one PV panel at 

its rated power for both linear and nonlinear loads.  
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CHAPTER 5 

POWER CONTROL 

 

The relationship between the dc inductor current, output ac current, reflected 

voltage from the ac side to the dc side, and the circuit parameters, along with the control 

variables is investigated in this section. In order to independently control the reactive and 

active power, the modulation index,  , is introduced in the past chapters. This is in 

addition to the other control parameter,  which is the angle between the desired output 

current of the inverter, and the grid voltage. This angle can be specified such that the 

output reactive power of the inverter can be controlled. Therefore, by controlling the 

coefficient  and angle , the output active and reactive power are controlled. 

 

5.1  Input Power Calculation 

In this subsection, the input power is calculated in terms of the modulation index 

and the circuit parameters; (see Figure 5.1). The average value of the grid voltage over a 

sector,  in radians or  in seconds, referred to the dc side of the 

inverter,  , can be approximately obtained as follows. 

From the previous chapter, the two discharging time intervals were calculated in 

(3.18) and (3.19). In order to have control on the output injected current, the coefficient 

of the discharging time intervals is called , and should be specified by the control 

system. Accordingly, one can rewrite (3.18) and (3.19) as: 

,                                                (5.1) 
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where   is the angle of the applied voltage, and must vary from  to  during any sector. 

Now, sector “I” is picked up for the rest of the calculations, as mentioned previously, and 

the three phase-to-neutral voltages are assumed as: 

                    (5.2) 

In order to replace the inverter system with its equivalent in steady-state, the 

reflected average voltage from the output of the inverter to its input needs to be obtained. 

In sector I, phase “a” voltage is in its extreme positive state. Therefore, with the 

mentioned phase angles for the three-phases, sector I interval will be from . 

So, the averaging is performed in this time frame for sector I. 

Note that the two discharging time intervals are calculated with the assumption 

 during any sector. Also, the angle of phase “a” voltage varies from  

during the sector, i.e., . Thus, the angle  will be  during the 

sector. Accordingly, one can have: 

  ,                                    (5.3) 

Now, based on these coordinated time intervals, the average voltage reflected 

from the output of the inverter to its input can be obtained. Note that in the first time 

interval, , the line to line voltage  is applied, while in the second one, , the line 

to line voltage  is applied to the input. In addition to this, zero voltage is applied 

during the charging times. Therefore, the integration of the overall voltage reflected to 

the input during sector I can be written as: 

                        (5.4) 
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where  is the duration time of sector “I”, and , is the total 

voltage drop over the switches and diodes in the current path. Note that this voltage drop 

is present in the current path in both charging and discharging states. Replacing the 

voltages by (5.2), and the time intervals by (5.3), one can obtain:   

                                                         

                               (5.5)      

Since the switching cycle, , is very small, one can consider it as a differential 

time interval, , and convert the summation in (5.5) to an integration: 

                                                             

            (5.6) 

After doing some mathematics and trigonometry, one can obtain the average 

voltage as: 

                                                      (5.7) 

Equation (5.7) is valid only for the situation in which the injected output current is 

completely in-phase with the grid. Now, suppose that this current is shifted by an angle of 

, with respect to the grid voltage. This will cause a different value for the calculated 

reflected voltage . If this phase shift angle  is considered in the previous 

calculation, i.e., from (5.3) to (5.7), and by doing some trigonometric calculations, the 

resultant value is: 

                                                     (5.8) 
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 + _  

   

 

Using the proposed switching pattern, along with (5.8), one can calculate the 

average value of the dc-link inductor current as follows: 

                                (5.9)  

where,  and  are obtained from  and 

, respectively. Thus, the input power is a function of the modulation 

index and can be written as follows:   

                           (5.10)  

As can be seen, the input power and the power loss increase as the modulation index 

decreases.            

 

 

 

 

Figure 5.1: The grid-tie boost-inverter equivalent circuit referred to the dc side of the inverter 

 

5.2  Amplitude of the ac current 

In this section, the amplitude of the output ac current is calculated, assuming that 

there is a dc current passing through the dc inductor. The ac current is composed of two 

parts: one injected from the inverter, and the other from the ac capacitors. These two 

currents are perpendicular with respect to each other, assuming that the inverter is 

generating only active power, without any reactive power. The first part is calculated 

herein, and the total current can be calculated knowing the value of the ac capacitors, and 
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consequently their reactive current. In other words, the total current is the geometric 

summation of the two mentioned currents. Again, the three voltages are assumed as in 

(5.2), sector I is picked up for the calculation, and phase “a” current is calculated. 

Since phase “a” is in its maximum positive state during the sector, the dc current 

is injected into this phase in both discharging time intervals. Assuming these time 

intervals as in (5.3), the average current for a switching cycle  can be written as: 

    

                   (5.11)

 In the next sector, phase “c” voltage is in its extreme negative state, and the 

voltages  and  are applied during the first and second discharging times. Therefore, 

the dc current is injected into phase “a” only during the first discharging ( ). Note that 

the right value for the angle  should be replaced, in order for the time durations to be 

true. Since  varies between  and  during the sector, i.e. , the angle  is 

then: 

                 (5.12) 

Accordingly, the two discharging time intervals are: 

  ,                                     (5.13) 

Thus, the average current of phase “a” in this sector will be: 

                      (5.14) 
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If the same process is followed for the next four sectors, the same results will be 

obtained. Therefore, the output ac current of phase “a” only from the inverter side is 

calculated to be: 

                                               (5.15) 

This equation means that the inverter current for any of the three phases is an in-phase 

sinusoidal current with the amplitude of . Now, the question is what happens to this 

current when a phase shift of  is applied in the switching. Following the same procedure 

to calculate the current, results in the same amplitude, with a change of  in the phase 

angle. In other words, by shifting the switching time by , (5.15) will be modified to: 

                                       (5.16) 

In order to obtain the total ac current, the capacitors current should be calculated first, 

knowing the grid voltage, and the capacitors values. When this current is known, 

obtaining the total current will be a straightforward geometric summation of the two 

current parts, considering their amplitudes and phase angles. 

