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ABSTRACT OF THE DISSERTATION 

PRESERVATION OF NITRIC OXIDE AVAILABILITY AS NITRITE AND 

NITROSOTHIOLS 

by 

Kumpal J. Madrasi 

Florida International University, 2012 

Miami, Florida 

Professor Nikolaos Tsoukias, Major Professor 

Nitric Oxide (NO) has been known for long to regulate vessel tone.  However, the 

close proximity of the site of NO production to “sinks” of NO such as hemoglobin (Hb) 

in blood suggest that blood will scavenge most of the NO produced.  Therefore, it is 

unclear how NO is able to play its physiological roles. The current study deals with 

means by which this could be understood. Towards studying the role of nitrosothiols and 

nitrite in preserving NO availability, a study of the kinetics of glutathione (GSH) 

nitrosation by NO donors in aerated buffered solutions was undertaken first. Results 

suggest an increase in the rate of the corresponding nitrosothiol (GSNO) formation with 

an increase in GSH with a half-maximum constant EC50 that depends on NO 

concentration, thus indicating a significant contribution of ·NO2 mediated nitrosation in 

the production of GSNO. Next, the ability of nitrite to be reduced to NO in the smooth 

muscle cells was evaluated. The NO formed was inhibited by sGC inhibitors and 

accelerated by activators and was independent of O2 concentration. Nitrite transport 

mechanisms and effects of exogenous nitrate on transport and reduction of nitrite were 

examined. The results showed that sGC can mediate nitrite reduction to NO and nitrite is 
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transported across the smooth muscle cell membrane via anion channels, both of which 

can be attenuated by nitrate. Finally, a 2 – D axisymmetric diffusion model was 

constructed to test the accumulation of NO in the smooth muscle layer from reduction of 

nitrite. It was observed that at the end of the simulation period with physiological 

concentrations of nitrite in the smooth muscle cells (SMC), a low sustained NO generated 

from nitrite reduction could maintain significant sGC activity and might affect vessel 

tone. The major nitrosating mechanism in the circulation at reduced O2 levels was found 

to be anaerobic and a Cu+ dependent GSNO reduction activity was found to deliver minor 

amounts of NO from physiological GSNO levels in the tissue.   
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Chapter 1: Introduction 

1.1 Background 
Nitric oxide (NO) has been known for decades [1] to be the Endothelium Derived 

Relaxing Factor (EDRF) that promotes vascular smooth muscle relaxation when it binds 

and activates soluble guanylyl cyclase (sGC). This has been followed by its implication 

in a wide array of biological functions from physiological events such as 

neurotransmission [2] and host immune system defense [3] to pathophysiological events 

such as ischemia, inflammation and neurodegeneration. Besides NO itself, products of 

NO oxidation such as nitrogen dioxide (NO2), dinitrogen trioxide (N2O3), peroxynitrite 

(ONOO-), nitrite, nitrate and nitroxyl (HNO) also play important roles in both physio and 

pathophysiological processes [4]. 

In vivo, NO is produced by two constitutively expressed enzymes, endothelial 

Nitric Oxide Synthase (eNOS) and neuronal Nitric Oxide Synthase (nNOS) as well as the 

inducible enzyme inducible Nitric Oxide Synthase (iNOS). NOS enzymes produce NO 

by catalyzing a five electron oxidation of a guanidine nitrogen of L-arginine (L-Arg). 

Oxidation of L-Arg to L-Citrulline occurs via two successive monooxygenation reactions 

producing NGhydroxy L-arginine (NOHLA) as an intermediate. Two moles of oxygen 

(O2) and 1.5 moles of NADPH are consumed per mole of NO formed [5]. For 

constitutive enzymes, in response to receptor or physical stimulation, there is an influx of 

Ca2+. This causes an increase in the concentration of intracellular inositol triphosphate 

(IP3) which initiates the release of Ca2+ from the endoplasmic reticulum (ER). The Ca2+ 

then binds to calmodulin (CaM) to activate the constitutive NOS to produce NO. For 
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inducible enzymes, calmodulin is already bound to the enzyme [6] and it is independent 

of calcium influx. Four more cofactors/prosthetic groups: flavin adenine dinucleotide 

(FAD), flavin mononucleotide (FMN), heme iron (present on the NOS) and 

tetrahydrobiopterin (BH4) are recruited to produce NO. Fig 1.1 shows a molecular 

representation of the NO production reaction. 

 

Fig 1.1: Schematic of NO production from NOS tracking the donation of oxygen atoms 
from interacting O2 molecules. (Figure from [5]) 

As it is a small diatomic molecule, NO then gets transported in all directions 

freely. For its physiological function, the following series of events has to happen in a 

chronological order: (1) NO binding to the heme moiety of sGC and activating the 

enzyme  by inducing a conformational change that displaces iron out of the plane of the 

porphyrin ring [7], (2) sGC catalyzing the production of cyclic Guanosine Mono 

Phosphate (cGMP) from Guanosine Tri-Phosphate (GTP) to elevate cGMP and (3) 

cGMP causing a cascade of intracellular events that culminate in a reduction in calcium 

dependent vascular smooth muscle tone by inactivating myosin light chain kinase 

(MLCK) [8, 9] through phosphorylation by phospho kinase G (PKG). MLCK 

inactivation causes disruption of MLCK induced phosphorylation of the myosin light 

chain, which would have otherwise lead to contraction [10]. To complete this chain of 
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events, sGC has to have an exposure to NO concentrations in the range of 23 – 120 nM 

[11-14]. But the environment in which NO is produced is replete with NO scavengers 

which are as follows:  

1) Molecular oxygen: In the presence of oxygen, NO undergoes a second order 

oxidation reaction to produce nitrite and a small proportion of nitrate as end products. 

This is usually characterized as a slow process but recent work has suggested that the 

reaction might be accelerated in hydrophobic components [15-17]. In addition, an 

enzyme Ceruloplasmin has been found in the plasma accelerating NO oxidation [18] 

along with the hydration reaction of an NO – ferricytochrome c complex in the 

mitochondria [19, 20]. 

2) Superoxide anion: Under diseased conditions, lack of availability of NOS 

cofactors can lead to NOS uncoupling. In such instances, there is a drop in the NO output 

of NOS enzymes and superoxide is produced. The superoxide produced has a high 

affinity for NO and can consume it to produce peroxynitrite anions (ONOO-) which 

further reduces NO availability.  

3) Metalloproteins: Blood flowing in the vessel lumen has about 2 mM 

hemoglobin (Hb) encapsulated in RBCs, which is a very potent NO scavenger. Moreover, 

we have various heme compounds in tissues, such as myoglobin and cytochrome c 

oxidase which are also known NO scavengers [21, 22].  

As a result of the above mentioned possibilities for the consumption of NO, NO 

has a short half-life in vivo (spanning a few seconds). This has led to questions [23] on 
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how NO gets transported to the smooth muscle cell and whether or not, enough is 

transported to allow for the proposed NO functioning as EDRF.   

1.2 NO paradox 
These questions are known in the field as the ‘NO paradox’. In order to address 

the ‘NO paradox’, several theoretical and experimental studies have been made till date. 

These have approached the NO paradox from two sides: (1) suggesting NO consumption 

is reduced in the blood by mechanisms side stepping the high NO affinity for Hb 

observed in in vitro reactions and (2) suggesting that NO is conserved in compounds that 

don’t have as high an affinity for heme groups as NO, such as nitrosothiols (RSNOs), 

nitrite anions and dinitrogen trioxide (N2O3), thus affording these compounds a longer 

half-life in vivo and enabling NO transport. Fig 1.2 shows the key players in the ‘NO 

paradox’, viz. RBCs, endothelium and smooth muscle layer. 

 

Fig 1.2: Schematic of blood flow in an arteriolar region. The arteriolar lumen has RBCs clustered 

in the center owing to laminar flow and a cell free layer adjacent to the endothelium. The 

endothelium and the smooth muscle layer are separated by an interstitial gap of connective 

tissues. Beyond the SMC lie a non-perfused region followed by a region perfused by capillaries 

(Figure from Tsoukias et al. [24]) 
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1.2.1 NO consumption reduced by RBCs 
 Theoretical simulations run by Lancaster et al. [23] had shown that 2 mM of 

hemoglobin flowing through a 20 μm diameter arteriole would scavenge most NO, thus 

lowering availability of NO to the arteriolar smooth muscle. Butler et al [25] and Vaughn 

et al [26] added to this model a cell free layer in the arteriole and showed that NO 

diffusion towards the smooth muscle can increase. Subsequent work by Liu et al. [27] at 

1 % hematocrit (Hct) suggested that NO consumption rate was 650 times less than that of 

free Hb. They attributed this reduction in NO consumption to an NO gradient created in 

the vicinity of a red blood cell (RBC) by rapid consumption of NO by the RBC. They 

supposed that NO consumed in the neighborhood of an RBC is fast enough for NO 

diffusion to not be able to replenish it. The resulting layer of low NO concentration 

surrounding an RBC was termed as an extracellular diffusion layer by them. Tsoukias et 

al [28] developed an elaborate model for analyzing factors causing resistance to NO 

consumption and also arrived at the conclusion that major resistance to NO uptake is 

through extracellular diffusion.  The genesis of this idea lies in the works by Huxley et al. 

[29] and Coin et al. [30] who observed significant diffusion boundary layer surrounding 

the RBC that provides a resistance in O2 uptake by RBCs. This is said to be a result of O2 

rapidly depleting in the area around the RBC, which is faster than the rate of 

replenishment by diffusion or possible mixing of the surrounding. It has been proposed 

that the same conditions must also apply to NO because NO and O2 have similar 

diffusivities across the RBCs and moreover, NO is consumed by the RBCs faster than O2.  

 A few competing theories to the above mentioned idea exist. A prominent one of 

these is the idea that NO consumption is inhibited by the RBC membrane as proposed by 



6 
 

Vaughn et al. [31, 32]. While they found that the rate of NO consumption by RBCs is 

about 1000 fold slower than that by an equivalent concentration of free Hb, they 

attributed this observation to RBC membrane and cytoskeleton associated NO inert 

proteins that provide a barrier for NO diffusion [33]. They proposed a RBC membrane 

permeability for NO that was 1000 fold smaller than previously thought. Membrane 

limited NO uptake has also been proposed by Deonikar et al. [34] recently although they 

do acknowledge a significant role for extracellular diffusivity in prohibiting NO uptake 

by RBCs.  

Sakai et al [35] analyzed lipid encapsulated hemoglobin vesicles (HbVs) with 

different vesicle diameters using stopped flow spectrophotometry. Their experimental 

and theoretical work suggest that intracellular Hb concentrations have a major role to 

play in prohibiting NO uptake, while extracellular diffusion resistance has a minor 

influence. The apparent binding constant of HbV with NO from their simulations was 

found to be close to the values reported from stopped flow spectrometry for RBCs for 

HbVs of similar size. Consequently, they extend the applicability of their findings to 

RBCs as well. Thus, we see that there are three existing schools of thought on how NO 

consumption by RBCs is inhibited and the field is yet to arrive at a final conclusion about 

this.  

1.2.2 NO conservation as nitrosothiols and nitrites 

1.2.2.1 NO conservation as nitrosothiols 

 Ignarro et al [36] had found that low molecular weight thiols that react readily 

with nitrogen oxides to form S-nitrosothiols are more stable than NO itself, and are 
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potent vasodilators and platelet inhibitors. Stamler et al [37] had conducted experiments 

on different protein thiols in the blood, and had shown that they can be S-nitrosylated, 

thus raising a possibility of their playing a role as intermediates in the cellular 

metabolism or bioactivity of NO and that their formation may represent an important 

cellular regulatory mechanism.  

 There is also a school of thought which believes that the EDRF itself could also 

be an S-nitrosothiol. Serum albumin is an abundant protein in blood plasma and it also 

contains a single free sulfhydryl group. When nitrosated to S-nitroso albumin, it is 

relatively more stable than NO (half-life of approximately 24 hours in a pH of 7.6). 

Concentration in plasma for S-nitroso-albumin is 5 μM, which is much higher than the 4 

nM for free NO. Administration of exogenous S-nitroso albumin in animals has led to 

NO like effects whereas NOS inhibition has led to dropping of S-nitroso albumin 

concentrations. It has been proposed that NO transfer from S-nitroso-albumin occurs 

through transnitrosation of smaller thiols such as glutathione (GSH) or cysteine (Cys) to 

S-nitrosoglutathione (GSNO) and S-nitrosocysteine (CysNO). GSNO and CysNO have 

been detected in the plasma at concentrations of 0.1 and 0.3 μM respectively. The 

transport of these species to the cells could follow the suggestion from Satoh et al. [38] 

who had shown it is easier for CysNO to get transported across cell membranes through 

the amino acid transport system L-AT. A case similar to the above mentioned thiols has 

been made for hemoglobin – that it acts as an NO carrier in the form of S-nitroso-

hemoglobin [39]. A gradient of S-nitroso hemoglobin is observed from arterial to venous 

blood (0.3 μM to 0.03 μM) which prompts many to say that it could have a role in NO 
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transport. The theory of NO transport by nitrosothiols however was contradicted in a 

work by Zhang et al. [40] in which they suggested that S-nitrosothiols do not act as NO 

donors as they are conventionally thought of and have a distinct biochemistry from NO. 

Thus, work on S-nitrosothiols as a probable source of NO is still in progress and no firm 

conclusion is in sight. 

1.2.2.2 NO conservation as the nitrite anion 

The other way NO can be ‘stored’ is through the nitrite anion. In vivo plasma 

levels of nitrite are in the range of 0.3 – 1 μM [41], and in some places like the aortic ring 

tissue, this concentration is in the range of 10 – 20 μM [41, 42]. Under acidic conditions, 

nitrite will be converted to NO, which might involve enzymatic reduction with xanthine 

oxidoreductase (XOR) or nonenzymatic disproportionation [43-46] or by deoxyHb [47]. 

In vivo, these would occur in vascular regions with low pH and low partial pressure of 

oxygen.  

Alzawahra et al [48] investigated the effect of nitrite bioactivation in vessels in in 

vivo hemodynamics in rats and in in vitro vasorelaxation in isolated rat aorta under 

aerobic conditions. They found that in anesthetized rats, nitrite dose decreased both 

systolic and diastolic blood pressure with a threshold doses of 10 μM and a dose of 10 

μM – 2 mM caused vasorelaxation of aortic rings. The sGC inhibitor 1H-(1,2,4) 

oxadiazolo (4,3-a) quinoxaline 1-one (ODQ) inhibited nitrite mediated NO production. 

They thus suggested that sGC catalyzes the reduction of nitrite to NO in the vessel wall. 

The prospect of sGC reducing nitrite to NO is interesting since NO could be regenerated 



9 
 

right where it is needed and not much nitrite would be required to activate sGC as 

compared to suggestions from other schemes of nitrite reduction.  

1.3 Research objectives 
To summarize the above background, after Furchgott et al. [49] proposed 

endothelium dependent vasorelaxation of blood vessels, Ignarro et al. [1] and Palmer et 

al. [50] had found that the chemical species responsible is NO. NO in the vasculature is 

produced by eNOS in the endothelial cell layer, reaches the smooth muscle cells & reacts 

with sGC. This leads to cGMP production, which in turn leads to activation of 

intracellular protein kinases that cause vasorelaxation. However, there is considerable 

doubt as to how NO produced in the endothelium reaches the smooth muscle cell layer 

and in what concentrations owing to its low half-life resulting from its affinity for 

superoxide anion and heme [51, 52]. To answer this doubt, we first conducted a study 

with the help of mathematical modeling to understand the uptake of NO by hemoglobin 

vesicles, which are proposed as RBC supplements. This was followed by a study on NO 

nitrosation kinetics in in vitro systems and a determination of the nitrosating 

intermediate. Further, the nitrite reductase activity of sGC in the smooth muscle cells was 

verified. In the end, a finite element model was created to study transport of NO 

conserving species in the microcirculation. Specifically, the following objectives were 

accomplished: 
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• Study of NO consumption by erythrocytes: 

o Analyzing the mathematical model for NO consumption by erythrocytes 

and validation of results by comparing it with reaction rate constants from 

other experiments. 

o Analyze design of current Hb vesicles and suggest guidelines for design. 

• Study of GSH nitrosation kinetics: 

o Analyze the kinetics of nitrosothiol formation.  

• Study activation of smooth muscle cell layer by nitrite and nitrosothiols: 

o Study the release of intracellular NO from nitrite and nitrosothiols in 

smooth muscle cells subjected to aerobic and anaerobic environments. 

o Verify the role of sGC in nitrite reduction. 
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Chapter 2: Glutathiyl Radical as an Intermediate in the Glutathione Nitrosation 
This chapter was published with only slight modifications as: Madrasi K, Joshi M.S., 

Gadkari T., Kavallieratos K. and Tsoukias N.M. 2012, “Glutathiyl radical as an 

intermediate in glutathione nitrosation.” Free Radic. Biol. Med., 

http://dx.doi.org/10.1016/j.freeradbiomed.2012.08.013       

2.1 Abstract 
Nitrosation of thiols is thought to be mediated by dinitrogen trioxide (N2O3) or by 

nitrogen dioxide radical (·NO2). A kinetic study of Glutathione (GSH) nitrosation by NO 

donors in aerated buffered solutions was undertaken. S-nitrosoglutathione (GSNO) 

formation was assessed spectrophotometrically and by chemiluminescence. Results 

suggest an increase in the rate of GSNO formation with an increase in GSH with a half-

maximum constant EC50 that depends on NO concentration. Our observed increase in 

EC50 with NO concentration suggests a significant contribution of ·NO2 mediated 

nitrosation with the glutathiyl radical as an intermediate in the production of GSNO. 

