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ABSTRACT OF THE THESIS 

QUORUM SENSING AND MICROBIAL INTERACTIONS IN CORAL BLACK BAND DISEASE 

AND CORAL-ASSOCIATED BACTERIA 

by 

Beth L. Zimmer 

Florida International University, 2012 

Miami, Florida 

Professor Laurie Richardson, Major Professor 

 The black band disease (BBD) microbial consortium often causes mortality of reef-

building corals.  Microbial chemical interactions (i.e., quorum sensing (QS) and antimicrobial 

production) may be involved in the BBD disease process.  Culture filtrates (CFs) from over 150 

bacterial isolates from BBD and the surface mucopolysaccharide layer (SML) of healthy and 

diseased corals were screened for acyl homoserine lactone (AHL) and Autoinducer-2 (AI-2) QS 

signals using bacterial reporter strains.  AHLs were detected in all BBD mat samples and nine 

CFs.  More than half of the CFs (~55%) tested positive for AI-2.  Approximately 27% of growth 

challenges conducted among 19 isolates showed significant growth inhibition.  These findings 

demonstrate that QS is actively occurring within the BBD microbial mat and that culturable 

bacteria from BBD and the coral SML are able to produce QS signals and antimicrobial 

compounds.  This is the first study to identify AHL production in association with active coral 

disease.   
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I. INTRODUCTION 

Coral Disease  

Coral reefs around the world have experienced substantial declines since the 1970s 

(Gardner et al. 2003, Bellwood et al. 2004, Bruno and Selig 2007).  As of 2008, it was estimated 

that coral reefs worldwide had effectively decreased by 19% of their original area (Wilkinson et al. 

2008).  Reefs have experienced severe declines within the Caribbean Basin (Weil 2004, Alvarez-

Filip et al. 2009), where coral cover has declined by 80% in the 25 years following 1977 (Gardner 

et al. 2003).  It has recently been estimated that over 75% of coral reefs are rated as threatened, 

considering both direct threats from local anthropogenic impacts as well as thermal stress from 

increasing ocean temperatures (Burke et al. 2011).  It is now widely believed that coral reef 

decline poses a major threat to the sustainability of coral reefs.   

Coral diseases have been suggested to play a key role in the deterioration of reefs on a 

global basis (Hayes and Goreau 1998, Richardson 1998, Richardson et al. 1998, Rosenberg and 

Loya 2004, Sutherland et al. 2004, Harvell et al. 1999, 2007, 2009). Studies focused on 

Caribbean reefs have documented alarming trends related to increases in the number and 

incidence of coral diseases (Richardson 1998, Green and Bruckner 2000, Porter et al. 2001, 

Richardson et al. 2001, Sutherland et al. 2004, Weil 2004), as well as the number of coral species 

susceptible to disease (Richardson 1998, Porter et al. 2001).  In the Caribbean, 82% of coral 

species are susceptible to disease, while only 25% of Indo-specific coral species are documented 

as susceptible (Sutherland et al. 2004).   

Coral diseases have the capacity to alter coral reefs considerably by causing changes in 

the coral community structure (Done 1992, Knowlton 2001).  Coral disease epizootics can lead to 

ecological phase shifts on a local or regional scale.  For example, white band disease has nearly 

decimated the Acropora palmata and A. cervicornis populations in the Caribbean during recent 

decades (Aronson and Precht 2001a) by initiating a phase shift from the framework-building 

acroporid species to less ecologically important encrusting species (e.g., Agaricia spp. and 

Porites spp.).  This phase shift was unprecedented in the fossil record (Aronson and Precht 
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2001a,b).  Additionally, Green et al. (2008) demonstrated that coral assemblages within the 

Caribbean have shifted, over approximately three decades (1974 to 2004), from massive, long-

lived species (e.g., Acropora and Montastraea) towards smaller species that grow rapidly and 

brood larvae (e.g., Porites and Agaricia).  The shift is attributed, in part, to the impacts of coral 

disease on Caribbean reefs.    

While the drivers behind the increases in numbers and incidence of coral diseases are 

still poorly understood, two probable explanations have been suggested: (1) decreased coral 

resistance to disease resulting from increased environmental stressors (e.g., thermal 

stress/bleaching and degraded water quality) and (2) increased virulence of pathogens from 

ocean warming (Sutherland et al. 2004, Bruno et al. 2007, Ellner et al. 2007, Harvell et al. 2007, 

2009, Burke et al. 2011, Kaczmarsky et al. 2005).  

Black Band Disease 

Originally documented in 1973 on the reefs of the Florida Keys and Belize, black band 

disease (BBD) was the first coral disease to be reported within the scientific literature (Antonius 

1976).  Black band disease has been identified as one of the major coral diseases contributing to 

coral reef decline (Richardson and Aronson 2000, Rosenberg and Loya 2004, Weil et al. 2006).  

It infects both scleractinian and gorgonian corals worldwide (Sutherland et al. 2004) and 

infections frequently result in whole colony mortality (Richardson 1997, Sato et al. 2009).  The 

prevalence of BBD is typically low, affecting <1% of corals in a population (Garrett and Ducklow 

1975, Edmunds 1991, Kuta and Richardson 1996, Voss and Richardson 2006); however, 

localized BBD outbreaks and epizootic events with much higher prevalence values have been 

documented on reefs of Florida (Richardson and Carlton 1993), Jamaica (Bruckner et al. 1997), 

and the central Great Barrier Reef (Sato et al. 2009).  The fact that massive reef-building corals 

are susceptible to BBD (Antonius 1981, Rützler et al. 1983, Edmunds 1991, Sutherland et al. 

2004, Kaczmarsky et al. 2005, Sekar et al. 2006, Voss and Richardson 2006) exacerbates the 

impact of the disease on reef ecology and function.  Furthermore, while BBD infections have 

been documented to recur on recovered colonies (Borger 2005, Voss and Richardson 2006), it is 
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less frequent that coral colonies are able to overgrow the exposed skeleton following a BBD 

infection (Bruckner and Bruckner 1997, Kuta and Richardson 1997, Richardson 2004). In 

addition, corals show low recruitment success rates on the newly available substrate created 

following BBD infection (Kuta and Richardson 1997, Richardson 1998, Edmunds 2000). Thus, 

BBD has the potential to contribute to the restructuring of reefs (Kuta and Richardson 1997). 

Black band disease is easily distinguished in the reef environment and manifests as a 

black- or dark red-colored band (Viehman and Richardson 2000) separating healthy coral tissue 

from recently exposed coral skeleton (Rützler et al. 1983). The band may range from 1.0 mm to 

7.0 cm in width (Carlton and Richardson 1995), though it is typically 0.5-1.0 cm wide (Richardson 

2004).  It is normally only up to 1.0 mm thick (Kuta and Richardson 1996, Richardson 2004). The 

band migrates horizontally across the surface of a coral colony, causing coral tissue necrosis at a 

rate of approximately ~3.0 mm per day (Rützler et al. 1983); however, progression rates are 

variable and may exceed 1.0 cm per day (Rützler et al. 1983, Richardson 1996, Glas et al. 2012) 

or may cease completely during cooler periods (Rützler et al. 1983, Carlton and Richardson 

1995, Kuta and Richardson 1996, Bruckner and Bruckner 1997, Voss and Richardson 2006). The 

tissue loss on an individual colony infected with BBD can be substantial and can result in total 

colony mortality (Edmunds 1991, Kuta and Richardson 1997, Sato et al. 2009).    

The BBD mat consists of a microbial consortium that is similar in structure and function to 

microbial mats found in extreme environments, such as sulfidic thermal hot springs (Carlton and 

Richardson 1995). The members of the consortium are known to include at least one filamentous 

cyanobacterium (Antonius 1976, Ducklow and Mitchell 1979, Bythell et al. 2002, Cooney et al. 

2002, Frias-Lopez et al. 2002, 2003, 2004, Sussman et al. 2006, Myers et al. 2007, Sato et al. 

2009, 2010), sulfide-oxidizing bacteria presumed to be of the genus Beggiatoa (Garrett and 

Ducklow 1975, Ducklow and Mitchell 1979, Rützler et al. 1983, Viehman 2002, Sekar et al. 2008), 

sulfate-reducing bacteria including Desulfovibrio and Desulfobacter (Garrett and Ducklow 1975, 

Mitchell and Chet 1975, Cooney et al. 2002, Frias-Lopez et al. 2002, Viehman 2002, Sekar et al. 

2006, Viehman et al. 2006, Barneah et al. 2007, Sato et al. 2010), numerous heterotrophic 
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bacteria (Cooney et al. 2002, Frias-Lopez et al. 2002, 2004, Sekar et al. 2006, 2008, Barneah et 

al. 2007, Sato et al. 2010), and marine fungi (Ramos-Flores 1983).  A meta-analysis of BBD 

clone libraries (Miller and Richardson 2011) detected a common cyanobacterial sequence, 

recently characterized as Roseofilum reptotaenium gen. et sp. nov. (Casamatta et al. 2012) 

present in 78% of 87 BBD samples from the Caribbean and Indo-Pacific.   

The BBD microbial community is highly structured (Carlton and Richardson 1995), 

exhibiting both horizontal and vertical migration patterns (Carlton and Richardson 1995, 

Richardson 1996, Viehman and Richardson 2000). The entire BBD mat migrates horizontally as 

the band progresses along the coral colony, killing coral tissue (Richardson 1996). Within the 

horizontally migrating community, populations of both the dominant cyanobacteria and Beggiatoa 

migrate vertically within the band (Richardson 1996, Viehman and Richardson 2000). It has been 

shown experimentally that the BBD cyanobacteria migrate down into the band as light intensity 

increases (Viehman and Richardson 2000), while Beggiatoa migrates vertically to follow the 

movement of the oxygen/sulfide interface within the band (Richardson 1996). The structured 

microbial community creates microenvironments that vary in oxygen, pH, and sulfide as a 

function of light intensity (Carlton and Richardson 1995, Glas et al. 2012).  The combination of 

anoxic conditions and the presence of sulfide at the base of an active BBD mat was shown to be 

responsible for coral tissue necrosis (Richardson et al. 1997) and it has been shown that the 

presence of sulfide is required for initiation of BBD (Richardson et al. 2009).  Establishment of the 

oxygen and sulfide microenvironments within the BBD mat is correlated with the rate of BBD 

migration across an infected coral (Glas et al. 2012).   

While the literature has suggested a number of purported pathogens for BBD, a definitive 

pathogen (or pathogens) has yet to be established.  The cyanobacterium Oscillatoria 

submembranaceae (Antonius 1981), reclassified based on morphology as Phormidium 

corallyticum (Rützler et al. 1983), and more recently formally characterized as Roseofilum 

reptotaenium (Casamatta et al. 2012) was one of the first suggested BBD pathogens.  The idea 

of a cyanobacterial primary pathogen is supported by the meta-analysis conducted by Miller and 
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Richardson (2011), which detected a common cyanobacterial operational taxonomic unit (OTU) 

corresponding to Roseofilum reptotaenium in the majority of global BBD samples.  Other 

suggested BBD pathogens include Beggiatoa spp. (Garrett and Ducklow 1975), Desulfovibrio 

spp. (Mitchell and Chet 1975), and various heterotrophs (Cooney et al. 2002, Frias-Lopez et al. 

2002, 2004). Several authors have proposed that BBD is not caused by a singular primary 

pathogen, but is rather a polymicrobial disease with a pathogenic microbial consortium (Carlton 

and Richardson 1995, Richardson and Kuta 2003, Richardson 2004, Barneah et al. 2007).  In this 

scenario, the presence of certain microbes predisposes the coral host to colonization by 

additional microbes by creating specific biogeochemical microenvironments, and together these 

non-pathogenic microbes result in disease (Barneah et al. 2007, Glas et al. 2012). It has also 

been suggested that bacterial and cyanobacterial toxins (Sekar et al. 2006, Richardson et al. 

2007, Myers et al. 2007, Gantar et al. 2009, Stanić et al. 2011) and proteolytic activity by Vibrio 

species (Arotsker et al. 2009) may also play a role in the pathology of BBD.  Currently, there is 

not a conclusive understanding of BBD pathology and pathogenicity. 

Microbial Community of the Coral SML 

The coral surface mucopolysaccharide layer (SML) supports a dynamic microbial 

community (Brown and Bythell 2005, Guppy and Bythell 2006, Kooperman et al. 2007) which is 

believed to play important roles in biogeochemical cycling and disease resistance in the host 

coral (Mouchka et al. 2010).  The interaction between coral pathogens and the microbial 

community of the coral SML has been the subject of multiple studies (reviewed in Mouchka et al. 

2010).  The Coral Probiotic Hypothesis, developed by Reshef et al. (2006), proposes that corals 

live in a symbiotic relationship with their associated microbial community and that when 

environmental conditions change, the coral’s microbial population may also change to adapt to 

the novel environmental conditions.  It is suggested that coral pathogens are likely present in 

healthy corals at low concentrations, and that environmental stressors (e.g., elevated 

temperature, elevated nutrient levels, lowered pH) may trigger a shift in the coral’s resident 

microbial community from a community associated with healthy corals to one associated with 
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disease (Ducklow and Mitchell 1979, Vega Thurber et al. 2009, Bourne et al. 2008, 2009, Meron 

et al. 2011). The coral SML and its associated microbes have been shown to produce 

antimicrobial agents (Ritchie 2006, Nissimov et al. 2009, Shnit-Orland and Kushmaro 2009, 

Rypien et al. 2010) that may be acting to protect corals from pathogen growth. The SML of 

apparently healthy Acropora palmata colonies was shown to contain substances that inhibit 

biofilm formation by the white pox pathogen, Serratia marcescens (Alagely et al. 2011).  

Relatively little is currently known about the interactions between microbes within the 

SML.  Furthermore, interactions between members of the BBD consortium and bacteria inhabiting 

the host coral’s SML may be a key component of the disease process.  If secondary metabolite 

production by the members of the BBD consortium influences the growth of the SML-associated 

bacteria (i.e., alters the host coral SML microbial community), then host coral 

resistance/susceptibility could be impacted.  Chemical signaling and antimicrobial production are 

two modes of microbial interaction that may be occurring in these systems. 

Quorum Sensing 

 Quorum sensing (QS) refers to the phenomenon of density dependent cell-cell 

communication among bacteria (Fuqua et al. 1994).  Bacteria capable of QS release signaling 

molecules called autoinducers (AIs) into the external environment (Nealson 1977, Bassler 1999, 

de Kievit and Iglewski 2000, Watters and Bassler 2005). When only a small number of bacteria 

are present, the AI concentration is insufficient for detection or response by neighboring bacteria; 

however, with a higher density of bacteria, the AI concentration reaches a threshold that allows 

the bacteria to respond to a critical cell mass.  The bacteria then coordinate their behavior by 

regulating gene expression, thereby controlling the bacterial phenotype (high vs. low cell density) 

and initiating a population-wide response (de Kievit and Iglewski 2000, Watters and Bassler 2005, 

Jayaraman and Wood 2008).  A variety of QS systems have been detected in both Gram-

negative and Gram-positive bacteria (Gera and Srivastava 2006, Jayaraman and Wood 2008).  

