
Florida International University
FIU Digital Commons

FIU Electronic Theses and Dissertations University Graduate School

10-17-2012

Interoperable Resource Brokering with Policy-
based Provisioning and Job Allocation
David Villegas
Florida International University, dville00@gmail.com

DOI: 10.25148/etd.FI12120515
Follow this and additional works at: https://digitalcommons.fiu.edu/etd

This work is brought to you for free and open access by the University Graduate School at FIU Digital Commons. It has been accepted for inclusion in
FIU Electronic Theses and Dissertations by an authorized administrator of FIU Digital Commons. For more information, please contact dcc@fiu.edu.

Recommended Citation
Villegas, David, "Interoperable Resource Brokering with Policy-based Provisioning and Job Allocation" (2012). FIU Electronic Theses
and Dissertations. 788.
https://digitalcommons.fiu.edu/etd/788

https://digitalcommons.fiu.edu/?utm_source=digitalcommons.fiu.edu%2Fetd%2F788&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.fiu.edu/etd?utm_source=digitalcommons.fiu.edu%2Fetd%2F788&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.fiu.edu/ugs?utm_source=digitalcommons.fiu.edu%2Fetd%2F788&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.fiu.edu/etd?utm_source=digitalcommons.fiu.edu%2Fetd%2F788&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.fiu.edu/etd/788?utm_source=digitalcommons.fiu.edu%2Fetd%2F788&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:dcc@fiu.edu

FLORIDA INTERNATIONAL UNIVERSITY

Miami, Florida

INTEROPERABLE RESOURCE BROKERING WITH POLICY-BASED

PROVISIONING AND JOB ALLOCATION

A dissertation submitted in partial fulfillment of the

requirements for the degree of

DOCTOR OF PHILOSOPHY

in

COMPUTER SCIENCE

by

David Villegas

2012

To: Dean Amir Mirmiran
College of Engineering and Computing

This dissertation, written by David Villegas, and entitled Interoperable Resource
Brokering with Policy-based Provisioning and Job Allocation, having been approved
in respect to style and intellectual content, is referred to you for judgment.

We have read this dissertation and recommend that it be approved.

Ming Zhao

Jason Liu

Jorge Rodŕıguez

Seyed Masoud Sadjadi, Major Professor

Date of Defense: October 17, 2012

The dissertation of David Villegas is approved.

Dean Amir Mirmiran

College of Engineering and Computing

Dean Lakshmi N. Reddi

University Graduate School

Florida International University, 2012

ii

c© Copyright 2012 by David Villegas

All rights reserved.

iii

DEDICATION

To my parents.

iv

ACKNOWLEDGMENTS

I would like to thank my advisor, Dr. Masoud Sadjadi, for his support during my

time at FIU. Also, I must acknowledge the important role of all my committee

member, Drs. Ming Zhao, Jason Liu and Jorge Rodŕıguez. Their feedback during

the proposal defense and afterwards has helped to greatly improve the quality of

this work. I am also indebted to our collaborators at IBM Research, Liana Fong,

Norman Bobroff and Yanbin Liu, as well as Dr. Ivan Rodero, from Rutgers

University. They were invaluable from the first days of my PhD until the end, by

giving their advice and helping direct my research efforts.

Much of the work here initiated at T.U. Delft, The Netherlands, under the

guidance of Dr. Alexandru Iosup. I am thankful to him, Nassos Antoniou and Dr.

Dick Epema for the very fruitful time spent there. I must also thank Drs. Ignacio

Llorente, Rubén Montero and the OpenNebula team for giving me the opportunity

to work with them.

I am grateful to those who were part of my academic life at FIU and helped by

listening to my ideas and giving their feedback, among them my labmates Selim

Kalayci, Dr. Javier Delgado, Xabriel Collazo-Mojica, Mani Shafa’at Doost and

Karl Morris. Eric Johnson and his team were indispensable in helping manage the

infrastructure used in the experiments. Dr. Geoffrey Smith provided the

LATEX template. Finally, I would like to thank my family for the continued support

through all the years, and in special my beloved wife, Yina Hurtado, for his

encouragement and understanding. Nothing of this would have been possible

without her.

v

ABSTRACT OF THE DISSERTATION

INTEROPERABLE RESOURCE BROKERING WITH POLICY-BASED

PROVISIONING AND JOB ALLOCATION

by

David Villegas

Florida International University, 2012

Miami, Florida

Professor Seyed Masoud Sadjadi, Major Professor

The increasing needs for computational power in areas such as weather simu-

lation, genomics or Internet applications have led to sharing of geographically dis-

tributed and heterogeneous resources from commercial data centers and scientific

institutions. Research in the areas of utility, grid and cloud computing, together

with improvements in network and hardware virtualization has resulted in methods

to locate and use resources to rapidly provision virtual environments in a flexible

manner, while lowering costs for consumers and providers.

However, there is still a lack of methodologies to enable efficient and seamless

sharing of resources among institutions. In this work, we concentrate in the problem

of executing parallel scientific applications across distributed resources belonging to

separate organizations. Our approach can be divided in three main points. First,

we define and implement an interoperable grid protocol to distribute job workloads

among partners with different middleware and execution resources. Second, we

research and implement different policies for virtual resource provisioning and job-to-

resource allocation, taking advantage of their cooperation to improve execution cost

and performance. Third, we explore the consequences of on-demand provisioning

and allocation in the problem of site-selection for the execution of parallel workloads,

and propose new strategies to reduce job slowdown and overall cost.

vi

TABLE OF CONTENTS

CHAPTER PAGE

1. INTRODUCTION . 1
1.1 Research Problem . 2

2. BACKGROUND . 7
2.1 Cluster Computing . 8
2.2 Grid Computing . 9
2.3 Cloud Computing . 10

3. LITERATURE REVIEW . 12
3.1 Site Interoperability . 12
3.1.1 Grid Meta-Scheduling . 12
3.1.2 Cloud Federation . 16
3.1.3 Network Testbeds . 19
3.2 Virtual Resource Managers . 22
3.2.1 Virtualization of Computing Resources 22
3.3 Job Scheduling Policies in Virtual Resources 25

4. A META-SCHEDULER FOR THE GRID 28
4.1 Introduction . 28
4.2 The Peer-to-Peer Model of Meta-Schedulers 31
4.2.1 Protocols and Interfaces . 32
4.2.2 Resource Model . 34
4.2.3 Job Broker and Scheduling Criteria . 36
4.3 Meta-Scheduler Implementation . 37
4.3.1 High Level Architecture . 38
4.3.2 FIU Meta-Scheduler Detailed Implementation 40
4.4 Meta-Scheduler Validation . 42
4.4.1 Protocol Measurements . 43
4.4.2 Weather Research Scenario . 45
4.5 Large-Scale Meta-Scheduler Evaluation 47
4.5.1 Meta-Scheduler Evaluation Platform 49
4.5.2 Experimental Results . 54
4.6 Conclusions and Future Work . 57

5. A MULTI-LAYER FEDERATION ARCHITECTURE FOR THE CLOUD 61
5.1 Introduction . 61
5.2 Cloud Service Stack Architecture . 65
5.2.1 A Layered Model of Cloud Services 68
5.2.2 Inter-Layer Delegation . 70
5.2.3 Federation of Clouds . 71

vii

5.3 Inter-Layer Delegation . 73
5.4 Federation of Clouds . 74
5.4.1 Brokering at the SaaS Layer . 75
5.4.2 Brokering at the PaaS Layer . 77
5.4.3 Brokering at the IaaS Layer . 78
5.5 Weather Research and Forecasting (WRF) as a Service 82
5.5.1 Software as a Service Layer . 84
5.5.2 Platform as a Service Layer . 85
5.5.3 Infrastructure as a Service Layer . 89
5.6 Conclusion and Future Work . 90

6. AN ANALYSIS OF PROVISIONING AND ALLOCATION POLICIES FOR
INFRASTRUCTURE-AS-A-SERVICE CLOUDS 91

6.1 Introduction . 91
6.2 System Model . 93
6.2.1 Workload Model . 93
6.2.2 Resource Model . 94
6.3 Provisioning and Allocation Policies . 95
6.3.1 Provisioning Policies . 95
6.3.2 Allocation Policies . 98
6.4 Experimental Setup . 99
6.4.1 The SkyMark Empirical Performance Evaluation Tool 99
6.4.2 Experimental Environments . 100
6.4.3 Workloads . 101
6.4.4 Performance, Cost, and Compound Metrics 102
6.5 Experimental Results . 102
6.5.1 Provisioning Policies . 103
6.5.2 Allocation Policies for Static Resources 103
6.5.3 Effects of Job Size Distribution in On-Demand Policies 104
6.5.4 Policy Interactions . 106
6.5.5 Effects of VM Provisioning Time . 108
6.6 Simulator Validation . 111
6.7 Conclusion and Future Work . 114

7. SCHEDULING PARALLEL WORKLOADS ACROSS VIRTUAL PROV-
IDERS . 116

7.1 Background . 116
7.2 System Model . 120
7.2.1 Brokering Across Virtual Providers . 120
7.2.2 Simulator . 123
7.2.3 Workloads . 124
7.3 Policies . 126
7.3.1 FCFS vs. FCBF . 126

viii

7.3.2 Site Selection . 128
7.4 Experimental Evaluation . 129
7.4.1 Experiment Setup . 129
7.4.2 Single-Site Parallel Execution . 130
7.4.3 Forwarding policies . 132
7.5 Simulator Validation . 134
7.6 Conclusion . 136

8. SUMMARY . 138
8.1 Future Work . 139

BIBLIOGRAPHY . 141

ix

LIST OF TABLES

TABLE PAGE

4.1 List of messages in the LA Grid meta-scheduling protocol 33

4.2 Information about the experiment sites 43

4.3 Delay across meta-scheduling sites . 44

5.1 Summary of brokering goals at different layers of cloud federation 75

5.2 WRF as a Service workflow . 84

6.1 Overview of provisioning policies. 96

6.2 Overview of allocation policies. 98

6.3 Overview of the experimental environments. 101

7.1 Comparison of physical and virtual provider information. 123

x

LIST OF FIGURES

FIGURE PAGE

4.1 Cooperating meta-schedulers in LA Grid 30

4.2 Meta-Scheduling protocol . 33

4.3 Comparison of GridWay and the peer-to-peer model 38

4.4 Architecture of FIU MS . 39

4.5 WRF execution results . 46

4.6 Meta-Scheduler evaluation architecture 49

4.7 CTC original and reduced traces . 53

4.8 Cluster analysis of original and reduced traces 54

4.9 CTC Makespan for different number of sites 55

4.10 CTC Avg. Bounded Slowdown for different number of sites 55

4.11 Bounded Slowdown for compared forwarding policies 56

5.1 Federation and delegation in cloud application support 63

5.2 An alternative model of federation . 67

5.3 Conceptual model . 69

5.4 Prediction models for different areas and resolutions 88

6.1 The cloud ecosystem. 94

6.2 Workload speedup (SU) for provisioning policies 104

6.3 Job Slowdown (JSD) for provisioning policies. 105

6.4 Charged cost (Cc) for provisioning policies. 106

6.5 Average job slowdown for allocation policies. 107

6.6 Slowdown and cost for job runtime ratios 108

6.7 Slowdown and cost for groups of policies 109

6.8 Effects of VM boot time . 110

6.9 Simulator validation for steady workload 113

xi

6.10 Simulator validation for increasing workload 113

6.11 Simulator validation for bursty workload 114

7.1 Virtual provider federation model . 119

7.2 Virtual provider model . 122

7.3 CTC Trace characterization . 125

7.4 SHARCNET Trace characterization . 125

7.5 Makespan for OnDemand plus FCFS and FCBF policies 130

7.6 AWRT for OnDemand plus FCFS and FCBF policies 131

7.7 Bounded slowdown for OnDemand plus FCFS and FCBF policies 132

7.8 Makespan for forwarding policies in heterogeneous sites 133

7.9 Bounded slowdown for forwarding policies in heterogeneous sites 134

7.10 Simulator validation for 1 Site . 136

7.11 Simulator validation for 2 Sites . 137

7.12 Simulator validation for 3 sites . 137

xii

CHAPTER 1

INTRODUCTION

The increasing needs for computational power are evident when looking at ar-

eas such as weather simulation, genomics, computer-aided drug design or particle

physics. These needs, coupled with the commoditization of high-performance com-

puting infrastructure, have led to a proliferation of data centers for providing com-

puting cycles. In some cases, such systems are maintained and consumed in-house;

in others, dedicated providers lease their usage based on some contract, often called

Service Level Agreement or SLA. A third, and increasingly popular alternative, is

for institutions with available resources to share unused cycles, temporarily acting

as providers, in order to maximize utilization and amortizing their ownership cost.

Multiple research efforts have been geared towards creating effective methods

to allow the execution of workloads on shared resources among institutions. There

are a number of challenges to be solved in order to provide seamless distribution of

computing power between partners. First, standardized protocols need to be devised

to authorize users across institutional boundaries, exchange resource information or

execute user processes on remote machines. Then, scheduling policies have to be

used by consumers and providers in order to optimize certain goals, such as execution

performance or usage cost. Finally, collaborating sites need to implement effective

placement strategies to exchange workloads among them.

It can be argued that the desired goal for computation sharing is akin to that

already achieved by traditional utilities such as water or electricity. The term of

utility computing [Rap04] was coined after such idea. According to this model,

computational resources would be traded based on supply and demand rules, and

consumption balanced as in the case of power generation facilities. One particular

solution towards this goal, grid computing [FKT01], gained significant attention in

1

recent years by the academic community, especially in the field of High Performance

Computing (HPC). The grid model, however, suffers from a number of shortcom-

ings. First, resources are under complete control of providers, resulting in a lack of

flexibility for users requiring particular libraries or operating systems. Additionally,

new mechanisms are needed to orchestrate the sharing when the number of resources

is increased.

More recently, a new trend has appeared, known as cloud computing [AFG+09],

which borrows many of the ideas generated in grid and utility computing research.

This new approach solves some of the existing problems by using new advances in

virtualization and introducing better cost measures and billing facilities. Virtualiza-

tion allows providers to better partition and isolate their resources and users to have

higher control of their workloads. However, clouds lack standardized interoperability

mechanisms to enable sharing of resources between providers, fine-grained control of

resource performance and coordination among leased resources. Additionally, there

are no well-defined methods to map job workloads to acquired resources.

1.1 Research Problem

Scientists communicate to execution sites, or providers, through the job abstraction.

Computational jobs represent required calculations, and are usually defined by users

themselves. A job specifies which program to run, a set of requirements in terms of

computer architecture, Operating System or libraries, necessary input and output

files, and the desired degree of parallelism —i.e., the number of processors to be

used during execution.

Users, through submitted jobs, acquire control of a certain number of resources

for a limited amount of time. Varying goals such as cost or response time minimiza-

tion can be specified as part of the job’s definition. Providers need to be able to

2

respond to such demands while maintaining their own goals in terms of utilization,

power consumption or infrastructure costs, adapting to different request patterns

produced by seasonal spikes, unexpected failures or demand increase.

There have been various attempts to solve these problems in various research

areas, and technologies have been devised to allow users and providers to attain

their goals. However, there are still multiple challenges that need to be undertaken

to provide common protocols to publish and consume computational resources in a

scalable fashion, while improving overall usage and reducing cost.

Grid computing was perhaps the first widely embraced technology for resource

sharing across organizational boundaries. However, a lack of flexibility has forced

users to learn intricate tools and protocols in order to be able to use them, restraining

advanced usage in which complex QoS requirements are necessary. Additionally,

provider sites employ batch schedulers on physical resources, resulting in a lack of

control over the executing fabric, libraries or operating systems.

The more recent technology of cloud computing addresses some of the grid’s flex-

ibility problems by taking advantage of virtualization and provides more advanced

billing mechanisms, but still lacks crucial features. First, no standardized federation

protocols and methods for sharing user load have been defined, therefore leaving the

problem of delegating excess requests to external providers to each site. This has

led to ad-hoc solutions that can’t be reused.

Finally, there is a lack of mechanisms to coordinate the achievements of cluster

and grid computing in the areas of job scheduling and sharing with the new capabili-

ties of clouds in terms of virtual resource provisioning. This is a critical step towards

ensuring that user workloads can be executed while harnessing the flexibility of the

new platforms and adequately mapping domain requirements to resource requests.

Therefore, we identify the general problem as the need to seamlessly execute par-

3

allel scientific workloads with different requirements among collaborating organiza-

tions. Such organizations may employ different protocols and middleware, provide

heterogeneous resources —physical and virtual— and implement distinct local job

scheduling policies in the case of physical resources, or virtual machine acquisition

in the case of clouds. Thus, workloads need to be distributed in an interopera-

ble fashion and resources have to be acquired across organizational boundaries by

using mechanisms to abstract heterogeneity and improve certain metrics such as

utilization or job slowdown. Finally, workload tasks have to be mapped to the

acquired resources using strategies to optimize user and site objectives such as run-

time, throughput, performance or cost. All these problems need to be solved in a

coordinated manner so that low-level details are hidden from users.

We define the following research problems for this dissertation:

• Heterogeneity in resource management mechanisms across organi-

zations. There is a need for interoperable mechanisms between providers to

offload resource utilization while maintaining both consumers’ goals and their

own goals in a scalable fashion and conserving site independence in terms of

infrastructure, policies and internal implementations. An organization using

the Globus middleware [FK96] should be able to share its infrastructure with

another peer employing UNICORE [ES01] or its own local resource manager

such as Condor [TTL05] in order to balance the incoming load, without re-

quiring any changes in their internal implementations.

• Lack of understanding about the interplay of job scheduling policies

and resource provisioning policies. Strategies to provision virtual infras-

tructure and to schedule jobs to resources are not usually coordinated, and

current efforts to provide an integration between them address the problem

in an ad-hoc manner, which makes existing solutions only applicable to con-

4

crete cases. An integration of these two stages is necessary in order to achieve

support for heterogeneous workload execution while fulfilling requested goals

such as makespan, cost or utilization. For example, widely used job scheduling

policies such as Backfilling or First Come First Serve that are unaware of how

resources are provisioned may result in infrastructure waste and higher job

slowdown due to the overhead of spawning virtual resources on-demand.

• Lack of site-selection mechanisms for virtual resource providers.

During the site-selection phase, existing brokers are constrained to limited

information and control when collaborating sites provide physical resources,

accessed by batch schedulers. With the rapid embrace of virtualized infras-

tructure by scientific users, this problem needs to be revised to provide better

decisions that improve utilization across organizations. Due to the control

that virtual machines provide users in terms of provisioning and the ability to

implement custom scheduling strategies, new site-selection policies need to be

implemented to take advantage of the new capabilities.

Therefore, we enunciate the following research objective:

The goal of this dissertation is to improve the existing schedul-

ing mechanisms to execute scientific parallel workloads among

collaborating institutions in a de-centralized, scalable and ag-

nostic manner. New opportunities brought by virtualization

both in terms of resource provisioning and scheduling control

need to be considered, as well as the role of this new paradigm

in the site-selection process performed by job brokers or meta-

schedulers.

5

In this work, we address some of the mentioned problems hoping to advance the

state of the art towards a more flexible and seamless method to execute computa-

tional workloads on shared resources. In particular, we concentrate in three main

aspects. First, we investigate a grid interoperability protocol to overcome providers’

heterogeneity in terms of middleware and execution resources; we develop a proto-

type and validate it by performing experiments across three different organizations.

Second, we identify the two phases involved in scheduling job workloads to virtual

resources; we study different policies for these two phases and propose new strate-

gies that take advantage of their collaboration to improve workload metrics such as

cost or job slowdown. Then, we combine our findings from the previous two areas

to articulate a novel meta-scheduling model to execute parallel workloads across

separate virtual providers. Meta-schedulers can take advantage of the available in-

formation in virtual resource provisioning and job allocation at other sites to make

better decisions.

The rest of this dissertation is organized as follows: In Chapter 2 we give a

general overview of the areas involved in this work and introduce the definitions

used throughout the text. In Chapter 3 we describe existing work related to ours,

and discuss similarities and differences between them. In Chapter 4 we introduce

our findings in the area of grid meta-scheduling to share computational jobs among

institutions. Chapter 5 motivates the transition from grid meta-scheduling to col-

laboration between virtual providers at different levels. Chapter 6 contains a study

and definition of scheduling policies to map jobs to resources and provision virtual

execution environments. In Chapter 7 we explore a new meta-scheduling model for

virtual resource providers that results in better placement decisions. Finally, we

summarize our work and describe the remaining steps in Chapter 8.

6

CHAPTER 2

BACKGROUND

Computationally expensive problems have arisen in many scientific areas, and

consequently, increasing efforts have been directed towards harnessing more power

from computers. We are specially interested in those initiatives directed towards

creating distributed processing systems, this is, parallelizing computational demands

and orchestrating their execution on multiple resources. In this section we take a

look at existing technologies that address such problems from different perspectives,

their advances in the field and also their shortcomings.

We first consider clusters of commodity machines, and then discuss two other

technologies, grids and clouds, which address the challenges of complexity and large

scale by applying ideas from the field of utility computing [Rap04, EAB+04]. The

main characteristics of this model, which has had an important impact in both of

these areas, can be enumerated as follows:

• Standardization: Access to resources using a high-level, agreed-upon abstrac-

tion that hides the underlying complexity and heterogeneity.

• Elasticity: The ability to acquire resources on-demand with different granu-

larities and depending on the usage needs.

• Scalability: Resource utilization can be increased and decreased quickly and

seamlessly to satisfy changes in demand.

• Reliability: The need of having mechanisms to control and react to underlying

failures in order to provide certain security to the users.

7

2.1 Cluster Computing

Due to the decreasing price of commodity computers and the higher speeds of the

interconnection fabric, distributed computing has received increasing attention from

the HPC community. Early experience reports [CCF+94] conclude that “cluster

computing is a legitimate and viable computing environment for compute-intensive

work”.

Initial attempts to provide a parallel, distributed architecture for problem solv-

ing include the development of programming environments for process execution and

intercommunication such as PVM [Sun90] or MPI [For93], execution infrastructures

such as Beowulf [SBS+95], MOSIX [BL98] or NOW [ACP95], and local resource

management systems for scheduling jobs among distributed resources such as Con-

dor [LLM88] or PBS [Hen95]. The first group comprehends frameworks directed

to developers to implement programs capable of executing and communicating over

networked machines, providing programming constructs for message passing and

synchronization.

Different organizations also tackled the problem of how to interconnect com-

modity hardware though high speed networks. In the case of Beowulf, a research

team from NASA joined 16 processors which surpassed 1 Gigaflop for a real world

application, using a easily-replicable system using freely available software and off-

the-shelf components. This approach, known as “Pile-of-PCs” has been reproduced

ever since by industry and research institutions. Baran and La’adan took a different

approach with MOSIX by modifying the BSD Operating System to enable multi-

user, time-shared process execution among interconnected resources with support

for migration and load-balancing.

8

Finally, Local Resource Management Systems (LRMSs) such as Condor, PBS

or Sun Grid Engine have been developed for multiplexing physical resources among

users in a particular organization. Different scheduling algorithms have been re-

searched to achieve various goals such as high throughput, fair sharing of resources

or use of idle machines.

2.2 Grid Computing

Cluster computing has served as a useful paradigm for many years. However, with

the continuing increase of resource requirements, there was a need to scale the com-

puting infrastructure beyond the limits of an institution. Therefore, new techniques

to share resources between heterogeneous, geographically separated organizations

were required. In [CFK+98], Czajkowski et al. describe five challenges in resource

management for these cases, which they name metacomputing environments:

• Site autonomy, or the diversity between resources belonging to different orga-

nizations.

• Heterogeneous substrate, or differences in LRMS systems between sites.

• Policy extensibility, differences between applications and the need for sites to

support them without knowing them a priori.

• Co-allocation, the requirement of executing parallel applications simultane-

ously at resources belonging to different organizations.

• Online control, or the negotiation of the application requirements based on

dynamic resource availability.

Different systems have been developed by various groups in order to address

these requirements. The Globus toolkit [FK96], precursor of the grid, is arguably

9

one of the attempts that achieved more traction. It provides communication, au-

thentication, network information and data access modules to enable the creation

of such metacomputing environments. Other projects to unite remote adminis-

trative domains are Legion [GFKH99], which provides an object model so that

new inter-operating components can be developed to communicate across sites,

PUNCH [KF99], a web-based architecture to securely execute unmodified pro-

grams in remote resources through the use of a browser, DISCOVER [MP02],

a distributed, peer-to-peer middleware substrate to allow services to interoperate

which provides authorization, discovery, access control and coordinated interaction,

or UNICORE [ES01], a middleware to execute Abstract Job Objects (AJOs), or

Java programs defining user executions, to remote resources, providing security and

monitoring capabilities.

These solutions aim at providing a common middleware for institutions to share

their available resources. However, it is up to users to implement the algorithms to

choose sites based on their requirements or preferences. In many cases, the user is in

charge of making such decisions, leading to inefficient use of multi-domain resources.

Thus, a component called the meta-scheduler is placed on top of the middleware to

find and request the appropriate resources on behalf of the user.

2.3 Cloud Computing

Cloud computing represents an evolution of the grid towards a more flexible resource

model where virtualization plays a central role. Multiple researchers have tried to

define and categorize clouds ([AFG+09, YBDS08]), and given the popularity of

the paradigm, there have been different and even contradicting definitions used by

industry and researchers.

10

There are some basic assumptions about cloud behavior, however, and they

closely relate to utility computing attributes: cloud providers need to be flexible

in adapting to user demand, implementing mechanisms to scale up and down the

amount of provisioned resources, which can be acquired on-demand.

Attempts to categorize clouds have resulted in various taxonomies. One possible

distinction identifies three main layers of operation: Software as a Service (SaaS), the

layer where applications exist, which serves high-level, domain-specific workloads;

Platform as a Service (PaaS), the intermediate layer where middleware, software

licenses or programming stacks reside, and Infrastructure as a Service (IaaS), the

lowest layer where virtual resources are managed. Examples of SaaS are services

such as Google’s Gmail [Gma], Salesforce [Sal] or research portals such as Teragrid

Science Gateways [WDGK+08]. PaaS solutions are also found in industry (Microsoft

Azure [Azu], Google AppEngine [GAE]) or academia (Aneka [CNJ+07]). Examples

of IaaS are Amazon’s Elastic Compute Cloud or EC2 [EC2] and Rackspace [Rac]

in industry or OpenNebula [Ope], Eucalyptus [NWG+09] or Nimbus [KFFZ05] in

academia.

A different categorization groups clouds according to their users: Public clouds

offer service to external customers, who pay for the amount of resources used, private

clouds are internal to an organization, and hybrid clouds are private clouds capable of

acquiring external public resources based on user demand or other internal policies.

The main difference between clouds and grids is the lack of resource sharing

mechanisms [VRF+10, FZRL08]. In fact, most of the solutions that initially ap-

peared labeled as “cloud” only consider resources in one organization. Recent ef-

forts such as RESERVOIR [RBL+09] have tried to define federation protocols. We

explore them in Section 3.1.2.

11

CHAPTER 3

LITERATURE REVIEW

In this chapter we describe existing work in the literature which is related to

ours, and therefore needs to be considered in order to understand the approach de-

scribed here. Section 3.1 addresses interoperability between resource providers by

examining advances in grid meta-scheduling, cloud federation and network testbeds.

In section 3.2, we list related work in the area of virtual resource management, both

for execution environments and network resources. Finally, section 3.3 discusses ex-

isting policies and algorithms used in virtual resource provisioning for job execution.

3.1 Site Interoperability

When resources are shared by different organizations, there are a number of chal-

lenges to be solved in order to orchestrate either the execution of user workloads

among them or to acquire the infrastructure in a seamless manner. Usually, hetero-

geneity needs to be abstracted by implementing standardized protocols and using

a common resource description model. Then, selection algorithms that account for

infrastructure characteristics need to be run, and finally, either jobs need to be

mapped and executed on remote resources, or techniques to abstract geographic

separation and resource heterogeneity need to be employed to present the end user

with a consolidated substrate. In this section we examine efforts towards these goals

in the fields of grid computing, clouds and network testbeds.

3.1.1 Grid Meta-Scheduling

A grid meta-scheduler or grid broker [KBM02, HML10] is the component in charge

of processing user requests for jobs with associated resource requirements, query-

12

ing available sites, selecting the most appropriate ones based on some pre-defined

policies, and submitting the request following the required protocol [Sch04]. The

meta-scheduler component is in charge of bridging the gap between organizations

and hide the complexity and heterogeneity of underlying resources, administration

policies and middleware.

The AppLeS metacomputing scheduler [BW97] represents an early system di-

rected towards efficiently scheduling applications in heterogeneous and shared re-

sources. It addresses the problem by analyzing the application’s needs, the resources’

state and availability at a given time and predicting their future state to determine

the best schedule. Many ideas are common with our layered approach to feder-

ation, especially the need to transfer user and application requirements from the

top layer to the infrastructure, although the use case scenario has changed due to

the addition of virtual resources and organization independence. We attempt to

solve them by considering inter-site protocols and different job to virtual resource

mapping policies.

Vadhiyar et al. [VD02] also define a meta-scheduling architecture where applica-

tion level considerations are taken to determine the best schedules. The difference

with AppLeS is that in this case more advanced negotiation policies are implemented

to determine whether an application should run when requested, or wait to improve

the overall performance of all applications. This is a characteristic that is used in

more recent work to improve global execution of applications, including ours.