Keywords: Glutathione, nitric oxide, thiyl radical, kinetics   

2.2 Introduction 
       Blood vessel dilation [1], signal conduction in nervous system [2], and cytotoxic 

activity against microbes [3] are amongst the important physiological roles played by 

NO. For free NO to perform these functions, it should be able to reach its sites of action 

without being scavenged through its reaction with heme proteins [23]. Formation of 

nitrosothiols can increase the half – life of NO in the vasculature and thus can enhance its 

biological functions. The formation of β−93 cysteine nitrosothiols on the hemoglobin 

molecule [39] and the combination of NO with low molecular weight thiols are two 
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candidate pathways for NO preservation [36]. Nitrosothiols have been found to be potent 

vasodilators and inhibitors of platelet aggregation and may also play important roles in 

signaling pathways. In view of the importance of nitrosothiols in biological systems, it is 

of interest to elucidate the kinetic mechanism and assess the rate of their formation. Of 

particular interest is the nitrosation of glutathione due to its abundance in biological 

tissues [53]. Glutathione nitrosation has been proposed to occur via an initial reaction of 

NO with O2 and the subsequent formation of N2O3, which acts as the nitrosating agent for 

GSH. The suggested reaction mechanism for this route of nitrosation is as follows [54-

57]: 

22 22 1 NOONO k⎯→⎯+              Reaction 2.1 

322

2

2

ONNONO
k

k−

↔+                                                                                            Reaction 2.2 

+− ++⎯→⎯+ HNOGSNOONGSH k
232

3                                                           Reaction 2.3 

+− +⎯→⎯+ HNOOHON k 22 2232
4                                                                      Reaction 2.4 

           Recent evidence shows that in adequately oxygenated solutions the ·NO2 can 

oxidize the GSH to form the glutathiyl radical ሺGS∙ሻ which reacts with NO to form 

GSNO [58-61]. This scheme would include the same rate limiting step (Reaction 2.1) as 

well as Reactions 2.2 and 2.4. However, nitrosation would proceed through Reactions 2.5 

and 2.6 instead of 2.3. 

−⋅⋅ +⎯→⎯+ 22
5 NOGSGSHNO k                                                                          Reaction 2.5 

GSNONOGS k⎯→⎯+ ⋅⋅ 6                                                                                      Reaction 2.6 
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Thus, according to the second kinetic mechanism the ·NO2 can react with GSH to give 

GSNO (Reaction 2.5), but also reacts with NO to form N2O3 (Reaction 2.2). This cross 

talk between the two alternative pathways poses a significant obstacle in determining the 

relative contribution of the two mechanisms. Thus, despite recent evidence that propose 

·NO2 as the active intermediate for nitrosation [58-61], the importance of N2O3 vs ·NO2 in 

thiol nitrosation has not been conclusively determined [54-57]. In this study, we have 

followed the kinetics of the GSH nitrosation reaction in an attempt to elucidate the 

reaction mechanism and to identify the role of N2O3 and ·NO2 as nitrosating 

intermediates.  

           Recent data [59] has documented significant GSSG formation during the 

nitrosation of GSH by NO donors, which involves the formation of the thiyl radical. This 

essentially validates the second reaction mechanism above, since the presence of GSSG 

means that there has been formation of the glutathiyl radical (GS·). One potential route of 

GSSG formation is through the following series of reactions: 

+− +↔
−

HGSGSH
k

k

7

7

                                                                                            Reaction 2.7 

−−⋅

−

↔+ GSSGGSGS
k

k

8

8

                                                                                        Reaction 2.8 

−− +⎯→⎯+ 22
9 OGSSGOGSSG k                                                                         Reaction 2.9 

Alternatively, GSSG can be formed from GSNO according to Reaction 2.10 [45].   

NOGSSGGSNOGS k ⋅⋅ +⎯→⎯+ 10                                                                      Reaction 2.10 
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          The proposed, simplified kinetic mechanisms do not consider a number of relevant 

reactions including alternative reactions for GSSG formation as well other reactions that 

are involved in GSH and NO oxidation chemistry. In the Appendix A1, we present a 

mathematical model of 25 relevant reactions and we compare model predictions for 

GSNO formation rate against the output of the two simplified reaction schemes.  

2.3 Materials and methods 

2.3.1 Materials 
           Glutathione (GSH), N-Ethyl Maleimide (NEM), and Diethylene Triamine 

Pentaacetic Acid (DTPA) were obtained from Sigma Aldrich Co (St. Louis, MO). NO 

donors Propylamine Propylamine NONOate and Diethylamine NONOate (PAPA/NO and 

DEA/NO) and S-nitrosoglutathione were obtained from Cayman Chemical Co (Ann 

Arbor, MI). 

2.3.2 NO release by NO donor  
           NO donors were chosen with an appropriate half – life; a suitably long half – life 

confers on them the ability to generate steady NO levels over the duration of the 

experiment (see results section). At 20-25 oC PAPA/NO and DEA/NO have a half – life 

of approximately 77 min and  16 min respectively. To validate theoretical predictions for 

the pattern of NO release from NO donors, we used different concentrations of 

PAPA/NO ranging from 500 μM to 10 mM in a pH of 7.4 and measured NO release 

using a commercially available NO-sensitive electrode (WPI, Sarasota, FL).  

2.3.3 GSNO measurements  

           UV-visible spectro-photometry was carried out by a Cary 100 Bio UV-Vis 

spectrophotometer. GSH concentrations ranged from 200 μM to 5 mM and PAPA/NO 
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concentrations from 500 μM to 10 mM. Reactions were carried out in 1 mL size quartz 

cuvettes as in Field et al. [62]. GSNO formation in a mixture of GSH and PAPA/NO was 

followed at 338 nm (molar absorptivity of 900 M-1cm-1) [63]. We also measured GSNO 

formed using chemiluminescence analysis. The Copper (I) Chloride and Cysteine (2C) 

assay method was used to measure GSNO through a chemiluminescence analyzer 

(Sievers 280i NOA) as described in earlier works [63-67]. Different GSH concentrations 

(200 μM to 7.5 mM) and DEA/NO (31.25 μM to 500 μM) were incubated in Eppendorf 

tubes. Reactions were stopped with 10 mM NEM at 2, 3 and 4 minutes. The solutions 

were left at room temperature in the dark for about an hour for the NO donor to 

completely decay, so as to avoid any NO signal in the assay from the NO donor. 

Following this period, GSNO content in our samples was analyzed. All reactions 

followed by spectrophotometry or by chemiluminescence were performed in 40 mM 

phosphate buffer (pH = 7.4) supplemented by 50 μM DTPA at 20-25 0C. To check for 

interference from other NO-derived species, samples were incubated with 2.5 mM HgCl2 

for half an hour to abolish GSNO content [68] prior to the 2C assay. 

2.3.4 “Clamped NO” protocol  
           A combination of an NO donor and an NO scavenger (i.e. CPTIO) has been 

previously utilized to maintain steady levels of NO in solution (i.e. “clamped NO 

protocol” [69]). We hypothesized that a similar “clamped NO” condition can be achieved 

in aerated solutions of NO donors where O2 will be the predominant NO scavenger. Thus, 

a relative steady NO concentration is expected as a result of the balance between NO 

release by the donor and consumption by the oxygen content of the solution. We also 

refer to this as the “clamped NO concentration” similar to Griffith et al. [69].  
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           Assuming that every mole of NO donor releases n moles of NO, the NO release 

rate by the NO donor is given by Eq. 2.1a.   

tk
d

deNOdonornkS −= ][                                 Eq. (2.1a) 

where kd = ln(2)/t1/2 and t1/2 is the half – life of the NO donor. For times less than 1/10 of 

the half – life of the NO donor the release rate remains relatively constant and can be 

approximated by: 

][NOdonornkS d=                                                                                                Eq. (2.1b) 

In the absence of other NO scavengers NO is consumed through the reaction with 

dissolved O2 (Reaction 1) and through Reaction 2. Reaction 1 is the rate-limiting reaction 

and thus total NO consumption can be approximated by:  

2
21 ]][[4 NOOkR =                                                                                                  Eq. (2.1c) 

At equilibrium, the balance between Eq. 1b and Eq. 1c yields a steady NO level: 

][
][4

][
21

NOdonor
Ok

nkNO d=                                                                              Eq. (2.1d) 

Thus, NO levels should remain relatively constant and concentrations should increase 

proportionally to the square root of the NO donor concentration.  

2.3.5 Pseudo steady state approximation 

           A pseudo steady state approximation has been previously employed by Kharitonov 

et al. to simplify the kinetic mechanism (Reactions 2.1 – 2.4) [55]. Assuming small 
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concentration of unstable intermediates ·NO2, N2O3 and thus negligible rates of change 

(for details, see Appendix A2) for these complexes we get:  

3

4

2
2

1

][

]][[][2][

k
kGSH

GSHONOk
dt

GSNOd

+
=                    Eq. (2.2a) 

           On the other hand, the pseudo steady state approximation (for details, see 

Appendix A2) for the Reactions 2.1, 2.2, 2.4 - 2.6 gives us the rate of nitrosation as: 
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GSNOd
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+

=

−

                Eq. (2.2b) 

Note that Eq. 2.2b in agreement with Eq. 2.2a suggests saturation kinetics with respect to 

the concentration of GSH. In Eq. 2.2b, however, the half-maximum constant EC50 is 

dependent on the NO concentration. Thus, an effective EC50 value equal to 
542

42

][

][

kkk
NOkk

+−

   

is predicted. Experimentation will test the saturation kinetics of this rate law. Thus the 

rate of GSNO formation will be equal to the product of the maximum rate at saturating 

concentrations (Vmax= 2k1[NO]2[O2]) times a factor m that differs between the two 

proposed mechanisms. According to the first mechanism (Eq. 2.2a), m1 = 
43

3

][

][

kGSHk
GSHk

+
 

while based on Eq. 2.2b, m2 =

)(

][
][
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42

42
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5

kk
NOkkGSHk

GSHk

+
+

−

 . Eq. 2.2a and 2.2b simply state that 

the rate is limited by the rate of NO oxidation (Reaction 1) and the fraction of N2O3 or 
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·NO2 utilized in GSH nitrosation (m1 = 
43

3

RxnRxn
Rxn

+
, m2 = 

25

5

RxnRxn
Rxn

+
). The 

functional difference between the two mechanisms arise from the NO dependency in the 

scavenging of the active intermediate in mechanism 2 (i.e. ·NO2 scavenging through 

Reaction 2.2) vs the NO-independent consumption of the active intermediate in 

mechanism 1 (i.e. N2O3 scavenging through Reaction 2.4). Based on Eq. 2.2b, EC50 will 

increase with NO concentration, if ·NO2 is the major nitrosating intermediate. On the 

other hand, based on Eq. 2.2a, an EC50 value that remains relative steady at different 

levels of NO, is indicative of N2O3 as the nitrosating intermediate.  

           When we incorporate Reactions 2.7 – 2.9 into kinetic mechanism 2 to account for 

the formation of GSSG, PSSA yields:  
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The difference between Eq. 2.2c and 2.2b is a correction factor f = 
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   that accounts for the fraction of total GS· utilized in the 

formation of GSNO (i.e. f= 
86

6
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+
). Eq. 2.2c reduces to Eq. 2.2b when 
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. Incorporating Reaction 2.7 – 2.10 to the simplified kinetic mechanism 

2 and applying PSSA yields: 
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           Eq. (2.2d) 

For low GSNO levels (i.e. [GSNO]<< k6/k10 [NO]) Eq. 2.2d reduces to Eq 2.2c, thus 

Reaction 2.10 should not affect initial formation rates. However, Eq. 2.2d suggests that in 

a “clamped NO” condition, GSNO accumulation will lead to an equilibrium point with 

steady GSNO levels i.e. [GSNO] = k6/k10 [NO].  

2.4 Results 

2.4.1 Dependence of [NO] on [NOdonor] 
           First, we investigated the pattern of NO release by NO donors to confirm our 

theoretical predictions (Eq. 2.1d). NO release was measured with varying concentrations 

of PAPA/NO (500 μM to 10 mM) electrochemically using an NO electrode. A sample 

reading is shown in Fig 2.1A. As NO release occurs, concentration levels rise to a peak 

value before reaching a slowly decaying plateau. As expected, decay in NO concentration 

occurs as a result of NO donor consumption over time. The long half – life of the NO 

donor allows for a relative steady level of NO over an adequate time frame. Peak NO 

concentrations from NO recordings at different NO donor concentrations were used to 

generate a log – log graph of [NO] vs. [PAPA/NO] (n = 4). The result is shown in Fig 

2.1B. The linear relationship between log[NO] and log[PAPA/NO] has a slope of 0.51 + 

0.04 and it is not statistically different from 1/2 (p = 0.30). As expected, based on Eq. 

2.1d, established NO levels are proportional to the square root of the utilized NO donor 

concentration, i.e. ][][ NOdonorNO ∝  .  
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Fig 2.1: (A) Release of NO from PAPA/NO (500 μM). NO concentration is monitored 
with a NO-sensitive electrode for 30 min. After an initial accumulation period, NO levels 
remain relative steady for a significant time period. (B) log-log graph showing relation 
between maximum NO concentrations achieved at different PAPA/NO concentrations (n 
= 4). The slope of 0.51 + 0.04 is not statistically different from 0.5 (p = 0.30). 
 

Electrode data thus yield the following linear relationship between clamped [NO] and 

]/[ NOPAPA         

]/[02.023.0][ NOPAPANO ±=                                                                           Eq. (2.3) 

            This result would be in agreement with Eq. 2.1d for n×kd = 1.58 ± 0.03 × 10-4 s-1 

for PAPA/NO under the conditions of our experiment. (Reported stoichiometry (n = 2) 

and half – life (t1/2 = 77 minutes) [70, 71]  for PAPA/NO at room temperature yield n×kd 

= 3 × 10-4 s-1 but these values may change with experimental conditions [72, 73]).  We 

use Eq. 2.3 to better predict [NO] for every [PAPA/NO] in further analysis rather than 

using Eq. 2.1d with the reported half – life of PAPA/NO.  
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2.4.2 Dependence of EC50 on [NO]      

            Fig 2.2A shows a representative recording of GSNO formation in the 

spectrophotometer for a particular GSH (250 μM) and NO donor concentration 

(PAPA/NO; 1mM). Recordings show a relative constant rate of GSNO formation over a 

period of a few minutes. The slope of this tracing where NO concentration would have 

peaked was recorded (red circle in Fig 2.2A) and corresponds to the maximum rate of 

GSH nitrosation at the particular NO donor and GSH concentration. The use of this slope 

rather than initial slope is necessitated to account for the time required for NO to evolve. 

We ensure that peak/plateau NO concentration is reached fast after mixing with GSH and 

thus GSH concentration has not changed significantly from initial time and formation of 

GSNO is low (i.e. [GSNO] << k6/k10 [NO]). Experiments were repeated for different 

GSH concentrations at each NO donor concentration and the results are summarized in 

Fig 2.2B for three PAPA/NO concentrations (500 μM, 1 mM and 5 mM). In the inset, 

Vmax/V vs. 1/GSH plots were made (‘V’ indicates the rate of nitrosation).  Linear least 

square fittings followed by taking the slope yields EC50 values at each NO donor 

concentration. We observe a NO concentration dependent shift in EC50 values. As the NO 

donor concentration increases the EC50 value also increases.  
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Fig 2.2: (A) Representative data for GSNO formation as a function of time. GSNO 
concentration was monitored in a spectrophotometer at 338 nm, following mixing of 

GSH (250 μM) and PAPA/NO (1 mM). Data were fitted by a 5th order polynomial to 
remove noise (dashed black line). The maximum slope of the polynomial is identified 
(red circle) and corresponds to the GSNO formation rate at peak NO concentration. (B) 

Rates of nitrosation (V) at three different NO donor concentrations (500 μM (red), 1 mM 
(blue) and 5 mM (green)) are plotted against GSH concentrations. Inset shows Vmax/V 
plotted against 1/GSH. Slope of these lines indicate EC50 values. An increase in EC50 
values is observed with increasing NO donor concentrations. 
             

Fig 2.3A depicts the dependence of the half maximum constant EC50 as a function 

of the NO donor concentration in a log – log plot. EC50 values are averaged over n ≥ 3 

experiments. A linear fit of the dependence of log (EC50) vs. log (PAPA/NO) reveals a 

slope of  0.5 ± 0.2 which is not statistically different from 1/2 (p = 0.946). The above data 

point towards an EC50 value proportional to the square root of the NO donor (PAPA/NO) 

i.e. ][50 NOdonorEC ∝ . Thus, experiments point towards an EC50 value that is linearly 
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dependent on the square root of NO donor and as a result proportional to the clamped NO 

concentration, i.e. ][50 NOEC ∝ .   

