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ABSTRACT OF THE DISSERTATION 

ECOSYSTEM STRUCTURE IN DISTURBED AND RESTORED SUBTROPICAL 

SEAGRASS MEADOWS 

by 

Amanda Sarah Bourque 

Florida International University, 2012 

Miami, Florida 

Professor James Fourqurean, Major Professor 

Shallow seagrass ecosystems frequently experience physical disturbance from 

vessel groundings.  Specific restoration methods that modify physical, chemical, and 

biological aspects of disturbances are used to accelerate recovery.  This study evaluated 

loss and recovery of ecosystem structure in disturbed seagrass meadows through plant 

and soil properties used as proxies for primary and secondary production, habitat 

quality, benthic metabolism, remineralization, and nutrient storage and exchange.  The 

efficacy of common seagrass restoration techniques in accelerating recovery was also 

assessed.   

Beyond removal of macrophyte biomass, disturbance to seagrass sediments 

resulted in loss of organic matter and stored nutrients, and altered microbial and infaunal 

communities.  Evidence of the effectiveness of restoration actions was variable.  Fill 

placement prevented additional erosion, but the resulting sediment matrix had different 

physical properties, low organic matter content and nutrient pools, reduced benthic 

metabolism, and less primary and secondary production relative to the undisturbed 

ecosystem.  Fertilization was effective in increasing nitrogen and phosphorus availability 

in the sediments, but concurrent enhancement of seagrass production was not detected.  

Seagrass herbivores removed substantial seagrass biomass via direct grazing, 
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suggesting that leaf loss to seagrass herbivores is a spatially variable but critically 

important determinant of seagrass transplanting success.   

Convergence of plant and sediment response variables with levels in undisturbed 

seagrass meadows was not detected via natural recovery of disturbed sites, or through 

filling and fertilizing restoration sites.  However, several indicators of ecosystem 

development related to primary production and nutrient accumulation suggest that early 

stages of ecosystem development have begun at these sites.  This research suggests 

that vessel grounding disturbances in seagrass ecosystems create more complex and 

persistent resource losses than previously understood by resource managers. While the 

mechanics of implementing common seagrass restoration actions have been 

successfully developed by the restoration community, expectations of consistent or rapid 

recovery trajectories following restoration remain elusive.  
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CHAPTER I:  Introduction 

Seagrasses are important plants with the capability to modify physical, chemical, 

and biological aspects of their environments.  The presence of seagrass biomass, 

structure and function in the surrounding sediments are important in such ecosystem 

processes as primary and secondary production, nutrient cycling, and benthic 

metabolism.  When compared to unvegetated sediments, seagrass-vegetated sediments 

have greater oxygen penetration and potential to reduce chemical species (Enríquez et 

al. 2001; Marbà & Duarte 2001), higher organic matter content (Pedersen et al. 1997),  

enhanced benthic metabolism including sulfate reduction (Isaksen & Finster 1996; 

Holmer & Duarte 2003) and nitrogen fixation (Patriquin & Knowles 1972; Capone & 

Taylor 1980), higher microalgae abundance (Bucolo et al. 2008), and more abundant 

and diverse macrofaunal (Stoner 1980; Virnstein et al. 1983) and microbial communities 

(Moriarty & Boon 1985).   

Seagrasses are globally threatened by multiple anthropogenic stressors,   

including physical disturbance (Orth et al. 2006).  Shallow seagrass habitats near 

population centers frequently experience physical disturbance as a result of vessel 

groundings.  These incidents create specific types of injuries, including blowholes, 

propeller scars, and berms that can excavate sediment, destroy above- and below-

ground seagrass biomass, and/or bury seagrasses.  Natural recovery of seagrass 

communities from severe disturbance such vessel grounding blowholes is a slow 

process, and recovery of deep excavations may take several years to over a decade 

(Zieman 1976; Durako et al. 1992; Dawes et al. 1997; Kenworthy et al. 2002; 

Hammerstrom et al. 2007; Di Carlo & Kenworthy 2008).   

An accepted definition of ecological restoration is “intentional activity that initiates 

or accelerates the recovery of an ecosystem with respect to its health, integrity and 
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sustainability”  (SER 2004).  It follows, then, that restoration actions should be developed 

and evaluated in the context of established ecological concepts (Young et al. 2005).  In 

the field of seagrass restoration, resource managers and restoration practitioners 

attempt to accelerate recovery of disturbed seagrass communities by implementing 

specific restoration methods that modify the physical, chemical, and biological aspects of 

the disturbances.   

For example, placing sediment fill into excavations is intended to stabilize sites 

from erosion and recreate the physical matrix that supports seagrasses and ecosystem 

functioning (Hammerstrom et al. 2007).  Because seagrasses ecosystems are often 

nutrient-limited (Short 1987; Fourqurean et al. 1992a), applying fertilizer serves to 

reestablish or augment pools of vital nutrients that may be limiting to seagrass growth 

(Kenworthy et al. 2000).  Bird roosting stakes have been shown to provide nitrogen and 

phosphorus to sediments (Powell et al 1989, Fourqurean et al 1995), which can have 

dramatic and long-lasting effects on phosphorous concentrations and seagrass biomass 

(Herbert & Fourqurean 2008).  Seagrasses are transplanted to more quickly replace lost 

plant structure and associated functions than would otherwise be accomplished through 

natural secondary succession following disturbance (Lewis 1987).   

Following physical disturbance, seagrasses are generally thought to follow a 

facilitation model of succession (Connell & Slayter 1977; Williams 1990).  Early 

colonizers including macroalgae and fast-growing seagrass species help stabilize 

disturbed sediments and build nutrient pools and in turn provide for colonization by later 

climax species.  Following seagrass restoration actions, recovery of the plant community 

is expected to follow this model.  As such, rapid assessments of plant communities are 

typically used to monitor recovery at seagrass restoration sites.  Few studies (e.g., Di 

Carlo & Kenworthy 2008) have monitored natural or assisted recovery of grounding 
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injuries in any other aspect than the above-ground plant communities (Fonseca et al. 

1996a; Dawes et al. 1997; Kenworthy et al. 2002; Whitfield et al. 2004; Hammerstrom et 

al. 2007) or associated nekton (Fonseca et al. 1996b; Bell et al. 2001; Uhrin & Holmquist 

2003).  Thus, the adequacy of current monitoring practices at accurately representing 

the loss of ecosystem structure resulting from vessel grounding injuries, and recovery of 

lost structure via both natural recovery and active restoration is of interest.   

My dissertation research evaluated the loss and recovery of ecosystem structure 

in disturbed seagrass meadows, as well as the efficacy of common seagrass restoration 

techniques in accelerating recovery.  To better understand the effects of physical 

disturbance on seagrass ecosystem structure, I studied primary producers and sediment 

structure at a chronosequence of vessel grounding disturbances (Chapter 2).  The 

chronosequence approach allowed me to evaluate the impacts of recent disturbances, 

as well as how altered ecosystem structure changed with time in older disturbances.  I 

also conducted a similar analysis of seagrass restoration sites of different ages, to 

determine if restoration accelerates the recovery of lost ecosystem structure in primary 

producers and sediments (Chapter 2).  Because the restoration chronosequence sites 

studied in Chapter 2 involved varying locations, restoration methods, and sample sizes, 

a more intensive analysis of the effects of restoration and fertilization on primary 

producers and sediment structure was conducted on a group of co-located sites during 

the first year following restoration implementation (Chapter 3).   

Microorganisms and infaunal invertebrates in seagrass sediments facilitate many 

key ecosystem processes.  Yet current knowledge of microbial and infaunal community 

structure in the context of physical disturbance and active restoration in seagrass 

ecosystems is not well understood.  Using the molecular fingerprinting technique of 

terminal restriction fragment length polymorphism, I studied short-term responses of 
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sediment microbial communities to restoration of vessel grounding injuries during the 

first year post restoration (Chapter 4).  In addition, I analyzed the effects of disturbance 

and restoration on infaunal community structure and diversity (Chapter 5). 

As previously mentioned, seagrass transplanting is a common restoration 

technique, and transplanting projects in the western Atlantic have been designed 

according to the principle of modified “compressed succession”  (Durako & Moffler 

1984).  In these projects, fast-growing Halodule wrightii and/or Syringodium filiforme are 

transplanted as early colonizers, to facilitate the eventual reestablishment of Thalassia 

testudinum.  Survival and persistence of transplanted seagrasses is highly variable, 

potentially limiting the hypothetical jump-start provided through modified compressed 

succession.  One potential reason for reduced transplant success is direct grazing by 

herbivorous fish.  I evaluated direct herbivory pressure on experimental planting units 

assembled from leaves of the seagrasses Thalassia testudinum, Syringodium filiforme, 

and Halodule wrightii (Chapter 6).  I also compared seagrass biomass loss to herbivory 

with elemental composition of donor and ambient seagrass leaves, and with fish 

communities at the assay sites.   

My study system was southern Biscayne Bay, a shallow (<3m) subtropical 

estuary located at the southeastern tip of the Florida peninsula.  Much of southern 

Biscayne Bay is encompassed within the boundary of Biscayne National Park, a unit of 

the United States Department of the Interior’s National Park Service.  Seagrass 

meadows dominated by turtle grass (Thalassia testudinum) are an important habitat type 

in the Park, and are heavily impacted by vessel groundings in several areas.   

As the manager of the Park’s Damage Recovery Program since 2003, my 

professional responsibilities primarily include building Natural Resource Damage 

Assessment (Kopp & Smith 1993) cases from vessel grounding incidents, and 
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conducting habitat restoration activities at vessel grounding sites.  The Park provided an 

excellent study system in which to explore my hypotheses. Successful settlement of 

numerous vessel grounding cases funded the restoration and monitoring of multiple 

injuries, and over fifty sites have been restored using a combination of methods since 

2003.  This scenario enabled hypothesis testing and the application of experimental 

designs incorporating replication using actual restoration sites.  In contrast, much of the 

work conducted to date on recovery following disturbance and restoration in seagrass 

ecosystems has been based on experimental, small-scale disturbances (e.g. Williams 

1990; Kenworthy et al. 2002; Hammerstrom et al. 2007). 

From an ecological perspective, my dissertation research is important in better 

understanding the effects of physical disturbance on seagrass ecosystem structure.  

From an applied perspective, the work provides key information on injury severity, as 

determined by functional loss, and what can be expected in terms of natural recovery 

and recovery of restoration sites.  This type of information is critical to scaling 

compensatory restoration in Natural Resource Damage Assessment cases involving 

seagrass resources, including vessel grounding cases.  The work also enables 

recommendations on the efficacy of seagrass restoration methods that may be subject 

to site-specific conditions. 
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CHAPTER II:  Plant communities and sediment structure following disturbance and 

restoration in subtropical seagrass meadows. 

Abstract 

 Physical disturbance to seagrass ecosystems removes plant biomass, but 

impacts to habitat quality and nutrient storage and cycling are not well understood.  

Seagrass restoration actions provide a management tool intended to accelerate the 

recovery of lost ecosystem structure and function following disturbance.  We studied the 

plant community and sediment structure at vessel grounding disturbances in seagrass 

ecosystems to better understand the nature of such impacts, and how structure changed 

with time.  We conducted a similar analysis of seagrass restoration sites of different 

ages, to determine if restoration accelerates the recovery of lost ecosystem structure in 

the plants and sediments.  Disturbance to seagrass sediments resulted in loss of 

seagrass community structure and diminished sediment and porewater nutrient pools.  

These impacts persisted in our study sites that were up to five years in age since impact.   

Another effect of physical disturbance is the loss of nutrients stored in the sediments. 

Restoration sites that received fill were characterized after 3 to 3.5 years by low 

macrophyte cover and by sediments with greater bulk density and redox potential, and 

low sediment and porewater nutrient pools.  We did not detect substantial convergence 

of seagrass and sediment structure with the intact seagrass ecosystem in either the 

disturbed or the restoration sites we studied.  However, our study sites were still in a 

recent period of recovery following disturbance or restoration.  Longer time frames will 

be needed to identify ecosystem recovery trajectories following disturbance and 

restoration in this system.    
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Introduction 

 Seagrasses are ecosystem engineers with the capability to modify physical, 

chemical, and biological aspects of their environments (Orth et al. 2006).  Nutrient 

cycling and benthic metabolism are important functions of seagrass ecosystems 

(Hemminga & Duarte 2000; Marba et al. 2006b) that occur in seagrass sediments.  For 

example, when compared to unvegetated sediments, seagrass sediments have larger 

sediment nutrient pools (Fourqurean et al. 1992; Duarte et al. 2005),  higher organic 

matter content (Kenworthy 1981; Pedersen et al. 1997),  more sulfate reduction activity 

(Isaksen & Finster 1996; Holmer & Duarte 2003), greater nitrogen fixation (Patriquin & 

Knowles 1972; Capone & Taylor 1980), higher benthic microalgae content, and more 

abundant and diverse macrofaunal (Stoner 1980; Virnstein et al. 1983) and microbial 

communities (Moriarty & Boon 1985).  Thus, sediment structure is an important 

determinant of nutrient processing rates and storage capacity, affecting plant productivity 

and community structure. 

 Seagrass ecosystem structure and function provide numerous goods and 

services to human populations including shoreline protection, sediment stabilization, 

water purification, commercial and artisanal fisheries, and nutrient cycling (Spalding et 

al. 2001).  These goods and services have been valued at $19,000 ha -1 yr -1 (Costanza 

et al. 1997).  Recent studies have revealed that seagrass ecosystems sequester large 

quantities of organic carbon, nitrogen, and phosphorus in their sediments (Duarte et al. 

2010; Fourqurean et al. 2012a).  Stored organic carbon can be oxidized and released 

into the atmosphere as CO2 when sediments are disturbed, which is problematic in the 

face of climate change fueled by greenhouse gas emissions.  The economic incentives 

of protecting seagrass ecosystems from degradation are being explored in the context of 

developing carbon credit mitigation programs.  Stored organic carbon, or “blue carbon” 
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stocks in seagrass sediments can be considered a valuable ecosystem service that has 

recently been assigned a carbon credit revenue potential of $7,000 ha -1 (Murray et al. 

2011). 

 Loss of seagrass resources in coastal ecosystems is accelerating (Waycott et al. 

2009), and physical disturbance from storm events, dredging, development, and fishing 

gear impacts, is a contributor to this decline (Short & Wyllie-Echeverria 1996; Orth et al. 

2006; Grech et al. 2012).  In root-based plant communities, disturbances to below-

ground components of the ecosystem can have more severe consequences than 

disturbances to above-ground components (Pickett & White 1985), and below-ground 

impacts are slow to recover (Di Carlo & Kenworthy 2008).  Physical disturbances to 

seagrass meadows that disrupt the rhizosphere, such as from mussel dragging (Neckles 

et al. 2005) or from vessels that run aground and excavate plants and sediment 

(Hammerstrom et al. 2007; Di Carlo & Kenworthy 2008), lead to persistent changes in 

ecosystem function, including primary production, nutrient cycling, and habitat provision 

for seagrass-associated organisms. Seagrass ecosystems near population centers are 

subject to frequent and severe physical disturbance when vessels run aground (Sargent 

et al. 1995; Dunton & Schonberg 2002; SFNRC 2008).   

 Increased protection for seagrasses by government agencies is often 

accompanied by mandates to restore seagrass injuries or otherwise mitigate for 

seagrass impacts (Kirsch et al. 2005).  Accordingly, interest in seagrass restoration has 

increased in recent decades (Treat & Lewis 2006; Paling et al. 2009; Fonseca 2011).  

Resource managers and restoration practitioners attempt to accelerate recovery of 

disturbed seagrass communities by implementing specific restoration methods.  Filling 

grounding excavations, providing a fertilizer source, and transplanting seagrasses are 

commonly-used seagrass restoration techniques (Fonseca et al. 1998; Kirsch et al. 
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2005; McNeese et al. 2006; Farrer 2010; Hall et al. 2012b) .  Placing sediment fill into 

excavations is intended to stop erosion and to recreate the physical matrix that supports 

seagrasses and ecosystem functioning (Kirsch et al. 2005; Hammerstrom et al. 2007; 

Farrer 2010).  Seagrasses are transplanted to more quickly replace lost plant structure 

and associated functions than would otherwise be accomplished through natural 

secondary succession following disturbance (Lewis 1987).  Because seagrass 

ecosystems are often nutrient limited (Short 1987; Fourqurean & Zieman 1992), applying 

fertilizer via bird roosting stakes, whereby the defecation of perching seabirds falls to the 

sea floor below the stakes, aims to reestablish or augment pools of vital nutrients that 

may be limiting to seagrass growth (Kenworthy et al. 2000; Farrer 2010).   

 For restoration to be successful, ecological attributes of the system such as 

structure, composition, and function must be reestablished (Fonseca et al. 1996a; Hobbs 

& Norton 1996; Higgs 1997), but a preliminary understanding both of the effects of the 

disturbance and of natural recovery trajectories is required to understand the post-

restoration recovery process.  Recovery of subtropical seagrass communities following 

sediment disturbance is variable, and may take several years to over a decade (Zieman 

1976; Durako & Moffler 1985; Dawes et al. 1997; Kenworthy et al. 2002; Hammerstrom 

et al. 2007; Uhrin et al. 2011; Hall et al. 2012b).  However, seagrass ecosystem 

functions extend beyond primary production and habitat provided by the plants 

themselves.  Little is actually known about disturbance effects to and recovery of 

sediment structure following disturbance in seagrass ecosystems (but see Williams 

1990; Di Carlo & Kenworthy 2008).  Similar knowledge gaps exist with regard to 

recovery of sediment structure following seagrass restoration.  Once restoration has 

been implemented, rapid assessments of plant communities are typically used to 

monitor restoration success (Fonseca et al. 1998; Kirsch et al. 2005; Farrer 2010; Hall et 
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al. 2012b).  Few studies have assessed ecosystem structure following seagrass 

restoration for any aspects other than above-ground plant communities (Fonseca et al. 

1996a; McNeese et al. 2006; Hammerstrom et al. 2007; Hall et al. 2012b) or associated 

fauna (Fonseca et al. 1996b).   

 Our study aimed to fill information gaps that exist regarding the impacts that 

physical disturbances initially have on ecosystem structure in seagrass sediments.  We 

also sought to understand the effects of common restoration actions on seagrass 

ecosystem structure following restoration.  We focused on structural attributes essential 

to habitat quality, nutrient storage, and ecosystem metabolism in the vegetation and the 

soil.  We hypothesized that a) vessel groundings alter seagrass ecosystem structure, 

specifically in primary producer community and sediments, b) altered structure changes 

with time following disturbance through succession and ecosystem development, and c) 

seagrass restoration actions such as fill placement and bird stake installation accelerate 

the recovery of lost structure.   

Methods 

Study System 

 Southern Biscayne Bay is a shallow (<3 m) subtropical estuary located at the 

southeastern tip of the Florida peninsula (Figure 1).  Seagrass communities in southern 

Biscayne Bay are dominated by dense Thalassia testudinum meadows.   Syringodium 

filiforme and Halodule wrightii are also found throughout this area in lower abundance 

and patchy distributions.  There is a strong dissolved inorganic nitrogen gradient 

decreasing from west to east, influenced by freshwater input from canals along the 

western shoreline, and the predominantly carbonate based sediments contribute to 

phosphorus limitation in the bay (Caccia & Boyer 2005).  Most shallow seagrass shoals 
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(<1 m) in this area are heavily impacted by vessel grounding injuries, where seagrass 

has been removed and sediment excavated in discrete areas.  Our study evaluated 

seagrass ecosystem structure on multiple seagrass shoals:  Cutter Bank, Arsenicker 

Bank, East Featherbed Bank, and Biscayne Channel (Figure 1).     

Experimental Design 

 Our study sites included multiple vessel grounding injuries, vessel grounding 

restoration sites, and adjacent undisturbed seagrass meadows on these shoals.  We 

used a chronosequence approach to examine the effects of vessel grounding 

disturbance and seagrass restoration practices on plant community structure and soil 

properties.  Twenty seven vessel grounding sites of known age (i.e., time since 

disturbance or restoration) were identified.  Site age was rounded to the nearest six-

month increment.   

 To evaluate the effects of vessel groundings on ecosystem structure, and the 

recovery of lost structure through time, we assessed primary producer communities and 

sediment structure in unrestored Grounding (G) sites and in undisturbed reference 

seagrass meadows.  Grounding sites included vessel grounding injuries that were 0, 1, 

2, 4, or 5 years old, where sediments were excavated to a mean depth of 0.4 m, but for 

which no restoration has taken place.  Most sites were documented upon occurrence 

and were relocated from original assessment maps.  Three sites were not documented 

upon occurrence, but were known from aerial photography to be at least five years old.   

 To assess whether or not seagrass restoration actions accelerate recovery of lost 

ecosystem structure in vessel groundings, we evaluated primary producer communities 

and sediment structure in restoration sites and in undisturbed seagrass meadows.  

Restoration sites had received one of three restoration treatments during multiple 
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restoration projects conducted by the National Park Service during the period  2007 - 

2010.  Restoration For the Grounding + Stake (GS) treatment, bird roosting stakes were 

placed into injuries on 2-m centers to provide a fertilizer source to encourage natural 

recruitment of surrounding vegetation.  Grounding + Stake sites were 0, 1, 3, or 3.5 year 

years old.  Injuries that were filled back to the grade of the surrounding bay bottom using 

quarried sand comprised the Fill (F) treatment.  Fill sites were 0, 1, or 3.5 years old.   In 

the Fill + Stake (FS) treatment, sites were returned to grade with sand fill, and provided 

with bird roosting stakes on 2-m centers for fertilizer.  Fill + Stake sites were 0, 1, 3, or 

3.5 years old.   

 In each disturbance and restoration treatment (i.e., G, GS, F, FS), there were two 

to four sites per treatment per age group.  Sites were sampled once in February - March 

2011.  Undisturbed seagrass meadows adjacent to (within 2 m of) each grounding or 

restoration site were sampled as a reference sites. 

Seagrass Community Characterization  

 To evaluate natural recovery of macrophyte (i.e., macroalgae and seagrass) 

communities in vessel grounding disturbances, seagrass community composition was 

documented at each site.  Seagrass and macroalgae (i.e. calcareous green algae) 

abundances were estimated within randomly placed 0.25 m2 PVC quadrats using a 

modified Braun-Blanquet (BB) cover-abundance scale (Fourqurean et al. 2001).  Ten 

percent of each site area was sampled, with an equivalent number of quadrats sampled 

in the reference area for a given site.   

Sediment Core Collection and Processing 

 We sampled a suite of soil properties that are important indicators of structure 

and function in seagrass ecosystems, including benthic microalgae growing on surface 
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of sediments (primary production, habitat quality); redox potential, organic matter 

content, and porewater sulfide (benthic metabolism and remineralization); water content 

and bulk density (nutrient exchange); and nitrogen and phosphorus in sediment and 

porewater (nutrient storage).  Sediments were sampled by haphazardly collecting one 

7.3 cm x 40 cm sediment core each from each injury or restoration site, and from the 

undisturbed reference seagrass bed adjacent to (within 2 m of) each site.   Core tubes 

were immediately plugged at both ends following collection, and temporarily stored in the 

dark in a vertical position in ambient seawater until processed.  Cores were extruded 

and sectioned into six depth horizons (0 - 2 cm, 2 - 6 cm, 6 - 10 cm, 10 - 20 cm, 20 - 30 

cm, and 30 - 40 cm in a nitrogen-filled glovebox.  The redox potential (Eh) of sediments 

from each homogenized depth horizon were measured in the glovebox.  Depth horizons 

were then subsampled for analysis of benthic microalgal biomass (as chlorophyll a), soil 

properties (bulk density, water content, organic matter content, total nitrogen, total 

phosphorus), and porewater constituents (ammonium (NH4
+), soluble reactive 

phosphorus (SRP), and dissolved sulfide (DS)).  Sediments for porewater extraction 

were placed into 50 mL centrifuge tubes and capped inside the glove box, centrifuged 

for five minutes at 3000 rpm, and returned to the glovebox.  Extracted porewater was 

filtered through GF-C (1.2 µm) in-line syringe filters and subsampled into two aliquots for 

analysis of NH4
+/SRP (20 ml) and DS (5 ml), respectively.   Samples for DS were fixed 

with 1 M ZnAc in a 1:10 dilution (Holmer et al. 2001) and stored at room temperature; all 

other sediment and porewater samples were frozen at -20°C until further analysis.  

 Benthic microalgal biomass was determined for the 0 - 2 cm horizon only.  

Sediments were freeze-dried and pigments extracted with 90% acetone for 72 hours at -

20°C, and chloropyll a content (µg g-1) was measured flourometrically (Strickland & 

Parsons 1972) on a Shimadzu RF 5301PC spectrofluorophotometer (excitation = 435 
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nm, emission = 667 nm).  Bulk density was measured as dry mass per unit volume.  

Water content (WC) was determined as proportional mass loss after drying sediments at 

75°C for 48 hours.  Organic matter content was measured as loss on ignition (LOI), or 

proportional mass loss of dry sediments following combustion at 500°C for four hours 

(Gross 1971).  Sediment total nitrogen (N) were determined using a CHN elemental 

analyzer (Fisons NA1500).  Total P (P) was determined through a dry-oxidation, acid 

hydrolysis extraction followed by colorimetric analysis of phosphate concentration in the 

extract (Fourqurean et al. 1992a).  Elemental content was calculated on a dry weight 

basis as (mass of element/dry weight of sample) x 100%.  Elemental ratios were 

calculated as molar ratios. 

 Porewater samples for NH4
+ and SRP were acidified to a pH of 2 with 6 N HCl 

and sparged with nitrogen gas to drive off hydrogen sulfide prior to analysis.  Porewater 

NH4
+ concentrations were measured colorimetrically with the indo-phenol blue method 

(Koroleff 1969, Parsons et al. 1984) and soluble reactive phosphorus (SRP) 

concentrations were measured colorimetrically using the ascorbate method (Parsons et 

al. 1984). Porewater sulfide concentrations were determined spectrophotometrically 

following the methods of Cline (1969).   

Data Analysis 

 Loss of ecosystem structure in new groundings was first evaluated by comparing 

primary producer (seagrass, macroalgae, microphytobenthos) abundances between 

injury and reference sites within each age group.  Seagrass and macroalgae BB scores 

from the seagrass community surveys were converted to percent cover data using the 

midpoint of the percent cover range corresponding to each BB score, and averaged by 

disturbance status (injury, reference) for each age group.  Seagrass and macroalgae 
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percent cover and chlorophyll a content between injury and reference sites at each age 

group were compared using Mann-Whitney U-tests (seagrass, macroalgae) or t tests 

(chlorophyll a) using the software SPSS 20.0 (IBM).   

 Vessel grounding impacts were also evaluated with reference and injury cores to 

develop nutrient storage estimates for sediments, which were then used to quantify 

nutrient loss resulting from sediment disturbance.  The injury cores (40 cm long, n = 4) 

were collected from the bottom of recent injuries that ranged from 40 to 80 cm deep, with 

an average depth of 40 cm.  Reference cores (40 cm long, n = 4) were collected 

adjacent to these injuries.  Superimposing reference core values over injury core 

provides estimates of pre-impact conditions in the top 80 cm of sediments.  Loss of 

nutrients stored in the sediments (i.e., OM, N, P) resulting from grounding injuries was 

calculated using the volume, bulk density, and nutrient content for each core slice.  

Sediment OM content has been shown to be a good predictor of sediment organic 

carbon (Corg) in subtropical seagrass meadows with relatively high Corg content 

(Fourqurean et al. 2012b), so OM values were used as proxies for Corg content, using a 

ratio of Corg = ca. 0.38 * OM.  We extrapolated mass loss to a depth of one meter, 

making the assumption that bulk density and elemental content for the 80 - 100 cm 

range did not differ from the deepest 10-cm slice of the injury cores.  We felt this was a 

reasonable assumption, given that for nearby Florida Bay seagrass sediments, 

Fourqurean et al. (2012b) documented little change Corg content in the 80 - 100 cm 

horizon.  We then calculated the nutrient storage in the top 1 m of reference sediments, 

and developed estimates of elemental loss for the injuries studied.   

 Analysis of the status of disturbance and restoration sites relative to their 

respective reference sites through time was conducted in two parallel approaches.  The 

first analysis focused on disturbed sites, and the second focused on restoration sites, 
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including three restoration treatments (i.e. GS, F, FS).  Prior to analysis, sediment 

variable data were log-transformed to reduce skewness and normalized to place 

variables on comparable and dimensionless scales.     

 Principal components analysis (PCA) was used to reduce data complexity and 

extract composite variables that explained maximum variability in the sediment 

properties.  Seven sediment variables were included in the PCAs:  BD, Eh, OM, N, P, 

NH4
+, and SRP.  The PCA ordinations helped visualize multivariate differences between 

injury or restoration sites and reference sites.  Within each analysis, we attributed 

ecological relevance to those PC axes with eigenvalues > 1 and we interpreted them on 

the basis of soil property variables that were strongly correlated with each PC axis. 