The GrADS [DBC03] project proposes a centralized scheduler capable of as-

signing user tasks to remote resources, given that the job submitter specifies a

performance model and a task-to-processor mapping. Their approach consists in

exhaustively searching available resources with pruning of candidates that don’t

meet the mapping requirements. This algorithm reduces the search space and pro-

13

vides good results. We employ a similar approach when trying to schedule requests

to a particular site.

Sabin et al. [SKR03], explore meta-scheduling of parallel jobs in heterogeneous

resources. Assuming scheduling strategies at each site can be controlled, they eval-

uate different backfilling scheduling methods taking site heterogeneity into account.

We share the premise of heterogeneous resources and different types of workloads,

such as parallel, and also study similar policies. However, we separate the map-

ping of jobs to virtual resources from the resource provisioning, and allow different

algorithms for these two phases.

Ramakrishnan et al. [RIG+06] discuss a model where different grids share re-

sources by defining two separate levels of abstraction, namely jobs and containers.

Here grids are hosted by different sites and a component, called the GROC is in

charge of routing tasks between sites and determining whether to increase or de-

crease the number of execution nodes for a particular VO. This work is similar to

ours in the separation between jobs and resources. However, there are two fun-

damental differences: first, the GROC component is centralized, and one instance

determines the task flow for all users of a certain grid. Second, different GROC

instances cannot collaborate among them, but rather sharing is only done at the re-

source level. This does not allow virtual resources controlled by different GROCs to

be shared among users from different VOs, and can therefore lead to fragmentation

and lack of container reuse.

The GridWay meta-scheduler [HML07] provides interoperability between differ-

ent grids though adapters. It supports the JDSL language [ABD+05] and can per-

form matchmaking on the resources and implement pluggable scheduling algorithms.

We build up on their idea by allowing multiple meta-scheduling components to col-

laborate so that resource competition is orchestrated at the highest level instead

14

of the infrastructure level. By defining an inter-site negotiation protocol, different

instances of GridWay are able to collaborate among them to provide better resource

usage.

The KOALA grid scheduler [ME08] implements parallel task co-allocation across

resources, and implements two policies to decide where to place jobs, Close-to-Files

and Worst-Fit. It reserves processors in order to accomplish it, and implements a

fall-back mechanism when such function is not available in the underlying infras-

tructure. In KOALA, there is one centralized scheduling agent, and only the cost

of the initial file transfer is considered, making it unsuitable for tasks with high

communication requirements. Also, only physical resources are taken into account.

Iosup et al. [ITF+08a] address the problem of resource selection for inter-operating

grids. It has a similar goal to our approach to meta-scheduling, but instead of for-

warding jobs to sites, here resources are delegated to job requesters. The authors

assume that a method like Condor glide-in [TTL05] is used to join remote resources

to the originator’s pool. Site managers in this architecture can delegate requests

for resources to other participants, creating delegation chains. The system supports

different policies to trigger the delegation process through a load management al-

gorithm, or the order in which other sites are contacted. Although this work is

promising, it has the shortcoming of not considering network topology into account

when performing resource delegation, thus making it unreliable for parallel work-

loads. Also, the authors concentrate in defining the high-level delegation protocol,

but they don not implement it in a real system, therefore making it unclear whether

this model would be feasible in a realistic deployment.

Assunção et al. propose Intergrid [DdAaBV08], a formulation of the existing

challenges to create dynamic interoperating grids of resources. The authors iden-

tify many of the problems in federating separate sites based on changing needs,

15

and propose different methods to overcome them. They address resource virtual-

ization, peering agreements, market-based incentives and network aware placement

of requests, although they don’t have an implementation. Our work shares many

of the requirements contemplated in Intergrid, for which we provide real use cases,

implementations and measurements.

Leal et al. [LHL09] propose a decentralized model of grid meta-schedulers and

define four algorithms to determine where tasks should be sent in order to reduce

workload makespan and improve overall execution performance. Their work is sim-

ilar to our approach of distributed domains that exchange workloads and resources;

however, they assume homogeneous and independent jobs. This results in a model

that doesn’t consider different resources, workloads and fluctuations in the infras-

tructure.

Caminero et al. [CRCC11] define a peer-to-peer meta-scheduling framework for

distributed administrative domains. Their resource selection algorithms takes inter-

site bandwidth into account, and tries to route job requests to the most appropriate

neighbor by calculating site indices that represent the available computational power

and bandwidth. Their approach follows a peer-to-peer communication model as

ours, although in our case we differentiate the job scheduling and resource scheduling

process.

3.1.2 Cloud Federation

Researchers have recently started to propose new protocols to enable the sharing

of virtual resources among sites. This is known as federation, and it involves dif-

ferent mechanisms —many of which were already envisioned and implemented in

grids [VRF+10]. Given the appropriate protocols for resource sharing, the next

logical step is to develop brokering systems to orchestrate the execution of user

16

workloads in different domains that offer virtualized systems. The behavior of such

systems has some similarities with previous grid meta-schedulers, (need to choose

among different domains, translate user requirements or monitor request state),

but also some differences, especially considering the fact that cloud providers offer

malleable resources.

Sky computing [KTMF09] describes the use of ViNE overlay networks [TF06]

among cloud providers to provide trusted communications and sharing of resources.

This interoperability is implemented at the IaaS layer, using existing APIs, although

the authors acknowledge the problems of constraining to existing protocols which

lack expressivity —e.g., the use of VMs with “high bandwidth.” They discuss some

solutions such as running benchmarks on the infrastructure before submitting work-

loads to have a good idea of their performance. Finally, they experiment with a

Hadoop application across clusters to demonstrate the scalability of their system.

This work has many similitudes with ours at the larger scale. Our goal is also to join

resources across providers, with the difference that instead of using existing APIs we

define a federation protocol that sites can implement. Also, we differentiate between

federation at the infrastructure and platform layers, thus being able to extract ap-

plication requirements and interact with non-virtualized systems. Finally, our use

of virtual networks, although similar to ViNE, is also geared towards determining

whether aggregate QoS can be met by providers, helping in the brokering stage.

RESERVOIR [RBL+09, RBE+11] is closer to our approach in that it defines

an interoperable architecture between providers. In RESERVOIR, sites provision

Virtual Execution Environments (VEEs) capable of running Service Applications.

Services are described by a Service Manifest file, which defines the desired SLA

parameters and how Services have to be run among VEEs, including, for example,

the necessary VM images. Also, a range of requested VEEs is specified, which

17

can change based on certain elasticity rules. Differently from this work, where

federation happens through a VEE Manager (VEEM), in charge of retrieving service

manifests and communicating with VEE hosts and other sites, we decouple these

tasks among the platform and infrastructure layers, thus allowing federation to

happen among sites that may not implement the whole federation stack. Other

work by Hadas et al. [HGR09] adds the concept of networking in RESERVOIR

federations through Virtual Application Network (VAN) and Virtual Internet Access

(VIA) services. However, this is still in the earliest stages and does not describe how

request mappings involving network QoS requirements are made, how traffic control

is implemented to fulfill user requests, or how the networking aspect is managed

by the federation protocol. In other aspects, there are many similarities with our

work, for example in classifying VAN communications as intra-host, intra-site and

inter-site, or the use of Site proxies (similar to our site gateway agents).

InterCloud [BRC10] is another approach to cloud federation to provide a mecha-

nism to join VMs, services, storage or databases from different providers to support

dynamic scaling of resources to handle demand variations. In this research, a Cloud

Exchange component coordinates bids and negotiations between users and providers,

applying market-oriented principles for resource acquisition. The authors perform

some initial tests using simulation, but it is unclear whether this model is appli-

cable in a real-world scenario due to some shortcomings in the evaluation, such as

not considering VM boot time, QoS requirements or the scalability of the Cloud

Exchange component for multiple sites.

Tordsson et al. [TMMVL12] propose a cloud broker to place virtual machines

across different providers while optimizing certain criteria specified by the user.

They use an integer programming formulation to achieve the best placement, con-

sidering user requests in terms of VM capacity and price. For their implementation,

18

they create a Sun Grid Engine deployment where the master node runs on local re-

sources and the worker nodes are instantiated in different clouds and joined through

OpenVPN. Their application is the Embarrassingly Distributed benchmark from

the NAS Grid Benchmarks [FVdW02]. This work shows an actual implementations

of grid federation, however, it is very constrained to a certain type of application

(embarrassingly parallel) and limited request description (CPU, memory and price).

Clearly, the solution of using OpenVPN to join nodes from different clouds would

not work for many applications. Our work addresses this problem by allowing the

definition of network requirements and instantiating virtual resources accordingly.

Furthermore, our solution allows multiple sites to collaborate by exchanging their

load, rather than approaching the problem from a hierarchical point of view where

one broker is in charge of communicating with all providers.

Finally, there have been some efforts towards creating interoperable protocols for

IaaS providers. The Open Grid Forum (OGF) approach, the Open Cloud Computing

Interface (OCCI [OCC]), defines a REST protocol to describe, manage and monitor

cloud resources. It supports computing, networking and storage resources, although

it still lacks QoS constraints such as bandwidth or latency. The standard is in

development, although it has been initially implemented by some IaaS managers.

3.1.3 Network Testbeds

There has also been an effort spawning from the network community to reach the

same point of resource sharing, however focusing on the network aspect. Such

projects achieve this by virtualizing network resources for researchers to run con-

trolled experiments. To have an idea of the similarities between this and previous

work, it must be noted how some researchers have recently addressed these testbeds

as “network clouds”.

19

While the HPC community has advanced towards better scheduling and sharing

methods for computational jobs that primarily take into account processor, mem-

ory and disk, there is clearly a disconnect with the advances in the networking

community, which while concentrated in the experimentation of network protocols,

progressed towards large distributed systems where to run their experiments. Such

network testbeds have in few cases taken ideas from the HPC community or applied

them back to it. It is our goal in this section to study such efforts in the areas of

network virtualization, federation architectures and protocols, and resource man-

agement techniques. These categories fall under the wide umbrella of the “control

plane” in systems such as Emulab [WLS+02] or PlanetLab [PACR03].

Netbed, a descendant of Emulab [WLS+02], is one of the initial attempts in

providing simulation and emulation in a distributed testbed for network experimen-

tation. This project shares many of our goals, namely, automating the deployment

of experiments so that scientists can reproduce executions easily by defining their

requirements. However, Emulab has a centralized management architecture that

could not be used for our case, since one of our premises requires different domains

to maintain their administrative privileges. Another difference is how experiments

are specified: Emulab users write ns scripts to define the network requirements,

we provide a request model geared towards the execution of applications. Finally,

there is a need to execute experiments when resources are provisioned: we need to

implement a job execution layer that runs the desired workloads.

PlanetLab [PACR03] provides a distributed service for researchers and users to

test and deploy new applications with specific network requirements. PlanetLab

creates overlays to reproduce the requested network in terms of latency, congestion

and failure rate. The main differences with our approach are first the targeted

audience: we allocate resources in order to execute different types of applications

20

and not to reproduce the network conditions. Secondly, in our case resources are

not opportunistic, but dedicated data centers belonging to different organizations,

thus having to deal with the aspect of sharing.

ModelNet [VYW+02] is a distributed emulation platform to allow scientists to

create Internet-scale reproducible experiments. In ModelNet, applications send un-

modified traffic through a central cluster to emulate user-defined network conditions.

This project shares some ideas with the previous ones and also with our approach,

although its scope is different and completely focused on repeatability of network

experiments, rather than real applications.

Shirako [ICG+06] provides a distributed system for brokering and acquiring

leases on networked resources. It defines different roles such as guests, or users

of the infrastructure, providers and brokers, which maintain information about site

resources. Guests define their requirements and request tickets from brokers, which

in turn receive them from sites. Then tickets are redeemed to acquire resource

leases. Shirako maintains certain similitudes with our approach in how resources

are acquired, although in our case brokers can negotiate among them to determine

the source of resources. Also, we separate the job brokering and resource brokering

phases, thus allowing sharing to happen at these two levels.

One step towards the integration of network testbed technologies (GENI) and

cloud computing is discussed by Baldine et al. [BXM+10], where the authors combine

GENI’s ORCA control framework with the Eucalyptus virtualization manager. In

this work, providers of computing, storage or network resources delegate them to

broker entities that use allocation policies and handle utilization tickets to users.

The authors address two main problems: first, the need to co-allocate heterogeneous

resources, and second, to join remote resources to form a unified group to fulfill

user requests. They solve the first problem by creating a detailed description of

21

resources using an OWL [MvH04] ontology capable of describing semantic network

and computing capabilities. For the latter, they perform an operation they call

stitching, where VLAN labels from different providers are negotiated. This work

has some commonalities with our approach, for example in the use of brokers and

network provisioning with cloud providers. However, our work is more focused on

the resource management side, for example by defining the protocols to interoperate

across sites, or studying different allocation policies, while this solution supports

more detailed network description and operations. There are other issues the authors

leave for future work, such as how to provide connectivity across slices and control

the traffic among them, which we already address in our work.

3.2 Virtual Resource Managers

The advances in hardware virtualization promptly attracted the attention of scien-

tists looking for a more flexible solution for resource utilization. The use of Virtual

Machines (VMs) for the execution of computational jobs was proposed many years

ago [FDF03]. However, providers need to manage the ever-growing number of VMs

employed to run different user workloads. Section 3.2.1 describes multiple examples

of virtualization management for computing resources

3.2.1 Virtualization of Computing Resources

Virtualization managers are in charge of provisioning virtual resources, in the form

of VMs, and making them available for users so that they fulfill their requirements

in terms of computational power and required software. Different research projects

explore such managers, which handle VM images, user accounts, and partitioning

the infrastructure to create isolated containers. OpenNebula [SMLF09], Eucalyp-

22

tus [NWG+09] or Nimbus [KFFZ05] implement such basic functionality. However,

these approaches can only instantiate individual VMs, and do not have the required

mechanisms to coordinate complex deployments. Additionally, they cannot cross

institutional boundaries, requiring other components to do this.

Haizea [SKF08] adds additional scheduling features on top of OpenNebula to

support advanced reservations in clouds. It takes advantage of VM suspension,

migration and resuming to preempt leases and manages VM image transfers in ad-

vance in order to achieve the requested instantiation time. The authors demonstrate

how using a mixed workload of best-effort and advanced reservation requests they

can improve the overall resource utilization. Our work only considers best-effort

requests, but the Haizea scheduling mechanism could be implemented easily in our

system to support these additional features since it is designed as an OpenNebula

module, which we use as the underlying IaaS manager.

The Virtual Computing Lab (VCL) [SAH+09] is a cloud and cluster manager

with the goal of providing on-demand resources for university students. It supports

the loading of either VMWare VMs or bare-metal images on a common substrate

for desktop or high-performance machines. A scheduling component manages the

available images, reservations and user accounts and performs provisioning on de-

mand. Our approach to provisioning is orthogonal to this project in many aspects,

and includes additional features for inter-site deployment and complex infrastruc-

ture topologies, which could be used to transparently handle requests for desktop

applications with best-effort requirements and ensembles of VMs for computational

tasks with specific latency and bandwidth constrains. We are currently collaborating

with NCSU towards this goal.

The CometCloud cloud engine [KP11] provides the capability to integrate multi-

ple clouds and grids to execute workloads with different QoS requirements, enabling

23

cloudbursting, or scaling out for resources when demand peaks. It employs a decen-

tralized distributed hash table (DHT) to query resources. The main difference with

our work is that CometCloud supports workload heterogeneity at the programming

layer, thus requiring an expert to implement an adaptor for each supported applica-

tion so that QoS can be met. Also, in CometCloud different resources are managed

by scheduling agents which don’t cooperate among them, thus when multiple or-

ganizations share resources, their agents don’t negotiate but instead acquire the

infrastructure separately. A final difference is the model of operation: CometCloud

uses a pull mode, where resources request tasks from the scheduling agent, while in

our case we use push to assign jobs to resources.

Although they do not exactly fall in the domain of virtual resource managers,

many research solutions considered as utility computing used some measure of virtu-

alization. In some cases this is not achieved through a hypervisor, but more through

lightweight methods, at the cost of sacrificing isolation. Our approach shares mul-

tiple ides from this work.

The Océano [AFF+01] manager for computing utilities is a prototype in the

area of e-business applications capable of performing different operations to the

hosting resources in order to satisfy user SLAs, such as throttling the number of

requests, allocating or deallocating servers, and monitoring the state of the hosted

domains. Similarly to our case, Océano takes the underlying network infrastructure

into account and isolates traffic from different users using VLANs. There are cer-

tain differences with our work, however. In our approach to satisfy user requests we

allow for multiple sites, and therefore need to perform brokering of available candi-

dates. We also support other cases besides web applications, such as HPC or virtual

labs, which have different communication and execution patterns and dictate the

identification of the proper substrate to satisfy users’ QoS requirements.

24

SODA [JX03] represents another approach towards hosting services over dis-

tributed resources. This project spawns virtual service nodes on physical hosts to

run user application services, while maintaining some level of isolation and cus-

tomization. It is similar to our work in that it allows users to specify the character-

istics of their services in terms of CPU, memory, bandwidth or number of machines,

but differently from our approach they must host service nodes in all the resources.

Also, they do not contemplate multiple sites or latency requirements, which greatly

impacts the placement algorithms.

3.3 Job Scheduling Policies in Virtual Resources

With the embrace of virtual resources for job execution, there has been a need to

explore and update the algorithms used to assign tasks to virtual containers. Virtual

machines can be instantiated by a fraction of the cost and much faster than physical

hosts, therefore favoring dynamic policies that consider cost and performance trade-

offs. Many researchers have investigated virtual resources from public clouds as an

extension to private data-centers.

ElasticSite [MKF10] proposes a resource manager built on top of Nimbus [KFFZ05]

which uses different policies to extend a local cluster with IaaS resources based on

job workloads. Three policies, OnDemand, SteadyStream and Bursts, are consid-

ered, and different metrics such as utilization or number of used VMs are calculated.

Compared to our work in allocation policies, this research considers external virtual

resources to meet local requirements, while we do not differentiate between the

source of the resources. Another important distinction is that this work focuses on

the resource acquisition process, but not in the job to resource allocation.

Assunção et al. [dAdCB09] study three allocation policies and different provi-

sioning policies for extending the capacity of a local private infrastructure with

25

public cloud resources. Their work concentrates on backfilling algorithms, which we

haven’t yet explored. In our study, we do not assume users have a good estimate

of the jobs execution time, a condition that is necessary for this kind of policies.

Another difference with our work is that all results are produced by simulation,

rather than executing the policies on real cloud systems.

Kijsiponse et al. [KV10] describe a system where virtual resources from a Eu-

calyptus cloud are added to the Torque batch scheduler. Virtual machines are

instantiated when there are no available physical resources and is directed by two

different policies: the first creates the VM type that is most requested by jobs and

the second monitors the demand proportion for VMs, starting those that have a

higher demand rate. Jobs are allocated to VMs using a FIFO policy. As in other

works, this one explores the scenario of extending physical resources with external

clouds and the considered policies, specially those for job to VM allocation, are not

very extensive since they only focus on the FIFO strategy.

Lu et al. [LJE+10] address the problem of idle instances when provisioning VMs

on demand to execute BLAST workloads by dynamically scaling in Microsoft’s Azure

cloud. They also consider the problem of load imbalance generated throughout the

workload execution due to different task complexity. They use a simple allocation

algorithm, but detect imbalance and perform job checkpointing and resource recon-

figuration to address resource waste. This work has a different approach than ours

by “correcting” the resource allocation based on the workload rather than proposing

different policies. However, it is tailored for parameter sweeping type of applications

only.

The work by Genaud et al. [GG11] is closer to ours in that it considers different

algorithms to provision VMs and assign jobs to them. However, the policies they

explore are different to ours, and they are not implemented in a real environment

26

but simulated. The experiments do not consider aspects such as VM startup time,

which in our experience have a great impact in the performance of the different

policies.

27

CHAPTER 4

A META-SCHEDULER FOR THE GRID

Grid computing provides the necessary tools for multiple partners forming a

Virtual Organization to share resources among them. Operations to communicate

individual resource state, define and execute jobs across sites or authorize users,

are implemented by middleware such as the Globus Toolkit. However, the deci-

sion of where to submit jobs is delegated to the user, which needs to consider very

large numbers of resources distributed across different providers. The problem is

exacerbated due to infrastructure heterogeneity and different grid middleware im-

plementation by providers. A component, called the meta-scheduler, is in charge

of matching user requests to available resources provided by the Virtual Organiza-

tion members. In this chapter we define a meta-scheduler architecture combining

hierarchical and peer-to-peer models to enable interoperation between partners. We

propose a set of protocols to maintain communication sessions, exchange resource

information in a scalable manner and transfer job workloads among sites. We vali-

date our architecture’s functionality by running empirical experiments across three

different sites, including FIU, IBM and BSC, and finally we propose a resource emu-

lation methodology to allow for larger scale experiments while using actual protocol

implementations.

4.1 Introduction

Recent advances in cooperating grids, or interoperating VOs, include fulfilling job

requests using data and computing resources distributed across multiple grids. This

vision of cooperating grids further provides the opportunity for global optimiza-

tions of resource usage, reducing job execution cost and power consumption. The

challenges to achieve this vision of interoperable, globally distributed VOs are well

28

documented. They must be addressed by providing common interface descriptions,

system models, and levels of abstraction to hide heterogeneity in the computing

resources, security mechanisms, and job management policies of the collaborating

organizations, as articulated in the paper by Rodero, et al. [RGC+08a]. Several

architectures have been proposed to achieve these goals, including SPA [OTG+05],

GridWay [HML04] and Koala [ME08].

This chapter describes an approach based on interoperating meta-schedulers

(MS). The interoperable MS model supports the autonomy of organizations and

presents a common external interface to partner domains as indicated in Figure

4.1. It shows a peer-to-peer collaborative environment constructed for the pur-

pose of experimentation between three VO domains among three partnering in-

stitutions within the LA Grid Initiative [B+07]: Florida International University

(FIU), Barcelona Supercomputing Center (BSC) and IBM Research (IBM). MSs

serve as the point of contact for end users submitting jobs to these sites as well as

for cooperating VOs to exchange control messages.

To enable interoperation among MS, interfaces and functions are defined for the

operations of job lifecycle management and the distribution of current state and

availability of system-wide computing resources. When a user submits a job, the

MS decides whether to execute it on local resources under its control or forward it

to another MS either because there is not enough suitable local resources or because

the remote MS is better suited to execute the job. Since the grid is a dynamic

environment, good forwarding decisions require global distribution of resource state

data to each MS domain. As the system of Figure 4.1 is scaled up, the volume

of data exchanged becomes an important issue. Forwarding based on inaccurate

data may lead to failures in job dispatching, while real time exchanges of complete

resource state incur significant network and storage costs at the MS endpoints.

29

FIU

GCBViz

Fork

GCB

SGE

Meta-

Scheduler

BSC
Meta-

Scheduler

IBM

Meta-

Scheduler

CEPBA

LL/Fork

BSCgrid

Fork

IBM-India

TDWB

IBM-USA

TDWB

Peer-to-peer

Peer-to-peerPeer-to-peer

C P: Job flow is from C to P, resource info flow is from P to C

Figure 4.1: Cooperating meta-schedulers in LA Grid

A peer-to-peer —as opposed to centralized— model of resource data distribution

is investigated to be consistent with our overall MS topology of Figure 4.1. In order

to reduce the amount of data sent and stored at each node, several aggregation

models are developed in Section 4.2.2. Each model represents an increasing degree of

data consolidation, with the trade-off of decreasing the accuracy of state information.

The rest of this chapter is organized as follows: the MS model is described in

Section 4.2. Section 4.3 shows how the common protocol is implemented for the FIU

site. Section 4.4 demonstrates interoperability of three remote sites, providing per-

formance data obtained running the high performance computing (HPC) Weather

Research Forecasting (WRF) program. In section 4.5, we propose a resource emula-

tion methodology to carry large scale experiments between meta-schedulers, while

being able to measure differences in implementations. Section 4.6 concludes the

chapter.

30

4.2 The Peer-to-Peer Model of Meta-Schedulers

The MS is the primary contact point for grid users and other MSs. Internally,

MSs may have heterogeneous implementations, but adhere to a common set of

communication protocols and information models that allow them to interoperate

and provide a consistent view of the interconnected grids. The model adopted here

is based on a peer-to-peer topology where an MS can interact with any other in a

consistent way. There is no central or hierarchical structure such as a scheduling

authority, global repository for resource information, or directory of MSs. Figure

4.1 shows such a model for the three interacting domains at BSC, FIU and IBM.

Flexibility is added to the peer-to-peer interactions through the introduction of

provider and consumer roles. An MS in the provider role offers its resources for

the execution of other MSs’ jobs, while an MS with the consumer role requests

other MSs’ resources for the execution of its jobs. Providers advertise their sharable

resources to connected consumers which in turn may propagate this information to

their peers. When a job arrives to an MS, it decides whether to run the job locally

within its domain or forward it to one of its providers. These roles are properties of

the MS endpoints for a connection between MSs. An MS can be a provider to a set

of MSs and simultaneously be a consumer to another set of MSs.

Assignment of one or both of these roles to the connection between two MSs

allows administrators to shape the interconnected structure of the grid. The flow of

resource information and forwarding of job submissions to providers is constrained

by the provider and consumer roles of each connection. For example, in connecting

the domains of BSC, FIU and IBM (Figure 4.1) each MS is both a provider and

a consumer to other MSs. Thus, resource information fully distributed between

partners and jobs can be submitted or forwarded to every domain. In contrast, a

31

centralized model is created using a ’star’ topology where a central MS is a consumer

to all connected ’edge’ MSs and edge MSs have both provider and consumer roles to

the central MS. Since the star has no connections between edge MSs, only central

MS will have the information of resources at every edge MS and be able to forward

jobs.

The MS roles can be assigned and changed dynamically. For example, when a

domain administrator makes available the domain’s compute resources for sharing

only during periods of low local activity. Here the domain’s external facing MS is

a consumer most of the time, while taking on both consumer and provider roles off

shift. In this example, MSs internal to the administrative domain may be providers

at all times.

Multiple capabilities and operations are required on the part of the MS to par-

ticipate in the peer-to-peer model. Membership of the peer-to-peer network overlay

requires each member to support the basic set of the inter-operation protocols de-

scribed in the next sub-section.

4.2.1 Protocols and Interfaces

There are three types of operations between MSs as indicated in Figure 4.2 and Ta-

ble 4.1: connection and communication, resource exchange, and job life cycle man-

agement. The connection protocol initiates membership in the grid and negotiates

parameters including the authentication method and parameters, the assumed roles,

the heartbeat rate to monitor connection status, and the resource and job description

language understood by the parties. openConn() messages are exchanged, multiple

rounds if necessary, between two MSs during the negotiation until an agreement is

reached, or the number of rounds exceeds a threshold specified by the initiator, in

which case the connection attempt fails. Once a connection is established, heart-

32

Figure 4.2: Meta-Scheduling protocol

Connection Resource Information Job Execution
Messages Messages Messages

openConn() requestResourceData() submitJob()
notifyConn() sendResourceData() queryJob()
heartbeat() notifyJob()

cancelJob()

Table 4.1: List of messages in the LA Grid meta-scheduling protocol

beat() messages are exchanged using the negotiated intervals and the notifyConn()

message is used to notify partners of error conditions or gracefully terminate the

connection.

Resource exchange occurs between connected MSs using either pull mode (re-

questResourceData()) by a consumer, or push mode by a provider (sendResource-

Data(). The provider triggers sendResourceData() when the dynamic changes in

resource capacity, utilization, or availability are over a threshold. Resource updates

may be full or incremental. The consumer typically requests full updates in pull

mode, while the provider generally pushes incremental updates.

33

Job requests are submitted using the submitJob() message. Our implementation

uses JSDL (Job Submission Description Language [ABD+05]), an OGF1 proposed

recommendation, as the standard format for job submission. The receiving MS

creates a local record of the submission and assigns a unique identifier to the job,

which is returned to the submitter. Then it checks for a match against its resources

and decides whether to schedule the job locally, or try to match the requirements

to the available resources of other MSs. A job is forwarded between MSs using the

same submitJob() interface and procedures. The job is tagged with a web service

end point reference (EPR) of the forwarding MS. This process is repeated until

the job reaches an MS that executes the job using its local resources. A map of

forwarding EPRs is retained at each intermediate MS to allow job status updates to

be sent back from the executing domain to the original submitter. The notifyJob()

message is used to asynchronously inform the client of job status using this chain

of forwarding MSs. The submitting client or a system administrator queries the

job state or cancels the job through the synchronous queryJob() or asynchronous

cancelJob() messages.

4.2.2 Resource Model

One of the main challenges arising from the large scale of grids is the need for efficient

communication of available resources and their status. Partnering sites may have

multiple heterogeneous execution infrastructure, which needs to be described to

other peers in order to make decisions about job placement. Additionally, the peer-

to-peer model presents the problem of “information aging” compared to centralized

1http://www.ogf.org

34

solutions. Concretely, data received from partners will loose validity with time,

requiring constant updates to maintain its relevance.