Therefore, it can be demonstrated using the aforementioned switching pattern that the 

fundamental component of the inverter output current in phase-A (before ac capacitors in 

Figure 3.1) can be written as follows:  

                                (5.17) 

Accordingly, the three-phase active and reactive power can be written as: 

                        (5.18) 

                 (5.19) 
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where,  is the generated reactive power of the ac capacitors, , in Figure 3.1 For 

this purpose, two PI controllers are implemented in order to control these parameters. 

This means that the desired values of P and Q are compared with the measured ones to 

adjust the above-mentioned parameters (see Figure 3.1). It should be noted that the 

desired value of P is normally dictated by the MPPT algorithm. However, the desired 

value of Q can be arbitrarily selected. Notice that as the injected reactive power increases, 

the total harmonic distortion (THD) of the output current is amplified. Hence, the injected 

reactive power has an upper level limitation. In many cases, the unity power factor (right 

before the ac capacitors in Figure 3.1) is a desirable condition. This means that a zero 

value for injected reactive power. However, the ac capacitors, , always inject a fixed 

amount of reactive power, as shown in (5.19). This reactive power can be approximately 

calculated as: 

                        (5.20) 

 

5.3  Maximum Power Point Tracking  

One of the most important objectives of any single-stage or multi-stage grid-

connected PV converter is to extract as much power as possible from the PV panels. 

There are various methods to perform MPPT [6]. In the proposed topology, MPPT can be 

achieved by controlling the dc inductor current. To integrate this capability into the 

switching method, the modulation index, , was introduced in (5.1). It should be noted 

that, a larger value of  will result in a smaller charging time interval, 

, and accordingly, a smaller dc-link inductor current, as can be seen in (5.9). 
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Therefore, the modulation index can be adjusted to track the PV’s maximum power point. 

Among the various MPPT methods, the method of Hill Climbing seems to be a suitable 

candidate for the proposed single-stage boost inverter. 

 

5.4  Simulation Results 

5.4.1 DC Current and Reflected DC Voltage to the Input 

In this section, the derived formulas for the dc current, and the reflected dc 

voltage to the input are verified through simulations. The simulated circuit is shown in 

Figure 3.1, and the circuit parameters are chosen as: ,  

 (i.e.,  in a Δ-connection) , . The PWM switching frequency is 

, and the line-to-line voltage of the grid is set to be equal to 208 Vrms. The 

simulation results are shown in Table 5.2 for three different PV panels. The electrical 

specifications of the panels are shown in Table 5.1. These specifications include the panel 

number provided by its producer, its voltage, current, and power while at the maximum 

power generation point, and the open circuit voltage and short circuit current at the same 

conditions. 

In table 5.2, the simulation results of the injected ac current into the grid for the 

two mentioned panels are shown. Panel 1 and Panel 2 are BP3110 and BP4175B, 

respectively. In this table,  and  are the input dc voltage (panel voltage). The 

reflected voltage from the output of the inverter to its input, or the applied voltage from 

the ac side to the dc side has been shown as . The amplitude of the total injected 

ac current to the grid, , along with the phase difference between the grid voltage and 

the injected active current, , and the modulation index of  are shown in Table 5.2. 
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Table 5.1: Electrical Specifications of the PV Panels 

Panel      

BP3110 16.9 6.50 110 21.6 7.40 

BP4175B 35.4 4.94 175 43.6 5.45 
 

Table 5.2: Simulation Results of the ac current test for the PV panels in Table 5.1 

Panel       

BP3110 16 5.5 14.3 2.9 0 0.49 

BP3110 16 5.5 14.3 3.7  0.56 

BP3110 16.9 6.5 14.9 3.5 0 0.51 

BP3110 16.9 6.5 14.9 4.5  0.59 

BP4175B 33 4 31.8 1.2 0 0.12 

BP4175B 33 4 31.8 1.4  0.14 

BP4175B 35.4 4.9 33.9 1.3 0 0.13 

BP4175B 35.4 4.9 33.9 1.6  0.15 

 

As can be seen in Table 5.2, the amplitude of the ac current has been increased with the  

applied phase shift between the grid voltage and the injected active current. This is to 

show that the inverter has the capability to generate and inject reactive power into the 

grid, with the same amount of active power. Also, the amplitude of the ac current and the 

associated , , and  is in agreement with the formulas obtained in the previous 

section.  
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5.4.2  Active and Reactive Power Control 

In this section, the simulation results are presented to demonstrate how the 

injected active and reactive power can be independently controlled. While the desired (or 

reference) value of the active power, , can be obtained from the Hill Climbing 

method for maximum power point tracking, the desired (or reference) value of reactive 

power, , can be selected within a certain range. 