Quorum sensing is utilized for communication within and between bacterial species, as well as 

between kingdoms (i.e., prokaryotes and eukaryotes; Bandara et al. 2012). 
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The QS signals are a chemically diverse group of molecules.  Most QS signals (AIs) are 

either small organic molecules or peptides containing 5-20 amino acids (Williams 2007).  The 

very first QS signal to be described is Autoinducer-1 (AI-1), or β-ketocaproyl homoserine lactone 

(Eberhard et al. 1981).  Autoinducer-1 is a member of one of the best-characterized groups of QS 

molecules, the acyl homoserine lactones (AHLs).  The basic structure of the AHL molecule 

consists of a core homoserine lactone ring attached to fatty acid (acyl) side chain between 4-18 

carbons in length (Fuqua et al. 2001, Chhabra et al. 2005).  Acyl homoserine lactone production 

has been well documented among members of the Gram-negative proteobacteria (Williams 2007, 

Jayaraman and Wood 2008).  More than 70 species of bacteria have been demonstrated to 

produce one or more AHL signals (Williams 2007).  The AHLs are unique on the basis of their 

length, saturation, and/or substitutions on the acyl side chain (Fuqua et al. 2001, Chhabra et al. 

2005).  The AHL signals are recognized by members of the same species, as AHL receptors 

typically display preferential binding to the AHL produced by that bacterium (Bassler 2002, 

Waters and Bassler 2005, Steindler and Venturi 2007, Bandara et al. 2012).  While AHLs are 

considered intraspecies signals, signal-mediated cross-talk between bacteria does occur.  There 

are a number of bacterial species that can recognize the same AHL (e.g., Wood et al. 1997, 

Welch et al. 2000, Riedel et al. 2001, Ryan and Dow 2008).  Furthermore, some bacteria can 

respond to an AHL signal that is produced by a variety of different bacteria (Greenberg et al.1979, 

Bassler et al. 1997, Pierson et al. 1998).   

Another well-characterized QS signal group is the Autoinducer-2 (AI-2) signal, which 

includes a group of furanones comprised of different, interconverting chemical moieties that are 

all derived from the same precursor molecule as AHLs, S-adenosylmethionine (Schauder et al. 

2001, Chen et al. 2002). Signaling with AI-2 has been detected in both Gram-negative and Gram-

positive bacteria (DeKeersmaecker et al. 2006, Gonzalez and Keshavan 2006) and is widely 

recognized for its role in interspecies communication (Bassler 1999, 2002, McDougald et al. 

2003, Xavier and Bassler 2003, Rickard et al. 2006, Novick and Geisinger 2008, Bandara et al. 

2012).  To date, the luxS gene that encodes the AI-2 synthase has been identified in over 55 
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species of Gram-negative and Gram-positive bacteria (De Keersmaecker et al. 2006) and AI-2 is 

referred to as the “universal signaling molecule” (Miller and Bassler 2001, Jayaraman and Wood 

2008).  In addition to the bacteria that are producing the AI-2 signal, many bacteria that do not 

possess the luxS gene can still detect and respond to AI-2 in the environment (Sun et al. 2004).  

Quorum sensing is associated with a range of interactive social responses in bacteria, 

including virulence, antibiotic synthesis, biofilm maintenance and maturation, motility, symbiosis, 

aggregation, swarming, plasmid conjugal transfer, exoenzyme production, and bioluminescence 

(Bassler 1999, Joint et al. 2007a).  Quorum sensing has been shown to regulate virulence in both 

Gram-positive pathogens (e.g., Staphylococcus aureus) and Gram-negative pathogens (e.g., 

Vibrio cholerae, Pseudomonas aeruginosa, Burkholderia pseudomallei, and B. cenocepacia) 

(Bandara et al. 2012). For some bacterial pathogens, QS molecules are involved in the 

establishment of an infection and may be used to regulate a bacterial strain’s switch from a non-

pathogenic to a pathogenic state (de Kievit and Iglewski 2000, Jayaraman and Wood 2008). 

These QS-regulated systems may be used to avoid alerting the host’s immune response to a 

pathogen’s presence until sufficient bacterial numbers have amassed to achieve a successful 

infection (Bassler 1999, de Kievit and Iglewski 2000, Wu et al. 2005). In addition, QS systems 

have been linked to antibiotic biosynthesis in Erwinia carotovora (McGowan et al. 2005) and 

Pseudomonas aureofaciens (Wood et al. 1997).  Furthermore, biofilm development in certain 

bacteria (e.g., Escherichia coli, V. cholera, P. aeruginosa, B. cepacia, Serratia liquefaciens) is 

reliant upon QS systems (Davies et al. 1998, Huber et al. 2001, Labbate et al. 2004, Barrios et al 

2006, Waters et al. 2008).  

Recent studies have detected QS signal production in isolates from the coral holobiont 

and in coral pathogens.  Alagely et al. (2011) detected AHL production in bacteria isolated from 

marine invertebrates and their endosymbiotic dinoflagellates, including coral-associated 

microbes.  Similarly, Golberg et al. (2011) demonstrated AHL production in coral-associated 

bacteria isolated from the SML of healthy corals.  Vibrio spp. isolated from healthy and diseased 

corals have been shown to produce QS signals, specifically AHLs and AI-2 (Tait et al. 2010).  The 
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coral pathogen Serratia marcescens is known to utilize AHL QS systems to regulate virulence 

factors, including biofilm formation, swarming, swimming motility, biosurfactant production, 

exoenzyme and antibiotic production, and nucleases (Van Houdt et al. 2007).  In situ production 

of QS signals in coral disease has not yet been demonstrated and the role of these signals in the 

coral microbial community and in coral disease remains unknown. 

Despite nearly 40 years of research, the etiology, pathogenesis, and pathogenicity of 

BBD remain unresolved.  The mechanisms of BBD mat formation and organization, the mode of 

microbial recruitment to the BBD community, and the factors leading to initiation of lesions are not 

yet fully understood.  The role of QS systems in virulence, antibiotic production, and biofilm 

structure makes QS an important aspect of study for BBD.  Furthermore, potential roles of the 

coral microbial community in BBD infection and host susceptibility remain unresolved.  Quorum 

sensing and chemical interactions between BBD microbial constituents and/or the coral microbial 

community may be contributing to the disease process.  The goal of this study was to screen 

members of the BBD microbial consortium and the coral SML microbial community for QS signal 

production and antimicrobial activity.   
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II. MATERIALS AND METHODS 

 My study examined the culture filtrates from 153 bacterial strains that were isolated from 

the BBD microbial mat, from the SML of BBD-infected coral colonies, and from the SML of 

apparently healthy coral colonies.  For the remainder of this document, these isolates will be 

referred to as “BBD isolates,” “isolates from BBD-infected corals,” and “isolates from healthy 

corals,” respectively. 

Sampling 

Of the 153 strains examined in this study, 136 were isolated from environmental samples 

that were collected using the following protocol.  Samples of the BBD microbial mat and host 

coral SML were collected from colonies of Montastraea cavernosa and Diploria strigosa located 

on the Florida reef tract.  Samples were collected from the reef near Commercial Blvd. in Ft. 

Lauderdale, Broward County, Florida, USA and from Algae Reef, Florida Keys, USA (Table 1).   

Sterile, needleless 10 ml syringes were used to collect the BBD disease mat, as well as 

SML from the BBD-infected coral colony located at the farthest distance (i.e., a minimum of 20 

cm) from the BBD mat.  In addition, SML was collected from apparently healthy coral colonies 

located in close proximity to the BBD-infected coral.  To collect the BBD mat, the mat material 

was drawn into the syringe.  To collect the SML, the coral surface was first lightly agitated using 

the syringe tip (to cause mucus secretion) and the resulting mucus was suctioned with the 

syringe.  Immediately upon return to the shore, the syringes were inverted, allowing the mucus or 

mat material to settle to the tip of the syringe.  The samples were held in the dark at ambient 

temperature until return to the laboratory.   

Nine of the bacterial isolates examined in this study were already in culture in the 

laboratory of Dr. Laurie Richardson at Florida International University.  These strains were 

isolated and the 16S rRNA gene sequences were previously attained (Sekar et al. 2006, 2008; 

Richardson et al. 2009).  Table 2 provides a summary of the sampling information and taxonomic 

identification for these nine isolates.   
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Table 1.  Sampling information, including the geographic location of sampling sites, sampling date, depth, and water temperature for each 

sample collected.  The number and species of coral colonies sampled at each site is presented, along with the sample type and naming 

scheme used for bacterial isolates from each sample.  BBD: black band disease mat; BSML: surface mucopolysaccharide layer from BBD-

infected coral colony; HSML:  surface mucopolysaccharide layer from apparently healthy coral colony.  

 
 
*The “x” in the naming scheme references the individual isolate names (e.g., BBD-FTL-1a, BBD-FTL-1b, etc.).

Site Name and 
Location

Sample Site 
Coordinates Date of Collection

Water 
Depth (m)

Water 
Temp (°C)

Colony 
No. Coral Species

Sample 
Types

Isolate Naming 
Scheme

17-May-08 3.7 28 FTL 1 Montastraea cavernosa BBD BBD-FTL-1x*
27-Jun-08 4.6 28 FTL 2 Montastraea cavernosa BBD BBD-FTL-2x
27-Jun-08 4.3 28 FTL 3 Montastraea cavernosa BBD BBD-FTL-3x

27-Jun-08 4.0 28 FTL 4 Montastraea cavernosa BBD BBD-FTL-4x

27-Jun-08 3.3 28 FTL 5 Montastraea cavernosa BBD BBD-FTL-5x

1-Aug-09 4.6 29 FTL 6 Montastraea cavernosa BBD, BSML BBD-FTL-6x
BSML-FTL-6x

31-Jul-10 3.7 30 FTL 7 Montastraea cavernosa BBD, BSML BBD-FTL-7x
BSML-FTL-7x

31-Jul-10 4.3 30 FTL 8 Montastraea cavernosa BBD, BSML BBD-FTL-8x
BSML-FTL-8x

31-Jul-10 4.6 30 FTL 9 Diploria strigosa HSML HSML- FTL-9x
31-Jul-10 4.3 30 FTL 10 Montastraea cavernosa HSML HSML- FTL-10x
31-Jul-10 4.3 30 FTL 11 Montastraea cavernosa HSML HSML- FTL-11x

Algae Reef, 
Florida Keys, FL, 

USA

25° 08.799' N, 
80° 17.579' W 24-Oct-09 6.7 25 FLK 1 Diploria strigosa BBD, BSML

BBD-FLK-1x
BSML-FLK-1x

19-Jul-04 8.2 29 216 Siderastrea siderea BBD BBD-216-x

19-Jul-04 7.3 28 217 Siderastrea siderea BBD BBD-217-x

Horseshoe Reef, 
Lee Stocking 

Island, Bahamas

23° 46.30' N, 
76° 5.33' W

Ft. Lauderdale, 
Broward County, 

FL, USA

26º 11.35' N, 
80º 5.49' W 
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Table 2.  Nine bacterial isolates obtained from black band disease on Siderastrea siderea colonies located on Horseshoe Reef, Lee Stocking 

Island, Bahamas.  GenBank accession numbers and closest relative are provided.  Sampling and 16S rRNA gene sequencing details were 

previously documented in Sekar et al. (2006, 2008) and Richardson et al. (2009). 

Isolate Name
GenBank 

Accession No. Closest Relative (% Similarity)
GenBank Accession 

No. of Closest Relative 

BBD-216-1b GQ901063 Vibrio harveyi strain NCIMB1280 (99%) NR043165

BBD-216-2d GQ901065 Vibrio harveyi strain NCIMB1280 (99%) NR043165

BBD-216-3d GQ901066 Bacillus megaterium strain IAM 13418 (99%) NR043401

BBD-216-4a GQ901054 Loktanella hongkongensis strain UST950701-009P (96%) NR029121

BBD-216-4e GQ901057 Bacillus aquimaris strain TF-12 (99%) NR025241

BBD-217-2b GQ901070 Kocuria palustris strain TAGA27 (99%) NR026451

BBD-217-2d GQ901071 Vibrio harveyi strain NCIMB1280 (99%) NR043165

BBD-217-2g GQ901072 Alteromonas macleodii strain 107 (99%) NR037127

BBD-217-3m GQ901076 Bacillus safensis strain FO-036b (99%) NR041794
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The present study also examined cultures of eight cyanobacterial strains that had been 

previously isolated from samples of BBD collected in the Florida Keys, Bahamas, and Philippines.  

These strains were already in culture in the laboratories of Dr. Laurie Richardson and Dr. 

Miroslav Gantar at Florida International University.  Table 3 provides a summary of the sampling 

information and taxonomic identification for these cyanobacterial strains. 

Bacterial Isolation and Culture 

In the laboratory, the SML samples were extruded carefully into sterile 2 ml tubes in order to limit 

the amount of seawater in the sample.  The BBD mat, which forms a clump once removed from 

the coral colony, was removed from the syringe using sterile forceps and placed in autoclaved 

seawater. The BBD sample was then vortexed and a standard dilution series was prepared using 

both the SML and BBD mat samples.  The diluted samples were spread onto plates containing 

the following media: Difco marine agar (MA, Difco 2216), 1/10 strength Difco MA, and Thiosulfate 

Citrate Bile Salts Sucrose (TCBS; Vibrio-specific, BD) agar.  The plates were incubated at room 

temperature (~23°C) and unique colonies were selected on the basis of color and morphology, for 

further isolation and evaluation.   

The isolates were assigned names corresponding to their associated sample origin (see 

Table 1).  Isolates named “BBD” were obtained from a BBD mat sample, isolated named “BSML” 

were obtained from the SML of a BBD-infected colony, and isolates named “HSML” were 

obtained from the SML of an apparently healthy colony.  The “FTL” and “FLK” portion of the name 

corresponds to the sample collection location (Ft. Lauderdale and Florida Keys, respectively).  

The nine BBD cultures previously isolated (Table 2) were maintained on Difco marine agar, as 

described above.  Laboratory cultures of the eight cyanobacterial strains (Table 3) were 

maintained in 125 ml Erlenmeyer flasks containing the mineral media ASNIII and marine BG11, 

which support photoautotrophic growth of cyanobacteria.  These media were prepared as 

described by Rippka et al. (1979), although artificial seawater was used to prepare the BG11 

medium to support the marine cultures.  The cultures were maintained at 26°C under a 12:12 hr 

light:dark fluorescent light regime with an intensity of 20 μE m−2 s−1.  
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Table 3.  Sampling location, coral host species, taxonomic information, and associated references for the cyanobacterial isolates examined in 

this study. 

 
 

a Not sequenced. 
 
b Identified using classic taxonomic criteria based on morphology.