Therefore, we define a resource model with enough flexibility to represent het-

erogeneous infrastructure, while supporting efficient transfers and updates between

partners. The model, described by and XML schema, allows the definition of com-

puting systems, including CPU architecture, number of processors, amount of mem-

ory and Operating System. Additionally, resource description may be aggregated

to reduce the amount of information transferred between sites.

The resource description model is divided between resource elements and their

relationships. Listing 4.1 contains an example where a resource of type Computer-

System is associated to another resource of type OperatingSystem through a rela-

tionship of type Contains. This model has enough expressivity to describe complex

systems with multiple resources and relationships among them.

As introduced before, however, it is necessary to provide efficient methods for

communicating resource information between partners. Our model addresses this

need from two different angles. First, the Resource Management API allows partial

updates with only information about changes in the resource usage. This reduces the

amount of necessary information required when the infrastructure status does not

change substantially between updates. Secondly, our transmission model provides

compression capabilities by aggregating resource information. Different aggregation

models are supported that trade off the amount of information transferred ant the

level of accuracy. The most accurate representation model contains all the informa-

tion from a site, while the highest compression method results in an approximate

description of the state. A more in-depth discussion about the supported aggrega-

tion methods and their impact in site selection decisions can be found in [BFL+08]

and [RGC+09].

35

4.2.3 Job Broker and Scheduling Criteria

The function of an MS is to optimally forward job submissions to a Local Resource

Management System (LRMS) or connected MS in the provider role. A job’s require-

ments for resources and execution environments are expressed by a job submission

description document (e.g., JSDL). In our MS design, resource matching for a job

is based on three considerations: capacity, capability, and utilization.

The resource models of MSs are described in the schema of Section 4.2.2. The

capacity of an MS corresponds to the aggregated capacities of the attached LRMSs

plus peer MSs. Capabilities describe what LRMSs and MSs can do: a LRMS capa-

bility might include the ability to schedule parallel jobs, or make advance resource

reservations. Capabilities at the MS reflect high-level scheduling considerations,

domain access, and membership in virtual organizations. MSs in a corporate data

center can have attributes stating that it will not accept forwarded jobs during times

when important local work must complete. Utilization of resources is considered by

an MS when making scheduling decisions. Each MS monitors the utilization of its

associated LRMSs, as well as those reported by its peer MSs providing computing

power. It is a challenge to measure utilization at the required granularity to make

good scheduling decisions. For example, reporting the most recent short-term av-

erage CPU utilization of each of thousands of nodes in a cluster may not give the

most appropriate information to a scheduler. Less granular methods of utilization

reporting are often based on the notion of workload classes. A class defines the

requirements of a job, such as small, medium, and large; or interactive and batch

jobs. For example, a provider can report how many jobs of each class it presently

supports, and the occupancy of each class. Additional utilization information can

be provided by giving the average waiting time or queue length for each class.

36

Since we consider aggregated resource information, data involved in the schedul-

ing decision may be less accurate when certain aggregation schemas are applied.

Consequently, to perform the matchmaking between job requests and resources from

the aggregated data, we take statistical information such as maximum and minimum

values contained in the resources for the requirements and a combination of aver-

age values for refining the selection. Furthermore, since the resource matching is

performed at the broker level, the information loss can result in non-optimal broker

selection decisions. For example, the algorithm may select a broker with insufficient

resources when another broker is able to dispatch the job immediately. Therefore,

the level of aggregation of the resource information is crucial.

4.3 Meta-Scheduler Implementation

The architecture of the MS communication protocol allows for different sites to

coexist while maintaining site-specific policies, internal security mechanisms or im-

plementation details hidden from other peers. As long as all MSs implement the

required interfaces, the proposed protocol allows them to communicate and share

workloads transparently.

As a proof of concept, we have enabled three sites under different administrative

domains to communicate using our protocol. Each of these sites has its own im-

plementation in terms of the underlying resource management systems or security

and scheduling policies, but all of them implement a common protocol for com-

munication of resource and job information. The site at BSC extends an in-house

developed MS, eNANOS, which uses the Globus Toolkit (GT) internally; IBM im-

plements the meta-scheduling protocol on top of one of their commercial products,

IBM Tivoli Dynamic Workload Broker; FIU developed an extension to the GridWay

open source MS to enable interoperability.

37

Figure 4.3: Comparison of GridWay and the peer-to-peer model

4.3.1 High Level Architecture

The implementation of FIU’s MS leverages an existing open source solution, the

GridWay meta-scheduling platform [HML04]. GridWay is a community project with

an open source license. We choose it for its use of open standards and its modular

nature. GridWay is implemented as a group of managers that communicate using

standard I/O. It offers facilities for job management, data transfers and resource

information.

GridWay is a Globus incubator project, and therefore, it is supported by the

Globus Consortium. This means that all advances in GridWay will be in line with

the Globus project. It provides one of the first implementations of the DRMAA

(Distributed Resource Management Application) API [DRM] for job submission

and status querying.

Originally, GridWay was designed to manage a set of resources that are either

controller by an organization, or cross organizational boundaries by using Globus.

Multiple VOs may have different instances of GridWay, but the initial implemen-

tation does not support collaboration among instances. Contrarily, such instances

would compete at the resource level among them. Our extension with the interop-

erable protocol addresses this shortcoming, as shown in figure 4.3. The left figure

depicts the original GridWay model, where instances compete for resources. In the

right, we show our collaborative method of resource sharing.

38

Figure 4.4: Architecture of FIU MS

The FIU MS is built as a set of modules that deal with different aspects such

as peer communication, site scheduling, and resource management. The details

related to local resource management are delegated to GridWay, while the high-

level scheduling decisions are made by our wrapper.

The core modules and their interaction is shown in Figure 4.4. Here is a brief

explanation of each module’s responsibilities:

• User Interface : The user interface module is in charge of receiving external

users’ requests such as job submission or resource information. Users can

interact with the MS using a command-line interface and Job submission is

done through OGF’s JSDL files.

• Site Scheduling Manager : This module wraps GridWay functionality for

intra-domain scheduling. The rest of the modules interact with it using DR-

MAA.

39

• Global Scheduling Manager : This module deals with global scheduling

policies. It is in charge of deciding whether a job will be scheduled and pro-

cessed on the local domain or it will be forwarded to another domain. Ad-

ditionally, this module keeps track of the jobs’ status submitted from other

domains.

• Resource Manager : It stores information about the resources in local do-

main and the remote domains, which have exchanged their resource informa-

tion through an open connection. It also pushes resource data to the connected

MS in case of changes in local resource availability.

• Web Service Communication : We use Apache Axis2 as the container for

the different web services used to communicate with other domains. Axis2 pro-

vides the points of entry for SOAP requests and stubs to initiate conversations

with other MSs.

4.3.2 FIU Meta-Scheduler Detailed Implementation

In this section we give a more detailed explanation of the MS implementation for

the particular case of the FIU prototype. After having described the high level

architecture of the system, we will give a more in-depth overview of each of the

phases involved in job submission, exchange and execution.

The first phase consists in building a request describing the desired application to

execute. For this, users need to write a JSDL document, which can contain elements

from the POSIX and SPMD extensions. Listing 4.2, at the end of the chapter, gives

an example of such a request document for the execution of WRF. In line 9, the user

can assign a name to the job for later identification. The Executable element, in line

15, declares the application to be run, and lines 16 and 17 specify where standard

40

output and error will be redirected. Via the SPMD extension elements (lines 18–

20), the user can request how many processes to spawn in total, the number of them

to run at each host, and the type of parallel middleware, in this case MPI. Then,

target architecture, operating system, or other host information requirements can

be declared through the Resources element (lines 23–35). Finally, the input (or

stage-in) data can be listed with the Staging element (lines 36–42 and 43–49). The

target MS will fetch those files before executing the application.

Once the JSDL document has been either manually written by the user or au-

tomatically generated through a submission client, a SOAP submitJobFromJSDL

request is sent to the user’s local MS. Upon reception of the JSDL document, the

FIU MS creates an entry in the job database and returns an identifier to the user,

which can be later used to track the job’s state.

After the user request has been successfully parsed and accepted by the MS, it is

passed to the Global Scheduling Manager, which is in charge of making forwarding

decisions based on the site’s policies. For example, the LocalFirst policy, which

attempts to execute jobs in locally owned resources first, performs a match between

the job requirements and the available resources at the Resource Manager to try

to run the job locally, or forward it to another site otherwise. In the first case, the

control is passed to the Site Scheduling Manager, while in the second, the request is

encoded to follow the protocol’s data specification format and forwarded to another

site.

In the case of local execution, the Site Scheduling Manager is in charge of trans-

lating the request and send it to GridWay. This is performed by creating a DRMAA

Session, which holds the information encoded in the original JSDL document. Grid-

Way retrieves information from the Virtual Organization’s owned resources —i.e.,

all the infrastructure shared by the same middleware with other sites—, selects the

41

target hosts where to run the job using local policies (Round-Robin in our proto-

type), and submits the job through the Execution Manager component, which in

the case of FIU is configured to use Globus Toolkit version 4. This middleware

defines a Web Service API for the GRAM (Globus Resource Allocation Manager)

component, in charge of job submission and management.

At FIU, GRAM is configured to use the Sun Grid Engine (SGE [Gen01]) batch

system through the SGE-GT4 adaptor [SGE]. The MS is identified through the

Globus Security Infrastructure (GSI) by using an X.509 certificate, and Globus

translates the JSDL request into an SGE request, analogous to the qsub command.

SGE supports the submission of MPI jobs through the use of Parallel Environments,

which orchestrate the execution and lifecicle of MPI applications. If the original

JSDL request contained instructions about using a parallel middleware through the

SPMD extension, this requirements are translated into the creation of a Parallel

Environment. From this point, lower subsystems transfer job state information

upwards, until it is received by the MS and communicated to the user or other

peering MSs through the Job Management API.

4.4 Meta-Scheduler Validation

In order to evaluate the MS protocol and its different implementations, we first per-

form two sets of small-scale experiments. In the first set, we measure the timings for

different operations of the protocols for three sites with their own implementations.

In the second set, we run a scientific software simulating a realistic scenario in the

domain of weather forecasting.

42

FIU BSC IBM

FIU meta-scheduler eNANOS meta-scheduler IBM TDWB
AMD Opteron 2.60 GHz Dual Intel P4 3.60GHz AMD Opteron 2.60 GHz

2 GB RAM 1 GB RAM 2 GB RAM

Table 4.2: Information about the experiment sites

4.4.1 Protocol Measurements

We test the implemented APIs for the IBM, FIU and BSC versions of the MS.

The main operations supported by the protocol are tested to perform a functional

validation of the MSs. In this experiment, we use a driver program that generates

requests for each of the tested operations, and measure the timing. The resources

employed at each site are shown in table 4.2. The FIU and IBM MSs are hosted at

IBM to overcome a problem with IBM T.J. Watson’s firewall, while the eNANOS

instance is at BSC in Spain.

For the resource information exchange protocol, each MS aggregates 100 re-

sources and sends them back when it receives the requestResourceData() call from

the driver program. The driver program then sends the same resource information

using the sendResourceData() call to MSs. While we have specified the number of

resources used for the tests, the type of resources and the aggregation algorithms

used vary in different MSs.

For the job execution protocol, we send a probe job defined by a JSDL document

that runs the UNIX sleep command for 10 seconds. This allows us to measure the

protocol itself, without considering the actual job load.

43

Operation
Delay Time (milliseconds)

FIU → BSC BSC → FIU FIU → IBM IBM → FIU

openConn() 562 659 15 40
requestResourceData() 983 706 69 90

submitJob() 642 694 124 3162

Table 4.3: Delay across meta-scheduling sites

4.4.1.1 Results Discussion

Results show lower latencies between IBM and FIU MS, since they reside in the same

network. The FIU implementation has lower turnaround time because connection

and job information is stored in memory, while IBM keeps the information in a DB2

database, with the consequent overhead. The FIU MS stores resource information

in a file, and for the requestResourceData() operation, resource information is read

from the file and then aggregated. For the sendRequestData() operation, the FIU

MS keeps the aggregated data from other MSs in memory without file operations.

For submitJob(), the FIU MS routes the job to GridWay and obtains a job ID before

returning to the caller.

Compared to two other MSs, BSC has longer delays in most of the operations.

The critical factor is the additional delay produced by the WS wrapper between

other MSs and the eNANOS LA Grid service.

For the requestResourceData() operation, the delay time includes having resource

information retrieved from the Resource Properties without actual resource discov-

ery. There is a background eNANOS service responsible for resource discovery and

populating the resource properties at a configurable interval. The retrieved resource

information is then transformed into an aggregated form and packaged as part of

the returned SOAP message. The sendResourceData() operation involves depositing

the resource information in the aggregated form to the Resource Properties.

44

The IBM column in Table 4.3 shows the data collected on interactions between

the driver program and IBM MS. The submitJob(), requestResourceData() and

sendResourceData() operations involve access to multiple tables in the database

such as for storing job information, and retrieving and storing resource data. The

data shows that the sendResourceData() operation consistently takes longer than re-

questResourceData(). Delays are probably caused by the database update overhead,

as resource data received by the sendResourceData() operation is also stored.

4.4.2 Weather Research Scenario

Interoperability among the three MS implementations is verified by running the

Weather Research and Forecasting (WRF) model [MDG+04]. WRF is developed

by the National Center for Atmospheric Research and several other research insti-

tutes as a tool for meteorologists to do regional forecasting. The WRF model is an

MPI application that follows the SPMD (Single Program, Multiple Data) paradigm.

Blind scaling of WRF across the grid is generally counter-productive and in most

cases degrades the total running time of the model [MWZS09]. This is due to a

design which assumes a low latency underlying network and uses intensive commu-

nication among working processes.

Different approaches to scaling out WRF have been discussed in [SFB+08], of

which meta-scheduling is a paramount component in the process. On this experi-

ment, we show the advantages of running jobs through the MS compared to running

them directly on a local cluster. The MS can extend available resources by connect-

ing to other peers and delegating jobs to them based on different policies. Users

do not need to do any additional work, since the protocol takes care of contacting

other sites, keeping track of remote resources and forwarding the jobs.

45

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

1 2 4 8

ru
nt

im
e

(s
)

nodes

Local runtime
MS remote runtime

MS remote + overhead

Figure 4.5: WRF execution results

We compare three cases to assess the run-time improvements of delegating jobs,

and measure the overhead of the MS layer.We performed 4 different runs of a small

forecasting region for 1, 2, 4 and 8 processors.

All experiments include two execution sites with different resources. The local

site consists of 8 Pentium 4 nodes at 3 GHz with 1 Gb of RAM located at Florida

International University in Miami. The remote cluster has 4 IBM JS22 blades with

two 4GHz dual core Power 6 processors and 16 Gb of memory, and is located at

IBM TJ Watson center in New York.

In the first case, we measure the running time of the different WRF instances

at the local site without using an MS. The user executes WRF through mpirun to

spawn parallel tasks in the cluster.

In the second case, the same jobs are executed, but this time through an MS

installed at the local site. Instead of running the job through logging in the node and

issuing the mpirun command, now the user constructs a JSDL definition file with

the command, and specifies how many nodes he/she wants to allocate for the job.

We use the SPMD extension of JSDL [ABD+05] to describe the parallel environment

46

to be used (MPI in this case) and the number of nodes to use. The MS is configured

to use the local cluster to run the job, obtaining similar results as in the first case.

Finally, the four WRF instances are sent to the same MS at the local site, but

in this case we change the scheduling policy to forward jobs to another peer. The

user submits the job using the same method of submission and job description file

as in the previous case, but this time the MS contacts the remote instance running

at IBM and forwards the jobs there. We assume that the job’s binaries are located

in both sites, so data transfer is not considered here.

Figure 4.5 shows the run-times for the execution of WRF at the local site and

the execution of the same experiments through the MS with jobs forwarded to

the instance at IBM. As it can be noticed, the processing and network overheads

when using the forwarding policy –an average of 1.74 seconds– are negligible for a

scientific job such as this one. The experiments show how it is possible to scale

computing resources by transparently delegating execution to external sites with

better equipment.

4.5 Large-Scale Meta-Scheduler Evaluation

A challenge to properly evaluate the effectiveness of MSs is the complexity of de-

veloping a realistic grid experimental environment. In this section, this challenge is

addressed by a unique combination of two approaches: first, we develop a LRMS

emulator to provide a flexible and scalable model for local resources of a grid en-

vironment. Second, we use reduced workload traces to demonstrate the resource

matching and scheduling functions of the MS. Real workload traces are reduced

while preserving their key workload characteristics to allow exploration of various

dimensions of MS functions in reasonable time.

47

Given the large size and heterogeneous nature of grid environments, different

strategies have been devised towards its study. Examples of these strategies are small

deployments in controlled environments, or the use of analytic or simulator models.

However, as noted by researchers such as Iosup [II+05], the size of production grids

makes realistic analytic modeling hardly tractable. Evaluated characteristics such as

user requests, computing resources and different implementations present significant

challenges for simulators to capture the full behavior of all involved components.

Also, the nondeterministic and other dynamic behaviors of grid make simulation

approach less suitable.

In this section, we propose an approach that consists in real MS implementa-

tions with emulation of grid physical resources. We select emulation rather than

simulation as typical event simulators don’t allow simulated resources to communi-

cate with the existing code. Additionally, emulation reproduces the behavior of a

component in the system so that externally it appears to behave as the component

itself. We can replace an emulated component with a real implementation without

influencing other components in our grid system.

Our LRMS emulator provides job scheduling on clusters of compute nodes whose

scale and power can be defined as parameters. This enables experiments with multi-

ple grid configurations by “plugging” LRMS into the MSs domain of control without

modifying the MS implementation. The MS sees the virtual resources provided by

the emulator as real ones. This greatly enhances the variety of tests that can be

performed under different cluster configurations. Most importantly, by retaining the

real MSs on their actual physical networks, it is possible to preserve the large scale

structure of the grid that we use to study various interaction hahaviors.

The concept of using emulated resources and their allocations was also pre-

viously mentioned in [JHFS01] for cluster scheduler evaluation. We extend the

48

Figure 4.6: Meta-Scheduler evaluation architecture

emulation to multiple grid clusters for the MS evaluation of varying character-

istics. Several other research groups developed grid simulation frameworks and

published several papers evaluating the various aspects of grid scheduling algo-

rithms [ITF+08b, ATN+00, RGC+08b, BDF+08]. Performance studies using real

systems offer additional insights that are hard to learn from analytical or simulation

methods.

4.5.1 Meta-Scheduler Evaluation Platform

Figure 4.6 shows an architectural overview of the prototype MS evaluation platform

used in this section. Instances of MSs are deployed at multiple resource domains.

Each MS implements the interoperability protocols described previously in Sec-

tion 4.2. Based on brokering policies and resource information exchanged amongst

peer brokers, jobs entered to a domain are executed locally or routed to remote MSs.

Each MS interacts with one or more LRMS to allocate resources for the jobs. As

shown in Figure 4.6, LRMSs can be either real systems (e.g., IBM LoadLeveler [Loa])

49

managing real physical resources or emulated. Job traces are used to generate job

workloads by a job submitter from any client site. The functional steps of the ex-

periment are indicated in the figure by the labels: (1) Job forwarding to another

MS, (2) Job submission to a LRMS, and (3) Job submission into the system by a

user.

4.5.1.1 Emulated Local Resource Management

As shown in Figure 4.6, the LRMS emulator component consists of three main parts:

the Emulator Adaptor, the Emulator Scheduler, and the Emulated Resources. Note

the equivalency of the functions in the emulated LRMS to those of the real LRMS

(IBM LoadLeveler or any other generic LRMS). The emulation adaptor interacts ex-

ternally with the MS for job management (e.g., submission, termination, and query)

and resource information exchange. For example, the resource information may in-

clude types and numbers of resources available in LRMS, and various utilization

information (e.g. statistics on job queue lengths and system utilization).

The second part of the emulated LRMS implements the behavior of a local sched-

uler (e.g., batch scheduler like Condor, PBS, SGE, or LoadLeveler) that performs

assignments of jobs to resources managed by the LRMS. Our current implementa-

tion of the emulator scheduler is the First-in-First-Fit algorithm. In this scheduling

discipline the job queue is always sorted by arrival time. However, when the sched-

uler processes the queue, if there are insufficient resources for the first job to run,

the next job is considered and will run if sufficient resources are available, and so

on until a job can be run or the queue is exhausted. This scheduling policy keeps

the resources utilized, but has the potential starvation of large jobs. More complex

algorithms like backfill scheduling can mitigate the potential of resource starvation

for jobs requiring large number of nodes.

50

The third part of the emulated LRMS provides virtual resources from a config-

uration file, as in Listing 4.3.

It keeps the current state of each resource in terms of OS types, processor archi-

tecture, memory, and disk utilization. We assume that each job utilizes completely

a processor, and that different jobs don’t share the same set of processors. This may

seem unrealistic in terms of emulating the performance of an application in a given

machine (the impact of the instruction set, memory access speed, and I/O inter-

rupts). However, the goal of the emulator is not to give an accurate representation

of how fast an application runs on a given set of machines, but to understand the

characteristics of resource utilization and job services.

4.5.1.2 Workload Trace Reduction

We have chosen to drive our experiments from real job traces representing a scientific

workload. The trace is selected from the Parallel Workloads Archive [Fei08] and

contains 11 months of execution at the Cornell Theory Center (CTC) on a cluster

of about 450 single processor IBM SP2 nodes with similar CPU, memory and disk.

However, given the size of this trace, it would be prohibitively expensive to run it in

real time. Therefore, we perform a technique called trace reduction on the workload,

to bring it to manageable size while keeping its key characteristics.

Trace reduction techniques have been used by computer architecture design-

ers to shorten time for simulations for microprocessor design. Authors in [EGB03]

compared the approaches of sampling and reduced input sets by using different tech-

niques, such as reduction in repetitiveness and input truncation, while maintaining

statistical similarity to the original input traces

Real-time execution is used to allow the emulated resources to interact with the

physical system components. In order to conduct experiments based on long traces

51

in reasonable time the traces need to be compressed in the time domain. A heuristic

approach in reduction is taken and shown to retain several relevant properties of the

original trace. Because the timescale of MS scheduling is long (many seconds) it is

unnecessary to preserve the fine scale details of the original trace. The initial work

reported here targets an execution time of a few hours and is derived from samples

of about one weeks data from the original traces. The process has three stages:

1. Select a sample interval from the original trace. The archive traces

contain many months of data. So the first step is to select an interval repre-

sentative of the entire trace. This interval is compressed in subsequent steps.

The CTC trace, which corresponds to a cluster of homogeneous computers,

contains well defined and cyclical periods of submissions with duration of a

week. Therefore we select a period of activity in which this behavior can be

observed. We avoid using intervals that belong to the warm-up or wrap-up

phases of the system.

2. Trace sampling. After the trace interval is selected, a subset of jobs is

chosen from this interval. This subset size is not fixed but depends on the

sampling rate, which considers the target resource size appropriate in the

emulated cluster experiments. Because the CTC trace is from a cluster at

Cornell of about 450 machines, we decided to use this same size of resources

in our test environment. We further reduce the number of jobs such that the

total execution time is a few hours by job sampling from the weekly trace, for

example taking only 2 out 3 jobs. The requirements of each remaining job are

preserved in this phase. In particular, the number of requested processors, the

job submission time, and the job execution time are left unchanged.

52

Figure 4.7: CTC original and reduced traces

3. Time scaling. In this phase independent scaling factors are applied to the

job inter-arrival and execution times. Although for the experiments reported

here a common scale of 60 is applied to both.

Finally, the properties of the traces prior and subsequent to reduction are com-

pared. Figure 4.7 shows the cumulative distribution of processors, which indicates

that the ratio of requested CPUs stays the same after modifying the trace. Then we

perform a hierarchical clustering analysis with average linkage to find the submission

trends of the trace by grouping jobs that were submitted in similar time periods.

The distance between clusters is defined by using the difference between submission

times. We heuristically determine k, the number of clusters, by plotting the total

within-cluster sum of squares (WCSS) for different values of k and then finding

the value for which the WCSS has a smaller increase, or an ”elbow”, in the graph.

This and other methods are discussed in [Har75]. Figure 4.8 shows that clusters

are closely correlated between the original and sampled traces: this indicates that

sampling retains the arrival time distribution of the original workload.

53

Figure 4.8: Cluster analysis of original and reduced traces

4.5.2 Experimental Results

The goal of the experiments in this section is to quantify the behavior of the dis-

tributed MS model, compared with centralized approaches where all resources are

under one single domain. The advantages brought by our solution have already

been described: site independence and interoperability, flexibility in sharing and

scalability over multiple domains. However, there is an overhead due to the pro-

tocol’s distributed nature. Peers need to exchange their resource information, and

resources are divided among collaborating sites.

In the current experiments, we use the described emulation and trace reduc-

tion methods to compare the execution of the CTC trace over multiple sites and

only using a LRMS, implemented by our emulator. The additional MS overhead is

measured to characterize its behavior.

The first experiment runs the CTC trace on one domain with as many resources

as the original site, this is, 450 single-processor IBM SP2 machines. Then, we

54

0

2500

5000

7500

10000

12500

M
a
k
e
s
p
a
n

1 Site 2 Sites 3 Sites

Figure 4.9: CTC Makespan for differ-
ent number of sites

0

5

10

15

20

25

30

B
o
u

n
d

e
d

 S
lo

w
d
o

w
n

1 Site 2 Sites 3 Sites

Figure 4.10: CTC Avg. Bounded
Slowdown for different number of sites

perform the same run dividing the machines over two sites, with 225 machines each,

and finally over three sites with 150 machines each. For this experiment, we can’t

reduce the number of machines further, since the maximum number or requested

processors is 128. Each site uses the First-In-First-Fit allocation policy, and MSs

forward jobs among them using the RoundRobin policy where there is more than

one site.

Figures 4.9 and 4.10 show the results of this experiment. As it can be appreciated,

the makespan of the trace remains almost the same for the different configurations,

therefore, we can conclude that the execution’s duration for this trace is not affected

by distributing the resources among sites. However, a closer look to the results shows

a higher slowdown when MSs are used. This is produced by the fragmentation of

resources, and results in higher queue waiting times at different sites.

Consequently, it is clear that better forwarding strategies are required to make a

better usage of distributed resources. For the next experiment, we explore forward-

ing strategies that try to improve site-selection. First, we implement LowestQlen,

which sends a job to the site with the smaller number of jobs awaiting for execution.

The second policy, LowestQlenCpus, considers not only the number of jobs, but the

55

 0

 5

 10

 15

 20

 25

 30

 35

1 Site 2 Sites 3 Sites

B
ou

nd
ed

 S
lo

w
do

w
n

RR
LowQLCpu

HighIdle
LowLoad

Figure 4.11: Bounded Slowdown for compared forwarding policies

sum of their requested processors. HighestIdle chooses the site with higher num-

ber of unused machines, and LowestLoad selects the site with the lowest load. We

define load here as the aggregated number of CPUs in the queue minus the number

of available resources.

Figure 4.11 shows that policies that account for site usage give much better slow-

down metrics, while maintaining the same makespan for the workload. In particular,

we can conclude that policies that take the total number of CPUs in the queue give

the best results, approximately two times higher than having all resources under

the same control in the worst case. This means that the price to pay for using

distributed resources through a MS in this case is that on average, jobs have to wait

for double time when exactly the same number of resources are considered. This,

however, is an edge case, since usually, when adding new sites to the grid, available

resources tend to increase rather than stay the same.

56

4.6 Conclusions and Future Work

This chapter introduces a cooperating MS model that has been implemented by

three partnering institutions: Barcelona Supercomputing Center’s prototype using

eNANOS, IBM Research prototype using the IBM product ITDWB, and Florida

International University’s prototype using the GridWay from the open source com-

munity. Our current work focuses on the MS model and the mechanisms to support

cooperation: a set of protocols to connect the MSs, submitting jobs between them,

and resource information exchange. The data collected from the different imple-

mentations is intended to validate the operations between the three sites.

Furthermore, we define a novel method to test the distributed MS architecture,

the instances’ implementation, and the choice of forwarding policies. We describe

how emulation of computing resources plus trace reduction techniques can be used to

compare forwarding strategies, and help researchers choose better policies to decrase

job waiting time and execution makespan.

The presented prototype serves as a platform for our current research activities

in the area of meta-scheduling, and will allow the exploration of new functions and

protocols to optimize job matching to remote domain resources. Our platform has

been used by LA Grid partners to explore applicability of grid computing in areas

such as hurricane prediction, bioinformatics, and healthcare [B+07].