 We then used Permutational Multivariate Analysis of Variance (PERMANOVA, 

Anderson et al. 2008) to test the effects of site Status and Time on ecosystem structure.  

The PERMANOVA routine enables testing of the response of one or more variables to 

one or more factors, one the basis of any resemblance measure, by partitioning sources 

of variation.  A primary advantage of PERMANOVA is that statistical significance of the 

pseudo-F statistic is determined through permutations of randomized real data, avoiding 

normality and homogeneity of variance assumptions (Anderson et al. 2008).  

Specifically, we used PERMANOVA to test for the effects of Status and Age on a) 

multivariate soil properties at disturbance sites, and b) univariate ecological roles 

represented by PC scores for individual axes for disturbance and restoration sites.  

Because we were more interested in the status of the restoration sites relative to 

reference seagrass meadows, as opposed to other restoration sites, we conducted 

PERMANOVA analyses on the PC scores for each individual restoration treatment.    

 The PERMANOVA analyses were conducted on Euclidean distance 

resemblance matrices, and significance values were based on 999 permutations of 
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residuals under reduced models.  Where data variables were available for multiple depth 

horizons, sediment depth was used as a covariate requiring the use of Type I sums of 

squares; otherwise, Type III sums of squares were used in the PERMANOVA routine.  

Pairwise permutational tests were conducted for significant factors and interactions.  The 

PCA and PERMANOVA analyses were conducted with the software PERMANOVA+ for 

PRIMER (Primer-e, Plymouth, UK). 

Results 

Vessel Grounding Impacts on Macrophytes and Sediment Properties  

Primary Producer Abundance 

 Seagrass and macroalgae cover, but not benthic microphytobenthos abundance, 

were reduced at recent vessel grounding injuries.  Mean seagrass percent cover within 

the injuries (6.2 ± 1.5%) was more than 80% lower than in the reference seagrass 

community (44.4 ± 4.5%).  Seagrass cover remained lower in injuries in every age group 

(0, 1, 3, 4, 5 yr) of unrestored grounding sites documented (U tests, p < 0.001; Figure 2).  

Macroalgae cover in recent groundings (4.4 ± 1.1%) was approximately half of the cover 

in the reference seagrass community (U test, p = 0.012; Figure 2), but this reduction did 

not persist in sites that were 1, 3, 4, or 5 yrs old (U test, p > 0.069).  Chl a content of 

surficial sediments in grounding site sediments ranged from 4.1 ± 1.1 to 14.2 ± 1.1 µg/g, 

and was significantly lower than in reference sediments only for the 3 yr old sites (t test, t 

= -3.3, df = 4, p = 0.029; Figure 2). 

Sediment Properties 

 We found little difference in sediments from recent grounding vs. reference sites 

for the variables BD (median 0.8 vs. 0.9 g ml -1), Eh (median -273 vs. -220 mV), OM 
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(median 6.1 vs. 4.9%), N (median 0.14 vs. 0.11%), or P (median 0.0084 vs. 0.0082%; 

Figures 3-4).  Porewater nutrient concentrations (NH4
+ and SRP) in the top 10 cm of 

disturbed sediments (Figures 3, 4) were reduced by half relative to reference sediments 

(NH4
+ median 192.1 vs. 289.8 µM, SRP median 1.3 vs. 3.1 µM).  Grounding impacts to 

sediment properties showed variable patterns for different site age groups.  For 

example, BD, OM, and N were reduced in the 1 yr old injuries, but greater than 

reference sediments in the 5 yr old injures.  SRP concentrations were up to five times 

lower in the 3 yr old groundings than in reference sediments, but similar to reference 

values for the 1 yr and 4 yr old sites (Figure 4). 

Sediment Elemental Stocks 

 Organic carbon (Corg) storage in the top meter of sediments at recent grounding 

sites contained an average of 15.0 ± 2.0 kg m-3, or 150.0 ± 19.7 t ha-1 in the top meter of 

sediments.  Sediment nitrogen content was 0.9 ± 0.0 kg m-3, or 9.0 ± 0.3 t ha-1.  

Phosphorus content was 0.072 ± 0.003 kg m-3, or 0.72 ± 0.03 t ha-1.  The total volume of 

sediment excavated from the four recent grounding sites was approximately 32.6 m3, 

and resulted in a loss of approximately 489 kg of buried soil Corg (not including Corg 

contained in lost seagrass biomass), 29.3 kg of N, and 2.3 kg of P, respectively (Figure 

5). 

Impacts to Multivariate Sediment Properties 

 Sediment properties differed between unrestored vessel grounding and reference 

sites of different age groups.  OM and N were negatively correlated and BD was 

positively correlated with PC1 (Table 1).  We interpreted PC1 as a proxy for organic 

matter accumulation in seagrass sediments, characterized by high N content and low 

BD.  Ammonium and SRP were positively correlated with PC2 (Table 1).  We interpreted 
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PC2 to represent the availability of dissolved inorganic nutrients.   Redox potential and P 

were not strongly correlated with either PC.   

 Disturbance status (i.e., injury vs. reference) and Time were significant factors in 

our analyses of the impacts of groundings on multivariate sediment variables, as was the 

Disturbance x Time interaction (PERMANOVA, p < 0.005; Table 2).  Depth was 

significant as a covariate (PERMANOVA, p < 0.001; Table 2).  Multivariate injury data 

differed significantly from reference data in samples from recent groundings and from 

each subsequent age group (PERMANOVA pairwise tests, p < 0.048; Table 2).  

Sediment organic composition, as represented by PC1 scores, was lower in injury 

samples than in reference samples at 1 yr old and 5 yr old sites (PERMANOVA, p < 

0.002; Table 2; Figure 6), but not for the other age groups.  Porewater nutrient 

concentrations, as represented by PC2 scores, were higher in injury samples than in 

reference samples from 0 yr, 3 yr, and 4 yr old sites (PERMANOVA, p < 0.039; Table 2; 

Figure 6).   Depth was a significant covariate (PERMANOVA, p < 0.002, Table 2) for 

porewater nutrients, indicating elevated concentrations with increasing depth (Figure 6). 

Effects of Restoration on Macrophytes and Sediment Properties  

Primary Producer Abundance 

 Seagrass percent cover in each of the restoration treatments remained low 

relative to reference sites for all age groups (Figure 7).  At 4 yr old sites, seagrass 

percent cover was 11%, 31%, and 26% of reference values for GS, F, and FS sites, 

respectively.  In contrast, macroalgae percent cover at restoration sites increase more 

rapidly and exceeded reference values in each restoration treatment during the same 

period (Figure 7).   Macroalgae cover increased over fifteen fold in four years in both F 

and FS sites (Figure 7). 
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Sediment Properties 

 Sediments at restoration sites differed relative to reference sediments for several 

measured variables, and differences were most notable at the F and FS sites.  At F and 

FS sites, bulk density (median 1.3 vs. 0.3 g ml -1) and Eh (median 155 vs. -323 mV) were 

higher in restoration sites (Figure S1).  Sediment nutrient content was extremely low at F 

and FS sites (OM median 1.9% vs. 16.3%; N median 0.05 vs. 0.60%; Figures S1, S2).  

Phosphorus content was on average double in F and FS sites (median 0.34 vs. 0.14%; 

Figure S2).  Ammonium concentrations were generally elevated in restoration sites 

(Figure S2).  

 Multivariate Sediment Effects 

 In the PCA of sediment variables from the three restoration treatments (GS, F, 

FS), OM and N were positively correlated with PC1, and BD was negatively correlated 

by PC1 (Table 1).  Negative correlations were found between PC2 and P, NH4
+, and 

SRP (Table 1).   Redox potential was not strongly associated with either PC.  As in the 

disturbance analysis, we associated sediment organic matter accumulation with PC1, 

and inorganic porewater nutrient availability with PC2 in the PCA analyses of restoration 

treatments.   

 Sediment organic content, as represented by PC1 scores, was lower in all three 

restoration treatments than in reference meadows (PERMANOVA, p < 0.001; Table 3; 

Figure 8).  Porewater nutrient concentrations (i.e., PC2 scores) were lower in the GS 

and FS treatments than in reference meadows (PERMANOVA, p < 0.006; Table 3; 

Figure 8), but not in the F treatments (PERMANOVA, p = 0.408; Table 3; Figure 8).  

Organic content and porewater nutrients increased with depth in all analyses 

(PERMANOVA, p < 0.044; Table 3; Figure 8).  One exception was observed in the F 
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analysis, where porewater nutrients did not vary with depth (PERMANOVA, p = 0.102; 

Table 3; Figure 8). 

 Time was a significant factor in explaining variation in both organic content and 

porewater nutrients, for each restoration treatment (PERMANOVA, p < 0.001; Table 3).  

However, we employed a chronosequence approach, sampling sites from several 

locations in southern Biscayne Bay (Figure 1).  Further, because reference values 

exhibit variation among the different age groups, this result likely indicates spatial 

variability in the organic matter and porewater nutrients found in our samples. 

Discussion 

 We documented that vessel groundings in seagrass ecosystems affected 

macrophyte abundance and some soil properties, and recovery of response variables to 

reference levels during the time frame of our study differed among variables.  Initial 

effects on primary producers included loss of soil, seagrass and macroalgae cover.  

Abundance of benthic microalgae, and calcareous green macroalgae, with rapid growth 

rates, returned to reference levels within a year of disturbance in grounding injuries.  In 

contrast, differences in seagrass cover and multivariate sediment structure existed 

between injury and reference samples for all injury age groups that we studied (0 - 5 

yrs).  Though these differences appeared to vary depending on the age of the injuries, 

differences in sediment structure seem to be linked to altered sediment and porewater 

nutrients in the disturbance sites.  Our results suggest that seagrass ecosystem 

structure in vessel grounding disturbances involving sediment excavation did not return 

to levels in the undisturbed ecosystem in a five year period.  

 We found that substantial quantities of Corg, nitrogen and phosphorus are buried 

in the seagrass sediments of southern Biscayne Bay.  Organic carbon storage is similar 
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in magnitude to stocks of two other subtropical seagrass ecosystems (Florida Bay, USA 

and Shark Bay, Australia) for which Corg stocks have been quantified (Fourqurean et al. 

2012b).   The observed nutrient stocks stored in seagrass sediments translate to 

substantial loss of organic carbon, nitrogen, and phosphorus from the system when 

seagrass sediments are mechanically disturbed by excavation.  Seagrass sediments in 

southern Biscayne Bay are heavily impacted by vessel groundings in many areas, as are 

seagrass shoals in many other areas in south Florida (Sargent et al. 1995; Kirsch et al. 

2005; SFNRC 2008; Uhrin et al. 2011).  Awareness of the magnitude and potential 

economic value of blue carbon resources is relatively recent (Duarte et al. 2010; Murray 

et al. 2011; Fourqurean et al. 2012a).  The loss of blue carbon due to vessel groundings 

and other disturbances is a resource impact that resource managers and regulators may 

not be including in considerations of impact severity, nor in the economics of damage 

assessment and restoration.     

 The release of these nutrients may have complex ramifications.  For example, it 

has been proposed that continued global decline of seagrass resources could result in 

substantial CO2 releases to the atmosphere (Fourqurean et al. 2012a).  In this strongly P 

limited system, release of even small quantities of P could locally stimulate benthic algae 

or phytoplankton blooms, or be exported to adjacent ecosystems (Fourqurean et al. 

2012b).   

 Seagrass communities and sediment structure at our restoration 

chronosequences return to the status of the undisturbed ecosystem in the time frame of 

this study.  Restoration that involves the filling of excavations creates an immediate and 

lasting disturbance through the introduction of quarried sediments characterized by low 

OM, and high BD, Eh, and P content.  Filled restoration sites had different grain size 

characteristics, and in the time frame of our study, lower habitat quality and nutrient 
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storage capacity.  Higher Eh was recorded for F and FS sites, which had little to no 

vegetative cover during out study period.  In contrast, reference seagrass sediments 

were strongly reduced.  We suggest that the differences in Eh we observed between Fill 

and reference sites can be explained by the high OM content in the reference 

sediments, and the near absence of OM in sites that received fill.  With little organic 

material to act as a substrate for microbial remineralization processes in fill sites, Eh was 

higher in these sites.   

 Continued monitoring will be necessary to reveal if ecosystem structure in 

restoration sites recovers to the conditions in the reference seagrass meadows.  

Regardless of the recovery rate and uncertainty of longer-term function in these sites, 

filling excavations remains a critical step in stabilizing sites and minimizing the potential 

for erosion of excavation banks due to currents or storms (Whitfield et al. 2002; 

McNeese et al. 2006; Uhrin et al. 2011; Hall et al. 2012b).  Further, filling excavations 

provides substrate for eventual recolonization by the seagrass community.  Gap closure 

in seagrass meadows occurs primarily through clonal extension (Rasheed 1999; 

Kenworthy et al. 2002), and seagrass and rhizophytic algae may not be able to extend 

down abrupt steep slopes such as typically exist in grounding injuries (Kenworthy et al. 

2002; Whitfield et al. 2002).  Should plant material fall into the excavation or recruit from 

seed, the sediments available to them in the bottom of the excavations, as represented 

by our injury cores, may be qualitatively different from the surrounding seagrass beds, 

with lower organic matter content and porewater SRP.  Drift algae, sponges, and 

seagrass detritus often accumulates in the bottom of excavations and may cause light 

limitation and increase sediment sulfides (Kenworthy et al 2002, Lamote et al 2006, but 

see Irlandi et al. 2004).  Further, the potential for reaccumulation of sequestered 

resources can only be realized with the reestablishment of the seagrass community.  For 
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these reasons, restoration of excavations to grade is considered a critical step in the 

recovery process, especially for larger excavations (Uhrin et al. 2011).  Planting fast 

growing seagrass species may also accelerate site recovery in some areas, though 

seagrass herbivory can have detrimental effects on transplanting projects (see Chapter 

VI of this thesis).   

 In the P-limited seagrass ecosystems of south Florida (Powell et al. 1989; 

Fourqurean et al. 1992a; Chapter VI of this thesis), resource managers conducting 

restoration have included a fertilizer source (usually via bird feces delivered by installing 

bird stakes) into restoration project design (Kenworthy et al. 2000; Kirsch et al. 2005; 

Farrer 2010; Hall et al. 2012b).  The P contributed by bird stakes can cause a lasting 

enrichment effect.  At sites where bird stakes were deployed for 28 months and then 

removed over 20 years ago, elevated sediment P concentrations persist (Herbert & 

Fourqurean 2008). In our study, we expected to see elevated P content at our 3 and 3.5 

yr old GS sites.  Bird stakes installed in Florida Bay were shown to provide nitrogen (N) 

and phosphorus (P) at loading rates of approximately 19 g m-2 y-1 and 3.29 g m-2 y-1, 

respectively (Powell et al. 1989; Fourqurean et al. 1995).  The effects of this nutrient 

source in naturally occurring subtropical carbonate sediments can include elevated 

seagrass biomass and sediment P concentrations on decadal time scales (Herbert & 

Fourqurean 2008).  However, we saw no obvious effect of the bird stakes at our GS 

sites.  Bird stakes were left in place at our older GS and FS sites for a period of 18 

months.  We did not document bird usage of the roosting stakes, and it is possible that 

the stakes were not used frequently enough to provide their intended function.   

 We saw elevated P content at our 3.5 yr old FS sites, and also at F sites (that did 

not have bird stakes) in the same age groups.  We attribute P content in the FS sites to 

the enriched fill material, rather than to the presence of bird stakes.  The elevated P 
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content recorded for sediments from both fill treatments was unexpected.  Fill material 

used for restoration is sourced from multiple lake mines located throughout Miami-Dade 

County, Florida.  It seems likely that this material was mined from phosphorus belts that 

underlie parts of south Florida (Marquez et al. 2008).  This attribute of the fill material 

was not intentionally sought, and may have unforeseen consequences.  Adding P-

enriched fill into this P-limited system could have implications for the macrophyte 

community structure.  The P in this material is likely tightly adsorbed to carbonate 

particles, but can be released in the presence of respiration in the sediments, such as 

from microbial remineralization of organic matter (Erftemeijer & Middelburg 1993; 

Jensen et al. 1998) or sulfate reduction (Ruiz-Halpern et al. 2008).  OM content is 

expected to accumulate in the sediments with development of the seagrass community, 

and should result in increased availability of P in the fill sites, above what would normally 

be expected.  If this occurs in sites that are also fertilized via bird roosting stakes, 

localized “hotspots” of P enrichment may result, with potential implications for 

macrophyte communities.  For example, chronic P enrichment has been shown to alter 

seagrass community structure by favoring rapidly growing species (Fourqurean et al. 

1995; Herbert & Fourqurean 2008).  Further work is needed on the nature of the material 

used for fill in seagrass restoration sites, to include reviewing locations of quarries in 

relation to know bedrock P deposits.  We recommend that fill be analyzed for P content 

prior to use in restoration projects, and that caution be exercised when deciding to use 

bird stakes in conjunction with fill of unknown origin and P content. 

Conclusion 

 Seagrass communities and sediment structure at our disturbance and restoration 

chronosequence sites remained distinct from reference seagrass meadow over the time 
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frame of the study.  Restoration actions involving coarse grained fill resulted in sites with 

different characteristics than the surrounding reference meadows.  We acknowledge our 

study focused on relatively recent disturbances and restoration projects.  It will be 

important to continue to document ecosystem development in these types of restoration 

sites to substantiate the assumption that these sites will indeed regain lost structure and 

function through time, and to calibrate expectations of restoration outcomes.  The goal of 

ecosystem replacement may be questionable for sites that are highly modified sites 

(Zedler & Callaway 1999).  With unpredictable restoration outcomes and recovery 

potentially occurring in decadal time frames, we suggest that current seagrass damage 

assessment practices underestimate the severity of vessel groundings and other human-

induced seagrass disturbances.   The potential impacts of releasing nutrients and 

organic carbon buried in seagrass sediments further contribute to the growing list of 

arguments in favor of increased protection of seagrass ecosystems.  Promising avenues 

for future work include continuing to monitor these or a subset of sediment structural 

attributes at these sites over longer time frames; conducting similar studies at other 

seagrass restoration sites for comparison of recovery rates; and establishing links 

between structural attributes and ecosystem function for these systems. 
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Table 1.  Principal components analysis (PCA) eigenvectors for PC axes with 

eigenvalues > 1.0 extracted from multivariate data sets of sediment and porewater 

variables sampled from 7.6 x 40 cm cores collected from Grounding sites or from 

Restoration sites.  Restoration treatments included Grounding + Stake, Fill, and Fill + 

Stake. 

  Grounding Restoration 

Variable 
PC1 

(49.0%) 
PC2 

(20.0%) 
PC1 

(53.1%) 
PC2 

(14.7%) 
BD -0.47 -0.07 -0.49 0.07 
Eh -0.30 0.26 -0.35 0.40 
OM 0.48 -0.05 0.51 0.00 
N 0.47 -0.09 0.49 -0.05 
P 0.36 0.35 -0.21 -0.57 
NH4

+ -0.02 0.60 -0.17 -0.62 
SRP -0.16 0.58 -0.02 -0.33 
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Table 2.  Results of PERMANOVA tests of site Status (injury vs. reference) and Time, and pairwise tests of the Disturbance term, 

on multivariate sediment properties and Principal Component scores representing the sediment organic component (PC1) and 

porewater inorganic nutrient pools (PC2).  Refer to Methods for sediment variables included in analysis.   

  Multivariate sediment variables PC1:  Sediment organic component PC2:  Porewater inorganic nutrients 
Source  df     MS Pseudo-F P  df     MS Pseudo-F P  df     MS Pseudo-F P 
Depth 1 59.7 14.7 0.001 1 0.4 0.5 0.498 1 53.8 65.2 0.001 
Status 1 13.5 3.3 0.003 1 1.2 1.3 0.258 1 9.9 11.9 0.002 
Time 4 136.5 33.7 0.001 4 114.2 121.5 0.001 4 15.2 18.4 0.001 
St x Ti 4 20.2 5.0 0.001 4 12.4 13.2 0.001 4 3.1 3.8 0.008 
Residual 157 4.1   157 0.9      157 0.8   
Pairwise tests on Status Age t P   Age t P   Age t P 

0yr 1.5 0.040 0yr 0.6 0.564 0yr 3.2 0.004 
1yr 3.1 0.002 1yr 4.2 0.002 1yr 1.6 0.135 
3yr 1.9 0.015 3yr 1.8 0.090 3yr 2.9 0.009 
3.5 - - 3.5 - - 3.5 - - 
4yr 1.7 0.021 4yr 1.9 0.056 4yr 2.3 0.039 

    5+yr 3 0.002   5+yr 5.9 0.001   5+yr 0.7 0.510 
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Table 3.  Results of PERMANOVA tests of site Status (restoration vs. reference) and 

Time, and pairwise tests of significant Status x Time terms, on Principal Component 

(PC) scores representing sediment organic content (PC1) and porewater inorganic 

nutrient pools (PC2).  Restoration treatments included Grounding + Stake, Fill, and Fill + 

Stake.  Refer to Methods for sediment variables included in analysis.  

 

 PC1 Sediment organic component PC2 Porewater inorganic 
nutrients 

  Source  df     MS Pseudo-F P  df     MS Pseudo-F P 

Grounding Depth 1 7.9 18.2 0.001 1 3.6 5.2 0.026 

+ Status 1 4.9 11.2 0.003 1 6 8.8 0.006 

Stake Time 3 28.9 66.6 0.001 3 17.3 25.4 0.001 
St x Ti 1 1.7 3.8 0.052 1 0.6 0.9 0.316 
Residual 113 0.4                  113 0.7                  

Fill Depth 1 18.5 18.4 0.001 1 2.3 3.1 0.102 
Status 1 373.2 380.2 0.001 1 0.5 0.7 0.408 
Time 2 40.8 41.6 0.001 2 20.8 28.6 0.001 
St x Ti 2 37.3 38 0.001 2 2.1 2.8 0.069 
Residual 89 1                  89 0.7          

Pairwise tests Age t P 

on Status 0yr 15.7 0.001 
1yr 13.6 0.001 
3yr - - 
3.5 2.6 0.017 
4yr 

      5+yr             

Fill Depth 1 45 32.8 0.001 1 3.8 4.3 0.044 

+ Status 1 485.5 353.3 0.001 1 7.7 8.7 0.005 

Stake Time 3 8.6 6.3 0.001 3 7.7 8.8 0.001 
St x Ti 3 40.1 29.2 0.001 3 6.4 7.3 0.001 
Residual 147 1.4          147 0.9          

Pairwise tests Age t P Age t P 

on Status 0yr 16.5 0.001 0yr 1.6 0.142 
1yr 17.9 0.001 1yr 1.6 0.148 
3yr 9.3 0.001 3yr 4.8 0.001 

      3.5 1.8 0.093   3.5 0.2 0.833 
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Figure 1.  Location of study sites in southern Biscayne Bay, Florida, USA, within the 

boundary of Biscayne National Park.  

Figure 2.  Mean ± se seagrass (top) and macroalgae (center) percent cover and 

chlorophyll a content (bottom) at unrestored grounding sites (dark bars) vs. reference 

(light bars) sites of five known ages.  Asterisks indicate where injury values were 

significantly lower than reference values for the age group. 

Figure 3.  Mean ± se depth profiles for bulk density, pH, Eh, and organic matter content 

from 7.6 x 40 cm cores collected from unrestored grounding sites of known ages (filled 

symbols) and from adjacent undisturbed reference sites (open symbols).  

Figure 4.  Mean ± se depth profiles for sediment nitrogen and phosphorus content and 

porewater  NH4
+ and SRP concentrations from 7.6 x 40 cm cores collected from 

unrestored grounding sites of known ages (filled symbols) and from adjacent 

undisturbed reference sites (open symbols). 

Figure 5.  Mean ± se organic matter, nitrogen, and phosphorus content in sediments 

from recent vessel grounding sites and adjacent intact reference sites.  Data are from 

7.6 x 40 cm cores collected from the bottom of injuries that averaged approximately 

40cm deep (injury cores, closed symbols), or from the top 40 cm of the reference 

seagrass bed (reference cores, open symbols).  Reference cores superimposed over 

injury cores enable 80 cm deep sediment profiles.  Notations quantify organic carbon, 

nitrogen, and phosphorus stocks in the top meter of sediments, and loss of buried 

resources per unit area in vessel grounding injuries that excavate the top meter of 

sediment.   

Figure 6.  Mean ± se depth profiles for Principal Component (PC) scores extracted from 

a multivariate data set of sediment and porewater variables sampled from 7.6 x 40 cm 

cores collected from Grounding sites of known ages (filled symbols) and from adjacent 
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undisturbed reference sites (open symbols). PC1 is interpreted as the sediment organic 

component, and PC2 is interpreted to represent porewater nutrient pools. 

Figure 7.  Mean ± se seagrass (left) and macroalgae (right) percent cover through time 

at restoration sites (filled symbols) and reference sites (open symbols) for 

chronosequence restoration sites. 

Figure 8.  Mean ± se depth profiles for Principal Component (PC) scores extracted from 

a multivariate data set of sediment and porewater variables at restoration sites of known 

age groups.  Data are from restoration treatments (filled symbols) including Grounding + 

Stake (left), Fill (center), and Fill + Stake (right) sites and from adjacent undisturbed 

reference sites (open symbols).  PC1 is interpreted as the sediment organic component, 

and PC2 is interpreted to represent porewater nutrient pools.  3 yr old Fill sites were not 

available for inclusion in the study design.   

Figure S1.  Mean ± se depth profiles for bulk density and organic matter, nitrogen, and 

phosphorus content from 7.6 x 40 cm cores collected from restoration sites of known 

ages (filled symbols) and from adjacent undisturbed reference sites (open symbols).  

Restoration treatments included Grounding + Stake (GS), Fill (F), and Fill + Stake (FS).  

3 yr old Fill sites were not available for inclusion in the study design. 

Figure S2.  Mean ± se depth profiles for pH, Eh, and concentrations of NH4
+ and SRP 

from 7.6 x 40 cm cores collected from restoration sites of known ages (filled symbols) 

and from adjacent undisturbed reference sites (open symbols).  Restoration treatments 

included Grounding + Stake (GS), Fill (F), and Fill + Stake (FS).  3 yr old Fill sites were 

not available for inclusion in the study design. 
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CHAPTER III:  Short term effects of restoration on seagrass communities and sediment 

structure in subtropical seagrass meadows 

Abstract 

Common seagrass restoration methods following physical disturbance in 

seagrass meadows include stabilizing excavations through fill placement and providing a 

fertilizer source to encourage recruitment of nutrient-limited macrophytes into restoration 

sites.  We sampled macrophyte and sediment structure at a group of unrestored and 

restored vessel grounding disturbances in seagrass meadows over the course of a year 

in order to better under understand the effects of filling and fertilizing on seagrass 

ecosystem structure and rate of recovery of the disturbed sites.  We hypothesized that a) 

restoration actions including fill placement and fertilizer delivery via bird roosting stakes 

alter seagrass ecosystem structure, b) altered structure changes with time following 

disturbance through succession and ecosystem development, and c) sites that had been 

restored either though filling or fertilization more rapidly converged on pre-disturbance 

conditions than did unrestored sites.  Fill placement was effective in stabilizing sites and 

preventing erosion, but ecosystem structure at filled sites was altered relative to both 

unrestored disturbances and to the undisturbed seagrass ecosystem.  Filling vessel 

grounding injuries initially altered seagrass ecosystem structure by creating a sediment 

matrix with different physical properties, low organic matter content and nutrient pools, 

and less primary production relative to the undisturbed ecosystem.  Adding a fertilizer 

source via bird roosting stakes increased porewater nutrient pools at grounding injuries 

and in undisturbed seagrass, but not at filled sites.  As was expected, filling and 

fertilizing did not result in convergence of our plant and sediment response variables 

between restoration and intact sites in the first year post-restoration.  However, we did 
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detect several indicators of ecosystem development in these restoration sites, related to 

primary production and nutrient accumulation.  These results suggest that early stages 

of ecosystem development have begun at these sites.     

Introduction 

Loss of seagrass resources in coastal ecosystems is accelerating (Waycott et al. 

2009), and physical disturbance from storm events, dredging, development, and fishing 

gear impacts, contributes to this decline (Short & Wyllie-Echeverria 1996; Orth et al. 

2006; Grech et al. 2012).  Seagrass sediments are critical in supporting key ecosystem 

functions such as nutrient cycling and benthic remineralization processes (Hemminga & 

Duarte 2000; Marba et al. 2006b).  Physical disturbance to seagrass meadows that 

disrupts the rhizosphere leads to persistent changes in ecosystem function, including 

primary production, nutrient cycling, and habitat provision for seagrass-associated 

organisms (Neckles et al. 2005; Hammerstrom et al. 2007; Di Carlo & Kenworthy 2008).  