            NO donor concentrations were related to NO concentrations using experimental 

data from Fig 2.1B. (Alternatively, one can use Eq. 2.1d if the stoichiometry and half – 

life of the NO donor is known). We then can plot EC50 values from Fig 2.3A as a 

function of [NO] (Fig 2.3B). A linear dependence is observed in Fig 2.3B with a slope of 

30.5 ± 5.2 μM GSH/μM NO. 

EC50 = 30.5 [NO]                                                     Eq. (2.4) 

  

   

Fig 2.3: (A) A log – log graph of half maximum constant (EC50) at different PAPA/NO 
concentrations. Average EC50 values (n = 3) are presented. The slope of 0.5 ± 0.2 is not 
statistically different from 0.5 (p = 0.946). The result suggests that EC50 is proportional to 
the square root of NO donor concentration and thus proportional to NO concentration. 
(B) A graph of EC50 vs. clamped NO values from NO electrode measurements in Fig 

2.1B. The slope from a linear fit of the graph is 30.5 ± 5.2 μM GSH/μM.  
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Experiments were repeated in a chemiluminescence analyzer following the 2C 

assay method from Gaston et al. [65] using different DEA/NO and GSH concentrations. 

This NO donor had a reasonably short half – life so as to allow both for a “clamped NO” 

condition (over a short period of time), and provide an early elimination of NO donor 

from the solution. The latter condition is needed to avoid interferences in the 

chemiluminescence device due to NO release by the donor when GSNO levels are 

measured. Recordings were collected for each GSH and NO donor concentration and 

were compared against a predetermined calibration curve prepared from known 

concentrations of GSNO (data not shown). Rates of GSNO formation were obtained by 

dividing GSNO concentrations by the corresponding incubation/reaction times. The 

control experiments where GSNO content was abolished with HgCl2 showed zero signal, 

hence confirming that the signal obtained was from GSNO. The estimated GSNO 

production rates were used to calculate EC50 using curve fitting similar to Fig 2.2B. A 

slope of 0.38 ± 0.07 in the log EC50 vs log [DEA/NO] data was estimated (n = 3). This is 

slightly different than the slope of approximately 0.5 from the earlier method. This may 

be attributed to some GSNO scavenging during the hour-long post reaction incubation 

time (see methods section). However, the alternative explanation for participation of 

N2O3 in nitrosation of GSH cannot be excluded. 

2.4.3 Calculation of k5 
           This constant applies to the overall reaction of N	∙ Oଶ with both the thiol and the 

thiolate anion and it is pH dependent [74] (See also table 2.1). Based on our analysis the 

dependence of EC50 on [NO] is linear with a slope that is equal to 
542

24
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kk
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assuming the values for the other kinetic constants (k2, k-2, k4) from Table 2.1 and a slope 

of 30.5 μM GSH/μM NO from Eq. 2.3 a value for k5 of 1.15 × 107 M-1s-1 is predicted. 

This is essentially the same as the experimentally observed value by Ford et al. [74], 

(derived from Fig 2 in [74] for pH = 7.4), and reasonably close to their corrected estimate 

of 2 × 107 M-1s-1 which takes account the reduction of GS· at higher pH values in their 

analysis. The rate constant of N2O3 hydrolysis (Reaction 4) was determined from Eq. 2.9 

and accounts for catalysis by 40 mM of phosphate [75, 76], i.e. ])[530(4 Pikk p+=  

where kp = 9.4 × 105 M-1s-1 [75, 76].  
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Table 2.1: Rate constants of reactions mentioned in the manuscript are as follows 

Reactio

n No. 

Reaction Rate constant Referenc

e 

1 
22 22 1 NOONO k⎯→⎯+  k1 = 2.9×106 M-2s-1 [76, 77]  

2 
322

2

2

ONNONO
k

k−

↔+  
k2 = 1.1×109 M-1s-1 

k-2 = 8.1×104 s-1 

[78] 

3 +− ++⎯→⎯+ HNOGSNOGSHON k
232

3

 

k3 = 6.6×107 M-1s-1 [54]  

4 +− +⎯→⎯+ HNOOHON k 22 2232
4  k4 = 3.8×104 s-1 [75] 

5 +⋅−⋅ ++⎯→⎯+ HGSNOGSHNO k
22

'5  

⋅−−⋅ +⎯→⎯+ GSNOGSNO k
22

''5  

k5 = 1.15×107 M-1s-1 









+=

−

GSH
GSkkk

[

][
''5'55

 

Estimated 

See also 

[74] 

6 GSNONOGS k⎯→⎯+ ⋅⋅ 6  k6 = 3×109 M-1s-1 [79] 

7 +− +↔
−

HGSGSH
k

k

7

7

 k7 = 63 s-1

k-7 = 0.1×1010 M-1s-1 

[80] 

[80]* 

8 −−⋅

−

↔+ GSSGGSGS
k

k

8

8

 
k8 = 9.6×106 M-1s-1 

k-8 = 1.6×105 s-1 

[81] 

[82]  

9 −•− +⎯→⎯+ 22
9 OGSSGOGSSG k  k9 = 5×109 M-1s-1 [82] 

10 NOGSSGGSNOGS k ⋅⋅ +⎯→⎯+ 10  k10 = 1.7×109  M-1s-1 [83] 

* pH = 7.4 
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2.4.4 Dependence of Vmax on [NO]      
In Fig 2.4A, we plot Vmax against PAPA/NO concentrations in a log – log plot. A 

slope of 1.09 ± 0.1 in the log – log plot suggests a linear dependence between Vmax and 

[PAPA/NO] (i.e. a square dependence on [NO] in agreement with both kinetic 

mechanisms). A linear plot of Vmax vs [PAPA/NO] reveals a slope of (7.5 ± 0.5) ×10-5 s-1 

(Fig 2.4B). 

Vmax = 7.5×10-5 [PAPA/NO]                                                                                  Eq. (2.5a) 

Based on both kinetic mechanisms (Eq. 3.2a or 3.2b) Vmax= 2k1[NO]2[O2]. [Note: Eqs 

2.2c & 2.2d predict different Vmax dependence on NO and differences with Eq. 2.2b can 

become significant at high GSH or GSNO concentrations. However, experimental data 

and model simulations (see below) suggest that under our experimental conditions these 

differences are negligible].     

Using Eq. 2.1d, and the previously determined value for n×kd = 1.58 ± 0.03 × 10-4 s-1 

from the electrode data, we predict that: 

]/[109.7][
2

][][2 5
2

2
1max NOPAPANOdonor

nk
ONOkV d −×===                        Eq. (2.5b) 

 Thus, the observed dependence of Vmax on PAPA/NO is in agreement with theoretical 

analysis for both kinetic mechanisms.   
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Fig 2.4: (A) A log – log graph of nitrosation rates at saturating GSH concentrations 
(Vmax) at different PAPA/NO concentrations. Average values with standard deviations 
(error bars) are presented. A linear fit gives a slope of 1.08 ± 0.1. The slope is not 
statistically different from 1 (p = 0.09) and significantly different from 0.5 and 1.5 (p << 
0.05) suggesting a Vmax proportional to the NO donor concentration. (B) The linear 
dependence of Vmax on PAPA/NO concentration has a slope of (7.5 ± 0.5) × 10-5 s-1. 

2.4.5 Validation of rate law and data fitting 
           To validate the assumptions in the pseudo steady state approximation, we 

compared the proposed rate law (Eq. 2.2b) with the numerical solution of the complete 

set of ordinary differential equations describing the second kinetic mechanism (Reactions 

2.1, 2.2, 2.4 – 6) and assuming values for kinetic constants from Table 2.1. Rate law and 

numerical solution provide essentially identical results (data not shown). Thus, Eq. 2.2b 

accurately describes the behavior of the second kinetic mechanism. 

           We further validated the proposed rate laws (Eq. 2.2b – 2.2d) against our 

experimental data and we tested if measured GSNO formation rates are in agreement 

with predicted rates from the rate laws. Previously determined values for reaction rate 
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constants were assumed (Table 2.1). Each NO donor concentration was related to the 

corresponding clamped NO concentration based on Eq. 2.3. In Fig 2.5 rate law 

predictions are presented as solid lines and experimental data with different symbols for 

each NO donor (or NO) concentration. Dotted lines depict model simulations of the set of 

all 25 reactions presented in the Appendix A1. From the three rate laws, only Eq. 2.2d is 

shown. Eq. 2.2b and 2.2c yield similar results as 2.2d over the range of GSH examined, 

and hence they were omitted from Fig 2.5. There is close agreement between rate law, 

model simulations and experimental data over a wide range of NO and GSH 

concentrations. There is a difference between rate law and model for high NO indicating 

that additional reactions that have not been incorporated in the simplified kinetic 

mechanism become more important as NO concentration increases. The accuracy of the 

experimental data does not allow confirming this limitation of the rate law at high NO 

concentrations.   

            Eq. 2.2c suggests that when the ratio of [NO] to [GSH] is not much greater than 

76

78

−kk
kk

 reactions 2.7 – 2.9 become important. Based on previous estimates for constants 

k6, k7, k-7, and k8 (Table 3.1) this ratio should be equal to 5×10-4 μΜ NO/μM GSH. In the 

experimental results presented in Fig 2.5, the ratios of [NO]/[GSH] were between 10-3-10-

1 thus, these reactions should not have affected GSNO formation. In the Appendix A1, 

we present model simulations for higher GSH concentrations (Fig A1.1). GSNO 

formations rates show a decrease at high [GSH] that cannot be captured by the rate law of 

Eq. 2.2b. On the contrary, Eq. 2.2c is in agreement with model simulations suggesting 

that this effect is attributed to Reactions 2.7 – 2.9.  
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             Eq. 2.2d suggests that when [GSNO] << 
୩ల୩భబ [NO] Reaction 2.10 does not affect 

formation rate. By measuring formation rates within a few seconds after mixing of the 

reactants we can minimize the effect of this reaction. At longer times, when [GSNO] 

approaches 
୩ల୩భబ [NO], an effect of this reaction can be observed (data not shown). Thus, 

under our experimental conditions and for the range of NO and GSH concentrations 

examined Reactions 2.1, 2.2, 2.4 – 6 are the ones that mostly determine GSNO formation 

rate. 

 

Fig 2.5: Comparison of GSNO formation rates as predicted by the proposed rate law of 
the simplified reaction scheme Eq. 2.2d (solid lines), the mathematical model of the 
complete reaction set (dotted lines) next to experimental data. Data using different 

PAPA/NO concentrations are presented (500 μM, 1 mM, 3 mM, 5 mM and 10 mM). The 
corresponding NO concentration achieved were. Error bars show standard deviations (n = 
3). 
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2.5 Discussions 
Recent evidence for contribution of ·NO2 radical in the nitrosation of thiols [58-

61] provided the incentive to revisit an earlier proposed kinetic law by Kharitonov et al. 

[55] for the nitrosation of thiols. We followed a similar theoretical analysis (i.e. PSSA) 

with this earlier study for two alternative reaction schemes; one where N2O3 is the 

nitrosating intermediate and one where ·NO2 plays this role. Earlier experimental data 

have confirmed saturation kinetics of the nitrosation rate on GSH concentration [54-57]. 

This is in agreement with both kinetic mechanisms. Previous studies however, did not 

examine if the GSH concentration for half-maximum rate (i.e. EC50) remains constant at 

different NO concentration levels. Theoretical analysis suggests that unlike in N2O3-

based nitrosation, in a primarily ·NO2 - based nitrosation the EC50 will increase as the NO 

concentration increases.  

           Experimental findings in this study confirm such dependence and argue for 

significant contribution of the second kinetic mechanism in GSH nitrosation. Our data 

show that GSNO formation rate follows saturation kinetics with respect to GSH 

concentration and EC50 increases with NO donor concentration. Data suggests an EC50 

that is proportional to [NO] (Fig 2.3). This is in agreement with ·NO2 based nitrosation 

(Eq. 2.2b). 

           Theoretical considerations corroborated by experimental data show that in aerated 

slow-releasing NO donor solutions, NO levels remain relatively steady with a 

concentration that increases proportionally to the square root of the NO donor 

concentration (Fig 2.1). This enables us to monitor the reaction over longer periods of 

time (i.e. no need for rapid mixing in a stop-flow apparatus) and to relate the rate of 
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GSNO formation to the NO concentration. [Caution however is advised since at later 

times conversion of GSNO to GSSG might influence GSNO formation rate]. We utilized 

two alternative methods to assess GSNO concentration. With the spectrophotometrical 

method, GSNO is measured continuously during the reaction, while chemiluminescence 

requires stopping the reaction at different time points and assess GSNO after a long 

incubation time to release excess NO from the system. As a result, rates estimated with 

the second method may have less accuracy.  

 Goldstein et al [75] has previously suggested that ·NO2 can act as an active 

intermediate for GSH nitrosation. They presented kinetic laws that propose a functional 

difference between ·NO2 and N2O3 mechanisms similar to this study (Note:  Eq. 21 and 

22 in [75] propose similar saturation kinetics but for the nitrosation yield instead of the 

reaction rate). These two quantities should follow a similar dependence on GSH and NO, 

at initial times. This functional difference was tested for some thiols (NAPenSH) 

showing dependence characteristic of the N2O3 based pathway. The authors concluded 

that both ·NO2 and N2O3 can play the role of active intermediate in thiol nitrosation.   

 Schrammel et al [61] have provided evidence for ·NO2  as the main nitrosating 

intermediate for GSH and albumin. The nitrosation was partially inhibited in the presence 

of thiyl scavengers (ascorbate and TEMPOL) and EPR spectroscopy revealed 

intermediate formation of glutathionyl radicals. They concluded that GSNO formation by 

NO/O2 is predominantly mediated by ·NO2 . However, TEMPOL may not impact solely 

the thiyl radical since scavenging of ·NO2 has also been suggested [84]. This would 

presumably interfere with the N2O3 pathway as well (Reaction 2.3). Jourd’heuil et al. [58] 

have also provided evidence for ·NO2 over N2O3 as the nitrosating intermediate. 
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Inhibition of thiyl radical-mediated GSNO and GSSG formation by the thiyl radical trap 

5,5-dimethyl-1-pyrroline N-oxide (DMPO) was demonstrated. However, nitrosation was 

shown to be insensitive to DMPO in an earlier study [85]. Thus, although the recent use 

of spin traps has provided evidence for a significant role of ·NO2 in thiol nitrosation, the 

relative importance of the two alternative intermediates remains a topic of continuing 

investigations. A recent study by Keszler et al [59] utilizes theoretical analysis and 

experimentation and suggests involvement of both intermediates in nitrosation. 

Simplified rate laws were provided for N2O3 but not for ·NO2 nitrosation. A detailed 

kinetic model that includes 20 relevant reactions was proposed and was fitted to the 

experimental data. Evidence for N2O3 contribution is provided by the reported decrease 

in GSNO formation when N2O3 hydrolysis is enhanced. A 10-fold increase in the rate of 

N2O3 mediated nitrosation (Reaction 2.3) than previously reported was actually suggested 

to explain a decrease in GSSG with a concomitant increase in GSNO when a thiyl radical 

trap (DMPO) was utilized. This allows for significant increase in GSNO formation 

through mechanism 1 (N2O3 based nitrosation scheme) when mechanism 2 (·NO2  based 

nitrosation scheme) is inhibited. Thus, there is conflicting evidence for the effect of thiyl 

radical scavenging on GSNO formation with some studies reporting a decrease [58, 61], 

while others an increase [59, 86]. However, as pointed out in [59], cross talk between the 

two pathways makes difficult the interpretation of the results and to conclusively 

determine which is the dominant mechanism.   

 There is a good agreement between our estimated kinetic constant for thiol 

oxidation by ·NO2 (i.e. k5 = 1.15×107 M-1s-1) and the constant provided by Ford et al. [74] 

(i.e. 1×107 M-1s-1 and 2 ×107 M-1s-1 after correction for a side reaction). Based on this 
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value the authors in this earlier study argued, that there is small likelihood for significant 

generation of N2O3 (Reaction 2.2) compared to the loss of ·NO2 via reaction such as 

Reaction 2.5, and thus, a substantial fraction of any ·NO2 produced should not be 

channeled to nitrosative chemistry involving N2O3.This suggests a dominant role of 

·NO2 in nitrosation of thiols and a lesser role for N2O3. Our theoretical analysis 

demonstrates this point in a system containing a significant number of the most relevant 

reactions.  

            An important observation in previous studies [58, 59, 85, 86] is the significant 

generation of GSSG. Reactants and active intermediates may be utilized for the 

generation of GSSG and this utilization can affect GSNO formation rate. This represents 

a serious threat for the accuracy of the proposed simplified rate laws (Eq. 2.2a and Eq. 