Isolate Name
Sample 
Location Coral Species

Closest Relative 
(% Similarity)

GenBank 
Accession 

No. References

BBD 1991 Florida Keys Montastraea annularis Geitlerinema (99%) DQ151461 Ragoonath (2005)
Richardson and Kuta (2003)

HS 217 Bahamas Siderastrea siderea Geitlerinema (99%) EF110974 Myers et al. (2007)
Voss and Richardson (2006)

HS 223 Bahamas Siderastrea siderea Geitlerinema (99%) DQ680351 Myers et al. (2007)
Voss and Richardson (2006)

W-1 Florida Keys Siderastrea siderea Geitlerinema (99%) EF154084 Myers et al. (2007)

FLK BBD1 Florida Keys Montastraea annularis Leptolyngbya (98%) EF110975
Myers et al. (2007)
Richardson et al. (2007)
Voss and Richardson (2006)

Phil 2b-2 Philippines Porites lutea Leptolyngbya (98%) EF372581 Myers et al. (2007)

102a-1 Florida Keys Dendrogyra cylindrus Leptolyngbya (97%) EU743966 Gantar et al. (2009)

96-2 Florida Keys Montastraea annularis Leptolyngbya (N/A)a, b N/A Gantar et al. (2011)
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Cell-free culture filtrates (CFs) from the bacterial isolates were collected for use in the QS 

assays and the bacterial growth challenges.  To obtain the CFs, the test isolates were grown in 

sterile Difco marine broth (MB, Difco 2216) that was filtered twice (Whatman 1 paper filters, 5.5 

cm) to remove the medium precipitate. The cultures were grown to stationary phase at 29°C with 

shaking.  This temperature is ecologically relevant, since surface water temperatures range from 

28-30°C during the summer on the reefs of Broward County (Vargas-Angel et al. 2003), which is 

the season when BBD tends to be most active (Rützler et al. 1983, Edmunds 1991, Kuta and  

Preparation of Cell-Free Culture Filtrates 

Richardson 1996, Bruckner and Bruckner 1997, Jones et al. 2004, Borger 2005, Voss and 

Richardson 2006).  The bacterial cell concentrations were monitored by measuring the optical 

density at 600nm (OD600) using either a ModulusTM Microplate Multimode Reader (Turner 

BioSystems, Sunnyvale, CA, USA) or a Thermo UV1 Spectrophotometer (Thermo Electron Ltd., 

Cambridge, UK). Sterile marine broth was used as a zero/blank.  

At early stationary phase, CF samples were prepared by centrifugation at 12,000 g for 10 

minutes.  The pH of the resulting supernatant was assessed using a Jenco Model 60 Digital pH 

meter (Jenco Electronics, Ltd., Taipei, Taiwan) and the supernatant was divided into two, 1 ml 

aliquots.  Alkaline conditions have been shown to result in AHL lactonolysis, which is hydrolysis of 

the lactone ring (Voelkert and Grant 1970, Yates et al. 2002, Byers et al. 2002).  Because AHLs 

have been shown to remain stable for extended time periods (months) at pH 5.0-6.0 (Schaefer et 

al. 2000), the pH of the supernatant to be used in the AHL assays was adjusted to an acidic 

condition (pH 5.0-6.0) using a sterile HCl solution (1N).  Each CF was then filter sterilized by 

passing the supernatant through a 0.22μm membrane filter (Millipore, Billerica, MA, USA) placed 

at the tip end of a sterile syringe.  The CFs were collected in a sterile cryovial and stored at -20ºC 

until ready for use in appropriate assay. 

For the cyanobacterial strains, CFs were prepared by obtaining a 2 ml aliquot from an 

active cyanobacterial culture.  The culture sample was vortexed and cells were removed using a 

combination of centrifugation (12,000 g for 10 minutes) and filter sterilization by passing the 
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supernatant through a 0.22μm membrane filter (Millipore, Billerica, MA, USA) placed at the tip 

end of a sterile syringe. The CFs were collected in a sterile tube and used immediately in the 

quorum sensing assays. 

Acyl Homoserine Lactone Quorum Sensing Assays 

The bacterial strains isolated from the coral SML and the BBD microbial consortium, the 

BBD mat itself, and the previously isolated cyanobacterial strains, were evaluated for the 

production of AHL and AI-2 signal molecules.   

The Chromobacterium violaceum CV026 reporter strain was used to detect the presence 

of short-chain AHLs in the bacterial CFs.  The Agrobacterium tumefaciens NTL4(pZLR4) reporter 

strain and the A. tumefaciens NTL4(pTiC58∆accR) mutant strain were used to test the bacterial 

CFs for the presence of AHLs with medium-to-long chains in the bacterial CFs. Table 4 

summarizes the signals recognized by each reporter strain.  The C. violaceum strain was 

obtained from Dr. Kalai Mathee (Florida International University) and the A. tumefaciens strains 

were obtained from Dr. Stephen K. Farrand (University of Illinois). 

Acyl Homoserine Lactone (AHL) Reporter Strains 

 

Table 4.  Reporter strains used in the quorum sensing assays, the signals detected by each 

strain, and the corresponding reference.   

 

Reporter Strain Signal Detection Reference
C4-AHL
C6-3-oxo-AHL
C8-AHL
C8-3-oxo-AHL
C6-AHL                 
C8-AHL                 
C10-AHL               
C12-AHL
C14-AHL
C6-3-hydroxy-AHL
C8-3-hydroxy-AHL
C10-3-hydroxy-AHL
All 3-oxo-AHLs

Chromobacterium violaceum CV026

Agrobacterium tumefaciens  NTL4(pZLR4)

McClean et al. (1997)
Steindler and Venturi (2007)

Cha et al. (1998)
Steindler and Venturi (2007)
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Wild type Chromobacterium violaceum produces violacein, a purple, water-insoluble 

pigment whose production is regulated by AHLs.  Chromobacterium violaceum CV026 is a mini-

Tn5 (violacein-negative) mutant strain unable to produce the AHLs required for violacein 

production. When C. violaceum CV026 is exposed to exogenous AHLs, violacein production is 

induced (McClean et al. 1997).  The C. violaceum CV026 strain acts as a biosensor for AHLs that 

have short carbon chains (C4-C8; Table 4).  

Similarly, wild type Agrobacterium tumefaciens produces an AHL signal while the reporter 

strain used in this study does not.  The A. tumefaciens NTL4(pZLR4) mutant lacks a the traI gene 

which codes for the AHL synthase and also contains a reporter gene (lacZ) that is fused to the 

quorum sensing-regulated gene (traG). In the presence of exogenous AHLs, the lacZ fusion is 

activated and β-galactosidase is expressed.  A blue color is produced by the β-galactosidase 

cleavage of 5-bromo-4-chloro-3-indolyl-beta-D-galactopyranoside (X-gal; Shaw et al. 1997).  The 

A. tumefaciens NTL4(pZLR4) reporter strain acts as a biosensor for AHLs with medium-to-long 

carbon chains (C6-C14; Table 4).  In these experiments a second mutant strain was used as a 

positive control.  This strain, A. tumefaciens NTL4(pTiC58∆accR), contains a trac Ti plasmid and 

constitutively synthesizes the AHL quormone signal, AAI (Beck von Bodman et al. 1992).   

Chromobacterium violaceum CV026 Assay 

The Chromobacterium violaceum CV026 assay used in this study follows the protocol of 

McClean et al. (1997) with slight modification.  The C. violaceum CV026 reporter strain was 

cultured in sterile Difco Luria-Bertani (LB) broth overnight at 30°C and used to prepare the assay 

plates.  The assay plates contained a base of 1.5% Difco LB agar with an overlay consisting of 

100 µl of the C. violaceum CV026 culture (OD600 = 1.0) in 5 ml of 0.7% Difco LB agar.  These 

assay plates were used to evaluate the following for the presence of short-chain AHLs: 1) the 

bacterial CFs, 2) the BBD mat material, and 3) patch tests of the bacterial isolates. 

To test the bacterial CFs, wells were punched in triplicate assay plates using the wide 

end of a sterile pipette tip.  To each experimental well, 75 µl of the appropriate CF was added.  

To test the BBD mat material, a portion of each BBD samples was placed 1.0 ml of sterile 
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seawater.  The mixture was shaken on a vortexer and 75 µl of the solution was placed into an 

experimental well in the assay plate.  Each triplicate test plate contained a positive control of 0.01 

µl of 50 mM N-hexanoyl-L-homoserine lactone, which was spotted on the agar surface, and a 

negative control well with either 75 µl of sterile marine broth for the CF assays or 75 µl of sterile 

seawater for the BBD mat assays. The test plates were incubated for 24 hours at 30°C and then 

examined for the stimulation of violacein production, as indicated by the presence of purple 

(violacein) coloration surrounding the wells. 

For the bacterial isolate patch tests, each isolate was streaked onto a plate containing 

Difco MA and incubated at 29°C until colonies were visible.  Colonies were collected using a 

sterile loop and transferred to the surface of the C. violaceum CV026 assay plates.  In the case of 

the cyanobacterial strains, clumps of cyanobacteria were selected from the culture flask using 

sterile forceps and transferred to the surface of the assay plate.  Each experiment was conducted 

with triplicate test plates, each plate containing a positive control with 0.01 µl of 50 mM N-

hexanoyl-L-homoserine lactone, which was spotted on the agar surface.  The assay plates were 

incubated for 24 hours at 30°C and then assessed for violacein presence. 

Agrobacterium tumefaciens NTL4(pZLR4) Assay 

The Agrobacterium tumefaciens NTL4(pZLR4) assay used in this study follows the 

protocol of Farrand et al. (2002) with slight modification.  The A. tumefaciens NTL4(pZLR4) 

frozen glycerol stock was streaked on a plate containing autoinducer bioassay minimal (ABAt) 

agar (i.e., 3 g/L K2HPO4, 1 g/L NaH2HPO4, 1 g/L NH4Cl, 0.3 g/L MgSO4·7H2O, 0.15 g/L KCl, 0.01 

g/LCaCl2, 0.0025 g/L FeSO4·7H2O; Chilton et al. 1974), along with 5 g/L mannitol (0.5%) and 

gentamicin (30 µg/ml) and incubated at 28ºC until colonies were visible. 

A single colony was transferred via sterile loop to 1 ml of ABAt medium with gentamicin 

(30 µg/ml) and grown overnight at 28ºC with shaking.  The day of the assay, a fresh solution of 

ABAt medium with gentamicin (3 µg/ml) was prepared, inoculated with 50 µl of the overnight 

culture, and grown late exponential phase at 28ºC with shaking.  The assay plates contained a 

base of 1.5% ABAt agar (0.5% mannitol) with an overlay that included 500 µl of the A. 
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tumefaciens NTL4(pZLR4) culture in 5 ml of 0.7% water agar with gentamycin (30 µg/ml) and X-

gal (40 µg/ml).  These assay plates were used to evaluate the following for the presence of 

medium-to-long chain AHLs: 1) the bacterial CFs, 2) the BBD mat material, and 3) patch tests of 

the bacterial isolates. 

To test the bacterial CFs, wells were punched in the triplicate assay plates using the wide 

end of a sterile pipette tip.  To each experimental well, 75 µl of the test sample CF, or 75 µl of 

BBD mat/sterile seawater solution (prepared as described above), was added to the experimental 

wells.  The positive control for this assay consisted of 0.5 µl of cell-free culture filtrate from 

Agrobacterium tumefaciens NTL4(pTiC58∆accR), which was spotted on the agar surface.  To 

prepare the positive control solution, A. tumefaciens NTL4(pTiC58∆accR)  was grown to 

saturation in ABAt broth at 28ºC with shaking, an aliquot of the culture was centrifuged at 12,000 g 

for 10 minutes, and the resulting supernatant was filter sterilized using a 0.22μm membrane filter 

(Millipore, Billerica, MA, USA) placed at the tip end of a sterile syringe. The negative control well 

on each plate contained either 75 µl of sterile marine broth for the CF assays or 75 µl of sterile 

seawater for the BBD mat assays.  The assay plates were incubated for 24 hours at 28°C and 

then assessed for the presence of X-gal cleavage, as indicated by blue coloration surrounding the 

wells. 

For the bacterial isolate patch tests, each isolate was streaked onto a plate containing 

Difco marine agar and incubated at 29°C until growth was visible.  Colonies were collected using 

a sterile loop and transferred to the surface of the A. tumefaciens NTL4(pZLR4) assay plates. In 

the case of the cyanobacterial strains, clumps of cyanobacteria were selected from the culture 

flask using sterile forceps and transferred to the surface of the assay plate.  Each test was 

conducted in triplicate and each test plate contained a positive control consisting of 0.5 µl of cell-

free culture filtrate from A. tumefaciens NTL4(pTiC58∆accR), which was spotted on the agar 

surface. The assay plates were incubated for 24 hours at 28°C and then assessed for blue 

coloration. 
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Patch tests that result in blue coloration on the A. tumefaciens NTL4(pZLR4) assay 

plates can indicate the following: 1) the bacterial isolate synthesized AHLs recognized by the A. 

tumefaciens NTL4(pZLR4) reporter strain, or 2) the bacterial isolates produced an extracellular 

factor that hydrolyzed the X-gal in the assay plate .  Thus, those bacterial isolate patch tests that 

resulted in a potential positive result (blue coloration) were tested for β-galactosidase activity.  

The patch tests were repeated on a plate containing only ABAt agar (0.5% mannitol) with X-gal 

(40 µg/L).  The assay plates were incubated for 24 hours at 28°C and then assessed for blue 

coloration.  Isolates exhibiting β-galactosidase activity were considered to be a false positive 

result for the A. tumefaciens NTL4(pZLR4) patch test assay.   

Autoinducer-2 Quorum Sensing Assays 

Two mutant strains of Vibrio harveyi were used in the AI-2 assays for this study: V. 

harveyi BB170 (AI-2 reporter strain) and V. harveyi BB152 (AI-2 positive control strain). The wild-

type V. harveyi contains three parallel QS systems, producing: (1) CAI-1, a Vibrio-specific QS 

signal identified as (S)-3-hydroxytridecan-4-one (Higgins et al. 2007), (2) an AHL (i.e., N-(3-

hydroxybutanoyl)-L-homoserine lactone or HAI-1; Bassler et al. 1997), and (3) the AI-2 signal, a 

furanosyl borate diester (Bassler et al. 1994).  The V. harveyi BB170 mutant contains a 

transposon insertion in the luxN gene, which codes for the LuxN signal receptor for the AHL 

signal (Bassler et al. 1993).  Thus V. harveyi BB170 cannot detect AHLs, but remains sensitive to 

the AI-2 and CAI-1 signals (Bassler et al. 1993, Henke and Bassler 2004a).  In the presence of 

AI-2 or CAI-1, the V. harveyi BB170 culture will bioluminesce.  The V. harveyi BB152 mutant 

carries a transposon insertion in the luxM gene which codes for the AHL signal (HAI-1); thus, this 

strain cannot produce the AHL signal, but does produce the AI-2 and CAI-1 signals (Bassler et al. 

1994).  The V. harveyi strains BB170 (ATCC BAA-1117) and BB152 (ATCC BAA-1117) were 

obtained from the American Type Culture Collection.  

Vibrio harveyi BB170 AI-2 Assays 

The AI-2 assay used in this study follows the protocol developed by Taga (2005) with 

slight modification.  A modified autoinducer bioassay (ABVh) medium was prepared by first 
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creating a 1L solution of 0.3M NaCl, 0.05M MgSO4, and 0.2% casamino acids which was 

adjusted to pH 7.5.  This solution was autoclaved (121°C, 20 minutes) and the following 

components were added to the cooled solution from sterile stocks: 0.05M K2HPO4 (pH 7.0), 

0.001M L-arginine, and glycerol (to 1.0%).  A frozen glycerol stock of the V. harveyi BB170 

reporter strain was used to inoculate 1 ml of ABVh medium, which was grown at 30°C with 

aeration and shaking until the culture was turbid and showed obvious luminescence in a 

darkroom.  The V. harveyi BB170 culture was then diluted 1:5000 in fresh, sterile ABVh medium 

and used to prepare the 96-well plate assay. 