Seagrass ecosystems in locations where boating is popular are subject to frequent and 

severe physical disturbance when vessels run aground (Sargent et al. 1995; Dunton & 

Schonberg 2002; Kirsch et al. 2005; SFNRC 2008).  Vessel grounding disturbances also 

results in alterations to sediment structure including loss of organic matter and stored 

nutrients (Kenworthy et al. 2002; Chapter II of this thesis).  Accordingly, interest in 

seagrass restoration has increased in recent decades (Treat & Lewis 2006; Paling et al. 

2009; Fonseca 2011).   

Resource managers attempt to accelerate recovery of disturbed seagrass 

communities by implementing specific restoration methods.  Filling grounding 

excavations, providing a fertilizer source, and transplanting seagrasses are commonly-

used seagrass restoration techniques (Fonseca et al. 1998; Kirsch et al. 2005; McNeese 
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et al. 2006; Farrer 2010).  Placing sediment fill into excavations is intended to prevent 

erosion and recreate the physical matrix that supports seagrasses and ecosystem 

functioning (Kirsch et al. 2005; Hammerstrom et al. 2007; Farrer 2010; Hall et al. 2012b).  

Seagrasses also may be transplanted to more quickly replace lost plant structure and 

associated functions than would otherwise be accomplished through natural secondary 

succession following disturbance (Lewis 1987).  Because seagrass ecosystems are 

often nutrient limited (Short 1987; Fourqurean & Zieman 1992), applying fertilizer via bird 

roosting stakes at restoration sites aims to reestablish or augment pools of limiting 

nutrients (Fourqurean et al. 1995; Kenworthy et al. 2000; Farrer 2010).   

For restoration to be successful, ecological attributes of the system such as 

structure, composition, and function must be reestablished (Fonseca et al. 1996a; Hobbs 

& Norton 1996; Higgs 1997).  Once restoration has been implemented, rapid 

assessments of plant communities are typically used to monitor restoration success 

(Fonseca et al. 1998; Kirsch et al. 2005; Farrer 2010).  Few studies have assessed 

ecosystem structure following seagrass restoration for any aspects other than above-

ground plant communities (Fonseca et al. 1996a; McNeese et al. 2006; Hammerstrom et 

al. 2007; Hall et al. 2012b) or associated fauna (Fonseca et al. 1996b, but see Evans & 

Short 2005, Di Carlo & Kenworthy 2008).   

Recent work has shown that sediment structure is substantially altered by some 

restoration practices, especially placing coarse-grained fill into fine-grained seagrass 

ecosystems (McNeese et al. 2006; Chapter II of this thesis).  Filling excavations 

achieves the objective of stabilizing sites prone to erosion and providing the physical 

matrix needed to support macrophyte recolonization, but seagrasses and nutrient pools 

in the sediments and porewater can be slow to recover (Chapter II of this thesis).  
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We sampled macrophyte and sediment structure at seagrass restoration sites 

over the first year following restoration, in order to better under understand the effects of 

common restoration actions on seagrass ecosystem structure.  We hypothesized that a) 

restoration actions including fill placement and fertilizer delivery via bird stakes alter 

seagrass ecosystem structure, and specifically, primary producer abundance and 

sediment properties; b) altered structure changes with time following disturbance 

through succession and ecosystem development; and c) sites that had been restored 

either though filling or fertilization more rapidly converged on pre-disturbance conditions 

than did unrestored sites.  Our response variables included structural attributes essential 

to habitat quality, nutrient storage, and ecosystem metabolism in the vegetation and the 

sediments. 

Methods 

Study System 

This study was conducted in southern Biscayne Bay, described in Chapter II of 

this thesis.  Specifically, we evaluated seagrass ecosystem structure at multiple vessel 

grounding injuries, restoration sites, and adjacent undisturbed seagrass meadows on 

Cutter Bank (Figure 1).  

Experimental Design 

We examined the effects of vessel grounding disturbance and seagrass 

restoration practices on plant soil properties at eighteen individual sites at Cutter Bank 

sampled following implementation of a restoration project in January-February 2010.  A 

factorial design was employed, with Restoration, Fertilization, and Time as factors.  

Restoration treatments included unrestored vessel grounding injuries (G=grounding), 
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injuries that were returned to grade with sediment fill (F=fill), and intact undisturbed 

seagrass sites (I=intact).  The Restoration factor was crossed with a Fertilization factor 

by installing bird roosting stakes into a subset of sites within each three Restoration 

treatments (GS = grounding+stake, FS = fill+stake, IS = intact+stake).  Sites were an 

average of 34 m2 in size, and Restoration and Fertilization treatments were randomly 

assigned to sites.  Note the G sites were not recent injuries, but rather were known to be 

a minimum of five years old based on unpublished NPS data on injury features at Cutter 

Bank.  Intact (n=3) and Intact + Stake (n=3) plots were established by delineating 32 m2 

circular plots around randomly selected points across in the seagrass meadow on the 

shoal that showed no signs of recent vessel grounding injury.  Three sites were included 

in each Restoration x Fertilization treatments (i.e., G, GS, F, FS, I, IS).   The eighteen 

sites were sampled within one month of restoration implementation and at three, six, 

nine, and twelve months following restoration (February, May, August, November 2010 

and February 2011).  

Seagrass Community Characterization  

To evaluate the status of the macrophyte community, seagrass and macroalgae 

(i.e. calcareous green algae) abundance was estimated according to methods described 

in Chapter II of this thesis.   

Sediment Core Collection and Processing 

We used cores of the surface sediments to define the soil environment as a 

function of restoration and fertilization treatments.  We sampled a suite of eleven soil 

properties that are indicators of structure and function in seagrass ecosystems, including 

benthic microalgae (primary production, habitat quality); pH, redox potential, organic 

matter content, and porewater sulfide (benthic metabolism and remineralization); bulk 
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density, water content, and particle size (nutrient exchange); and nitrogen and 

phosphorus in sediment and porewater (nutrient storage).  Detailed descriptions of 

coring and environmental analyses are provided in Chapter II of this thesis.  Grain size 

contributions were determined through sieve analysis (Ingram 1971; Folk 1974) at Terra 

Environmental (St. Petersburg FL).  

Data Analysis 

We used Spearman correlations to detect changes in seagrass and macroalgae 

percent cover at Restoration and Fertilization treatments through time.  We explored 

sediment structure among restoration treatments using principal components analysis 

(PCA) with the software Primer-e (Clarke & Gorley 2006).  The PCA allowed us to 

reduce data complexity and extract composite variables that explained maximum 

variability in the sediment properties.  Nine sediment variables were included in the PCA:  

BD, pH, Eh, OM, N, P, NH4
+, SRP, and DS.  The PCA ordinations helped visualize 

multivariate differences among treatments.  We then described an ecological role for the 

composite variables, on the basis of sediment variables that were strongly correlated 

with PC axes that had eigenvalues > 1.    

We tested our hypotheses that restoration alters ecosystem structure and that 

structure changes through time using Permutational Multivariate Analysis of Variance 

(PERMANOVA, Anderson et al. 2008). The PERMANOVA routine enables testing of the 

response of one or more variables to one or more factors, based on any resemblance 

measure, by partitioning sources of variation.  A primary advantage of PERMANOVA is 

that statistical significance of the pseudo-F statistic is determined through permutations 

of randomized real data, avoiding normality and homogeneity of variance assumptions 

(Anderson et al. 2008).  Specifically, we used PERMANOVA to test for the effects of 
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Restoration, Fertilization, and Time on a) chlorophyll a content, b) sediment particle size 

class composition, c) multivariate soil properties, and d) each composite variable 

extracted from the PCA. 

All PERMANOVA analyses were conducted on Euclidean distance resemblance 

matrices calculated from normalized, log-transformed data.  Significance values were 

based on 999 permutations of residuals under reduced models.  Where data variables 

were available for multiple depth horizons, sediment depth was used as a covariate 

requiring the use of Type I sums of squares.  Otherwise, Type III sums of squares were 

used in PERMANOVA. 

Results 

Plant Community Structure 

The intact seagrass community at Cutter Bank is characterized by dense 

Thalassia testudinum (median percent cover 62.5%) mixed with sparse calcareous 

green macroalgae (median percent cover 2.5%).  Over the course of the first year post-

restoration, seagrass cover remained below 10% of reference values for the F and FS 

sites, and at around 20% for G and GS sites (Figure 2).  Seagrass cover remained 

unchanged over time for G, FS, and F treatments (p > 0.05; Figure 2), and declined in 

the GS treatment (ρ = -0.18, p = 0.038; Figure 2).  In contrast, macroalgae cover in 

restoration sites ranged from 30% (F) to 161% (GS) of reference values after a year 

(Figure 3).  Within restoration sites, macroalgae cover increased four to twelve times 

over the course of the study and was significantly correlated with time in each treatment 

(p < 0.041; Figure 3).   
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 Chlorophyll a Content 

Restoration status during the first year post-restoration at the Cutter Bank sites 

affected sediment microphytobenthos abundance.  Chlorophyll a content across all 

samples ranged from 10.6 ± 1.7 to 16.4 ± 1.9 µg g-1 (Figure 4).  Chlorophyll a content 

varied among restoration treatments and time (PERMANOVA, p < 0.001; Table 1), but 

not with fertilization (p = 0.263), so results are presented for the main restoration 

treatments (i.e. G, F, I).  Chlorophyll a content was highest at the I sites (PERMANOVA 

pairwise tests, p < 0.002; Table 1; Figure 4), and there was some variation among 

sampling events.  Chlorophyll a  content was lower in G sites, ranging from 10.6 ± 1.7 to 

11.6 ± 2.8 µg g-1, and values did not vary significantly with time (PERMANOVA pairwise 

tests, p < 0.05; Figure 4).  The F sites had the lowest overall chlorophyll a content 

(PERMANOVA pairwise tests, p < 0.002; Table 1), ranging from 0.2 ± 0.1 to 5.4 ± 1.3 µg 

g-1.  Chlorophyll a content at F sites increased steadily with each time step 

(PERMANOVA pairwise tests, p < 0.05; Figure 4), but remained lower than G or I sites 

at the 1 yr mark. 

Sediment Properties – Intact Sediments 

Water content ranged from 64 ± 5.4% to 81.0 ± 0.7% in intact sediments and did 

not vary with depth below the top 2cm of sediment (Figure 5).  Bulk density ranged from 

0.18 ± 0.01 g ml-1 to 0.41 ± 0.10 g ml-1, and was lower in the top 2cm of sediments than 

in the deeper horizons (Figure 5).  Sediment pH ranged from 6.56 ± 0.02 to 7.38 ± 0.02 

generally decreased with depth below 30 cm.  Sediments were strongly reduced, and 

redox potential decreased with depth over the all depth horizons, ranging from -278.3 ± 

23.3 mv to -359.6 ± 0.9 mv (Figure 5).  Organic matter content (13.8 ± 1.2% to 18.3 ± 

0.5%; Figure 6) increased with depths below 6 cm.  Nitrogen content was fairly constant, 
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ranging from 0.52 ± 0.01% to 0.67 ± 0.01%, and did not vary with depth (Figure 6).  Total 

phosphorus content was very low (0.011 ± 0.001% to 0.019 ± 0.002%, Figure 6) and 

decreased with depth.  Ammonium (83.0 ± 6.4 µm to 842.9 ± 108.9 µm), SRP (0.09 ± 

0.02 µm to 18.8 ± 4.5 µm), and DS (76.4 ± 9.0 µm to 3157.5 ± 241.7 µm) concentrations 

all ranged widely (Figure 6).  Ammonium and DS increased with depth, while SRP 

showed no trends with depth.  Porewater profiles showed some anomalies that 

contribute to the wide-ranging values.  Specifically, NH4
+ and SRP profiles for the 0.5 yr 

sampling event were elevated in the top 20 cm of sediments relative to profiles from the 

other four sampling events (Figure 6).  Dissolved sulfide profiles increased substantially 

with sediment depth for the 1 yr profile relative to the previous sampling events (Figure 

6). 

Particle Size Composition 

At Cutter Bank, intact sediments were dominated by silt (59.8 ± 3.4%) and clay 

(29.3 ± 3.0%), with small sand (8.6 ± 1.5%) and gravel (2.3 ± 0.9%) fractions (Figure 7).  

Multivariate sediment profiles (% clay, silt, sand, gravel) differed among Restoration 

treatments (PERMANOVA, p < 0.001; Table 2), but not with Fertilization or Time (p > 

0.236).  G sites had similar composition as intact sediments, but F sites were much 

coarser, consisting predominately of sand (50.3 ± 1.8%) and gravel (47.3 ± 1.9%).  The 

Restoration x Fertilization term was significant (PERMANOVA, p < 0.001; Table 2), 

suggesting that fertilization affected the grain size distribution in restoration treatments in 

different ways.  Specifically, only IS differed from its non-fertilized pair (PERMANOVA 

pairwise tests, p < 0.008; Figure 7).   
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 Multivariate Restoration Effects 

The effects of restoration status on multivariate sediment properties during the 

first year post-restoration at the Cutter Bank sites were evident in the PCA ordination 

visualized for the Restoration x Fertilization factor (Figure 8).  PC1 had positive OM and 

N loadings and negative BD, pH, Eh, and P loadings, and explained 57% of variation in 

the data set (Table 3).  We interpreted PC1 to represent sediment OM.  Ammonium and 

SRP loaded positively onto PC2 (18.3% of variance explained; Table 3), and we 

described PC2 as representing dissolved inorganic nutrients.  Dissolved sulfide was not 

strongly correlated with either axis.  Fill sediments from F and FS samples were 

characterized by high BD, P, pH, and Eh, and clearly separated from G, GS, IS, and I 

samples (Figure 8).  There was considerable overlap among G, GS, IS, and I samples, 

characterized by high OM and N content, in the right portion of the plot.  Samples from I 

sites had higher sediment organic content than G, GS, and IS samples.   There was little 

difference among any treatments for porewater nutrient concentrations. 

Multivariate sediment structure at the Cutter Bank sites varied by Restoration, 

Fertilization, and Time (PERMANOVA, p < 0.001; Table 4).  Pairwise tests on the 

Restoration factor show significant differences in multivariate data among the three 

treatments (PERMANOVA pairwise tests, p < 0.001), confirming the structure evident in 

the PCA ordination (Figure 8).   

Our composite variables were also affected by restoration status (PERMANOVA, 

p < 0.001; Table 4, Figure 9).  Each restoration treatment (G, F, I) differed from the 

others for both composite variables (PERMANOVA pairwise tests, p < 0.001; Table 4; 

Figure 9).  Organic matter content was highest in I sites, lower content in G sites, and 

nearly absent in F sites (Figure 9).  Noticeable trends of porewater nutrient patterns 

among Restoration x Fertilization treatments were lacking, though concentrations in F 
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and FS treatments were more variable than in the other treatments.  Concentrations 

were highest in the 6 month samples (from August 2010) across all Restoration x 

Fertilization treatments.   

Porewater nutrients, but not OM content, were affected by fertilization 

(PERMANOVA, p < 0.001; Table 4; Figure 9).  In Restoration x Fertilization pairs, 

porewater nutrient concentrations was elevated for the fertilized sites within the G-GS 

and I-IS pairs (PERMANOVA pairwise tests, p < 0.001); Table 4; Figure 9), but not in the 

F-FS pair.  Sediment depth was a significant covariate for both composite variables 

(PERMANOVA, p < 0.001; Table 4).  Across all Restoration x Fertilization treatments, 

OM and porewater nutrient pools tended to increase with depth (Figure 9).   

Discussion 

Filling vessel grounding injuries initially altered seagrass ecosystem structure by 

creating a sediment matrix with different physical properties, low organic matter content 

and nutrient pools, and lower macrophyte cover and microalgal abundance relative to 

the undisturbed ecosystem.  Adding a fertilizer source via bird roosting stakes increased 

porewater nutrient pools at GS and IS sites, but not at FS sites.   

Seagrass cover did not increase in any of the restoration treatments during the 

first year post-restoration.  In contrast, calcareous green macroalgae did increase during 

this period in all restoration treatments, though greater increases were seen for G and 

GS sites than in F and FS sites.  These findings are consistent with observed patterns of 

early succession in tropical seagrass ecosystems.  The first colonizers following 

disturbance are turf and calcareous green macroalgae, followed by rapidly growing 

seagrass species, and culminating with a monospecific climax community dominated by 

slower-growing species, or a mixed community of climax and successional species 
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(Zieman 1982; Williams 1990; Rollon et al. 1999; Kenworthy et al. 2002; Whitfield et al. 

2002).  It has been proposed (Williams 1990) that these patterns indicate a facilitation 

(sensu Connell & Slayter 1977) model of succession.  Early colonizers stabilize 

sediments and help build nutrient pools that eventually provide for colonization by climax 

species, consistent with the resource-ratio hypothesis of community development 

(Tilman 1985).  We interpret the observed trend of macroalgae colonization as a positive 

early indicator of recovery. 

Benthic microalgae perform important functions in shallow coastal sediments by 

fixing carbon, oxygenating surficial sediments, and providing food sources to meio- and 

macrofauna (Moncreiff et al. 1992; Pollard & Kogure 1993).  Nutrient limitation in coastal 

ecosystems extends to other primary producers in the ecosystem, including benthic 

microalgae (e.g., Granéli & Sundbäck 1985; Howarth 1988; Posey et al. 2002; Allgeier et 

al. 2010).  In our study, benthic microalgae did not respond to fertilizer input via 

defecation by wild birds using the bird roosting stakes, suggesting that the microalgae 

are not nutrient limited at this location.  Microalgal response to nutrient addition in 

seagrass sediments can be variable and may reflect complex interactions between biotic 

and abiotic factors (Armitage et al. 2005, 2006).  We saw a clear pattern of development 

of benthic microalgal abundance in the filled sites over the course of the study.  

Recovery of benthic microalgae following disturbance occurs relatively quickly due to 

rapid rates of growth and reproduction (Larson & Sundback 2008; Montserrat & Colen 

2008) and the motility of some benthic diatom taxa (Admirall 1984) may enable rapid 

colonization of new substrate.  Though chlorophyll a content did not yet reach levels of 

the surrounding seagrass meadow, the observed increase is nonetheless an early 

indicator of returning structure and function.      
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Excavation of sediments by vessel groundings removes the vital substrate 

needed by seagrasses and rhizophytic macroalgae to thrive.  Replacing that physical 

matrix by placing fill into injuries is an important restoration action for two primary 

reasons.  Filling excavations stabilizes the site and helps to prevent further site damage 

through erosion caused by currents or severe storms (e.g., Whitfield et al. 2002; Uhrin et 

al. 2011).  Gap closure in seagrass meadows occurs primarily through clonal extension 

(Rasheed 1999; Kenworthy et al. 2002), and seagrass and rhizophytic algae may be not 

be able to extend down abrupt steep slopes such as typically exist in grounding injuries 

(Kenworthy et al. 2002; Whitfield et al. 2002).  Thus, filling excavations is expected to 

encourage greater recovery of the plant community that would be expected in unfilled 

excavations.  For these reasons, filling excavations to grade is considered a critical step 

in the recovery process, especially for larger and deeper injuries (Uhrin et al. 2011).    

We found very low soil organic content at sites filled with quarried sand, and 

organic content did not increase in the short term.  In seagrass meadows redeveloping 

from an unvegetated state, OM can accumulate in the sediments during the 

recolonization process (Pedersen et al. 1997; Cebrián & Pedersen 2000; Barrón et al. 

2004; McGlathery et al. 2012). Sources of OM include dead roots and rhizomes; root 

exudates; organic particles and litter buried by sedimentation and bioturbation; and 

benthic microalgal exudates (Pedersen et al. 1997; Holmer et al. 2001).  Organic matter 

content in filled sites is expected to remain low until these sites support dense 

monospecific or mixed seagrass communities.   

Another key difference between filled sites and the undisturbed ecosystem was 

particle size composition.  In seagrass ecosystems, sediment grain size and porosity 

affects exchange of sediment pore water with overlying waters (Koch et al. 2001).  Grain 

size is correlated with pore water exchange (Fourqurean et al. 1992), and thus nutrients 
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and also toxic compounds such as sulfide may accumulate faster and at higher 

concentrations in fine-grained sediments relative to coarse sediments.  To avoid erosion, 

sediments used in seagrass restoration projects are typically far coarser than ambient 

sediments (e.g., McNeese et al. 2006; Hall et al. 2012b) , as was the case with our fill 

treatments. Turbidity created during fill placement can be difficult to control with fine 

sediments, and there also is concern that fine sediments may wash away from the site 

with tides and wave energy.  The silt/clay fraction of fill material used in this restoration 

project ranged from 1% to 6%, within the range of sediments that T. testudinum is known 

to grow in (Koch et al. 2001), but far lower than ambient sediments at Cutter Bank.  

Seagrass blades attenuate water movement and trap suspended particles, and fine 

sediments accumulate in seagrass meadows through sedimentation and percolation 

(Terrados & Duarte 2000).  Fine sediments are expected to increase in the fill sites as 

the seagrass community develops with time and seagrass blades entrain particles from 

the water column, but these sites will likely always remain coarser than the surrounding 

sediments. 

The sand used to fill grounding excavations had elevated P content compared to 

sediments found in the reference areas around the injuries, and may have been quarried 

from bedrock containing phosphorus deposits (Marquez et al. 2008).  Using fertilizer to 

aid restoration is desirable in P-limited seagrass ecosystems (Kenworthy et al. 2000), 

hence the use of bird roosting stakes to deliver phosphorus (Fourqurean et al. 1995).   

However, even small P inputs can have long lasting effects in this system.  For example, 

following the experimental use of bird roosting stakes, with a P loading rate of 3.29 g m-2 

y-1 (Powell et al. 1989), elevated P content in sediments was detected over twenty years 

later (Herbert & Fourqurean 2008).   
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Carbonate dissolution is one mechanism by which P tightly sorbed to carbonate 

particles is released into the rhizosphere and becomes available for uptake by 

seagrasses (Erftemeijer & Middelburg 1993; Jensen et al. 1998).  In carbonate systems, 

pH values lower than 8.2 have been correlated with carbonate dissolution (Burdige & 

Zimmerman 2002).  The range of pH values recorded in our study was surprisingly low 

(median pH 7.0) in grounding and intact sediments.  This may reflect intense benthic 

metabolism associated with remineralization of elevated OM content or with sulfide 

oxidation (Jensen et al. 1998). These pH values are within the range at which carbonate 

dissolution should occur.  The median pH for fill sites was 7.7.  If pH drops through time 

in sites with P-enriched fill, the release of ecologically significant quantities of P could 

result.  Ramifications could include localized eutrophic effects (e.g. changes in seagrass 

community structure, water column phytoplankton blooms), or export to and enrichment 

of adjacent ecosystems including coral reefs.  Of further concern is that bird stakes are 

often placed in restoration sites receiving fill material.  If the fill is P-enriched, additional 

nutrient input via bird stakes could compound these effects.  Further work is needed on 

the nature of the material used for fill in seagrass restoration sites, to include reviewing 

locations of quarries in relation to know bedrock P deposits.  We recommend that fill be 

analyzed for P content prior to use in restoration projects, and that caution be exercised 

when deciding to use bird stakes in conjunction with fill of unknown origin and P content. 

Conclusions 

Ecosystem structure was altered at restoration sites relative to both unrestored 

grounding disturbances and the undisturbed seagrass ecosystem.  Filling and fertilizing 

did not result in convergence of seagrass, microalgae, or sediment response variables 

between restoration and intact sites in the first year post-restoration.  We did, however, 
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observe several indicators of ecosystem development in the restoration sites, including 

increased macroalgae cover at fill sites and increased porewater nutrients at some 

fertilized sites.  This study provides greater perspective on the impacts to sediment 

structure of filling excavations in seagrass ecosystems, and on the early changes in 

primary producers and sediment structure that occur during the post-restoration recovery 

process.   
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Table 1.   Results of PERMANOVA test of Restoration, Fertilization, and Time, and 

pairwise tests of the Restoration term, on sediment chlorophyll a concentrations.   

 
Source df       MS Pseudo-F P

Restoration 2 21.36 415.82 0.001

Fertilization 1 0.07 1.40 0.263

Time 4 1.11 21.53 0.001

Re x Fe 2 0.05 1.02 0.378

Re x Ti 8 0.74 14.39 0.001

Fe x Ti 4 0.04 0.86 0.500

Re x Fe x Ti 8 0.10 1.89 0.091

Residual 60 0.05 

Pairwise test on Restoration      t P

 G, F 21.61 0.001

 G, I 3.67 0.002

 F, I 30.94 0.001
 
 
 
 
Table 2.  Results of PERMANOVA test of Restoration, Fertilization, and Time, on 

sediment particle size classes (percent clay, silt, sand and gravel).  Sediment depth as a 

covariate was not significant and was excluded from the model.   

 
Source  df      MS Pseudo-F P

Restoration 2 398.75 365.22 0.001

Fertilization 1 0.84 0.77 0.539

Time 1 1.53 1.41 0.236

Re x Fe 2 5.56 5.09 0.001

Re x Ti 2 1.47 1.34 0.233

Fe x Ti 1 2.85 2.61 0.040

Re x Fe x Ti 2 1.65 1.51 0.147

Residual 92 100.45 1.09
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Table 3.  Principal components analysis (PCA) eigenvectors for PC axes with 

eigenvalues > 1.0 extracted from multivariate data set of sediment and porewater 

variables sampled from 7.6 x 40 cm cores collected from study sites.  Treatments 

included Grounding, Grounding + Stake, Fill, Fill + Stake, Intact + Stake, and Intact sites.  

See Figure 7 for corresponding PC ordination.  

 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 

Variable    PC1 (57.0%)    PC2 (18.3%)

BD 0.40 0.15

pH 0.39 -0.12

Eh 0.37 -0.21

OM -0.42 -0.10

N -0.41 -0.09

P 0.37 0.13

NH4
+ 0.05 0.65

SRP -0.01 0.61

DS -0.28 0.31
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Table 4.  Results of PERMANOVA tests of the short-term effects of restoration status (Grounding, Fill, Intact), fertilization (+, -), 

and time (0 yr, 0.25 yr, 0.5 yr, 0.75 yr, 1 yr) on multivariate sediment properties and on principal component scores extracted from 

a Principal Component Analysis of multivariate sediment properties.  PC1 is interpreted as sediment OM, and PC2 is interpreted 

as inorganic porewater nutrients.  Pairwise tests were conducted on the Restoration x Fertilization interactions.  Refer to Methods 

for sediment variables included in analyses.  Sediment Depth was included as a covariate.   

 
  Multivariate Tests Tests of PC1 Scores Tests of PC2 Scores 
Source  df     MS Pseudo-F P  df      MS Pseudo-F P  df      MS Pseudo-F P
Depth 1 397.6 129.7 0.001 1 219.5 301.3 0.001 1 388.1 152.3 0.001
Restoration 2 1090 355.5 0.001 2 1034.4 1419.6 0.001 2 1086.9 426.7 0.001
Fertilization 1 15.5 5.1 0.001 1 1.0 1.4 0.232 1 13.5 5.3 0.002
Time 4 103.6 33.8 0.001 4 10.3 14.1 0.001 4 93.2 36.6 0.001
Re x Fe 2 13.2 4.3 0.001 2 3.0 4.2 0.022 2 11.6 4.6 0.001
Re x Ti 8 25.9 8.4 0.001 8 5.9 8.1 0.001 8 23.6 9.3 0.001
Fe x Ti 4 5 1.6 0.035 4 1.3 1.8 0.136 4 3.5 1.4 0.149
Re x Fe x Ti 8 3.6 1.9 0.190 8 0.6 0.8 0.603 8 2.8 1.1 0.309
Residual 509 3.1                  509 0.7    509 2.5     
Pairwise tests on Rest x Fert   t P     t P   t P
G vs. G+   2.7 0.001   0.1 0.137 2.7 0.001
F vs. F+   1.4 0.109   2.2 0.023 1.5 0.094
I vs. I+     2.7 0.001     0.7 0.497     2.9 0.001
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Figure 1.  Location of study sites (polygons, lower inset) at Cutter Bank, in southern 

Biscayne Bay, Florida, USA, within the boundary of Biscayne National Park.   

Figure 2.  Mean ± se seagrass percent cover in the first year post-restoration at 

restoration and reference sites.  Notations are Spearman correlations and significance of 

relationships between seagrass percent cover and time within each restoration 

treatment.    

Figure 3.  Mean ± se seagrass macroalgae percent cover in the first year post-

restoration at restoration and reference sites.  Notations are Spearman correlations and 

significance of relationships between macroalgae percent cover and time within each 

restoration treatment.    

Figure 4.  Mean ± se sediment chlorophyll a concentrations in 7.6 x 2 cm cores collected 

from study sites sampled repeatedly over one year (0 yr, 0.25 yr, 0.5 yr, 0.75 yr, 1 yr).  

Treatments included unrestored grounding sites, filled sites, and intact seagrass sites (n 

= 6 sites per treatment).  Letters indicate statistical significance (α=0.05) among 

sampling events within each treatment determined through PERMANOVA pairwise tests 

of time steps. 