In Figure 5.2 (a), the dynamic behaviors of the injected active and reactive power 

are shown over 3 seconds (between 1 and 4 seconds) when   instantly changes from 

200 to 300 watts at  and  is set to be equal to  It should be noted that 

 (which is an equivalent value for  right before the ac capacitors, , in Figure 

3.1) can be initially obtained after the system installation. This calculation is as a part of 

the inverter auto-tuning algorithm. In the auto-tuning algorithm, the  is calculated 

while the control parameters are set to be   and  As can be seen in 

Figure 5.2 (b), both control parameters vary to keep  Vars while  was 

increasing from 200 to 300 watts (i.e.,  watts). Moreover, the dynamic of dc-

link inductor current over this change is also shown in Figure 5.2 (c). In Figure 5.2 (d), 

the dynamics of the active and reactive power are shown again over 3 seconds when  

instantly changes from  to 340 Vars at . In this case,  

Watts. 
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(a) The output P and Q of the inverter 

 

(b) The coefficient  and the angle  of Figure 5.2 (a) 

 

(c) The dc-link inductor current of Figure 5.2 (a) 
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(d) The output P and Q of the inverter 

 

(e) The coefficient m and the angle  of Figure 5.2 (d) 

 

(f) The dc-link inductor current of Figure 5.2 (d) 

Figure 5.2: The simulation results, for the independent active and reactive power control cases 
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5.4.3    Reactive Power Generation and Injection into the Grid 

In this section, the capability of CSBI in providing reactive power is examined 

using simulation results. Thus, the CSBI topology with the associated control scheme and 

switching pattern are implemented in MATLAB SIMULINK, as shown in Figure 3.1, and 

main circuit parameters are given in Table 3.3. To simplify the system, a fixed dc voltage 

source was considered as the input source. It should be noted that this simplification does 

not affect the concept of generating reactive power in this circuit. The control system 

consists of two PI controllers, in order to separately regulate the two modulation indices, 

 and m. As mentioned earlier, there is not any need to use the rotational reference frame 

conversion blocks in the proposed approach. Moreover, the actual values of the active and 

reactive power will be used as feedback signals of the PI controller for m, and  

calculations, respectively. In other words, in the controller blocks, one PI (P-PI) regulates 

the output active power by adjusting the value of m, while the other one (Q-PI) performs 

the same for the output reactive power by adjusting . 

Two scenarios have been studied in Table 5.4 and Table 5.5, and the results are 

also plotted in Figures 5.3 and 5.4, respectively. In the first scenario, the active power is 

adjusted at 620 watts, while  varies from -30 degrees to 40 degrees. As one can see, as 

 increases m is automatically increased to keep the value of the active power at 620 

watts. This is in an agreement with what was explained in the previous section. The results 

are also demonstrated in Figure 5.3. For better understanding of Table 5.4, it should be 

mentioned that the  column is obtained from the algebraic summation of all generated 

and consumed reactive powers. In other words, the generated reactive power by the ac 

capacitors is subtracted from the output injected reactive power, and the result is added to 
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the consumed var by the inductors. The final resultant var is called the net generated 

reactive power by the inverter, . As can be seen in Table 3.5, the output reactive 

power increases as the value of  decreases. Moreover, the magnitude of the output ac 

current is also increases, while the output injected active power is kept constant. It means 

that the angle between the output voltage and current has been increased. Another 

important point is that the other modulation index, m, has an increasing profile, as was 

expected, to keep the active power at the commanded level. 

 

Table 5.3: The CSBI Important Components in Simulation 

     

70 V 4 mH 11.2 F 2.4 mH 208 Vrms 

 

Table 5.4: CSBI Simulation Results for a Constant Output Active Power, Pg 

         ) 

-30 0.9423 620 600 582 -15 33 214.5 2.4 2.5 

-21 0.9505 620 700 586 -18 132 215.1 2.6 3 

-9 0.9606 620 840 590 -22 272 215.9 2.9 3 

0 0.9715 620 970 594 -27 403 216.6 3.2 4 

9 0.9838 620 1130 601 -35 564 217.8 3.6 3 

21 1.0061 620 1430 611 -50 869 219.7 4.3 3 

30 1.0275 620 1800 627 -76 1249 222.4 5.3 4 

39 1.0557 620 2430 653 -133 1910 227.0 7.0 4 

40.5 1.0596 620 2590 659 -149 2080 228.1 7.4 6 
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Table 5.5: CSBI Simulation Results for a Constant Output Complex Power, Sg 

          THD 

-30 0.9146 1800 660 564 -76 172 210.9 5.3 4 

-21 0.9250 1670 920 569 -76 427 212.0 5.3 2.5 

-9 0.9404 1470 1220 576 -76 720 213.3 5.3 2.5 

0 0.9553 1290 1400 581 -76 895 214.1 5.3 2.5 

9 0.9734 1100 1560 584 -76 1052 214.7 5.3 2.5 

21 1.000 840 1720 588 -76 1208 215.4 5.3 6 
 

 

 

Figure 5.3: Simulation results of reactive power vs.  for constant  
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Figure 5.4: Simulation results of reactive power vs.  for constant  

In the second scenario, the output current is adjusted at 5.3A rms (i.e., S = ~ 1.9 

kVA), while  varies from -30 degrees to 21 degrees, and the current THD stays below 

the accepted level of ~ 5%. Again, as can be seen in table V, the output reactive power 

increases as the value of  decreases. It means that the angle between the output voltage 

and current has been increased, while the magnitudes of current and voltage are constant. 