2.2b) presented here or in previous studies. The reaction scheme presented in the 

Appendix A1 proposes four alternative pathways for GSSG formation (Reactions 2.8, 

2.10, 2.11, 2.18) out of which Reactions 2.8 and 2.10 are the most important based on the 

assumed values for the kinetic constants. Interestingly, Reaction 2.8 becomes important 

for low [NO]/[GSH] ratios while Reaction 2.10 is important after significant  GSNO 

accumulations and thus high [GSNO]/[NO] ratios.  Thus, the proposed rate law in Eq. 

2.2b can adequately describe our data since the high [NO]/[GSH] ratio and the estimation 

of GSNO formation rate early (i.e. low [GSNO]/[NO] ratio) should provide conditions 

for low GSSG formation rate. [Note that previous studies [58, 59, 85, 86] have often used 

lower [NO]/[GSH] ratios and reaction is followed for several minutes]. Interference from 

Reaction 2.8 will occur at low [NO]/[GSH] ratios and will be documented with a 

decrease in GSNO formation rate as GSH concentration increases (Fig A1.1). 
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Interference from Reaction 2.10 will appear after significant GSNO accumulation and 

will be documented with a saturation of GSNO concentration with time. In this study, the 

nitrosation mechanism was tested only for glutathione. Previous studies have shown 

similar kinetic behavior in the nitrosation of Cysteine, whereas for other thiols like N-

acetyl Penicillamine (NAPenSH), captopril (CapSH) and N-nitrosomorpholine 

(MorNNO) the oxidizing reaction through ·NO2 has been found to be too slow and 

Reaction 2.2 was found to outcompete their oxidation by ·NO2 [75].  

            In vivo, the nitrosation pathway could be affected by the slow NO oxidation and 

other reaction pathways could become important. It has been previously suggested [15-

17, 60, 87, 88] that catalysis of nitric oxide oxidation in hydrophobic environments is 

possible which might accelerate formation rate. The physiological relevance of the 

nitrosation process and the ability of thiols to transport and preserve NO might hinge on 

acceleration of nitrosation in hydrophobic environments (owing to < 1 μM [NO] in vivo 

and the slow NO oxidation process in aqueous solution), and thus this needs further 

study. In addition, the effects of transition metal ions [89], cellular antioxidants [90] and 

lipid radical species [91] and pH variations [74] need to be further examined. There is 

also a possibility of a heme enzyme dependent nitrosation [92]. Glutathione may bind to 

ferricytochrome c followed by a combination of NO to form a ferric cyt-c GSNOH 

complex. Subsequent electron donation from NO to heme would then, yield 

ferrocytochrome c and GSNO. Experimental evidence with isolated enzymes and in cells 

corroborate this hypothesis [93]. Besides ferricytochrome c, other heme enzymes and 

iron complexes may serve similar functions [94-97].  
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           In summary, recent studies point towards a role of ·NO2 in thiol nitrosation. 

However, the relative contribution of N2O3 and ·NO2 has been difficult to elucidate so far, 

as a result of crosstalk between the two alternative mechanisms. In this study, theoretical 

analysis suggests a functional difference in the rate laws between N2O3 and 

·NO2  mediated nitrosation (Eq. 2.2a and 2.2b) and experimental data suggest a 

predominant role for ·NO2 in the nitrosation of GSH by NO donors in aerated solutions. 

In vivo, a series of factors may interfere with the nitrosation pathway and the relative 

importance of the two intermediates needs to be further investigated.  
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Chapter 3: Nitrite Transport and Reduction by sGC in Smooth Muscle Cells 
This chapter has been submitted with only slight modifications as: Madrasi K, Joshi M.S. 
and Tsoukias N.M. 2012, “Nitrite Transport and Reduction by sGC in Smooth Muscle 
Cells” Free Radic. Biol. Med. (Manuscript submitted) 

3.1: Abstract 
Several heme proteins including hemoglobin and nitric oxide synthase (NOS) 

have been documented to serve as nitrite reductase under anoxia. Since sGC is also a 

heme protein and an important signaling biomolecule, we tested if it may function as a 

nitrite reductase in cultured aortic smooth muscle cells (SMCs) under normoxic 

conditions. Millimolar levels of nitrite were required to detect cellular NO using a novel 

NO specific fluorescent dye (Cu2FL2E). However, in chemiluminescence analyses of cell 

lysates, addition of 400-600 μM nitrite was sufficient to detect measurable NO synthesis 

that was independent of O2 concentration. The NO formation was inhibited by sGC 

inhibitor, ODQ and sGC activators, YC-1 and CO significantly enhanced the nitrite 

reduction, documenting the sGC-mediated nitrite reduction.  The enzymatic nitrite 

reduction was demonstrated by the first-order reaction of NO generation. The cellular 

uptake of nitrite was attenuated by different anion channel blockers 

(Diisothiocyanatostilbene-2,2′-disulfonic acid (DIDS), probenecid, K+ gluconate and 5-

Nitro-2-(3-phenylpropylamino)benzoic acid (NPPB)) demonstrating the participation of 

SMC anion channels in nitrite transport. Exogenous nitrate significantly inhibited both 

the nitrite influx and reduction, thus illustrating the modulation of nitrite activity by 

nitrate. These results show that sGC can mediate nitrite reduction to NO and nitrite is 

transported across the smooth muscle cell membrane via anion channels, which is 

attenuated by nitrate.   

 Keywords: ion channels, nitric oxide, nitrite, reductase, sGC 
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3.2: Introduction 
The biological sources of nitrite consist of as an oxidation product of NO and that 

acquired through diet. Recently accumulated evidence points to endogenous nitrite as a 

signaling agent along physiological and pathophysiological oxygen gradient. Nitrite 

serves as a stable storage form of NO in the vasculature as it is not readily consumed by 

known scavengers like oxyhemoglobin and superoxide. Nitrite can thus traverse the 

system without being consumed and may be readily available for local biotransformation 

to vasoactive NO. This unique property has attracted recent investigations into the 

conditions that favor nitrite reduction to NO and facilitate vasorelaxation. A number of 

nitrite reductases have been identified that when activated mediate vasorelaxation. For 

example, various globins (neuroglobin [98], deoxyhemoglobin  and deoxymyoglobin 

[99]) and molybdenum enzymes (XOR [100] and aldehyde oxidase [101]), carbonic 

anhydrase [102], cytochrome c oxidase [103] and cytochrome P450 [104] are 

demonstrated to act as nitrite reductases. However, vasodilating actions of nitrite are 

observed mainly under low oxygen conditions – a phenomenon termed ‘hypoxic 

vasodilation’. In other words, nitrite dependent relaxation is activated only when NOS 

activity was repressed due to low O2 supply. Nitrite was illustrated to be cytoprotective 

against ischemic damage in wide range of tissues by providing an alternative to NOS as 

the NO generator [105, 106].   

Significant evidence has been presented to show that deoxyhemoglobin in blood 

mediates nitrite reduction to NO [107, 108]. This allosterically regulated reaction is 

proposed to participate in hypoxic vasodilation. A major challenge to NO signaling (via 

nitrite reduction by deoxyHb in RBC) is the scavenging of NO before it escapes from 
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cells and as a consequence sufficient NO may not be reaching smooth muscle to initiate 

the vasodilation. This obstacle to vasodilation can be overcome provided the smooth 

muscle cells generate local NO pool. Therefore, we speculated that sGC in SMC of 

vascular wall may serve the purpose by acting as nitrite reductase. This assumption is 

reinforced by the observed tissue nitrite levels being far greater than in plasma [42]. In 

support of this speculation Alzawahra et al [48] have documented attenuation of nitrite 

mediated aorta relaxation with ODQ. Based on these studies they have speculated the 

possibility of a heme protein acting as nitrite reductase. We have carried out a detailed 

investigation to test the hypothesis that sGC in SMC, which is a heme protein, reduces 

nitrite to NO and thus providing a local source of vasodilator.   

Since nitrite occurs in anionic form at physiologic pH, the participation of cell 

membrane in nitrite transport attains particular significance. Nitrite uptake across the cell 

membrane could be a rate-limiting step prior to its intracellular conversion to NO. It is 

not known whether nitrite traverses the smooth muscle cell membrane via anion channels 

and/or diffuses as HNO2 through lipid bilayer. Smooth muscle cells are known to possess 

different classes of anion channels including Cl- [109], Cl-:HCO3
- antiporter channels 

AE2 and AE3 [110], and urate [111]. These ion channels are proposed to participate 

mainly in the maintenance of intracellular pH regulating vascular tone.  A role for anion 

exchanger AE1 was suggested in the export of nitrite in RBC wherein the reactions were 

modulated by low O2 tensions [112]. So it is possible that nitrite could be using any of the 

known anion channels in SMC as proposed in the present investigations. However, a 

larger physiologically relevant question to be elucidated is how the movement of nitrite 
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across the membrane gets modulated. Since nitrate is an anion like nitrite, it could be 

competitively inhibiting nitrite influx and subsequent reduction by reductase(s). The 

blood and tissue nitrate concentrations are significantly higher than nitrite and thus may 

serve a regulator role. To our knowledge there are no reports of inorganic nitrate 

modulating nitrite activity in mammalian system. However, nitrate was shown to depress 

the active uptake of nitrite in alga [113]. In this report, using rat aortic smooth muscle 

cells we have demonstrated that sGC serves as nitrite reductase that is independent of O2 

tension. Nitrite appears to use several anion membrane transport mechanisms, which was 

modulated by nitrate.  

3.3: Materials and Methods 

3.3.1 Materials  

A7r5 rat aortic smooth muscle cells, Dulbecco’s Modified Eagle Medium 

(DMEM), Fetal Bovine Serum (FBS) and DMSO were acquired from ATCC (Manassas, 

VA, USA). Sodium Nitrite, Sodium Nitrate, 4,4′-Diisothiocyanatostilbene-2,2′-disulfonic 

acid disodium salt hydrate (DIDS), p-(Dipropylsulfamoyl)benzoic acid (Probenecid), 

Copper (II) Chloride (CuCl2), Tricarbonyldichlororuthenium (II) dimer (CORM-2), 1H-

Pyrazolo(3,4-d) pyrimidin-4-ol (Allopurinol), and Penicillin – Streptomycin were 

obtained from Sigma Aldrich (St. Louis, MO, USA). 5-Nitro-2-(3-

phenylpropylamino)benzoic acid (NPPB) was obtained from Tocris Bioscience (Bristol, 

UK). Methylamine hexamethylene methylamine NONOate (MAHMA/NO), 1H-[1,2,4] 

oxadiazolo [4,3-a] quinoxalin-1-one (ODQ), and 5-[1-(phenylmethyl)-1H-indazol-3-yl]-

2-furanmethanol (YC-1) were obtained from Cayman chemicals (Ann Arbor, MI, USA). 

D-potassium gluconate, tissue culture flasks and dishes were obtained from Fisher 
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scientific (Atlanta, GA, USA). Trypsin (0.25% EDTA), DMEM:F-12K 1:1 medium and 

PBS were obtained from Invitrogen (Carlsbad, CA, USA). Protein assay reagents were 

from Bio-Rad (Hercules, CA, USA). Cu2(FL2E) was prepared as described [114]. 

3.3.2 Cell culture  

Cell culture protocols used are described in appendix A3 – A5. Cells were grown 

(passage 4 – 10) in DMEM supplemented with 10% FBS and 1% penicillin-streptomycin 

in a humidified  tissue culture incubator at 37 oC equilibrated with 95% air 5% CO2. For 

experimentation, cells were cultured in 35 × 10 mm dishes seeded with 2 × 105 cells and 

used at 60 – 80 % confluency.  

3.3.3 Fluorescence NO Imaging 

After loading with Cu2(FL2E) (10 μM for 45 min) cells were analyzed for 

fluorescence due to NO synthesis in response to 30 mM nitrite at 37o C. Images were 

acquired with a fluorescence microscope (Olympus IX 81 fitted with a CCD camera 

(Qimaging)) and the data were analyzed with IPLAB software (BioVision Technologies).  

3.3.4 Chemiluminescence analysis 
Cells suspended in PBS were lysed with a sonicator (4 bursts of 10 sec each) and 

cell lysates used for analysis of NO production in response to the nitrite injection in a 

deoxygenated purge vessel. The head space NO concentration was measured by using 

continuous sampling with ozone chemiluminescence (Sievers, NOA 280i). The NO 

produced (pmoles/mg protein) was estimated from the area under the curve based on a 

calibration curve from MAHMA/NO injections under identical conditions. Nitrite in cell 

lysates, upon deproteinization, was quantified (nmoles/mg) by reductive denitrosation 

with a mixture of iodine/iodide in glacial acetic acid and subsequent detection of 
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liberated NO by gas phase chemiluminescence reaction with ozone as described [115]. 

The protein in cell lysates was determined by the Bradford method [116].  

3.3.5 Statistical Analysis  

All data have been represented as mean ± SE with n representing independent 

treatments. Data were analyzed using paired t-tests in MATLAB (MathWorks) and P-

values ≤ 0.05 were considered significant. 

3.4: Results 

3.4.1 ODQ inhibited and YC-1 accelerated nitrite reduction to NO 

The SMCs loaded with a novel cell-trappable NO sensitive dye, Cu2(FL2E) were 

treated with saturating concentrations of nitrite (30 mM) in the presence and absence of 

ODQ (sGC inhibitor) and intracellular fluorescence was measured. Significant increase in 

fluorescence was observed with nitrite treatment (Fig 3.1B), which was inhibited by 10 

μM ODQ (Fig 3.1C). The arbitrary fluorescence units from our observations were 

normalized with average of arbitrary fluorescence units of control (afu/afuc) and plotted 

(Fig 3.1D). When the cells were treated with saturating concentrations of nitrite (30 mM) 

in the presence and absence of sGC agonist YC-1, the increased fluorescence with nitrite 

treatment (Fig 3.2B) was enhanced further in the presence of 20 μM YC-1 (Fig 3.2C and 

Fig 3.2D). ODQ and YC-1 added alone to the cells did not have any effect on 

intracellular fluorescence (data not shown). These results provide evidence for the sGC 

participation in nitrite reduction. 
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Fig 3.1: Effect of ODQ on nitrite reduction to NO: Rat aortic smooth muscle cells loaded 

for 45 min with 10 μM Cu2(FL2E) and treated with (A) Vehicle,  (B) 30 mM nitrite and 

(C) pretreatment with 10 μM ODQ followed by 30 mM nitrite for 10 min. (D) Change in 
the ratio of arbitrary fluorescence units normalized with average of arbitrary fluorescence 
units of control (afu/afuc) for A, B and C. 
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Fig 3.2: Effect of YC-1 on nitrite reduction to NO: Rat aortic smooth muscle cells loaded 

for 45 min with 10 μM Cu2(FL2E) and treated with (A) Vehicle,  (B) 30 mM nitrite  and 

(C) pretreatment with 20 μM YC-1 followed by 30 mM nitrite for 10 min. (D) Change in 
the ratio of arbitrary fluorescence units normalized with average of arbitrary fluorescence 
units of control (afu/afuc) for A, B and C. 
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3.4.2 Heat treatment and order of the reaction 

 

Fig 3.3: (A) Effect of heat on nitrite reduction to NO: Cell lysates were treated with 

either vehicle, 600 μM nitrite or 600 μM nitrite after heating the cell lysates in near 
boiling water for 30 min. (B) Nitrite reduction from three doses of nitrite, 0.6, 0.8 and 2 
mM was measured and the initial rate of nitrite reduction (averaged over first 10 minutes 
of the experiment) was plotted against nitrite in a log – log graph. The slope of the graph 
is 0.73 ± 0.3 thus indicating first order kinetics for the reaction. (n = 3 and *p<0.05) 
 

In Fig 3.3A, the effect of heat on nitrite reduction to NO was monitored by 

keeping cell lysates at near boiling water for 30 minutes. NO produced was substantially 

reduced to control levels, thus being an indicator that any non-enzymatic activity did not 

play a role. To verify the order of the reaction, we measured NO yields from three 

different nitrite concentrations, 0.6, 0.8 and 2 mM. An initial rate of nitrite reduction was 

measured by analyzing rate of NO formation after the first 10 minutes of introduction of 

nitrite in the purge vessel. A plot of the initial rate vs. nitrite concentrations as in Fig 3.3B 
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shows a slope of 0.73 ± 0.3, thus indicating a first order reaction and further elucidating 

the enzyme dependency of the phenomenon. Considering cell radius to be in the range of 

5 – 10 μm and a total of 2 × 105 cells for experimentation, initial rates of nitrite reduction 

Rinit were calculated in terms of mM/min for Fig 3.3B and the overall rate constant kov 

derived thus is 1.26 × 104 s-1. 