The CF from V. harveyi BB152 was prepared for use as a positive control in the AI-2 

assay.  The V. harveyi BB152 strain was cultured overnight in ABVh medium at 30ºC with aeration 

and shaking.  A 1.5 ml aliquot of the culture was centrifuged at 12,000 g for 10 minutes and the 

resulting supernatant was filter sterilized using a 0.22 μm membrane filter (Millipore, Billerica, MA, 

USA) placed at the tip end of a sterile syringe. 

The AI-2 assays were conducted in sterile 96-well microtiter plates (BD FalconTM 353219, 

polystyrene, black with a clear, flat bottom and lid).  Each assay plate contained triplicate 

experimental wells, control wells, and reference wells, all with final well volumes of 100 µl.  Table 

5 shows the contents of the different well types used in the AI-2 assay.  The sample wells 

contained 90 μl of diluted V. harveyi BB170 culture and 10 μl of CF from the isolate under 

investigation.  The positive control wells contained 90 μl of diluted V. harveyi BB170 culture and 

10 μl of CF from V. harveyi BB152.  The medium control wells contained 90 μl of diluted V. 

harveyi BB170 culture and 10 μl of the medium used to culture the sample isolate (MB for 

bacterial isolates and BG11 for cyanobacteria).  The blank wells contained 90 μl of ABVh medium 

and 10 μl of the medium used to culture the sample isolate.  Each assay also included reference 

wells for all media used in the assay (ABVh, MB, and/or BG11).  The prepared microtiter plates 

were incubated at 30ºC with shaking during the assay.  Optical density at 600 nm (OD600) and 

luminescence (490 nm) readings were conducted every 15 minutes for a period of 7 hours using  
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Table 5.  Experimental setup for the AI-2 assays showing the contents of each well type.  The Medium Control wells were included to 

determine the optimal time point for the assay.  The Blank well readings were used to correct the luminescence readings in the experimental 

wells.  The Medium Reference wells were included to ensure that the MB and BG11 media were sterile.  The ABVh Medium Reference wells 

were included to ensure that the ABVh medium was sterile and to correct the luminescence readings of the positive control. 

 

Sample 90 10 - - -
Positive Ctrl 90 - 10 - -
Medium Ctrl 90 - - 10 -

Blank - - - 10 90
Medium Reference - - - 100 -

ABVh Medium Reference - - - - 100

Well Type
Vol. V. harveyi 

BB170 Culture (µl) Vol. Isolate CF (µl)
MB or BG11 
Medium (µl) ABVh Medium (µl)

Vol. V. harveyi 
BB152 CF (µl)
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a BioTek Synergy HT Multi-Mode Microplate Reader linked directly to a PC with Gen5 softwareTM 

(BioTek Instruments, Inc., Winooski, VT, USA).   

Over the course of the 7-hour AI-2 assay, light production in relative luminescence units (rlu) was 

measured at 15-minute time intervals.  In the absence of exogenous AI-2, light production in the 

V. harveyi BB170 culture initially decreases as any available AI-2 in the diluted V. harveyi BB170 

culture is used up.  Later, self-induction by V. harveyi BB170 initiates the QS response and light 

production increases (the V. harveyi BB170 AI-2 synthase luxS gene is intact and produces AI-2 

during the course of the assay; Figure 1).  As described by Taga (2005), AI-2 activity in the V. 

harveyi BB170 AI-2 assay should be determined at the optimal time point of the assay, defined as 

the time point immediately preceding self-induction by the V. harveyi BB170 reporter strain 

(Figure 1).  For this study, the optimal time point was determined as the time at which the mean 

luminescence of the medium control wells was lowest during the course of the assay. 

Optimal Time Point of AI-2 Assay   

 

 
 

Figure 1.  Light production in the Vibrio harveyi BB170 AI-2 assay over time (from Taga 2005).  In 

the absence of exogenous AI-2 (control curve), light production initially decreases and then 

increases dramatically in response to autoinduction by the V. harveyi BB170 strain.  When 

exogenous AI-2 is available at the start of the assay (+AI-2 curve), light production is induced at a 

time point prior to autoinduction by V. harveyi BB170.  Induction of luminescence is calculated at 

the optimal time point (see text), marked by the vertical line. 
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The percentage of AI-2 (%AI-2) activity is expressed as a percentage of the positive 

control luminescence at the optimal time point in the V. harveyi BB170 AI-2 assay (Bodor et al. 

2008).  The %AI-2 activity was calculated as the fold induction of the sample divided by fold 

induction of the positive control, as shown below.   

Percentage of AI-2 activity  

ctrlpos

sample

refofLum
ctrlposofLum

refofLum
sampleofLum

ctrlposofInductionFold
sampleofInductionFoldActivityAI ==− 2%  

The fold induction of the sample was calculated as a fold change between the sample 

luminescence and the corresponding reference luminescence (MB for the bacterial CFs and 

BG11 medium for the cyanobacterial CFs).  The fold induction of the positive control was 

calculated as a fold change between the positive control luminescence and the corresponding 

reference luminescence (ABVh medium for the positive control CF).   

The luminescence for each sample at the optimal time point was used to calculate the 

induction of luminescence, which is expressed as a fold induction of the sample in comparison to 

the luminescence of the positive control.  The induction of luminescence was calculated by 

dividing the sample luminescence by the positive control luminescence at the optimal time point 

(Taga 2005; Han and Lu 2009).  

Induction of Luminescence 

Bacterial Growth Challenges 

Bacterial constituents of the BBD and coral SML communities may produce secondary 

metabolites that inhibit or stimulate the growth of other BBD and SML bacteria.  Specific bacterial 

isolate CFs were used to challenge target cultures of BBD and SML isolates.  The isolates 

selected for the bacterial growth challenges included all nine isolates that tested positive for AHL 

production (i.e., positive results for the two AHL reporter strain assays).  In addition, 10 isolates 

were randomly selected from the pool of isolates that tested negative for quorum sensing in all 

three QS assays used in this study. 
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The bacterial growth challenges were conducted in sterile 96-well microtiter plates (BD 

Falcon 353219, polystyrene, clear with a flat bottom and lid).  Each bacterial isolate to be tested 

was cultured in sterile MB overnight at 29°C (shaking) and then added to the appropriate wells.  

Each assay plate contained triplicate experimental wells, control wells, and blank wells (Table 6), 

as well as a single reference well for each CF tested.  The CF Reference well was included to 

ensure that the CFs were sterile.  The prepared microtiter plates were incubated at 29ºC with 

shaking.  Optical density readings at 600 nm were conducted every 30-60 minutes using the 

ModulusTM Microplate Multimode Reader until the bacterial isolate culture control reached 

stationary phase.  The mean growth rate constant (µ) and mean generation time (g) were 

calculated over the linear portion of the growth curve for the untreated control culture as well as 

the experimental treatments. 

 

 

 

 

 

Table 6.  Experimental setup for the growth challenge assays showing the contents of each well 

type.  The Culture Filtrate (CF) Reference well was monitored to ensure that the filtration step 

successfully removed all cells.  The Blank wells were monitored to ensure the MB medium was 

sterile. 

 

( ) ( )
12

12 lnln
tt

ODOD
−
−

=µ

( )
µ
2ln

=g

Experimental 3 5 90 5
Ctrl 3 5 95 -

CF Reference 1 - 95 5
Blank 3 - 100 -

Well Type
No. Replicate 

Wells
Vol. Bacterial 

Culture (µl)
Vol. Marine 

Broth (µl) Vol. Test CF (µl)
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Sequencing of the 16S rRNA Gene of Bacterial Isolates 

Genomic DNA from the nine isolates that tested positive for AHL production (i.e., positive 

results for the Chromobacterium violaceum CV026 and Agrobacterium tumefaciens NTL4(pZLR4) 

assays) were extracted either by conducting a simple cell pop or by the bead-beating method 

using the FastDNA SPIN kit for soil (Q-Biogene).  For the cell pop method, the isolate of interest 

was streaked on MB agar and a single colony was collected with a sterile loop and added to an 

Eppendorf tube containing 100 µl of sterile 1X phosphate buffered saline (PBS).  The tubes were 

heated to 99°C for 10 minutes and then centrifuged at 5,000 x g for 10 minutes.   For the bead-

beating method, the manufacturer’s instructions were followed when using the FastDNA SPIN kit 

for soil.  The DNA extracts were amplified by polymerase chain reaction (PCR) using the 

universal bacterial primers 27F (5’-AGA GTT TGA TCM TGG CTC AG-3’) and 1492R (5’-TAC 

GGY TAC CTT GTT ACG ACT T-3’) (Muyzer et al. 1995; Integrated DNA technologies, Coralville, 

IA) in a Peltier Thermal Cycler (PTC-200, MJ Research, Waltham, MA).  The PCR mixtures 

contained 1X PCR buffer, 2.5 mM MgCl2, 0.5 U AmpliTaq Gold DNA polymerase (Applied 

Biosystems, Foster City, CA), 0.1% (wt/vol) bovine serum albumin (fraction V; Fisher, Suwannee, 

GA), 0.25 mM concentrations of each deoxynucleoside triphosphate (Promega, Madison, WI), 0.5 

µM forward and reverse primers, and 10 ng of genomic DNA, and the final volume was brought to 

20 µl with nuclease-free water (Fisher, Suwannee, GA).  The PCR program consisted of a hot-

start (95ºC for 10 minutes), followed by 24 cycles of 95ºC for 1 minute, 54ºC for 2 seconds, and 

72ºC for 2 minutes, a final extension step of 72ºC for 10 minutes, and storage at 4ºC.  The PCR 

products were verified by electrophoresis on an agarose (1.8%) gel with GelRedTM stain and 

exposure to UV light with a FOTO/Analyst Imaging System (FOTODYNE Inc., Hartland, 

Wisconsin, USA).  The DNA was diluted to 10ng/μl following quantification in a Bio-Rad Qubit® 

2.0 Fluorometer.  The amplified bacterial 16S rDNA was cleaned using an ExoSAP-ITTM PCR 

cleanup kit (USB Corp., Cleveland, Ohio) and sequenced with an ABI Prism™ 3100 genetic 

analyzer (Applied Biosystems) at the DNA Core Facility at Florida International University using 

the BigDye® Terminator version 3.1 (Applied Biosystems) with the 27F and 1492R primers.  
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The sequences were trimmed, cleaned, aligned, and assembled using DNA Baser 

Sequence Assembler (v3.2.5).  The nearly full-length sequences were then analyzed using the 

basic local alignment tool (BLAST) queuing system (www.ncbi.nlm.nih.gov/BLAST/) (Altschul et 

al. 1990) to identify their closest relatives in GenBank and their tentative phylogenetic positions.  

Clustal Omega (Sievers et al. 2011) was used to develop multiple sequence alignments.  A 

neighbor joining tree was created using the Molecular Evolutionary Genetics Analysis (MEGA) 

software (v5.05) (Tamura et al. 2011).  A bootstrap analysis (500 repetitions) was performed to 

estimate the confidence of the 16S rRNA gene tree topology.  
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III. RESULTS 

A total of nine BBD mat samples and 153 bacterial isolates were examined in this study.  

From the BBD and SML samples collected for this investigation, 136 bacteria were isolated, 

including 54 isolates from the BBD mat, 37 isolates from the SML of BBD-infected coral colonies, 

and 45 isolates from the SML of apparently healthy neighbor colonies (Table 7).  Seventeen 

additional bacteria that were previously isolated from BBD (eight cyanobacteria and nine bacteria) 

were also examined in this thesis.  These 17 isolates are in culture in the laboratory of Dr. Laurie 

Richardson (Florida International University, Miami, FL, USA).  

Acyl Homoserine Lactone Quorum Sensing Assays 

All nine BBD mat samples that were collected tested positive in both the 

Chromobacterium violaceum CV026 assay and the Agrobacterium tumefaciens NTL4(pZLR4) 

assay.  These results indicate that AHL signals are present within the active BBD mat (example 

shown in Figure 2A).  In addition, nine of the 153 bacterial isolates were shown to produce AHLs 

(summarized in Table 8).  Two of the 153 isolates (1.3%), BBD-FTL-6j and BBD-FTL-8c, 

produced a positive result in the C. violaceum CV026 assay, as well as the A. tumefaciens 

NTL4(pZLR4) assay.  These two isolates, which were obtained from BBD mat samples located 

on two separate coral colonies, produced a positive patch test result in the C. violaceum CV026 

assay, indicating that they produce short-chain AHLs when grown as a surface culture.  None of 

the isolate CFs tested positive in the C. violaceum CV026 assay. 

Nine of the 153 isolates (5.9%) produced a positive result in the A. tumefaciens 

NTL4(pZLR4) assay (Table 8; Figure 2B).  Of these nine bacteria, three were isolated from BBD 

mat samples collected from three separate coral colonies, two were isolated from SML collected 

from two infected coral colonies, and four were isolated from SML collected from two apparently 

healthy coral colonies (Table 8).  Seven of the nine isolates tested positive in the A. tumefaciens 

NTL4(pZLR4) patch test, indicating that these isolates produce medium- to long-chain AHLs 

when grown on marine agar.  Five of these isolates, plus an additional two (see Table 8) tested 

positive in the A. tumefaciens NTL4(pZLR4) CF assay, indicating production of detectable AHLs  
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Table 7.  The names of the 136 bacteria isolated for this study.  Names are listed according to isolate type and individual colony.  BBD: black 

band disease mat; BSML: surface mucopolysaccharide layer from BBD-infected coral colony; HSML:  surface mucopolysaccharide layer from 

apparently healthy coral colony. Additional colony information is provided in Table 1.   