Figure 5.  Sediment physical properties (water content, bulk density, pH, Eh, and organic 

matter content) from 7.6 x 40 cm cores collected from study sites.  Treatments included 

Grounding, Grounding + Stake, Fill, Fill + Stake, Intact + Stake, and Intact sites.  Sites 

were sampled repeatedly over one year (0 yr, 0.25 yr, 0.5 yr, 0.75 yr, 1 yr).  Data are 

mean ± se values at each of six depth horizons (0-2 cm, 2-6 cm, 6-10 cm, 10-20 cm, 20-

30 cm, 30-40 cm). 

Figure 6.  Sediment and porewater nutrient pools (% nitrogen, % phosphorus, 

ammonium, soluble reactive phosphorus, dissolved sulfide) from 7.6 x 40 cm cores 

collected from study sites.  Treatments included Grounding, Grounding + Stake, Fill, Fill 
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+ Stake, Intact + Stake, and Intact sites.  Sites were sampled repeatedly over one year 

(0 yr, 0.25 yr, 0.5 yr, 0.75 yr, 1 yr).  Data are mean ± se values at each of six depth 

horizons (0-2 cm, 2-6 cm, 6-10 cm, 10-20 cm, 20-30 cm, 30-40 cm). 

Figure 7.  Sediment size class (clay, silt, sand, gravel) contribution in sediment cores 

collected from study sites.  Treatments included Grounding (G), Grounding + Stake 

(GS), Fill (F), Fill + Stake (FS), Intact + Stake (IS), and Intact seagrass sediments (I).  

Data are from 7.6 x 40 cm cores collected from study sites sampled twice over one year 

(0yr, 1yr).  Data in bars are pooled over depth and time within each treatment.  Letters 

indicate statistical significance (α=0.05) among treatments determined through 

PERMANOVA pairwise tests between treatments. 

Figure 8.  Principal components analysis (PCA) ordination with PCA eigenvector overlay 

of multivariate sediment data, visualized for the Restoration x Fertilization factor (G = 

Grounding, GS = Grounding + Stake, F = Fill, FS = Fill + Stake, IS = Intact + Stake, I = 

Intact).  Refer to Methods for sediment variables included in the PCA. 

Figure 9.  Depth profiles for mean ± se Principal Component (PC) scores extracted from 

the multivariate data set of sediment variables sampled from study sites.  Treatments 

included Grounding, Grounding + Stake, Fill, Fill + Stake, Intact + Stake, and Intact 

seagrass sediments.  PC1 is interpreted as a sediment OM and PC2 represents 

dissolved inorganic nutrients in the porewaters. 
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CHAPTER IV:  Effects of restoration on microbial community composition in subtropical 

seagrass sediments. 

Abstract 

Microorganisms in seagrass sediments facilitate many key ecosystem processes, 

yet current knowledge of microbial facilitation of seagrass community recovery following 

disturbance or restoration is limited.  Using Terminal Restriction Fragment Length 

Polymorphism, we studied microbial community responses to restoration of vessel 

grounding injuries in a subtropical seagrass ecosystem in south Florida, USA.  

Restoration methods included installation of bird roosting stakes as a means to provide a 

nutrient source, and placement of sediment fill into excavations.  Microbial community 

structure in our study sites provided insight on the status of restoration sites relative to 

the intact ecosystem.  Unrestored grounding sites and restoration sites had less complex 

microbial community structure than intact seagrass sediments.  Microbial community 

structure differed little between unrestored sites and fertilized sites, but was distinct 

among treatments in fill sites.  Sediment bulk density, organic matter content, and 

porewater ammonium concentration were important environmental predictors of 

microbial community structure across the restoration treatments.  In our study of 

microbial community structure and diversity in seagrass sediments following different 

restoration scenarios, we were able to show that community structure and diversity 

varied with sediment depth, among restoration treatments, and through time.   
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Introduction 

Microbes mediate the remineralization of organic matter in marine sediments, 

increasing the availability of nutrients required for seagrass meadow development.  At 

the water-sediment interface, and in the rhizosphere of seagrasses, oxygen is available 

to support aerobic metabolism, while in deeper sediments, nitrate, iron, and sulfate 

become electron acceptors for anaerobic metabolism (Canfield et al. 1993).  In tropical 

sediments, iron and nitrate concentrations are low (Kristensen et al. 2000), and sulfate 

reduction plays an important role in remineralization and nutrient availability (Holmer et 

al. 2001).  These varying metabolic processes suggest that seagrass sediments support 

complex microbial communities, and that microbial community structure and function are 

subject to disruption when seagrass sediments are disturbed.   

Advances in molecular microbial ecology are providing insight into the roles of 

soil microorganisms in ecosystem processes (Zak et al. 2006; Hall et al. 2011).  For 

example, soil structure (Sessitsch et al. 2001; Girvan et al. 2003; Chau et al. 2011), 

nutrient content (Ramirez et al. 2010), pH (Fierer & Jackson 2006; Tripathi et al. 2012), 

biogeographical factors (Blum et al. 2004; Hartman et al. 2008), sediment organic matter 

content (Blum et al. 2004), and the presence and composition of vegetation (Nacke et al. 

2011) have all been shown to be important in structuring microbial communities in 

terrestrial ecosystems.  In aquatic systems, changes in microbial abundance and 

diversity are correlated with redox potential and pH differentials associated with soil 

depth (Sørensen et al. 2007; Hartman et al. 2008).  In seagrass ecosystems, structuring 

factors of microbial communities include the presence vs. absence of seagrass, 

proximity to seagrass rhizomes, sediment depth, and temperature (Danovaro & Fabiano 

1995; James et al. 2006; Jensen et al. 2007), all factors related to benthic metabolic 

capacity.    
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Loss of seagrass resources along the world’s coastlines is accelerating (Waycott 

et al. 2009), and physical disturbance is a key contributor to the global decline of 

seagrasses (Short & Wyllie-Echeverria 1996; Orth et al. 2006; Grech et al. 2012).  

Disturbance to the rhizosphere leads to persistent injuries.  The loss of plant structure 

alters ecosystem function, and in particular, primary production and habitat provision for 

seagrass-associated organisms (Neckles et al. 2005; Hammerstrom et al. 2007; Di Carlo 

& Kenworthy 2008).  Shallow seagrass ecosystems near population centers frequently 

experience physical disturbance as a consequence of vessel groundings.  Seagrass 

colonization of injuries involving deeper excavations is variable, and may take several 

years to over a decade (Zieman 1976; Durako & Moffler 1985; Dawes et al. 1997; 

Kenworthy et al. 2002; Hammerstrom et al. 2007; Di Carlo & Kenworthy 2008).  The 

effects of such disturbance on aspects of ecosystem structure other than the plant 

community are not well understood.    

In the face of global seagrass decline, increased protection for seagrasses by 

governmental agencies is often accompanied by mandates to restore seagrass injuries 

or otherwise mitigate seagrass impacts.  Resource managers and restoration 

practitioners attempt to accelerate recovery of disturbed seagrass communities by 

implementing specific restoration methods with specific objectives.  Filling grounding 

excavations, applying fertilizer, and transplanting seagrasses are commonly-used 

seagrass restoration techniques (Fonseca et al. 1998; Kirsch et al. 2005; Farrer 2010).  

Placing sediment fill into excavations is intended to recreate the physical matrix that 

supports seagrasses and ecosystem functioning (Hammerstrom et al. 2007; Hall et al. 

2012b).  Because seagrass ecosystems are often nutrient limited (Short 1987; 

Fourqurean & Zieman 1992), applying fertilizer (via bird roosting stakes, where the feces 

of roosting seabirds fertilizes the sea floor below) aims to reestablish or augment pools 
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of vital nutrients that may be limiting to seagrass growth (Kenworthy et al. 2000).  

Seagrasses also may be transplanted to more quickly replace lost plant structure and 

associated functions than would otherwise be accomplished through natural secondary 

succession following disturbance (Lewis 1987).  Even after restoration has taken place, 

the seagrass community may take several years to develop, and may differ from the 

reference community during recovery.  For example, patterns of early succession in 

seagrass ecosystems indicate that the first colonizers are turf and calcareous green 

macroalgae, followed by rapidly growing seagrass species (e.g., Halodule wrightii or 

Syringodium filiforme in the Caribbean), and culminating with a monospecific climax 

community of slower-growing seagrasses (e.g., Thalassia testudinum in the Caribbean) 

or a mixed community of climax and successional species (Zieman 1982; Williams 1990; 

Rollon et al. 1999; Kenworthy et al. 2002; Whitfield et al. 2002).   

Ecological restoration practices should be based upon and evaluated in the 

context of established ecological concepts (Palmer et al. 1997; Young et al. 2005).  

Knowledge of the soil microbial community (e.g., mass, composition, and activity) may 

be useful in assessing ecosystem status, particularly of disturbed, degraded or 

recovering systems (Harris 2003), and should be considered in the context of energy 

flow and material cycling when conducting ecological restoration (Heneghan et al. 2008).   

We used microbial community composition and simple measures of the soil 

environment to evaluate ecosystem status and sediment quality following seagrass 

restoration at vessel grounding sites in south Florida, USA.  Two specific seagrass 

restoration methods were evaluated:  addition of nutrients via installation of bird roosting 

stakes and placement of sediment fill.  By examining differences among grounding and 

restoration sites and undisturbed reference sediments, we evaluated whether or not 

linkages between biotic and abiotic elements of ecosystem structure were being 
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reestablished in these restoration sites (Harris 2003).  We hypothesized that microbial 

community structure, and implicitly the microbially-mediated biogeochemical processes 

in the sediment, would vary among restoration treatments due to differences in organic 

matter available for remineralization in the oxidation-reduction conditions in the 

sediments.   We also hypothesized that microbial communities would vary with sediment 

depth, and with time, as ecosystem function developed in the restoration sites.  

Methods 

Study System 

This study was conducted in southern Biscayne Bay, described in Chapter II of 

this thesis.  Microbial communities in seagrass sediments have not been studied in this 

area.  Study sites included multiple vessel grounding injuries, vessel grounding 

restoration sites, and adjacent undisturbed seagrass meadows on Cutter Bank (Figure 

1). 

Experimental Design 

The short-term effects of restoration on seagrass ecosystem structure were 

evaluated at twelve individual sites at Cutter Bank following implementation of a 

restoration project in January-February 2010.  A factorial design was employed, with 

Restoration Treatment and Time as fixed factors.  Restoration Treatments included 

unrestored vessel grounding injuries (G = grounding), injuries that were provided a 

nutrient source via bird roosting stakes (GS = grounding + stake), injuries that were 

returned to grade with quarried limestone sand used as fill (F = fill), and intact 

undisturbed seagrass sites (I = intact).  Sites selected for inclusion in the study (n = 3 

per Treatment) were an average of 36 m2 in size.  Grounding and Grounding + Stake 
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sites were an average of 0.5 m deep, and Fill sites were filled to the grade of the 

surrounding sea floor with quarried sand during the restoration project.  Intact sites were 

established by delineating 32 m2 circular plots around randomly selected points across 

the shoal.  The twelve sites were sampled within one month of restoration 

implementation, and at three, six, nine, and twelve months following restoration 

(February, May, August, November 2010 and February 2011).  

Sediment Core Collection and Processing   

To identify environmental predictors of microbial community structure in our 

treatments, we sampled a suite of sediment properties that are indicators of microbially-

mediated processes in seagrass ecosystems.  These variables included sediment 

particle size and bulk density (microhabitat quality, nutrient exchange); pH, redox 

potential, organic matter content, and porewater sulfide (benthic metabolism and 

remineralization); and nitrogen and phosphorus content in sediment and porewater 

(nutrient storage).  Detailed descriptions of coring and environmental analyses are 

provided in Chapters II and III of this thesis.   

Microbial Community Profiling 

Terminal Restriction Length Fragment Polymorphism (TRFLP, Liu et al. 1997) 

was used to profile microbial community diversity in seagrass sediments.  TRFLP is one 

of several polymerase chain reaction (PCR)-based finger-printing techniques that can be 

used to study changes in community structure.  We selected TRFLP as our analysis 

method because it is a high throughput technique with short run times (Schütte et al. 

2008). However, resulting estimates of total diversity, as determined by the number of 

observed ribotypes are conservative because multiple taxa can share the position of a 

given restriction site. Therefore the frequency of identical terminal restriction fragments 
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(TRF) sizes can increase, especially at higher levels of diversity (Engebretson & Moyer 

2003).  To address this we used multiple restriction enzymes to increase the specificity 

and confidence of our resulting data interpretation (Nocker et al. 2007).  While TRFLP 

cannot provide phylogenetic inference into the specific taxa altered or variation in the 

functional composition of those different taxa directly (Torsvik & Øvreås 2002), it is 

valuable as a comparative tool, capable of detecting microbial community changes 

across large numbers of samples and treatments.   

We selected the 16S rRNA gene as our gene of interest because it is highly 

conserved in bacteria and archaea (Leloup et al. 2009). Because TRFs can represent 

both bacterial and archaeal sequences, we describe our results in terms of microbial 

communities.  DNA was extracted from 1.5 g sediment samples using the PowerSoil 

DNA Isolation Kit (MO BIO Laboratories, Inc., Carlsbad CA).  DNA was amplified using 

the primer sets FAM-Univ 9F and Univ 1509R (Integrated DNA Technologies, Inc., 

Coralville IA) in 50 µl PCR reactions (GoTaq Flexi DNA Polymerase kit (Promega, 

Madison WI) containing 10 µl of 5x buffer, 2.4 µM of MgCl, 0.2 µM of each primer, 2.5 U 

of Taq polymerase, and 0.2 mM of each dNTP.  PCR reactions used the following 

touchdown thermo-cycler program: 95°C 2 min, 34 cycles of 95°C 1 min, 55.6°C 1 min (-

0.3°C), and 72°C 1 min, and a final extension of 72°C 5 min step.  Amplifications were 

checked for efficiency on 1.2% agarose gels and cleaned using the Wizard SV 96 PCR 

Clean-Up System (Promega Corporation, Madison WI).  256 ng of DNA were digested in 

separate 20 µl reactions using the restriction enzymes MspI (Promega Corporation, 

Madison WI) and BstUI (New England Biolabs Inc., Ipswich MA).  Fragments were 

analyzed at Laragen, Inc. (Culver City CA) on an ABI 3730 sequencer (Applied 

Biosystems, Carlsbad CA), with 9.5 µl Hi-Di formamide and 0.5 µl 1200 LIZ size 

standard (Applied Biosystems, Carlsbad CA) added to 0.5 µl of each PCR reaction. 
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Sizes of TRFs were determined using the Local Southern size-calling algorithm 

of Peak Scanner Software v1.0 (Applied Biosystems, Carlsbad CA).  The peak 

amplitude threshold was set at 100 florescent units.  The TRFLP datasets were 

combined and further processed using the T-REX software (Culman et al. 2009).  Peak 

height was used as a metric of microbial abundance.  Peaks were retained if height 

exceeded the standard deviation (assuming zero mean) computed over all peaks (Abdo 

et al. 2006) and aligned using a clustering threshold of 0.5 base pairs (Smith et al. 

2005).  The TRFs outside the size range of 40-1160 base pairs were omitted to ensure 

fragments did not exceed the dynamic range of the LIZ-1200 size standard.   The TRF’s 

that occurred in less than 1% of samples were omitted.  Prior to analysis, TRF heights 

were standardized within samples to provide relative abundance data, removing some of 

the effect of differential PCR amplification (Fierer & Jackson 2006).   

Using the restriction enzymes MspI (n = 462 samples) and BstUI (n = 463 

samples), we obtained a total of 925 TRFLP profiles that passed quality checks.  These 

profiles represented 86% of our analyzed sediment samples.  Following averaging of site 

replicates, data analysis was conducted on 169 averaged profiles, representing 94% of 

our total potential averaged profiles.   

Data Analysis 

The TRF data were log-transformed to reduce the influence of highly abundant 

TRFs on the data set.  Principal coordinates analysis (PCO) was used to visualize 

differences in the microbial community on the basis of restoration treatments.  An 

unconstrained ordination method, PCO projects samples onto axes and minimizes 

residual variation in the space of the chosen dissimilarity measure (Anderson et al. 

2008).   



80 
 

Permutational Multivariate Analysis of Variance (PERMANOVA, Anderson et al. 

2008) was used to test the hypotheses that a) multivariate microbial community diversity 

varies with sediment depth, b) restoration affects multivariate microbial community 

diversity, and c) restoration affects univariate community characteristics including TRF 

richness (S, Chao 2), evenness (Pielou’s J’), and diversity (Shannon-Weaver, H’ and 

Simpson’s 1-λ).  PERMANOVA enables testing of the response of one or more variables 

to one or more factors, based on any resemblance measure, by partitioning sources of 

variation.  A primary advantage of PERMANOVA is that statistical significance of the 

pseudo-F statistic is determined through permutations of randomized real data, thus 

avoiding normality and homogeneity of variance assumptions (Anderson et al. 2008). 

The PERMANOVA analysis of multivariate microbial community data was 

derived from the binomial deviance dissimilarity measure (Anderson & Millar 2004), and 

analyses of univariate diversity metrics were based on Euclidean distance 

resemblances.  Significance values for PERMANOVA tests were built on 999 

permutations of residuals under reduced models.  Where data variables were available 

for multiple depth horizons (e.g., 0-2 cm, 2-6 cm, 6-10 cm), sediment depth was used as 

a covariate requiring the use of Type I sums of squares in the PERMANOVA analyses.  

Otherwise, Type III sums of squares were used.  Pairwise permutational tests with 

Bonferroni corrections were conducted on significant main effects and interactions in the 

PERMANOVA analyses.  The SIMPER procedure (Clarke et al 2006) was used to 

determine TRF similarity within restoration groups, and to identify the contribution of the 

most abundant TRFs to within-group similarity. 

Distance-based linear modeling (DistLM) and distance-based redundancy 

analyses (dbRDA)  (Legendre & Anderson 1999; McArdle & Anderson 2001; Anderson 

et al. 2008) were used to explore relationships between microbial community relative 
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abundance data  and multivariate data on sediment properties.  The dbRDA ordination 

visualizes the PCO axes constrained by linear combinations of the environmental 

variables calculated by the DistLM routine that maximally explain biotic variation 

(Anderson et al. 2008).  Parameters for the DistLM routine, which is analogous to linear 

multiple regression, included the Best selection procedure and the Akaike Information 

Criteria corrected for small sample sizes (AICc; Akaike 1973; Burnham & Anderson 

2002) selection criteria; the procedure was run with 9999 permutations.  Environmental 

data were log-transformed prior to analysis to reduce skewness.  Pearson correlations 

between individual log-transformed environmental variables and diversity metrics were 

calculated from log-transformed microbial relative abundance data and analyzed for 

significance in SPSS 20.0 (IBM).   

PCO, PERMANOVA, SIMPER, DistLM, and dbRDA analyses were conducted with the 

software PERMANOVA+ for PRIMER (Clarke & Gorley 2006; Anderson et al. 2008). 

Results  

Sediment Properties 

Sediments in Intact plots at Cutter Bank were fine (6.8 ± 0.2 ɸ, Figure 2), and 

dominated by silt and clay fractions (Figure 3).  These sediments were strongly reduced 

(-302.6 ± 9.1 mv Eh) with high organic matter content (16.5 ± 0.5% loss on ignition).  

Nutrient concentrations were low (0.015% ± 0.001% P content; 148.3 ± 41.5 µM NH4
+; 

1.0 ± 0.6 µM SRP).  Sediments from Grounding and Grounding + Stake sites had similar 

properties (Figure 2) and particle size composition (PERMANOVA pairwise test, α = 

0.008, p > 0.039; Figure 3) as the Intact sites.  A notable exception is that P content and 

porewater NH4
+ concentration increased by 99% and 67%, respectively, in the 
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Grounding + Stake sites over the year-long course of the study as a consequence of the 

deposition of bird feces.   

Sediment properties and microbial community structure from Fill sites differed 

sharply from Intact sites for all variables examined.  Fill sites had lower organic matter 

and dissolved sulfide concentrations, and higher bulk density, pH, Eh, P content, and 

NH4
+ and SRP concentrations, than the Intact sites (Figure 2).  Fill site sediments were 

heavily dominated by gravel and sand, and were substantially coarser than Intact 

sediments (PERMANOVA pairwise test, α = 0.008, p < 0.004; Figure 3).   

Microbial Community Profiles  

Microbial communities were structured across restoration treatments (Figure 4).  

Profiles from Fill sites clustered tightly and were separated from other treatments along 

PCO1, which explained 36.2% of variation in the data matrix.  Intact profiles also 

clustered tightly, and were partially overlapped by Grounding profiles, and to a lesser 

extent, by Grounding + Stake profiles.  Grounding + Stake profiles showed the least 

structure, and varied along both PCO axes.  PCO2, explaining 22.6% of variation in the 

data matrix, separated the profiles from Grounding and Intact sites from Fill and 

Grounding + Stake profiles, respectively.   

Sediment depth had a significant effect on microbial community structure across 

all samples (PERMANOVA, df = 2, pseudo-F = 9.0, p < 0.001), and community 

abundance differed with each depth horizon (PERMANOVA pairwise tests, p < 0.005).   

Community abundance differed across the four restoration treatments (PERMANOVA, p 

< 0.001; Table 1), with distinct profiles for each treatment (p < 0.001).  Community 

profiles also changed with time over the year-long course of the study (PERMANOVA, p 

< 0.001; Table 1), and overall, differed with each sampling event (PERMANOVA 
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pairwise tests, p < 0.001).  There was a significant Time x Treatment interaction in the 

community analysis.  Grounding and Grounding + Stake sites had similar community 

profiles for all time steps (PERMANOVA pairwise tests, p > 0.064; Table 1) except at the 

0 yr sampling event.  Fill site profiles were different from the Intact profiles and from the 

Grounding and Grounding + Stake profiles at every time step (PERMANOVA pairwise 

tests, p < 0.002; Table 1) except at the 0 yr sampling event, when profiles between Fill 

and Intact sites were similar.  Within restoration treatments, community profiles at the 1 

yr sampling event differed from the 0 yr sampling event for the Grounding, Grounding + 

Stake, and Fill treatments (PERMANOVA pairwise tests, p < 0.002; Table 1), but not for 

the Intact treatment.   

Microbial Community Diversity 

In total, 122 and 95 TRFs were detected with the MspI and BstUI digests, 

respectively, and 166 unique TRFs were common to the combined dataset.  Maximum 

TRF richness across restoration treatments was 122 TRFs, with an average of 59.6 ± 

1.8 TRFs per sample.  For clarity of presentation, microbial community diversity results 

are included for the 0 yr and 1 yr sampling events.  TRF richness (Figure 5) pooled over 

all time steps for each treatment was highest for the Grounding + Stake treatment (71.1 

± 5.4 TRF) and lowest for the Fill treatment (48.0 ± 8.5 TRF).  TRF richness in 

Grounding and Grounding + Stake treatments was nearly a third greater than in Intact 

treatment. Chao 2 estimates (Figure 5) were highest for the Grounding treatment (165.7 

± 13.7 sd TRF), and lowest for the Intact treatment (118.3 ± 13.3 sd TRF).  

With samples pooled across time steps, microbial community richness, 

evenness, and diversity (H’ and 1-λ) varied among restoration treatments 

(PERMANOVA, P < 0.008; Table 2; Figure 5), though with complex patterns among 
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metrics.  Values for all four diversity metrics were similar in samples from Grounding and 

Grounding + Stake treatments (Figure 5).  Diversity (H’) was lower in Intact sites than in 

Grounding and Grounding + Stake sites (PERMANOVA pairwise tests, p < 0.013; Figure 

5).  Fill sites had similar richness, evenness, and diversity (H’ and 1-λ) as Intact sites 

(Figure 5).   

Time was a significant factor for microbial richness and diversity (H’; 

PERMANOVA, P < 0.007; Table 2; Figure 5).  Values for both metrics were lower at 1 y 

than at 0 yr following restoration for the Grounding and Grounding + Stake treatments.  

No temporal changes were observed for richness and diversity (H’) in Fill or Intact 

treatments, or for evenness or diversity (1-λ) in any treatment (Figure 5).  

Within treatments, Intact sites had the most similar microbial communities 

(68.3%), while the least similar communities (46.4%) were found in Fill sites (SIMPER, 

Table 3).  The most abundant TRF in each treatment was shared between the 

Grounding and Grounding + Stake communities (106 bp), and also between the Fill and 

Intact communities (504 bp; SIMPER, Table 3).  Dissimilarity between communities in 

treatment pairs was lowest between the Grounding and Intact treatments (35.0%).  

Among all treatment pairs, Fill site communities shared the highest dissimilarity 

percentages (> 50%) with each of the other three treatments (SIMPER, Table 3).      

Environmental Predictors of Microbial Community Structure and Diversity 

Total nitrogen, mean phi size, and water content were excluded from the DistLM 

analysis due to high correlation (|r|>0.95) with organic matter content and bulk density.  

When constrained by environmental variables, microbial community structure among 

restoration treatments became even more pronounced, as seen the in the dbRDA 

ordination (Figure 6).   
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Microbial community profiles from Fill sites separated from the other restoration 

treatment profiles distinctly along dbRDA1.  Intact site profiles clustered tightly, sharing 

little space with Grounding and Grounding + Stake profiles, which overlapped somewhat 

with each other (Figure 6).  The first two dbRDA axes explain 94.5% of the fitted 

variation, and 27.3% of the variation in the resemblance matrix (Figure 6), and are likely 

capturing substantial information about the microbial community structure at these sites 

as influenced by important environmental predictors.   

There were strong negative correlations between organic matter content and 

dbRDA1 (DistLM, r =-0.998; Table 4), between bulk density and dbRDA2 (r =-0.804; 

Table 4), and between NH4
+ concentration and dbRDA3 (r = -0.802; Table 4; not plotted 

in Figure 6).  We interpret these correlations to indicate that high organic matter content 

in Intact, Grounding, and Grounding + Stake sediments, high NH4
+ concentration in 

Grounding + Stake sediments, and high bulk density in Fill sediments are important 

drivers of the microbial community structure across the restoration treatments.      

The DistLM marginal tests that fit each environmental variable individually to the 

microbial community data showed that every variable except SRP concentration had a 

significant relationship with microbial community abundance (DistLM marginal tests, p < 

0.001). DistLM selected bulk density, organic matter content, and NH4
+ concentration for 

inclusion in the best multivariate predictor model explaining microbial community 

structure across the restoration treatments (DistLM, r2=0.29). However, the solutions for 

the ten best models all had AICc values within two units of each other, so all may be 

considered viable (Burnham & Anderson 2002).  The ten best models included between 

three and six variables, and all included bulk density, organic matter content, and NH4
+ 

concentration.  None of the best models included pH as a predictor variable. 



86 
 

Univariate measures of microbial community diversity and evenness showed 

slightly different relationships with environmental predictor variables.  TRF richness and 

diversity (H’, 1-λ) were correlated with particle size and with organic matter and 

phosphorus content (Pearson correlations, p < 0.05; Table 5).  Diversity (1-λ) was 

correlated with bulk density and redox potential (p < 0.05; Table 5).  However, pH, NH4
+, 

SRP, and dissolved sulfide concentrations were not correlated with microbial community 

diversity or evenness.  No significant correlations were found between microbial 

community evenness and any of the measured environmental variables. 

Discussion 

By exploring microbial community structure and diversity in seagrass sediments 

that were intact, disturbed, or restored using different methods, we were able to show 

that community structure varied with sediment depth, among restoration treatments, and 

through time.  We also identified environmental variables important to sediment 

structure, ecosystem metabolism, and nutrient storage that are predictors of microbial 

community structure.    

Sediment depth was a significant factor in our analyses of relative microbial 

community structure, but not for community diversity metrics.  Electron acceptors 

available for microbial use in mineralization vary with depth and the presence of 

belowground plant biomass.  At the water-sediment interface, and in the rhizosphere of 

seagrasses, oxygen is available to support aerobic metabolism (Pedersen et al. 1998; 

Kristensen et al. 2000).  In deeper sediments, nitrate, iron, and sulfate become electron 

acceptors for anaerobic metabolism (Canfield et al. 1993).  In marine sediments, sulfate 

reduction plays an important role in remineralization and nutrient availability because of 

the high concentrations of sulfate in seawater (Holmer et al. 2001; Holmer & Duarte 
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2003).  It follows that microbial communities will differ with depth, reflecting the different 

metabolic processes taking place throughout the seagrass rhizosphere.  For example, 

microbial community differences have been detected between oxidized and reduced 

sediments in seagrass ecosystems, and in the presence of root zone sediments (Jensen 

et al. 2007; Sørensen et al. 2007), though community differences with depth are not 

detected (James et al. 2006; García-Martínez et al. 2008).    