3.4.3 CO and Allopurinol effects on nitrite reduction to NO 
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Fig 3.4: Effect of CO on nitrite reduction to NO: (A) Cell lysates were treated with either 

vehicle, 600 μM nitrite, 600 μM nitrite + 50 μM CORM-2, and 600 μM nitrite + 50 μM 

CORM-2 + 10 μM ODQ. (B) Cell lysates were treated with either vehicle, 600 μM 

nitrite, 600 μM nitrite + 50 μM CORM-2, and 600 μM nitrite + 50 μM degraded CORM-

2. (C) Cell lysates were treated with either vehicle, 600 μM nitrite + 50 μM CORM-2 or 

600 μM nitrite + 50 μM CORM-2 + 600 μM CPTIO. (D) Effect of allopurinol on nitrite 

reduction to NO: Cell lysates were treated with either vehicle, 600 μM nitrite, or 600 μM 

nitrite + 100 μM allopurinol for 10 min and NO measured by chemiluminescence.  (n = 3 
and *p<0.05, **p>0.05)  
 

CO is a known sGC activator and therefore we tested the effect of a CO donor 

CORM-2 [117] on nitrite reduction. Cell lysates were exposed to 600 µM nitrite in the 

presence and absence of 50 μM CORM-2 and the NO produced was analyzed by 

chemiluminescence. We observed that at least 600 μM nitrite was required to detect 
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2-3 fold increase in the NO generation (Fig 3.4A). The mediation of sGC in CO-induced 

NO generation was tested with ODQ. It significantly attenuated the nitrite plus CORM-2 

induced NO production and thus demonstrating that sGC is mostly likely acting as nitrite 

reductase. As depicted in Fig 3.4B, degraded CORM-2 failed to activate NO generation 

showing that increased NO production from CORM-2 treatment was due to CO release. 

The chemiluminescence NO signal in these experiments was verified with the CPTIO 

treatment.  As shown in Fig 3.4C, the rise in signal in response to nitrite plus CORM-2 

treatment was abolished after CPTIO pretreatment. XOR inhibitor allopurinol (100 μM) 

had no effect on the nitrite initiated NO formation (Fig 3.4D) in cell lysates showing that 

in SMCs XOR does not act as nitrite reductase. The abolishment of chemiluminescence 

signal by C-PTIO also showed that the increased signal due to nitrite and CORM-2 is the 

result of NO generation. 
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3.4.4 O2 dependence of nitrite reduction and transport 

           

Fig 3.5: (A) Effect of oxygen on nitrite reduction to NO: Cell lysates were treated with 

600 μM nitrite either after purging with helium for 15 min (hypoxic) or with compressed 
air (normoxic). (B) Nitrite transport kinetics: Nitrite was added to cell cultures and 
intracellular nitrite measured by chemiluminescence upon cell lysis at different time 

intervals (n=3). (C) Cells were treated with either vehicle, 600 μM nitrite (normoxia), or 

600 μM nitrite (hypoxia) (n=3 and *p<0.05, ** p>0.05). 
 

sGC activity is known to be insensitive to O2 binding and we wanted to verify the 

effect of O2 levels on nitrite reduction to NO in SMCs. As illustrated in Fig 3.5A, nitrite 

reduction to NO was not influenced by hypoxic conditions and thus documenting sGC 

catalyzed nitrite reduction was independent of O2 binding. We also analyzed nitrite 

transport under hypoxic conditions. This showed a moderate increase in intracellular 

nitrite as in Fig 3.5B 
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3.4.5 Cellular nitrite transport via anion channels 
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Fig 3.6 (cont.): Intracellular nitrite measurements by chemiluminescence: (A) Cell 

cultures were treated with either vehicle, 100 μM DIDS, 600 μM nitrite  or 100 μM 

DIDS + 600 μM nitrite for 10 min and cell lysates used for nitrite measurements. (B) Cell 

cultures were treated with either vehicle, 75 μM probenecid,  600 μM nitrite, or 600 μM 

nitrite + 75 μM probenecid and cell lysates used for nitrite measurements. (C) Cell 

cultures were treated with either vehicle, 50 mM K+ gluconate, 600 μM nitrite or 600 μM 
nitrite + 50 mM K+ gluconate for 10 min and cell lysates used for nitrite measurements. 

(D) Cell cultures were treated with either vehicle, 10 μM NPPB, 600 μM nitrite, or 10 

μM NPPB + 600 μM nitrite for 10 min and cell lysates used for nitrite measurements. (n 
= 3 and * p<0.05, ** p>0.05) 
 

We studied the nitrite transport mechanism using different anion channel 

blockers. DIDS is a potent inhibitor of Cl-:HCO3
- transport channels including AE-2 on 

rat VSMCs [110, 118]. Cells were treated with nitrite in the presence and absence of 100 

µM DIDS and intracellular nitrite levels measured by chemiluminescence. DIDS 

completely inhibited nitrite influx (Fig 3.6A) and thus showing that AE2 may be 

mediating nitrite transport in SMCs. The chemiluminescene signal was completeletely 

abolished upon sulfanilamide pretreatment showing insignificant contribution of 

nitrosothiols towards nitrite levels (data not shown). Since SMCs are shown to possess 

urate transport channels [111], which are a member of organic anion transport family, we 

speculate that nitrite could be using these channels. As shown in Fig 3.6B, urate 

transporter inhibitor, probenecid (75 µM) significantly blocked the cellular nitrite uptake. 

Similar inhibitions were observed with K+ gluconate (organic anion transport inhibitor) 

and NPPB (chloride channel blocker) as shown in Fig 3.6C and Fig 3.6D respectively. 

Take together these data demonstrate that nitrite uses a number of anion channels for its 

uptake by SMCs.  
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3.4.6 Competitive inhibition of nitrite reduction and transport by nitrate 

 

       

Fig 3.7: Effect of nitrate on nitrite reduction and nitrite transport. (A) Cell lysates were 

treated with either vehicle, 600 μM nitrite, or 600 μM nitrite + 300 μM nitrate. (B) Cell 

cultures were treated with 600 μM nitrite in the absence and presence of increasing 
concentration of nitrate for 10 min and intracellular nitrite measured by 
chemiluminescence upon cell lysis (n = 3 and *p<0.05, **p>0.05) 
 

  Because of their structural similarity, nitrate could be modulating nitrite transport 

and subsequent reduction. Therefore, cell lysates were pretreated with 300 µM nitrate 

prior to nitrite addition and NO measurements by chemiluminescence. We observed that 

nitrate significantly attenuated nitrite reduction (Fig 3.7A) and thus showing that nitrate 

competes with nitrite for sGC binding and reduction. We also investigated whether 

nitrate blocks cellular nitrite uptake. As shown in Fig 3. 7B, nitrate dose-dependently 

blocked nitrite uptake.  
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3.5 Discussion 
Nitrite reduction to NO by heme and molybdenum containing macromolecules 

has been widely documented in both normoxic and hypoxic environments. Since the 

ultimate biological target of NO produced is its receptor sGC and subsequent dilation, 

NO has to traverse the vasculature without being consumed along the way. In the last 

decade, various competing hypotheses have been proposed to demonstrate sufficient 

levels of NO reaching sGC in smooth muscle cells and effect vasorelaxation. However, a 

convincing hypothesis has not yet emerged that satisfies all possible caveats. One such 

proposal could be if SMCs produce NO locally so that it binds to its target without having 

to overcome various scavengers like oxyhemoglobin and superoxide. We have carried out 

experiments to determine the nitrite reduction to NO by sGC in cultured rat aortic SMCs.  

The cell lysates effectively produced measurable levels of NO after addition of nitrite, at 

concentrations comparable to that used by others [48, 119]. The results illustrate that 

nitrite reduction to NO could be inhibited by known sGC activity blockers (ODQ) and 

elevated by its known specific activators (CO and YC-1). Additionally, nitrite reduction 

was abolished upon boiling the cell lysate demonstrating the participation of an 

enzymatic activity – but not nitrite disproportionation - in NO formation. These 

observations indicate that sGC may serve as a local source of NO to mediate relaxation of 

the vascular smooth muscle. Although several early reports had documented nitrite’s 

participation in the activation of sGC to synthesize cGMP [36, 120] but sGC may act as 

nitrite reductase was not speculated. Recent accumulated evidence points to sGC's 

possible mediation in nitrite induced protection against ischemia/reperfusion injury [105] 

and vessel relaxation following nitrite - reduction [48]. But detailed investigations were 
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not conducted to find the cellular origin of sGC/nitrite reductase activity and the effects 

of sGC specific modulators were not attempted.  

While nitrite metabolism is most active under hypoxia, it is widely believed to be 

inert at neutral pH and normoxic conditions. sGC activity generating cGMP was 

documented to be independent of O2 levels [121-124]. Thus, our finding that O2 tension 

had no effect on nitrite reduction is in support of this sGC property. This observation 

implied that even if most of NO is scavenged by oxyHb in normoxic conditions, sGC 

may still metabolize nitrite and effect vasodilation. Moreover, nitrite reduction in both 

normoxia and hypoxia was recently observed in heart and liver tissues, the rate of which 

was much faster as compared to that in blood [125]. Whereas earlier work has illustrated 

tissue XOR as a potent nitrite reductase [126], it did not reduce nitrite in our studies. 

Hence in rat aortic SMCs the sGC appears to be the major source of nitrite reduction. 

This interpretation was supported by the observations made in rat aortic tissue [48]. 

Alternatively, it is possible that XOR activity is lost in passaged cells used in the present 

investigations.    

Since reactions of nitrite with sGC are localized to the cytosol, it is imperative to 

know the transport mechanism of nitrite across the cell membrane. There is very limited 

knowledge about nitrite transport in any of the mammalian system. Our experiments with 

channel blockers showed that nitrite mainly uses anion channels to traverse the SMC 

membrane. These include urate, Cl-:HCO3-, organic anion and chloride transporters. 

Among the blockers tested, DIDS acted as a potent inhibitor of nitrite transport showing 

that AE2 could be the major nitrite transporter. It was also observed that in the presence 
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of DIDS the intracellular nitrite accumulation was reduced showing that DIDS inhibits its 

influx but not efflux. In contrast, DIDS was shown to block nitrite export in human RBCs 

[112]. This difference could be due to participation of different isoforms of AE: SMC are 

known to possess AE2 transporter [110] while RBC having AE1 transporter [127]. Uric 

acid facilitates vascular SMC proliferation and it uses urate transporter to enter the cells 

and in particular URAT1 is demonstrated to control renal urate excretion [111]. These 

anion transporters may have additional physiological functions, as shown here, in nitrite 

transport and facilitate increased cellular NO production. It would be of great 

significance to examine the modulation of vascular nitrite transport in physiological and 

pathophysiological conditions.  

Since nitrite reduction is not controlled by O2 levels, it raises the important 

question of how nitrite reduction is modulated in SMCs. Our experiments illustrated that 

nitrate not only competes with nitrite for reduction but also efficiently blocks nitrite 

transport at near physiological concentrations. This observation has wide 

pathophysiological implications as increased nitrate production in certain conditions may 

attenuate nitrite reduction and relaxation. In the absence of known nitrate reductases it 

may accumulate in plasma and tissues reaching higher concentrations. For example, 

serum nitrate levels were elevated in women with pre-eclampsia, which based on our 

findings, can be explained as serum nitrate inhibiting the relaxation mediated by 

physiological nitrite reduction. Also, under oxidative stress there could be increased 

reaction of NO and O2
- forming nitrate via ONOO-.  Vaziri et al [128] have measured 

increased iNOS, eNOS expression and elevated plasma NOx levels in pre-hypertensive 
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SHR. The initially increased NOx levels may play a role in later development of 

hypertension in this model.  

In summary, our investigations demonstrate that sGC catalyzes the nitrite 

reduction in smooth muscle, independent of O2 levels, and nitrite uses different anion 

transporters to traverse the cell membrane. Thus, sGC may serve as a local source of NO 

for smooth muscle relaxation. Both nitrite reduction and its membrane transport are 

inhibited by nitrate, an observation that has important pathological implications. 
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Chapter 4: Computational modeling of NO and NO oxidative species in the 
microcirculation: Reducing nitrite to NO in the smooth muscle cells vs. arteriolar 
lumen 

4.1 Abstract 
 Sufficient availability of nitric oxide (NO) in the smooth muscles of blood vessels 

is important for its function as the proposed endothelium derived relaxing factor. NO may 

be preserved through the formation of NO2
- anions or nitrosothiols which have a longer 

half-life than NO in the circulation. This provides the possibility to transport NO to a 

distant location. A 2D axisymmetric diffusion model was used to observe NO and NO 

oxidative species transport and to test the potential contribution of NO2
- and nitrosothiols 

to smooth muscle NO levels according to data derived in previous research. With 

physiological concentrations of NO2
- (10 μM – 20 μM) in the smooth muscle tissue, 

sufficient NO is generated to affect blood vessel tone. NO2
- reduction was found to be 

more efficient when occurring in the tissue as compared to the lumen. NO oxidase 

activity in the tissue regions was found to be an important factor for generating smooth 

muscle levels of NO2
-. Results suggest that the major nitrosating mechanism in vivo is 

anaerobic and nitrosothiols may deliver minor amounts of NO through a Cu+ dependent 

enzyme activity.  

4.2 Introduction 
After the discovery of NO as the endothelial derived relaxing factor [1, 49], NO 

has been found to play a role in maintaining blood pressure [6], vascular tone [129], 

vascular permeability [130], adhesion and aggregation of platelets [131, 132] and SMC 

proliferation [133]. One of the major functions of NO in the circulation is to act as a 

soluble Guanylate Cyclase (sGC) activator, producing enough cyclic guanosine mono 
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phosphate (cGMP) to ensure smooth muscle relaxation [1, 49, 50, 134]. Critical for this is 

maintenance of sufficient availability of NO in the smooth muscle. Disruption of this 

availability can lead to pathophysiological conditions such as atherosclerosis, renal 

failure, high blood pressure and diabetes related vascular complications. In the 

vasculature, NO levels are mainly regulated by NO production by various nitric oxide 

synthase enzymes, and NO consumption by hemoglobin (Hb) in blood and various heme 

enzymes in tissues such as myoglobin [21, 22].  

The ability of NO to perform its normal physiological functions inspite of the 

presence of NO sinks in the system has been attributed to either inhibition of NO 

consumption by red blood cells (RBCs) [27, 32, 34, 135-139] or to the conversion of NO 

to more stable adducts such as nitrite anions or nitrosothiols, which then release NO 

either locally or downstream [39, 140]. Many theoretical investigations have investigated 

these scenarios [23, 26, 32, 141-146]. Unfortunately, no models have studied the 

transport of NO oxidation derivatives such as NO2, N2O3, nitrite, nitrate and nitrosothiols 

in arterioles. In this study nitrite reduction by smooth muscles will be modeled. We will 

test whether NO generation in the smooth muscle is sufficient to affect blood vessel tone. 

In addition, tissue nitrite concentrations are reported to be approximately 10 μM [42], the 

mechanisms of generation for which are unknown. For nitrite generation simple 

autoxidation of NO in the system, acceleration of NO oxidation in hydrophobic 

compartments of the tissue [147], ferricytochrome c based acceleration of NO oxidation 

in tissues [148], cytochrome c oxidase based oxidation of NO [149] and acceleration of 
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NO oxidation in plasma by a NO oxidase enzyme ceruloplasmin [150] will be used to 

derive lumen and SMC levels of nitrite.  

Our study will also test mechanisms of nitrosothiol formation. Of all the thiols, 

glutathione (GSH) will be chosen as it is an important candidate for the formation of its 

respective nitrosothiol (S-nitrosoglutathione, GSNO) owing to high concentrations of 

GSH and long half-life of GSNO in vivo (0.5 – 10 mM of GSH as per Meister et al. [53] 

and a GSNO half-life of 5.5 hours compared to 0.1 – 15 s for NO [4]). GSNO poduction 

through generation of the GS· radical by oxidation of GSH  with ·NO2 with the kinetics 

described in chapter 3 of this work and through the process of ferricytochrome c 

reduction will be done [151], [93]. The ability of GSNO to deliver NO will be also be 

tested through a Cu+ dependent GSNO lyase activity. 

4.3 Methods 

4.3.1 Model Geometry 

NO production in an arteriole of 50 μm internal diameter and an adjacent 

arteriolar wall and tissue layer of a thickness of 75 μm was modeled as a series of 

concentric cylinders. The domain comprised of eight distinct regions. RBCs flow in the 

core of the lumen (LC) in the innermost region of the domain. A cell free layer (CF) was 

considered near the arteriolar wall. The arteriolar wall consists of an endothelial cell (EC) 

layer, interstitial gap (IG) and a smooth muscle (SMC) layer. Outside the arteriolar wall, 

a hypothetical neuronal layer (NL) was considered [152], followed by a non-perfused 

tissue region (NPT) and a capillary perfused tissue region (PT). Geometry followed in the 

model is described in table 4.1 



60 
 

4.3.2 Common modeling equations and boundary conditions 

An unsteady reaction – diffusion equation is formulated to simulate transport for 

NO and other NO oxidation intermediates in the radial direction. Axial and angular 

gradients of any NO species are considered negligible.   
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 where Cx is the concentration of species X: NO, NO2, N2O3, NO2
-, NO3

-, GSNO, GS·, 

O2, O2
- or ONOO-. Dx is the diffusivity of the species X, Rx is the consumption rate of the 

species in a particular region, Qx is the production rate of the species, t is time and r is 

radial distance. 