 
 

Colony No. BBD Isolates BSML Isolates HSML Isolates Colony No. BBD Isolates BSML Isolates HSML Isolates

BBD-FTL-1a HSML-FTL-9a
BBD-FTL-1b HSML-FTL-9b
BBD-FTL-1c HSML-FTL-9c
BBD-FTL-1d HSML-FTL-9d
BBD-FTL-1e HSML-FTL-9e
BBD-FTL-1f HSML-FTL-9f
BBD-FTL-1g HSML-FTL-9g
BBD-FTL-1h HSML-FTL-9i
BBD-FTL-1j HSML-FTL-9j
BBD-FTL-1k HSML-FTL-9k
BBD-FTL-1l HSML-FTL-9l
BBD-FTL-1m HSML-FTL-9m
BBD-FTL-2a HSML-FTL-10a
BBD-FTL-2b HSML-FTL-10c
BBD-FTL-2c HSML-FTL-10d
BBD-FTL-3b HSML-FTL-10f
BBD-FTL-3g HSML-FTL-10g
BBD-FTL-3h HSML-FTL-10k
BBD-FTL-3j HSML-FTL-10l

FTL 4 BBD-FTL-4b - - HSML-FTL-10n
BBD-FTL-5d HSML-FTL-10o
BBD-FTL-5f HSML-FTL-10p
BBD-FTL-6b BSML-FTL-6r HSML-FTL-10q
BBD-FTL-6c BSML-FTL-6s HSML-FTL-10r
BBD-FTL-6d BSML-FTL-6t HSML-FTL-10s
BBD-FTL-6f BSML-FTL-6u HSML-FTL-10t
BBD-FTL-6g BSML-FTL-6v HSML-FTL-10u
BBD-FTL-6h BSML-FTL-6w HSML-FTL-10v
BBD-FTL-6i BSML-FTL-6x HSML-FTL-10x
BBD-FTL-6j HSML-FTL-10z
BBD-FTL-6k HSML-FTL-10aa
BBD-FTL-6l HSML-FTL-10bb
BBD-FTL-6m HSML-FTL-11a
BBD-FTL-6n HSML-FTL-11b
BBD-FTL-6o HSML-FTL-11c
BBD-FTL-6p HSML-FTL-11e
BBD-FTL-6q HSML-FTL-11f
BBD-FTL-7a BSML-FTL-7a HSML-FTL-11g
BBD-FTL-7b BSML-FTL-7c HSML-FTL-11h

BSML-FTL-7d HSML-FTL-11i
BSML-FTL-7e HSML-FTL-11j
BSML-FTL-7f HSML-FTL-11k
BSML-FTL-7h HSML-FTL-11l
BSML-FTL-7j HSML-FTL-11m
BSML-FTL-7k HSML-FTL-11o
BSML-FTL-7l BBD-FLK-1a BSML-FLK-1a
BSML-FTL-7m BBD-FLK-1b BSML-FLK-1b
BSML-FTL-7n BBD-FLK-1c BSML-FLK-1c
BSML-FTL-7o BBD-FLK-1d BSML-FLK-1d
BSML-FTL-7q BBD-FLK-1e BSML-FLK-1e

BBD-FTL-8b BSML-FTL-8a BBD-FLK-1f BSML-FLK-1f
BBD-FTL-8c BSML-FTL-8b BBD-FLK-1h BSML-FLK-1h

BSML-FTL-8c BBD-FLK-1i BSML-FLK-1i
BBD-FLK-1j BSML-FLK-1j
BBD-FLK-1k BSML-FLK-1k
BBD-FLK-1l BSML-FLK-1l
BBD-FLK-1m BSML-FLK-1m
BBD-FLK-1n BSML-FLK-1n

BSML-FLK-1o

Isolate Type

FTL 1 - -

FTL 2 - -

FTL 3 - -

FTL 5 - -

FTL 6 -

FTL 7 -

FTL 8 -

Isolate Type

FTL 9 - -

FTL 10 - -

FTL 11 - -

FLK 1 -
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Figure 2.  Positive results in colorimetric AHL assay plates; (A) Chromobacterium violaceum 

CV026 assay plate, showing a positive result  (left) obtained from a BBD mat sample ; (B) 

Agrobacterium tumefaciens NTL4(pZLR4) assay plate showing a positive result (left) with the cell-

free culture filtrate from BBD-FLK-1d.  Positive control wells are located at the top of each plate. 

A 

B 
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Table 8.  Bacterial isolates that tested positive for acyl homoserine lactone (AHL) production using the Chromobacterium violaceum CV026 

and/or Agrobacterium tumefaciens NTL4(pZLR4) assays. CF: cell-free culture filtrate; BBD: black band disease; SML: surface 

mucopolysaccharide layer.  

  

1Note: Isolate HSML-FTL-10a produced a dark purple pigment. 
 
 

Isolate Name Sample Source Coral Species Patch Test CF Test Patch Test CF Assay
BBD-FTL-6j BBD Mat Montastraea cavernosa Pos Neg Neg Pos
BBD-FTL-8c BBD Mat Montastraea cavernosa Pos Neg Neg Pos
BBD-FLK-1d BBD Mat Diploria strigosa Neg Neg Pos Pos
BSML-FTL-6w SML (BBD-infected coral) Montastraea cavernosa Neg Neg Pos Neg
BSML-FTL-7l SML (BBD-infected coral) Montastraea cavernosa Neg Neg Pos Neg
HSML-FTL-9c SML (healthy coral) Diploria strigosa Neg Neg Pos Pos
HSML-FTL-9e SML (healthy coral) Diploria strigosa Neg Neg Pos Pos
HSML-FTL-9i SML (healthy coral) Diploria strigosa Neg Neg Pos Pos
HSML-FTL-10a1 SML (healthy coral) Montastraea cavernosa Neg Neg Pos Pos

Chromobacterium 
violaceum CV026 

Assay

Agrobacterium 
tumefaciens NTL4(pZLR4) 

Assay
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when cultured in marine broth.  None of the eight cyanobacterial isolates produced a positive 

result in either the C. violaceum CV026 or the A. tumefaciens NTL4(pZLR4) assays.    

It should be noted that 15 isolates inhibited the growth of the Chromobacterium 

violaceum CV026 reporter strain during the patch test and/or CF assays (Table 9).  Growth 

inhibition was visible in the form of a ring of clear, cell-free agar in the C. violaceum CV026 assay 

plates surrounding the bacterial patch and/or the well containing the isolate CF.  Two of these 15 

isolates (BSML-FTL-7l and HSML-FTL-10a) also tested positive for AHL production in the A. 

tumefaciens NTL4(pZLR4) assay  (see Tables 8 and 9).  Seven of the isolates inhibited growth of 

the Vibrio harveyi BB170 reporter strain; of these, six also inhibited C. violaceum CV026 (Table 

9).  The cloudy nature of the ABVh agar precluded detection of growth inhibition in the A. 

tumefaciens NTL4(pZLR4) reporter strain. 

Nearly full-length 16S rRNA gene sequences were obtained for the nine isolates that 

tested positive for AHL production.  Table 10 presents the length of the sequences obtained, 

along with the closest relative results from the BLAST search.  Figure 3 presents a phylogenetic 

tree for the AHL-producing isolates that was constructed using the 16S rRNA gene sequences.   

Autoinducer-2 Quorum Sensing Assays 

The percentage of AI-2 (%AI-2) activity and the induction of luminescence were 

calculated for each sample.  The %AI-2 activity is expressed as a percentage of the positive 

control luminescence at the optimal time point of the AI-2 assay.  The fold induction values are 

expressed as an (n-fold) induction over the positive control luminescence at the optimal time point 

of the assay.  For the AI-2 assay in this study, a positive result is defined as a %AI-2 activity of 

≥25%.  This 25% AI-2 activity cut-off value was determined based on the luminescence curves 

generated, with AI-2 positive CFs more closely following the luminescence curve of the positive 

control and AI-2 negative CFs more closely following the medium control curve.  Results of a 

representative experiment testing the response of the CFs of four isolates are shown in Figure 4.  
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Table 9. Growth inhibition of the Chromobacterium violaceum CV026 and/or Vibrio harveyi BB170 reporter strains observed in the patch test 

and CF assays.  Bolded isolates were positive for AHL production (Table 7).   

 

Isolate Name Sample Source Coral Species Patch Test CF Test
BBD-FLK-1b BBD Mat Diploria strigosa Pos - -
BBD-FLK-1c BBD Mat Diploria strigosa Pos - -
BBD-FLK-1h BBD Mat Diploria strigosa Pos - -
BBD-FLK-1k BBD Mat Diploria strigosa Pos - -
BBD-FTL-5d BBD Mat Montastraea cavernosa - - Pos
BSML-FTL-7a SML (BBD-infected coral) Montastraea cavernosa - Pos Pos
BSML-FTL-7j SML (BBD-infected coral) Montastraea cavernosa Pos Pos -
BSML-FTL-7l SML (BBD-infected coral) Montastraea cavernosa Pos - -
BSML-FLK-1c SML (BBD-infected coral) Diploria strigosa Pos - -
HSML-FTL-10a SML (healthy coral) Montastraea cavernosa Pos - Pos
HSML-FTL-10c SML (healthy coral) Montastraea cavernosa Pos - Pos
HSML-FTL-10f SML (healthy coral) Montastraea cavernosa Pos - Pos
HSML-FTL-10q SML (healthy coral) Montastraea cavernosa Pos - Pos
HSML-FTL-11c SML (healthy coral) Montastraea cavernosa Pos - -
HSML-FTL-11e SML (healthy coral) Montastraea cavernosa - Pos Pos

Inhibition of 
Chromobacterium violaceum 

CV026 Growth
Inhibition of Vibrio 

harveyi BB170 Growth
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Table 10.  Identity of the nine isolates that produce AHL signals.  The length of the 16S rRNA gene sequence is presented, along with the 

information regarding the closest relative derived from a BLAST search, including the percent similarity and accession number. 

 

 

Isolate Name Sequence Length (bp) Name (% Similarity) Accession No.

BBD-FTL-6j 1393 Vibrio rotiferianus strain : LMG 21460 (99%) NR042081

BBD-FTL-8c 1415 Vibrio rotiferianus strain : LMG 21460 (99%) NR042081

BBD-FLK-1d 1326 Nautella italica strain : LMG 24365 (99%) NR042673

BSML-FTL-6w 1326 Ruegeria scottomollicae : LMG 24367 (96%) NR042675

BSML-FTL-7l 1385 Pseudoalteromonas phenolica strain O-BC30  (98%) NR028809

HSML-FTL-9c 1414 Vibrio harveyi strain NCIMB1280 (99%) NR043165

HSML-FTL-9e 1398 Aliagarivorans marinus strain AAM1 (95%) NR044585

HSML-FTL-9i 1345 Pseudoruegeria aquimaris strain SW-255 (96%) NR043932

HSML-FTL-10a 1387 Pseudoalteromonas luteoviolacea strain NCIMB 1893 (99%) NR026221

Closest Relative
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Figure 3.  A phylogenetic tree of the nine AHL-producing isolates, together with the best-matched 

sequences from the GenBank.  Bootstrap probabilities are indicated at the branch nodes.  The 

scale bar represents five substitutions per 100 nucleotide positions. GenBank accession numbers 

are provided in parentheses.  Symbols:  isolates tested positive for AHL production in the 

Agrobacterium tumefaciens NTL4(pZLR4) assay;   isolates tested positive for AHL and AI-2 

production in the A. tumefaciens NTL4(pZLR4) and Vibrio harveyi BB170 assay;    isolates 

tested positive for AHL and AI-2 production in the Chromobacterium violaceum CV026, A. 

tumefaciens NTL4(pZLR4), and V. harveyi BB170 assays.
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Figure 4.  Representative experiment showing light production over time in the AI-2 assay.  The curves generated by the cell-free culture 

filtrates (CFs) from BSML-FTL-7m and BSML-FTL-7q (both positive in the AI-2 assay) follow the positive control curve.  The curves generated 

by the CFs from BSML-FTL-7h and BSML-FTL-7k (both negative in the AI-2 assay) follow the Marine Broth (MB) medium control curve.  

Dashed vertical line indicates the optimal time point of the assay. 
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Of the 153 CFs investigated in this study, more than half (i.e., 84 CFs or ~55%) produced 

a positive result in the AI-2 assay.  These data indicate that the 84 CFs that tested positive 

contain AI-2-like molecules (or the CAI-1 signal specific to certain Vibrio spp.) that can be 

detected by the Vibrio harveyi BB170 reporter strain.  The %AI-2 activity for these CFs ranged 

widely, from approximately 28.2% – 345.8% of the positive control luminescence.  Table 11 

summarizes the %AI-2 activity for the 84 CFs that tested positive in the AI-2 assay.  The triplicate 

readings for the AI-2 positive test strains were within 30% of the mean luminescence values (rlu) 

shown in Table 11.  In addition to the %AI-2 activity, the induction of luminescence over the 

positive control was calculated for each CF tested.  The 84 CFs produced a luminescence range 

from 0.22 – 2.81 (Table 11) and five CFs also tested positive in the AHL assays: BBD-FTL-6j, 

BBD-FTL-8c, BSML-FTL-6w, HSML-FTL-9c, and HSML-FTL-9i. 

As shown in Table 12, the CFs of isolates from the BBD mat accounted for 52% of the 84 

(total) positive results from the AI-2 assay.  Of the 63 CFs from BBD isolates that were examined, 

70% tested positive.  The CFs of isolates from the SML of BBD-infected colonies accounted for 

30% of the AI-2 positive results, and 68% of the 37 BSML CFs tested positive.  Culture filtrates of 

isolates from the SML of apparently healthy corals comprised 18% of the positive AI-2 results and 

one-third of the 45 HSML CFs tested were positive.  None of the cyanobacterial CFs tested 

positive in the AI-2 assay.  The %AI-2 activity for these CFs ranged from approximately <1.0% – 

23.7% of the positive control luminescence.  For the CFs that tested negative in the AI-2 assay, 

the values for induction over the positive control luminescence ranged from 0.01 – 0.21. 
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Table 11.  Percentage of AI-2 activity (± standard deviation) and induction of luminescence values for the 84 CFs that tested positive in the AI-2 assay.  The data are presented in descending order based on percentage of AI-2 activity. The 

induction of luminescence was calculated by dividing the sample luminescence by the positive control luminescence at the optimal time point. 

 

 