The similarity in diversity values between Fill and Intact sites may suggest 

microbial communities that are of similar complexity, but not necessarily of similar 

identity.  The most distinct differences in total microbial community structure across our 

restoration treatments were seen when comparing Fill sites to other treatments.  Fill sites 

were characterized by a near absence of organic matter in the top 10 cm, which is not 

surprising given that the fill material was created from mined limestone.  Organic matter 

content is an important determinant of microbial community structure in terrestrial 

systems (Sessitsch et al. 2001; Girvan et al. 2003; Blum et al. 2004), and our results 

support this relationship for seagrass ecosystems.  Microbes mediate the 

remineralization of organic matter in marine sediments.  Organic matter supplying 

benthic remineralization processes is provided by dead roots and rhizomes; root 

exudates; organic particles and litter buried by sedimentation and bioturbation; and 

benthic microalgal exudates (Pedersen et al. 1997; Holmer et al. 2001).   

Because organic matter content in developing seagrass meadows is driven by 

the accumulation of plant biomass, and is a slow process (Pedersen et al. 1997; Di Carlo 

& Kenworthy 2008; McGlathery et al. 2012), organic matter content in Fill sites is 

expected to remain low until these sites support dense, climax seagrass communities.  

In the initial stages of seagrass community development, a lack of organic matter in the 
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sediments as substrate for microbial remineralization may lead to persistently low 

nutrient pools available to support seagrass and macroalgae colonization.   

The fill material used for restoration was locally sourced from lake mines in south 

Florida.  Any microbial community present in the fill material prior to placement was likely 

strongly reduced following inundation by sea water.  The status of the microbial 

community may be an important consideration for seagrass restoration efforts.  For 

example, disrupted microbial community diversity in seagrass sediments has been 

linked to high mortality in seagrass transplants (Milbrandt et al. 2008).  Organic matter 

content at all of our study sites also was measured at deeper sediment horizons, down 

to 40 cm (data not shown).  In the deeper horizons, organic matter content increases 

and particle size decreases (see Chapter III of this thesis), presumably due to mixing 

between the fill layer and underlying sediments.  It is possible that the microbial 

community in this mixing layer can stimulate remineralization using the organic matter 

present as a substrate.  However, in sites where the fill layer is thicker, or if organic 

matter is not available as a substrate, this may not be possible.   

Nutrient addition can stimulate microbial remineralization of organic matter 

(Lopez et al. 1998), and we expected to see evidence and products of metabolism in the 

Grounding + Stake treatment.  We predicted that bird stakes would provide nutrient input 

that would affect diversity as the microbial community responded to N and P inputs in 

this nutrient-limited system (Danovaro & Fabiano 1995).  Phosphorus content was 

elevated at the Grounding + Stake sites after a year, and the microbial community did 

change in the Grounding + Stake treatment over the course of the study, though the 

Grounding + Stake sites differed from the Grounding sites only at the initial sampling 

event.  Redox potential was lower and DS was elevated in Grounding + Stake sites after 
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one year compared to the start of our study, though this pattern was also seen in the 

Grounding and Intact sites.  

Particle size composition is important in shaping microbial communities.  In 

agricultural systems, underlying soil type affects microbial communities, and microbial 

diversity is negatively correlated with particle size (Sessitsch et al. 2001; Girvan et al. 

2003).  Different particle size fractions are thought to act as microhabitats with different 

organic matter content and redox conditions, that accordingly support different microbial 

communities (Miller & Dick 1995; Zhang et al. 2007).  We too found that microbial 

diversity was negatively correlated with particle size.  Grounding, Grounding + Stake, 

and Intact sites generally had more complex communities than Fill sites, and bulk 

density and particle size were important predictors of variability in microbial community 

relative abundance.   

In seagrass ecosystems, the importance of sediment grain size and porosity in 

seagrass bed sediments is linked to exchange of sediment pore water with overlying 

waters (Koch et al. 2001).  Grain size is correlated with pore water exchange 

(Fourqurean et al. 1992), and thus nutrients and also toxic compounds such as sulfide 

may accumulate in fine-grained sediments.  We did see elevated NH4
+, SRP, and DS in 

the porewaters from the fines-dominated Grounding, Grounding + Stake, and Intact 

treatments, when compared to the Fill treatments.  However, we attribute those 

differences to lower benthic metabolism in the newly-placed fill material, rather than 

differences in porewater constituent retention related to sediment particle size. 

Sediments used in seagrass restoration projects are typically far coarser than 

ambient sediments , and this was certainly the case with our Fill treatment. Turbidity 

created during fill placement can be difficult to control with fine sediments, and there also 

is concern that fine sediments may wash away from the site with tides and wave energy.  



90 
 

The silt/clay fraction of fill material used in this restoration project ranged from 1% to 6%, 

within the range of sediments that T. testudinum is known to grow in (Koch et al. 2001), 

but far lower than ambient sediments at Cutter Bank.  Despite dramatic differences in 

particle size distributions, TRF richness was similar in Fill and Intact sites.  However, 

TRFs of similar sizes may be derived from different microbial taxa, and thus richness 

alone is not a good indicator of community similarity with the TRFLP method 

(Engebretson & Moyer 2003).  Seagrass blades attenuate water movement and trap 

suspended particles, and fines sediments accumulate in seagrass meadows through 

sedimentation and percolation (Terrados & Duarte 2000).  Fine sediments are expected 

to increase in the fill sites as the seagrass community develops with time and seagrass 

blades entrain particles from the water column, but these sites will likely always remain 

coarser than the surrounding sediments.  Fill sites, then, may continue to support a 

distinct microbial community on the basis of sediment structure.  

Seagrass blades attenuate water movement and trap suspended particles, and 

fines accumulate in seagrass sediments through sedimentation and percolation 

(Terrados & Duarte 2000).  Fine sediments are expected to increase in the fill sites as 

the seagrass community develops with time and seagrass blades entrain particles from 

the water column, but these sites will likely always remain coarser than the surrounding 

sediments. 

In our study, TRF richness and diversity were negatively correlated with sediment 

Eh.  Relatively higher Eh values were recorded for Fill sites, which had little to no 

vegetative cover during out study period, whereas Intact seagrass sediments were 

strongly reduced.  Microbial community diversity in seagrass beds has been shown to 

differ in the presence vs. absence of seagrass (James et al. 2006) and between the root 

zone and bulk sediments (Jensen et al. 2007).  Seagrasses can modifying redox 
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conditions in the rhizosphere (Marbà & Duarte 2001; Enríquez et al. 2001).  This 

capability, linked to photosynthetic activity and release of O2 from seagrass roots 

(Pedersen et al. 1997; Connell et al. 1999; Jensen et al. 2007;Terrados et al. 1999), may 

also influence microbial activity in the rhizosphere.  Oxygen intrusion supports aerobic 

metabolism and sulfide oxidation, and seagrass sediments can have higher redox 

potential than unvegetated sediments, where anaerobic sulfate reduction occurs.  

However redox potential in the surface (<10 cm) layer of vegetated sediments can be 

lower than in unvegetated sediments in the presence elevated organic matter subject to 

microbial metabolism (Pedersen et al. 1997), or because the photosynthetic activity of 

sediment microphytobenthos may be reduced by  seagrass canopy shading (Enríquez et 

al. 2001). We suggest that the differences in redox potential we observed between Fill 

and Intact sites can be explained by the high organic matter content in the Intact 

sediments and its near absence in the Fill sites.   

We found that Time was a significant factor in altering the microbial community.  

However, in the multivariate analysis, patterns of change through time were not clear 

within treatments.  Further, the direction of change in the univariate metrics was 

unexpected, as diversity values were often lower at the 1 yr mark within restoration 

treatments.  A clear cause for these patterns is elusive.  One potential explanation is that 

the 0 yr sampling event occurred within weeks of a rare extreme cold event in south 

Florida during January 2010.  The average water temperature in January and February 

at this location ranges between 20° and 21° C (Biscayne National Park, 2010).  During 

the cold snap, water temperatures remained below 15 °C for the 12-day period 4-16 

January 2010, and reached a low of 9.2° C on 11 January 2010.  Water temperatures 

during the 0 year sampling event were between 19.2° C and 19.7° C, nearly back to 

normal, at 19.5° C.  Temperature can affect microbial development in seagrass 
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ecosystems (Danovaro & Fabiano 1995; James et al. 2006) and it is plausible that the 

microbial community was impacted by the cold snap.  Microbial diversity can increase 

following disturbance (Hall et al. 2012a), and the community may have been in a period 

of recovery when we sampled it.   

Conclusion 

Current knowledge of microbial roles facilitation of seagrass community recovery 

following disturbance or restoration is limited.  Our study is among the first to examine 

sediment microbial communities in the context of seagrass restoration (see also 

Milbrandt et al. 2008).  The quarried sand used to fill excavations provided a coarser 

sediment matrix to support microbial communities and functions than found in 

undisturbed seagrass meadows.  The absence of organic matter in filled sites was an 

important driver of microbial community structure in filled sites.  Incorporation of organic 

material into fill used in restoration sites may help to accelerate development and 

function of the microbial community, and in turn, the seagrass community.  In the early 

stages of macrophyte community development, our comparative study of microbial 

community status, when evaluated in the context of relevant environmental variables, 

provides insight on the status restoration sites relative to the intact ecosystem.   
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Table 1.  Results of PERMANOVA analysis of the effects of restoration treatment and 

time on multivariate microbial community diversity, with sediment depth as a covariate.  

Results are also included for PERMANOVA pairwise tests on the Treatment x Time 

interaction, for levels of the Treatment factor within each time step (middle panel) and of 

the Time factor within each Treatment (bottom panel).  P values in bold text indicate 

statistical significance at α < 0.05. 

Source  df     MS Pseudo-F P

Depth 1 3391.8 29.8 0.001

Treatment  3 2977.5 26.1 0.001

Time  4 810.8 7.1 0.001

Treatment x Time 12 325.5 2.9 0.001

Residual 149 575.0   

Treatment (α = 0.008) 0yr 0.25 yr 0.5 yr 0.75 yr 1 yr

Grounding a ac a a ac

Stake b a a a a

Fill c b b b b

Intact cd c c c c

Time (α = 0.005) Grounding Stake Fill Intact

0 yr  a a a ad

0.25 yr  b ac abcd abd

0.5 yr  ab a bd b

0.75 yr  b b cd bd

1 yr  b bc c ac
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Table 2.  Results of PERMANOVA analysis of the effects of restoration treatment and 

time on microbial community richness, evenness, diversity, and dominance at the 0- and 

1-yr sampling events, with sediment depth as a covariate.  P values in bold text indicate 

statistical significance at α < 0.05. 

 

Diversity Metric Source df      MS Pseudo-F P

TRF Richness Depth 1 25 0.09 0.770

Treatment 3 2233.4 7.7 0.001

Time 1 4522 15.6 0.003

Tr x Ti 3 829.9 2.9 0.040

Residual 57 0.253          

Pielou's J' Depth 1 0.000 0.034 0.851

 
Treatment 3 0.005 3.832 0.008

 
Time 1 0.002 1.964 0.171

 
Tr x Ti 3 0.004 2.823 0.037

Residual 57 0.001

Shannon-Weaver H' Depth 1 0.035 0.310 0.577

 
Treatment 3 1.030 9.232 0.001

 
Time 1 0.892 8.000 0.007

 
Tr x Ti 3 0.278 2.489 0.067

Residual 57 0.112

Simpson’s 1-λ Depth 1 0.000 0.502 0.473

 
Treatment 3 0.007 9.915 0.001

 
Time 1 0.003 4.016 0.050

 
Tr x Ti 3 0.001 1.874 0.151

  Residual 57 0.001     
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Table 3.  SIMPER analysis of microbial TRF similarity across restoration treatments. 

Treatment Within Treatment 
Mean Similarity (%)

Most Abundant TRF (bp) 

Size (bp) Contribution (%)

Grounding 65.5 106 7.1 

Stake 57.1 106 7.6 

Fill 46.4 504 9.6 

Intact 68.3 504 7.4 

Among Treatment Mean Dissimilarity (%) 

 Grounding Stake Fill 

Stake 40.2   

Fill 54.2 58.1  

Intact 35.0 43.3 52.3 

 

 
 
Table 4.  Multiple partial correlations between dbRDA coordinate axes and 

environmental variables 

Variable dbRDA1 dbRDA2 dbRDA3

Organic matter -0.998 -0.037 -0.059

Bulk density 0.005 -0.804 0.594

NH4
+ concentration -0.069 -0.593 -0.802

 

 

Table 5.  Pearson correlations between log-transformed diversity metrics calculated from 

T-RFLP abundance data and environmental variables, sampled at 0-yr and 1-yr post-

restoration.  Correlations in bold text with one and two asterisks indicate that the 

correlation is significant at the 0.05 and 0.01 level, respectively.   

Diversity Metric phi BD pH Eh OM P NH4
+ SRP DS 

Richness S 0.34** -0.16 -0.23 -0.18 0.32** -0.51** -0.16 0.06 -0.01

Shannon-Weaver H' 0.34** -0.17 -0.21 -0.22 0.31* -0.51** -0.14 -0.01 0.02

Simpson’s 1-λ 0.40** -0.30* -0.24 -0.33** 0.40** -0.52** -0.22 -0.05 0.15

Pielou’s J' 0.16 -0.06 0.04 -0.13 0.09 -0.23 -0.01 -0.19 0.00
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Figure 1.  Location of study sites at Cutter Bank, in southern Biscayne Bay, Florida, 

USA.  Polygons in lower inset are grounding/restoration sites. 

Figure 2.  Sediment environmental variables at grounding (top row), stake (second row), 

fill (third row), and intact sites (bottom row), at 0yr (circles) and 1yr (triangles) post-

restoration.  Values are mean ± se at three depth horizons:  0-2 cm, 2-6 cm, and 6-10 

cm.  Abbreviations:  phi = sediment particle size; Eh = redox potential; SRP = soluble 

reactive phosphate. 

Figure 3.  Sediment size class (clay, silt, sand, gravel) contribution in sediment cores 

collected from restoration treatments.  Data in bars are pooled over three depth horizons 

(0-2cm, 2-6cm, 6-10cm) and two sampling events (0yr, 1yr) within each treatment.  

Letters indicate statistical significance (α=0.008) among treatments determined through 

PERMANOVA pairwise tests of multivariate sediment structure between treatments.   

Figure 4.  Principal coordinates analysis ordinations of TRFLP profiles from sediment 

samples at Grounding, Stake, Fill, and Intact sites.   

Figure 5.  TRF richness (S, Chao 2), evenness (Pielou’s J’), and diversity (Shannon-

Weaver H’, Simpson’s 1-λ), by restoration treatment and sampling event (0yr, dark bars 

and 1yr, light bars) calculated from TRFLP abundance data.   Values are mean ± se for 

H’, 1-λ, and J’) and mean ± sd for Chao 2. Where the Treatment main effect was 

significant, significance of pairwise tests of the Treatment levels (α = 0.008) is indicated 

by letters at the base of each Treatment bar group.  Significance of a Time difference 

within each treatment is indicated by an asterisk (α = 0.05). 

Figure 6.  dbRDA ordination microbial community data (binomial deviance resemblance 

matrix calculated from log transformed relative abundance data) fitted to environmental 

variables.  Data are from 0 yr and 1 yr sampling events.  Ordination is based on best-fit 

DistLM model with three variables (log(BD), log(NH4
+), and log(OM)). 
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CHAPTER V:  Disturbance and restoration effects on macroinvertebrate infaunal 

community structure in subtropical seagrass sediments. 

Abstract 

Infaunal invertebrates in seagrass sediments facilitate many key ecosystem 

processes, yet infaunal community response to and recovery from physical disturbance 

to seagrass sediments is not well understood.  We evaluated infaunal community 

structure, macrophyte communities, benthic microalgae, and sediment properties in sites 

where vessel groundings excavated seagrass sediments, and in sites where restoration 

actions had been implemented.  Restoration methods included installation of bird 

roosting stakes as a means to provide a fertilization source, and placement of sediment 

fill to re-grade and stabilize excavations.  Infauna communities in both disturbed and 

filled sites had different community structure, and reduced abundance, richness, 

evenness, diversity, and dominance relative to the undisturbed seagrass meadow.  

Fertilizing seagrass sediments increased infaunal abundance, but did not affect other 

diversity metrics.  Environmental predictors of infaunal community structure across 

restoration treatments included sediment bulk density, organic matter content, and 

porewater inorganic nutrient pools.  Disturbance to seagrass sediments can cause 

impacts to infaunal communities that may persist for several years.  Restoration actions 

also impact infaunal communities, and recovery of infaunal communities was not 

observed at restoration sites during the first year post-restoration. 
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Introduction 

Seagrass ecosystems provide numerous goods and services to human 

populations including shoreline protection, sediment stabilization, water purification, and 

commercial and artisanal fisheries, and (Spalding et al. 2001).  These goods and 

services have been valued at $19,000 ha -1 yr -1 (Costanza et al. 1997).  Ecosystem 

functions that support these goods and services include primary and secondary 

production, nutrient cycling, and benthic metabolism (Hemminga & Duarte 2000; Marba 

et al. 2006b).   

Benthic infauna play an important role in seagrass ecosystem functioning and in 

maintaining the ecosystem services provided by seagrasses.  Infauna biomass 

represents secondary production, i.e. the transfer of a portion of the carbon fixed by 

seagrasses and benthic microalgae to higher tropic levels.  Infauna are an important 

component in seagrass food web structure, consuming benthic microalgae and serving 

as prey for epibenthic predators, including several important fishery species 

(Summerson & Peterson 1984).  Bioturbation by infauna irrigates and oxygenates 

shallow sediments, and enhances benthic-pelagic fluxes and stimulates primary 

production (Norkko et al. 2001; Lohrer et al. 2004; Montserrat et al. 2008).   

Loss of seagrass resources along the world’s coastlines is accelerating (Waycott 

et al. 2009), and physical disturbance is a key contributor to this decline (Orth et al. 

2006).  Physical disturbances to seagrass meadows that disrupt the rhizosphere, such 

as from vessels that run aground and excavate plants and sediment (Fonseca et al. 

2004; Di Carlo & Kenworthy 2008), influence factors important in controlling infaunal 

communities such as benthic microalgae, macroalgae, and seagrass abundance, as well 

as sediment organic matter and nutrient pools (see Chapters II and III of this thesis).  



105 
 

The effects of physical disturbance on infauna in seagrass sediments are not well 

documented (but see (Sheridan 2004a), though such impacts are well described for soft 

sediments in other ecosystems, primarily in the context of natural processes such as 

storm events (Dobbs & Vozarik 1983; Hall 1994; Posey & Lindberg 1996; Zajac et al. 

1998) or anthropogenic activities such as trawling (Collie & Hall 2000; Kaiser et al. 

2006).  In seagrass ecosystems, attention has focused on epibenthic invertebrates.  For 

example, vessel grounding impacts to epibenthic species have been documented, and 

described as taxa- and scale-dependent (Bell et al. 2002; Uhrin & Holmquist 2003).  

Disturbance to and subsequent recovery of seagrass meadows are expected to result in 

changes to infaunal communities, and these changes may in turn influence functioning in 

these ecosystems.   

 Increased protection for seagrasses by national governments is often 

accompanied by mandates to restore seagrass injuries or otherwise mitigate for 

seagrass impacts.  Accordingly, interest in seagrass restoration has increased in recent 

decades (Fonseca 2011).  Resource managers and restoration practitioners attempt to 

accelerate recovery of disturbed seagrass communities by implementing specific 

restoration methods, often to re-grade and stabilize excavations and delivery fertilizers to 

restoration sites (Fonseca et al. 1998; Kirsch et al. 2005). For restoration to be 

successful, ecological attributes of the system such as structure, composition, and 

function must be reestablished (Hobbs & Norton 1996; Higgs 1997), but a preliminary 

understanding both of the effects of the disturbance and of natural recovery trajectories 

is required to understand the post-restoration recovery process.   

Once seagrass restoration has been implemented, rapid assessments of plant 

communities are typically used to monitor restoration success (Fonseca et al. 1998; 

Uhrin et al. 2011).  Analyses conducted to date on functional performance other than 
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primary production in restored seagrass sites, have focused on infauna (Bell et al. 1993; 

Sheridan et al. 2003; Sheridan 2004b) or epibenthic invertebrates  (Fonseca et al. 1990, 

1996).  These studies have been limited to restoration sites where seagrass has been 

transplanted.  We are unaware of studies of seagrass infauna community response to 

vessel grounding disturbances, or to restoration activities involving methods other than 

seagrass transplanting, such as filling excavations or fertilizing restoration sites.  

Information currently lacking on infaunal recovery trajectories following seagrass 

restoration is needed to fully assess restoration goals.   

Our study aimed to fill some information gaps that exist regarding the effects of 

physical disturbances on infaunal community structure in seagrass sediments.  We also 

sought to characterize the recovery of seagrass infauna following common restoration 

actions (other than transplanting).  We hypothesized that a) vessel groundings that 

excavate sediments alter infaunal community structure; b) altered community structure 

changes with time following disturbance through succession, and c) seagrass restoration 

actions such as fill placement and fertilization (via installation of bird roosting stakes) 

accelerate the recovery of infaunal communities. 

Methods 

Study System 

This study was conducted in southern Biscayne Bay, described in Chapter II of 

this thesis.  Infauna in seagrass sediments for this area have been described in the 

context of the development and early operation of the Florida Power and Light Turkey 

Point power plant (Roessler 1971; McLaughlin et al. 1983).  This study evaluated 

infaunal communities and sediment structure on multiple seagrass shoals:  Cutter Bank, 

Arsenicker Bank, East Featherbed Bank, and Biscayne Channel.  Our study sites 
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included multiple vessel grounding injuries, restoration sites, and adjacent undisturbed 

seagrass meadows on these shoals.  (Figure 1). 

Experimental Design 

Disturbance Analysis   

Effects of physical disturbance on infaunal community structure were evaluated 

at fourteen vessel grounding sites of known age on Cutter Bank, Arsenicker Bank, East 

Featherbed Bank, and Biscayne Channel.  These grounding sites (G) included vessel 

grounding disturbances where sediments were excavated to a mean depth of 0.4 m, but 

for which no restoration has taken place.  Sites were documented upon occurrence, with 

the exception of the 5 yr age group, that included three sites known from aerial 

photography to be at least five years old.  Sites were assigned to age groups rounded to 

the nearest six-month increment.   There were two to four sites per age group (0 yr:  4 

sites; 1 yr:  2 sites; 3 yr:  3 sites; 4 yr:  2 sites; and 5 yr:  3 sites).  G sites were sampled 

once during February – March 2011.   One 7.3 cm x 10 cm sediment core was 

haphazardly collected from each site, and one core was collected from the undisturbed 

reference seagrass meadow adjacent to each feature. 

Restoration Analysis   

Effects of seagrass restoration methods on infaunal communities were examined 

at eighteen vessel grounding sites on Cutter Bank, sampled quarterly following 

implementation of multi-site restoration project conducted in January-February 2010.  A 

factorial design was employed, with Restoration, Fertilization, and Time as factors.  

Restoration treatments included unrestored vessel grounding injuries (G), injuries that 

were returned to grade of the surrounding sea floor with quarried sand (F), and intact 

undisturbed seagrass sites (I).  The Restoration factor was crossed with a Fertilization 
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factor by installing bird roosting stakes into a subset of sites within each of the three 

Restoration treatments (GS = grounding+stake, FS = fill+stake, IS = intact+stake).  Sites 

included in the study were an average of 36 m2 in size.  G and GS sites were an average 

of 0.5 m deep, and F and FS sites were filled to grade.  Circular plots 32 m2 in size were 

established as I and IS sites at random points across the shoal.  Three sites were 

included in each Restoration x Fertilization treatment (i.e. G, GS, F, FS, I, IS), and three 

cores were collected per site per sampling event.   Sites were sampled within one month 

of restoration implementation and again at three, six, and twelve months following 

restoration (February, May, August, and February 2011).  

Seagrass Community Characterization  

To evaluate the status of the macrophyte community, seagrass and macroalgae 

(i.e. calcareous green algae) abundance was estimated according to methods described 

in Chapter II of this thesis.   

Sediment Core Collection and Processing 

We used cores of the surface sediments to define the soil environment and 

invertebrate communities as a function of restoration and fertilization treatments.  We 

sampled a suite of eleven soil properties that are indicators of structure and function in 

seagrass ecosystems, including benthic microalgae (primary production, habitat quality); 

pH, redox potential, organic matter content, and porewater sulfide (benthic metabolism 

and remineralization); bulk density, water content, and particle size (nutrient exchange); 

and nitrogen and phosphorus in sediment and porewater (nutrient storage).  Detailed 

descriptions of coring and environmental analyses are provided in Chapters II of this 

thesis.   
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Infauna Core Collection and Processing 

7.3 cm x 10 cm cores were collected by hand for infauna analysis.  At 

disturbance sites, one infauna core was haphazardly collected from each injury feature 

and from the adjacent undisturbed reference seagrass bed.   At restoration sites, three 

infauna were randomly collected from each site/time.  Data from replicate infauna and 

sediment cores were averaged for sediments analysis.      

Core contents were sieved through 500 µm mesh.  Material retained on the sieve 

was fixed in 4% seawater-buffered formalin for several weeks, rinsed, and stored in 90% 

ethanol.  Samples were stained with Rose Bengal and organisms were separated from 

sediment and detritus.  Infauna were then counted and sorted at Mote Marine Laboratory 

(Sarasota FL) into groups determined by coarse taxonomic level, usually determined by 

class or order.  We did not measure biomass of the organisms we sampled.  

Invertebrate abundance can be highly variable with regard to biomass depending on 

body size of individuals.  Overall, the sizes of the individuals were very small, and many 

were damaged.  In addition, organisms from the G and I sediments were tightly 

embedded in a matrix of organic particles that would have confounded biomass results.  

The effort involved with isolating the organisms from this matrix would have exceeded 

our available resources.  

Data Analysis   

Effects of disturbance on ecosystem structure and recovery through time were 

evaluated by comparing primary producer (seagrass, macroalgae, microphytobenthos) 

abundances, infauna abundance, and infauna diversity between vessel grounding and 

reference sites within each age group.  Effects of restoration on ecosystem structure and 

recovery through time were evaluated by comparing primary producer (seagrass, 
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macroalgae, microphytobenthos) abundances, infauna abundance and diversity, and 

between vessel grounding and reference sites within each age group.   

Plant community structure at disturbance and restoration sites was assessed 

with seagrass and macroalgae percent cover.  Seagrass and macroalgae BB scores 

from the seagrass community surveys were converted to percent cover data using the 

midpoint of the percent cover range corresponding to each BB score, and averaged by 

disturbance status (injury, reference) for each time step.  For the disturbance analysis, 

seagrass and macroalgae percent cover and chlorophyll a content between injury and 

reference sites at each time step were compared using Mann-Whitney U-tests 

(seagrass, macroalgae) or t tests (chlorophyll a) in the software SPSS 20.0 (IBM).  For 

the restoration analysis, changes in seagrass and macroalgae percent cover through 

time were detected with Spearman correlations (SPSS 20.0, IBM). 

Principal coordinates analysis (PCO) was used to visualize differences in infauna 

community structure by disturbance status, and by restoration status and time.  PCO is 

an unconstrained ordination method that projects samples onto axes and minimizes 

residual variation in the space of the chosen dissimilarity measure (Anderson et al. 

2008).   

Permutational Multivariate Analysis of Variance (PERMANOVA, Anderson et al. 

2008) was used to test the hypotheses that physical disturbance to sediments and 

restoration actions alter infauna community structure, and that the altered communities 

changes through time towards convergence with reference communities.  Specifically, 

for the disturbance and restoration analyses, we tested these hypotheses on multivariate 

infauna community structure and on univariate community characteristics including 

taxonomic richness (S), evenness (Pielou’s J’, Simpson’s λ’), diversity (Shannon-

Weaver, H’), and dominance (Simpson, 1-λ’).  PERMANOVA enables testing of the 
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response of one or more variables to one or more factors, based on any resemblance 

measure, by partitioning sources of variation.  A primary advantage of PERMANOVA is 

that statistical significance of the pseudo-F statistic is determined through permutations 

of randomized real data, thus avoiding normality and homogeneity of variance 

assumptions (Anderson et al. 2008).  PERMANOVA analyses of multivariate infauna 

abundance data were based on the binomial deviance dissimilarity measure (Anderson 

& Millar 2004), and analyses of univariate diversity metrics were based on Euclidean 

distance resemblances.  Significance values for PERMANOVA tests were based on 999 

permutations of residuals under reduced models, using Type III sums of squares.  

Pairwise permutational tests with Bonferroni corrections were conducted on significant 

main effects and interactions in the PERMANOVA analyses.  Changes in diversity 

metrics between 0 yr and 1 yr samples within restoration treatments were evaluated 

using Mann-Whitney U-tests in SPSS 20.0 (IBM).  

For the restoration analysis, the SIMPER procedure (Clarke et al 2006) was used 

to determine taxonomic similarity within the restoration groups.  SIMPER also identified 

the contribution of the most abundant taxa in each analysis to within group similarity. 

Distance-based linear modeling (DistLM) and distance-based redundancy analyses 

(dbRDA)  (Legendre & Anderson 1999; McArdle & Anderson 2001; Anderson et al. 

2008) were used to determine relationships between infauna community abundance 

data from the restoration analysis and multivariate data on sediment properties.  dbRDA 

visualizes the DistLM results as PCO axes constrained by linear combinations of the 

environmental variables that maximally explain biotic variation (Anderson et al. 2008).  