 Assumption of a partition coefficient of unity and continuity of concentration and 

flux at the interfaces yield the following boundary conditions: 
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where i and j are adjacent regions and Ri is the distance of the interface between regions i 

and j from the central axis of the arteriole. Jij is the flux of the species at interface ij and 

Pm is the membrane permeability of the species at interface assumed infinite for all 

species.  
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4.3.3 Modeling NO consumption and sGC activation 

Modeling of NO consumption and generation in each compartment and sGC 

consumption and activation in the smooth muscle was followed from Tsoukias et al. [24]. 

NO consumption in autoxidation was broken up into constitutive reactions and NO 

consumption in nitrosation schemes of GSH were added to the model. These reactions are 

mentioned in table 4.2. The list of parameters used in the model and concentrations held 

constant during the stimulations are mentioned in table 4.3.  

Table 4.1: Model geometry and concentrations held at steady state 

Symbol Description Values Units 
Rlc Radius at lumen core 20.5 μm 
Rcf Radius at cell free layer 25 μm 
Rec Radius at endothelial cell layer 25.5  μm 
Rig Radius at interstitial gap 26 μm 
Rsm Radius at smooth muscle layer 32 μm 
Rnerve Radius at end of nerve fiber 34 μm 
Rnt Radius at end of non-perfused tissue 64 μm 
Rcap Radius at end of capillary layer 100 μm 

 

Table 4.2: Chemical equations simulated in the model 

# Equation Rate constant Ref 

1 
22 22 1 NOONO k⎯→⎯+  k1 = 2.9 × 106 M-2s-1 

k1t= 29 × 106 M-2s-1 

[76, 77] 
 
[147]* 

2 
322

2

2

ONNONO
k

k−

↔+   
k2= 1.1×109 M-1s-1 

k-2= 8.1×104 s-1 

[78] 
 
[78] 

3 +− +⎯→⎯+ HNOOHON k 22 2232
3  k3= 1470s-1 [75]**
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4 +⋅−⋅ ++⎯→⎯+ HGSNOGSHNO k
22

'4  

⋅−−⋅ +⎯→⎯+ GSNOGSNO k
22

''4  

k4= 1.15×107M-1s-1 Ch. 2  

See [74]

5 GSNONOGS k⎯→⎯+⋅ 5  k5= 3×109 M-1s-1 [79] 

6 +− +↔
−

HGSGSH
k

k

6

6
  

k6= 63 s-1 

k-6= 1×109 M-1s-1 

[80] 

[80]*** 

7 NOGSSGGSNOGS k ⋅⋅ +⎯→⎯+ 7  k7= 1.7×109 M-1s-1 [83] 

8 GSSGGS k⎯→⎯⋅ 82  k8= 1.5×109 M-1s-1 [153] 

9 
22

9 GSNOGSNO k⎯→⎯+ ⋅⋅  k9= 3×109 M-1s-1 [154] 

10 −− ⎯→⎯+ ONOOONO k10
2  k10= 1.9×1010 M-1s-1 [155] 

11 
422

11

11

2 ONNO
k

k−

↔  
k11= 4.5×109 M-1s-1 

k-11= 6.9×103 s-1 

[156] 

[156] 

12 +−− ++⎯→⎯+ HNONOOHON k 232242
12  k12= 1.0×103 s-1 [157] 

13 −+− +⎯→⎯++ 22 22 13 NOGSSGHOGSNO k  k13 = 9×108 M-2s-1 [147] 

14 OHNOHONOO k +⎯→⎯+ +−
2

14

 
k14 = 0.23 s-1 [158] 

15 +−+− +⎯→⎯+ HNOHONOO k
3

15

  
k15 = 0.57 s-1 [158] 

16 ++−+ ++⎯→⎯++ CuHNOOHNOCu k 222
2 16

 
k16 = 5.5×10-2 s-1 [150, 

159] 

17 +− ++−⎯→⎯+−+ HNOIICytFeOHIIICytFeNO k 222
17

 

k17 = 0.33 s-1 [20] 

18 ++−⎯→⎯+−− HGSNOIICytFeNOGSHIIICytFe k18

 

k18 = 4.2×10-3 s-1 [92] 

19 −+− +−+⎯→⎯+−+ OHIIIFeNOHIIFeNO k19
2  

k19 = 1.3×10-2 s-1 Ch. 3 

* accelerated NO autoxidation in hydrophobic components in the tissues. 
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** Calculated from a blood phosphate concentration of 1 – 2 mM and explanation given 

in [75]. 

*** pH = 7.4 

Table 4.3: Other rate constants and physical parameters used in the model 

Symbol Description Values Units Ref 
D NO diffusivity 3.3×10-9 m2/s [160] 
DGSNO GSNO diffusivity 1.8×10-10 m2/s [147] 
DNO2 NO2 diffusivity 4.67×10-10 m2/s text 
DN2O3 N2O3 diffusivity 4.67×10-10 m2/s text 
DNO2- NO2

- diffusivity 4.1×10-10 m2/s [161] 
DNO3- NO3

- diffusivity 4.2×10-10 m2/s [161] 
DO2- O2

- diffusivity 2.8×10-9 m2/s [162] 
DONOO- ONOO- diffusivity 2.6×10-9 m2/s [162] 
DO2 O2 diffusivity 2×10-9 m2/s [163] 
k20 Rate constant for 6-sGC formation 2×109 M-1s-1 [24] 
k-20 Rate constant for 6-sGC dissociation 15 s-1 [24] 
k21 Rate constant for 5-sGC formation 6.4×10-3 s-1 [24] 
k-21 Rate constant for 5-sGC dissociation 0.1×10-3 s-1 [24] 
k22 Rate constant for NO dependent 5-

sGC formation 
4.2×106 M-1s-1 [24] 

kD NO – sGC dissociation constant  0.01 s-1 [24] 
kbl Rate constant for NO consumption in 

blood 
750 – 
6400  

s-1 [24] 

kbl,per Rate constant for ONOO- 
consumption in blood 

30 s-1 [164] 

kapp Apparent NO consumption in 
capillaries 

10 – 25.9 s-1 [165] 

kbl,NO2- Rate constant for NO2
- consumption 

in blood 
6.3×10-3 s-1 text 

kbl,NO3- Rate constant for NO3
- consumption 

in blood 
2.96×10-5 s-1 text 

kbl,GSNO Rate constant for GSNO consumption 
in blood 

3.5×10-5 s-1 text 

kper,NO Rate constant for peroxynitrite 
consumption by NO 

9.1×104 M-1s-1 [166] 

kcytO,NO2- Rate constant for NO2
- generation by 

cytochrome c oxidase 
0.233 s-1 [149] 

kNO3- Rate constant for NO3
- generation in 0.6×kbl s-1 text 
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blood 
Vmax/Km GSNO transport constant 1×10-2 s-1 [147] 
QNO,max Maximum NO generation at 

boundaries 
2.65×10-8 mol/(m2×s) [160, 

167] 
Qcap Apparent NO production rate in the 

capillaries 
4.82×10-7 M·s-1 [165] 

QO2-,max Maximum rate of O2
- generation 5×10-6 M·s-1 [162] 

Hct Hematocrit 0.45   
Km,eNOS O2 concentration for half maximum 

eNOS activity. 
7.7 μM [168] 

Km,nNOS O2 concentration for half maximum 
nNOS activity. 

23.2 μM [168] 

Km,GSNO Km for copper lyase based GSNO 
reduction 

12.4 μΜ [169] 

Vm,GSNO Vmax for copper lyase based GSNO 
reduction 

3.68 μΜ·s-1 [169] 

RO2ec Consumption of O2 in endothelium 54 μM·s-1 [162] 
RO2v(max) Consumption of O2 in vascular wall 5 μM·s-1 [162] 
RO2t(max) Consumption of O2 in tissue 50 μM·s-1 [162] 
Rec,NO3- Rate for NO3

- consumption in 
endothelium 

2.2×102 nM·s-1 [170] 

Rec,NO2- Rate for NO2
- release by endothelium 3.3×102 pM·s-1 [170] 

CO2 O2 concentration in the lumen core 78.5 μM  
CGSH Glutathione concentration from 

endothelium to tissue 
5 mM  

CSOD Superoxide Dismutase concentration 1  μM  
CsGC sGC concentration in the smooth 

muscle layer 
100 nM  

Csm,NO2- NO2
- concentration in SMC layer 10-20 μM  

 

4.3.3 O2 diffusion and consumption 
For O2 diffusion and consumption, the same equations as Eq. (4.1a – 4.1c) were 

considered. Concentration of O2 was calculated by the relation CO2 = α×PO2 where α is 

solubility of O2 in the tissue (1.34 μM/Torr [171]) and PO2 is the partial pressure of O2 in 

tissue. A constant PO2 of 58.59 mm Hg was selected for the LC and the CF regions [141], 

which is equivalent to a CO2 of 78.5 μM and a 60% O2 saturation of blood. Endothelium 

O2 consumption was taken constant and O2 consumption in the arteriolar wall and tissue 
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was modeled in a Michaelis-Menten fashion with maximum O2 consumption rates as 

shown in table 4.3. The equations as used by Buerk et al. [171] were followed: 

mO

OO
O AppKC

CR
R

+
×

=
2

2max2

2
                 Eq. (4.2a) 

where RO2 is the rate of O2 consumption, RO2max is the maximum rate of O2 consumption, 

CO2 is the local oxygen concentration and AppKm is the O2 concentration at half 

maximum consumption, which was modeled by  







 +=

nM
NOKAppK mm 27

1               Eq. (4.2b) 

where Km is the Michaelis – Menten constant in the absence of NO (1.34 μM determined 

from an experimental PO2 of 1 Torr in the absence of NO [172, 173]).  

4.3.4 NO2, N2O3, nitrite and nitrate formation, transport and consumption 
·NO2 formation was accelerated in the tissue compartment by taking an NO 

autoxidation rate constant 10 times what was previously reported [147]. Nitrite formation 

in the CF layer and the plasma portion of the LC was modeled by the action of 

ceruloplasmin at rate constant that was calculated from the reported ceruloplasmin 

concentration 5 μM by Shiva et al. [150] and a similar reaction of Cu2+ ions and NO in 

aqueous solutions reported by Tran et al. [159]. In the tissue, nitrite formation was 

modeled through the hydration reaction of an NO – ferricytochrome c complex at a rate 

constant reported by Sharpe et al. [20] and extrapolated for a ferricytochrome c 

concentration of 2 mM. NO2 radical was consumed through oxidation of GSH and the 

formation of N2O3, whereas N2O3 was consumed by hydrolysis. Nitrite steady state in the 
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lumen was achieved by assuming a nitrite half-life in blood of about 110 seconds [174], 

and computing a dissociation constant kbl,NO2- = ln(2)/t1/2,NO2-. Nitrite consumed in this 

manner in the blood was assumed to produce NO. Nitrite reduction was also modeled in 

the SMC layer using a rate constant of 1.3×10-2 s-1 as obtained in chapter 3 of this study. 

This was extended to the rest of the tissue compartments (EC, IG, NL and NPT) to obtain 

steady state therein, under the assumption that a nearly identical magnitude of nitrite 

reduction exists. Nitrate generation in blood was computed through a rate constant kNO3- 

based on saturation of blood (60%). Nitrate steady state was achieved by assuming a 

nitrate half-life in blood of about 5.5 hours, and computing a dissociation constant kbl,NO3- 

= ln(2)/t1/2,NO3-. Diffusivity of nitrite and nitrate was assumed for the values of NaNO2 

and KNO3 derived in pork tissue [161]. Although nitrite and nitrate are not believed to 

diffuse freely through cell membranes, these diffusivities were modeled to approximate 

nitrite and nitrate transport occurring through passive as well as channel mediated 

mechanisms. Diffusivity of NO2 in water was estimated from the diffusivity in water 

obtained by Chen et al. [175]. The property of inverse proportionality of diffusivity to 

viscosity of medium was used to calculate the diffusivities of NO2 in blood as follows: 

b

w

w

b

D
D

η
η

=                    Eq (4.3) 

where Db is diffusivity in blood, Dw is the diffusivity in water, ηw is the viscosity in water 

and ηb is the viscosity in blood. By using blood and water viscosities at 37 oC (3 and 0.7 

mPa·s [176] respectively), NO2 diffusivity in blood was extrapolated from that in water 
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(2×10-9 m2/s) to come to a value of 4.67×10-10 m2/s. N2O3 diffusivity was not available 

and therefore assumed to be the same as NO2. 

4.3.5 GSNO formation, transport and consumption 

The diffusion of GSNO and transport was followed as described by Shin et al. 

[147]. In chapter 2 of this work, we showed that GSNO formation was negligible through 

the N2O3 route. Consequently, GSNO formation was compared between two 

mechanisms: 1) a ·NO2 radical based nitrosation scheme as has been described in Chapter 

2 of this work and 2) the process of ferricytochrome c reduction as has been described by 

Basu et al [151] and Broniowska et al [93]. According to the proposed mechanism for the 

2nd pathway, GSH binds first to ferricytochrome c followed by the binding of NO which 

reduces the ferric heme to ferrous state and releases GSNO. The observed kinetics of 

such a process indicate a first order reaction rate constant of 1.05×10-3 s-1 for the 

formation of GSNO by the reduction of ferricytochrome c-GSH complex (50 μM) with 

NO. The concentration of ferricytochrome c-GSH complex was considered constant. 

GSNO steady state was achieved by assuming a GSNO half-life in blood of about 5.5 

hours, and computing a dissociation constant kbl,GSNO = ln(2)/t1/2,GSNO. NO release from 

GSNO reduction [169] was not implemented for the first phase of simulations attempting 

to model GSNO formation to see the extent of GSNO formed by these mechanisms 

independent of any consumption. This was implemented with distinct simulations by 

using a Vm,GSNO and Km,GSNO mentioned in table 4.3 using constant GSNO concentrations 

based on reported levels of S-nitroso compounds in vascular tissue (40 nM, [42]). 
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4.3.6 Superoxide formation and scavenging 

Superoxide (O2
-) generation was modeled using the following relation from Buerk 

et al. [162] using the same assumptions of dependency on O2 and NO concentrations.   
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                Eq (4.4) 

Superoxide disumutase (SOD) was held constant at 1 μM for the entire width of 

the tissue region (EC to PT). O2
- and NO and O2

- and GSNO interactions were modeled 

as mentioned in table 4.1. 

4.3.7 Numerical methods  
The transport was modeled as partial differential equations on finite element 

modeling software package COMSOL 3.5 (Stockholm, Sweden) to analyze the transport 

of NO and other oxidative intermediates in the circulation. The time step was 0.1 s and 

the model was simulated for a period of 100 seconds. The relative tolerance for 

convergence was 0.001 while the absolute tolerance was 0.0001. An extra fine mesh was 

used for all simulations, and partial differential equations were solved using a SParse 

Object Oriented Linear Equations Solver (SPOOLES). 

4.4 Results 

4.4.1 Generating NO from SMC nitrite 

Smooth muscle cell nitrite has been reported to range from 10 μM to 20 μM [41, 

42]. To test NO generation within the SMC layer, concentrations of nitrite in the layer 

were varied between these ranges and held constant for the duration of the simulations. 

All other sources of NO were knocked out from the model, with NO consumption by 

arteriolar and capillary blood left as NO sinks. The rate constants related to these (kblood 
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and kapp) were varied between their respective values for RBC permeabilities between 0.1 

to 40 cm/s which are probable limits for RBC permeabilities as suggested by Tsoukias et 

al [28]. NO consumption through sGC, and all other reactions in Table 4.1 were left 

unaltered. The resultant NO cross-profile plots generated are presented in Fig 4.1A – B.  

Peak NO generated in the SMC ranged from 1.5 nM to 3.5 nM. This amount of NO might 

affect blood vessel tone given reported values for the Km of sGC from a few nM to 

hundreds of nM. Thus, physiological concentrations of nitrite might have an actual 

relevance in blood vessel vasodilation and examination of accumulation of such levels of 

nitrite might be an objective worth pursuing. 

   

Fig 4.1: NO generated under steady state physiological nitrite conditions with NO 
consumption by blood and capillaries intact (A) NO from 10 μM SMC nitrite (black line) 
and 20 μM SMC nitrite (red line) for first order NO consumption in blood at an RBC 
permeability of 40 cm/s and (B) NO from 10 μM SMC nitrite (black line) and 20 μM 
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SMC nitrite (red line) for first order NO consumption in blood at an RBC permeability of 
0.1 cm/s. Dashed lines in both instances indicate chosen constant NO2

- concentrations. 

 

4.4.2 Production of physiological nitrite and nitrate 

Nitrate production was modeled by interaction of NO with oxyhemoglobin in the 

blood. Nitrite production was modeled by NO oxidation and enzymatic reactions in both 

blood and tissue compartments (EC – PT layers). Incorporating diffusivities of nitrate and 

nitrite mentioned in table 4.3 gives radial profiles of nitrite and nitrate as shown in A. The 

simulations estimate nitrate concentrations in the blood quite accurately (21 μM as 

compared to 28 μM [177]) and hence were not altered further. Nitrite concentrations in 

the blood achieved mammalian levels (100s of nM [178]), however vascular tissue nitrite 

concentrations were far lower (normal levels: 10 to 20 μM). As shown in Fig 4.2 B, 

diffusivities of nitrite have to be about 100 times or more lower than reported previously 

(4.1×10-12 m2/s as compared to 4.1×10-10 m2/s as suggested by Pinotti et al. [161]) to give 

a better fit to both tissue nitrite and lumen nitrite concentrations. 
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Fig 4.2: A: Radial profiles of nitrite (black line) and nitrate (red line) in the modeled 
region. B: Radial profiles of nitrite under control (black line), 50 times less (red line) and 
100 times less (green line) nitrite diffusivities.  