 

5.5 Summary 

In this chapter, the required equations for the active and reactive power control 

based on the proposed switching pattern were obtained. The relationship between the 

output injected active and reactive power to the switching parameters were extracted, and 

the amplitude of the output ac current were calculated. It was shown how the desired dc 

current is constructed inside the dc inductor, and how the desired values of active and 
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-30 -20 -10 0 10 20 30
-500

0

500

1000

1500

2000

α0 (deg)

Q
 (v

ar
)

 

 
Qg

Qc

Ql

Qinv



77 
 

parameters: the modulation index, and the switching angle. Then, the accuracy of the 

obtained formulations were examined by the simulation results, doing different scenarios 

for both active and reactive power control, and the results were in agreement with the 

claims. 
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CHAPTER 6 

EXPERIMENTAL RESULTS 

 

6.1 Stand-alone case 

In order to verify the developed PWM switching pattern, a laboratory scaled CSI 

was built, (see Figure 6.1), and tested for an R-L load. The switching signals were 

generated by a CLP1104 dSPACE system which was linked to MATLAB Simulink, and 

the switching frequency was chosen to be 3.0 kHz because of the limitations of dSPACE. 

The measurements in this experiment were performed using a LeCroy Waverunner 64XI 

oscilloscope with one CP031 current probe, one CP030 current probe, and one ADP305 

differential voltage probe. The bandwidth of the oscilloscope is 600MHz, while the 

bandwidths of the CP031, CP030, and the ADP305 are 100MHz, 50MHz, and 100MHz, 

respectively. Figure 6.1 shows a scene of the experimental setup and Table 6.1 gives 

some information on the CSI circuit elements. 

In Figure 6.2, the output line-to-line voltage and current waveforms are shown 

when an R-L load with R=20Ω and L=2.7mH was fed by the CSI. In this test, the input 

DC voltage was 16V and the desired amplitude of the output line-to-line voltage was 45V 

(peak). As can be seen in this figure, the output voltage follows the reference well, and 

the shape of the current and voltage waveforms are very close to a sinusoidal waveform. 

 

Table 6.1: The specifications of the experimental results 

            IGBT     Diode 

5.6 µF 0.12 mH 0.1 µF 2.0 mH IRG7PH30K10PBF SBT350-04L 
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Figure 6.1: The experimental prototype. 

Also, the frequency spectrums (FFT) of the voltage and current waveforms are 

shown in Figure 6.3. As can be seen in this figure, there are some harmonics around 3.0 

kHz which are due to the switching frequency. In Figures 6.4 and 6.5, the voltage and 

current waveforms of the DC-link inductor are shown for the same conditions. The 

charging and discharging time-intervals (states) are quite visible in Figure 6.5. In Figure 

6.6, the output voltage and current waveforms of the inverter are depicted for the same 

test. Notice that the output current of the inverter is composed of positive and negative 

pulses, the widths of which are modulated according to a sinusoidal reference, (see 

Figure 6.7). In order to check the ability of the control system to maintain a fixed output 

voltage for different load conditions, another test was performed with a DC input voltage 

equal to 10V and an R-L load of R=40Ω and L=5.4mH. The output line-to-line voltage 
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and current waveforms are shown in Figure 6.8. As can be seen in this figure, the 

amplitude of the output voltage is constant, although the output current is halved due to 

the higher impedance of the load. This demonstrates while the inverter is a CSI, it can 

operate in a voltage-regulated mode.  

In particular, for PV based energy conversion applications, the produced DC 

voltage of a PV panel at its maximum power (150 watts) is typically about 35 V. For 

instance, if the three-phase boost-inverter should feed a 60Hz, 208V (line-to-line), i.e., 

120V (line-to-neutral) AC load (or grid), then the 35 VDC of the PV panel must be 

boosted and inverted to the required AC voltage, i.e., 208V rms. In order to verify the 

capability of the presented control scheme, a laboratory test was performed by connecting 

the prototype boost-inverter to a Y-connected three-phase 340 Ω resistive load at 130 

watts. The output line-to-line voltage and current waveforms and associated frequency 

spectrums are shown in Figures 6.10 and 6.11, respectively. Furthermore, the line- to-line 

voltage and current waveforms at the boost-inverter output terminals as well as their 

associated frequency spectrums are shown in Figures 6.12 and 6.13, while a resistive load 

(680 Ω) was fed through a full-bridge three-phase rectifier. As can be seen in this figure, 

the CSI circuit topology in conjunction with the developed control scheme is also capable 

of feeding nonlinear loads. 
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Figure 6.2: The load line-to-line voltage and a phase current waveforms when Vdc=16V, Rload=20 

Ω, Lload=2.7mH, and Vref =45V (peak). 

 

Figure 6.3: FFT spectrum of the load line-to-line voltage and the phase current waveforms of Figure 

6.2. 
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Figure 6.4: The inductor voltage and current waveforms when Vdc=16V, Rload=20 Ω, Lload=2.7mH, and 

Vref =45V (peak). 