Parameters for the DistLM routine, which is analogous to linear multiple regression, 

included the Best selection procedure and the Akaike Information Criteria corrected for 

small sample sizes (AICc; Akaike 1973; Burnham & Anderson 2002) selection criteria; 
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the procedure was run with 9999 permutations.  Sediment data from the top three depth 

horizons (0-2 cm, 2-6 cm, 6-10 cm) were weighted proportionally and combined for 

comparison with the infauna data, which was also collected from the top 10 cm of 

sediment.  Sediment data were log-transformed prior to analysis to reduce skewness.   

PCO, PERMANOVA, SIMPER, DistLM and dbRDA analyses were conducted with the 

software PERMANOVA+ for PRIMER (Clarke 2006, Anderson et al. 2008). 

Results 

Disturbance Effects on Macrophytes and Infaunal Communities 

Primary Producer Abundance 

Seagrass and macroalgae cover, but not microphytobenthos abundance, were 

reduced at recent vessel grounding injuries (i.e. in the 0 yr age group) relative to the 

reference seagrass meadow.  Mean seagrass percent cover within the injuries (6.2 ± 

1.5%) was approximately 15% of that in the intact seagrass community (44.4 ± 4.5%).  

This difference was evident in every age group (0, 1, 3, 4, 5 yr) of unrestored grounding 

sites documented (U tests, p < 0.001; Figure II-2).  Seagrass cover did not differ 

between new injuries and 5yr old injuries (U test, p = 0.135; Figure 2).  Macroalgae 

cover in recent groundings (4.4 ± 1.1%) was approximately half of the cover in the intact 

seagrass community (U test, p = 0.012; Figure 2), but this reduction did not persist in 

sites that were 1, 3, 4, or 5 years old (U test, p > 0.069).  Macroalgae cover in injuries 

increased with site age, and was significantly higher in 5yr old sites (16.2 ± 1.9%) than in 

new groundings (U test, p < 0.001; Figure 2). Chlorophyll a content of surficial sediments 

in grounding sites ranged from 4.1 ± 1.1 to 14.2 ± 1.1 µg/g, and was significantly lower 

than in reference sediments only for the 3 yr old sites (t test, t = -3.317, df = 4, p = 0.029; 

Figure 2). 
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Infauna Community Structure and Diversity 

A total of 1,806 individual organisms of 16 infauna taxa were identified from 

thirteen disturbances cores and fourteen reference cores (the sample vial for one 

disturbance core broke and was discarded).  31% of the organisms collected were from 

grounding sites, and 69% were from reference sites.  Mean abundance per core was 

42.7 ± 1.9 organisms for injury cores, compared with 89.4 ± 16.6 organisms for 

reference cores.  

Disturbance reduced infaunal community abundance, which was different in 

vessel grounding sites when compared with undisturbed sites (PERMANOVA, p = 0.016; 

Table 3).  This difference between communities was visible in the PCO ordination, where 

grounding site cores separated from reference site cores along PCO1, through with 

some overlap between the two groups (Table 2).  Tanaidacea, Nemertinea, Isopoda, 

Polychaeta, and Ophiuroiea abundance contributed to the differences between injury 

and reference cores, as indicated by strong positive correlations (> 0.7) with PCO1 

(Table 2).  Infaunal community abundance did not change with site age (PERMANOVA, 

p = 0.728; Table 3; Figure 3). 

Taxonomic richness was lower in injury sites than in reference areas 

(PERMANOVA, p = 0.0204; Table 3; Figure 3).  We did not detect a disturbance effect 

on univariate infauna abundance, evenness, diversity, or dominance in these sites 

(PERMANOVA, p > 0.063; Table 3; Figure 3).  Age was not a significant factor for these 

metrics (p > 0.282; Table 3).   

SIMPER analysis revealed that polychaetes, nematodes, and oligochaetes made 

substantial contributions to both injury and reference samples, and in similar proportions 

(Table 4).  Amphipods made a smaller contribution (4.2%) to the similarity among injury 

samples; for reference samples, amphipods contributed 13.0% to reference similarity. 
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Restoration Effects on Macrophytes, Sediment Properties, and Infaunal Communities 

Primary Producer Abundance 

Seagrass percent cover at restoration sites relative to reference sites was 23%, 

15%, and 6% for GS, F, and FS sites, respectively, at the 0 yr sampling event.   Relative 

percent cover declined by half over four years in GS sites, while relative percent cover of 

macroalgae more than tripled in the same period (Figures III-2 and III-3).   Relative 

seagrass cover doubled for F sites and quadrupled for FS sites over four years.  Relative 

macroalgae cover increased over fifteen fold in four years in both F and FS sites 

(Figures III-2 and III-3).   

Restoration status during the first year post-restoration at the Cutter Bank sites 

affected microphytobenthos abundance.  Chlorophyll a content across all samples 

ranged from 10.6 ± 1.7 to 16.4 ± 1.9 µg g-1 (Figure III-4).  Chlorophyll a content was 

highest at the I sites, and there was some variation among sampling events.  Chlorophyll 

a was lower in G sites, ranging from 10.6 ± 1.7 to 11.6 ± 2.8 µg g-1.  F sites had the 

lowest overall Chlorophyll a content, ranging from 0.2 ± 0.1 to 5.4 ± 1.3 µg g-1.  

Chlorophyll a content at F sites increased steadily with each time step (Figure III-4), but 

remained lower than G or I sites at the 1 yr mark. 

Sediment Properties 

Sediments in undisturbed seagrasses (I) at Cutter Bank were fine (6.8 ± 0.2 ɸ), 

and dominated by silt (59.8 ± 3.4%) and clay (29.3 ± 3.0%), with small sand (8.6 ± 1.5%) 

and gravel (2.3 ± 0.9%) fractions (data not shown).  These sediments were strongly 

reduced (-302.6 ± 9.1 mv Eh) with high organic matter content (16.5 ± 0.5% loss on 

ignition).  pH was neutral at 7.1 ± 0.03.  Nutrient concentrations were low (0.015% ± 



115 
 

0.001 % P content; 148.3 ± 41.5 µM NH4
+; 1.0 ± 0.6 µM SRP).  Sediments from G and IS 

sites had similar properties as I sites (Figure IV-2).  

Sediment properties of F sites differed sharply from I sites for all variables 

examined.  Fill sites had lower OM and DS concentrations, and higher bulk density, pH, 

Eh, P content, and NH4
+ and SRP concentrations, than the Intact sites (Figure 2).  F 

sediments were substantially coarser that I sediments (-0.3 ± 0.2 ; Figure 3), heavily 

dominated by gravel (50.0 ± 1.7 %) and sand (48.4 ± 1.6 %).  OM content in F sites 

doubled over the course of the year, but remained low, at 3.0 ± 1.1 %.    

Fertilization via bird roosting stakes had varying results among restoration 

treatments.  P content doubled in the course of the year at GS and IS sites, but did not 

change at FS sites (Figure IV-2).  NH4
+ concentrations increased in all three fertilization 

treatments by 38% in GS sites, 80% in IS sites, and 90% in FS sites.  NH4
+ 

concentrations also increased in F sites by 66%.  SRP concentration in IS sites 

increased by 50% and by nearly 2000% for FS sites.  SRP concentrations in F sites also 

increased eight-fold over the year.   

Infaunal Community Structure and Diversity 

Infaunal community analysis was conducted on samples from the 0.25 yr, 0.5 yr, 

and 1 yr time steps. A total of 7,226 individual organisms of 12 infauna taxa were 

identified from 159 cores for the restoration analysis (three sample vials, one each from 

the G, GS, and I treatments, were lost).  Across the three sampling events, mean 

abundance per core ranged from 35.1 ± 3.9 organisms for all G cores to 61.8 organisms 

for all IS cores.  Taxonomic richness ranged from 5.5 ± 0.5 taxa per core for all GS cores 

to 7.1 ± 0.1 taxa per core for all IS sites.  

Infauna communities were structured across restoration treatments and 

separation among the treatment groups was evident in the PCO ordination for the 
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restoration analysis (Figure 4).  Communities from F samples clustered separately from 

G and I samples along PCO2.  G and I samples separated along PC1, though there was 

some overlap between these two groups.  Within each treatment, samples also clustered 

by time step.  There were strong negative correlations between oligochaete and 

nematode abundances, respectively, and PCO2 (Table 5) indicating that these taxa 

were important in distinguishing G and I samples from F samples.  Cumaceans, 

amphipods, and tanaidaceans contributed to the separation of I from IS, as determined 

by strong correlation of those taxa (r > 0.7) with PCO1 (Table 5). 

Infauna community abundance differed among the restoration treatments 

(PERMANOVA, p = 0.001; Table 5), and each treatment supported different 

communities (PERMANOVA pairwise tests, p < 0.001). Across treatments, infauna 

communities also differed with each time step (PERMANOVA, p = 0.001; Table 5).  

There was a significant Restoration x Age interaction (PERMANOVA, p = 0.002).  

Fertilization was not a significant source of variation in the infauna community data set. 

Restoration was also a significant factor in explaining variance in univariate metrics of 

infaunal abundance (PERMANOVA, p = 0.001; Table 5; Figure 5), evenness (p = 0.003), 

diversity (p = 0.001), and dominance (p = 0.001).  Abundance in G samples was lower 

than in I samples (PERMANOVA pairwise tests, p = 0.001), but G and I samples did not 

differ on the basis of evenness, diversity, or dominance.  Abundance, evenness, 

diversity, and dominance were all lower in F samples than in I samples (PERMANOVA 

pairwise tests, p < 0.004).    

Age explained significant variation in infauna abundance, richness, and diversity 

(PERMANOVA, p = 0.001; Table 5; Figure 5).  Values for each of these metrics were 

higher at the 0.25 yr sampling event than at the 0.5 yr and 1 yr events (PERMANOVA 

pairwise tests, p < 0.004).   
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Abundance was affected by a significant interaction between Restoration and 

Age (PERMANOVA, p = 0.001; Table 5), indicating that age affected infauna abundance 

differently among the restoration treatments.  Abundance in the Intact treatment was 

lower at the 0.5 and 1 yr sampling events that at the 0.25 yr event (PEMANOVA pairwise 

tests, p < 0.002; data not shown).   

Infauna abundance was the only metric for which the Fertilization factor 

explained significant variation (PERMANOVA, p = 0.039; Table 5).  Across treatments, 

abundance was about 18% higher (41.8 ± 3.9 organisms per core) in the fertilized 

treatments than in unfertilized treatments (49.4 ± 4.0)   (PERMANOVA pairwise tests, p 

= 0.034).   

SIMPER analysis revealed that polychaetes and nematodes contributed strongly 

to similarity within samples from each restoration treatment (Table 4).  Oligochaetes 

were abundant in G and I samples, but not in F samples.  Amphipods were important 

contributors to F and I samples, but not to G samples.    

Environmental Predictors of Infauna Community Structure 

Total nitrogen, mean phi size, and water content were excluded from the DistLM 

analysis due to high correlation (|r|>0.95) with organic matter content and bulk density.  

The dbRDA ordination visualizes infauna community samples coded by restoration 

treatment constrained by environmental variables (Figure 6).  Infauna samples from F 

sites separated from G and I samples in the ordination.  G and I samples overlapped 

completely, contrary to what was observed in the unconstrained PCO ordination (Figure 

4), where there was some separation between the two treatments.  The first three 

dbRDA axes explained 94.1% of the fitted variation, and 43.1% of the variation in the 

resemblance matrix (Figure 6), and are likely capturing substantial information about the 

infauna community structure at these sites as influenced by environmental predictors.   
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There was a strong negative correlation between SRP concentration and 

dbRDA1 (DistLM, r =-0.77; Table 6).  OM content had a strong negative loading on 

dbRDA2 (DistLM, r =-0.77).  dbRDA3 had a positive correlation with BD (DistLM, r = 

0.77) and a negative correlation with NH4
+ (r = -0.56).  P and pH did not load clearly onto 

the first three axes.  These correlations indicate that high OM content in the G and I 

sediments, and high BD, NH4
+, and SRP in the F sediments are important drivers of the 

observed infauna community structure across restoration treatments.   

DistLM marginal tests that fit each environmental variable individually to the 

infauna community data showed that every variable except NH4
+ concentration had a 

significant relationship with infauna community abundance (DistLM marginal tests, p < 

0.020).  DistLM returned a best multivariate predictor model explaining infauna 

community structure across restoration treatments that included OM, BD, pH, NH4
+, 

SRP, and P (DistLM, r2=0.43). However, the solutions for the seven best models all had 

AICc values within two units of each other, so all may be considered viable (Burnham & 

Anderson 2002).  The ten best models included between three and six variables.  All 

models included NH4
+ and SRP, and six of the seven models included OM, and all 

included bulk density, organic matter content, and NH4
+ concentration.  None of the best 

models included Eh, DS, or chlorophyll a as a predictor variable. 

Discussion 

We were able to confirm our hypotheses that disturbance to seagrass 

ecosystems that excavated sediments, and restoration that replaced lost sediments, 

both alter infauna communities.  Disturbance to seagrass sediments changed infauna 

communities relative to those in undisturbed seagrass meadows by reducing infauna 

community abundance and taxonomic richness in vessel grounding injuries up to five 
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years of age.   Placing fill into excavations created localized patches with different 

community structure, by reducing abundance, richness, and diversity, and increasing 

evenness and dominance relative to the undisturbed seagrass meadow.  Fertilizing sites 

increased abundance by nearly 20%.    

We found varying evidence that infauna from disturbance and restoration sites 

converge with reference communities in the time frame of our observations.  In disturbed 

sites, while overall community abundance and taxonomic richness was affected, there 

was no difference in abundance between injury and reference sites.  These results 

suggest that disturbance sites are supporting different infaunal communities, though 

numerical recovery has occurred.  Infaunal communities at fill sites did not converge with 

reference communities during the first year post restoration, exhibiting reduced 

abundance, evenness, and diversity, and greater dominance than reference 

communities.  However, both the number of individuals and taxonomic richness at the fill 

sites increased over the course of our study, suggesting that the infauna community has 

entered a recovery trajectory.   

Infaunal communities can change rapidly in disturbed sediments, and may exhibit 

variable spatial and temporal responses to disturbance in patterns of colonization 

(Santos & Simon 1980; Zajac & Whitlatch 1982; Zajac et al. 1998; Schaffner 2010; 

Whomersley & Huxham 2010)  .  Diversity was highest in I and G samples, perhaps 

indicating more developed infaunal communities than in F sites  While polychaetes were 

the dominant taxa in all three restoration treatments, they had a third greater contribution 

to group similarity in the F samples, than in the G and I samples.  Dominance values for 

F samples reflect this composition, and were higher than for G and I sites.  These results 

suggest that infaunal communities at the G and F sites may be at early (albeit differing) 

points along the successional trajectory. In our restoration analysis, the G sites were 
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known to be at least five years old at the time of our study, and represented the status of 

the F sites before they were filled.  The G sites were viewed as a “status quo” option, 

representing the ecosystem state if no restoration actions were taken.  The status of the 

infuanal community at G sites indicates that they are further along this trajectory.  For 

example taxonomic richness, evenness, diversity, and dominance did not differ between 

G and I samples.  However, community and total abundance was lower in G than in I 

samples, indicating that numerical recovery has not occurred.   

We propose that the altered infauna communities we observed in disturbance 

and restoration sites can be explained by reduced habitat quality in these sites.  In 

seagrass ecosystems, plant community structure provides habitat complexity and more 

food resources, when compared to unvegetated sediments (Orth et al. 1984a; 

Summerson & Peterson 1984).  The slow recovery of the plant community at the G sites, 

where seagrass cover is only about 20% of that in the undisturbed meadow, may explain 

the differences in abundance that we observed.  In transplanted seagrass sites, recovery 

of epibenthic infaunal communities has been shown to track development of the 

seagrass community (Fonseca et al. 1990), and it follows that a similar trajectory would 

apply to infauna.   

Calcareous green macroalgae cover had returned to or exceeded reference 

values in grounding injury sites of all ages, with the exception of recent injuries.  These 

observations are consistent with successional patterns in tropical seagrass ecosystems, 

in which the first colonizers are turf and calcareous green macroalgae.  Rapidly growing 

seagrass species follow, and succession culminating with a monospecific climax 

community or a mixed community of climax and subdominant species (Zieman 1982; 

Williams 1990; Rollon et al. 1999; Kenworthy et al. 2002; Whitfield et al. 2002).  

Seagrass species have different physical characteristics that include varying ratios of 
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above ground to below ground biomass (Zieman 1982; Duarte & Chiscano 1999; Di 

Carlo & Kenworthy 2008).  Early successional species (e.g. Halodule wrightii and 

Syringodium filiforme in the Caribbean), like rhizophytic macroalgae, possess shallower 

and less below-ground biomass than do climax seagrass species such as Thalassia 

testudinum.  This may also provide insight into the status of infauna communities in 

these sites.  Infaunal abundance and diversity has shown to be reduced in seagrass 

meadows dominated by successional seagrass species, driven by structural 

characteristics of the seagrasses (Micheli et al. 2008).  It may be that the less complex 

below-ground physical structure provided by the macroalgae community at these sites is 

supporting an altered infaunal community. 

Our study sites were tens of square meters in size.  At this scale, infaunal 

organisms are likely to actively migrate or be passively transported from the surrounding 

seagrass meadows into the restoration sites during recolonization, though larval 

recruitment may also occur (Savidge & Taghon 1988).  Habitat quality, including food 

availability, will be an important factor in the ability of these sites to support 

recolonization by infauna.  Benthic microalgae are a primary food source for many 

infauna species.  Occupying the surficial sediments, benthic microalgae are prone to 

impacts of physical disturbance of the sediments.  However, recovery following 

disturbance occurs relatively quickly due to rapid rates of growth and reproduction 

(Larson & Sundback 2008; Montserrat & Colen 2008) and recolonization by mobile 

diatom taxa (Admirall 1984).   Our results are consistent with this pattern.  In our 

analysis, sediment chlorophyll a content in disturbed sites did not initially differ from that 

in reference sediments at the 0 yr time step, though it was lower in the 3-yr sites.  In the 

restoration analysis, chlorophyll a in the fill sites increased steadily over the course of 

the first year following restoration.  While fill site chlorophyll a only reached 
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approximately half of the reference levels, this rapid development is likely to be an 

important factor in the recovery of infauna communities following disturbance.   

Infaunal communities had strong relationships to sediment properties among 

treatments, and in particular between F vs. G and I sites. The material used as fill in 

these restoration sites was much coarser in texture that the ambient sediments.  It 

remains to be seen whether physico-chemical differences in fill sites from the 

surrounding seagrass meadow will affect the recovery trajectory of seagrasses and 

infauna.  This seems possible, given the particle coarseness, lack of OM, and high P 

content that we documented in the fill sites.  Documented recovery of infaunal 

communities typically occurs within a year following physical disturbance to soft 

sediments (e.g. Collie & Hall 2000; Dernie 2003; Skilleter et al. 2006).  However most 

studies of these recovery dynamics focus on native sediment that has been disturbed.  

The fill sites we studied involved terrestrially-sourced material with distinct properties 

relative to the surrounding area.  We are unaware of studies that have examined infauna 

colonization dynamics in seagrass restoration sites involving fill placement, so we looked 

to studies of colonization in dredge spoil deposits as an analogue.  Reports of infaunal 

community recovery time in dredge spoil deposited in seagrass habitat range from over 

a year (i.e. recovery not detected during the first year of monitoring) to ten years 

(reviewed in Sheridan 2004).      

Conclusion 

We documented multi-year effects on infauna communities at disturbance sites 

and incomplete recovery of infauna in the filled sites we studied.  Despite the potential 

for long term differences between filled sites and undisturbed seagrass sediment, we 

reiterate the importance of filling excavations in seagrass ecosystems whenever 
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possible.  Physical disturbances also cause loss of plant biomass and stocks of organic 

carbon and limiting nutrients (Chapter 2, this thesis).  Unrestored injuries result in 

reduced seagrass cover, diminished sediment and porewater nutrient pools, and altered 

microbial communities that can persist for several years (Chapters 3-4, this thesis).  

Further, because of the potential for erosion of excavated banks due to currents or 

storms (Whitfield et al. 2002), filling excavations to grade is considered a critical step in 

the recovery process, especially for larger excavations (Uhrin et al. 2011).   

Recovery trajectories of infaunal communities in restoration sites involving fill 

placement should be established over longer time frames.  This knowledge will increase 

understanding of ecosystem functioning in the sediments, as well as secondary 

production and reestablishment of trophic linkages in disturbed seagrass ecosystems.   
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Table 1.  Phylogenetic list of invertebrate taxa and observed frequencies for the disturbance and restoration analyses. 

 Disturbance Analysis Restoration Analysis

Phylum/Subphylum Class/Subclass Order Dist. Ref. G GS F FS IS I Total by taxa

Annelida Clitellata/Oligochaeta 166 229 215 261 30 66 323 191 1,481

Polychaeta 363 880 366 370 609 589 667 496 4,340

Arthropoda

Chelicerata Pycnogonida 1 1 1 1 2 1 7

   Crustacea Branchiopoda/Phyllopoda Diplostraca 1 1

   Crustacea Cephalocarida 4 7 2 6 1 4 11 35

   Crustacea Malacostraca/Eumalacostraca Amphipoda 80 262 41 53 159 232 177 156 1,160

   Crustacea Malacostraca/Eumalacostraca Cumacea 25 89 19 13 19 14 99 62 340

   Crustacea Malacostraca/Eumalacostraca Isopoda 22 37 5 1 1 19 11 96

   Crustacea Malacostraca/Eumalacostraca Mysida 2 1 1 1 1 6

   Crustacea Malacostraca/Eumalacostraca Tanaidacea 27 114 11 5 32 17 25 24 255

   Crustacea Malacostraca/Phyllocarida Leptostraca 1 1

   Crustacea Malacostraca Decapoda - crabs 7 13 4 2 1 2 1 1 31

   Crustacea Malacostraca Decapoda - shrimp 7 1 1 3 3 15

   Crustacea Ostracoda 20 27 12 11 20 21 9 8 128

Chordata

   Cephalochordata Leptocardii 1 1

   Tunicata Ascidiacea 2 1 3

Cnidaria/Medusozoa Hydrozoa 4 1 1 6

Anthozoa 1 4 2 3 3 13

Echinodermata

   Asterozoa Ophiuroidea 9 32 1 5 1 5 7 60

   Echinozoa Holothuroidea 1 1

Mollusca Aplacophora /Solenogastres (Noemeniomorpha) 2 1 1 4

Bivalvia 20 26 10 10 7 10 9 9 101

Gastropoda 16 22 4 6 6 7 14 11 86

Gastropoda (Nudibranchia) 4 2 4 10

Polyplacophora (Amphineura) 4 15 1 9 7 7 43

Nematoda 392 525 209 343 147 195 256 250 2,317

Nemertinea 30 95 12 4 17 12 22 17 209

Phoronida 1 1

Platyhelminthes 2 3 1 2 4 12

Porifera Hexactinellida 4 4

Sipuncula Sipunculidea 12 27 5 12 7 5 22 3 93

1,209 2,426 913 1,106 1,070 1,188 1,669 1,279 10,860

Amphioxiformes/ Branchiostomidae/ Branchiostoma
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Table 2.  Pearson correlations (r > 0.2) between invertebrate taxa and principle 

coordinates analysis (PCO) axes from the PCO ordination (see Figure 2) of samples 

from vessel grounding sites and intact seagrass sites.   

Invertebrate Taxon PCO1 PCO2

Amphineura (Polyplacophora) 0.49 0.29

Amphipoda 0.53 0.64

Anthozoa 0.53 0.16

Aplacophora (Neomeniomorpha) 0.28 -0.04

Bivalvia 0.57 -0.53

Branchiostoma 0.37 -0.21

Cephalocarida -0.38 0.01

Cumacea 0.28 0.74

Decapoda - Crabs 0.35 -0.28

Decapoda - Shrimp -0.05 0.57

Gastropoda 0.47 -0.32

Gastropoda (nudibranch) 0.49 -0.08

Isopoda 0.81 0.19

Nematoda 0.31 0.37

Nemertinea 0.83 -0.11

Oligochaeta 0.51 -0.24

Ophiuroidea 0.73 -0.33

Ostracoda 0.53 -0.38

Polychaeta 0.78 0.04

Sipunculida 0.29 0.65

Tanaidacea 0.88 0.15
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Table 3.  Results of PERMANOVA analysis (Disturbance x Age) of the effects of vessel 

grounding disturbance and time on multivariate infaunal community structure.   

 

Source df     MS Pseudo-F P 
Multivariate Infauna Community 
Abundance       

Disturbance status (injury, reference) 1 72.5 4.9 0.016 

Age (0, 1, 3, 4, 5 yrs)  4 10.3 0.7 0.728 

Disturbance x Age 4 27.4 1.8 0.109 

Residual 17 15.5     

Abundance       

Disturbance status (injury, reference) 1 3749.8 1.9 0.201 

Age (0, 1, 3, 4, 5 yrs)  4 2731.7 1.4 0.282 

Disturbance x Age 4 5785.5 2.9 0.062 

Residual 17 2010.9          

Richness         

Disturbance status (injury, reference) 1 46.9 5 0.024 

Age (0, 1, 3, 4, 5 yrs)  4 2.7 0.3 0.881 

Disturbance x Age 4 18.5 2 0.121 

Residual 17 9.3

Pielou’s J'         

Disturbance status (injury, reference) 1 0.01 0.8 0.356 

Age (0, 1, 3, 4, 5 yrs)  4 0.01 0.9 0.494 

Disturbance x Age 4 0.03 3.4 0.038 

Residual 17 0.01          

Shannon-Weaver H'         

Disturbance status (injury, reference) 1 0.57 4.1 0.063 

Age (0, 1, 3, 4, 5 yrs)  4 0.03 0.3 0.905 

Disturbance x Age 4 0.27 2 0.144 

Residual 17 0.14

Simpson’s 1-λ’       

Disturbance status (injury, reference) 1 0.05 2.7 0.109 

Age (0, 1, 3, 4, 5 yrs)  4 0.01 0.8 0.517 

Disturbance x Age 4 0.04 2 0.144 

Residual 17 0.02     
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Table 4.  SIMPER analysis results of taxonomic similarity for injury and reference sites in 

the disturbance analysis and for restoration treatments in the restoration analysis. 

Analysis/Groups 
Within Treatment 

Mean Similarity (%) 
Most abundant 
taxa  

% contribution to 
group similarity 

Disturbance Analysis       

Injury 58.1 Polychaeta 38.6 

Nematoda 26.9 

Oligochaeta 17.9 

Amphipoda 4.2 

Nemertinea 3.9 

Reference   58.6 Polychaeta 32.8 

Nematoda 23.4 

Amphipoda 13.0 

Oligochaeta 12.8 

Nemertinea 4.3 

Isopoda 3.9 
Restoration Analysis       

Grounding 70.2 Polychaeta 33.1 

Nematoda 26.4 

Oligochaeta 25.2 

Amphipoda 5.2 

Cumacea 2.2 

Fill 68.4 Polychaeta 43.3 

Nematoda 17.1 

Amphipoda 16.2 

Oligochaeta 5.6 

Tanaidacea 5.5 

Ostracoda 4.2 

Intact 67.4 Polychaeta 31.2 

Oligochaeta 22.3 

Nematoda 21.8 

Amphipoda 12.2 

Nemertinea 2.3 

    Cumacea 1.8 
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Table 5.  Pearson correlations (r > 0.2) between invertebrate taxa and PCO axes from 

the PCO ordination (see Figure 4) of samples from restoration analysis.   

 

Invertebrate Taxa PCO1 PCO2

Amphipoda 0.78 0.31

Anthozoa 0.13 0.43

Ascidiacea 0.42 -0.03

Bivalvia 0.14 -0.26

Cumacea 0.82 -0.33

Decapoda - Crabs 0.23 -0.14

Gastropoda 0.47 -0.39

Isopoda 0.45 -0.45

Mysida 0.21 -0.15

Nematoda 0.16 -0.59

Nemertinea 0.50 0.18

Neomeniomorpha (Aplacophora) 0.34 -0.08

Oligochaeta -0.14 -0.81

Ostracoda 0.51 0.23

Platyhelminthes 0.48 0.22

Polychaeta 0.64 0.05

Polyplacophora (Amphineura) 0.61 0.16

Pycnogonida 0.07 0.27

Sipunculida 0.29 -0.26

Tanaidacea 0.76 0.15
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Table 6.  Results of PERMANOVA analyses of restoration treatment, fertilization, and age on infauna community structure and 

diversity metrics.  Restoration treatments include Grounding (G), Fill (F), and Intact (I) sites.  Bold text indicates significance of 

main effects and interactions at α = 0.05.  Superscript letters indicate significance between levels of factors at α = 0.016. 