Isolate CF
Induction of 

Luminescence Isolate CF
Induction of 

Luminescence Isolate CF
Induction of 

Luminescence
BBD-216-1b 345.84 ± 21.64 2.70 BBD-FTL-6c 120.89 ± 21.36 0.94 BSML-FLK-1h 65.31 ± 6.42 0.65
BBD-FTL-6j 275.70 ± 50.29 2.15 BSML-FLK-1i 117.61 ± 11.75 1.17 BSML-FLK-1a 65.15 ± 2.62 0.65
HSML-FTL-11b 275.28 ± 8.36 2.81 BBD-FTL-1g 116.64 ± 4.84 1.40 BSML-FLK-1l 63.28 ± 2.79 0.63
BBD-FLK-1h 271.58 ± 53.24 2.12 BSML-FTL-7m 115.50 ± 20.75 1.15 BSML-FTL-8b 60.89 ± 10.03 0.61
BBD-FLK-1k 260.04 ± 31.05 2.03 BSML-FLK-1k 115.34 ± 11.16 1.15 BBD-FTL-5f 60.07 ± 11.62 0.58
HSML-FTL-10bb 256.29 ± 14.77 2.62 BBD-FTL-6m 111.42 ± 11.34 1.07 BSML-FLK-1m 59.76 ± 9.66 0.60
BSML-FTL-7q 232.11 ± 12.81 2.32 BBD-FTL-6b 111.03 ± 27.91 0.87 BBD-FTL-8c 57.09 ± 3.90 0.68
BSML-FLK-1c 226.54 ± 12.24 2.26 BBD-216-2d 110.58 ± 7.23 1.07 BBD-FTL-7a 55.74 ± 4.52 0.54
HSML-FTL-9f 213.76 ± 16.11 1.70 BBD-FLK-1n 109.27 ± 15.53 0.85 BBD-FTL-4b 54.91 ± 5.43 0.43
HSML-FTL-9d 200.67 ± 11.94 1.60 BSML-FTL-7d 108.65 ± 19.70 1.30 BBD-FTL-6k 51.74 ± 2.51 0.50
HSML-FTL-11i 191.23 ± 10.64 1.96 BBD-FLK-1l 108.07 ± 13.09 0.84 BBD-FLK-1j 49.43 ± 9.76 0.39
HSML-FTL-10z 188.15 ± 5.13 1.92 BBD-FLK-1c 101.00 ± 6.31 0.79 BSML-FTL-6w 48.67 ± 6.20 0.47
HSML-FTL-10aa 173.52 ± 12.67 1.77 BBD-216-4e 99.69 ± 8.49 0.96 BBD-217-2d 47.87 ± 6.88 0.46
BBD-FLK-1b 173.11 ± 26.42 1.35 BSML-FTL-7o 97.87 ± 5.70 0.98 BBD-FLK-1e 45.18 ± 1.91 0.44
BBD-FTL-6g 167.57 ± 16.47 1.31 BBD-FTL-6p 95.79 ± 8.34 0.92 BBD-216-4a 42.64 ± 4.45 0.51
HSML-FTL-9m 156.74 ± 7.91 1.25 BSML-FTL-6u 95.24 ± 7.32 1.14 BBD-FTL-1m 42.12 ± 0.30 0.50
BBD-FLK-1m 148.82 ± 22.84 1.16 BBD-FTL-6n 90.13 ± 11.79 0.87 HSML-FTL-10r 39.91 ± 4.77 0.32
HSML-FTL-9a 146.16 ± 10.97 1.16 BSML-FLK-1o 86.97 ± 6.15 0.87 BBD-FTL-7b 39.29 ± 1.19 0.38
HSML-FTL-9b 144.32 ± 14.36 1.15 BSML-FLK-1n 83.78 ± 5.23 0.84 BBD-FTL-3h 37.65 ± 2.27 0.36
BSML-FTL-7e 143.00 ± 17.86 1.71 BBD-216-3d 83.11 ± 1.18 0.80 BBD-FTL-1h 37.16 ± 6.77 0.44
BBD-FTL-3b 140.38 ± 4.35 1.10 BSML-FLK-1b 82.63 ± 13.75 0.82 HSML-FTL-11l 36.33 ± 5.64 0.37
BSML-FLK-1e 132.75 ± 7.79 1.32 BBD-FTL-1f 79.15 ± 19.45 0.95 BBD-FTL-1e 35.45 ± 2.36 0.42
BBD-FTL-8b 127.81 ± 9.08 1.53 BBD-217-2b 74.40 ± 18.98 0.89 BSML-FLK-1f 35.18 ± 8.99 0.35
HSML-FTL-9j 127.21 ± 8.97 1.01 BSML-FTL-6r 74.10 ± 6.47 0.89 HSML-FTL-9i 33.60 ± 3.87 0.27
BBD-FTL-3j 122.89 ± 5.15 1.18 BSML-FLK-1d 73.34 ± 3.42 0.73 BBD-FTL-6q 32.48 ± 1.54 0.31
BBD-FTL-1j 122.04 ± 3.40 1.46 BSML-FTL-7n 71.46 ± 14.37 0.71 HSML-FTL-9c 31.19 ± 5.50 0.25
BSML-FTL-8c 121.85 ± 6.18 1.22 BBD-FTL-6o 66.86 ± 5.12 0.64 BBD-FTL-6l 30.55 ± 2.75 0.29
BSML-FTL-8a 121.47 ± 4.81 1.21 BBD-FTL-1b 65.54 ± 2.36 0.63 BBD-FTL-6h 28.24 ± 3.21 0.22

% AI-2 Activity
( ± SD)

% AI-2 Activity 
( ± SD)

% AI-2 Activity 
( ± SD)
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Table 12.  Results of the AI-2 assay using the Vibrio harveyi BB170 reporter strain presented 

according to isolate type. 

 
 
 

Some of the components of growth media, such as borate (Burgess et al. 2002, 

DeKeersmaecker and Vanderleyden 2003) and glucose (Chen et al. 2002), can induce 

luminescence in the Vibrio harveyi BB170 reporter strain.  This was controlled here in the AI-2 

assay by including medium control wells.  None of the media used in this study stimulated light 

production in the AI-2 assay prior to self-induction by the V. harveyi BB170 reporter strain (Figure 

5).  The media reference wells (containing 100 µl of the relevant growth media) were also 

monitored during the AI-2 assays to determine background luminescence output for each of the 

media tested.  The slight rise in luminescence near the end of the experiment could likely be a 

result of light contamination from adjacent wells; none of the tested growth media caused an 

increase in light production over the course of the AI-2 assay (Figure 5). 

Eight CFs appeared to affect the AI-2 assay, either by impacting growth and/or light 

production of the V. harveyi BB170 reporter strain.  Table 13 provides a summary of the observed 

impacts for these eight CFs.  The CFs obtained from six isolates (BBD-FTL-5d, HSML-FTL-10a, 

HSML-FTL-10c, HSML-FTL-10f, HSML-FTL-10q, and HSML-FTL-11e) inhibited the growth and 

luminescence of V. harveyi BB170 during the assay (Figure 6).  The CF obtained from BSML-

FTL-7a inhibited growth of V. harveyi BB170 but did not inhibit luminescence (Figure 7).  The CF 

obtained from BSML-FTL-7j inhibited luminescence of V. harveyi BB170 without impacting its 

growth (Figure 8). 

Isolate Type No. CFs Tested
No. CFs with Positive AI-2 

Assay Result
Percentage of Positive AI-2 

Assay Results (% of total)
BBD 63 44 52% (70%)
BSML 37 25 30% (68%)
HSML 45 15 18% (33%)
Cyanobacteria 8 0 0% (0%)
Totals 153 84 100% (n/a)
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Figure 5.  Light production of the media control wells and media reference wells in the AI-2 assay. The medium control curves indicate that the 

three growth media used in this study did not stimulate light production prior to self-induction by the Vibrio harveyi BB170 reporter strain.  The 

luminescence of the medium reference wells, which contained sterile growth media, remained minimal over the course of the AI-2 assay, 

although some minor increases in light were measured in these wells at the end of the assay due to light contamination from adjacent wells.  

Time of self-induction by the reporter strain is indicated by arrow.  Table 5 shows contents of each well type in the AI-2 assay.
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Table 13.  Effect of exposure of the Vibrio harveyi BB170 reporter strain to culture filtrates of various isolates during the AI-2 assay.   Effects 

included inhibition of growth and/or light production. 

Isolate Name Effect on V. harveyi  BB170 Growth Effect on V. harveyi  BB170 Light 
Production

BBD-FTL-5d Inhibited Inhibited
BSML-FTL-7a Inhibited None
BSML-FTL-7j None Inhibited
HSML-FTL-10a Inhibited Inhibited
HSML-FTL-10c Inhibited Inhibited
HSML-FTL-10f Inhibited Inhibited
HSML-FTL-10q Inhibited Inhibited
HSML-FTL-11e Inhibited Inhibited
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Figure 6.  Light production versus optical density at 600 nm in the AI-2 assay. Presence of the CFs from six isolates inhibited both growth and 

luminescence of the Vibrio harveyi BB170 reporter strain; (a) BBD-FTL-5d; (b) HSML-FTL-10a, HSML-FTL-10c, HSML-FTL-10f, and HSML-

FTL-10q; (c) HSML-FTL-11e. 

a 

b 

c 

b 
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Figure 7.  Light production versus optical density at 600 nm in the AI-2 assay.  Presence of the CF from BSML-FTL-7a inhibited growth of the 

Vibrio harveyi BB170 reporter strain but did not inhibit luminescence. 
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Figure 8.  Light production versus optical density at 600 nm in the AI-2 assay.  Presence of the CF from BSML-FTL-7j inhibited luminescence 

without affecting growth of the Vibrio harveyi BB170 reporter strain.  
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Bacterial Growth Challenges 

Nineteen isolate CFs were examined in the bacterial growth challenges, including nine 

isolate CFs that tested positive for AHL production in this study and 10 isolates that tested 

negative for QS with all three quorum sensing reporter strains used in this study.  Of the 19 

isolate CFs tested, eight were CFs from BBD isolates, six were CFs of isolates from the SML of 

BBD-infected corals, and five were CFs of isolates from the SML of apparently healthy corals.  

The bacterial growth challenges were conducted in an effort to examine the effects (i.e., 

stimulation/inhibition) of the CFs on isolate growth.  For each culture, the mean growth rate 

constant (µ) and mean generation time (g) were calculated for the untreated control culture as 

well as the experimental treatments (exposure of the culture to the CFs of the 18 other isolates).  

To determine whether the mean growth rates for each of the CF challenges were significantly 

different from the mean growth rate of the control culture, independent t-tests were performed.  

Only statistically significant effects on culture growth will be discussed (t-test, p < 0.05). 

A total of 342 growth challenges were conducted.  The mean growth rate constant and 

generation time for all 19 isolates examined are presented in the Appendix.  Of these, 92 CF 

challenges (~27%) resulted in a significant inhibition of isolate growth.  Each of the 19 CFs 

examined inhibited two or more of the tested isolate cultures.  The CFs from HSML-FTL-10a and 

BSML-FTL-7l inhibited the greatest numbers of isolates (11 and nine isolate cultures, 

respectively).  The isolates that experienced growth inhibition by the greatest number of CFs 

included BBD-FTL-8c (inhibited by 16 CFs), HSML-FTL-10a (inhibited by 14 CFs), and BSML-

FTL-7q (inhibited by 12 CFs).  Three isolates (HSML-FTL-9i, BSML-FTL-6u, and BSML-FLK-1d) 

were neither inhibited nor stimulated by exposure to any of the CFs tested.  Eight of the 342 

growth challenges (~2%) resulted in significant stimulation of isolate growth.  Growth in only three 

of the 19 cultures examined was stimulated by exposure to one or more CFs.  Two cultures 

(BBD-FTL-1h and BBD-FTL-6n) accounted for seven of the eight observed stimulatory growth 

effects, with the third culture (HSML-FTL-9e) only being stimulated by a single CF.   
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The CFs of isolates from healthy corals inhibited growth in the greatest percentage of 

challenges (~32%), followed by the CFs of isolates from the SML of BBD-infected corals (~26%), 

and CFs of BBD isolates (~24%; Table 14).  Growth stimulation occurred in approximately 4% of 

challenges with CFs of isolates from the SML of BBD-infected corals, 2% of challenges with CFs 

of isolates from BBD, and 1% of challenges with CFs of isolates from the SML of healthy corals.  

Independent group t-tests revealed that there was no significant difference (p > 0.05) between the 

numbers of cultures inhibited or stimulated by CFs from any combination of the three isolate 

types. 

Of the 342 challenges conducted, 162 were conducted with CFs of AHL-producing 

isolates and 180 were conducted with the CFs of non-QS isolates.  As shown in Table 15, the 

CFs of AHL-producing isolates inhibited growth in a slightly greater percentage of cultures 

(~28%) than the CFs of non-QS isolates (~26%); however, no statistically significant difference 

was detected between the two isolate types.  The two CFs that inhibited the greatest number of 

cultures (HSML-FTL-10a and BSML-FTL-7l) are both AHL-producing isolates.  Growth stimulation 

was more frequently observed with challenges using CFs from non-QS isolates (4% of 

challenges) than with the CFs of AHL-producing isolates (~1 % of challenges), which only 

stimulated growth in a single challenge.  There was a statistically significant difference observed 

between the number of cultures stimulated by CFs of QS isolates (M = 0.11, SD =0.33) and non-

QS isolates (M=0.70, SD = 0.67); t(17) = 2.1, p < 0.05. 
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Table 14.  The number and percentage of isolate cultures that showed inhibition and stimulation 

of growth when challenged with the culture filtrates (CFs) of isolates from BBD, CFs of isolates 

from the SML of BBD-infected corals, and CFs of isolates from the SML of apparently healthy 

corals. 

Isolate Source CF Tested 
No. Cultures 

Inhibited by CF  
No. Cultures 

Stimulated by CF  

BBD Mat 
(144 challenges) 

BBD-FTL-6j 6 0 
BBD-FTL-8c 3 0 
BBD-FLK-1d 3 0 
BBD-FTL-1h 4 0 
BBD-FTL-6d 6 1 
BBD-FTL-6n 5 0 
BBD-FTL-6p 6 1 
BBD-FLK-1e 2 1 
Total No. 35 3 
% Impacted 24% 2.1% 

        

SML from BBD-
Infected Coral 

(108 challenges) 

BSML-FTL-6w 3 1 
BSML-FTL-7L 9 0 
BSML-FTL-6u 3 1 
BSML-FTL-7d 5 2 
BSML-FTL-7q 4 0 
BSML-FLK-1d 4 0 
Total No. 28 4 
% Impacted 26% 3.7% 

        

SML from Healthy 
Coral 

(90 challenges) 

HSML-FTL-9c 3 0 
HSML-FTL-9e 4 0 
HSML-FTL-9i 4 0 
HSML-FTL-10a 11 0 
HSML-FTL-10r 7 1 
Total No. 29 1 
% Impacted 32% 1.1% 

 

  



48 
 

Table 15.  The number and percentage of isolate cultures that showed inhibition and stimulation 

of growth when challenged with the culture filtrates (CFs) of isolates from AHL-producing isolates 

and non-QS isolates. 

Quorum Sensing CF Tested 
No. Cultures 

Inhibited by CF  
No. Cultures 

Stimulated by CF  

AHL-Producing 
Isolates 

BBD-FTL-6j 6 0 
BBD-FTL-8c 3 0 
BBD-FLK-1d 3 0 
BSML-FTL-6w 3 1 
BSML-FTL-7L 9 0 
HSML-FTL-9c 3 0 
HSML-FTL-9e 4 0 
HSML-FTL-9i 4 0 
HSML-FTL-10a 11 0 
Total No. 46 1 
% Impacted 28% 0.62% 

        

Non-QS Isolates 

BBD-FTL-1h 4 0 
BBD-FTL-6d 6 1 
BBD-FTL-6n 5 0 
BBD-FTL-6p 6 1 
BBD-FLK-1e 2 1 
BSML-FTL-6u 3 1 
BSML-FTL-7d 5 2 
BSML-FTL-7q 4 0 
BSML-FLK-1d 4 0 
HSML-FTL-10r 7 1 
Total No. 46 7 
% Impacted 26% 3.9% 
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IV. CONCLUSIONS AND DISCUSSION 

Quorum Sensing in BBD and Coral-Associated Bacteria 

The findings of this study demonstrate that AHLs are present within the BBD microbial 

mat, as indicated by the positive reaction of BBD mat samples in the AHL assays.  Thus, the BBD 

microbial constituents are producing AHLs in situ.  Quorum sensing signals have previously been 

documented in cyanobacterial colonies and cyanobacterial-dominated microbial mats in varied 

environments.  Trichodesmium colonies in the North Atlantic produce both AHLs and AI-2 (Van 

Mooy et al. 2012).  An array of AHL molecules have been documented from environmental 

samples of cyanobacterial-dominated microbial mats, including marine stromatolites in the 

Bahamas (Decho et al. 2009) and cyanobacterial mats in Swiss alpine wetland ponds (Bachofen 

and Schenk 1998).  While AHLs are known to control virulence factors in the coral pathogen 

Serratia marcescens (Van Houdt et al. 2007), this is the first study to document the presence of 

QS signals within active coral disease.  None of the eight BBD cyanobacterial isolates examined 

in this study were found to produce a positive result in the AHL assays; however, it should be 

noted that the cyanobacterial culture medium has a pH of ~8 (or higher during photosynthesis) 

and alkaline pH has been demonstrated to degrade AHL signals (Byers et al. 2002, Yates et al. 