 

Figure 6.5: The expanded inductor voltage and current waveforms  of Figure 6.4 between 1 and 2 

msec. 
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Figure 6.6: The line-to-line output voltage and current waveforms before and after Cac, when Vdc=16V, 

Rload=20 Ω, Lload=2.7mH, and Vref =45V 

 

Figure 6.7: The expanded voltage and current waveforms  of Figure 6.6 between 20 and 28 msec. 

 

0 10 20 30 40 50
-60
-30

0
30
60

V
ou

t (
V

)

0 10 20 30 40 50
-6
-3
0
3
6

I o
ut

 (A
)

0 10 20 30 40 50
-2
-1
0
1
2

Time (msec)

I l
oa

d 
(A

)

20 28
-60
-30

0
30
60

V
ou

t (
V

)

20 28
-6
-3
0
3
6

I o
ut

 (A
)

20 28
-2
-1
0
1
2

Time (msec)

I l
oa

d 
(A

)



84 
 

 

Figure 6.8: The load line-to-line voltage and a phase current waveforms when Vdc=10V, Rload=40 Ω, 

Lload=5.4mH, and Vref =45V (peak). 

 

Figure 6.9: FFT spectrum of the load line-to-line voltage and the phase current waveforms of Figure 6.8. 
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Figure 6.10: The load line-to-line voltage and a phase current waveforms when Vdc=35V, Rload=340 Ω and 

Vref =208V (rms). 

 

Figure 6.11: FFT spectrum of the load line-to-line voltage and the phase current waveforms of Figure 6.10. 
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Figure 6.12: The load line-to-line voltage and a phase current waveforms when Vdc=35V, Rload=680 Ω (fed 

through a three-phase full-bridge rectifier), and Vref =208V (rms). 

 

Figure 6.13: FFT spectrum of the load line-to-line voltage and the phase current waveforms of Figure 6.12. 
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6.2 Grid-connected case 

In this section, the experimental results were performed in order to verify the 

aforementioned claims for the grid-connected case. The control section is implemented 

using MATLAB Simulink in conjunction with dSPACE 1104 control block, which is 

interfaced with the hardware. Also, the most important components of the hardware are 

given in Table 6.2. In this section, the values of voltages, currents, and powers are given in 

p.u. The output active power, , is calculated using two line-line voltages, along with two 

phase currents ( ). Then, knowing the amplitude of both the grid voltage, 

and the phase current, the output apparent (complex) power, , was calculated. Also, the 

output reactive power was obtained using this equation; , where the 

harmonics effect on the reactive power calculation were neglected. 

As was mentioned in the previous sections, the ac capacitors, , at the output of 

the CSBI topology, (see Figure 4.1), generates almost a constant reactive power, . This 

can also be seen in the experimental results, where the generated reactive power by the ac 

capacitors is almost 600 VAR in the test setup. 

 

Table 6.2: The specifications of the experimental setup 

   IGBT Diode 
20 mH 3 mH 15 F IRG7PH30K DSEP 30-12 
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Figure 6.14: Experimental prototype for the grid-connected case 

6.2.1 Active Power Control 

In this test, the initial values of the active and reactive power are  W 

and  VAR over  seconds. At  seconds, the reference signal of 

the active power is changed to  W, while the reference signal of the reactive 

power stays the same. The experimental results are demonstrated in Figures 6.15 through 

6.20.  

The input dc voltage and the grid line-line voltage are 50 Vdc, and 200 Vrms, 

respectively. 
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Figure 6.15: The output active power (left), and the output reactive power (right) when a step 

change of 100 W in the output active power is applied at t=2 sec. 

 

Figure 6.16: The input dc current (left), and the output ac current (right) when a step change of 

100 W in the output active power is applied at t=2 sec. 
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Figure 6.17: The variations of m (left), and  (right) when a step change of 100 W in the output 

active power is applied at t=2 sec. 

 

Figure 6.18: The line-line voltage of the ac caps (in black), and the output current (in gray) when 

P=200 W (left), and P=100 W (right). 
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Figure 6.19: The output current (in black), and the inverter current (in gray) of phase “A” when 

P=200 W (left), and P=100 W (right). 

 

 

Figure 6.20: The line-line grid voltage (in black), and the inverter current (in gray) when P=200 W 

(left), and P=100 W (right). 
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6.2.2 Reactive Power Control 

In this test, the initial values of the active and reactive power are  W 

and  VAR over  seconds. At  seconds, the reference signal of 

the reactive power is changed to  VAR, while the reference signal of the active 

power stays the same. The experimental results are demonstrated in Figure 6.21 through 

6.26. 

In Figure 6.21, the injected active and reactive powers to the grid are shown, i.e., 

 and . As can be seen in Figure 6.22, the average value of the inverter dc-link current 

remains constant, since the commanded active power does not change during the test. 

However, the amplitude of the injected current to the grid decreases, since the generated 

reactive power is commanded to change from 800 to 600 VAR (i.e.,  from 200 to 0 

VAR). The variations of the two modulation indices,  and , are also demonstrated in 

Figure 6.23. As expected,  decreases by ~40 degrees in order to reduce the generated 

reactive power, while  changes slightly in order to keep the active power at the same 

level, i.e.,  W.  

Here, a question comes to mind: Could the change in the generated reactive power 

be due to a change at the inverter output voltage (i.e., )? This query is addressed in the 

following. Figure 6.24 demonstrates the waveforms of the grid current, , and capacitor 

voltage (line-line), , before and after applying the step change in the injected reactive 

power. As can be observed from these waveforms, the output current amplitude for 

 VAR (i.e.,  A) is less than its value for  VAR (i.e., 

A), while the capacitor voltage does not change significantly. This change in the 
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voltage is not enough to justify the difference between the generated reactive powers in 

these two conditions, i.e.,  VAR and  VAR.  