57

1 <Resources>

2 <Resource>

3 <ResourceID>

4 <Type>ComputerSystem</Type>

5 <Name>CS 0</Name>

6 </ResourceID>

7 <Attr ibute>

8 <Name>NumOfProcessors</Name>

9 <Value>2</Value>

10 </Att r ibute>

11 <Attr ibute>

12 <Name>ProcessorType</Name>

13 <Value>x86</Value>

14 </Att r ibute>

15 </Resource>

16

17 <Resource>

18 <ResourceID>

19 <Type>OperatingSystem</Type>

20 <Name>OS 0</Name>

21 </ResourceID>

22 <Attr ibute>

23 <Name>OperatingSystemType</Name>

24 <Value>LINUX</Value>

25 </Att r ibute>

26 <Attr ibute>

27 <Name>TotalPhysicalMemory</Name>

28 <Value>1024 .0</Value>

29 </Att r ibute>

30 </Resource>

31 <Re la t i on sh ip>

32 <Type>Contains</Type>

33 <SourceResourceID>

34 <Type>ComputerSystem</Type>

35 <Name>CS 0</Name>

36 </SourceResourceID>

37 <Dest inat ionResourceID>

38 <Type>OperatingSystem</Type>

39 <Name>OS 0</Name>

40 </Dest inat ionResourceID>

41 </Re la t i on sh ip>

42

43 </Resources>

Listing 4.1: Resource description example

58

1 <?xml version=” 1 .0 ” encoding=”UTF−8”?>

2 < j s d l : J o bDe f i n i t i o n xmlns=” ht tp : //edu . f i u . c s .ms”

3 xm ln s : j s d l=” ht tp : // schemas . gg f . org / j s d l /2005/11/ j s d l ”

4 xmlns : j sd l−pos ix=” ht tp : // schemas . gg f . org / j s d l /2005/11/

j s d l−pos ix ”

5 xmlns : j sd l−spmd=” ht tp : // schemas . og f / j s d l /2007/02/ j s d l−

spmd”>

6

7 < j s d l : J obDe s c r i p t i o n>

8 < j s d l : J o b I d e n t i f i c a t i o n>

9 <jsdl :JobName>WRF</ jsdl :JobName>

10 < j s d l : J obDe s c r i p t i o n>WRF sample run</ j s d l : J obDe s c r i p t i o n>

11 </ j s d l : J o b I d e n t i f i c a t i o n>

12 < j s d l :App l i c a t i o n>

13 <j sd l :Appl i cat ionName>wrf . exe</ j sd l :Appl i cat ionName>

14 <j s d l−spmd:SPMDApplication>

15 <j s d l−pos ix :Executab l e>/home/wrf /wrf . exe</ j s d l−pos ix :Executab l e>

16 <j s d l−pos ix :Output>wrf . out</ j s d l−pos ix :Output>

17 <j s d l−po s i x :E r r o r>wrf . e r r</ j s d l−po s i x :E r r o r>

18 <j s d l−spmd:NumberOfProcesses>4</ j s d l−spmd:NumberOfProcesses>

19 <j s d l−spmd:ProcessesPerHost>2</ j s d l−spmd:ProcessesPerHost>

20 <j s d l−spmd:SPMDVariation>MPI</ j s d l−spmd:SPMDVariation>

21 </ j s d l−spmd:SPMDApplication>

22 </ j s d l :App l i c a t i o n>

23 < j s d l :R e s ou r c e s>

24 <j sd l :CPUArch i tecture>

25 <jsdl :CPUArchitectureName>PPC</ jsdl:CPUArchitectureName>

26 </ j sd l :CPUArch i tecture>

27 <j sd l :Operat ingSystem>

28 <j sd l :Operat ingSystemType>

29 <jsdl :OperatingSystemName>LINUX</ jsdl :OperatingSystemName>

30 </ jsd l :Operat ingSystemType>

31 </ j sd l :Operat ingSystem>

32 <j sd l : Ind iv idua lPhys i ca lMemory>

33 <jsdl:LowerBoundedRange>2048</ jsdl:LowerBoundedRange>

34 </ j sd l : Ind iv idua lPhys i ca lMemory>

35 </ j s d l :R e s ou r c e s>

36 <j s d l :Da taS tag ing>

37 <j sd l :F i l eName>wrfbdy d01</ j sd l :F i l eName>

38 <j sd l :De le teOnTerminat ion>t rue</ j sd l :De le teOnTerminat ion>

39 < j s d l : S o u r c e>

40 <j sd l :URI>ht tp : // skywarp . cs . f i u . edu/wrf /wrfbdy d01</ j sd l :URI>

41 </ j s d l : S o u r c e>

42 </ j sd l :Da taS tag ing>

43 <j s d l :Da taS tag ing>

44 <j sd l :F i l eName>wrf input d01</ j sd l :F i l eName>

45 <j sd l :De le teOnTerminat ion>t rue</ j sd l :De le teOnTerminat ion>

46 < j s d l : S o u r c e>

47 <j sd l :URI>ht tp : // skywarp . cs . f i u . edu/wrf /wrf input d01</ j sd l :URI>

48 </ j s d l : S o u r c e>

49 </ j sd l :Da taS tag ing>

50 </ j s d l : J obDe s c r i p t i o n>

51 </ j s d l : J o bD e f i n i t i o n>

Listing 4.2: Example JSDL request

59

1 <EmulatedResources xmlns=” ht tp : // cs . f i u . edu/ emulator / r e s ou r c e s ”>

2 <Resource>

3 <Count>64</Count>

4 <Arch i t e c tu r e>x86</Arch i t e c tu r e>

5 <CPUCount>2</CPUCount>

6 <OS>LINUX</OS>

7 <PhysicalMemory>1024</PhysicalMemory>

8 </Resource>

9

10 <Resource>

11 <Count>32</Count>

12 <Arch i t e c tu r e>powerpc</Arch i t e c tu r e>

13 <CPUCount>4</CPUCount>

14 <OS>AIX</OS>

15 <PhysicalMemory>4096</PhysicalMemory>

16 </Resource>

17 </EmulatedResources>

Listing 4.3: Resource emulator configuration

60

CHAPTER 5

A MULTI-LAYER FEDERATION ARCHITECTURE FOR THE

CLOUD

In this chapter we take a more general view of the problem of sharing workloads

across partnering organizations. We explore how software, platform and infrastruc-

ture providers can collaborate by defining a multi-layered federation architecture

where communication takes place at each service layer through a broker component.

We explore the delegation of requests between layers in an organization and among

partners at the same layer, or federation. Then, the model is motivated by study-

ing the delivery of a scientific application, the Weather Research and Forecasting

service (WRF), across the software, platform and infrastructure layers. WRF is

used to illustrate the concepts of delegation and federation, the translation of ser-

vice requirements between service layers, and inter-cloud broker functions needed to

achieve federation.

5.1 Introduction

With the aid of cloud computing technology, businesses and institutions make com-

pute resources available to customers and partners to create more capable, scalable,

flexible, and cost effective environments for application development and hosting.

Cloud computing continues the trend started with on-demand, strategic outsourc-

ing, and grid computing, to provide IT resources as a standardized commodity,

targeting real-time delivery of infrastructure and platform services. A next step in

this evolution is to have cooperating providers of cloud services in which a customer

request submitted to one cloud provider is fulfilled by another, under mediation of a

brokering structure (e.g., [RB08]). This latter idea invokes a federation of cloud do-

mains providing a service analogous to that of interoperating grid resources created

61

for a similar goal by research institutions using grid brokers in the grid computing

framework.

Figure 5.1 is an example of what is meant by a federated cloud structure mediated

by brokers. The figure shows two independent clouds, each supporting a vertical

stack of service layer offerings from the software or application layer (SaaS or AaaS)

at the top, through the middleware or platform layer (PaaS), to the operating system

and infrastructure layer (IaaS). At each layer a choice is made to fulfill a service

request through local resources using delegation, or by a partner cloud through

federation. A key feature of our model, is that federation occurs between cloud

providers at matching layers of the service stack.

To illustrate how this works, consider a business providing a SaaS offering from

a private or public cloud. Users submit requests to the application layer which

assesses if sufficient local resources are available to service the requests within a

specified time. If the application layer cannot meet its service goals it can optionally

fulfill the requests through an independent SaaS layer provider of the same service

as indicated by the horizontal (federation) line connecting cloud A to B. Results are

returned to the user as if locally produced by the application executing in cloud A.

Federation at the SaaS layer is analogous to the use in traditional business of ‘sub’

or ‘peer’ contractors who supply equivalent final parts or services to the primary

provider facilitating elasticity to support a dynamic market. While this approach is

common in industry sectors that produce goods or services such as manufacturing

or publishing, it is not as common in software due to lack of standard interfaces and

insufficient market forces to motivate sharing at the service layer.

An application layer under stress also has a second option to increase capacity

through delegation. In this service abstraction, the application layer works together

with its underlying layers to provide the required computing needs. In delegation,

62

Figure 5.1: Federation and delegation in cloud application support

the application layer asks the PaaS layer in the local cloud for additional resources.

The request for more resources may be fulfilled in multiple ways depending on

availability in the current cloud. The PaaS layer can delegate to the local IaaS layer

a request for more raw virtual machines and then provision the necessary platform

software. If sufficient resources are not available locally the PaaS layer can attempt

to acquire them from another cloud in the federation through brokering at the PaaS

layer.

In a typical scenario, the PaaS layer represents executing middleware such as web

application containers and other application execution platforms, or distributed data

applications. Here a more general view of federation is needed in which these sup-

port programs and environments form the federations between the clouds in a way

that isolates them from the underlying infrastructure layer. Some current middle-

ware products, such as web application servers (e.g., IBM WebSphere Application

Server or Oracle Fusion Middleware), provide isolation or lightweight virtualization

from the underlying hardware and allow applications to dynamically expand across

machines increasing capacity.

63

While attractive from a business perspective, this federated cloud model requires

new technologies to work efficiently. Because it is a layered model, an important part

of the design is to maintain isolation of concerns between layers. For example, the

SaaS application delivers a result to the customer in a certain response time. It is

aware of the aggregate processing and network transmissions necessary to meet the

delivery time. But the application does not need to know the details of the underly-

ing infrastructure. Thus, it is necessary to translate requirements at the application

to those understood by the PaaS and IaaS layers. This is accomplished through

empirical modeling and experiments that map metrics of application performance

such as response time onto the middleware and compute resource requirements un-

derstood by the PaaS or IaaS layer.

One challenge to making the operation of delegation work is to introduce a

standardized form of expressing inter-layer mappings. Some work along this line

is contained in the manifest approach used by the Reservoir project [RBL+09]. In

Section 5.5, we discuss some parameters that need to be translated across layers,

in the context of the application we use as a case study. A related issue is how to

choose between delegation and federation when both options are available. Selection

criteria such as the mapping of performance metrics may be combined with policies

as discussed in Sections 5.2 and 5.5. Another challenge is defining the protocols

and policies for the inter-cloud brokering required to join each layer in a federation.

Section 5.4 considers brokering at different cloud service layers and then proceeds

to the inner workings and policy issues by which brokers expose and share cloud

services and resources.

It is difficult to fully understand the federation model of Figure 5.1 without a

concrete example. Because of our experience with parallel and distributed com-

puting, we choose for this purpose the Weather Research and Forecasting (WRF)

64

software as a service (SaaS). WRF is a batch mode service in which customers re-

quest weather forecasts over a region with a specified level of detail/resolution. It

provides a good case study for cloud hosting as it is a high performance computing

application for which the private and government agencies that use it would like to

leverage their joint resources through cloud services. Section 5.5 is devoted to how

to implement the model of Figure 5.1 within the context of providing WRF as a

service. This study offers the opportunity for interesting contrasts with the previous

chapter, which considered federation of grid infrastructure. In those experiments,

multiple HPC sites can accept a WRF job submission and a distributed system of

peer brokers routes customer WRF requests input to any of the sites to the one

providing the best response. Here, a single site hosts the WRF interface to the cus-

tomer at the SaaS layer, and additional PaaS or IaaS resources are brought under

the control of that site when needed to meet performance requirements.

5.2 Cloud Service Stack Architecture

There is an extensive list of works in the literature classifying the services offered

by cloud providers in various ways. A common feature of these cloud models is

the layered service model where each layer provides an increasing abstraction and

isolation from its underlying layer, progressing from raw hardware to software and

ending at the application layer. For example, [TMC+08] shows the cloud architec-

ture as layers of Hardware as a Service (HaaS), Infrastructure as a Service (IaaS),

Platform as a Service (PaaS), and Software as a service (SaaS). [LKN+09] catego-

rizes the cloud as a stack of service types, namely IaaS, PaaS, SaaS, Human as a

Service (HuaaS), and Support Services. The Reservoir architecture [RBL+09] uses

three layers, the Virtual Execution Environment Host (VEEH), virtual Execution

Environment Manager (VEEM), and Service Manager. While the names are differ-

65

ent, there is a close functional correspondence of the Reservoir layers to IaaS, PaaS

and SaaS.

The reference cloud model presented here adopts the three service layer model of

Figure 5.1. This model defines layers according to clearly specified principles such

as isolation, abstraction, elasticity, runtime and fault tolerance. More details will

be presented in Section 5.2.1.

One significant idea of this chapter is that inter-cloud federation is constrained

to occur only at corresponding layers of the reference model. Section 5.2.3 argues

for this point of view and leads to the discussion of how federations are created and

brokered in Section 5.4. The layered federation model contrasts with the Aneka

Federation [RB08] and Reservoir Federated cloud [RBL+09]. For Aneka Federation,

each cloud site instantiates a service component called Aneka Coordinator which

basically implements the resource discovery and management functions. It is our

view that the Aneka Coordinator is responsible for the federation functions at the

IaaS layer. For the Reservoir model, the federation function is supported through

VEEM-to-VEEM communication, thus supported at the PaaS layer only. Delegation

involves a request translation mechanism in order to convert the requirements from

one layer to another. Translation is a complex and layer dependent function explored

more in 5.2.2.

There are several implications in our model when comparing it to existing work

or other possible approaches to resource sharing. It can be argued that layered,

peer-to-peer federation adds additional complexity to the negotiation and execution

of tasks among different providers, since each site needs to implement different pro-

tocols and translation mechanisms. However, we believe that the added flexibility

justifies this additional work. First, by defining different federation methods at each

layer, we allow elastic and fault-tolerant behavior at different stages of the process.

66

Figure 5.2: An alternative model of federation

Second, providers can focus on concrete aspects without having to implement the

full layer stack (for example, we could imagine specialized providers that only of-

fer functionality at one layer). This aspect expands the possible interaction with

other systems, not restraining them to a given model. Finally, the decentralized,

distributed federation model is very applicable to the current cloud model, where

new providers rapidly appear and need to easily join other working systems.

As an alternative, a federation architecture would allow a layer to offload work to

underlying layers either in the local or in different providers, as shown in Figure 5.2.

In this example, the Platform needs to handle two variations of delegation protocols

—both on and off site—, instead of one delegation and one federation protocols.

The shortcoming of this model is the lack of elasticity of platform resources through

federation of platforms. In contrast, the federation of analogous layers eliminates

the need of different types of delegation and enables elastic capacity at the platform

and infrastructure layers.

67

We further sharpen the differentiation of layers by studying how they function

to support cloud applications. In particular, how layers work together within a

cloud to support an application, while inter operating with peer clouds to provide

additional elasticity to application capacity.

Figure 5.3 demonstrates the WRF application example. In the figure we can see

three different layers at a given provider that implement distinct capabilities. Each

of the layers is in charge of managing its corresponding input data, assessing whether

the request can be processed locally through delegation or if it should be sent to

another site through federation. In the first case, the request needs to be translated

so that it matches the expected input of the next layer in the stack. In the second

case, a brokering module at the federated layer needs to establish a connection to

another provider and negotiate the terms for which the tasks will be accomplished.

Choosing the optimal run time option is a non-trivial problem requiring that requires

taking into account the cost and computational requirements of the desired service.

In Section 5.5, we discuss our vision for addressing this problem using application

performance modeling.

5.2.1 A Layered Model of Cloud Services

The top layer is the software layer, which deals with requirements in executing

the application within the context of the key performance metrics (KPM) of the

application offering in addition to application execution environment. For WRF

this exemplary KPM is completion time for a weather forecast of a user specified

geographic region with a certain resolution. The application service layer is aware

of the KPMs and software and how they translate into resources at the PaaS. The

information for this mapping from KPM at SaaS to PaaS resources is developed

through off line experiments and input from online results.

68

Figure 5.3: Conceptual model

The next layer in the stack corresponds to the Platform as a Service layer. This

is traditionally the most overloaded term in the cloud. Specifically, we define the

intrinsic characteristics of a PaaS provider:

• Development library A PaaS offering allows a developer to build the target

application by using a defined library

• Runtime environment The platform has a runtime component that man-

ages the application’s underlying aspects

• Layer decoupling It is decoupled from the upper and lower layers. This

means that, first, the platform layer does not have any knowledge of the appli-

cation specific details. Second, it is agnostic to the underlying infrastructure

• Elasticity and Fault tolerance Finally, the platform layer needs to support

operations that will result in the cloud’s elastic behavior. This means that it

69

needs to allow scalable resource allocation and have mechanisms to deal with

failures

The PaaS layer corresponds to the traditional concept of middleware and rep-

resents the bridge between application requirements and elastic infrastructure re-

source management. This layer does not consider the actual infrastructure —e.g.,

how many Virtual Machines need to be provisioned—, but rather a higher represen-

tation of execution units such as tasks, processes, threads, etc..

Well known examples of PaaS offerings in the cloud are Google App Engine and

Microsoft Azure. However, this layer can be implemented by different means. An

example of this in the WRF application stack would be MPI [GHLL+98]. MPI is

both a development library and a runtime environment, it does not consider either

application specific details nor make assumptions about the underlying resources,

can be executed for a varying number of processes, and offers a simple fault tolerant

behavior (by terminating a job when one of the processes fails). The newer specifica-

tion of MPI-2 [GGHL+96] includes further features to dynamically add and remove

MPI tasks to/from running applications and thus would be useful in exploiting the

elasticity capability of cloud resources.

Finally, the IaaS layer represents the resources of infrastructures on top of which

the rest of the stack is supported. The concepts managed at the IaaS layer cor-

respond to Virtual Machines, disk images, network connectivity and number of

processors, for example.

5.2.2 Inter-Layer Delegation

Cloud provider sites can support different layers of functionality, and not all uses of

the cloud need to traverse all possible layers. However, if we consider an application

hosted in the cloud, it is useful to study all stages involved in the process, since

70

they will have an impact on different aspects such as price, performance, fault

tolerance, etc. The lifecycle of a cloud application includes all layers, either implicit

or explicitly. Policies are transferred from one layer to the next one, and failing to

fulfill them on a single layer is likely to affect the capability of other layers to offer

the required service.

The user of such an application initiates the interaction at the Software as a

Service layer. Requirements at this point are described from an application domain

perspective, and can be expressed by the user. Examples of requirements at the

SaaS layer can be a web application’s response time, the maximum desired price

for the execution of a set of batch jobs, or the level of security required for the

application’s communication.

Translation between the SaaS and PaaS layer begins with the user request and

produces a definition understandable by the platform layer. This implies that some

domain specific translation needs to take place, for example to convert execution

time or price requirements to number of tasks. Performance prediction models can

be used to determine how tasks can be parallelized; workflows can be generated to

ensure that execution deadlines are met.

Translation to the IaaS layer map into instantiated VMs with the appropriate

image software so the PaaS layer can execute on top of it; also, task mapping

decisions need to be made in order to accomplish the original requests from the

user.

5.2.3 Federation of Clouds

The previous section considers the communication flow inside a single provider in

order to fulfill an application’s request. Information is passed down across the stack

to realize the contracts among layers and translate higher layer restrictions to the

71

actual resources executing the request. However, this scenario only holds if infinite

resources are assumed on a single site. Since this is not the case, providers need to

collaborate to be able to fulfill requests during peak demands and negotiate the use

of idle resources with other peers. This is the goal of federation.

Rather than only considering federation as a matter of two heterogeneous sites,

we propose an approach in which it is defined for concrete layers with analogous

capabilities. This mode of communication allows inter-site negotiation at common

grounds for well understood protocols and policies. One of the benefits of this

model is that we can assume that not all providers implement every layer, and

therefore multiple service suppliers can be joined to fulfill one single application

request. This consideration also results in the possibility of specialized, single layer

providers that can be leveraged by other sites. In fact, a site does not need to

provide a full implementation of a layer to be able to be part of a federation: it only

needs to be able to “speak” the appropriate protocol. No assumptions are made

about how a service is fulfilled, or what additional layers are involved in realizing

the agreement. Some providers may internally require of other layers to complete

the request, although that is not part of the federation process.

This approach is akin to the well-established open systems protocol stack model

of OSI [Zim81], where different protocols are employed at each layer to implement

a concrete functionality. Communication can happen between two identical layers,

or between consecutive layers (either lower or higher in the stack). In the context of

the cloud, we have identified the layers already discussed —SaaS, PaaS and IaaS—

as the building blocks for federation. Different communication models among layers

have consequent implications, that we analyze next.

72

5.3 Inter-Layer Delegation

In previous sections we describe our focus on the three service layers of the Cloud.

We also observe that not all Cloud providers would support services at all the SaaS,

PaaS and IaaS layers. Therefore, they usually only expose the service interfaces of

the layers that they support. For example, when a Cloud provider supports only

services at the upper level (i.e., SaaS), it rarely exposes the delegation protocols

beneath said layer. It is also possible that there is no layer separation in providers’

implementations. Furthermore, all service interfaces are currently provider-specific

and standardization is yet to be matured and adopted by the Cloud community.

There are multiple organizations which have standard activities that mainly focus

on the IaaS layer. One effort is the OCCI-WorkGroup [OCC]. Another effort is the

Distributed Management Task Force (DMTF), whose activities include defining the

open Cloud architecture1 and describing some exemplary use cases2. Participant

vendors of DMTF may submit their standard specifications and reference imple-

mentation for evaluation (e.g., Oracle’s resource model). However, these two set of

standard activities do not yet address the protocols at the SaaS and PaaS layers.

As an open collaborative effort, the Reservoir project [RBL+09] provides their

service designs between layers as well as exemplary information flow. In their model,

a “service manifesto” is created by the Service layer, the Service Manager, and

passed to the lower layers. The transformation of an application service requirement

is done at the Service layer into detailed platform specific requirements (middleware

packages for application execution platform) and also infrastructure information

(CPU, memory, disk, network, etc). The delegation between layers has defined

1http://dmtf.org/sites/default/files/standards/documents/DSP-IS0102 1.0.0.pdf

2http://dmtf.org/sites/default/files/standards/documents/DSP-IS0103 1.0.0.pdf

73

specific interfaces as the Service Management Interface (SMI), VEE Management

Interface (VMI) and VEE Host Interface (VHI).

5.4 Federation of Clouds

As in traditional scheduling, where most systems try to achieve the best trade-

off between the users’ demands and the system policies and objectives, there are

conflicting performance goals between the end users and the cloud providers. While

users focus on optimizing the performance of a single application or workflow, such

as application throughput and user perceived response time, cloud providers aim to

obtain the best system throughput, use resources efficiently, or consume less energy.

Efficient brokering policies will try to satisfy the user requirements and clouds’ global

performance at the same time. Thereby, cloud federation introduces new avenues

of research into brokering policies such as those techniques based on ensuring the

required QoS level (e,g., through advance reservation techniques) or those aiming at

optimizing the energy efficiency. Furthermore, the layered service model proposed

in this chapter enables the isolation between brokering policies in federated clouds

at different layers which can be implemented following different approaches.

Existing work in cloud brokering focuses on the federation of clouds mainly at

the IaaS layer such as those strategies based on match-making on top of clouds

[CTVP10], advanced reservations [SMLF08, SKF08] or energy efficiency [BBA10].

Table 5.1 summarizes the main objectives and parameters of brokering at dif-

ferent layers of cloud federation. Some objectives, such as cost-effectiveness, are

desired across all layers, though with different pricing methods. In the following

subsections we discuss in more detail the possibilities and characteristics of broker-

ing at different layers of federation, starting from SaaS layer that is the closest layer

to the users.

74

Parameters Objectives
User requirements Maximize QoS delivered

SaaS Service level agreements Minimize cost
Software licensing Functionality/availability
Compiling requirements Functionality

PaaS Runtime requirements Optimize applications’ execution
Runtime licensing Fault tolerance
Resource characteristics Maximize cost-effectiveness
Monitoring data Acceleration

IaaS (hardware/VMs) Conservation
Modeling/benchmarking data Resiliency
Constraints/requirements Maximize energy efficiency
(deadline, budget, etc.)

Table 5.1: Summary of brokering goals at different layers of cloud federation

5.4.1 Brokering at the SaaS Layer

Brokering at the SaaS layer is mainly based on the user’s requirements and Service

Level Agreements (SLA) between different cloud providers. As mentioned in sec-

tion 5.2, a cloud provider that implements the SaaS layers should guarantee a given

level of service for a set of application requirements. The application’s requirements

can be generic and/or specific. Generic requirements do not depend on the charac-

teristics of the application and can be used for many types of applications. Some

examples are: response time (or completion time), cost (of running the application),

and level of security. Specific requirements deal with the characteristics and input

parameters of the application. Taking WRF as a use case, some specific applica-

tion requirements are: application version, geographic region, or resolution of the

simulation.

Table 5.1 overviews the main objectives of brokering in the SaaS federated cloud,

which are on three different dimensions: QoS, cost and functionality/availability.

However, the actual brokering policies should address more concrete objectives that

75

would consider different goals and also both generic and specific application require-

ments/input parameters. Possible optimization goals include:

• Using only generic application requirements: lowest price for a given comple-

tion time, shortest completion time for a given budget, highest security level

for a given budget

• Using both generic and specific applications requirements (WRF): shortest

completion time for a given simulation resolution, higher simulation resolution

for a given budget and completion time

In order to achieve the objectives listed above, federated clouds will have to

handle and exchange information at the SaaS layer such as: estimated application

completion time, cost of running the application, cost of software licenses, avail-

able software/versions or limitations (e.g., for the use case of WRF, the maximum

simulation resolution). Based on information and the objectives described above,

different strategies can be considered. Some examples are:

• Forwarding: if the originator cloud cannot accommodate the request or an-

other cloud can provide better cost-effectiveness, the request can be forwarded

to another cloud domain of the federated cloud. Benchmarking or modeling

the applications on the clouds’ resources may be used to estimate the cost or

completion time for a given application, but this is a transparent process at

the federation level (each cloud can have its own mechanisms).

• Negotiation: one cloud may take care of jobs from another cloud upon agree-

ment. The negotiation can be based on information from both past and future

events. For example, a job request might be forwarded to a cloud at higher

cost but doing so may significantly optimize the energy efficiency (e.g., switch-

ing down servers and/or CRAC units). Other considerations could be taken

76

into account during the negotiation such as the cloud reputation (e.g., based

on SLA violation rate).

5.4.2 Brokering at the PaaS Layer

Brokering at the PaaS layer is mainly based on the application’s requirements in

terms of deployment (e.g., compiler framework) and runtime support (e.g., libraries).

Since compiling tools, libraries and runtime environments can be from different ven-

dors and with different characteristics, they can have different licensing conditions,

prices and even different functionality and performance. Furthermore, additional

characteristics such as fault tolerance or platform security issues can be considered

in brokering policies at the PaaS layer. Given the use case of WRF the parameters

are based on MPI, such as the MPI compiler characteristics, runtime environment

for MPI applications and their associated costs and limitations (e.g., licenses for

specific MPI runtime).

The main goals of brokering a federated cloud at the PaaS layer are focused on

improving the the applications’ environments, including:

• Functionality/availability: brokering over multiple clouds increases the prob-

ability of provisioning with more specialized compilers or execution environ-

ments.

• Optimize applications: in some sense, the objective is maximizing the potential

of the applications to obtain better performance. Policies can decide using

specific compilers or runtime in order to obtain, for example, more efficient

binaries for a given cloud.

• Fault tolerance and security: when choosing a specific execution environment

from different clouds, fault tolerance and security are attractive secondary

77

goals that may add value to a given decision or they can be primary goals if

the nature of the application requires of them.

In order to meet the objectives such as those described above, different clouds

must handle and exchange information related to the compiling frameworks such

as vendor, capabilities, versions, compatibility or licensing costs, and information

related to the runtime characteristics and limitations such as MPI implementation

version, vendor, specific libraries or number of MPI processes supported.

Brokering policies at the PaaS layer will try to find the best trade off between the

optimization goals discussed above and the limitations from the other layers such as

the cost. As a matter of example, a brokering policy may decide to compile the WRF

application using an expensive compiling framework if the possible optimizations

may result in lower completion time in the associated execution framework. Also,

the decision can be using a higher number of MPI processes in order to maintain

the QoS delivered to the users.

5.4.3 Brokering at the IaaS Layer

When addressing federation at the IaaS layer, we consider cloud infrastructures to

be hybrid, integrating different types of resource classes such as public and private

clouds from distributed locations. As the infrastructure is dynamic and can contain

a wide array of resource classes with different characteristics and capabilities, it is

important to be able to dynamically provision the appropriate mix of resources based

on the objectives and requirements of the application. Furthermore, application

requirements and resource state may change, for example, due to workload surges,

system failures or emergency system maintenance, and as a result, it is necessary to

adapt the provisioning to match these changes in resource and application workload.

78

Brokering functions in federated clouds at the IaaS layer can be decomposed into

two aspects: resource provisioning and resource adaptation. In resource provision-

ing, the most appropriate mix of resource classes and the number of nodes of each

resource class are estimated so as to match the requirements of the application and

to ensure that the user objectives (e.g., throughput) and constraints (e.g., precision)

are satisfied. Note that re-provisioning can be expensive in terms of time and other

costs, and as a result, identifying the best possible initial provisioning is important.