 4.4.3 NO from nitrite infused in blood vessels 

In most cases where nitrite reduction to NO is desired, nitrite was infused in the 

lumen of blood vessels. To observe significant vasodilation, hundreds of μM nitrite has to 

be supplied. To examine the impact of this, a constant nitrite of 200 μM – 5 mM was 

introduced into the LC and CF layers of blood flow. Two extreme conditions were 

considered, one with nitrite reduced solely in the blood region (diffusion to the tissue was 

suspended) and the other in which nitrite in the blood region diffuses efficiently and 

equilibrates with tissue nitrite levels. The ability of RBCs to generate GSNO in the lumen 

was also analyzed for its capacity to transport NO generated from nitrite supplied in the 

lumen (Fig 4.3 B) and only pM levels of GSNO were found to be made. In the second 
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scenario of nitrite equilibration across arteriolar wall, a dose of 200 μM nitrite was 

sufficient to give substantial vasodilation (NO produced in SMC layer was approximately 

40 nM; Fig 4.3 C). From the simulations, it could be said that nitrite supplied in the 

lumen in ranges of a few mM is just as effective for controlling blood vessel tone as 

physiological nitrite in the SMC. 
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Fig 4.3: Supplying nitrite in the lumen A: NO generation solely by lumen nitrite for 200 
μM (black line), 1 mM (red line) and 5 mM (green line) nitrite. B: GSNO generated 
solely by lumen nitrite for 200 μM (black line), 1 mM (red line) and 5 mM (green line) 
nitrite. C: NO generation by lumen nitrite and SMC layer for 200 μM (black line), 1 mM 
(red line) and 5 mM (green line) with equilibration across the arteriolar wall. Dashed 
lines in A, B and C indicate chosen constant NO2

- concentrations. 

 

4.4.4 Determining GSH nitrosation mechanism and NO released from GSNO 

Fig 4.4A shows the results of testing GSH nitrosation mechanism in terms of 

radial profiles of GSNO. The results show that GSNO produced without an anerobic 

scheme (red line) is much lower than GSNO produced with an anaerobic scheme (red 

line). Fig 4.4 B shows the NO produced by various constant GSNO levels (20 nM – 60 

nM) in the tissue for blood NO consumption rate constants corresponding to high 

permeabilities for RBCs (40 cm/s).  
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Fig 4.4: Change in GSNO concentration in the radial direction. A: through both pathways 
of nitrosation (red line) and without cytochrome C based GSNO production (black line) 
B: NO produced through constant GSNO concentrations: 20 nM (black line), 40 nM (red 
line) and 60 nM (green line). Dashed lines in B indicate chosen constant GSNO 
concentrations. 

4.5 Discussion 
Earlier in chapter 3 of this work, we observed the hypothesis that sGC could 

reduce nitrite to NO. This appears to be a promising scheme for nitrite to act as an NO 

storage form, if nitrite can be converted to NO right at the site where its donor is present, 

the efficiency of transporting NO could be greatly increased. However, we had not 

studied whether NO produced through this mechanism is sufficient to control blood 

vessel tone. In this work, we expanded the NO biotransport model in the arteriole as 

explained by Tsoukias et al. [24] to include various NO oxidative intermediates, related 

physics to the extent possible, and nitrosation chemistry for the formation of GSNO. 

Using this model and the rate constant for nitrite reduction by SMC lysates obtained in 
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chapter 3, we allowed the generation of NO under constant SMC nitrite alone and 

subjected NO produced to a theoretical analysis of sGC activation and NO consumption 

in vivo proposed by Tsoukias et al [24]. A few limitations exist in our study for instance 

the overall rate constant kov in the smooth muscle that was calculated in chapter 3 and 

used here was determined in passaged cells whereas in primary cells or in intact vessels, 

this reaction might be more potent than observed here. Besides, any competitive 

inhibition from nitrate as was discussed in chapter 3 was not examined here for want of 

more verifications. Physiologically, nitrate in the tissues will be much higher than nitrite 

and it could be possible that the prevalent nitrate in smooth muscle layer could impede 

this reaction to some extent.   

We next attempted to arrive at physiological concentrations of nitrate and nitrite 

in both arteriolar lumen and tissue. Our nitrate concentrations were able to closely 

approximate lumen nitrate concentrations and we were able to achieve half of reported 

vascular tissue nitrate concentrations. Current transport data was however not able to 

simulate vascular tissue nitrite concentrations appropriately. From our simulations, we 

propose that nitrite diffusivities in tissue have to be at least 100 times lower than 

previously reported. Pharmacological and physiological nitrite was also tested for NO 

formation and these were found to be inadequate in terms of NO generation in the smooth 

muscle layer except under ischemic conditions when complete diffusion of nitrite as 

HNO2 into the smooth muscle region is possible.  

Another controversial issue that we sought to resolve in our model was the 

formation of nitrosothiols. Much work has been done in vitro on mechanisms causing 
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nitrosation. Some have suggested the dominance of N2O3 in the nitrosation scheme, while 

others have suggested ·NO2 radical as the nitrosating intermediate, while in a recent work 

Basu et al. [151] have suggested a ferricytochrome c based nitrosation scheme. Our 

simulations show an indication that anaerobic nitrosation schemes have a greater 

potential to nitrosate thiols than the ·NO2 radical. However, our simulations are far from 

reported GSNO levels (100 nM in blood and 40 nM in vascular tissue). It is likely that 

there are other anaerobic schemes of GSNO formation in vivo that are yet to be explored.  

NO release from GSNO is a hotly debated topic, and in some cell based 

experiments, nitrite and nitrate have been shown to account for only 40% of products 

from an exposure of cells to GSNO [179] with intracellular nitrite retention only 1% of 

initial GSNO exposure, and therefore the likelihood of GSNO being a major NO 

producing agent in the circulation might be minimal. Nevertheless, we took constant 

GSNO concentrations in the tissue region and provide hypothetical scenarios for NO 

formation from GSNO as described by Gordge et al. [169] and we observe 0.8 to 2 nM of 

NO being produced which might be capable of controlling blood vessel tone.  

In conclusion, we have four major findings from this study. First, that 

physiological levels of nitrite in the smooth muscle region might be a partial contributor 

to smooth muscle NO. Secondly, smooth muscle nitrite might be locally generated and 

nitrite diffusivity in tissue should be low enough to allow nitrite retention. Third, 

pharmacological nitrite concentrations barely have any impact on smooth muscle NO 

except if reduced in tissue and fourth, ·NO2 is not an important nitrosating intermediate in 

vivo and other anaerobic schemes should be prominent players in nitrosation.  
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Chapter 5: Summary 
Nitric oxide (NO) has been known for its role of regulating vascular tone for a 

few decades. Its production has been found to be due to the presence of NOS enzymes in 

the vasculature. In the vicinity of NO production, there are what are called “sinks” 

according to biotransport sciences in the form of Hb in blood, other heme species in 

tissues, oxygen and various oxidase enzymes. Inspite of these, NO is able to be 

transported to the smooth muscle to activate its known biological receptor, the enzyme 

soluble Guanylate Cyclase. This problem is known in the field as NO paradox. Two 

mechanisms are proposed to resolve the NO paradox, one prevention of consumption of 

NO by Hb encapsulation in RBCs and two, generation of NO conserving species in the 

vasculature that may transport NO to a location distal to where it is produced. We sought 

to work towards that in our studies by observing prevention of NO consumption in Hb 

vesicles, which can be considered as ‘lumps’ of Hb encapsulated by phospholipid 

membranes and for the formation of NO conserving species such as nitrosothiols and 

nitrite and the ability of these to produce NO.  

Our study involving nitrosation intermediates revealed an NO dependent EC50. It 

could thus be said that under continuous clamped NO delivery from intermediate half-life 

NO donors such as PAPA/NO and DEA/NO, ·NO2 is the more important nitrosating 

intermediate between N2O3 and ·NO2. Analyses from a pseudo steady state approximation 

using ·NO2 as the only nitrosating intermediate and a complex mathematical model of 

several chemical equations fitted our experimental data, thus further validating our 

experimental data. 
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Next, we observed the possibility of recovering NO from nitrite by sGC and 

associated modulating factors. Recovering NO from nitrite at sGC appears promising 

since NO can be generated right where it is needed and thus the throughput of a probable 

system where NO signals endocrinally can improve dramatically. Towards this end, we 

cultured smooth muscle cells and observed nitrite reduction by whole cells and smooth 

muscle cell lysates. We were able to discern using agonists and antagonists that sGC 

could be a prominent nitrite reducing agent. Later, we analyzed nitrite transporting 

channels through the application of several anion channel blockers and found that nitrite 

transport takes place through the mediation of existing anion channels on smooth muscle 

cells. We were also able to observe the impacts of nitrate on nitrite reduction and 

transport and our studies have revealed that nitrate can significantly impact both. This 

would be an interesting area to explore for future enthusiasts in the field of nitrite 

reductase metalloproteins as it can significantly impact the throughput of any nitrite 

reductase based NO recovery system. 

Lastly, we prepared a simple diffusion model to study the transport of NO 

oxidative species in a 50 μm diameter arteriole as a means to test some of our 

experimental findings. We observed that reported levels of smooth muscle nitrite if held 

constant can deliver a low amplitude sustained NO level that might contribute towards a 

physiologically significant NO levels. We were able to model physiological nitrate 

concentrations to a fair approximation, while we suggested lower diffusivities for nitrite 

in tissue to allow for better fit with physiological data. We also showed that NO 

generated from nitrite delivery in arteriolar lumen is negligible compared to tissue nitrite 
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and the prominent mechanisms for GSNO formation in- vivo are anaerobic. Future work 

in the field of NO paradox might involve further experimentation on intra layer nitrite 

and nitrate transport in arteriolar tissue, the NO – nitrate – nitrite cycle therein and 

several metalloproteins the importance of which has yet to be explored in the NO cycle 

(such as cytoglobin and different members of the cytochrome family). Thus, while it does 

not claim to have solved the “NO Paradox”, the work presented in this dissertation has certainly 

made some bold steps in new directions. 
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APPENDICES 

Appendix A1: Glutathiyl Radical as an Intermediate in the Glutathione Nitrosation 
 

(The following appendix was published as supplement along with Chapter 2)  
Kumpal Madrasi1, Mahesh S. Joshi1, Tushar Gadkari1, Konstantinos Kavallieratos2 and 
Nikolaos Tsoukias1 
1Department of Biomedical Engineering, Florida International University, Miami FL 33174 

2Department of Chemistry and Biochemistry, Florida International University, Miami, FL 33199 

Table A1.1: Detailed set of equations involved in the nitrosation of GSH are as follows  

Reaction 

No. 

Equation Rate constant Reference 

1 
22 22 1 NOONO k⎯→⎯+  k1 =2.9×106M-2s-1 [76], [77] 

2 
322

2

2

ONNONO
k

k−

↔+  
k2 = 1.1×109 M-1s-1 

k-2 = 8.1×104 s-1 

[78] 

[78] 

4 +− +⎯→⎯+ HNOOHON k 22 2232
4  k4 = 38130s-1 [75] 

5 +⋅−⋅ ++⎯→⎯+ HGSNOGSHNO k
22

'5  

⋅−−⋅ +⎯→⎯+ GSNOGSNO k
22

''5  

k5 = 1.15×107 M-1s-

1 

Estimated 

See also 

[74] 

6 GSNONOGS k⎯→⎯+ ⋅⋅ 6    k6 = 3×109 M-1s-1 [79]  

7 +− +↔
−

HGSGSH
k

k

7

7

 
k7 = 63 s-1

k-7 = 0.1×1010 M-1s-

1 

[80] 

[80]* 

8 −−⋅

−

↔+ GSSGGSGS
k

k

8

8

 
k8 = 9.6×106 M-1s-1 [81] 
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k-8 = 1.6×105 s-1 [82]  

9 −•− +⎯→⎯+ 22
9 OGSSGOGSSG k  k9  = 5×109 M-1s-1 [82]  

10 NOGSSGGSNOGS k ⋅⋅ +⎯→⎯+ 10  k10 = 1.7×109 M-1s-1 [83] 

11 GSSGGS k⎯→⎯⋅ 112   k11 = 1.5×109 M-1s-

1 

[153] 

12 
22

12 GSNOGSNO k⎯→⎯+ ⋅⋅   k12 = 3×109 M-1s-1 [154] 

13 −− ⎯→⎯+ ONOOONO k13
2  k13 = 1.9×1010 M-

1s-1 

[155] 

14 −−• ⎯→⎯+ NOOONOO k
222

14  k14 = 4.5×109 M-1s-

1 

[180] 

15 OHNOHONOO k +⎯→⎯+ +−
2

15  k15 = 0.23 s-1 [158] 

16 −++− +⎯→⎯+ 3
16 NOHHONOO k  k16 = 0.57 s-1 [158] 

17 GSOHNOGSHONOO k +⎯→⎯+ −−
2

17  k17 = 6.6×102 M-1s-

1 

[181] 

18 OHGSSGGSHGSOH k
2

18 +⎯→⎯+  k18 = 7.2×10-4 M-

1s-1 

[182] 

19 −−• +⎯→⎯+ OHOOOH k
22

19   k19 = 1×1010 M-1s-1 [183] 

20 −−+− ++⎯→⎯+ 22
20 NOOHONOOOH k  k20 = 4.8×109 M-1s-

1 

[184] 

21 OHGSGSHOH k
2

21 +⎯→⎯+ ⋅  k21 = 1.4×1010 M-

1s-1 

[185] 
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22 −⋅− +⎯→⎯+ OHNONOOH k
22

22  k22 = 5.3×109 M-1s-

1 

[186] 

23 
2

23 HNONOOH k⎯→⎯+⋅⋅  k23 = 1.0×1010 M-

1s-1 

[180] 

24 
2222

2422 OHOHO k +⎯→⎯+ +−  k24 = 2.5×105 M-1s-

1 

[187] 

25 
422

25

25

2 ONNO
k

k−

↔   
k25= 4.5×108 M-1s-1 

k-25 = 6.9×103 s-1 

[156] 

[156] 

26 +−− ++⎯→⎯+ HNONOOHON k 232242
26  k26 = 1.0×103 s-1 [157] 

* pH = 7.4 

            Table A1.1 summarizes relevant reactions and kinetic constants utilized in a 

computational analysis of the reaction scheme. Simulations allow to estimate GSH 

nitrosation rates and to compare the results with the previously derived rate laws (Eq. 

2.2b – 2.2d) (Fig 23.5). Reaction 2.3 was neglected in the modeling because it showed 

little impact on the overall results of the model.  

            Predicted reaction rates based on the complete set of reactions are presented as 

symbols for different combinations of GSH and NO donor concentrations. Dashed lines 

show predictions using the rate law for Reactions 2.1, 2.2, 2.4 – 2.6 (Eq. 2.2b) and solid 

lines account also for GSSG formation through Reactions 2.7 – 2.9 (Eq. 2.2c).      

            At high [NO]/[GSH] ratios,  GSNO formation rates determined by Eq. 2.2b 

(Dashed lines) are similar to those determined from the complete set of reactions 
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(circles), highlighting the importance of Reactions 2.1, 2.2, 2.4 – 2.6 in GSNO formation. 

At low [NO]/[GSH]  ratios, Eq. 2.2c (solid lines) better describes systems kinetics 

suggesting a significant formation of GSSG through Reactions 2.7 – 2.9 under these 

conditions.  

 

 

Fig A1.1: Comparison of the outcomes of the new (Eq. 2.2c) and simple (Eq. 2.2b) rate laws and 
the mathematical model. Dashed line indicates the simple rate law and solid line indicates the 
new rate law. Circles indicate outcomes of the mathematical model. Red, orange and green are for 
PAPA/NO concentrations of 0.5, 1 and 3 mM respectively. 
 
            The above comparisons indicate that the concentration ratio of [NO]/[GSH] is a 

critical factor in determining nitrosation process. For high ratios, the utilization of GS· 

towards the production of GSSG has a minor impact on GSNO production. However, as 

the ratio decreases a significant portion of GSH is utilized towards GSSG formation and 

an actual decrease in GSNO formation rate is predicted as GSH increase above 103 × 
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[NO]. In physiological scenarios, conditions that would favor GSSG production are 

likely, with NO levels reportedly in the nM range and GSH in the mM range (i.e. 

[NO]/[GSH] < 10-3) would favor GSSG formation. This could provide a pathway for 

reduced GSNO production in vivo.  