In Figure 6.25, the current waveforms before and after the ac capacitors are shown, 

i.e., , and . As one can see, the injected current to the grid has a lower magnitude for 

 VAR, while the peak values of the inverter current, , are almost the same for 

both conditions. This means that the pulse widths of the inverter output current decreases. 

Also, Figure 6.26 shows the inverter current and the grid voltage (line-line). As can be 

seen, the inverter current undergoes almost  degrees change in its phase difference with 

respect to the grid voltage (line-line). These are in good agreements with the changes in 

the modulation indices shown in Figure 6.23. 

 

Figure 6.21: The output active power (left), and the output reactive power (right) when a step 

change of 200 var in the output reactive power is applied at t=2 sec. 
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Figure 6.22: The input dc current (left), and the output ac current (right) when a step change of 

200 VAR in the output reactive power is applied at t=2 sec., experimental results. 

 

Figure 6.23: The variations of m (left), and  (right) when a step change of 200 VAR in the 

output reactive power is applied at t=2 sec. 
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Figure 6.24: The line-line voltage of the ac caps (in black), and the output current (in gray) when 

Q=800 VAR (left), and Q=600 VAR (right). 

 

 

Figure 6.25: The output current (in black), and the inverter current (in gray) of phase “A” when 

Q=800 VAR (left), and Q=600 VAR (right). 
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Figure 6.26: The line-line grid voltage (in black), and the inverter current (in gray) when Q=800 VAR 

(left), and Q=600 VAR (right) 

6.3 Summary 

In this chapter, the obtained results in the previous chapters were experimentally verified 

for both grid-connected and stand-alone cases. The capability of the CSBI in providing a 

regulated voltage for a stand-alone load was tested, and the results met the requirements. 

The performance of the proposed switching pattern in the grid-connected case was also 

examined, with controlling the injected active and reactive power values. Furthermore, 

the capability of the proposed PV inverter system in generating reactive power, and 

controlling the amount of the injected reactive power to the grid was fully shown. 
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CHAPTER 7 

CONCLUSIONS AND FUTURE WORK 

 

This chapter contains the conclusions and the possible future works for the 

dissertation.  

  

7.1 Conclusions 

In this dissertation, the problem of converting the variable DC output of an SE 

source such as a PV panel to a fixed AC voltage, either the utility grid or a stand-alone 

load, was introduced. A complete survey of the current technologies for the mentioned 

systems were performed, considering both single-phase and three-phase converters and 

pros and cons of each system were covered after an accurate categorization.  

To overcome the defects, a micro-inverter PV module system has been proposed, 

in which each module can operate in its maximum power conditions and inject its own 

generated power to the grid, independently from the others. The benefits of such a 

configuration are higher efficiency (due to the single-stage power topology and also 

separate maximum power point tracking (MPPT) for each PV panel), as well as higher 

reliability (since every PV has its own inverter). The manufacturing and installation cost 

of the system is also decreased. The concept of plug-and-play single-stage boost inverters 

provides many advantages: (1) Simple control strategy unlike many other proposed 

control methods; (2) Capable of being applied to both stand-alone and grid-tie systems; 

(3) Easy implementation of MPPT by controlling two control parameters; (4) Better 
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stability compared to the other control methods; and (5) Easy dealing with unbalanced 

conditions. 

It was pointed out that among many conversion systems for SE sources, the 

single-stage boost-inverter seems to have the best efficiency and reliability, and longest 

life time. It is composed of a current-source inverter, associated with the proposed 

switching pattern that allows it to have an ac voltage at its output, larger than the input dc 

voltage. All the steps toward developing the switching pattern were covered with 

complete mathematics, for both stand-alone and grid-connected modes of operation. It 

was shown how the concept of the classic SVPWM is taken, and a novel switching is 

derived based on the same concept, but with big differences. The comparison between the 

classic SVPWM method for VSI, and the proposed SVPWM-based method for CSI was 

also performed, and various aspects of the switching pattern for the voltage and current 

values of the inverter system were explained. 

One of the most important features of the proposed switching pattern lies in its 

simplicity and ease of implementation. Since it is based on the well established concept 

of Space Vector PWM (SVPWM), and due to the popularity of this switching pattern in 

industry, the proposed switching pattern can have advantages over the existing 

technologies. 

The efficiency of a CSBI is high because it processes the energy in one single 

stage, while the others use multiple stages (at least two) to do the same job. Since there 

are losses of energy in any processing stage, the total loss will decrease if the system uses 

only one stage. On the other hand, CSBI eliminates the need for using electrolytic 

capacitors. Since electrolytic capacitors have the least life time, and reliability among all 
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used devices in any inverter systems, the life time and reliability of the conversion system 

will significantly improve by eliminating these caps. 

Having all the advantages of CSBI, and the concept of a micro-inverter PV 

module system, it makes sense to mix these two technologies, and make an efficient and 

reliable option for PV applications. However, according to the tasks of a conversion 

system for PV, the SCBI should be able to perform MPPT, boost, and dc-ac conversion at 

the same time. It makes it critical for a CSBI to have an advanced control strategy, 

capable of doing all of the tasks within the system by controlling only six switches. One 

of the outcomes of this dissertation is a new switching pattern for a CSBI, capable of 

doing the mentioned tasks. 