For example, if the initial estimate of required resources is not sufficient, additional

nodes can be launched. However, this would involve additional delays due to, for

example, time spent to create and configure new instances. At runtime, delays can

be caused by, for example, failures, premature job termination, performance fluctu-

ation, performance degradation due to increasing user requests, etc. As a result, it

is necessary to continuously monitor the application execution and adapt resources

to ensure that user objectives and constraints are satisfied. Resource adaption is,

therefore, responsible for provisioning resources dynamically and on runtime. Ex-

amples are assigning more physical CPUs to a given VM to speed up an application,

or migrating VMs in order to reduce the resource sharing or optimize the energy

efficiency.

The goals of brokering methods and policies in federated clouds at the IaaS layer

can be found in different domains. Some examples are listed as follows:

• Cost-effectiveness: federated clouds provide a larger amount of resources,

which may help improve cost-effectiveness. This include improvement for both

the user and the provider such as, for a given cost, reducing the time to comple-

tion, increasing the system throughput or optimizing the resource utilization

• Acceleration: federated clouds can be used as accelerators to reduce the ap-

plication time to completion by, for example, using cloud resources to exploit

79

an additional level of parallelism by offloading appropriate tasks to cloud re-

sources, given budget constraints.

• Conservation: federated clouds can be used to conserve allocations, within the

appropriate runtime and budget constraints.

• Resilience: federated clouds can be used to handle unexpected situations such

as an unanticipated downtime, inadequate allocations or failures of working

nodes. Additional cloud resources can be requested to alleviate the impact of

the unexpected situations and meet user objectives.

• Energy efficiency: federated clouds can facilitate optimizing the energy effi-

ciency of clouds by, for example, workload consolidation, thermal-aware place-

ment or delegating part of the workload to external clouds in order to optimize

the energy-efficiency of a given cloud.

Multiple objectives can be combined as needed. An obvious example is combin-

ing an acceleration objective with a resilience objective. Different kinds of informa-

tion will be required to be handled and exchanged across different clouds in order

to implement brokering policies with the aim of meeting the objectives presented

above on top of a cloud federation. At the IaaS level the information is lower level

and include:

• Monitoring information from the hardware/OS: includes hardware and OS

characteristics (static information, such as CPU vendor or OS type) and dy-

namic information such as CPU load, CPU frequency, RAM memory utiliza-

tion, free storage, type/quality of the interconnection networks (e.g., band-

width and latency). Monitoring systems may also provide measures of power

dissipated or even sensing information from the environment such as temper-

ature or airflow.

80

• VM information: includes information related to the virtualization level such

as hypervisor type, available VM classes, number of running VMs, and charac-

teristics of the VMs (e.g., memory assigned to VMs, number of virtual CPUs

or CPU affinity).

• Application benchmarking/modeling: it is responsible for estimating impor-

tant metrics such as execution time or required number of VMs for the applica-

tion. Since it depends on the actual execution platform this will be exchanged

across different clouds.

• Cost: includes the costs for provisioning and VM allocation (e.g., the cost of a

VM/hour, server/hour or a set of resources/hour) or data transfer cost (e.g.,

GB transferred).

• Other information such as data locality (e.g., VM images or actual user data)

or security issues can be useful for implementing policies at the IaaS layer.

Brokering policies make decisions during resource provisioning and resource adap-

tation depending on the user objectives as well as information exchanged between

clouds, as described above, and on the metrics used. Considering WRF as a use

case, important metrics for policies are, for example, deadline and budget. For the

deadline metric, the brokering decision is to select the fastest resource class for each

task and to decide the cloud and the number of nodes per resource class based on

the deadline. When an application needs to be completed as soon as possible, re-

gardless of cost and budget, the largest useful number of nodes can be allocated

in the cloud(s) that estimate shortest completion time. This estimation is usually

based on representative benchmarking or modeling on all resource classes from all

clouds. If the budget metric is enforced on the application, the type and number

of allocatable nodes is restricted by the budget. If the budget is violated with the

81

fastest resource class from the different clouds, then the next fastest and cheaper

resource class is selected until the expected cost falls within the budget limit. After

the initial resource provisioning, the allocated resources and tasks are monitored.

The framework continually updates the metrics used by the brokering policies. If

the user objective might be violated (for example, the updated cost is larger than

the initially estimated cost), then additional, possibly different, resources will be

provisioned and the remaining tasks will be rescheduled.

Cloud federation at the IaaS layer offers many opportunities for energy opti-

mization, which is another important metric that is becoming crucial in large-scale

distributed system such as clouds. Different techniques such as VM migration com-

bined with switching on/off servers or workload consolidation/placement (including

thermal-aware approaches) can be used for brokering since the resources belong to

multiple clouds that may be in different operational states. Even techniques such

as DVFS can take advantage cloud federation when, for example, cloud providers’

policies are not exceeding a given peak of power dissipated or energy consumed.

Furthermore, the price differences of the electricity based on the geographical loca-

tion and time during the day can be leveraged to implement energy-aware polices or

even the source/class of electricity used for the clouds [LBN+10] can be taken into

account in order to implement environmental-friendly policies.

5.5 Weather Research and Forecasting (WRF) as a Service

We present the WRF application [MDG+04] as a use case for the federated cloud

architecture of Section 5.2. WRF is parallel scientific application which performs

mesoscale weather simulations of user-selectable geographic areas, with a given res-

olution for each area. Due to the nature of certain weather phenomena such as

hurricanes or tornadoes, performing accurate predictions in very short time spans is

82

vital to make appropriate preparations involving business operations management

and government and human related logistics. Thus, sharing of resources between

institutions to provide elasticity and dynamic capacity in extreme situations is key.

WRF benefits from a hosted service architecture since it is a cross-domain ap-

plication, requiring extensive IT administration and setup expertise in addition to

scientific and meteorological knowledge to run it. Establishing WRF as a SaaS using

the layer model separates the concerns of the scientists from the underlying plat-

form and infrastructure issues. Efforts to separate these domains of expertise are

ongoing, and at the service level a web portal has been developed as one approach3

to hide IT concerns from users.

The subsequent sections show how the architecture of Section 5.2 is applied

to support federation and delegation while separating the WRF end user concerns

from those of the compute layer software and infrastructure at the PaaS and IaaS

layers. Table 5.2 summarizes the key application parameters at each layer as dis-

cussed below. As alluded to earlier, specific details about the implementation of the

translation is beyond the scope of this work. While the implemenation of such a

translation mechansim specifically for WRF would not be too complex, a translator

would need to account for different kinds of goals. For example, a web application

service needs to reliably service a certain number of requests per unit time, whereas

a scientific application like WRF needs to finish executing an entire program before

a given deadline. It would also need to distinguish between soft and hard deadlines.

3http://www.wrfportal.org

83

Layer Input parameters Transformation from
upper layer

Output from lower
layer

SaaS Region data files,
software version,
number of paral-
lel runs, deadline,
budget

— Total execution cost,
Total execution time

PaaS Number of tasks,
software packages

Prediction model to
calculate number of
tasks, list of required
software packages

VM execution costs,
VM execution time

IaaS Number of VMs, VM
image (OS, filesys-
tem)

Mapping of tasks
to VMs, VM im-
age handles, VM
parameters

—

Table 5.2: WRF as a Service workflow

5.5.1 Software as a Service Layer

We propose a SaaS solution where users can request WRF executions by providing

high level requirements. When these requirements are entered via a GUI on a web

portal the portal generates underlying files that are needed by the WRF executable.

An example are the region files that contain geographic and weather related data.

The input parameters are:

• Input files: Files that need to be processed during the experiment. These

include a namelist file and its corresponding region files. The namelist file

specifies all the runtime options desired by the user. The region files are

binary files that describe the geographical area.

• WRF version: Users may need results for a specific version of the software

• Parallel executions: How many ensemble runs to execute in parallel. (The

service allows users to specify ensemble runs, where the multiple experiments

84

on the data are executed, but with different inputs. In the end, the results

from all runs are averaged. This may achieve more accurate results.)

• Deadline: When should the experiment finish

• Cost: How much is the user willing to pay for the service

The user specifies the listed parameters to define the execution of the tasks

without needing to consider PaaS and IaaS details such as machine architecture or

virtualization platform.

For inter-cloud federation the SaaS layer implementation has the option to for-

ward this input to a partner WRF SaaS layer provider accepting these parameters

and files. The decision whether to ‘sub-contract’ this particular job to a partner is

based on a policy with one or more of the considerations presented in Section 5.4.

Also note:

• The target provider must be able to access the experiment’s input files, either

by transferring them or retrieving them from a catalog

• In the case of an ensemble run (when the number of parallel executions is

higher than 1), a site may choose to transfer one or more instances of the

experiment, given that the total cost is not higher than the cost defined by

the user and that no instance will fail to satisfy the deadline

Instead of federating, the SaaS layer can delegate the execution to to the PaaS

layer. In order to transfer control down in the stack, the user’s request is translated

to PaaS layer parameters as discussed next.

5.5.2 Platform as a Service Layer

In our architecture, the PaaS layer is constructed by wrapping the MPI libraries

and making them available as a service. The motivation for this is discussed in

85

section 5.2.1. Additionally, the PaaS layer is in charge of providing and managing

the middleware that allows execution of WRF. In this case, we consider the following

items as part of this layer:

• WRF executables and required libraries: The PaaS layer needs to ensure that

the required software will be available at the provider side. It needs to guar-

antee that the required operating system and appropriate library versions can

be accessed at the site.

• Software licenses: In the case of libraries or software that requires licenses,

such as certain compilers or operating systems, the PaaS layer needs to certify

that the required number of them will be available during execution.

• Task decomposition: Another job of this layer is to manage MPI execution,

in terms of running the appropriate number of tasks to meet higher level

requirements. The user that interacts with the SaaS interface does not need to

specify how the experiment has to be decomposed in tasks, but that mapping

needs to be resolved at the middleware management level.

Delegation from the SaaS layer to the PaaS layer needs to be managed by a

translator that ensures the original request objectives are maintained. Some input

criteria need to be converted to the appropriate input for this layer, while others

are passed down the stack. A key challenge in this case is satisfying the quality

of service or completion deadline requirement. We consider the use of a prediction

model in order to calculate possible costs and task decomposition that can meet the

requested deadline. However, in a federation of clouds, the compute resources are

heterogeneous, so the predictor needs to be able to determine performance num-

bers for different combinations of resource requirements. The predictor needs to

86

determine the resources needed given execution deadline, cost, and application in-

put parameters. Aprof [SFB+08] is an example of a predictor capable of calculating

runtime values in a cluster environment given a list of arbitrary resource require-

ments. A key difference between the usage of a prediction model for traditional

cluster computing and in the federated cloud model we propose in this work is that

the resource selection process is more complex in the latter. This is because there

can be a much larger pool of heterogeneous resources. Also, there can be compet-

ing constraints, such as time, cost, and availability. In this case, we can consider

a couple of options. One is to use a feedback mechanism in which users are given

different options, e.g. different costs for different execution times that satisfy the

time and cost constraints. The other is to give priorities to different constraints. For

example, a user may not mind waiting slightly longer for a program to complete as

long as it finishes before the deadline, so they will give priority to cost, such that the

amount they spend is minimized. An important consideration for users with hard

deadlines is that the error of the prediction model must be accounted for. This is

particularly true for statistical models that rely on historical execution data, which

are desirable in our case for their performance, but tend to have prediction error

ranging from 5-30%, depending on the application, run time configuration, number

of available data points, and number of parameters being modeled.

The PaaS layer receives the number of desired tasks from the prediction model

used to translate user requirements to this layer’s input. Figure 5.4 shows some of

the run times of WRF under different execution parameters, according to the aprof

predictor. Using this tool, we can determine the approximate time of the requested

execution for different types of resources. The figure shows two predicted systems,

87

0

1000

2000

3000

4000

5000

6000

7000

8 16 32

500

1000

1500

2000

2500

3000

3500

8 16 32

1 Core

2 Cores

4 Cores

500

1000

1500

2000

2500

3000

8 16 32

nodes nodes nodes

time (s) time (s) time (s)

System: Abe

Area: 15000 km

Resolution: 10 km

System: Abe

Area: 15000 km

Resolution: 15 km

System: Marenostrum

Area: 15000 km

Resolution: 15 km

2 2 2

Figure 5.4: Prediction models for different areas and resolutions

which have the same characteristics as Abe, one of Teragrid’s4 computing clusters,

and Marenostrum, the supercomputer at Barcelona Supercomputing Center. The

plots were generated for simulation areas of 15000 square kilometers with resolution

of 10 and 15 kms. This data can be used to calculate the approximate execution

time of a WRF request for any number of systems.

The second task of the translation from SaaS to PaaS layer is to compile a list of

required software packages and operating system images that will be requested when

the execution VM is instantiated. This is accomplished by using a mapping from

the user input to a set of predefined software (e.g., Linux kernel version, Fortran

compilers and runtime libraries and MPI version). Additionally, the translator needs

to account for the appropriate licenses needed to run the required software.

Again, the PaaS layer may decide to either off-load the work to another peer

through an appropriate federation protocol, or fulfill the request with local resources

by delegating it to the IaaS layer, in which case the request needs to be translated

to the corresponding input values.

4http://www.teragrid.org

88

5.5.3 Infrastructure as a Service Layer

The IaaS layer provisions the execution environment to run the application. This

layer’s interface needs to publish which resources it supports and the associated

cost. Also, the IaaS component needs to consider staging-in of data and application

binaries —e.g., in the form of Virtual Machine images.

Delegation from the PaaS layer again needs to happen through a translation com-

ponent. First, the different combinations of resources produced by the prediction

model are compared with what the virtualization manager can provide to calculate

execution costs, then those parameters (amount of RAM, number of virtual pro-

cessors, etc.) are passed to the IaaS manager to be used during VM instantiation.

Next, the list of software needs to be retrieved by the IaaS layer to provision the

VMs. There are different methods to do this, one example would be by associating

a virtual disk image located in a file repository with the list of software components;

another example would require creating the virtual disk image on demand before

execution by aggregating the software packages from a repository.

Once the resources have been provisioned, the IaaS layer instantiates the required

VMs and control is given back to the PaaS component, which orchestrates the

provisioning of VMs and the execution of the software on them. The platform layer

is in charge of issuing MPI calls to define which virtual hosts will take place in the

execution, spawning the required number of processes, and ensuring the application

is run successfully.

However, in the cases where the infrastructure layer does not have the necessary

resources, or when the site’s policies mandate it, the request issued by the plat-

form component can be forwarded to another site via a federation protocol. In this

case, IaaS providers need to be able to publish their resources, to which disk image

89

repositories they have access and their execution costs. Based on the user’s require-

ments, the site may acquire external resources to answer a request after employing

the federation protocol.

5.6 Conclusion and Future Work

In this chapter we have presented an general approach to the cloud federation prob-

lem by considering a layered model where negotiation is constrained to well-defined

sets of parameters. We have discussed the benefits of decoupling the different layers

—Infrastructure, Platform and Software as a Service— so that the execution of an

application can be supported by diverse providers implementing different parts of

the functionality. Additionally, we explain how user and site policies can be used

to negotiate federation between partners, or translated to delegate tasks to other

layers of a single site.

We have also introduced a motivational scenario to illustrate this layered model.

We described a “WRF as a service” application for domain experts which accepts

high level parameters relating to user requirements such as cost or time of execution.

We have showed how these requirements are either used in the negotiation process or

transformed to new arguments to lower levels in the cloud stack by using prediction

models and inter-layer translation mechanisms. Finally, we have discussed differ-

ent brokering strategies for providers to consider assigning parts of the execution

workflow to other partners while enforcing user policies.

As a remaining contribution for this work, we propose an implementation of the

model’s lower two layers. The next chapter presents how the previously discussed

work can be leveraged to enable the distribution of jobs and sharing of resources

among providers.

90

CHAPTER 6

AN ANALYSIS OF PROVISIONING AND ALLOCATION POLICIES

FOR INFRASTRUCTURE-AS-A-SERVICE CLOUDS

In the previous two chapters, we have defined a meta-scheduler to execute jobs

across organizations’ physical resources and an Infrastructure as a Service manager

to instantiate virtual machines. However, acquiring virtual infrastructure and map-

ping jobs to it requires different strategies that need to be studied jointly. In this

chapter we identify the two stages involved in the process of executing job workloads

on virtual resources, namely job allocation and VM provisioning, and experimentally

investigate their behavior based on metrics such as cost or makespan. We provide

a taxonomy for both types of policies and analyze them in real clouds at FIU, TU

Delft and Amazon EC2 by executing synthetic workloads representing different ar-

rival and execution patterns. Finally we explore the interplay between allocation

and provisioning and propose a set of coordinated policies that result in lower costs

and job slowdown.

6.1 Introduction

Recent advances [GWT+08, GHJ+09] in the high-speed yet low-cost interconnec-

tion of off-the-shelf computational and storage resources have facilitated the cre-

ation of data centers of unprecedented scale. As a consequence, a fundamental

shift is beginning to occur in the way computational resources are provisioned and

allocated by our society, from traditional ownership to Infrastructure-as-a-Service

(IaaS) clouds—leasing and releasing virtualized resources.

Although hundreds of commercial IaaS providers exist, to transition to IaaS

clouds users still need detailed understanding of achieved performance and incurred

cost. In particular, potential IaaS users need to understand the performance and

91

cost of resource provisioning and allocation policies, and the interplay between them.

To address this need, we conduct an empirical analysis of resource provisioning and

allocation policies for IaaS clouds.

The basic operation of an IaaS cloud is to temporarily instantiate on-demand

virtual machines (VMs)—of pre-agreed computing power and memory size, operat-

ing system and provided libraries, and, usually, some measure of Quality of Service

(QoS). Providers host the resources shared by all users and can take advantage of

economies of scale by leasing their physical infrastructure as virtualized resources

to many different classes of users. Users provision, that is, acquire and release, re-

sources based on their actual needs, only when, where, and for how long needed;

they can allocate the provisioned resources according to the specific requirements

of the workloads at hand. This model makes IaaS clouds a flexible solution that

reduces or completely eliminates the need for acquiring and managing costly physi-

cal resources, but also introduces the need to consider online the trade-off between

performance (more resources) and cost.

The provisioning and allocation policies can have an important impact on the

traditional performance metrics, from workload makespan to individual job slow-

down [dAdCB09]. Since instantiating a large number of VMs is simple, over-

provisioning can incur a substantial yet unnecessary cost; when the allocation policy

is inefficient, a dynamic provisioning policy may lease resources that remain largely

unused [GG11]. The pricing scheme of the IaaS cloud, which may include hourly

charging periods and discounts for first-time use, may lead to different cost gains

than expected from actual resource consumption.

The performance-cost trade-off has been extensively studied in the context of

grids, mainly from the perspective of users also acting as providers and looking for

economic gain [SAL+04] or for sharing fairness [BAGS02]. Moreover, more tradi-

92

tional resource managers such as Condor support [TTL05, DSL+08], through ver-

satile job specification languages, complex criteria for the selection of resources.

Several studies [dAdCB09, KV10, GG11] have approached this trade-off in simu-

lation, in the context of clouds. However, until now no study has investigated in

practice the impact of the provisioning and allocation policies that users can em-

ploy, and of the interplay between these policies, in the context of clouds. The need

for empirical evaluation stems from recent results [JPC09, IYE11] in cloud per-

formance evaluation, which show that cloud performance is much lower and more

variable than considered in simulation models. In this chapter we propose a com-

prehensive investigation of provisioning and allocation policies for IaaS clouds. Our

main contribution is threefold:

1. We identify eight provisioning and four allocation policies that can realistically

be applied for managing workloads in IaaS clouds (Section 6.3);

2. We conduct an empirical investigation using three IaaS clouds, including the

services provided by the commercial IaaS Amazon EC2 (Section 6.4);

3. We analyze empirically and, only for the otherwise expensive experiments, in

simulation the performance and cost of resource provisioning and allocation

policies, and the interplay between these two types of policies (Section 6.5).

6.2 System Model

In this section we present the system model used throughout this work.

6.2.1 Workload Model

Although desirable, it is not yet possible to define a realistic workload for IaaS clouds,

due to the scarcity of public workload traces or common practice reports. The Grid

93

Figure 6.1: The cloud ecosystem.

and Parallel Workload Archives provide in total tens of workload traces, but it is yet

unknown if the users of these environments will migrate to IaaS clouds [IOY+11].

Iosup et al. have already shown in a characterization of over fifteen grid work-

loads [IE11] two trends: the disappearance of tightly-coupled parallel jobs in favor

of Bags of Tasks (BoTs), and the decrease of the amount of work (runtime) of each

task.

In this chapter, we consider synthetic, BoT-based workloads with runtimes typi-

cal for data mining and semi-interactive processing, that is, several minutes [HKZ+11,

CGGK11]. In our workload model, jobs are CPU-bound and their runtime is de-

pendent on the speed of the (virtual) processor where they are executed.

6.2.2 Resource Model

In our system model, resources are provisioned exclusively from IaaS clouds. Al-

though hybrid local-cloud systems still exist, we anticipate with this work the mo-

ment when buying and maintaining local resources will be anachronistic. The cloud

ecosystem investigated in this work, which is comprised of the IaaS cloud provider(s)

94

and user(s), is depicted in Figure 6.1. We assume that users send their workloads to

a scheduler, which enqueues jobs and assigns them to the pool of available resources

based on an allocation policy. A system component manages the pool of resources

via a provisioning policy, that is, a policy that decides when to lease and to release

resources from IaaS clouds. This component can query the state of the allocation,

such as the queue size or the average waiting time for jobs.

We model the operation of IaaS clouds based on Amazon EC2, a popular com-

mercial IaaS. We assume that a provisioning request issued to the IaaS cloud will

incur delays that depend on the process used by the IaaS to select, lease-and-boot,

and release (shut down) a VM instance. Last, we assume that VMs have a cost

associated to their operation, with a cost model that is proportional, possibly non-

linearly, to the runtime of the VM instance, and not counting the time required to

boot or shut down the instance.

6.3 Provisioning and Allocation Policies

We present in this section the provisioning and allocation policies considered for this

work. Although we envision that future policies will adapt to changing workload,

evolving resources, and complex Service Level Agreements, we focus in this work on

the simple policies that may be realistically employed in practice, today.

6.3.1 Provisioning Policies

We consider for this work eight provisioning policies; we summarize their properties

in Table 6.1 and describe them next. Overall, we identify two main classes of provi-

sioning policies, static and dynamic. For the class of dynamic provisioning policies,

we investigate three criteria for deciding when the policies are called (triggers): the

95

Policy Dynamic Trigger Job Duration Increase Param.

Startup No — — —

OD-S Yes Queue size No 1
OD-G Yes Queue size No n

OD-ExecTime Yes Exec. time Yes 1
OD-ExecAvg Yes Exec. time No 1
OD-ExecKN Yes Exec. time No 1

OD-Wait Yes Wait time No 1

OD-2Q Yes Queue size Partial 1

Table 6.1: Overview of provisioning policies.

current size of the queue, the accumulated execution time of the queued jobs, and

the total waiting time among queued jobs. Some of the provisioning policies con-

sidered here require information about the duration of jobs, which is not always

provided by the user; we consider, for these policies, alternatives that estimate this

information from historical records. The last policy in Table 6.1 requires partial

information, that is, it only requires classification information—a job can be either

small or long. We now describe the provisioning policies, in turn:

1. Startup is a provisioning policy that leases all the needed VM instances during

the system startup. While this ensures that no delay will occur due to waiting

for new resources to be leased, this policy is not flexible–whether jobs arrive

or not in the system, VM instances are still leased and paid; also, this policy

cannot cope well with bursty system overloads.

2. On-Demand, Single VM (OD-S) is a näıve dynamic provisioning policy

that leases a new VM instance for each job that cannot be assigned to a

resource. VMs are shut down when they are not used for a certain duration,

determined as a parameter; by setting this parameter to 0 seconds, VMs are

96

released immediately after the job is completed. In general, this policy can

lead to thrashing, that is, frequent leasing and releasing of VM instances.

3. OD-Geometric (OD-G) is a dynamic policy that extends OD-S with geomet-

ric provisioning, that is, when new instances are needed this policy provisions

n0, n1, n2, ... machines in successive leases, where n is the increase parameter.

Similarly, this policy releases increasing amounts of instances. The decision of

(re)leasing instances is taken periodically, when the number of available VMs

falls below a threshold, or the number of tasks in the system queue exceed a

limit; here, we use a period of 20 seconds and (re)lease again whenever there

is at least one queued job/idle VM instance.

4. OD-ExecTime is a dynamic provisioning policy that uses the future execu-

tion time of queued jobs, which is assumed to be known a priori, to decide

on leasing or releasing VM instances. The decision to lease is adaptive to the

cloud, in that the execution time of queued jobs must exceed the average time

needed to provision and boot a VM instance (as observed for previously leased

VMs) by a specified factor, which is set in this work to 5.

5. OD-ExecAvg is similar to OD-ExecTime, but the execution time for each

queued job is estimated as the average execution time of all the jobs that have

already completed. An initial prediction of the average job run-time must be

provided by the user.

6. OD-ExecKN is similar to OD-ExecAvg, but uses a predictor based on [IÖF96].

For each job in the queue, OD-ExecKN acquires its k-nearest neighbors based

on the job input parameter size. Then, the estimated execution time for a job

is the average over this set of k neighbors.

97

Policy Uses Queue Job Duration Provisioning-Aware

FCFS Yes No No
FCFS-NW No No No

SJF Yes Yes No

FCFS-2Q Yes (2) Partial Yes

Table 6.2: Overview of allocation policies.

7. OD-Wait is similar to OD-ExecTime, but it considers the waiting times of

queued jobs instead of their future execution time.

8. OD-2Q is a provisioning policy that works in conjunction with the FCFS-2Q

allocation policy (Section 6.3.2). To minimize the trashing of VMs for short

running jobs, we define a bi-queue on-demand provisioning policy that leases

VM instances and assigns them to one of two pools. The two pools effectively

implement two OD-S queues with separate idle time parameters; here, we use

longer idle times for VMs that will run short jobs, so that thrashing is reduced.

6.3.2 Allocation Policies

We consider for this work four allocation policies; their properties are summarized in

Table 6.2. Most policies we investigate use one queue, but we also consider policies

that use two or no queue. Similarly to our approach for provisioning policies, we

consider here allocation policies that may require (partial) information about the

job duration. The last policy in Table 6.2 is provisioning-aware, that is, it works

in conjunction with the OD-2Q provisioning policy. We now describe the allocation

policies, in turn:

1. First-Come, First-Served (FCFS) is a traditional allocation policy that as-

signs one task per resource in the order in which the tasks have been submitted

to the system.

98

2. FCFS-NoWait (FCFS-NW) is an extension to FCFS where jobs are not queued

when no available VMs exist. Instead, this policy assigns jobs to VMs that

are already running other jobs, round robin. This policy eliminates the wait

time, but may introduce bottlenecks in the execution of jobs.

3. Shortest-Job First (SJF) is a traditional allocation policy that gives priority

to shorter jobs, assuming there is some information about or estimation of

their actual duration. Although it alleviates the FCFS problem of short jobs

waiting for the allocation of longer jobs with earlier arrival time, it can lead

to starvation for long jobs.

4. FCFS-MultiQueue is an extension to FCFS where several FCFS queues, one

for each range of job durations, are maintained. The simplest case considered

here, FCFS-2Q, has two queues, one for short jobs and another for long jobs.

Although an estimation of the runtime is necessary for this policy, it is enough

to have partial knowledge of it to classify jobs. This policy can work in con-

junction with a provisioning policy that divides VMs into pools for short and

long running jobs, such as OD-2Q (introduced in Section 6.3.1).

6.4 Experimental Setup

In this section we discuss our experimental setup, in turn, the SkyMark empirical

performance evaluation tool, the used testbeds, the workloads, and the employed

metrics.

6.4.1 The SkyMark Empirical Performance Evaluation Tool

Unless otherwise specified, we have conducted the experiments presented in this

work in real environments. To this end, we have implemented SkyMark, a per-

99

formance evaluation framework that enables the generation, submission, and mon-

itoring of complex workloads to IaaS cloud environments. SkyMark extends C-

meter[YIEO09], an IaaS performance evaluation framework, with provisioning and

allocation policies, new workloads, and new analytical capabilities. SkyMark cur-

rently supports IaaS clouds that implement Amazon EC2’s interface, including all

deployments using Eucalyptus, but interfaces to other clouds can be easily plugged-

in to the tool. SkyMark also supports the XML-RPC system interface of OpenNeb-

ula.

The experimental process uses SkyMark as follows: The user provides a workload

description file which is used to generate a real or synthetic workload. The workload

is then submitted to a cloud, using pre-specified provisioning and allocation policies.

Performance statistics are gathered throughout the execution of the workload and

then stored in a database. Last, the database is used for post-experiment analysis.

SkyMark effectively plays the role of both the user and the policies depicted in

Figure 6.1.

Since using a real testbed is constrained by actual resource and budget avail-

ability, we have also developed a discrete event simulator that duplicates Skymark

functionality. The simulator reads a workload description and generates events for

job arrivals, VM lifecycle, and pluggable allocation and provisioning policies.