2002).  

This study also demonstrates that individual members of the BBD mat and of the 

microbial communities within the SML of healthy and BBD-infected corals are capable of 

producing QS signals.  Nine of the 153 isolates (~6%) examined in this study were found to 

produce AHLs (i.e., C4-C14 AHLs recognized by the Chromobacterium violaceum CV026 and 

Agrobacterium tumefaciens NTL4(pZLR4) reporter strains).  This is similar to the 4% observed by 

Alagely et al. (2011), who screened more than 300 bacterial cultures isolated from marine 

invertebrates (i.e., coral SML, other marine invertebrates, and dinoflagellate symbionts) using a 

variety of reporter strains that detect AHLs of varied chain lengths.  Various coral-associated 

Vibrio spp. have also been documented to produce AHLs (Tait et al. 2010).   
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More than half (~55%) of the 153 CFs investigated in this study produced a positive 

result in the AI-2 assay, indicating that these CFs contain AI-2-like molecules (or the CAI-1 signal 

specific to some Vibrio spp.) which can be detected by the Vibrio harveyi BB170 reporter strain.  

The high percentage of isolates producing AI-2 is not unexpected, as AI-2 is hypothesized to be 

an interspecies signal molecule (Surette et al. 1999; Xavier and Bassler 2003).  Because 

detection of AI-2 is possible by both the producing bacteria, as well as by neighboring bacteria 

with an AI-2 receptor, AI-2 has been called the “universal signaling molecule” (Bandara et al. 

2012, Jayaraman and Wood 2008).   

Considering that 88 of the 153 (~58%) bacterial isolates examined in this study were 

shown to produce AHLs and/or AI-2, it is highly likely that some or all of these isolates could be 

producing QS signals in situ.  However, it is important to clarify that the results of the QS 

screening assays for the isolate CFs should be tempered by the fact that they assessed signal 

production under very specific conditions in a laboratory environment in which the planktonic cell 

form predominates.  In the natural environment, it is possible that these strains may not reach 

threshold densities and are likely in the biofilm environment on the coral surface.  The QS signals 

might also be inhibited or inactivated by chemical conditions or QS antagonists.  Furthermore, the 

QS signal production may not occur under the physical and chemical microenvironments 

available in the host coral.  As the vast majority of bacteria (~99%) cannot be grown in pure 

culture due to difficulties associated with producing specific micro-environmental requirements in 

the laboratory (Fuhrman and Campbell 1998), unculturable bacteria may also be producing the 

AHLs detected in the BBD mat samples.  Additionally, the absence of a positive reaction in the 

reporter strain assays might result from a variety of possible scenarios:  (1) the bacterial isolate 

synthesized a QS signal that was undetectable by the microbial reporter strains used in this 

study; (2) the bacterial isolate was capable of producing a QS signal, but it did not synthesize the 

signal at detectable levels under the culture conditions of this study; (3) the isolate produced a 

chemical entity that inhibits the growth of the reporter strain or its ability to produce a positive 

result (quorum quenching); (4) the bacterial isolate did not produce QS signals during the part of 
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the growth curve examined in this study (early stationary phase); and (5) abiotic factors (e.g., 

temperature, pH, etc.) caused degradation of the QS signals that were produced.  

Near full-length 16S rRNA gene sequences of the nine AHL-producing isolates were 

examined for taxonomic information.  Based upon the results of the BLAST search, all nine AHL-

producing isolates are members of the Alpha- and Gamma-proteobacteria. Three of the nine 

isolates were closely related to species of Vibrio.  Two isolates from BBD (i.e., BBD-FTL-6j and 

BBD-FTL-8c) were most closely related (99% similarity) to a strain of V. rotiferianus isolated from 

rotifers collected in Belgium (Gomez-Gil et al. 2003).  It should be noted that, although BBD-FTL-

6j and BBD-FTL-8c shared the same closest relative in GenBank, these two isolates showed 

differing morphologies and were isolated from two different BBD samples on two separate coral 

colonies.   Isolate HSML-FTL-9c was closely related (99% similarity) to a strain of V. harveyi 

(strain 1280 from the NCIMB culture collection) isolated from a dead amphipod at Woods Hole, 

Massachusetts, USA (Johnson and Shunk 1936).  Vibrio harveyi represents one of the archetypal 

systems of AHL-regulated gene expression (Bassler et al. 1993) and a variety of Vibrio spp. have 

been documented to produce AHLs, including V. fischeri, V. parahaemolyticus, V. anguillarum, 

and V. rotiferianus  (Bassler 1999, Buch et al. 2003, Henke and Bassler 2004b, García-Aljaro et 

al. 2012).  Members of the Vibrio genus have previously been documented to occur within BBD 

(Barneah et al. 2007, Sekar et al. 2008, Arotsker et al. 2009) and it has recently been suggested 

that proteolytic activity by Vibrio spp. might play a role in BBD pathology (Arotsker et al. 2009).  In 

addition, Vibrio strains isolated from both healthy and diseased corals have been shown to 

produce AHLs (Tait et al. 2010).   

Two AHL-producing isolates (i.e., BBD-FLK-1d and BSML-FTL-6w) were most closely 

related to bacteria isolated from a marine electroactive biofilm in the port of Genoa, Italy.  The 

closest relative for BBD-FLK-1d was Nautella italica strain LMG 24365 (Vandecandelaere et al. 

2009; 99% similar) and the closest relative for BSML-FTL-6w was Ruegeria scottomollicae LMG 

24367 (Vandecandelaere et al. 2008; 96% similar).  Because BSML-FTL-6w and R. 

scottomollicae share less than 97% similarity, they do not represent the same species 
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(Stackebrandt and Goebel 1994).  Both N. italica and R. scottomollicae belong to the 

Rhodobacteraceae, which is represented in BBD and in coral SML (Sekar et al. 2006, 2008).  

AHL production by members of the Roseobacter-Ruegeria subgroup of the Alpha-proteobacteria 

has been previously demonstrated (Gram et al. 2002, Taylor et al. 2004, Case et al. 2011). 

Isolates BSML-FTL-7l and HSML-FTL-10a were most closely related to strains from the 

genus Pseudoalteromonas and members of this genus have previously been documented to 

produce AHLs (Huang et al. 2008, 2009).   Isolate BSML-FTL-7l shared 98% 16S rRNA gene 

identity with P. phenolica strain O-BC30, which was isolated from seawater collected near Tokyo, 

Japan (Isnansetyo and Kamei 2003).  Isolate HSML-FTL-10a was most closely related to P. 

luteoviolacea strain NCIMB 1893 (99% similarity), which was isolated from seawater in the 

Mediterranean Sea near Nice, France (Gauthier 1976).   Consistent with the description of P. 

luteoviolacea as a producer of violacein (Gauthier 1982), isolate HSML-FTL-10a produced a dark 

purple pigment.   Considering that P. luteoviolacea has been documented to have antibacterial 

activity (Gauthier 1982) and antibiotic activity has also been demonstrated for violacein (Lichstein 

and Van De Sand 1946), it is not unexpected that the CF from HSML-FTL-10a inhibited growth in 

the greatest number of isolates during the bacterial growth challenges in this study.  Furthermore, 

multiple studies have shown that species of Pseudoalteromonas isolated from coral SML show 

antibiotic activity (Ritchie 2006, Nissimov et al. 2009, Shnit-Orland et al. 2009).   

Isolates HSML-FTL-9e and HSML-FTL-9i did not have highly similar homolog sequences 

present in the BLAST database.  Isolate HSML-FTL-9e was distantly related (95% similarity) to 

Aliagarivorans marinus strain AAM1, isolated from coastal seawater off Taiwan (Jean et al. 2009).  

Isolate HSML-FTL-9i was most closely related (96% similarity) to Pseudoruegeria aquimaris 

strain SW-255, isolated from coastal seawater in the East Sea, Korea (Yoon et al. 2007).   

Three strains of bacteria that were previously isolated from BBD (BBD-216-2d, BBD-216-

1b, BBD-217-2d) tested positive for AI-2 production.  The closest taxonomic relative of these 

three isolates was identified as Vibrio harveyi, which possesses a well-characterized LusS/LuxPQ 

AI-2 QS system (Bassler et al. 1994, Surette et al. 1999).  It is interesting to note that, despite the 
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well-characterized AHL QS system in V. harveyi, these three strains did not test positive in the 

AHL assays.  Culture filtrates from two isolates of Bacillus (BBD-216-3d and BBD-216-4e) 

activated the AI-2 reporter strain.  Members of the genus Bacillus have previously been shown to 

produce AI-2 (Jones and Blaser 2003, Auger et al. 2006).  No existing studies showing production 

of AI-2 by Loktanella sp. (BBD-216-4a) or Kocuria sp. (BBD-217-2b) were identified. 

Potential Fate of AHLs in the BBD Mat and Coral SML 

Bacterial constituents of the BBD mat and the coral SML are living within complex 

environments where abiotic factors (e.g., pH, temperature, chemical composition of the 

environment) and biotic factors (e.g., presence of other members of the bacterial community) are 

in constant flux.  Such fluctuations can affect the generation, movement, and reception of QS 

signals (Boyer and Wisniewski-Dye 2009).  Production of AHLs may be specific to a certain 

portion of the bacterial growth phase and may be specific to the particular strain (Tait et al. 2005).  

Additionally, production of both the AHL and AI-2 signals may be influenced by the growth 

medium (Burgess et al. 2002, DeKeersmaecker and Vanderleyden 2003, Boyer and Wisniewski-

Dyé 2009).  Thus, signal production may be affected by the chemical substrates in the 

environment that are available for growth and by the physical environments available for 

colonization.  In this study, four bacterial isolates tested positive in the AHL assays when surface 

cultures (patch tests) were examined, but tested negative for AHLs when broth cultures (CF 

assays) were examined in the same assay (Table 7).  These conflicting results could be attributed 

to the differing growth conditions (surface growth as a biofilm on agar vs. suspended cells as 

planktonic forms in liquid medium).  To the author’s knowledge, variation in AHL production 

associated with these conditions has not been previously documented in the literature.  An 

alternative explanation would be that no AHLs are present in the stationary phase of the growth 

cycle for these particular isolates.   

The effective signaling distance between cells (the ‘calling distance’) is limited to short 

distances (i.e., tens of micrometers; Decho et al. 2010).  In aqueous solutions, smaller molecules 

(e.g., short-chain AHLs) would diffuse more rapidly than larger molecules (e.g., long-chain AHLs).  
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Within the BBD mat, an exopolysaccharide (EPS) matrix surrounds the microbial constituents as 

a biofilm.  High concentrations (>600 µM) of AHLs have been measured within Pseudomonas 

aeruginosa biofilms (Charlton et al. 2000), suggesting that bacterial EPS may effectively 

sequester QS signals.  The size of the signal molecules and size of the water channels within the 

EPS matrix (Donlan and Costerson 2002) would dictate the diffusion characteristics of larger 

molecules (e.g., long-chain AHLs; Decho et al. 2010).  Because the surface of the BBD mat is 

exposed to seawater, and thus advection and dilution (Horswill et al. 2007), accumulation of QS 

signals would likely be greater in the depths of the BBD mat than on the mat surface.  Coral 

mucus forms a protective coating over the coral surface.  Although the chemical composition of 

coral mucus varies between species (Meikle et al. 1988), the basic structure of the SML consists 

of an insoluble, hydrated glycoprotein (Ducklow and Mitchell 1979; Meikle et al. 1988).  In similar 

fashion to the EPS in microbial mats, the gel-like nature of coral mucus would likely concentrate 

particularly hydrophobic signal molecules.   

Once the QS signal has left the cell, its success in conferring information is dependent 

upon its the ability to persist in the natural environment and eventually reach a receptor cell.  

Quorum sensing signals may be impacted by the local chemical and physical microenvironment.  

For instance, alkaline conditions have been demonstrated to result in hydrolysis of the AHL 

lactone ring (Byers et al. 2002, Yates et al. 2002).  It should be noted, however, that the 

hydrolyzed lactone ring is capable of spontaneous re-lactonization once the pH is lowered 

(Horswill et al. 2007).  This hydrolysis appears to be dependent upon the acyl chain length, as 

short-chain (< C10) AHLs appear to be more susceptible (Decho et al. 2009, Yates et al. 2002).  

The alkaline pH conditions within the BBD mat could contribute to AHL hydrolysis during daylight.  

Decho et al. (2009) monitored the in situ degradation of short-chain AHLs within cyanobacterial 

mats by measuring the concentrations of extractable AHLs collected from daytime and nighttime 

samples.  In darkness, the lowered pH conditions might confer greater stability to AHL molecules 

(Decho et al. 2009).  Decho et al. (2009, 2010) suggest that microbial mats may potentially use 

shorter-chain AHL signaling during the nighttime conditions and longer-chain AHLs during the 
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daytime.  The lower pH conditions occurring at night would allow for effective signaling using both 

short and long chain AHLs.   

The BBD mat contains pronounced biogeochemical microgradients in oxygen, pH, and 

sulfide (Carlton and Richardson 1995, Glas et al. 2012).  In BBD, strong diel fluctuations in 

oxygen and pH occur in association with changes in the predominant metabolic pathways within 

the mat.  During daylight, sulfide-resistant oxygenic photosynthesis by BBD cyanobacteria is the 

dominant metabolic pathway (Myers and Richardson 2009), creating oxic conditions in the 

majority of the mat (Carlton and Richardson 1995).  In daylight, CO2 is removed from the mat 

more quickly than it is replenished and the pH within the mat rises.  During daylight, the pH in the 

BBD mat ranges from 7.58 – 8.13 (Glas et al. 2012).  During darkness, as the oxygen is used up 

in aerobic respiration and the base of the mat becomes anoxic, the predominant metabolic 

pathway shifts to heterotrophic respiration and fermentation (Richardson and Castenholz 1987).  

The formation of small organic acids during fermentation lowers the pH within the mat, which has 

been measured to range from 7.33 - 7.49 at the base of the BBD mat during darkness (Glas et al. 

2012).  It is plausible that the pH microenvironments in the BBD mat could affect the stability of 

the AHL molecules generated within the mat and that diel shifts within the mat could be 

associated with alterations in signaling.  It should be noted, however, that all BBD mat samples 

collected and analyzed in this study were daytime samples and consistently tested positive for 

AHL signal presence. 

Coral mucus has been demonstrated to be acidic (pH of ~7.7 in Acropora spp. on the 

Great Barrier Reef, Australia) in comparison to surrounding seawater (Wild et al. 2005).  These 

pH values could be a result of the chemical nature of the mucus (acid sulfate esters or acid 

polysaccharides) as well as a result of the respiration and associated CO2 production by the 

microbes within the SML (reviewed in Wild et al. 2005).  Thus, AHL signals within the coral SML 

would likely remain stable enough for signaling to occur. 

Biotic factors, including QS interference (quorum quenching) by other bacteria, can affect 

the success of QS systems.  Quorum quenching can be achieved by suppressing production of 
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the QS signal, by affecting diffusion of the signal, or by impacting perception of the signal at a 

receptor (Bandara et al. 2012).  The biological degradation of signaling molecules might be used 

in antagonistic interactions to prevent QS signals from reaching their intended receptors.  