The next step was to add more capabilities to the micro-inverter module by 

extracting the relationship between the control parameters, and the system components. 

In the stand-alone mode of operation, the relationship between the load voltage and the 

control parameters was derived, in order to have a voltage-regulated current-source 

inverter. However, in the grid-connected case, the capability of the CSBI in controlling 

the injected active and reactive power to the grid was shown. This was performed by 

deriving the equations of the dc link inductor current and the output injected current. The 

two dominant control parameters in the proposed switching pattern are the modulation 

index, and the switching angle. It was shown that the injected active and reactive power 

can be controlled by regulating these two parameters. The relationship between the 

control parameters with the output injected active and reactive power of the inverter in 

the grid-connected mode of operation was derived. It was shown how the desired dc 

current is constructed inside the dc inductor, and how the desired values of active and 
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reactive power are injected into the grid through controlling and regulating the two major 

control parameters. 

At the end, the experimental results for all of the previously derived equations 

were illustrated. In order to verify the claimed capabilities of the proposed system, a 

setup was built in the lab, and the real waveforms of different parts of the CSBI were 

illustrated in this section. Again, both grid-connected and stand-alone modes of operation 

were taken into account. Furthermore, the capability of the control system on regulating 

the amount of the active and reactive power was shown. 

 

7.2 Future work 

In this dissertation, a novel micro-inverter system was proposed for SE sources, 

particularly for PV applications. However, the specific conditions of a couple of potential 

sources such as fuel cells and batteries were not covered enough. It is a good idea to 

utilize the same system for the mentioned sources, applying the required changes to the 

components and control method. In fact, due to the differences between PV panels and 

fuel cells and batteries, specific factors should be taken into account for their associated 

converter system. For instance, the chemical process inside a fuel cell is completely 

different from the electricity generation process in a PV panel, that consequently leads to 

different MPPT methods for them. 

The goal of the control design for this work was more concentrated on the 

simplicity, ease of implementation and applicability of the control system. These 

objectives lead to PI controllers for the output voltage and power regulation. However, 
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utilizing other control methods such as sliding mode control, predictive control, adaptive 

and robust control may lead to optimal control performance with different objectives, 

faster response for instance. In the current work the application of a micro-inverter 

system for a building energy supply was considered, and the proposed PI controllers were 

able to satisfy the requirements and meet the expectations. 

Although the proposed converter system was intended to be used as a low power 

micro-inverter system, the utilization of the same power circuit and control method may 

make sense to be used for large high power string PV panels too. Since the system has 

advantages over the current technologies, more investigations are needed to prove that 

whether or not the proposed converter system can be used for large string configurations 

of solar panels. 

One important issue that needs to be considered in every residential power system 

is protection. Since it is intended to be used in the close proximity of human lives, the 

protection of such a system must be taken very seriously. Adding protection parts to the 

inverter system is an essential step toward making the system economic and utilizable for 

the industry. It needs to be considered in both the power circuit and the control system, to 

prevent any possible damage to both the converter system, and any human user. 
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APPENDIX 

SINGLE-PHASE INVERTER SYSTEMS TOPOLOGIES 

 

In this appendix, all of the mentioned topologies for the single-phase inverter 

systems in chapter two are shown and covered with more details. There are various 

configurations for the power conditioning systems that connect PV arrays to the grid. 

They are supposed to do these three tasks: 1-converting the output dc voltage of PV 

arrays to the grid ac voltage, 2- performing the MPPT in order to extract as much power 

as possible from the source, and 3- controlling the injected ac current into the grid, i.e., 

the injected active and reactive power into the grid. In this section, the concentration is on 

the single-phase inverters which have the capability of boosting the low amplitude 

voltage of a PV panel (array) to a voltage as high as the grid voltage, while they are doing 

the dc to ac conversion as well as controlling the injected current to the grid, all in a 

single power stage. 

In [6], a configuration composed of two boost converters has been proposed (see 

Figure A1(a)). As illustrated in Table A.1, this topology uses 4 switches, all of them work 

at high frequency (HF) at any time. This is the main drawback for this configuration, as 

the rest of the topologies try to have less switches, particularly for HF usage. It should be 

noted that more HF switches leads to more EMI which is an important concern in every 

power electronic system. Another drawback is the utilization of two electrolytic 

capacitors, along with two large inductors in the topology. The values for these parts have 

been reported as 40 uF and 800 uH, respectively. 
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In [7], a single-stage topology based on the buck-boost configuration has been 

proposed (see Figure A.1(b)). It utilizes four switches, two of which work at HF (one at 

any half cycle), and the other two work at low-frequency (either 50 or 60 Hz). The main 

drawback of this topology lies in its asymmetrical operation during the positive and 

negative half-cycle of the grid voltage. This may lead to a complex control system for 

this circuit [8]. The advantages of this topology are avoiding of electrolytic capacitor, and 

also low switching losses. Since it is a German patent, there is no information available 

about its implementation. 

Kasa [8] has introduced another topology based on the half-bridge buck-boost 

configuration (see Figure A.1(c)). The number of switches used in this topology is the 

same as the previous one; however, this topology does not have the drawback of 

asymmetrical operation. The main disadvantage of this configuration is that it uses a pair 

of PV sources only one of which is utilized in a given half cycle of the grid voltage [13]. 