Thiyl peroxyl radical 

            During the computational modeling of the reaction system, some difference was 

found in the resulting  EC50 values when implementing the formation of thiyl peroxyl 

radical, GSOO· which has been reported in [188] as follows:  

⋅⋅ ↔+ GSOOOGS 2                                                                                        Reaction A1.1 

            This has been reported to be followed by several reactions [81]. However, GSOO· 

is said to have a characteristic absorption peak at 540 nm [188], which we did not 

observe under our experimental conditions. Moreover,  the reaction was observed to 

occur at a pH of 5.5 [188] whereas in our study we clamped pH at 7.4. Thus, the 

formation of the thiyl peroxyl radical and other downstream reactions as was 

implemented by Lancaster et al [81] was precluded from our analysis. Nevertheless, 

formation of thiyl peroxyl radical can be of importance in vivo (particularly at low pH), 

since there are a series of downstream reactions that can interfere with GSNO formation: 

NOOGSSGGSNOGSOO ++→+⋅
2                                                           Reaction A1.2a

22 GSOONONOGSOO ↔+⋅⋅                                                                        Reaction A1.2b 
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GSOONONOGSOO →+ ⋅⋅                                                                            Reaction A1.2c

GSOHGSOGSHGSOO +→+ ⋅⋅                                                                Reaction A1.2d 

            Reactions A1.2a – A1.2d can prove to be significant competitors to the oxidation 

of GSH by the ·NO2 radical or to the combination of the GS· radical and the ·NO radical 

to form GSNO. It remains to be seen whether these reactions have any impact on the 

status of GSNO formation in vivo. The reaction rate constant for Reaction A1.1 is 2×109 

M-1s-1 and that of Reaction 2.6 is 3×109 M-1s-1 suggesting that the GSNO formation is 

faster than that of GSOO·. The production of GSOO· radical and GSNO in vivo under 

hypoxic and low pH conditions needs to be further investigated. 
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Appendix A2: Pseudo Steady Approximations 
The equations used in the pseudo steady state approximation in Chapter 2 of the 
manuscript are as follows: 

22 22 1 NOONO k⎯→⎯+         (A2.1) 

322

2

2

ONNONO
k

k−

↔+           (A2.2) 

+− ++⎯→⎯+ HNOGSNOONGSH k
232

3        (A2.3) 

+− +⎯→⎯+ HNOOHON k 22 2232
4         (A2.4) 

−⋅⋅ +⎯→⎯+ 22
5 NOGSGSHNO k         (A2.5) 

GSNONOGS k⎯→⎯+ ⋅⋅ 6          (A2.6) 

For N2O3 based nitrosation, only Eq A2.1 – A2.4 are relevant. Attempting to derive 
PSSA  for N2O3 based nitrosation, we get the following: 

]][[
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323 ONGSHk
dt

GSNOd =         (A2.7) 
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−+−=                                             (A2.8) 

][]][[][]][[
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32432332222
32 ONkGSHONkONkNONOk

dt
ONd

−−−= −   (A2.9) 

Assuming negligible concentrations of NO2 and N2O3, one can equate the LHS of Eq. 
A2.8 and Eq. A2.9 as 0, and write for NO2: 

][][][2]][[ 3222
2

122 ONkONOkNONOk −+=                            (A2.10)  

And for N2O3, we can write: 
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                 (A2.11) 

From Eq. A2.10 and A2.11, one can write: 
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Dividing both the sides by [NO] and cross multiplying, we get: 
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From Eq. A2.7 and A2.11, one can write: 

]][[

]][[][][

432

223

kGSHkk
NONOkGSHk

dt
GSNOd

++
×

=
−

                (A2.15) 

From Eq. A2.14 and A2.15, one can write: 
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which is the final expression for PSSA that is used for N2O3 based nitrosation. 

For a PSSA based approximation of GSNO formation via NO2, we need to use Eq A2.1, 
A2.2, A2.4, A2.5 and A2.6. Deriving rate laws, we can write the following: 
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25322222
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]][[
][

6 NOGSk
dt

GSNOd ⋅=                    (A2.21) 

Assuming negligible concentrations of NO2, N2O3 and GS., one can equate the L.H.S. of 
Eq. A2.18 - A2.20 as zero. For GS., one can thus write: 

]][[]][[ 256 GSHNOkNOGSk =⋅⋅                  (A2.22) 

And so: 
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25 GSHNOk
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For N2O3, we can write: 
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And for NO2, we can write: 

][][][2][]][][[ 3222
2

1252 ONkONOkNOGSHkNOk −+=×+                 (A2.25) 

Using Eq. (A24) and (A25), we can get: 
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Therefore, implementing the above equation for NO2 in Eq. (A23), one gets: 
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And thus,  
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Similarly, by taking into account the following reactions: 
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NOGSSGGSNOGS k ⋅⋅ +⎯→⎯+ 10                   (A2.36) 

it is easy to derive the following relation from Eq A2.1, A2.2, A2.4, A2.5, A2.6, A2.33 - 
A2.35. 
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and from Eq A2.1, A2.2, A2.4, A2.5, A2.6, A2.33 - A2.36. 
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Appendix A3 
Purpose 

This procedure describes the steps in storage of the cell cultures.  The cells in 

consideration are HAOSMC (Human Aortic Smooth Muscle Cells).  

1. Equipment & Materials 

Equipment 

HEPA-Filtered Laminar Flow Biological Safety Cabinet (LFBSC)  

Incubator 37°C, 5% CO2 

Refrigerator at 2°C to 8°C  

Waterbath at 35°C to 39°C  

Materials 

Pipette 

Pipette tips 

Waste Container (150mL beaker) 

70% Ethanol 

Kimwipes 
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2. Reagents 

Description Catalog # Lot # Expiration Date 

Supplemented Media    

 

Completed by (Initials/Date) ______________ Verified by (Initials/Date) ____________ 

 

3.Technician Signature Log 

Print Name Signature Initials 

   

   

   

   

 

4.Procedure 

a. Cryopreserved vials: 

Store the cryovials in a liquid nitrogen storage tank immediately upon 

arrival. 

b. Safety Precautions:  

Biosafety Level 2 Procedures should be followed.  Good aseptic technique 

should be used during all procedures which include wearing appropriate 

clothing (i.e.- lab coats, safety glasses and gloves) at all times inside the 
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hood and spraying hands with alcohol anytime they are re-entered inside 

the hood.  All work and opening of sterile materials or cell cultures must 

be done inside a HEPA filtered, laminar flow biological safety cabinet 

(LFBSC). 

c. Hood cleared and cleaned by (Initial/date): _________________ 

 

d. Preparation steps before media change 

i. Turn on water bath and flow hood. 

ii. Remove aliquoted amount of supplemented smooth muscle media 

from refrigerator and place into the water bath.  (Amount of media 

required depends on the amount of cell cultures needed to be fed.)   

 

    6. Initial cell proliferation: 

a. Take a T-25 flask, add 5ml of smooth muscle cell growth medium that 

was placed into the water bath. 

b. Remove the cryopreserved vial of HAOSMC from the liquid nitrogen 

storage tank using proper protection for eyes and hands. 

c. Turn the vial cap a quarter turn to release any liquid nitrogen that may be 

trapped in the threads, then re-tighten the cap. 

d. Thaw the cells quickly by placing the lower half of the vial in a 370C 

water bath for 1 minute. 

e. Take the vial out of the water bath and wipe dry. 
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f. Decontaminate the vial exterior with 70% alcohol in a sterile Biological 

Safety Cabinet. 

g. Remove the vial cap carefully. Do not touch the rim of the cap or the vial. 

h. Resuspend the cells in the vial by gently pipetting the cell 5 times with a 2 

ml pipette.  Cells must not be pipette too vigorously as to cause foaming. 

i. Use 500 μl (out of a total of 1ml) of the volume of the cryopreserved vial 

and add it to the incubated medium in the flask. 

j. Cap the flask and rock gently to evenly distribute the cells. 

k. Place the flask in a 370 C, 5 % CO2 humidified incubator. Loosen the cap 

to allow gas exchange. 

l. After 24 hours, change to fresh smooth muscle growth medium to remove 

all traces of DMSO. 

m. Change smooth muscle cell growth medium every alternate day until the 

cells reach 60% confluent. 

n. Double smooth muscle cell growth medium volume when the culture is > 

60% confluent or for feedings over weekends/holidays. 

o. Harvest the cells of the T-25 flask into two flasks when the HAOSMC 

reach 80% confluency. 
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Appendix A4 
    1. Purpose 

This procedure describes the steps in changing the media of the cell cultures.  The cells in 

consideration are HAOSMC (Human Aortic Smooth Muscle Cells).  

    2. Equipment & Materials 

Equipment 

HEPA-Filtered Laminar Flow Biological Safety Cabinet (LFBSC)  

Incubator 37°C, 5% CO2 

Refrigerator at 2°C to 8°C  

Waterbath at 35°C to 39°C  

Materials 

Pipette 

Pipette tips 

Waste Container (150mL beaker) 

70% Ethanol 

Kimwipes 
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    3. Reagents 

Description Catalog # Lot # Expiration Date 

Supplemented Media    

 

Completed by (Initials/Date) ______________ Verified by (Initials/Date) ____________ 

 

    4. Technician Signature Log 

Print Name Signature Initials 

   

   

   

   

 

    5. Procedure 

e. Safety Precautions:  

Biosafety Level 2 Procedures should be followed.  Good aseptic technique 

should be used during all procedures which include wearing appropriate 

clothing (i.e.- lab coats, safety glasses and gloves) at all times inside the 

hood and spraying hands with alcohol anytime they are re-entered inside 

the hood.  All work and opening of sterile materials or cell cultures must 
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be done inside a HEPA filtered, laminar flow biological safety cabinet 

(LFBSC). 

f. Hood cleared and cleaned by (Initial/date): _________________ 

 

g. Preparation steps before media change 

i. Turn on water bath and flow hood. 

ii. Remove aliquoted amount of supplemented smooth muscle media 

from refrigerator and place into the water bath.  (Amount of media 

required depends on the amount of cell cultures needed to be fed.)   

NOTE:  For flasks, the approximate amount of smooth muscle cell 

media needed follows the ratio of 5mL per 25cm2.  For 24 well 

plates, 1mL is needed per well. 

iii. Note the confluency of the cultures and record in notebook.  

 

Completed by (Initials/Date) ______________ Verified by (Initials/Date) ____________ 

h. Changing Media (To be completed after supplemented media is warm) 

i. Spray down flow hood with 70% ethanol.  Wipe down with 

kimwipes. 

ii. Spray down and place the following contents inside the hood:  Cell 

cultures, waste bucket, aliquoted supplemented media, pipette, and 

appropriate pipette tips.  
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iii. For flasks: Keep in an upright position, loosen the caps but do not 

completely open them until ready for use.  Discard old smooth 

muscle cell media into the waste bucket by slowly pouring.  Be 

careful not to cause splashing as contamination might occur.  

iv. For 24 well plates:  Remove old smooth muscle cell media using a 

sterile pipette.  Discard old smooth muscle cell media into the 

waste bucket. 

v. Using a pipette, pull up the appropriate amount of smooth muscle 

cell media from aliquot and place into the flask or well plate.  For 

the flasks, close the tops tightly. 

vi. Place cell cultures back into the incubator. 

vii. Remove all materials out of the hood and replace in their 

appropriate locations.   

viii. Spray and wipe down the hood when completed. 

ix. Discard of waste into the appropriate waste container. 

 

Completed by (Initials/Date) ______________ Verified by (Initials/Date) ____________ 

i. Further feeding considerations 

i. Changing of media should be done every 48 hours. 
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Appendix A5 
Purpose 

This procedure describes the steps in harvesting the cell cultures.  The cells in 

consideration are HAOSMC (Human Aortic Smooth Muscle Cells).  

1. Equipment & Materials 

Equipment 

HEPA-Filtered Laminar Flow Biological Safety Cabinet (LFBSC)  

Incubator 37°C, 5% CO2 

Refrigerator at 2°C to 8°C  

Waterbath at 35°C to 39°C  

Centrifuge 

Materials 

Pipette 

Pipette tips 

Waste Container (150mL beaker) 

70% Ethanol 

Kimwipes 

Conical tubes 
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2. Reagents 

Description Catalog # Lot # Expiration Date 

Supplemented Media    

PBS    

Trypsin    

 

Completed by (Initials/Date) ______________ Verified by (Initials/Date) ____________ 

 

3.Technician Signature Log 

Print Name Signature Initials 

   

   

   

   

 

4.Procedure 

j. Safety Precautions:  

Biosafety Level 2 Procedures should be followed.  Good aseptic technique 

should be used during all procedures which include wearing appropriate 

clothing (i.e.- lab coats, safety glasses and gloves) at all times inside the 
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hood and spraying hands with alcohol anytime they are re-entered inside 

the hood.  All work and opening of sterile materials or cell cultures must 

be done inside a HEPA filtered, laminar flow biological safety cabinet 

(LFBSC). 

k. Hood cleared and cleaned by (Initial/date): _________________ 

 

l. Preparation steps before harvesting 

i. Turn on water bath and flow hood.  Remove aliquoted amount of 

supplemented media and trypsin from refrigerator and place into 

the water bath.   

ii. Note the confluency of the cultures and record in notebook. Refer 

to notebook  

iii. Remove the subculture reagent kit from the -200 C freezer and 

thaw overnight in a refrigerator. 

iv. Make sure all the subculture reagents are thawed. Swirl each bottle 

gently several times to form homogenous solutions. 

v. Store subculture reagents and trypsin at 40 C for future use. 

 

Completed by (Initials/Date) ______________ Verified by (Initials/Date) ____________ 

m. Harvesting of cell cultures (To be completed after the trypsin and 

supplemented media are warm) 
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i. Spray down flow hood with 70% ethanol.  Wipe down with 

kimwipes. 

ii. Spray down and place the following contents inside the hood:  Cell 

cultures, waste bucket, aliquoted supplemented media, aliquoted 

typsin, PBS, conical tubes with rack, pipette, and appropriate 

pipette tips.  

iii. For flasks:  

1. Keep in an upright position, loosen the caps but do not 

completely open them until ready for use.  Discard old 

media into the waste bucket by slowly pouring.  Be careful 

not to cause splashing as contamination might occur.  

2. Add 1 ml trypsin to the flasks.  (NOTE:  The amount of 

trypsin added follows the ratio of 1mL per 25cm2.)   

3. Gently rock the flasks back and forth for approximately 1 

minute being careful not to get any liquid in the filter of the 

cap. 

4. Discard waste by pulling up medium in sterile pipettes. 

5. Add trypsin to the flasks (NOTE:  Approximate amount of 

trypsin to be used follows the ratio of 2mL per 25cm2.) 

6. Place flasks into the incubator.  Check flasks frequently 

under the microscope to ensure that all cells have lifted off 

the flask.  Timing will vary depending on the confluency.  

Light tapping on the flask will assist in removing the cells 
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from the flask.  (NOTE:  Do not leave the cells in trypsin 

for longer time than needed as it will damage the cells) 

7. Once cells have been completely lifted off the flask, place 

back into the hood using proper aseptic techniques 

described above. 

8. To quench the trypsin add the equivalent amount of smooth 

muscle cell growth media.  Gently rock to mix well. 

9. Using a pipette of the appropriate volume, remove the cell 

suspension and place into a conical tube.   

10. Rinse once again by adding the same amount of smooth 

muscle cell growth media used to quench.  Rock gently and 

remove suspension as described in the previous step.  

(NOTE:  As a check, look at the flasks or well plates under 

a microscope to ensure that all the cells have been 

removed) 

11. Place the conical tubes into the centrifuge and spin for 4 

minutes at 1500 rpm at 25˚C. 

12. Carefully remove the conical tubes from the centrifuge to 

avoid disrupting the cell pellet and place into the hood. 

13. Discard the supernatant leaving only the cell pellet. 

14. Resuspend the cell pellet with an appropriate amount of 

smooth muscle c growth media. 
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15. Cells are now ready for further use. Count the cells with a 

hemocytometer or cell counter. Inoculate at 10,000 cells 

per cm2 for rapid growth, or at 6000 cells per cm2 for 

regular subculturing. 

  

iv. For 24 well plates:  Remove old cell growth media using a sterile 

pipette.  Discard old media into the waste bucket. 

1. Rinse the wells by adding 0.5mL of tryspin to each well. 

2. Gently rock the well plates to ensure that the cells have 

been rinsed sufficiently and any residual media is cleaned. 

3. Remove waste as described in step 5.1.3.1. 

4. Add trypsin to each well (NOTE:  0.5-1mL of trypsin per 

well is sufficient) 

5. Place well plates into the incubator.  Check plates 

frequently under the microscope to ensure that all cells 

have lifted off.  Timing will vary depending on the 

confluency.  (NOTE:  Do not leave the cells in trypsin for 

longer time than needed as it will damage the cells) 

6. Once cells have completely lifted off the well plate, place 

back into the hood using proper aseptic techniques 

described above. 

7. Follow steps 5.4.3.9-5.4.3.16. 
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Completed by (Initials/Date) ______________ Verified by (Initials/Date) ____________ 

n. Clean-up: 

i. Remove all materials out of the hood and replace in their 

appropriate locations.   

ii. Spray and wipe down the hood when completed. 

iii. Discard of waste into the appropriate waste container. 

 

o. Further feeding considerations 

i. Changing of media should be done every 48  hours. Refer to the 

changing media SOP. 
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