6.4.2 Experimental Environments

We have performed experiments on three real IaaS clouds with different resources,

middleware, and virtualization systems. The three used systems are: the Delft

cluster of DAS-41, a six-cluster wide-area distributed system in the Netherlands; a

1http://www.cs.vu.nl/das4/

100

System Hardware Spec VIM/Hypervisor Max VMs

DAS4
Delft

8 dual quad-core
24 GB RAM

OpenNebula 3.0 /
KVM
(Full, HVM)

64

FIU 8 Pentium 4
5 GB Memory

OpenNebula 2.2 /
XEN
(Para., No HVM)

7

Amazon EC2
eu-west-1

- - / XEN
(Para., No HVM)

20

Table 6.3: Overview of the experimental environments.

cluster at Florida International University (FIU); and the Amazon EC2 commercial

IaaS. The properties of the three IaaS clouds used in this work are summarized in

Table 6.3.

6.4.3 Workloads

We have used the following workloads, each hour-long:

1. Uniform: A steady stream of tasks throughout the experiment; uses a Poisson

arrival distribution. The average system load is around 70%.

2. Increasing: The workload intensity increases over time, in steps. The average

system load is around 50%.

3. Bursty: The workload features short spikes of intense activity amid long

periods of mild or moderate activity. The average system load is around 15%;

the maximum load is, for a few minutes, 170%.

For the simulated results in section 6.5, we use the Uniform and Bursty work-

loads, and add a new one, Periodic, following a periodic increasing and decreasing

arrival pattern. For these workloads we also change the job durations. More details

are discussed in the corresponding section.

101

The jobs that comprise the workloads are synthetic and have an average execu-

tion time of 47 seconds with a standard deviation of 41.1, as measured on DAS-4

when jobs were run independently. The reason for selecting short job durations were

discussed in Section 6.2.1.

6.4.4 Performance, Cost, and Compound Metrics

We use a variety of performance, cost, and compound metrics to analyze the impact

of provisioning and allocation policies. For performance metrics, we look at the

workload makespan (WMS) and at the average job slowdown (JSD), defined per job

as the ratio of the actual runtime in the cloud and the runtime in a dedicated

environment; the former metric is useful for BoT users, while the latter is useful

for users of semi-interactive or individually-meaningful jobs. We also look at the

workload speedup, measured against a single node (SU).

We use two cost metrics. The actual cost (Ca) is defined as the sum of consumed

resources, here, CPUtime. The charged cost (Cc) is the price charged by the provider,

here, using the Amazon EC2 pricing model of charging CPUtime consumption in

increments of one hour.

6.5 Experimental Results

In this section we perform a set of experiments to explore the effects of different

policies and their interactions on different systems and under varying conditions. We

want to determine how policies perform, when it is better to use ones versus others,

and which allocation and provisioning policies work better when used together.

We present here only representative results; for complete results, we refer to our

technical report [VASI11].

102

6.5.1 Provisioning Policies

We first explore the effect of the provisioning policies. To this end, we use the same

allocation policy, FCFS, coupled in turn with each one of the provisioning policies.

We show the results in Figures 6.2, 6.3 and 6.4.

Figures 6.2 and 6.3 present the workload speedup (SU) and the job slowdown

(JSD) respectively. Startup always achieves the best performance. OD-S has similar

performance for the uniform workload, but is not as good for the variable workloads.

From the threshold-based policies, QueueWait usually performs better than the rest,

because it reacts faster to load variation. ExecTime and its variants have similar

performance, with ExecTime usually performing better, since ExecAvg and ExecKN

do not have exact job runtime information.

The charged cost (Cc) is shown in Figure 6.4. OD-S incurs the highest cost,

since VMs are started and stopped reactively to individual job arrivals. The group

of threshold-based policies and especially the Exec family of policies significantly

reduce the cost of workload execution. The cost reduction becomes bigger for the

increasing and bursty workloads.

6.5.2 Allocation Policies for Static Resources

In this experiment we want to study the performance of different allocation policies

and the static provisioning policy, Startup. Resources are acquired at the beginning

of the experiment, and then jobs are sent to the system.

We use the FCFS, the SJF, and the FCFS-NW allocation policies in the three

testbeds. Figure 6.5 lists the results only for the job slowdown metric, since we

did not observe significant differences in cost or makespan. The experiment shows

that SJF gives a lower slowdown, since shorter jobs are processed first, which means

103

 0

 10

 20

 30

 40

 50

S
pe

ed
up

DAS4

 0
 1
 2
 3
 4
 5

S
pe

ed
up

FIU

 0

 5

 10

 15

Uniform Increasing Bursty

S
pe

ed
up

Workload

EC2

Startup
OD-S

ExecTime
ExecAvg

ExecKN
QueueWait

Figure 6.2: Workload speedup (SU) for Provisioning policies. OD-S was not tested
on EC2, because of the significant cost that it would incur.

jobs in wait less time in the queue. Overall, FCFS performs similarly to SJF for the

uniform and increasing workloads, however its performance degrades when under

a bursty load. Lastly, the FCFS-NW policy, which assigns jobs to VMs with round-

robin, creates resource competition, and thus has worse results in all experiments.

6.5.3 Effects of Job Size Distribution in On-Demand Policies

In this section, we investigate the impact of the job size distribution. To this end,

we create an artificial workload with periodic arrival intervals with different ratios

of short and long jobs. For this case, jobs have runtime averages of 10 seconds for

short ones and 1 hour for long ones. We consider workloads composed of 25%, 50%

and 75% short jobs (SR25%, SR50% and SR75%, respectively).

104

 0
 5

 10
 15
 20
 25
 30
 35
 40

Jo
b

S
lo

w
do

w
n

DAS4

 0
 5

 10
 15
 20
 25
 30

Jo
b

S
lo

w
do

w
n

FIU

 0

 5

 10

Uniform Increasing Bursty

Jo
b

S
lo

w
do

w
n

Workload

EC2

Startup
OD-S

ExecTime
ExecAvg

ExecKN
QueueWait

Figure 6.3: Job Slowdown (JSD) for provisioning policies.

As figure 6.6 shows, the proportion of short and long jobs has a high impact in

the behavior of the employed policies. In particular, SJF favors the case when there

are few short jobs, since it doesn’t increase the waiting time for long running ones.

However, this same policy results in much higher slowdown when the number of

short jobs dominates the workload, producing starvation for long ones. Contrarily,

OD-S with FCFS results in consistently high slowdown, since it doesn’t offer any bias

towards any type of job. Finally, our policy gives a fairer treatment to both types of

jobs at the expense of fragmenting the available VMs in two groups. An additional

effect of this policy can be noticed in the cost of the 75% short job ratio being

slightly higher than the other two policies. This is produced by the fact that VMs

for long jobs are almost immediately shut down, therefore resulting in long jobs

having to wait more often. Even though this behavior doesn’t have an important

105

 0
 50

 100
 150
 200
 250
 300

H
ou

rs

DAS4

 0
 5

 10
 15
 20
 25
 30

H
ou

rs

FIU

 0
 5

 10
 15
 20
 25
 30
 35
 40
 45

Uniform Increasing Bursty

H
ou

rs

Workload

EC2

Startup
OD-S

ExecTime
ExecAvg

ExecKN
QueueWait

Figure 6.4: Charged cost (Cc) for provisioning policies.

effect for the other two workloads, the case where long jobs dominate the workload

makes it more noticeable.

6.5.4 Policy Interactions

We study here the interactions between allocation and provisioning policies. We use

the simulator to test six pairs of policies that comprise three provisioning, Startup,

OD-S, and OD-G; and two allocation policies, FCFS and SJF. We use three workloads

with one thousand jobs where half of the jobs have a runtime average of 10 seconds

and the rest of one hour. Jobs of the first workload, Uniform, have an interarrival

time of 10 seconds. The second one, Periodic, has four periods of increasing and

decreasing arrival times starting and ending at 60 seconds and peaking at 5 seconds.

106

0.0

1.0

2.0

3.0

4.0

Jo
b

S
lo

w
do

w
n

DAS4

0.0

1.0

2.0

3.0

Jo
b

S
lo

w
do

w
n

FIU

0.0

0.5

1.0

1.5

2.0

Uniform Increasing Bursty

Jo
b

S
lo

w
do

w
n

Workload

EC2

FCFS SJF FCFS-NW

Figure 6.5: Average job slowdown for allocation policies.

Finally the last one, Bursty, alternates five periods of 200 jobs with high (30 seconds)

and low (2 seconds) interarrival times.

Figure 6.7 shows the results of this experiment. We didn’t include makespan

in the figure since all policies had similar values. The top half of Figure 6.7 shows

the cost of running the workloads, and it can be seen how on-demand provisioning

policies are much more sensitive to variations in comparison to Startup. This is

especially noticeable for the periodic workload, which has the highest variability; For

the uniform workload, the system is at full utilization most of the time, minimizing

the benefits of dynamic provisioning policies. The bottom half of the Figure 6.7

shows the average job slowdown, and it illustrates how the SJF allocation policy

reduces the overall overhead for jobs by executing the shorter jobs first, and therefore

minimizing the time that jobs wait in general. Another conclusion is that Startup

107

 0
 100
 200
 300
 400
 500
 600

SR25% SR50% SR75%

H
ou

rs

Cost

 2
 4
 6
 8

 10
 12
 14
 16
 18
 20

SR25% SR50% SR75%

S
lo

w
do

w
n

Workload

Slowdown

OD-S+FCFS OD2Q+FCFS2Q OD-S+SJF

Figure 6.6: Slowdown and cost for job runtime ratios

results in lower slowdown in comparison to dynamic provisioning policies, due to the

lack of overhead for VM booting and shutdown. Additionally, the figure illustrates

how the OD-G policy results in slightly higher slowdown. The reason for this is that

the geometric increase of VMs needs some time to ramp up to reach the required

number of VMs to run all jobs in the queue, while the OD-S policy instantiates one

VM for each waiting job.

6.5.5 Effects of VM Provisioning Time

In our experiments, we observe that one of the attributes that most acutely affects

the behavior of policies is VM thrashing, already defined as the overhead produced

by inefficient booting and shutdown of Virtual Machines. Thrashing is directly

108

 0

 200

 400

 600

 800

 1000

Uniform Periodic Bursty

H
ou

rs

Cost

 0
 40
 80

 120
 160
 200
 240

Uniform Periodic Bursty

S
lo

w
do

w
n

Workload

Slowdown

ST+FCFS
OD-S+FCFS

OD-G+FCFS
ST+SJF

OD-S+SJF
OD-G+SJF

Figure 6.7: Slowdown and cost for groups of policies

related to the cost of provisioning new resources, and then destroying them, which

in turn depends on the provider’s VM booting time. As discussed by Iosup [IYE11],

this time is highly variable for public IaaS providers such as Amazon EC2, but

multiple researchers are studying better mechanisms to instantiate virtual resources,

such as caching or performing virtual image snapshots. With the adoption of new

provisioning improvements, we can hypothesize of their effects in existing policies

to provide a glimpse of the upcoming needs in virtual provisioning systems.

One example of the effects of provisioning time in virtual providers can be seen

in section 6.5.3, where the slowdown produced by high provisioning time to job

execution ratio forces providers to implement reuse strategies to avoid jobs waiting

for VMs to start. In our case, the pair of OD-2Q and FCFS-2Q policies take the

tradeoff of fragmenting the available VMs (between a long and a short job queue) to

109

VM Boot Time = 900

 0
 100
 200
 300
 400
 500
 600

SR25% SR50% SR75%

H
ou

rs

Cost

 0

 5

 10

 15

 20

 25

 30

SR25% SR50% SR75%

S
lo

w
do

w
n

Workload

Slowdown

OD-S+FCFS OD2Q+FCFS2Q OD-S+SJF

VM Boot Time = 300

 0
 100
 200
 300
 400
 500
 600

SR25% SR50% SR75%

H
ou

rs

Cost

 0

 5

 10

 15

 20

 25

 30

SR25% SR50% SR75%

S
lo

w
do

w
n

Workload

Slowdown

OD-S+FCFS OD2Q+FCFS2Q OD-S+SJF

VM Boot Time = 20

 0
 100
 200
 300
 400
 500
 600

SR25% SR50% SR75%

H
ou

rs

Cost

 0

 5

 10

 15

 20

 25

 30

SR25% SR50% SR75%

S
lo

w
do

w
n

Workload

Slowdown

OD-S+FCFS OD2Q+FCFS2Q OD-S+SJF

VM Boot Time = 1

 0
 100
 200
 300
 400
 500
 600

SR25% SR50% SR75%

H
ou

rs

Cost

 0

 5

 10

 15

 20

 25

 30

SR25% SR50% SR75%

S
lo

w
do

w
n

Workload

Slowdown

OD-S+FCFS OD2Q+FCFS2Q OD-S+SJF

Figure 6.8: Effects of VM boot time

achieve a lower slowdown. Thus, we can ask whether this tradeoff is still desirable

when VM provisioning time decreases.

Therefore, here we reproduce the experiments from section 6.5.3, varying VM

booting times and accounting for the observed changes in metrics such as slowdown

and cost. For each of these experiments, we modify the VM BOOT TIME param-

eter from the simulator, originally set to our empirically oberserved value of 600

seconds, to the values of 900, 300, 20 and 1 second. Figure 6.8 shows the outcome,

while the results for the original parameter of 600 can be seen in figure 6.6.

From this experiment, we can appreciate that, for this type of workloads, cost

is mostly unaffected by the VM’s booting time. However, there is an important

difference in the average job slowdown, since most of the time jobs spend in waiting

is due to VM startup. The first conclusion that we can extract is that differences

110

between policies have the highest impact when booting time is high. In effect, for

the case of instantaneous VM booting —corresponding to bottom-right graph in

the figure—, variations in slowdown between the different policies is minimal. The

second insight from this experiment is related to the benefits of the multi-queue

provisioning and allocation policy pair. High booting times, as depicted in the top-

left corner, affect such policies negatively. In fact, for this scenario the SJF policy

performs better for the SR25% and SR50% workloads. This can be attributed to the

penalization of having VMs separated in two queues, with the result that jobs from

one queue cannot reuse VMs from the other one. This is specially negative when

the waiting time for new VMs is high, as in this case. On the other side, we can see

how the benefits of the two-queue policies dwindle as the penalization for thrashing

diminishes. In the case of instantaneous VM booting, all the achieved benefits from

these policies are lost, and only the fragmentation issue remains, converting this

pair of policies in the less beneficial choice.

6.6 Simulator Validation

The use of simulation throughout this chapter fulfills an important role to support

the empirical experiments executed in actual IaaS providers. The cost associated

to running such experiments, in terms of time, energy and economic requirements,

greatly restricts the scope of the tests. Conversely, the data acquired from such

executions is specially valuable since it captures all the underlying details from each

platform, such as the effects of concurrent VM provisioning on disk and network,

the performance associated to each virtual manager implementation, or the effects

of the virtual machine monitor, to name a few.

Even though our simulator tries to replicate the behavior of Skymark —and

in fact, it shares implementation details such as the submission or provisioning and

111

allocation policies’ code—, it is necessary to establish a baseline to ensure the results

produced with it are close to those achieved by the real execution experiments. In

this section, we define such a baseline by replicating some of the experiments in

previous sections to give a minimum set of guarantees in terms of the simulator’s

expected behavior.

For all the experiments in this sections, we reproduce the runs from the FIU

site to compare the effect of different provisioning policies for different types of

workloads, Uniform, Increasing and Bursty, as defined in section 6.4.3. We create

synthetic traces with the same properties as the ones employed in the real testbeds,

with the difference that instead of actually executing computational jobs on the

virtual resources, we replicate their behavior in terms of arrival distribution and

duration. This fact rules out the comparison with the ExecKN policy, which uses

specific job parameters to estimate their runtimes.

In oder to establish a baseline, we perform repeated runs for each of the experi-

ments, and compare two of the fundamentally defining values for each of the policies,

namely slowdown and execution cost. The rest of the attributes used in this chapter

can be derived from these. Then, we calculate the resulting mean across execu-

tions and the mean’s confidence interval. By placing the results obtained from real

testbeds among the obtained range, we can assert that the simulation is sufficiently

accurate for our purposes.

For each of the validation experiments, we generate workloads following the orig-

inal model in terms of overall duration, job length average and standard deviation,

arrival distribution and system load. Each workload is executed 30 times, and a

95% confidence interval is calculated for the resulting mean.

Figures 6.9, 6.10 and 6.11 depict the results of the experiments. As it can be

observed, our simulator provides close results to the real environments in terms

112

 0

 5

 10

 15

 20

 25

Startup OD-S ExecTime ExecAvg QueueWait

Physical results
Simulated results

 0

 5000

 10000

 15000

 20000

 25000

Startup OD-S ExecTime ExecAvg QueueWait

Physical results
Simulated results

Figure 6.9: Simulator validation for steady workload

 0

 10

 20

 30

 40

 50

 60

Startup OD-S ExecTime ExecAvg QueueWait

Physical results
Simulated results

 0

 5000

 10000

 15000

 20000

 25000

 30000

Startup OD-S ExecTime ExecAvg QueueWait

Physical results
Simulated results

Figure 6.10: Simulator validation for increasing workload

of slowdown and cost. Additionally, we can extract additional insights from the

experiments regarding the variability of the simulated results. First, the Startup

policy tends to result in very close slowdown and cost values, confirming that the

most important component in these metrics results from VM provisioning decisions.

Second, we can see that the ExecTime policy is highly sensitive to variations in the

generated workloads, since it makes decisions based on the actual execution time

of the jobs. Contrarily, the ExecAvg policy has a lower variation for the uniform

workload since it averages job durations to determine when to provision new VMs.

This effect does not hold for the increasing and bursty workloads, since the averaging

of past executions cannot predict load increases.

113

 0

 10

 20

 30

 40

 50

 60

Startup OD-S ExecTime ExecAvg QueueWait

Physical results
Simulated results

 0

 5000

 10000

 15000

 20000

 25000

 30000

Startup OD-S ExecTime ExecAvg QueueWait

Physical results
Simulated results

Figure 6.11: Simulator validation for bursty workload

6.7 Conclusion and Future Work

To manage their workloads, current and near-future users of IaaS clouds need a

better understanding of the performance and cost of provisioning and allocation

policies. In this work we have conducted a comprehensive study of these two types

of policies, and of the interaction between them.

Overall, we have investigated eight provisioning and four allocation policies, and

their interplay. We have developed SkyMark, a framework for IaaS performance

evaluation, and conducted with it empirical research in three IaaS clouds, including

Amazon EC2. Due to actual resource and budget availability constraints, we have

also duplicated SkyMark functionality in a discrete event simulator. Based on results

obtained in real and simulated IaaS clouds, we conclude that none of the tested

(combined) policies is consistently better than the others across all cases. Our five

main findings are summarized below:

1. OD-ExecTime and its two variants (especially OD-ExecKN), are a good performance-

cost trade-off among the investigated provisioning policies;

2. Geometric on-demand provisioning policies, such as OD-G, are worse than

single-VM on-demand policies;

114

3. The combined OD-2Q–FCFS-2Q policy, which we are the first to investigate in

the context of clouds, is a good slowdown-cost trade-off for workloads with a

significant ratio of short to long jobs;

4. Näıve static provisioning policies deliver stable performance, but incur up to

5 times higher cost;

5. Allocation policies with information about job runtimes achieve significantly

better performance than uninformed allocation policies, when coupled with

dynamic provisioning policies.

In the future, we plan to extend this work to consider new provisioning and

allocation policies that adapt to changing workload, evolving resources, and complex

Service Level Agreements. We will also investigate more diverse types of workloads,

such as the typical workloads of grids [IE11].

115

CHAPTER 7

SCHEDULING PARALLEL WORKLOADS ACROSS VIRTUAL

PROVIDERS

In the previous chapter, we discussed the relationship between the processes of

virtual machine provisioning and job-to-VM allocation for single-processor tasks.

Here, we take a step further and expand on our findings in two directions. First,

a more general view of computational jobs is taken, in particular, trying to model

multi-processor scientific applications. Such jobs show a degree of parallelism and

different communication requirements: from tight job coupling with low latency

needs to highly distributed or “embarrassingly parallel” tasks. We explore the effects

of different provisioning and allocation policies when multiple processors —or VMs—

are required, and propose improvements to strict queuing strategies such as First

Come First Served, and relaxed ones such as First Come Best Fit. Secondly, we

envision a novel brokering approach spawning from our work in inter-site meta-

scheduling in chapter 4 where virtual resources from partnering sites are shared to

execute scientific workloads. In particular, we explore how site provisioning and

allocation policies, which as shown in the previous chapter can be controlled by

users, can be considered in the site-selection stage of the broker to improve global

metrics such as response time or cost.

7.1 Background

Most of the work in meta-scheduling considers the scenario of collaborating sites with

locally owned physical infrastructure, usually exposed to an organization through a

batch scheduler and shared to external partners through a public API or protocol.

This model was introduced in chapter 4, where we defined and implemented an

interoperable and de-centralized meta-scheduler.

116

However, the rapid emergence of virtualization represents an important change

in how scientific workloads are executed. There are still applications that need close

access to the hardware and high levels of customization to extract the most from

physical resources, but a growing number of users are targeting virtual machines

due to better control, higher flexibility and ease of use; thanks to the possibility of

encapsulating all the necessary details to execute the application. Birkenheuer et

al. [BBK+12] discuss many of the benefits of using virtualization for High Perfor-

mance Computing users, and describe new solutions to improve I/O and networking

bottlenecks, which constitute the main problem for communication-bound software

[LHAP06, PCI].

Hardware virtualization, and in particular Virtual Machines, provide new oppor-

tunities and challenges to HPC users. The most relevant characteristic related to

scheduling is that resources can be acquired —and released— on demand, thus cre-

ating the possibility of energy savings to providers by multiplexing their hardware

(consolidation) and turning off unused infrastructure. Furthermore, job submitters

have a much larger pool of execution candidates, since all the required software stack

—Operating System, libraries, executables and even input data— is self-contained

in the VM image. Thus, assuming that members of a federation of providers em-

ploy compatible virtualization technologies, job requests can be off-loaded with more

flexibility. Contrarily, users who executed specialized workloads in the grid needed

out-of-band communication with system administrators to install required libraries

or special compilation jobs to create the necessary binaries for each system, based

on the available compilers, libraries or Operating System versions.

There are still limitations to inter-site execution of workloads, especially for ap-

plications that require very high volumes of data transfer, either as an input or as

an output. However, cheaper storage and faster interconnections among partners

117

is enabling more applications to be executed across organizational bounds. In this

chapter we assume applications don’t have high data dependency, either because

collaborating partners already have the necessary input, or because these appli-

cations don’t incur in high costs to transfer the required information in and out.

Examples of the first case are collaborators in High Particle Physics such as CERN

or Fermilab, where multiple sites (organized as tiers) may replicate detector data,

or BioInformatics teams that cooperate in the study of a particular organism, thus

hosting the required database across multiple sites. An instance of the second ap-

plication type is weather simulation with WRF [MDG+04], where input and output

data is relatively small.

In the previous chapter we explored some of the benefits of using virtualized

resources and proposed new policies to take advantage of the fast provisioning of

new infrastructure based on user demand. One of the most important conclusions

consists in the benefits of on-demand provisioning in terms of cost savings versus

traditional, always-on resources (exemplified by the Startup policy). In this chapter

we extend our findings in three main directions:

1. We implement a more general model of scientific computation, considering

parallel jobs. Such applications represent a high portion of existing workloads

in clusters and grids [IJSE07]. Parallel jobs need to run in multiple resources

concurrently for a period of time to produce the requested output.

2. We consider the effects that different provisionig and allocation policies have in

the site-selection phase of meta-scheduling. In particular, we take advantage of

the additional information each partner has about provisioning capabilities for

other peers. With this additional information, we show that better forwarding

strategies can be implemented that reduce VM thrashing (i.e., overhead due

to startup and shut-down) and job slowdown.

118

Figure 7.1: Virtual provider federation model

3. We use realistic workloads to better represent real submission patterns from

HPC users. In addition to the synthetic executions used in the previous chap-

ter, we implement a simulator capable of running thousands of parallel jobs

across collaborating providers.

We propose a federation model where meta-schedulers are used to share virtual

resources among peers, while exploiting the benefits provided by virtual infrastruc-

ture, in terms of flexibility and additional control over how and when resources are

created. Figure 7.1 shows our general approach combining a meta-scheduler com-

ponent and a cloud controller. While the first one manages communication with

other members of the federation, the second is, in charge of provisioning VMs and

allocating jobs to them.

The rest of the chapter is organized as follows: In section 7.2, we give an ex-

planation of the main ideas used through the chapter, including the design of our

simulator, the employed traces and the virtual resource brokering model. In section

119

7.3 we discuss the different policies considered. Section 7.4 contains experimental

results and a discussion of their significance. Finally, in section 7.5 we validate the

used simulator to provide confidence intervals for the experiment results.

7.2 System Model

The work in this chapter combines and expands on two of our already discussed con-

tributions. In the first place, we take the peer-to-peer distributed meta-scheduling

model discussed in chapter 4 and extend it to consider virtual providers. Secondly,

we build upon the simulation capabilities of Skymark, already described in chapter

6, to be able to measure long execution traces across different providers. While the

objective of the previous chapter was to give a realistic view of job scheduling in

actual virtual providers such as OpenNebula or Amazon EC2, here we want to take

a broader perspective in order to study the effects of meta-scheduling, provisioning

and allocation policies on large workloads and deployments, something that is diffi-

cult to achieve using real-time execution in existing providers due to high costs and

very long experiments, in the order of days or weeks.

7.2.1 Brokering Across Virtual Providers

In our peer-to-peer meta-scheduling architecture, described in section 4.2, we intro-

duced a communication protocol to enable the offloading of jobs among collaborating

sites with physical resources. The protocol is divided in three main aspects: commu-

nication, resource information and job execution. Our proposed model assumes that

each site has a collection of physical resources, which can be heterogeneous, that are

controlled by a Local Resource Management System (LRMS) and made accessible to

other partners through a concrete implementation of the protocol. In our particular

120

instance of the FIU meta-scheduler, a cluster running Sun Grid Engine [Gen01] and

the Globus middleware [FK96] were joined to external sites through the protocol.

The main role of the meta-scheduler is to determine the most appropriate peer

to run a particular job. This process is known as site-selection. In our system, users

send jobs described by the JSDL [ABD+05] format, which allows the specification

of binaries, hardware and software requirements and the desired degree of paral-

lelism. The job execution interface of the meta-scheduler receives the submissions

and determines whether to run the jobs on local resources, or to forward the jobs to

other sites, following a site-selection strategy. Such strategies may consider different

information provided through the meta-scheduling protocols, such as the number of

resources available at other locations, or locally computed data, such as the number

of jobs successfully run in the past.

However, one of the requirements for this approach is that each site maintains

independence from its partners. LRMSs at each site are controlled by local ad-

ministrators, and therefore no assumptions can be made by a meta-scheduler about

the scheduling policies used internally. Additionally, resources are fixed at each site

(with the exception of failures or upgrades, which are not the norm), and therefore

the job of the meta-scheduler is rather limited.

With the advent of virtualization, this scenario changes considerably. Virtual

providers are in charge of instantiating Virtual Machines per request of users, and

while there is no external control over how VMs are allocated to physical resources,

users can control how many VMs are provisioned, and how jobs are mapped to them.

This idea is similar to Virtual Clusters [CIG+03, RMNC06, MKFG09], although in

our case provisioned VMs don’t have a long-term life unless there is demand for

them. Our scenario is more dynamic than Virtual Clusters, focusing on the better

usage of resources than on middleware installation, monitoring or user management.

121

Figure 7.2: Virtual provider model

In our model, we divide each partner in the federation in three main compo-

nents, as shown in figure 7.2: The Meta-scheduler, the Cloud Controller, and the

Virtual Infrastructure Manager. The Meta-Scheduler is in charge of communica-

tion with other peers to share resource information and off-load jobs between sites

according to a particular forwarding policy. The Cloud Controller has a similar

role to Skymark, and is in charge of provisioning new VMs and allocating jobs to

them, according to the defined provisioning and allocation policies. Finally, the

Virtual Infrastructure Manager has the capabilities of instantiating VMs on the

physical substrate and managing VM images. The Cloud Controller interacts with

the Virtual Infrastructure Manager through an available API. Examples of Virtual

Infrastructure Managers are OpenNebula, Eucalyptus or Amazon EC2.

The Cloud Controller shares information about the employed policies, the current

state of the resources, and the available capabilities. The dynamic nature of virtual

infrastructure can directly impact site-selection strategies by making much more

122

Physical Providers Virtual Providers

Number of available machines Maximum number of VMs
Queue length Available VMs

Average job waiting time Provisioning policy
Successful job ratio Allocation policy

VM uptime
VM idle time

Table 7.1: Comparison of physical and virtual provider information.

information available to the meta-scheduler. Table 7.1 lists some differences in the

available information that the meta-scheduler can use to perform site-selection.

7.2.2 Simulator

In order to study the effects of different policies on workload execution across sites,

we extended our work in the simulation embedded in Skymark, presented in last

chapter, to process more complex workloads and multiple sites. The simulator pro-

cesses events generated from user job submissions and computes the steps at a

virtual provider from the job arrival time until it is assigned to a VM and final-

ized. Provisioning and allocation policies can be defined to control how VMs are

provisioned and how jobs are allocated to them.