In addition to this, high-value dc capacitors are needed to be placed in parallel with the 

two PV panels. 

In [9], a topology is introduced which contains a HF transformer based on the fly-

back converter topology (see Figure A.1(d)). The advantage of utilizing such a 

transformer is the isolation that can be achieved between the input and output of the 

converter, while it has the disadvantage of adding to the losses, and consequently 

lowering the efficiency of the system. However, this configuration uses only three 

switches, which lowers the cost of this circuit. Another drawback is using a very large 

electrolytic capacitor at the input stage of the converter, e.g., 4700 uF for the 300 W 

experimental setup of this work [9]. 
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A single-stage full-bridge series-resonant buck-boost inverter (FB-SRBBI) has 

been proposed in [10], which again utilizes 4 switches (see Figure A.1(e)), 2 for HF and 2 

for low-frequency (LF). The proposed inverter only includes a full-bridge topology and 

an LC resonant tank without auxiliary switches, and provides the main switch for turn-on 

at ZCS by the resonant tank. This configuration has a large number of devices conducting 

at a given instant resulting in higher conduction losses. On the other hand, the circuit 

does not need an electrolytic capacitor at the input stage, and it is a symmetrical 

topology, which is a benefit for it [13]. On top of that, the total number of components 

and their size (e.g., input inductors) are less comparing with other topologies. 

Another asymmetrical operation converter has been proposed by [11] which is 

again based on the buck-boost principle (see Figure A.1(f)). This topology utilizes 4 

switches, two of which for HF usage, and the rest for LF. The main feature of this 

topology is utilizing mutually coupled coils that will cause a limitation on its application 

for high-power cases. Also, it does not need high value electrolytic capacitors at the input 

stage. 

Chien-Ming [12] has introduced a topology based on the half-bridge series-

resonant buck-boost inverter which utilizes 5 switches, 3 of which for HF and 2 for LF 

(see Figure A.1(g)). The proposed inverter circuit topology provides the main switch for 

turn-on at zero-current-switching (ZCS) by an auxiliary resonant cell built before the 

output choke. The main drawback of this topology is the high number of utilized 

switches, 3 of which are for high-frequency use. 

Other than the first topology, all of the mentioned topologies are applicable for 

low or medium power cases (i.e., power<3 kW). In [13], a high-power topology has been 



113 
 

proposed that utilizes 4 switches, 2 of which for HF (see Figure A.1(h)). A drawback of 

this converter is that it requires large electrolytic capacitors, as they have used a 2000 uF 

capacitor in their 500 W experimental setup. 

In [14], the application of single-phase z-source converter has been proposed for 

grid-connected PV systems (see Figure A.1(i)). This topology uses 2 switches for HF 

(one at each half cycle) and two for LF. It can have symmetrical operation with simple 

control scheme. The drawback of this topology is that it needs two large electrolytic 

capacitors (e.g., 1000 uF for this reference) as well as two large inductors (e.g., 1 mH for 

the same reference). This increases the size and cost of the system. On top of that, this 

circuit imposes high ripple on the input current drawn from the source. 

Karschny [15] has proposed another configuration based on the buck-boost 

inverter which utilizes 5 switches (see Figure A.1(j)). This topology suffers from low 

efficiency (because of large number of switches) and also high cost and size [16]. 

In [17], a single-phase, single-stage, doubly grounded, transformer-less PV 

interface, based on the buck–boost principle, is presented (see Figure A.1(k)). The 

configuration is compact and uses fewer components. Only one (undivided) PV source 

and one buck–boost inductor are used and shared between the two half cycles, which 

prevents asymmetrical operation and parameter mismatch problems. However, it utilized 

an electrolytic capacitor at the input stage. 

A current-source single-stage inverter has been proposed by [18] based on the 

DC/DC boost converter topology (see Figure A.1(l)). In this topology, only 2 switches 

are utilized for HF, and 2 more for LF. 
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A coupled-inductor double-boost inverter (CIDBI) has been proposed in [19] (see 

Figure A.1(m)). The main attribute of the CIDBI topology is the fact that it generates an 

ac output voltage larger than the dc input one, depending on the instantaneous duty cycle 

and turns ratio of the coupled inductor as well. This topology uses 4 switches, all for HF. 

 

Table A.1: Specifications of the mentioned topologies 

topology SW (HF 
,LF)         

a 4,0 2x0.8 40 - - 100 127 30 500 
b 2,2 - - - - - - - - 
c 2,2 2x0.026 2x1000 - 12 60 100 9.6 500 
d 3 2x0.118 4700 - 12 30 100 9.6 327 
e 2,2 2x0.011 5.58 1 4.7 75 110 40 500 
f 4 1 2.2 1 10 160 200 20 500 
g 4 0.011 - - 5.5 120 110 40 500 
h 2,2 0.220 2000 3.25 4.4 85 110 10 500 
i 2,2 2x1 2x1360 1 - 60 68 15 200 
j 5 - - - - - - - - 
k 4     92 100  200 
l 2,2 0.7 - - 2x220 60 110 - 300 
m 4,0 - -   35 220 50 200 

 

 

(a) 
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(d) 
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(e) 

 

(f) 

 

(g) 
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(h) 

 

(i) 

 

(j) 
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(k) 

 

(l) 

 

(m) 

Figure A.1: The single-phase inverter system topologies 
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