Source df        MS Pseudo-F P Source df        MS Pseudo-F P
Multivariate Abundance   Pielou's J'   
Restoration (Ga, Fb, Ic) 2 38.6 11.7 0.001 Restoration (Ga, Fb, Ia) 2 0.056 8.66 0.003
Fertilization (yes, no) 1 8.8 2.7 0.078 Fertilization (yes, no) 1 0.008 1.17 0.307 
Age (0.25a, 0.5b, 1c yr) 2 53.3 16.1 0.001 Age (0.25, 0.5, 1 yr) 2 0.001 0.12 0.874 
Re x Fe 2 2.2 0.7 0.644 Re x Fe 2 0.002 0.29 0.738 
Re x Ag  4 12.3 3.7 0.002 Re x Ag 4 0.010 1.60 0.197 
Fe x Ag 2 1.8 0.5 0.719 Fe x Ag 2 0.009 1.44 0.277 
Re x Fe x Ag 4 1.6 0.5 0.833 Re x Fe x Ag 4 0.003 0.44 0.805 
Residual 36 3.3                  Residual 36 0.006   
Abundance     Shannon-Weaver H'   
Restoration (Ga, Fa, Ib) 2 1521.9 9.2 0.001 Restoration (Gab, Fa, Ib) 2 0.335 9.58 0.001
Fertilization (yes, no) 1 779.5 4.7 0.039 Fertilization (yes, no) 1 0.000 0.00 0.964 
Age (0.25a, 0.5b, 1b yr) 2 1548.6 9.4 0.001 Age (0.25a, 0.5b, 1b yr) 2 0.307 8.77 0.001 
Re x Fe 2 60.3 0.4 0.679 Re x Fe 2 0.004 0.12 0.890 
Re x Ag  4 2116.9 12. 8 0.001 Re x Ag 4 0.078 2.24 0.086 
Fe x Ag 2 341.4 2.1 0.142 Fe x Ag 2 0.017 0.48 0.600 
Re x Fe x Ag 4 112.7 0.7 0.624 Re x Fe x Ag 4 0.061 1.73 0.169 
Residual 36 165.6     Residual 36 0.035   
Richness     Simpson's λ'   
Restoration (G, F, I) 2 13.9 3.4 0.053 Restoration (Ga, Fb, Ia) 2 0.078 14.33 0.001
Fertilization (yes, no) 1 1.9 0.5 0.505 Fertilization (yes, no) 1 0.000 0.01 0.945 
Age (0.25a, 0.5b, 1b yr) 2 43.9 10.7 0.001 Age (0.25, 0.5, 1 yr) 2 0.002 0.40 0.648 
Re x Fe 2 2.0 0.5 0.633 Re x Fe 2 0.001 0.14 0.866 
Re x Ag 4 6.7 1.6 0.184 Re x Ag 4 0.014 2.56 0.053 
Fe x Ag 2 0.9 0.2 0.800 Fe x Ag 2 0.003 0.63 0.566 
Re x Fe x Ag 4 9.9 2.4 0.071 Re x Fe x Ag 4 0.004 0.78 0.553 
Residual 36 4.093       Residual 36 0.005     
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Table 7.  Multiple partial correlations between the first three dbRDA coordinate axes and 

environmental variables (see Figure 6) of the best-fit DistLM model.  The percent of 

variation in the DistLM model (fitted) and in the total data set variation is given for each 

axis. 

  

Variable dbRDA1 dbRDA2 dbRDA3

% fitted variation 50.7 34.0 9.4 

% total variation 24.6 14.5 4.0 

OM 0.07 -0.77 0.14 

BD 0.04 0.23 0.77 

pH 0.51 0.48 0.02 

NH4
+ 0.17 0.01 -0.56 

SRP -0.82 0.30 -0.11 

P 0.20 0.20 -0.24 
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Figure 1.  Location of study sites in southern Biscayne Bay, Florida, USA, within the 

boundary of Biscayne National Park. 

Figure 2.  Principle coordinates analysis ordination of multivariate infaunal community 

samples from vessel grounding sites (closed symbols) and intact seagrass sites (open 

symbols).  Grounding sites were of multiple known ages:  0, 1, 3, 4, or 5 years old. 

Figure 3.  Infaunal community diversity metrics from vessel grounding sites of different 

ages (dark bars) and undisturbed reference sites (light bars).  Values are means ± se.  

An asterisk indicates a statistical difference between disturbed and reference sites within 

an age group (t test, α = 0.05). 

Figure 4.  Principle coordinates analysis ordination of multivariate infaunal community 

samples at Cutter Bank.  Data are visualized by sampling event (0.25 yr, 0.5 yr, 1 yr) 

within each restoration treatment.  Treatments include Grounding (G), Fill (F), and Intact 

(I) seagrass sites.  Data from fertilization treatments are pooled with restoration 

treatments.  

Figure 5.  Mean ± se infaunal community diversity metrics from study sites in the 

restoration analysis, sampled at 0 yr (dark bars) and 1 yr (light bars) year post-

restoration.  Restoration treatments included:  G = grounding, F = fill, and I = Intact.  

Data for I sites are from 0.25 yr and 1 yr sampling events.  Asterisks indicate 

significance at α = 0.05 between time steps within treatments 

Figure 6.  dbRDA ordination of the best fit DistLM model of infaunal community data 

(binomial deviance resemblance matrix calculated from log transformed relative 

abundance data) versus log transformed environmental variables.  Data are from 0.25, 

0.5, and 1yr sampling events.    
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CHAPTER VI:  Herbivory in subtropical seagrass ecosystems varies with time, space, 

and seagrass species 

Abstract 

Herbivory structures ecosystems in multiple and complex ways and is capable of 

affecting the success of ecological restoration projects that involve reestablishing plant 

communities.  Direct herbivory on experimental planting units assembled from leaves of 

the seagrasses Thalassia testudinum, Syringodium filiforme, and Halodule wrightii was 

assayed in 2009-2010 in south Florida, USA.  Seagrass biomass loss to herbivory was 

compared with elemental composition of donor and ambient seagrass leaves as well as 

with fish communities at the assay sites.  Seagrass herbivores were capable of removing 

substantial biomass from our experimental planting units, and this varied significantly 

across seagrass species, location, and time. Seagrass biomass loss to herbivory ranged 

from 0% to 82%.  More biomass was lost during the spring assays than in fall and winter 

assays.  Biomass loss was greatest in S. filiforme and H. wrightii, and negligent in T. 

testudinum.  The assay site closest to tidal cuts leading to the coral reef tract 

experienced the highest average levels of herbivory.  No significant relationships were 

detected between seagrass biomass loss and C:N ratios, C:P ratios, or herbivorous fish 

abundance.  Leaf loss to seagrass herbivores appears to be a spatially variable but 

critically important determinant of seagrass transplanting success.  We recommend that 

local knowledge of herbivory pressure be considered during restoration planning.  In our 

system, a conservative approach to seagrass transplanting, limiting projects to winter 

months and refraining from seagrass transplanting all together in areas proximal to coral 

reefs, are likely to maximize the potential for success. 



139 
 

Introduction 

Because of the ecological importance of seagrasses and rapid rates of seagrass 

loss along the world’s coastlines (Waycott et al. 2009), resource managers aim to both 

stop the loss of seagrasses and restore degraded or destroyed seagrass habitat.  

Disturbances to seagrass ecosystems may result in loss of or a reduction in their ability 

to provide key ecosystem functions.  As a result, there has been increasing interest in 

seagrass restoration since the mid 1970’s (Fonseca 2011).   

Ecological restoration often attempts to reestablish plant communities that have 

been destroyed or degraded.  For restoration to be successful, ecological attributes of 

the system such as structure and function must be reestablished (Hobbs & Norton 1996; 

Higgs 1997).  Herbivores are capable of altering ecosystem structure and function 

(Milchunas et al. 1988; Parker et al. 2006) through interacting effects of stress from 

grazing and release from competitive exclusion (Paine 1971; Grime 1973; Connell 

1978).  In terrestrial grasslands, the success of restoration and recovery trajectories in 

restoration projects that target rehabilitation of plant communities may be influenced by 

selective herbivory (Howe & Lane 2004; Fraser & Madson 2008).   

In seagrass meadows, herbivory structures ecosystems in multiple and complex 

ways such as directly removing biomass, facilitating energy flow through food webs, 

controlling epiphytic growth, stimulating primary and secondary production, and altering 

species composition (Heck & Valentine 2006).  Epiphytic microalgae on seagrass plants 

and benthic microalgae are critical food sources for micrograzers (Bologna & Heck 1999; 

Moncreiff & Sullivan 2001).  The seagrasses themselves are also directly consumed by 

certain herbivores.  Megaherbivores such as green turtles and sirenians are capable of 

consuming a substantial amount of biomass, and can influence spatial distribution and 
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standing biomass of seagrass meadows (Fourqurean et al. 2010; Lal et al. 2010).  Direct 

herbivory on seagrasses by fish and urchins is also an important process (Cebrián & 

Duarte 1994, 1998; Rose et al. 1999; Kirsch et al. 2002; Alcoverro & Mariani 2004).  

Seagrasses support high levels of secondary production as a result (Mateo et al. 2006) .  

Fish grazing can regulate local seagrass species composition and density (Randall 

1965; Tribble 1981; Valentine & Heck 1999; Armitage & Fourqurean 2006). 

Like grazers in terrestrial environments (Mattson 1980), seagrass grazers may 

preferentially consume plants with higher nutrient content (Williams 1988; McGlathery 

1995; Goecker et al. 2005; Heck & Valentine 2006; Prado & Heck 2011) or faster 

growing plants (Cebrián & Duarte 1998).  Nutrient content in seagrass leaves varies 

among species, and also spatially within species (Duarte 1990).  In south Florida and the 

Caribbean, the dominant seagrass species include Thalassia testudinum, Syringodium 

filiforme, and Halodule wrightii, which occur in both monospecific and mixed beds 

(McMillan & Phillips 1979; Thorhaug 1981).  Nutrient content varies among and within 

these species over relatively small spatial scales in response to terrestrial, oceanic, 

groundwater, or point source inputs (Fourqurean et al. 1992a; Caccia & Boyer 2005; 

Campbell & Fourqurean 2009; Peterson et al. 2012).  Thus local seagrass landscapes 

can exhibit substantial variation in community composition and stoichiometry, to which 

herbivores respond.     

Herbivory is a key process that should be considered in restoration (Young et al. 

2005).  Seagrass transplanting is a common restoration method, used to more quickly 

replace lost plant structure and associated functions than would otherwise occur through 

a relatively slower natural recovery process (Lewis 1987; Fonseca et al. 1998).  

Seagrass restoration projects involving transplanting are often designed to mimic 

observed patterns of succession by incorporating the principle of “modified compressed 



141 
 

succession” (sensu Durako & Moffler 1985).  In these projects, an early successional, 

faster-growing seagrass species (e.g., H. wrightii and/or S. filiforme in the subtropical 

western Atlantic region) is transplanted under the assumption that they will colonize 

more quickly than slower-growing climax species (e.g., T. testudinum), which in time, will 

reestablish dominance in the restoration area.  Experimental evidence exists that that 

transplanted, early-successional seagrasses may be preferentially consumed through 

selective herbivory (Howe & Lane 2004; Armitage & Fourqurean 2006; Fraser & Madson 

2008; Prado et al. 2010).  However, despite the literature record as well as cautionary 

notes of the potential impact of herbivory to planting unit survival (Fonseca et al. 1998), 

the impacts of herbivores on transplanting success in seagrass meadows remains 

largely unstudied. 

This study aimed to evaluate herbivory pressure on transplanted seagrasses. 

Understanding the impacts of herbivores on seagrass transplants is necessary to 

maximize the success of costly restoration efforts.  Herbivory is suspected as the cause 

of poor performance of some seagrass transplanting efforts that have been conducted to 

repair injuries from vessel groundings in Biscayne National Park, adjacent to the Miami 

metropolitan area in south Florida, USA.  Qualitative observations of these transplanting 

efforts led us to several hypotheses as to the loss of the planted seagrasses.  Because 

planting unit biomass was lost overnight or within days of planting at some locations, we 

hypothesized that loss was due to herbivory rather than transplanting shock to the 

transplanted clones.  Planting unit success differed among restoration sites, so we 

hypothesized that biomass loss to herbivory varied across space.  Apparent interspecific 

differences in rates of loss between seagrass species led us to hypothesize that 

biomass loss to herbivory varied with seagrass species, possibly suggesting consumer 

feeding preferences.  Since herbivores may choose high-nutrient plants, we 
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hypothesized that rates of herbivory would be related to plant nutrient content.  In a 

landscape with patchy distribution of seagrass species with variable stoichiometry, 

transplantation of these species for restoration may result in the presentation of a more 

preferred food source in some areas.  Further, since we suspected that the herbivores 

responsible for the observed loss of seagrass transplants were fish, we expected rates 

of herbivory to be related to the size and species composition of the fish community.  

Given that fish community abundance is correlated with water temperature, we also 

expected herbivory to vary throughout the year. 

Methods 

Study System 

Southern Biscayne Bay is a shallow (<3m) subtropical estuary located at the 

southeastern tip of the Florida peninsula (Figure 1).  The extensive seagrass 

communities in southern Biscayne Bay are dominated by dense T. testudinum.   

Syringodium filiforme and H. wrightii are also found throughout this area in lower 

abundance and with patchy distributions.  This study was conducted at four shoals:  

Biscayne Channel, No Name Shoal, East Featherbed Bank, and Cutter Bank (Figure 1).  

These shoals are characterized by thriving seagrass communities, but have been 

impacted by multiple vessel grounding injuries over the past two decades.  Vessel 

groundings remove seagrass and excavate sediment in discrete patches on shallow 

seagrass shoals.  Existing vessel grounding injuries selected at each shoal as study 

sites ranged from 40 to 60 square meters in size, and were unvegetated patches 

surrounded by a dense seagrass community.   
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Experimental Design 

Seagrass and fish community surveys, herbivory assays, and elemental analysis 

of seagrass leaf tissue were conducted during the Spring of 2009 through the Winter of 

2010.   

Seagrass community surveys 

Seagrass community composition was documented in undisturbed seagrass 

habitat in the vicinity (within 100 meters) of each herbivory assay site.  Seagrass and 

macroalgae abundance was estimated within randomly placed 0.25-m2 PVC quadrats 

according to a modified Braun-Blanquet cover-abundance scale (Fourqurean et al. 

2001).  The number of quadrats varied per site (18-268), as did the timing and frequency 

of monitoring efforts.  For each site, quadrat data from all available monitoring events 

were pooled for analysis.  At No Name Shoal, data from a single monitoring event 

conducted in March 2011 were available (111 quadrats).  At Biscayne Channel, East 

Featherbed Bank, and Cutter Bank, four monitoring events were conducted at each site 

during the 20-month period from December 2009 through July 2011, providing 71, 400, 

and 1070 total quadrats for analysis, respectively. 

Fish community surveys 

Two fish surveys were conducted at each assay site in October 2009 (Fall09) 

and in February-March 2010 (Win10), respectively (4 sites x 2 events x 2 surveys per 

site per event = 16 fish surveys) using a modification to the roving diver technique 

(Schmitt and Sullivan 1996).  For each survey, a snorkeler slowly and surveyed one half 

of a 50-diameter circle (total survey area approximately 980 m2), as delimited with a 25-

m transect tape attached to a central stake, for 30 minutes.  The snorkeler counted fish 

observed within the survey area and identified them to species (when possible) or 
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genus.  Data from the two surveys per time and event were pooled for analysis.  Water 

temperature and salinity were measured for each survey using a YSI Model 30 

instrument.  Fish taxa expected to directly consume seagrass were categorized as 

seagrass herbivores (Ferreira & Floeter 2004; Floeter 2004; Valentine & Duffy 2006).  

Note that while urchins are known to be important consumers of seagrass biomass, few 

urchins were observed at the study sites.  As such their role in removing seagrass 

biomass was not evaluated in this study, as was suspected to be minimal.  

Herbivory assays 

Herbivory pressure was examined through herbivore exclusion in a year-long 

study conducted in 2009-2010.  A full factorial design was employed, with the following 

factors and levels:  location (Biscayne Channel, E. Featherbed, Cutter Bank, No Name 

Shoal); seagrass species (T. testudinum, H. wrightii, S. filiforme); time (spring, summer, 

fall, winter), and herbivore exclusion (no cage, partial cage, full cage). 

Planting units (PUs) designed to mimic the growth form and appearance of 

natural seagrass (sensu Hay 1981; Kirsch, Valentine, & Heck 2002) were used as 

experimental units in the herbivory assays.  PUs consisted of freshly-harvested seagrass 

leaf material inserted into simulated short shoots (binder clips) affixed to a simulated 

rhizome (labeled semi-rigid 30-cm plastic strip cut from cable tie).  For deployment, the 

“rhizome” of the PU was gently pressed into bottom sediments and held in place with a 

U-shaped sod staple.  This approach was beneficial for three reasons.  It enabled the 

standardization of plant leaf tissue biomass used in each PU across species.  It also 

eliminated consideration of non-photosynthetic and belowground tissue biomass that 

may mask leaf tissue biomass loss.  Lastly, impacts to donor beds were minimized by 

removing only leaf material but leaving belowground tissues intact.     
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Seagrass shoots for use in constructing PUs were collected from a single donor 

site:  Pelican Shoal (Figure 1).  Collecting donor material from a single location ensured 

that a sufficient supply of all three seagrass species was available for all assays over the 

year-long study.  Shoots were collected on the morning of each assay deployment.  

Intact green leaves were selected from the collection for PUs; age of leaf tissue was not 

considered.  Leaf tissue for each PU was spun in a salad spinner to remove excess 

water, gently wiped clean of epiphytes, and patted dry.  Leaf tissue biomass was 

standardized across the three seagrass species, and approximately 1.5 g of fresh 

seagrass leaf material was used for each PU.  After weighing, the leaf tissue for each 

PU was carefully clipped into the set of binder clips attached to each plastic rhizome.  

PUs were then placed into individual zip lock bags flooded with fresh seawater, for 

transport to the study site in seawater-filled coolers. 

Herbivore exclusion cages were constructed of 0.635-cm black plastic 

aquaculture mesh.  This mesh size was chosen as appropriate for excluding juvenile and 

adult fish of species known to directly consume seagrasses in the subtropical western 

Atlantic such as pinfishes, parrotfishes (Valentine & Heck 1999).  Full cages were 

formed of cylinders approximately 40 cm in height with a flat top approximately 30 cm in 

diameter.  To control for possible influences of the cage structures on the PUs not 

related to herbivory, we also deployed partial cages as “cage controls”. Partial cages 

had two sides and a top, and were open on two sides.  The partial cages were 

approximately 30 cm x 30 cm x 30 cm in size. Full and partial cages had lengths of lead-

core line cable-tied to the bottom edges that rested on the sediment to help keep them 

upright.  U-shaped sod staples were inserted through mesh into the sediments to further 

stabilize the cages. 
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Ten replicate PUs per each of the three seagrass species were randomly 

assigned to each of the three herbivore exclusion treatments, for a total of 90 PU’s per 

assay deployment, per site.  Each PU with its respective caging treatment was randomly 

placed at 0.5 m intervals in rows in existing grounding injury features at each location.  

Placing PUs in the unvegetated injuries was intended to mimic an actual transplanting 

scenario.  The configuration (number and length of rows) of the array varied according to 

the injury shape. 

In each assay, planting units were deployed for a period of 72 hours.  Upon 

retrieval, the PU’s were disassembled in the lab.  Plant material was again spun and 

gently patted dry, then reweighed.  Change in biomass was expressed as the percent 

biomass loss per planting unit, determined by calculating the proportional loss in wet 

weight of each planting unit following the assay. 

Herbivory assays were conducted at each site four times over a one-year period 

in 2009-2010: in May-June 2009 (Spr09), August 2009 (Sum09), November 2009 

(Fall09), and February-March 2010 (Win10).  These time periods were selected in order 

to coincide with warm (summer), cold (winter), and intermediate (spring, fall) water 

temperatures in this subtropical system.  During each event, water temperature and 

salinity were measured at each site using a YSI Model 30 instrument.   

Seagrass elemental composition         

Seagrass leaf tissue was collected from each study site and the donor site for 

elemental content (total carbon=C, total nitrogen=N, total phosphorus=P) analyses.  Leaf 

tissue was collected in triplicate during each of the four seasonal assays, from all 

seagrass species present at the study site at that time (e.g., S. filiforme and H. wrightii 

were observed at every assay).  Seagrass leaves were gently scraped to remove 

epiphytes, dried at 80 °C, and ground to a fine powder in a ball mill grinder.  Total 



147 
 

phosphorus content was determined through a dry-oxidation, acid hydrolysis extraction 

followed by colorimetric analysis of phosphate concentration in the extract (Fourqurean 

et al. 1992).  Total carbon and total nitrogen were determined using a CHN analyzer.  

Elemental content was calculated on a dry weight basis (mass of element/dry weight of 

sample) x 100%.  Elemental ratios were calculated as molar ratios. 

Data analyses 

Due to difficulty distinguishing sea bream (Archosargus rhomboidalis) and pinfish 

(Lagodon rhomboides) in the field, survey data for these two species were grouped for 

analysis.  Differences in total herbivore abundance between the two survey times (Fall 

2009, Winter 2010), and differences in site-specific herbivore abundance within each 

survey time and each site-time pair were evaluated using chi-square tests.  

Data from herbivory assays (% biomass loss per PU) were not normally 

distributed (Shapiro-Wilk test, p > 0.05), so herbivory pressure was analyzed for 

differences among herbivore exclusion treatment, species, site, and time using a four-

way analysis of variance (ANOVA) on rank-transformed biomass loss data.  The 

potential for caging artifacts was analyzed using a Bonferroni multiple comparisons test 

on the exclusion treatment, with significant differences in biomass loss between control 

sites and partial cages as the indicator of caging artifact.  To evaluate herbivory pressure 

across seagrass species at different times of the year at each site, herbivory assay data 

were analyzed by species within each site-time pair using Kruskal-Wallis tests followed 

by all multiple pairwise comparisons. 

C:N and C:P ratios of seagrasses from Pelican Shoal – the donor site – were 

analyzed for differences among species and sampling time using two-way ANOVA on 

rank-transformed C:N ratios and on log-transformed C:P ratios.  Post-hoc tests on 
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species and time were conducted for significant results using Bonferroni pairwise 

comparisons.   

Donor seagrasses from Pelican Shoal and ambient seagrasses from each assay 

sites were compared for potential differences in elemental composition.  Pairwise 

comparisons were conducted on seagrass C:N and C:P ratios between the donor site 

and assay site for each site/species/time combination. For elemental variables with 

normal distributions (C:P – all species; C:N – T. testudinum and H. wrightii), independent 

sample t-tests were used.  Mann-Whitney U-tests were used for data with non-normal 

distributions (C:N – S. filiforme). 

Relationships between seagrass biomass loss and C:N ratios, C:P ratios, and 

fish abundance, respectively, were evaluated using simple linear regression.   

Results   

Seagrass community composition 

Dense seagrass communities dominated by T. testudinum surrounded the assay 

sites (Table 1).  The median Braun Blanquet score for this species was 5.0 (75-100% 

cover) at each site except at No Name Shoal, with a median score of 3.0 (25-50% 

cover).  Syringodium filiforme was not present in the seagrass monitoring quadrats at 

Biscayne Channel or Cutter Bank, though it was sampled at Biscayne Channel during 

the Summer 2009 herbivory assay (see below).  Sparse S. filiforme was detected at East 

Featherbed Bank, though it wasn’t located there during any of the herbivory assays.  

Halodule wrightii was not present in the seagrass monitoring quadrats at Biscayne 

Channel or East Featherbed Bank, though it was sampled at Biscayne Channel during 

the Summer 2009 and Winter 2010 herbivory assays.  Sparse H. wrightii was detected 

at Cutter Bank in seagrass monitoring quadrats, though it wasn’t located there during 
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any of the herbivory assays.  Both S. filiforme and H. wrightii were found at No Name 

Shoal during all four herbivory assays and in the seagrass monitoring quadrats.    

Fish community composition 

A total of 1,439 individuals of 25 taxa were observed during the eight pooled fish 

surveys (Table S1).  Of these, 594 individuals were classified as herbivorous (parrotfish) 

or omnivorous (bream/pinfish) across seven taxa.  Total fish abundance ranged from 88 

to 766 individuals during the Fall 2009 surveys, but dropped to less than 10% of those 

values during the Winter 2010 surveys.  At the Cutter Bank winter survey, no fish were 

observed at all.  Water temperatures recorded during the Fall 2009 surveys ranged from 

29.5° C to 31.3° C, and dropped to between 17.6° C to 19.5° C during the Winter 2010 

surveys (Table S1).   

The three most abundant taxa observed over all surveys were sea bream/pinfish 

(A. rhomboidalis/L. rhomboides), grey snapper (L. griseus), and juvenile grunt species 

(Haemulon spp.), respectively (Table S1).  Of the 597 herbivorous fish observed during 

all surveys, 77% were sea bream/pinfish.  Pinfish undergo an ontogenetic shift from a 

carnivorous to herbivorous diet at approximately 100 mm in length (Stoner & Livingston 

1984; Luczkovich & Stellwa 1993).  We estimate that the majority of the pinfish we 

observed were at least 100 mm in length.   Herbivores represented 21% - 46% of the 

fish abundance during the Fall 2009 surveys, and herbivore abundance was significantly 

higher in the fall (242 fish) than in the Winter 2010 surveys (68 fish) (χ2 = 351.6, df = 2, p 

< 0.0001).  During the Winter 2010 surveys, 85% of the fish observed at No Name Shoal 

and the single fish observed at Biscayne Channel and Cutter Bank, respectively, were 

pinfish/sea bream.  During the fall surveys, herbivore abundance varied significantly 

across sites (χ2 = 390.9, df = 3, p < 0.0001), with the most herbivores observed at No 
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Name Shoal (n = 315).  Herbivore abundance was highest at No Name Shoal during the 

winter surveys as well (n = 66 pinfish/bream).  Site differences for the winter surveys 

were not evaluated because at the other three sites, only two fish were observed in total 

(Table S1). 

Herbivory assays 

Seagrass biomass removal (mean ± SEM) in our experiments was significantly 

influenced by time, species, exclusion treatment, and site (Table 2, Figure 2).  More 

seagrass biomass was lost during the Spring 2009 (12.7 ± 1.7%) and Summer 2009 

(11.6 ± 1.6%), than in Fall 2009 (8.2 ± 1.3%) and Winter 2010 (-2.2 ± 0.4%).   Biomass 

gain was attributed to seagrass growth.  Mean biomass loss was greatest in S. filiforme 

(22.3 ± 1.9%), and was 12.7 ± 1.4% and 2.3 ± 1.3% for H. wrightii and T. testudinum, 

respectively.  At East Featherbed Bank, and average of 25.5 ± 1.9% of planting unit 

biomass was lost.  At Biscayne Channel and No Name Shoal mean biomass loss was 

2.4 ± 0.9% and 1.6 ± 0.9%, respectively.  At Cutter Bank, mean biomass increased by 

0.1 ± 0.8%.  Among the exclusion treatments, mean biomass loss in the partial cage and 

uncaged treatments (9.8 ±  1.2% and 14.8 ±  1.4%, respectively) was significantly 

greater than in the fully caged treatment (3.1 ±  0.3%)  suggesting that there was no 

caging artifact. and significantly lower than the other two exclusion treatments.  There 

was no significant difference between biomass loss in the partial and uncaged 

treatments (p = 0.618).  

Because no caging artifact was observed, herbivory assay data from partial and 

open cage treatments were pooled for subsequent analyses.  Patterns of herbivory 

pressure varied across site, time, and species (Table 2, Figure 3).  At East Featherbed 

Bank, biomass loss was high in both H. wrightii and S. filiforme, ranging from 35.6 ± 
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6.3% (H. wrightii, Summer 2009) to 81.9 ± 1.3% (S. filiforme, Spring 2009).  Biomass 

loss also was high at this site for T. testudinum during Spring 2009 (81.3 ± 1.2%), but 

remained low during the Summer 2009, Fall 2009, and Winter 2010 assays ( -2.5 ± 

2.6%,  9.5 ±  5.3%, and -5.5 ± 0.6% respectively).  In the Spring and Fall 2009 assays at 

Cutter Bank, loss ranged from 8.5 ± 5.2% to 11.6 ± 3.6% for H. wrightii and from 17.4 ± 

6.9% to 17.9 ± 5.0% for S. filiforme.  Biomass increase was documented for all four T. 

testudinum assays, and for H. wrightii and S. filiforme in the Summer 2009 and Winter 

2010 assays at Cutter Bank.  At Biscayne Channel only four of the twelve assays 

resulted in biomass loss, specifically in the Summer and Fall 2009 assays with H. 

wrightii (12.8 ± 3.8% and 8.6 ± 2.6%, respectively) and S. filiforme (42.7 ± 7.7 and 18.4 ± 

5.2, respectively).  The other eight assays, including all T. testudinum assays, resulted in 

biomass increase. At No Name Shoal, the only two assays resulting in biomass loss 

were for H. wrightii (43.0 ± 7.1%) and S. filiforme (30.3 ± 6.3%) in Summer 2009; all 

other assays at this site showed biomass increase. 