The first change added to the simulator is to account for multiple sites, each con-

trolled by a meta-scheduler. In this new model, multiple collaborating organizations

can be defined in the simulator. Each organization publishes internal functionality

through a meta-scheduler and is able to receive jobs from users and also from other

meta-schedulers. The meta-scheduler receives a job, signaled by the JOB ARRIVAL

event, and determines where to assign it, based on the information from other peers

and the employed forwarding policy. Then, it generates a JOB ASSIGN event to trans-

fer the job to a particular provider, which adds it to a local queue. Virtual Providers

123

are in charge of running jobs on their own resources by provisioning new VMs (or

reusing existing ones) and allocating the queued jobs to the VMs according to an

allocation policy. Meta-schedulers may decide to re-submit already assigned jobs to

a more appropriate site based on internal metrics such as the time the job waited

in the queue or updates in peers’ information, such as load change.

The second addition to the simulator is implementing the capability to run par-

allel jobs. In our previous contribution we consider only single processor workloads,

but in order to study a wider range of scientific traces we examine the effects of

multi-processor tasks. For this, we added a new attribute to jobs, where required

CPUs can be specified. The addition of multi-processor jobs can lead to starvation

depending on the employed policies, and different optimizations need to be made to

improve throughput and reduce slowdown when they are present.

While there are virtual providers that offer multi-CPU VMs, we opted to assign

one VM per requested processor. For example, a 16 cpu jobs would be assigned to

16 VMs that would run in parallel. Our assumption can be justified by the fact that

running each task in a different VM gives a better isolation among processes and

reduces the possible contention originated by running multiple jobs in one single

machine.

7.2.3 Workloads

For this work, we also aim to explore the behavior of the different policies on large

workloads and sites in order to have a better idea of the tradeoffs caused by the

choice of strategies. We use real scientific traces to replicate realistic scenarios in

the field of HPC. We focus on two of them, each representing two different types of

jobs. In the first case, we run a fragment of the Cornell Theory Center SP2 trace,

from the Parallel Workloads Archive [Fei08], representing a week of execution on

124

0

500

1000

1500

2000

0 100000 200000 300000 400000 500000

C

P
U

s

Time (s)

CTC Resource Usage

0

100

200

300

400

500

600

700

800

0 20 40 60 80 100 120 140

of

 jo
bs

of CPUs

CTC Requested CPUs

Figure 7.3: CTC Trace characterization

0

500

1000

1500

2000

0 100000 200000 300000 400000 500000 600000 700000

C

P
U

s

Time (s)

SHARCNET Resource Usage

0

200

400

600

800

1000

0 20 40 60 80 100 120 140

of

 jo
bs

of CPUs

SHARCNET Requested CPUs

Figure 7.4: SHARCNET Trace characterization

approximately 450 machines. Secondly, we use the SHARCNET trace from the Grid

Workloads Archive [ILJ+08], which consists of a grid workload. Figures 7.3 and 7.4

show two aspects of each workload. On the left, the graphs illustrate each workload’s

ideal queue length, assuming there are infinite resources. The right figures contain

the traces’ cpu request distribution.

As it can be seen in the figures, these two traces represent very different HPC

paradigms. The CTC trace represents a workload sent to a dedicated cluster with

highly parallel, tightly coupled applications such as WRF. As the left graph shows,

jobs arrivals are evenly distributed through time, following day-night submission

125

patterns. The histogram to the right depicts that, even though most jobs are single-

processor, there are many multi-processor requests. In the second case, the SHARC-

NET workload evidences the use of Bags of Tasks in grids [IJSE07], this is, usually

best effort, loosely coupled jobs that can be easily distributed among partnering

organizations. The queue lenght graph on the left shows an uneven arrival pattern

with a higher concentration of arrivals at the beginning and a cool-down period

(showed by a long tail) at the end. The cpu distribution graph on the right points

to a majority of single-processor jobs. On average, the second trace has an ideal

utilization of approximately 1100 cpus with an infinite number of resources.

7.3 Policies

In this section we describe the different studied policies. We first discuss the dif-

ferences between allocation policies that execute jobs in strict order of arrival and

those that can move jobs from the back of the queue. An important consideration

here is that we are assuming the user doesn’t have exact information about the job’s

runtime. Mu’alem et al. [MF01] studied the difficulty that users face when asked

to give good estimates of their jobs’ running time. This constraint rules out the

BACKFILL policy, which we do not consider here.

7.3.1 FCFS vs. FCBF

There have already been studies comparing scheduling policies that consider strict

order of arrival (concretely First Come First Serve or FCFS) and others that try to

optimize resource utilization by moving jobs forward in the queue when they are

better suited to run than the one at the head. We call this family of policies First

Come Best Fit (FCBF), since there is still a concept of ordering, but more appropriate

126

jobs are favored. In FCFS, a job requesting multiple processors can block other jobs

if there are not enough available resources to service it, even though other jobs could

be moved forward in the queue to utilize them. However, in the case of FCBF, an

aggressive policy promotes small jobs to decrease the average waiting time, at the

cost of potentially causing starvation for jobs with large resource requests.

The reason we need to revisit these policies in this work is that existing re-

search considers physical —and therefore static— resources, while in our model,

provisioning policies may favor on-demand instantiation of VMs. These policies, as

discussed before, bring important benefits in execution cost. However, they change

how FCFS and FCBF behave. For example, in the case of partially available resources

to serve a job, the allocation policy has three possibilities: To wait until there are

available VMs, to provision new ones, or to move jobs that can run ahead in the

queue. One important consideration is that partially available resources need to be

marked until there are enough to fulfill the number of required processors by a job,

so that they are not released due to being idle. We implemented this feature by

allowing allocation policies to reserve VMs, which prevents provisioning policies to

stop them.

Based on the enumerated possible decisions, we have implemented a dynamic

FCFS policy and three different variants of FCBF. FCFS always reserves any free

VMs until there are enough to run the job at the head of the queue. For the FCBF

family of policies, we implement three types. The fist one, FCBF-Aggressive, always

promotes jobs to the front of the queue if there are enough VMs to run any of them.

Otherwise, VMs are reserved for the first one conditionally, but this condition is

revisited at every scheduling step. The second variant, FCBF-Split, divides the

available VMs for the job at the head and for other jobs (assigning the remaining

ones at the end of the process to the head). Finally FCBF-QWait promotes jobs in

127

the back of the queue unless the job at the head accumulates a waiting time higher

than the specified threshold.

7.3.2 Site Selection

The second group of strategies we focus on in this chapter is forwarding, or site-

selection policies. As explained before, while provisioning and allocation policies

reside in the Cloud Controller component, the meta-scheduler, which is in charge

of receiving user requests and negotiating execution among peers, may implement

different strategies for off-loading jobs. While chapter 4 explored some of these

strategies for physical providers, here we are interested in evaluating their role when

peers are virtual providers.

As a baseline, we implemented a basic strategy, RoundRobin, which alternates

the selected destination site among all the peers plus the local one. RoundRobin

results in a fair usage of sites, when they have approximately the same size, although

differences in load or provisioning capabilities require more advanced strategies.

A second groups of policies takes capacity into account, in order to select the

appropriate site when they have different sizes. First,we implemented HighestCap,

which chooses the site with the highest capacity, this is, potential number of VMs

that can be used. For example, a site that can instantiate a maximum of 100 VMs

and has 50 of the in use and 20 idle, it would have a capacity of 50 VMs (20 idle plus

30 potential). The second policy in this group, HighestIdle, forwards jobs to the

site with the highest number of idle VMs. BFCap assigns jobs to the site with the

closest capacity to the number of requested processors by the job. Finally, BFIdle

selects the site with the closest number of idle VMs to the size of the job.

128

7.4 Experimental Evaluation

In this section we simulate the submission, scheduling and execution of scientific

workloads to study the behavior of the policies described in the previous section.

First, we compare the use of FCFS and FCBF policies for a single site. Then, we

study different forwarding policies.

7.4.1 Experiment Setup

For the following experiments, unless noted otherwise, we set a scheduling interval

of 20 seconds at the meta-scheduler and 10 seconds at the cloud controller. VMs

are considered homogeneous and single-processor. VM booting time is 600 seconds,

and shutdown time is 60 seconds.

In order to evaluate each experiment, we use the following metrics:

• Makespan: the overall time from arrival of the first job until the last job is

finished.

• Slowdown: the average factor by which each job is slower than it would be if

there were enough resources for it to execute.

• Bounded slowdown: similar as slowdown, but only considering jobs with a

duration over a certain number. We set this threshold to 10. The duration of

jobs under this threshold is set to the threshold.

• Average Weighted Response Time (AWRT): the ratio of job waiting time,

weighted by the job duration and requested CPUs.

129

FC
FS

FC
BFA

gg

FC
BFQ

W

FC
BFS

plit
FC

FS

FC
BFA

gg

FC
BFQ

W

FC
BFS

plit
FC

FS

FC
BFA

gg

FC
BFQ

W

FC
BFS

plit
0

100000

200000

300000

400000

500000

600000

700000

800000

900000

M
a
k
e
s
p
a
n

OneThirdResources HalfResources OrigResources

CTC

FC
FS

FC
BFA

gg

FC
BFQ

W

FC
BFS

plit
FC

FS

FC
BFA

gg

FC
BFQ

W

FC
BFS

plit
FC

FS

FC
BFA

gg

FC
BFQ

W

FC
BFS

plit
0

200000

400000

600000

800000

1000000

1200000

1400000

M
a
k
e
s
p
a
n

OneThirdResources HalfResources OrigResources

SHARCNET

Figure 7.5: Makespan for OnDemand plus FCFS and FCBF policies

7.4.2 Single-Site Parallel Execution

First, we want to explore the different trade-offs of allocation policies with strict

order-of-arrival job servicing versus those that allow promotion of jobs in the queue

to the first position based on different heuristics. The initial experiment processes

the CTC workload at one site, varying the number of maximum VMs. For each trace,

we consider the cases of one third of the original resources, half of the resources,

and the same number of resources as in the original trace. By varying the number

of resources, we can explore the behavior of the policies under different contention

levels.

We compare the results for the OnDemand provisioning policy and the allocation

policies introduced in section 7.3.1: FCFS, FCBF-Aggr, FCBF-QW and FCBF-Split.

We set a threshold of 300 seconds for FCBF-QW. Figure 7.5 shows that the workload’s

makespan is mostly determined by the number of resources at the site. Since the

workloads don’t have a continuous usage of the infrastructure, the overall execu-

tion time is the same for both traces. However, the impact of the policies can be

appreciated for individual jobs, as showed next.

130

FC
FS

FC
BF
Ag

g

FC
BF
QW

FC
BF
Sp
lit

FC
FS

FC
BF
Ag

g

FC
BF
QW

FC
BF
Sp
lit

FC
FS

FC
BF
Ag

g

FC
BF
QW

FC
BF
Sp
lit

0

50000

100000

150000

200000

250000

300000

A
w
rt

OneThirdResources HalfResources OrigResources

CTC

FC
FS

FC
BF
Ag

g

FC
BF
QW

FC
BF
Sp
lit

FC
FS

FC
BF
Ag

g

FC
BF
QW

FC
BF
Sp
lit

FC
FS

FC
BF
Ag

g

FC
BF
QW

FC
BF
Sp
lit

0

100000

200000

300000

400000

500000

600000

700000

800000

A

�

rt

OneThirdResources HalfResources OrigResources

SHARCNET

Figure 7.6: AWRT for OnDemand plus FCFS and FCBF policies

Figure 7.6 depicts the AWRT metric, which gives a factor that illustrates the

waiting time, weighted by each job’s size in terms of running time and number of

requested processors. Here we can see that the FCBF-Aggr policy does have a bias

against jobs requesting multiple processors. This can be specially appreciated when

there is a high resource competition. The FCBF-QW policy achieves the same AWRT

as FCFS, which is the one with the fairest behavior.

Finally, figure 7.7 shows the bounded slowdown for each of the tested policies.

This experiment reveals how aggressive FCBF highly reduces the average job slow-

down. Overall, jobs have to wait up to five times less to execute when this policy

is used, at the expense of having jobs that request many processors wait longer.

However, since the number of jobs with few processors is very high in the studied

traces, this is a reasonable choice for the workloads studied here.

In conclusion, this experiments highlights how for parallel grid workloads, aggres-

sively promoting jobs to the front of the queue leads to better resource utilization,

with a small cost for large jobs. There is still the possibility of starvation for large

jobs; however, overall resource load should be much higher and constant for this to

happen. Based on the traces explored in this work, the benefits outweight the costs.

131

FC
FS

FC
BF
Ag

g

FC
BF
QW

FC
BF
Sp
lit

FC
FS

FC
BF
Ag

g

FC
BF
QW

FC
BF
Sp
lit

FC
FS

FC
BF
Ag

g

FC
BF
QW

FC
BF
Sp
lit

0

200

400

600

800

1000

B
s
lw
_
a
v
g

OneThirdResources HalfResources OrigResources

CTC

FC
FS

FC
BF
Ag

g

FC
BF
QW

FC
BF
Sp
lit

FC
FS

FC
BF
Ag

g

FC
BF
QW

FC
BF
Sp
lit

FC
FS

FC
BF
Ag

g

FC
BF
QW

FC
BF
Sp
lit

0

500

1000

1500

2000

2500

3000

B
s
l�

_
a
v
g

OneThirdResources HalfResources OrigResources

SHARCNET

Figure 7.7: Bounded slowdown for OnDemand plus FCFS and FCBF policies

7.4.3 Forwarding policies

The second set of experiments compares the effects of forwarding policies at the

meta-scheduler level when there are multiple sites that can instantiate virtual re-

sources. As explained at the beginning of the chapter, virtual providers can offer

richer information to be used by the meta-scheduler in the process of site-selection.

In this experiment we compare the execution of the CTC and SHARCNET traces

in one site with the maximum resources —450 for the first, 1100 for the second—,

and in two sites with different capabilities. We assign one third of the resources to

one site and two thirds to the other to showcase the effects of unbalanced behavior.

Then, we measure the effectiveness of different forwarding policies to select the

most appropriate site to run jobs. Considering the OnDemand provisioning policy to

instantiate VMs when more resources are required, we explore the behavior of two

groups of policies. The first selects sites based on the maximum number of potential

VMs, or the site’s capabilities; the second sends jobs to the site with higher idle VMs.

For each of these two types of policies, we create a variant for highest number of

resources and for closest number of resources. Thus, we evaluate the HighestCap,

BFCap, HighestIdle and BFIdle. We also consider RoundRobin as a baseline.

132

RR

Hi
gh
es
tC
ap

Hi
gh
es
t Id
le

BF
Ca
p

BF
Idl
e RR

Hi
gh
es
tC
ap

Hi
gh
es
t Id
le

BF
Ca
p

BF
Idl
e

0

100000

200000

300000

400000

500000

600000

700000

M
a
k
e
s
p
a
n

1 Site 2 Sites

CTC

RR

Hi
gh
es
tC
ap

Hi
gh
es
t Id
le

BF
Ca
p

BF
Idl
e RR

Hi
gh
es
tC
ap

Hi
gh
es
t Id
le

BF
Ca
p

BF
Idl
e

0

������

�������

�������

�������

�������

�������

�������

�

a

�

e
s
p
a

�

� �ite 4 Sites

SHARCNET

Figure 7.8: Makespan for forwarding policies in heterogeneous sites

Figure 7.8 shows that, besides the RoundRobin and HighestIdle policies, the

overall makespan is similar for the CTC and SHARCNET traces when resources

are concentrated in one site or distributed among multiple sites. The bad behavior

of the mentioned policies can be explained by the differences in site capabilities for

RoundRobin, which blindly alternates among peers. In the case of HighestIdle,

the policy favors that site with most available VMs, without accounting for the

actual capacity. This effect doesn’t happen with BestIdle, since the latter strategy

chooses more conservatively the target execution site.

Figure 7.9 depicts the bounded slowdown metric, which confirms the trend ex-

posed in the previous chart. Here, another difference is that RoundRobin has bet-

ter results for the SHARCNET trace, because both sites have a higher number of

resources and there is never as much contention in one location as in the CTC

experiment. In general, however, we can conclude that for virtual providers with

OnDemand provisioning policies, considering the potential capabilities provides better

site-selection decisions than just looking at the available resources at a given point

in time.

133

RR

Hi
gh
es
tC
ap

Hi
gh
es
t Id
le

BF
Ca
p

BF
Idl
e RR

Hi
gh
es
tC
ap

Hi
gh
es
t Id
le

BF
Ca
p

BF
Idl
e

0

50

100

150

200

250

300

350

400

B
s
lw
_
a
v
g

1 Site 2 Sites

CTC

RR

Hi
gh
es
tC
ap

Hi
gh
es
t Id
le

BF
Ca
p

BF
Idl
e RR

Hi
gh
es
tC
ap

Hi
gh
es
t Id
le

BF
Ca
p

BF
Idl
e

0

1000

�000

�000

4000

5000

6000

7000

8000

B
s
lw
_
a
v
g

1 Site 4 Sites

SHARCNET

Figure 7.9: Bounded slowdown for forwarding policies in heterogeneous sites

7.5 Simulator Validation

As we did in section 6.6, here we try to narrow the accuracy of our simulator in

order to provide quantitave confidence ranges to situate our results. As previously

discussed, the simulator is an evolution of the one used in conjunction with Sky-

mark in the previous chapter, adding support for inter-site job execution through

forwarding policies.

Therefore, we attempt to provide a baseline to validates the obtained results

by measuring the simulator’s behavior for the remaining functionality. Since the

execution of jobs inside of a site through the use of allocation and provisioning

policies was already studied and validated in chapter 6, the remaining work consists

in doing the same for forwarding policies.

Since the contents of this chapter are a natural extension of the grid meta-

scheduler architecture, it makes sense to consider whether our simulation can faith-

fully reproduce the results from chapter 4. Clearly, there is an important difference

between the two approaches, since the present chapter considers virtualization while

the former only performs job execution on physical resources. However, our simula-

tor already implements the Startup provisioning policy, which aims to replicate the

134

behavior of physical sites by starting all VMs before the jobs are sent to the system.

We choose the experiment from section 4.5.2, which executes a part of the Cornell

Theory Center workload using the unmodified meta-scheduler protocol and a real-

time emulator in order to validate the simulator. For all validation experiments, we

set the Startup provisioning policy as discussed before, then the FCBF-Aggr alloca-

tion policy to replicate the First-In First-Fit site scheduling from the emulator, and

define the three site configurations discussed in chapter 4. We execute the experi-

ments for the four different forwarding policies with each of the site configurations

and measure the resulting bounded slowdown.

In order to provide variability for the experiments, we select multiple sections

of the CTC trace with similar characteristics. Each of the workloads is processed

using the same scripts as in the previous experiments and the number of CPUs is

capped to 128. Then, we repeat the experiments for 10 workloads and calculate the

mean and 95% confidence intervals. Finally, we plot the results obtained from the

meta-scheduler and emulator in the graphics.

Figures 7.10, 7.11 and 7.12 show the simulated and empirical results for this

experiment. As it can be noticed, the results obtained from the real meta-scheduler

implementations and emulated physical resources fall within the ranges of confidence

for the simulator. We have observed that the ranges of confidence are relatively wide,

and this can be explained because of some degree of variability in the results. We

attribute this variability to small differences between the sections of the workload

chosen. Even though we choose periods that are close in time to minimize high

differences, there is an unavoidable digression that can be assigned to human sub-

mission patterns. However, we can still see that the trends are well defined and

agree with the already obtained results.

135

 0

 2

 4

 6

 8

 10

RR LowestQL HighestIdle LowestLoad

B
ou

nd
ed

 S
lo

w
do

w
n

Empirical results
Simulated results

Figure 7.10: Simulator validation for 1 Site

7.6 Conclusion

In summary, in this chapter we have studied different effects when scheduling sci-

entific parallel workloads between virtual providers with policy-based allocation,

provisioning and forwarding. First, we explored the effects of allocation policies

for parallel jobs, and in particular how aggressive scheduling with on-demand re-

source provisioning can in general reduce the average waiting time at the expense

of a slightly higher slowdown of large jobs. Secondly, we compared different site-

selection algorithms at the meta-scheduling level when sites can provision virtual

infrastructure. Here we learned that policies that consider site capacity, or potential

number of VMs, generally perform better than those who take into account dynamic

load, or number of idle resources at a given time.

136

 0

 5

 10

 15

 20

RR LowestQL HighestIdle LowestLoad

B
ou

nd
ed

 S
lo

w
do

w
n

Empirical results
Simulated results

Figure 7.11: Simulator validation for 2 Sites

 0

 10

 20

 30

 40

 50

RR LowestQL HighestIdle LowestLoad

B
ou

nd
ed

 S
lo

w
do

w
n

Empirical results
Simulated results

Figure 7.12: Simulator validation for 3 sites

137

CHAPTER 8

SUMMARY

In this dissertation we have identified the opportunities and current problems of

site federation to execute computational jobs on virtual and physical infrastructure.

Presently, a number of objectives have already been met by producing publications

in high impact scientific conferences and journals. This demonstrates the feasibility

and relevance of our proposed directions.

We have developed a grid meta-scheduler protocol capable of forwarding com-

putational jobs between different institutions with heterogeneous grid middleware

implementations [BFL+08, LVB+09]. The Gridway meta-scheduler [HML07] has

been improved to enable coordinated sharing of resources and the system has been

tested by defining a resource emulator capable of running the unmodified sharing

protocol between three sites.

We have proposed an initial federation model [VBR+12] by identifying three

different layers where sharing can be performed. We have determined the general

mechanisms required to either translate requests among layers or to exchange them

between providers. We also motivated the model with the example of a scientific

weather forecasting portal.

A study of allocation and provisioning policies for clouds has been conducted by

identifying different strategies and testing their joint behavior in real environments,

consisting of three different sites at FIU, TU Delft and Amazon EC2 [VASI12]. We

have proposed new policies to perform coordinated job to resource mapping and

resource provisioning that improve workload metrics over existing ones.

Finally, we have described a new model for meta-scheduling among virtual re-

source providers, extending our work in site brokering and HPC job execution over

138

distributed domains. We have studied the effects of different site-selection policies

for peers to select where to offload execess jobs.

8.1 Future Work

In the future, there are three main directions in which this work can be expanded.

In the first place, the developed tools and protocols can be used to test new policies

to provide improved execution of scientific jobs across domains. The decentralized

meta-scheduling model makes it easy for new institutions to join their resources to

a federation while maintaining complete control over how they are leased. This also

applies to the field of cloud computing, and in particular IaaS providers, which could

make their infrastructure available to scientists through our protocol. Examination

of new workloads would bring new insights about better forwarding strategies.

Second, the multi-layered federation model can be implemented starting from

our work in the meta-scheduler component. Besides the study of forwarding —or

federation— policies, which direct the flow of jobs in the horizontal plane, good

strategies for the delegation of requests from the higher to the lower layers have to

be devised. This would enable the seamless execution of user applications in our

system by translating high-level needs into job and VM requirements. Furthermore,

the system would be extended to consider application-specific information into the

forwarding strategies.

Finally, we envision a richer model of sharing virtual resources and running

applications on them, where instead of exchanging “flat” VMs among federation

partners, users could specify the application needs as a whole, including network

requirements and the relationships between the provisioned VMs. This would allow

an even richer set of federation strategies where parts of an application could be

executed at different providers. Currently, this is not possible since parallel jobs are

139

assumed to be homogeneous, but there is a large number of workloads outside of

the realm of scientific computing that could benefit from this approach, for example

Web applications.

140

BIBLIOGRAPHY

[ABD+05] A. Anjomshoaa, Fred Brisard, M. Drescher, Donal Fellows, et al. Job
Submission Description Language (JSDL) Specification Version 1.0,
GFD-R.056. Technical report, Open Grid Forum (OGF), November
2005.

[ACP95] T.E. Anderson, D.E. Culler, and D. Patterson. A case for now (net-
works of workstations). Micro, IEEE, 15(1):54 –64, feb 1995.

[AFF+01] K. Appleby, S. Fakhouri, L. Fong, G. Goldszmidt, M. Kalantar, S. Kr-
ishnakumar, D.P. Pazel, J. Pershing, and B. Rochwerger. Oceano-sla
based management of a computing utility. In Integrated Network Man-
agement Proceedings, 2001 IEEE/IFIP International Symposium on,
pages 855 –868, 2001.

[AFG+09] Michael Armbrust, Armando Fox, Rean Griffith, Anthony D. Joseph,
Randy Katz, Andy Konwinski, Gunho Lee, David A. Patterson, Ariel
Rabkin, Ion Stoica, and Matei Zaharia. Above the clouds: A berkeley
view of cloud computing, Feb 2009.

[ATN+00] Kento Aida, Atsuko Takefusa, Hidemoto Nakada, Satoshi Matsuoka,
Satoshi Sekiguchi, and Umpei Nagashima. Performance evaluation
model for scheduling in global computing systems. Int. J. High Per-
form. Comput. Appl., 14(3):268–279, August 2000.

[Azu] Microsoft azure. http://www.microsoft.com/azure.

[B+07] Rosa Badia et al. High Performance Computing and Grids in Action,
chapter Innovative Grid Technologies Applied to Bioinformatics and
Hurricane Mitigation, pages 436–462. IOS Press, Amsterdam, 2007.

[BAGS02] Rajkumar Buyya, David Abramson, Jonathan Giddy, and Heinz
Stockinger. Economic models for resource management and schedul-
ing in grid computing. Concurrency and Computation: Practice and
Experience, 14(13-15):1507–1542, 2002.

[BBA10] R. Buyya, A. Beloglazov, and J. Abawajy. Energy-efficient manage-
ment of data center resources for cloud computing: A vision, archi-
tectural elements, and open challenges. In International Conference
on Parallel and Distributed Processing Techniques and Applications
(PDPTA 2010), Las Vegas, USA, 2010.

141

[BBK+12] Georg Birkenheuer, Andr Brinkmann, Jrgen Kaiser, Axel Keller,
Matthias Keller, Christoph Kleineweber, Christoph Konersmann,
Oliver Niehrster, Thorsten Schfer, Jens Simon, and Maximilian Wil-
helm. Virtualized hpc: a contradiction in terms? Software: Practice
and Experience, 42(4):485–500, 2012.

[BDF+08] N. Bobroff, G. Dasgupta, L. Fong, Y. Liu, B. Viswanathan,
F. Benedetti, and J. Wagner. A Distributed Job Scheduling and Flow
Management System. ACM Operating Systems Review, 42:63–70, Jan-
uary 2008.

[BFL+08] N. Bobroff, L.L. Fong, Y.G. Liu, J.C. Martinez, I. Rodero, S.M.
Sadjadi, and D. Villegas. Enabling Interoperability among Meta-
Schedulers. In IEEE International Symposium on Cluster Computing
and the Grid (CCGrid), pages 306–315, Lyon, France, May 2008.

[BL98] Amnon Barak and Oren La’adan. The MOSIX multicomputer oper-
ating system for high performance cluster computing. Future Gener.
Comput. Syst., 13:361–372, March 1998.

[BRC10] Rajkumar Buyya, Rajiv Ranjan, and Rodrigo N. Calheiros. Inter-
cloud: utility-oriented federation of cloud computing environments for
scaling of application services. In Proceedings of the 10th international
conference on Algorithms and Architectures for Parallel Processing -
Volume Part I, ICA3PP’10, pages 13–31, Berlin, Heidelberg, 2010.
Springer-Verlag.

[BW97] F. Berman and R. Wolski. The AppLeS Project: A Status Report. In
Proceedings of the 8th NEC Research Symposium, May 1997.

[BXM+10] Ilia Baldine, Yufeng Xin, Anirban Mandal, Chris Heermann Renci,
Unc-Ch Jeff Chase, Varun Marupadi, Aydan Yumerefendi, and David
Irwin. Networked cloud orchestration: A geni perspective. In GLOBE-
COM Workshops (GC Wkshps), 2010 IEEE, pages 573 –578, 2010.

[CCF+94] Karen Castagnera, Doreen Cheng, Rod Fatoohi, Edward Hook, Bill
Kramer, Craig Manning, John Musch, Charles Niggley, William
Saphir, Douglas Sheppard, Merritt Smith, Ian Stockdale, Shaun
Welch, Rita Williams, and David Yip. Clustered workstations and
their potential role as high speed compute processors. Technical Re-
port RNS-94-003, NAS Systems Division, NASA Ames Research Cen-
ter, April 1994.

142

[CFK+98] Karl Czajkowski, Ian T. Foster, Nicholas T. Karonis, Carl Kesselman,
Stuart Martin, Warren Smith, and Steven Tuecke. A resource manage-
ment architecture for metacomputing systems. In Proceedings of the
Workshop on Job Scheduling Strategies for Parallel Processing, pages
62–82, London, UK, 1998. Springer-Verlag.

[CGGK11] Yanpei Chen, Archana Ganapathi, Rean Griffith, and Randy H. Katz.
The case for evaluating mapreduce performance using workload suites.
In MASCOTS, pages 390–399, 2011.

[CIG+03] J.S. Chase, D.E. Irwin, L.E. Grit, J.D. Moore, and S.E. Sprenkle.
Dynamic virtual clusters in a grid site manager. In High Performance
Distributed Computing, 2003. Proceedings. 12th IEEE International
Symposium on, pages 90 – 100, june 2003.

[CNJ+07] Xingchen Chu, Krishna Nadiminti, Chao Jin, Srikumar Venugopal,
and Rajkumar Buyya. Aneka: Next-generation enterprise grid plat-
form for e-science and e-business applications. In Proceedings of the
Third IEEE International Conference on e-Science and Grid Comput-
ing, E-SCIENCE ’07, pages 151–159, Washington, DC, USA, 2007.
IEEE Computer Society.

[CRCC11] Agustn Caminero, Omer Rana, Blanca Caminero, and Carmen Car-
rin. Network-aware heuristics for inter-domain meta-scheduling in
grids. Journal of Computer and System Sciences, 77(2):262 – 281,
2011. ¡ce:title¿Adaptivity in Heterogeneous Environments¡/ce:title¿.

[CTVP10] A. Celesti, F. Tusa, M. Villari, and A. Puliafito. How to enhance cloud
architectures to enable cross-federation. In 3rd IEEE International
Conference on Cloud Computing (IEEE Cloud 2010), pages 337–345,
Miami, FL, USA, 2010.

[dAdCB09] Marcos Dias de Assuncao, Alexandre di Costanzo, and Rajkumar
Buyya. Evaluating the cost-benefit of using cloud computing to extend
the capacity of clusters. In HPDC, pages 141–150, 2009.

[DBC03] Holly Dail, Fran Berman, and Henri Casanova. A decoupled scheduling
approach for grid application development environments. J. Parallel
Distrib. Comput., 63(5):505–524, May 2003.

143

[DdAaBV08] Marcos Dias de Assunção, Rajkumar Buyya, and Srikumar Venugopal.
Intergrid: a case for internetworking islands of grids. Concurr. Com-
put. : Pract. Exper., 20(8):997–1024, June 2008.

[DRM] Distributed Resource Management Application API Specifications.

[DSL+08] Ewa Deelman, Gurmeet Singh, Miron Livny, G. Bruce Berriman, and
John Good. The cost of doing science on the cloud: the montage
example. In SC, page 50, 2008.

[EAB+04] T. Eilam, K. Appleby, J. Breh, G. Breiter, H. Daur, S. A. Fakhouri,
G. D. H. Hunt, T. Lu, S. D. Miller, L. B. Mummert, J. A. Pershing,
and H. Wagner. Using a utility computing framework to develop utility
systems. IBM Syst. J., 43(1):97–120, January 2004.

[EC2] Amazon ec2. http://aws.amazon.com/ec2.

[EGB03] Lieven Eeckhout, Andy Georges, and Koen De Bosschere. Selecting a
reduced but representative workload. In Middleware Benchmarking:
Approaches, Results, Experiences. OOSPLA workshop, 2003.

[ES01] Dietmar W. Erwin and David F. Snelling. Unicore: A grid comput-
ing environment. In Proceedings of the 7th International Euro-Par
Conference Manchester on Parallel Processing, Euro-Par ’01, pages
825–834, London, UK, UK, 2001. Springer-Verlag.

[FDF03] R.J. Figueiredo, P.A. Dinda, and J.A.B. Fortes. A case for grid com-
puting on virtual machines. In Distributed Computing Systems, 2003.
Proceedings. 23rd International Conference on, pages 550 – 559, may
2003.

[Fei08] D. Feitelson. Parallel Workloads Archive Web Site, 2008.

[FK96] Ian Foster and Carl Kesselman. Globus: A metacomputing infras-
tructure toolkit. International Journal of Supercomputer Applications,
11:115–128, 1996.

[FKT01] I. Foster, C. Kesselman, and S. Tuecke. The Anatomy of the Grid: En-
abling Scalable Virtual Organizations. International Journal of High
Perfomance Computing Applications, 15(3):200–222, 2001.

144

[For93] Message Passing Interface Forum. Document for a standard message-
passing interface. Technical report, Knoxville, TN, USA, 1993.

[FVdW02] Michael Frumkin and Rob F. Van der Wijngaart. Nas grid bench-
marks: A tool for grid space exploration. Cluster Computing,
5(3):247–255, July 2002.

[FZRL08] I. Foster, Yong Zhao, I. Raicu, and S. Lu. Cloud computing and grid
computing 360-degree compared. In Grid Computing Environments
Workshop, 2008. GCE ’08, pages 1 –10, nov. 2008.

[GAE] Google app engine. http://code.google.com/appengine.

[Gen01] W. Gentzsch. Sun grid engine: towards creating a compute power
grid. In Cluster Computing and the Grid, 2001. Proceedings. First
IEEE/ACM International Symposium on, pages 35 –36, 2001.

[GFKH99] A. Grimshaw, A. Ferrari, F. Knabe, and M. Humphrey. Wide area
computing: resource sharing on a large scale. Computer, 32(5):29 –37,
may 1999.

[GG11] S. Genaud and J. Gossa. Cost-wait trade-offs in client-side resource
provisioning with elastic clouds. In IEEE CLOUD, pages 1 –8, july
2011.

[GGHL+96] Al Geist, William Gropp, Steven Huss-Lederman, Andrew Lumsdaine,
Ewing L. Lusk, William Saphir, Anthony Skjellum, and Marc Snir.
Mpi-2: Extending the message-passing interface. In Euro-Par, Vol. I,
pages 128–135, 1996.

[GHJ+09] Albert G. Greenberg, James R. Hamilton, Navendu Jain, Srikanth
Kandula, Changhoon Kim, Parantap Lahiri, David A. Maltz, Parveen
Patel, and Sudipta Sengupta. Vl2: a scalable and flexible data center
network. In SIGCOMM, pages 51–62, 2009.

[GHLL+98] William D Gropp, Steven Huss-Lederman, Andrew Lumsdaine, Ew-
ing Lusk, Bill Nitzberg, and Marc Snir. MPI: the complete reference.
Scientific and Engineering Computation Series. The MIT Press, Cam-
bridge, MA, 1998.

[Gma] Gmail. http://www.gmail.com.

145

[GWT+08] Chuanxiong Guo, Haitao Wu, Kun Tan, Lei Shi, Yongguang Zhang,
and Songwu Lu. Dcell: a scalable and fault-tolerant network structure
for data centers. In SIGCOMM, pages 75–86, 2008.

[Har75] John A. Hartigan. Clustering algorithms [by] John A. Hartigan. Wiley
New York,, 1975.

[Hen95] Robert Henderson. Job scheduling under the portable batch system.
In Dror Feitelson and Larry Rudolph, editors, Job Scheduling Strate-
gies for Parallel Processing, volume 949 of Lecture Notes in Computer
Science, pages 279–294. Springer Berlin / Heidelberg, 1995.

[HGR09] David Hadas, Sergey Guenender, and Benny Rochwerger. Virtual
Network Services For Federated Cloud Computing. Technical Report
H-0269, IBM, 2009.

[HKZ+11] Benjamin Hindman, Andrew Konwinski, Matei Zaharia, Ali Ghodsi,
Anthony D. Joseph, Randy H. Katz, Scott Shenker, and Ion Stoica.
Mesos: A platform for fine-grained resource sharing in the data center.
In NSDI, 2011.

[HML04] E. Huedo, R.S. Montero, and I.M. Llorente. A Framework for Adaptive
Execution in Grids. Softwareractice & Experience, 34:631–651, June
2004.

[HML07] Eduardo Huedo, Rubn S. Montero, and Ignacio M. Llorente. A mod-
ular meta-scheduling architecture for interfacing with pre-ws and ws
grid resource management services. Future Generation Computer Sys-
tems, 23(2):252 – 261, 2007.

[HML10] E. Huedo, R.S. Montero, and I.M. Llorente. Grid architecture from a
metascheduling perspective. Computer, 43(7):51 –56, july 2010.

[ICG+06] David Irwin, Jeffrey Chase, Laura Grit, Aydan Yumerefendi, David
Becker, and Kenneth G. Yocum. Sharing networked resources with
brokered leases. In Proceedings of the annual conference on USENIX
’06 Annual Technical Conference, ATEC ’06, pages 18–18, Berkeley,
CA, USA, 2006. USENIX Association.

[IE11] Alexandru Iosup and Dick H. J. Epema. Grid computing workloads.
IEEE Internet Computing, 15(2):19–26, 2011.

146

[II+05] Alexandru Iosup, , Ru Iosup, Dick H. J. Epema, Jason Maassen, and
Rob Van Nieuwpoort. Synthetic grid workloads with ibis, koala, and
grenchmark. In In Proceedigs of the CoreGRID Integrated Research in
Grid Computing, 2005.

[IJSE07] Alexandru Iosup, Mathieu Jan, Ozan Sonmez, and Dick Epema. The
characteristics and performance of groups of jobs in grids. In Anne-
Marie Kermarrec, Luc Boug, and Thierry Priol, editors, Euro-Par
2007 Parallel Processing, volume 4641 of Lecture Notes in Computer
Science, pages 382–393. Springer Berlin / Heidelberg, 2007.

[ILJ+08] A. Iosup, H. Li, M. Jan, S. Anoep, C. Dumitrescu, L. Wolters, and
D.H.J. Epema. The Grid Workloads Archive. Future Generation Com-
puter Systems, 24:672–686, May 2008.

[IÖF96] Michael A. Iverson, Füsun Özgüner, and Gregory J. Follen. Run-
time statistical estimation of task execution times for heterogeneous
distributed computing. In HPDC, pages 263–, 1996.

[IOY+11] Alexandru Iosup, Simon Ostermann, Nezih Yigitbasi, Radu Prodan,
Thomas Fahringer, and Dick H. J. Epema. Performance analysis of
cloud computing services for many-tasks scientific computing. IEEE
TPDS, 22(6):931–945, 2011.

[ITF+08a] Alexandru Iosup, Todd Tannenbaum, Matthew Farrellee, Dick
Epema, and Miron Livny. Inter-operating grids through delegated
matchmaking. Sci. Program., 16(2-3):233–253, April 2008.

[ITF+08b] Alexandru Iosup, Todd Tannenbaum, Matthew Farrellee, Dick H. J.
Epema, and Miron Livny. Inter-operating grids through delegated
matchmaking. Scientific Programming, 16(2-3):233–253, 2008.

[IYE11] A. Iosup, N. Yigitbasi, and D. Epema. On the performance variability
of production cloud services. In Cluster, Cloud and Grid Computing
(CCGrid), 2011 11th IEEE/ACM International Symposium on, pages
104 –113, may 2011.

[JHFS01] D.B. Jackson, B.D. Haymore, J.C. Facelli, and Q.O. Snell. Improving
cluster utilization through set based allocation policies. In Parallel
Processing Workshops, 2001. International Conference on, pages 355
–360, 2001.

147

[JPC09] Dejun Jiang, Guillaume Pierre, and Chi-Hung Chi. Ec2 performance
analysis for resource provisioning of service-oriented applications. In
ICSOC/ServiceWave Workshops, pages 197–207, 2009.

[JX03] Xuxian Jiang and Dongyan Xu. Soda: a service-on-demand architec-
ture for application service hosting utility platforms. In High Perfor-
mance Distributed Computing, 2003. Proceedings. 12th IEEE Interna-
tional Symposium on, pages 174 – 183, june 2003.

[KBM02] Klaus Krauter, Rajkumar Buyya, and Muthucumaru Maheswaran. A
taxonomy and survey of grid resource management systems. Software
Practice and Experience, 32:135–164, 2002.

[KF99] Nirav H. Kapadia and José A. B. Fortes. PUNCH: An architecture
for Web-enabled wide-area network-computing. Cluster Computing,
2:153–164, April 1999.

[KFFZ05] K. Keahey, I. Foster, T. Freeman, and X. Zhang. Virtual workspaces:
Achieving quality of service and quality of life in the grid. Sci. Pro-
gram., 13(4):265–275, October 2005.

[KP11] Hyunjoo Kim and Manish Parashar. CometCloud: An Autonomic
Cloud Engine, pages 275–297. John Wiley and Sons, Inc., 2011.

[KTMF09] Katarzyna Keahey, Mauricio Tsugawa, Andrea Matsunaga, and Jose
Fortes. Sky computing. IEEE Internet Computing, 13:43–51, 2009.

[KV10] Ekasit Kijsipongse and Sornthep Vannarat. Autonomic resource pro-
visioning in rocks clusters using eucalyptus cloud computing. In
MEDES, pages 61–66, 2010.

[LBN+10] Kien Le, R. Bianchini, T.D. Nguyen, O. Bilgir, and M. Martonosi.
Capping the brown energy consumption of internet services at low
cost. In 2010 International Green Computing Conference, pages 3–14,
Chicago, IL, USA, 2010.

[LHAP06] Jiuxing Liu, Wei Huang, Bulent Abali, and Dhabaleswar K. Panda.
High performance vmm-bypass i/o in virtual machines. In Proceed-
ings of the annual conference on USENIX ’06 Annual Technical Con-
ference, ATEC ’06, pages 3–3, Berkeley, CA, USA, 2006. USENIX
Association.

148

[LHL09] Katia Leal, Eduardo Huedo, and Ignacio M. Llorente. A decentralized
model for scheduling independent tasks in federated grids. Future
Generation Computer Systems, 25(8):840 – 852, 2009.

[LJE+10] Wei Lu, J. Jackson, J. Ekanayake, R.S. Barga, and N. Araujo. Per-
forming large science experiments on azure: Pitfalls and solutions. In
CloudCom, pages 209 –217, 30 2010-dec. 3 2010.

[LKN+09] A. Lenk, M. Klems, J. Nimis, S. Tai, and T. Sandholm. What’s inside
the cloud? an architectural map of the cloud landscape. In ICSE
Workshop on Software Engineering Challenges of Cloud Computing,
May 2009.

[LLM88] M.J. Litzkow, M. Livny, and M.W. Mutka. Condor-a hunter of idle
workstations. In Distributed Computing Systems, 1988., 8th Interna-
tional Conference on, pages 104 –111, jun 1988.

[Loa] Ibm tivoli workload scheduler loadleveler. http://www-306.ibm.com/
software/tivoli/products/scheduler-loadleveler/.

[LVB+09] Yanbin Liu, David Villegas, Norman Bobroff, Liana Fong, Ivan
Rodero, Seetharami Seelam, and S. Masoud Sadjadi. An experimental
system for grid meta-broker evaluation. In Proceedings of the 1st ACM
workshop on Large-Scale system and application performance, LSAP
’09, pages 11–18, New York, NY, USA, 2009. ACM.

[MDG+04] J. Michalakes, J. Dudhia, D. Gill, T. Henderson, J. Klemp, W. Ska-
marock, and W. Wang. Reseach and Forecast Model: Software Archi-
tecture and Performance. In 11th ECMWF Workshop on the Use of
High Performance Computing In Meteorology, pages 156–168, Read-
ing, UK, October 2004.

[ME08] Hashim Mohamed and Dick Epema. Koala: a co-allocating grid
scheduler. Concurrency and Computation: Practice and Experience,
20(16):1851–1876, 2008.

[MF01] Ahuva W. Mu’alem and Dror G. Feitelson. Utilization, predictability,
workloads, and user runtime estimates in scheduling the ibm sp2 with
backfilling. IEEE Transactions on Parallel and Distributed Systems,
12:529–543, 2001.

149

[MKF10] Paul Marshall, Kate Keahey, and Tim Freeman. Elastic site: Using
clouds to elastically extend site resources. CCGRID, pages 43–52,
2010.

[MKFG09] M.A. Murphy, B. Kagey, M. Fenn, and S. Goasguen. Dynamic provi-
sioning of virtual organization clusters. In CCGRID, pages 364 –371,
may 2009.

[MP02] Vijay Mann and Manish Parashar. Engineering an interoperable com-
putational collaboratory on the grid. Concurrency and Computation:
Practice and Experience, 14(13-15):1569–1593, 2002.

[MvH04] Deborah L. Mcguinness and Frank van Harmelen. OWL web ontology
language overview. W3C recommendation, W3C, February 2004.

[MWZS09] Juan C. Martinez, Lixi Wang, Ming Zhao, and S. Masoud Sadjadi.
Experimental study of large-scale computing on virtualized resources.
In Proceedings of the 3rd international workshop on Virtualization
technologies in distributed computing, pages 35–42, Barcelona, Spain,
2009.

[NWG+09] D. Nurmi, R. Wolski, C. Grzegorczyk, G. Obertelli, S. Soman, L. Yous-
eff, and D. Zagorodnov. The eucalyptus open-source cloud-computing
system. In Cluster Computing and the Grid, 2009. CCGRID ’09. 9th
IEEE/ACM International Symposium on, pages 124 –131, may 2009.

[OCC] Occi. http://ogf.org/documents/GFD.184.pdf.

[Ope] Opennebula. http://www.opennebula.com.

[OTG+05] A. Oleksiak, A. Tullo, P. Graham, T. Kuczynski, J. Nabrzyski, D. Sze-
jnfeld, and T. Sloan. HPC-Europa: Towards Uniform Access to Euro-
pean HPC Infrastructures. In IEEE/ACM International Workshop on
Grid Computing, pages 308–311, Seattle, WA, USA, November 2005.

[PACR03] Larry Peterson, Tom Anderson, David Culler, and Timothy Roscoe.
A blueprint for introducing disruptive technology into the internet.
SIGCOMM Comput. Commun. Rev., 33(1):59–64, January 2003.

[PCI] Pci-sig: Peripheral component interconnect special interest group.
single root i/o virtualization and sharing 1.1. spec... http://www.

pcisig.com/specifications/iov/single_root/.

150

[Rac] Rackspace. http://www.rackspace.com.

[Rap04] M. A. Rappa. The utility business model and the future of computing
services. IBM Systems Journal, 43(1):32 –42, 2004.

[RB08] Rajiv Ranjan and Rajkumar Buyya. Decentralized overlay for feder-
ation of enterprise clouds. CoRR, abs/0811.2563, 2008.

[RBE+11] Benny Rochwerger, David Breitgand, Amir Epstein, David Hadas, Irit
Loy, Kenneth Nagin, Johan Tordsson, Carmelo Ragusa, Massimo Vil-
lari, Stuart Clayman, Eliezer Levy, Alessandro Maraschini, Philippe
Massonet, Henar Munoz, and Giovanni Toffetti. Reservoir - when one
cloud is not enough. Computer, 44:44–51, 2011.

[RBL+09] B. Rochwerger, D. Breitgand, E. Levy, A. Galis, K. Nagin, I. M.
Llorente, R. Montero, Y. Wolfsthal, E. Elmroth, J. Caceres, M. Ben-
Yehuda, W. Emmerich, and F. Galan. The reservoir model and archi-
tecture for open federated cloud computing. IBM Journal of Research
and Development, 53(4):4:1 –4:11, july 2009.

[RGC+08a] I. Rodero, F. Guim, J. Corbalan, L.L. Fong, Y.G. Liu, and S.M. Sad-
jadi. Looking for an Evolution of Grid Scheduling: Meta-brokering.
Grid Middleware and Services: Challenges and Solutions, pages 105–
119, August 2008.

[RGC+08b] Ivan Rodero, Francec Guima, Julita Corbalan, Liana Fong, and S.
Masoud Sadjadi. Evaluation of broker selection strategies. Techni-
cal Report UPC-DAC-RR-CAP-2008-41, Computer Architecture De-
partment, Technical University of Catalonia, Barcelona, Spain, Dec.
2008.

[RGC+09] I. Rodero, F. Guim, J. Corbalan, L. Fong, and S. Masoud Sadjadi.
Broker selection strategies in interoperable grid systems. In Parallel
Processing, 2009. ICPP ’09. International Conference on, pages 180
–187, sept. 2009.

[RIG+06] Lavanya Ramakrishnan, David Irwin, Laura Grit, Aydan
Yumerefendi, Adriana Iamnitchi, and Jeff Chase. Toward a
doctrine of containment: grid hosting with adaptive resource control.
In Proceedings of the 2006 ACM/IEEE conference on Supercomputing,
SC ’06, New York, NY, USA, 2006. ACM.

151

[RMNC06] Ala Rezmerita, Tangui Morlier, Vincent Nri, and Franck Cappello.
Private virtual cluster: Infrastructure and protocol for instant grids.
In Euro-Par, volume 4128 of Lecture Notes in Computer Science, pages
393–404. Springer, 2006.

[SAH+09] H.E. Schaffer, S.F. Averitt, M.I. Hoit, A. Peeler, E.D. Sills, and M.A.
Vouk. Ncsu’s virtual computing lab: A cloud computing solution.
Computer, 42(7):94 –97, july 2009.

[Sal] Salesforce. http://www.salesforce.com.

[SAL+04] Jahanzeb Sherwani, Nosheen Ali, Nausheen Lotia, Zahra Hayat, and
Rajkumar Buyya. Libra: a computational economy-based job schedul-
ing system for clusters. Softw., Pract. Exper., 34(6), 2004.

[SBS+95] Thomas Sterling, Donald J. Becker, Daniel Savarese, John E. Dor-
band, Udaya A. Ranawake, and Charles V. Packer. Beowulf: A par-
allel workstation for scientific computation. In In Proceedings of the
24th International Conference on Parallel Processing, pages 11–14.
CRC Press, 1995.

[Sch04] Jennifer M. Schopf. Grid resource management. chapter Ten actions
when Grid scheduling: the user as a Grid scheduler, pages 15–23.
Kluwer Academic Publishers, Norwell, MA, USA, 2004.

[SFB+08] S. Masoud Sadjadi, Liana Fong, Rosa M. Badia, Javier Figueroa,
Javier Delgado, and et al. Transparent grid enablement of weather
research and forecasting. In Proceedings of the 15th ACM Mardi Gras
conference, Baton Rouge, Louisiana, USA, January 2008.

[SGE] Sun grid engine gt4 adaptor. http://www.lesc.ic.ac.uk/projects/
SGE-GT4.html.

[SKF08] Borja Sotomayor, Kate Keahey, and Ian Foster. Combining batch ex-
ecution and leasing using virtual machines. In HPDC ’08: Proceedings
of the 17th international symposium on High performance distributed
computing, pages 87–96, New York, NY, USA, 2008.

[SKR03] Gerald Sabin, Rajkumar Kettimuthu, and Arun Rajan. Scheduling
of parallel jobs in a heterogeneous multi-site environment. In in the
Proc. of the 9th International Workshop on Job Scheduling Strategies

152

for Parallel Processing, Lecture Notes In Computer Science, pages 87–
104, 2003.

[SMLF08] B. Sotomayor, R. Santiago Montero, I. Martin Llorente, and I. Foster.
Capacity leasing in cloud systems using the opennebula engine. In
Workshop on Cloud Computing and its Applications 2008 (CCA08),
Chicago, IL, USA, 2008.

[SMLF09] Borja Sotomayor, Ruben S. Montero, Ignacio M. Llorente, and Ian
Foster. Virtual infrastructure management in private and hybrid
clouds. IEEE Internet Computing, 13:14–22, 2009.

[Sun90] V. S. Sunderam. PVM: a framework for parallel distributed comput-
ing. Concurrency: Pract. Exper., 2:315–339, November 1990.

[TF06] M. Tsugawa and J.A.B. Fortes. A virtual network (vine) architecture
for grid computing. In Parallel and Distributed Processing Symposium,
2006. IPDPS 2006. 20th International, page 10 pp., april 2006.

[TMC+08] D. T. Tran, S. Mohan, E. Choi, S. Kim, and P. Kim. A taxonomy and
survey on distributed file systems. In NCM (1), pages 144–149, 2008.

[TMMVL12] Johan Tordsson, Rubn S. Montero, Rafael Moreno-Vozmediano, and
Ignacio M. Llorente. Cloud brokering mechanisms for optimized place-
ment of virtual machines across multiple providers. Future Generation
Computer Systems, 28(2):358 – 367, 2012.

[TTL05] Douglas Thain, Todd Tannenbaum, and Miron Livny. Distributed
computing in practice: the condor experience. Concurrency - Practice
and Experience, 17(2-4):323–356, 2005.

[VASI11] David Villegas, Athanasios Antoniou, Seyed Masoud Sadjadi, and
Alexandru Iosup. An analysis of provisioning and allocation policies
for IaaS clouds. Technical Report PDS-2011-009, TU Delft, November
2011.

[VASI12] David Villegas, Athanasios Antoniou, Seyed Masoud Sadjadi, and
Alexandru Iosup. An Analysis of Provisioning and Allocation Poli-
cies for Infrastructure-as-a-Service Clouds. In CCGRID, 2012. To
appear.

153

[VBR+12] David Villegas, Norman Bobroff, Ivan Rodero, Javier Delgado, Yanbin
Liu, Aditya Devarakonda, Liana Fong, S. Masoud Sadjadi, and Manish
Parashar. Cloud federation in a layered service model. Journal of
Computer and System Sciences, (0):–, 2012.

[VD02] S.S. Vadhiyar and J.J. Dongarra. A metascheduler for the grid. In High
Performance Distributed Computing, 2002. HPDC-11 2002. Proceed-
ings. 11th IEEE International Symposium on, pages 343 – 351, 2002.

[VRF+10] David Villegas, Ivan Rodero, Liana Fong, Norman Bobroff, Yanbin
Liu, Manish Parashar, and S. Masoud Sadjadi. Handbook of Cloud
Computing, chapter The Role Of Grid Computing Technologies in
Cloud Computing, pages 183–218. Springer, 2010. (in press; 35 pages;
single-spaced).

[VYW+02] Amin Vahdat, Ken Yocum, Kevin Walsh, Priya Mahadevan, Dejan
Kostić, Jeff Chase, and David Becker. Scalability and accuracy in a
large-scale network emulator. SIGOPS Oper. Syst. Rev., 36(SI):271–
284, December 2002.

[WDGK+08] N. Wilkins-Diehr, D. Gannon, G. Klimeck, S. Oster, and
S. Pamidighantam. Teragrid science gateways and their impact on
science. Computer, 41(11):32 –41, nov. 2008.

[WLS+02] Brian White, Jay Lepreau, Leigh Stoller, Robert Ricci, Shashi Gu-
ruprasad, Mac Newbold, Mike Hibler, Chad Barb, and Abhijeet
Joglekar. An integrated experimental environment for distributed
systems and networks. SIGOPS Oper. Syst. Rev., 36(SI):255–270,
December 2002.

[YBDS08] L. Youseff, M. Butrico, and D. Da Silva. Toward a unified ontology of
cloud computing. In Grid Computing Environments Workshop, 2008.
GCE ’08, pages 1 –10, nov. 2008.

[YIEO09] N. Yigitbasi, A. Iosup, D. Epema, and S. Ostermann. C-meter: A
framework for performance analysis of computing clouds. In CCGRID,
pages 472 –477, may 2009.

[Zim81] Hubert Zimmermann. The iso reference model for open systems inter-
connection. In Kommunikation in Verteilten Systemen, pages 39–57,
1981.

154

VITA

DAVID VILLEGAS

August 4, 1981 Born, Terrassa, Barcelona, Spain

2005 B.A., Computer Engineering

Autonomous University of Barcelona

Sabadell, Spain

PUBLICATIONS AND PRESENTATIONS

David Villegas, Athanasios Antoniou, S. Masoud Sadjadi and Alexandru Io-

sup. An Analysis of Provisioning and Allocation Policies for Infrastructure-as-a-

Service Clouds. Proceedings of 12th IEEE/ACM International Symposium on Clus-

ter, Cloud and Grid Computing (CCGrid 2012)

David Villegas, Norman Bobroff, Ivan Rodero, Javier Delgado, Yanbin Liu,

Aditya Devarakonda, Liana Fong, S. Masoud Sadjadi and Manish Parashar. Cloud

Federation in a Layered Service Model. In Journal of Computer and System Sci-

ences, January 2012 ISSN 0022-0000, 10.1016/j.jcss.2011.12.017.

David Villegas and S. Masoud Sadjadi. Mapping Non-Functional Requirements

to Cloud Applications. In Proceedings of the 2011 International Conference on Soft-

ware Engineering and Knowledge Engineering (SEKE 2011), pages 527-532, Miami,

Florida, July 2011.

David Villegas and S. Masoud Sadjadi. DEVA: Distributed Ensembles of Virtual

155

Appliances in the Cloud. In Proceedings of the 17th Euro-Par Conference (Euro-Par

2011), pages 467-478, Bordeaux, France, 2011.

David Villegas, Ivan Rodero, Liana Fong, Norman Bobroff, Yanbin Liu, Man-

ish Parashar, and S. Masoud Sadjadi. Handbook of Cloud Computing, chapter The

Role of Grid Computing Technologies in Cloud Computing. Springer, 2010 (in press;

36 pages; single-spaced).

Yanbin Liu, David Villegas, Norman Bobroff, Liana Fong, Ivan Rodero, Seetharami

Seelam, and S. Masoud Sadjadi. An experimental system for grid meta-broker evalu-

ation. In Proceedings of the ACM Large-scale System and Application Performance

workshop (LSAP2009) of the International Symposium on High Performance Dis-

tributed Computing (HPDC 2009), pages 11-18, Munich, Germany, June 2009.

Norman Bobroff, Liana Fong, Selim Kalayci, Yanbin Liu, Juan Carlos Martinez,

Ivan Rodero, S. Masoud Sadjadi, and David Villegas. Enabling interoperability

among meta-schedulers. In Proceedings of 8th IEEE International Symposium on

Cluster Computing and the Grid (CCGrid-2008), pages 306-315, Lyon, France, 2008.

156

	Florida International University
	FIU Digital Commons
	10-17-2012

	Interoperable Resource Brokering with Policy-based Provisioning and Job Allocation
	David Villegas
	Recommended Citation

	Interoperable Resource Brokering with Policy-based Provisioning and Job Allocation