Seagrass elemental content 

C:N and C:P ratios from Pelican Shoal donor seagrasses varied significantly with 

time, and C:N ratios also varied significantly with seagrass species (Table 3, Figure 4).  

C:N ratios were significantly different in the Spring 2009, Summer 2009, Fall 2009, and 

Winter 2010, respectively (p < 0.000, Table 3), and were lowest in Winter 2010 (16.8 ± 

0.46) and highest  in Summer 2009 (22.5 ± 2.4).  Thalassia testudinum had the lowest 

average C:N ratio (16.5 ± 0.6), followed by H. wrightii (18.8 ± 0.2) and S. filiforme (23.2 ± 

1.7), respectively, and differences among species were significant (p < 0.001, Table 3).   

C:P ratios in Fall 2009 (940.9 ± 31.3) were significantly higher (p < 0.001, Table 3) than 

in Spring 2009 (672.8 ± 46.0), Summer 2009 (686.5 ± 51.0), or Winter 2010 (641.6 ± 
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36.4), respectively.  The lowest C:N ratios in each species occurred in Winter 2010:  T. 

testudinum (14.0 ± 0.1), H. wrightii (16.4 ± 0.3) and S. filiforme (17.0 ± 0.3, Figure 4). 

The difference between C:N and C:P ratios from Pelican Shoal donor seagrasses 

and the ambient seagrasses at each assay varied as a function of species, time, and site 

(Table S2, Figure 5).  In T. testudinum, donor C:N ratios were lower than ambient ratios 

in 44% of assays, not different in 44% of assays, and higher than (12% of assays) than 

ambient ratios (Table S2, Figure 5).  Syringodium filiforme was present in the 

surrounding seagrass community at five of the sixteen assays; donor C:N ratios were 

lower than ambient ratios in 40% of those assays, not different in 20% of assays, and 

higher in 40% of assays.   Halodule wrightii was present in the surrounding seagrass 

community at six of the sixteen assays; donor C:N ratios were lower than ambient ratios 

in 83% of and higher in 17% of assays. 

No significant relationships were detected between seagrass biomass loss and 

C:N and C:P ratios for each seagrass species (linear regression, α = 0.05, all p > 0.11; 

Figure 6), or between seagrass biomass loss and herbivorous fish abundance (linear 

regression, α = 0.05, p = 0.06; Figure 7).  Herbivorous fish formed a substantial 

component of the fish community during most fish surveys, and biomass loss was 

observed only when herbivorous fish were present, despite the absence of a statistically 

significant linear relationship between biomass loss and herbivore abundance (Figure 7). 

Discussion 

We established fish herbivores are capable of removing substantial quantities of 

seagrass biomass in our study system, and this pressure varied significantly across 

sites, seagrass species, and times of the year, though with lack of consistent patterns.  

Herbivore exclusion cages were effective in protecting our planting units from herbivory; 



153 
 

across all species, sites, and events, seagrass biomass loss in full cages was -3.1 ± 

0.3%, vs. 12.3 ± 1.3 % in partial and full cages.  Caging restoration sites has been 

suggested as a means to enhance planting unit success in restoration projects (Fonseca 

et al. 1998).  However, we feel that caging on the scale of a seagrass restoration site is 

not a practical solution given tidal currents, maintenance requirements, and a desire to 

minimize the use of artificial structures in the marine environment.   

We were unable to link seagrass biomass removal to abundance patterns of 

herbivorous fish.  More robust and repeated fish surveys may provide the data 

necessary to establish this link.  However, fish are transient across the landscape at the 

small scale of our assay sites, and it is possible for roving schools to pass through a 

restoration area, grazing as they move, resulting in episodic grazing events unrelated to 

local abundance.  Our herbivory assays were deployed for a period of 72 hours, a 

relatively short period of time.  If our PUs were subject to episodic grazing, and not 

detected by herbivorous fish in some assays, this could explain the observed variability 

in biomass loss among assays.  Thus our results may underestimate herbivory pressure 

over longer temporal scales.   

Herbivores may preferentially graze on enriched seagrasses (Williams 1988; 

McGlathery 1995; Heck & Valentine 2006) or on faster growing, more palatable plants 

(Cebrián & Duarte 1998).  Goecker et al. (2005) observed selective feeding based on 

seagrass nitrogen content by the bucktooth parrotfish (Sparisoma radians).  In contrast, 

other studies have shown that leaf nutrient concentration may not be a reliable indicator 

of nutritional quality (Cebrián & Duarte 1998; Kirsch et al. 2002; White et al. 2011).  We 

were unable to link seagrass biomass removal to C:N or C:P ratios in our study.  This 

may indicate that the amount of variation in nutritional quality represented by our 

measured range of nutrient content was inconsequential to influence grazing rates.  
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Another consideration is that C:N and C:P ratios are generally lower during winter 

months and peak in the summer and fall.  The same seasonal patterns can be found for 

fish densities (which may be a good reason to limit studies of relationships between of 

nutrient content and herbivory to warmer months).  Localized herbivory pressure may be 

driven more by fish grazer abundance than by plant nutrient content.   

While this study was not explicitly designed to test herbivore feeding preferences, 

our results suggest that factors other than palatability play a role in seagrass herbivory.  

Fish herbivores may be using other cues to select plant resources, or responding to 

other selective pressures (e.g., predation risk).  Overall, S. filiforme and H. wrightii had 

higher C:N ratios, but were grazed more heavily than T. testudinum (Table 3).  Grazing 

on S. filiforme and H. wrightii was greater where these species were sparse or absent in 

the local seagrass community (i.e. Biscayne Channel, East Featherbed Bank, and Cutter 

Bank) than at No Name Shoal, where these two species are present in greater 

abundance.  During several assays, the donor plant material had lower C:N ratios 

relative to the ambient seagrasses at that site, yet it was not consumed in substantial 

quantities.  Conversely, there were some events where the planting units had higher C:N 

ratios than the ambient seagrasses, when substantial herbivory was observed (Figure 

5).  Our study intentionally placed PUs in clearings in order to simulate the conditions of 

an actual restoration project.  Open space could be viewed as a higher risk microhabitat 

to small herbivorous fish (Orth et al. 1984b), but the attraction of new accessible and 

palatable food source, potentially of higher nutrient value, may positively influence 

foraging behavior in these areas.   

Nutrient content in south Florida seagrasses can vary spatially over relatively 

small scales in response to environmental gradients, terrestrial or oceanic inputs, or 

other point sources (Fourqurean et al. 1992a; Caccia & Boyer 2005; Campbell & 
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Fourqurean 2009).  Donor sites for restoration projects are often distinct from the actual 

restoration site.  Depending on the donor source and species, herbivores at a restoration 

site may be presented with seagrass transplants that are of higher nutrient value and/or 

a more palatable species that the ambient seagrasses at that site.  Therefore spatial 

patterns of both nutrient enrichment and seagrass community structure may be 

important to understand in order to minimize herbivory pressure on transplants.     

Despite the near absence of herbivory on T. testudinum that we observed, 

herbivory on this species is well documented (e.g. Kirsch et al. 2002, Goecker et al. 

2005), and we did observe one of the most important seagrass herbivores, juvenile 

parrotfish species, in our fish surveys.   Overall, herbivory pressure on T. testudinum 

was absent or very low in our study with the exception of the Spring 2009 assay at East 

Featherbed Bank, when 81.3 ± 1.2 % of seagrass biomass was removed from PU.  The 

highest overall levels of herbivory were at East Featherbed Bank, which is close to major 

tidal cuts that provide access for fish using coral reefs to the east.  The oceanic input at 

this site is also evident from the coarse sediment and abundance of small stony and soft 

corals.  The lack of a strong herbivory signal for T. testudinum in the other three study 

sites may be due to the location of the sites within southern Biscayne Bay – several 

kilometers west from the coral reefs which are the likely source of herbivores.  Herbivory 

pressure seemed consistently low at Cutter Bank, which was close to a mangrove 

shoreline.  

Herbivory during our Winter 2009 pilot assays was low or absent (data not 

shown), so we incorporated a time factor into our experimental design.  Winter 2010 fish 

surveys revealed dramatic differences in fish abundance from the Fall 2009 surveys.  It 

is important to note that the Winter 2010 assay followed a rare extreme cold event in 

south Florida during January 2010.  The average water temperature in January and 
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February at this location ranges between 20° and 21° C (Biscayne National Park, 

unpublished data).  During the cold snap, water temperatures remained below 15 °C for 

the 12-day period between 4-16 January 2010, and reached a low of 9.2° C on 11 

January 2010.  Water temperatures during the Winter 2010 herbivory assays ranged 

from 17.6° C to 19.5° C.  Fish abundance may have been abnormally low due to this 

cold event which was accompanied by fish kills in the area (personal observation) and 

others (Adams et al. 2012).  However, even during more typical winter conditions, fish 

abundance is expected to be lower.  In south Florida, abundance of some species is 

correlated with water temperature (Serafy et al. 2003, Tremaine & Adams 1995), since 

tropical species are at the edges of their ranges in Florida.  Because our study was not 

replicated seasonally, we cannot predict if the herbivory patterns we saw are 

representative through longer time frames, and our results should be interpreted 

accordingly.  However, our results strongly suggest that transplanting activities in 

southern Biscayne Bay may be at lower risk from herbivory if conducted during winter 

months.  

In some of our herbivory assays, a large proportion of the seagrass biomass in 

the planting units was removed (up to 81.9 ± 1.2 %).  Entire leaves were removed more 

often than bite marks in the leaves.  In considering the herbivory pressure that we 

observed, herbivory impact on the scale of a seagrass landscape may be less extreme 

than on the scale of a restoration project.  In highly productive ecosystems, absolute 

consumption of seagrass by herbivores may be small relative to primary production 

(Cebrián & Latrigue 2004).  Because of the rhizophytic morphology and clonal life history 

strategy of seagrasses, seagrass clones are able to tolerate herbivory, at least to a 

degree, and acute removal of leaves or shoots is not likely to cause the clone to perish.  

Of the three species used in our study, S. filiforme and H. wrightii have relatively rapid 
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rhizome elongation rates (Marba & Duarte 1998), and resources can be translocated 

among ramets along rhizomes (Marba et al. 2006a). The availability of stored carbon 

and nutrient reserves can influence a plant’s ability to replace leaves lost to herbivores 

(Vergés & Pérez 2008, Christianen et al 2011); and it may be the exhaustion of these 

reserves that lead to plant mortality following chronic, repeated grazing leaf loss 

(Fourqurean et al. 2010).  

In restoration projects, seagrasses are usually transplanted as plugs or sods that 

are obtained with a coring device or shovel, or as bundles of bare rhizomes that contain 

a few shoots per rhizome (Fonseca et al. 1998).  Some degree of transplant shock is 

expected, so newly transplanted seagrasses may be in a compromised condition.  

Subsequent removal of leaves or shoots in a planting unit through grazing has far more 

serious implications to a clone that may already be stressed and may have few 

photosynthetic shoots and low nutrient and carbohydrate reserves to grow and colonize 

the restoration area.   

Conclusions 

Leaf loss to herbivores may be a spatially variable but critically important 

determinant of seagrass restoration success.  Given the highly variable nature of 

herbivory across sites, time, and species, we recommend that future restoration projects 

be designed with a priori knowledge of site-specific herbivory pressure.  Site-specific 

herbivory assays with the range of species of interest, along with fish surveys, can 

provide a relatively fast, low-technology way to learn about herbivory pressure during the 

planning phase.  This knowledge can be used to evaluate the potential risk of herbivory 

to seagrass transplants and inform decisions on donor species selection, planting unit 
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type and density, project success criteria, and the potential need for future corrective 

actions.   

Emerging management considerations for restoration planning in our system 

include limiting transplanting efforts to T. testudinum, and refraining from transplanting 

efforts on the Featherbed Banks.  An additional conservative recommendation is to limit 

transplanting to the winter months, when overall herbivory risk appears to be the lowest.  

In some systems, winter planting may be undesirable due to slow growth or die-offs.  In 

subtropical environments, this is less likely to be a relevant consideration (Fonseca et al. 

1998), though success of winter plantings remains to be documented.  It should be 

reiterated here that our winter assays followed an extreme cold event, and that herbivory 

levels during a typical winter may be higher that we observed.  We acknowledge that it is 

a commonly held belief that “seagrass restoration projects” must involve the 

transplanting of seagrasses.  However, given our results, the most conservative 

approach we can recommend is to refrain from seagrass transplanting all together in 

areas subject to high herbivory pressure.  We extend this recommendation to potential 

projects in areas closer to coral reefs with more abundant parrotfish species, known to 

feed heavily on seagrasses (Kirsch et al. 2002; Maciá & Robinson 2005; Armitage & 

Fourqurean 2006), where the risk of heavy herbivory is expected. 
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Table 1.  Median, range, and sample size (number of quadrats) of Braun-Blanquet 

scores of the undisturbed seagrass community at each herbivory assay site.  Species 

codes:  TT = Thalassia testudinum, SF = S. filiforme, HW = Halodule wrightii.  Scale 

interpretation:  0 = not present in quadrat, 0.1 = single occurrence, 0.5 = few 

occurrences, 1 = <5% cover, 2 = 5-25% cover, 3 = 25-50% cover, 4 = 50-75% cover, 5 = 

75-100% cover (Fourqurean et al. 2001).  

 Biscayne No Name East Featherbed Cutter Bank 
Statistic TT SF HW TT SF HW TT SF HW TT SF HW 

Median 5.0 0.0 0.0 3.0 0.5 0.5 5.0 0.0 0.0 5.0 0.0 0.0 
Range 4.5 0.0 0.0 5.0 2.0 4.0 5.0 3.0 0.0 5.0 0.0 3.0 
N 71 71 71 111 111 111 400 400 400 1070 1070 1070
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Table 2.  Results from Kruskal-Wallis tests of differences in planting unit biomass loss 

among three seagrass species within site-time pairs.  Biomass loss data from the full 

cage treatment are excluded and data from open and partial cage treatments are 

pooled. 

Site Time df K P 

Biscayne Channel 

Spring 2 8.9 0.012
Summer 2 23.5 0.000
Fall 2 14.4 0.001
Winter 2 15.4 0.000

No Name Shoal 

Spring 2 13.9 0.001
Summer 2 29.6 0.000
Fall 2 23.2 0.000
Winter 2 6.5 0.038

East Featherbed Bank 

Spring 2 45.8 0.000
Summer 2 42.0 0.000
Fall 2 17.6 0.000
Winter 2 36.9 0.000

Cutter Bank 

Spring 2 11.5 0.003
Summer 2 12.4 0.002
Fall 2 24.9 0.000
Winter 2 6.5 0.039
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Table 3.  Results from two-way ANOVA and Bonferroni tests (α = 0.05) of Time and 

Species on carbon:nitrogen (C:N, rank-transformed) and carbon:phosphorus (C:P, 

untransformed) molar ratios in seagrasses from Pelican Shoal, the donor site for 

herbivory assays.  

Source df MS F P
Donor Site C:N Ratios  
Time 3 383.3 43.1 0.000
Species 2 913.6 102.8 0.000
Time * Species 6 115.8 13.0 0.000
Error 24 8. 9
Bonferroni Tests  
Time (α = 0.008):  
Spr09, Sum09  0.095
Spr09, Fall09  0.000
Spr09, Win10  0.000
Sum09, Fall09  0.095
Sum09, Win10  0.000
Fall09, Win10  0.000
Species (α = 0.017):  
T. testudinum, H. wrightii  0.000
T. testudinum, S. filiforme  0.000
S. filiforme, H. wrightii  0.000

Donor Site C:P Ratios  
Time 3 171995.0 36.6 0.000
Species 2 15775.5 3.4 0.052
Time * Species 6 60136.6 12.8 0.000
Error 24 4704.2
Bonferroni Tests  
Time (α = 0.008):  
Spr09, Sum09  1.000
Spr09, Fall09  0.000
Spr09, Win10  1.000
Sum09, Fall09  0.000
Sum09, Win10  1.000
Fall09, Win10  0.000
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Table S1.  Summary of fish community abundance at the four study sites:  BC=Biscayne 

Channel, NN=No Name Shoal, EF=East Featherbed Bank, CB=Cutter Bank.  

    Fall 2009      Winter 2010    Abundance, 

Site BC NN EF CB BC NN EF CB  all surveys

*Archosargus 
rhomboidalis/ 
Lagodon rhomboides 13 282 60 36 1 66 1 459

Calamus penna 3 3

*Nicholsina usta 8 8

*Scarus coeruleus 2 2

*Scarus guacamaia 21 2 23

*Scarus iserti 16 60 76
*Sparisoma 
aurofrenatum 4 12 4 2 22

*Sparisoma viride 2 2 4

Caranx crysos 1 1

Caranx ruber 1 2 1 4
Ctenogobius 
saepepallens 1 2 3

Dasyatis americana 1 1

Diodon holocanthus 1 1
Eucinostomus 
melanopterus 15 20 3 99 137

Gerres cinereus 2 1 1 4

Haemulon spp. 19 151 18 1 189

Halichoeres bivittatus 10 10
Halichoeres 
maculipinna 2 2
Hemiramphus 
brasiliensis 3 1 4

Lactophrys triqueter 1 1

Lutjanus apodus 3 3

Lutjanus griseus 3 217 130 36 10 396

Lutjanus synagris 2 6 8

Ocyurus chrysurus 1 1

Sphyraena barracuda 2 54 11 10 77

Total abundance 88 766 305 200 1 78 0 1 1439

Herbivore abundance 33 315 136 42 1 66 0 1 597

Total richness 12 12 13 14 1 4 0 1 25

Herbivore richness 3 3 6 4 1 1 0 1 8

Water Temp. (°C) 30.5 29.5 31.3 29.5 17.6 19.5 17.6 17.9 

Salinity (ppt) 33.4 33.4 34.9 33.4 35.5 31.7 35.5 33.1 
*species that directly consume seagrass at one or more life history stages 
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Table S2.  Results of independent t-tests of carbon:nitrogen (C:N) and 

carbon:phosphorus (C:P) molar ratios in seagrass leaves from the donor site (Pelican 

Shoal) vs. each herbivory assay site (BC = Biscayne Channel, CB = Cutter Bank, EF = 

East Featherbed Bank, NN = No Name Shoal) for each species/time pair.  

   

Site 

    C:N Ratio C:P Ratio  
Species Time t df P t df P 

Thalassia 
testudinum 

Spr09 BC -0.6 4 0.594 -0.6 4 0.583 

CB 4.4 4 0.012 -18.0 4 0.000 

EF 2.8 4 0.051 -6.3 4 0.003 

NN 3.1 4 0.037 -8.4 4 0.001 

Sum09 BC -11.8 4 0.000 -2.7 4 0.054 

CB 0.1 4 0.935 -5.0 4 0.007 
EF -4.0 4 0.017 -10.3 4 0.000 

NN 2.3 4 0.085 -7.0 4 0.002 

Fall09 BC -20.9 4 0.000 5.5 4 0.005 

CB -1.7 4 0.157 4.7 4 0.009 

EF -4.6 4 0.010 1.8 4 0.146 
NN -8.2 4 0.001 3.3 4 0.029 

Win10 BC -6.7 4 0.003 4.7 4 0.009 

CB 4.4 4 0.011 0.3 4 0.793 

EF -5.1 4 0.007 2.3 4 0.083 

NN 0.9 4 0.400 3.9 4 0.017 

Syringodium 
filiforme 

Spr09 NN -0.4 4 0.732 2.1 4 0.101 

Sum09 BC 12.6 4 0.000 0.0 4 0.995 

NN 15.4 4 0.000 -0.2 4 0.870 

Fall09 NN -3.3 4 0.031 9.1 4 0.001 

Win10 NN -8.5 4 0.001 1.6 4 0.193 

Halodule 
wrightii 

Spr09 NN -7.6 4 0.002 -1.3 4 0.265 

Sum09 BC -4.9 4 0.008 -3.1 4 0.037 
NN -3.0 4 0.039 -1.3 4 0.251 

Fall09 NN -18.6 4 0.000 10.0 4 0.001 

Win10 BC -8.4 4 0.001 0.7 4 0.534 
NN 3.3 4 0.030 5.3 4 0.006 
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Figure 1.  Location of study sites in southern Biscayne Bay, Biscayne National Park, 

Florida, USA. 

Figure 2.  Main effects of (a) time, (b) seagrass species, (c) exclusion treatment, and (d) 

site on mean (± se) percent seagrass biomass loss in herbivory assays.  All main effects 

were significant (p < 0.001) in a 4-way ANOVA on rank-transformed biomass loss data.  

For (c) lower case letters indicate Bonferroni-corrected significance at p < 0.017. 

Species codes:  TT=Thalassia testudinum, SF=Syringodium filiforme, HW=Halodule 

wrightii.  Site codes:  BC=Biscayne Channel, NN=No Name Shoal, EF=East Featherbed 

Bank, CB=Cutter Bank.   

Figure 3.  Mean (± se) percent seagrass biomass loss through time by species within 

each assay site.  Seagrass biomass data from the uncaged and partial herbivore 

exclusion treatments are pooled.  Lowercase letters indicate statistical significance 

among species within each site:time pair (see Table 2).  Species codes:  TT=Thalassia 

testudinum, SF=Syringodium filiforme, HW=Halodule wrightii. 

Figure 4.  Mean (± se) carbon:nitrogen (C:N) and carbon:phosphorus (C:P) molar ratios 

in seagrass leaves from the donor site, Pelican Shoal, by species and time.  Lowercase 

letters indicate statistical significance among times within each species at p < 0.05 as 

determined through 2-way ANOVAS followed by bonferroni pairwise comparisons.  

Species codes:  HW=Halodule wrightii, SF=Syringodium filiforme, TT=Thalassia 

testudinum. 

Figure 5.  Mean (± se) carbon:nitrogen (C:N, top row) and carbon:phosphorus (C:P, 

bottom row) molar ratios in seagrass leaves through time by site within species.  

Absence of a bar in a site/time group indicates that that species was not present for 

collection.  Asterisks indicate differences from donor site values at p < 0.05.  Site codes:  
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PS = Pelican Shoal, BC=Biscayne Channel, NN=No Name Shoal, EF=East Featherbed 

Bank, CB=Cutter Bank. 

Figure 6.  Mean  (± se) percent seagrass biomass loss vs. mean  (± se) carbon:nitrogen 

(C:N, left column) and mean  (± se) carbon:phosphorus (C:P, right column) molar ratios 

in donor site seagrass leaves, displayed by time for each seagrass species.  Error bars 

are displayed to show variance in the observations, but regression analyses assumed 

that mean values for each point were the independent units of observation.  No 

regressions were significant (all p > 0.11).  Seagrass biomass data from the uncaged 

and partial herbivore exclusion treatments are pooled. 

Figure 7.  Fish abundance (left axes) and biomass loss (mean ± se, right axes) at the 

assay sites in Fall 2009 (left panel) and Winter 2010 (right panel).  The stacked bars 

divide abundance into two feeding guilds:  herbivorous fish (grey bars) vs. other fish 

(white bars).  Percent biomass loss data from the uncaged and partial cage treatments 

are pooled, and presented by seagrass species (Thalassia testudinum, squares; 

Syringodium filiforme, triangles; Halodule wrightii, circles).  Site codes:  BC=Biscayne 

Channel, NN=No Name Shoal, EF=East Featherbed Bank, CB=Cutter Bank. 
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CHAPTER VII:  Conclusion 

This dissertation research evaluated the loss and recovery of ecosystem 

structure in disturbed seagrass meadows, as well as the efficacy of common seagrass 

restoration methods in accelerating recovery.  Vessel grounding disturbances in 

seagrass meadows resulted not only in loss of seagrass community structure, but also 

altered other aspects of ecosystem structure including reducing benthic microalgae and 

macroalgae abundance, elemental stocks buried in seagrass sediment, porewater 

nutrient pools, and invertebrate community abundance and diversity.  These impacts 

persisted in study sites that were up to five years in age since disturbance.  Given the 

extensive vessel grounding injuries to seagrass meadows in south Florida, the potential 

cumulative impacts of these disturbance effects is of great concern to resource 

managers.  Accordingly, seagrass restoration actions are implemented at vessel 

grounding disturbances with increasing frequency. 

Seagrass restoration methods including filling excavations and delivering 

nutrients via bird roosting stakes had varying effects, some unexpected, on the recovery 

process.  Filling excavations with quarried sand resulted in changes to seagrass 

ecosystem structure of greater magnitude than was caused by the initial disturbance.  

For example, ecosystem structure at filled sites was altered relative to both unrestored 

grounding disturbances and to the undisturbed seagrass ecosystem.  Filling vessel 

grounding injuries initially altered seagrass ecosystem structure by creating a sediment 

matrix with different physical properties, low organic matter content and nutrient pools, 

reduced primary producer abundance, and altered microbial and invertebrate 

communities relative to the undisturbed ecosystem.  Relative to reference seagrass 

meadows, restoration sites that received fill were characterized after 3-3.5 years by low 

macrophyte cover; reduced infaunal abundance and diversity; and coarse sediments 
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with low sediment and porewater nutrient pools.  Fertilization of restoration sites via 

placement of bird stakes was effective in increasing macroalgae cover, infaunal 

invertebrate abundance, and N and P availability in the sediments.  However, concurrent 

enhancement of seagrass production was not detected over the time frames studied.   

While I did not detect evidence of substantial convergence with the intact 

seagrass ecosystem in the restoration sites studied, some indicators of ecosystem 

development related to primary production and nutrient accumulation were evident.  

These results suggest that early stages of ecosystem development have begun at these 

sites.  However, relatively little is known about the recovery of ecosystem structure in 

following restoration, and I suggest that the study sites were still in early phases of the 

recovery trajectory.  Longer time frames will be needed to identify ecosystem recovery 

trajectories following both disturbance and restoration in this system.  

Vessel grounding excavations have the potential to become larger because of 

erosion (Whitfield et al. 2002), and larger excavations have slower recovery rates (Di 

Carlo & Kenworthy 2008; Uhrin et al. 2011) than less severe disturbances.  Filling 

excavations achieves the important objective of site stabilization.  Filled sites are 

characterized by coarse texture, low organic matter content, and slow recovery of 

seagrass communities, but it would be difficult to fill excavations with fine organic muds 

similar to sediments found in the undisturbed seagrass meadows.  

Planting seagrasses is a restoration approach intended to result in accelerated 

colonization of restoration sites (Lewis 1987), and seagrasses transplanted to aid in 

restoration site recovery have some documented successes (e.g. Farrer 2010; Hall et al. 

2012b).  However, I found that seagrasses do not thrive in the modified environment of 

filled restoration sites, as was evident by low colonization of study sites over the time 

frame of the study.  Further, top-down control may inhibit the success of planting efforts.  
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In my analysis of herbivory pressure on experimental seagrass planting units, I 

confirmed that seagrass herbivores are capable of removing substantial seagrass 

biomass via direct grazing in southern Biscayne Bay.  The observed herbivory pressure 

varied across seagrass species, location, and time. More biomass was lost during the 

spring and summer assays than in fall and winter assays.  Biomass loss was greatest in 

S. filiforme and H. wrightii, and negligent in T. testudinum.  The assay site closest to tidal 

cuts leading to nearby coral reefs experienced the highest average levels of herbivory. 

My research indicates that leaf loss to seagrass herbivores appears to be a spatially 

variable but critically important determinant of seagrass transplanting success.  To 

maximize the potential for transplanting success and best utilize limited resources 

available for restoration, local knowledge of herbivory pressure, as well as seasonal 

dynamics of herbivore populations and physical location of restoration sites should be 

considered during restoration planning.    

This collective body of work provides an enhanced perspective regarding impacts 

of physical disturbance to components of seagrass ecosystem structure beyond loss of 

seagrass biomass.  Disturbance led to loss of organic matter and stored nutrients, and 

altered microbial and infaunal communities.  These findings suggest that vessel 

grounding disturbances create more complex and persistent resource losses than 

previously understood by resource managers.  Insight is also provided on the impacts of 

restoration actions themselves on seagrass ecosystem structure, and on the slow 

sequence of ecosystem development that occurs during the post-restoration recovery 

process.  However, the disturbance effects caused by filling excavations may be 

unavoidable for practical reasons when site stabilization is a primary restoration 

objective, and because of ecological processes such as herbivory.   
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In summary, resource managers should not underestimate the extent of resource 

injuries that are caused by vessel groundings in seagrass habitat, or the natural recovery 

time of such injuries.  This recommendation is especially applicable to injuries involving 

sediment excavation.  While the mechanics of implementing common seagrass 

restoration actions have been successfully worked through by the restoration 

community, the expectation of consistent recovery trajectories following use of these 

methods remains elusive.  Rigorous restoration monitoring is strongly encouraged, for all 

methods and at all locations.  A one-size-fits-all approach to seagrass restoration will not 

likely be appropriate, nor may recovery trajectories be consistent among methods and 

locations. 
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