Quorum sensing signals may be internalized and degraded by neighboring bacteria.  Some 

bacteria have been shown to utilize AHLs as a nitrogen or carbon source (Leadbetter and 

Greenberg 2000, Horswill et al. 2007).  Additionally, neighboring bacteria can degrade AHLs 

using intracellular enzymes, specifically AHL lactonases and AHL acylases (Dong and Zhang 

2005).  The production of certain compounds (e.g., halogenated furanones, AHL analogs) can 

inactivate QS signal reception.  Both coral-associated bacteria (Tait et al. 2010, Alagely et al. 

2011, Bakkiyaraj et al. 2012) and coral mucus (Alagely et al. 2011) have been shown to display 

quorum quenching activity.  Quorum quenching is likely to be occurring in the BBD microbial 

consortium, as isolates from marine cyanobacteria have been shown to inhibit QS (Gerwick et al. 

2012).  Also, hot spring microbial mat communities have quorum quenching activity against both 

AHL and AI-2 signals (Dobretsov et al. 2011). 

Potential Fate of AI-2 in the BBD Mat and Coral SML 

The implications of abiotic and biotic influences on AI-2 signaling are not well understood 

at this time.  Likewise, little is known about the impact of the natural environment on AI-2 

signaling.  Like AHLs, production of AI-2 may dependent on the particular strain, on the growth 

phase, or on the culture medium (Bassler 2002, Xavier and Bassler 2005).  The AI-2 signal 

appears to be a relatively stable molecule in comparison with AHLs (Van Mooy et al. 2012).  In 

contrast to AHLs, it appears that pH does not directly impact the AI-2 signaling molecule 

(DeKeersmaecker and Vanderleyden 2003).  The precursor to all AI-2 signals is 4,5,-dihydroxy-

2,3-pentanedione (DPD), which converts via spontaneous cyclization and hydration reactions to 

several DPD derivative molecules which act as AI-2 signals (Schauder et al. 2001, Chen et al. 

2002).  The local microenvironment may impact the ratio of the furanosyl esters (Horswill et al. 

2007) and it has been suggested that the availability of borate could shift this ratio toward the 

Vibrio harveyi AI-2 signal (Miller et al. 2004).  Approximately 71% of the CFs from BBD isolates 
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and ~68% of the CFs of isolates from the SML of BBD-infected corals tested positive for AI-2.  

Comparatively, only ~33% of the CFs of isolates from the SML of apparently healthy corals tested 

positive for AI-2 production and none of the cyanobacterial CFs tested positive in the AI-2 assay.  

Thus, it is possible that AI-2 signaling may be occurring more frequently within the BBD microbial 

consortium and within the SML of diseased corals than in the SML of a healthy coral host.   

While this study did not target the phenomenon of quorum quenching, one CF (from 

BSML-FTL-7j) was observed to inhibit luminescence in the Vibrio harveyi BB170 reporter strain 

without affecting growth of the culture (Figure 8).  Thus, this isolate must be producing and 

excreting a substance that inhibits light production in the V. harveyi BB170 reporter strain.  

Certain bacteria have been shown to internalize extracellular AI-2 and subsequently degrade the 

AI-2 signal.  For instance, Escherichia coli and Salmonella typhimurium use an ABC transporter 

to import AI-2 and then enzymatically inactivate the signal molecule (Taga et al. 2001, 2003), 

thereby removing AI-2 from the external environment (Surette et al. 1999, Federle and Bassler 

2003).  Because AI-2 is an interspecies QS signal, these species can alter the signaling 

environment to appear like a low cell density environment.  Thus, this process may be used to 

promote a low cell density phenotype in neighboring bacteria (Federle and Bassler 2003).  

Allelopathy among Isolates from BBD and Coral SML 

This study examined several potential growth interactions among members of the BBD 

consortium and the coral SML.  Specifically, interactions among 19 isolates (eight from BBD, six 

from the SML of BBD-infected corals, and five from apparently healthy corals) were investigated.  

Nine of the 19 isolates examined tested positive in the AHL assays.  Approximately 27% of the 

342 growth challenges conducted in this study resulted in significant inhibition of bacterial growth.  

Culturable bacteria isolated from the BBD mat and from the SML of BBD-infected and apparently 

healthy corals are capable of producing and excreting growth-inhibiting compounds (e.g., toxins 

or antibiotics).  While previous studies have detected increased antimicrobial production in the 

mucus of healthy corals, as opposed to diseased corals (Ritchie 2006, Nissimov et al. 2009), in 

this study no significant difference in antimicrobial production was detected based on isolate 
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source (BBD, SML of BBD-infected coral, SML of healthy coral).  Likewise, no significant 

difference in antimicrobial production was observed based on AHL-signal production (AHL-

positive isolate vs. AHL-negative isolate). 

In addition to the growth challenge results, antimicrobial activity was observed in the AHL 

and AI-2 assays.  Fifteen CFs inhibited the growth of the Chromobacterium violaceum CV026 

reporter strain during the patch test and CF assays and seven CFs inhibited the growth of the 

Vibrio harveyi BB170 reporter (Table 9).  Growth inhibition of C. violaceum CV026 was more 

frequently observed in the patch test assays than in the CF assays.  Of the 15 isolates that 

inhibited C. violaceum CV026 growth, 12 showed inhibition during the patch tests and only three 

showed inhibition during the CF assays.  One isolate inhibited growth of the C. violaceum CV026 

reporter strain in both the patch test and the CF assay.  Cultivation parameters (e.g., surface 

growth vs. planktonic growth) are known to affect the production of antibiotics.  Because these 

isolates are growing on a surface layer (BBD mat and coral SML), they are likely producing 

antibiotics or toxins that impact the growth of neighboring bacteria.   

Antimicrobial compounds have been documented previously in BBD, as well as in coral 

mucus and coral-associated bacteria.  Cyanobacteria isolated from BBD have been shown to 

produce antibacterial compounds and toxins that impact other BBD mat bacteria, as well as coral-

associated bacteria (Richardson et al. 2007, 2009, Gantar et al. 2009, Stanić et al. 2011).  

Antimicrobial compounds have been identified in environmental samples and isolates from 

microbial mats in varied environments, including Antarctic lakes (Rojas et al. 2009), tropical 

hypersaline ponds (Socha et al. 2007), and hot springs (Dobretsov et al. 2011).  It is likely that 

antimicrobial production may contribute to the temporal and spatial dynamics occurring in BBD 

(Matz 2011).  Several studies have demonstrated the presence of antimicrobial activity in 

scleractinian corals and their associated microbial communities.  Koh (1997) found that coral 

extracts from 100 scleractinian coral species from the Great Barrier Reef tested positive for 

antibacterial activity against at least one bacterium.  Pocillopora damicornis has been shown to 

release bactericidal compounds following mechanical stress (Geffen and Rosenberg 2005).  
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Antagonistic interactions were observed between bacterial isolates from the SML of Montastrea 

annularis (Rypien et al. 2010).  Ritchie (2006) found that in Acropora palmata, both the coral SML 

itself and bacterial isolates from the SML displayed antimicrobial activity against potentially 

invasive microbes, including the coral pathogen Serratia marcescens.  

Potential Roles of Signaling and Allelopathy in BBD and Coral SML 

This study demonstrated that AHLs are present within active BBD and also that members 

of the SML of corals and the BBD microbial consortium are capable of producing QS molecules 

and eliciting antimicrobial activity.  While the role of QS in BBD and in coral microbial 

communities remains unresolved at this time, QS may be involved in a variety of potential 

behaviors.  AHL production may contribute to virulence in the BBD microbial consortium, given 

that AHL signaling has been linked to a variety of behaviors involved in pathogenesis, such as 

biofilm formation, expression of virulence factors, and exoenzyme production (Joint et al. 2007a, 

Higgins et al. 2007).  The AI-2 signals are also associated with disease function in pathogenic 

bacteria, including protease production, toxin production, and antibiotic production (reviewed in 

Bandara et al. 2012 and Xavier and Bassler 2003).  Stimulation of such virulence factors in the 

BBD mat may be significant to the disease.  For instance, toxin (i.e., microcystin) production by 

BBD cyanobacteria, implicated as a factor in coral tissue death, could be regulated by QS 

systems.  Recognition of the AI-2 signal might be used by bacteria within the BBD consortium to 

regulate genes required for survival in mixed species communities or to regulate genes 

associated with pathogenesis (Parker and Sperandino 2009).  Knock-out mutants for luxS have 

been shown to impact virulence factor expression in a variety of pathogens (reviewed in Sun et 

al. 2004).  Also, AI-2 has been found to regulate the transcription of exopolysaccharides, which 

are important virulence components for many pathogens (DeLisa et al. 2001).  Regulation of 

bacterial relationships within complex microbial communities is another potential role of AI-2 in 

the natural environment (Bandara et al. 2012), suggesting that the role(s) of AI-2 in the BBD 

microbial mat and in the microbial communities of the coral SML may be highly complex. 



60 
 

It is conceivable that the presence of QS signals within the BBD mat and coral SML could 

act as a chemical attractant to microbes, allowing for recruitment to these communities.  Both 

synthetic and naturally produced AHLs have been shown to act as a settlement cue for various 

marine algae (Huang et al. 2007, Joint et al. 2007b, Mohamed et al. 2008, Tait et al 2005).  Sato 

et al. (2010) observed cyanobacterial and bacterial shifts during development of BBD from 

cyanobacterial patches on corals on the Great Barrier Reef, Australia.  Quorum sensing might be 

one of the drivers affecting progressive development and microbial constituents of the BBD mat.  

Under natural conditions, bacteria in the BBD mat and in the coral SML are part of 

interacting multi-species communities.  These dense arrangements of microbes would allow for 

both symbiotic and competitive relationships among bacteria (Matz 2011).  The ability of bacteria 

to produce antimicrobial compounds is widely believed to provide the producer with a competitive 

advantage over neighboring bacteria (Wiener 1996, Riley and Gordon 1999, Rao et al. 2005, 

Berry et al. 2008).  The substantial number of inhibitory interactions documented in the current 

study suggests a high level of competition among bacteria in the BBD mat and the coral SML.  

Bacterial competition may be one factor contributing to the high microbial diversity previously 

found in the BBD consortium (see Miller and Richardson 2011) and in coral-associated bacterial 

communities (Rohwer et al. 2001, 2002, Bourne and Munn 2005, Koren and Rosenberg 2006).  

High bacterial diversity has also been observed in microbial mats in other environments (Ley et 

al. 2006, Bolhuis and Stal 2011).   

Both cooperative and competitive interactions within the microbial communities of the 

coral holobiont are widely believed to be important contributors to the health of the host coral 

(Ritchie 2006, Reshef et al. 2006, Rosenberg et al. 2007, Teplitski and Ritchie 2009, Alagely 

2011).  The in situ production of antimicrobials and QS signals by the microbial communities in 

the coral SML and/or by members of the BBD microbial consortium may contribute substantially 

to these interactions.  The microbial community of the coral SML is believed to provide the coral 

with protection from pathogens via antimicrobial production and/or interspecific competition 

(Rohwer et al. 2002, Reshef et al. 2006, Ritchie 2006).  Interestingly, only 2% of the 342 growth 
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challenges exhibited significant growth stimulation by the culture filtrates, and the vast majority 

(~88%) of these stimulatory CFs were from BBD isolates.  This might suggest that cooperation 

between microbes is more common in interactions among members of the BBD than among SML 

bacteria. 

The focus of this thesis was to investigate microbial interactions within and among 

members of the BBD consortium and the coral SML.  The QS screening assays detected the 

production of QS signals by culturable members of the BBD consortium and bacterial inhabitants 

of coral SML.  In addition, the BBD mat itself was shown to contain QS signal molecules.  

Antagonistic interactions were also observed among the bacteria investigated.  Thus, it is likely 

that chemical interactions, including chemical signaling and antimicrobial production, are actively 

occurring within, and possibly between, these microbial communities.  This is the first study to 

identify QS signals in association with active coral disease.
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Mean growth rate constants (µ = hr-1, top number) and generation times (g = doublings/hour, bottom number) for the 19 isolates examined in the growth challenge assay.  Pink cells indicate culture filtrates (CFs) that significantly (p < 

0.05) decreased the growth rate in comparison to the control and green cells indicate cultures that significantly (p < 0.05) increased the growth rate over that of the control. Purple cells indicate isolates that tested positive for production of 

acyl homoserine lactones (AHLs) and yellow cells indicate isolates that tested negative in the quorum sensing assays. 

 
 

Isolate 
Culture Control BBD-FTL-6j

BBD-FTL-
8c

BBD-FLK-
1d

BSML-FTL-
6w

BSML-FTL-
7l

HSML-FTL-
9c

HSML-FTL-
9e

HSML-FTL-
9i

HSML-FTL-
10a

BBD-FTL-
1h

BBD-FTL-
6d

BBD-FTL-
6n

BBD-FTL-
6p

BBD-FLK-
1e

BSML-FTL-
6u

BSML-FTL-
7d

BSML-FTL-
7q

BSML-FLK-
1d

HSML-FTL-
10r

0.171 0.168 0.161 0.168 0.172 0.358 0.146 0.148 0.166 0.178 0.173 0.156 0.160 0.172 0.170 0.163 0.173 0.161 0.154
0.246 0.242 0.232 0.243 0.247 0.516 0.211 0.214 0.240 0.256 0.249 0.224 0.230 0.248 0.245 0.236 0.250 0.233 0.222
0.003 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.001
0.565 0.472 0.485 0.471 0.481 0.494 0.510 0.488 0.422 0.494 0.484 0.423 0.514 0.509 0.539 0.548 0.505 0.513 0.221
0.222 0.183 0.203 0.202 0.190 0.193 0.198 0.190 0.058 0.226 0.236 0.242 0.238 0.205 0.209 0.197 0.209 0.215 0.189
0.320 0.263 0.293 0.291 0.274 0.278 0.286 0.275 0.084 0.326 0.340 0.349 0.343 0.295 0.301 0.284 0.301 0.309 0.273
0.137 0.137 0.090 0.101 0.021 0.135 0.108 0.124 0.021 0.107 0.033 0.028 0.152 0.132 0.146 0.045 0.027 0.072 0.126
0.198 0.198 0.129 0.145 0.030 0.195 0.156 0.178 0.030 0.154 0.048 0.040 0.219 0.190 0.211 0.065 0.040 0.104 0.182
0.214 0.212 0.206 0.204 0.215 0.209 0.202 0.206 0.013 0.193 0.203 0.219 0.212 0.208 0.183 0.203 0.222 0.206 0.034
0.309 0.306 0.297 0.294 0.310 0.302 0.291 0.297 0.018 0.278 0.292 0.316 0.306 0.300 0.264 0.292 0.320 0.298 0.049
0.226 0.237 0.240 0.215 0.238 0.239 0.244 0.297 0.046 0.202 0.224 0.233 0.210 0.190 0.194 0.232 0.229 0.204 0.203
0.326 0.341 0.346 0.310 0.343 0.345 0.353 0.428 0.067 0.291 0.323 0.336 0.302 0.274 0.280 0.335 0.330 0.294 0.292
0.120 0.145 0.139 0.101 0.103 0.126 0.128 0.140 0.010 0.136 0.116 0.131 0.134 0.151 0.153 0.148 0.174 0.095 0.062
0.173 0.209 0.201 0.145 0.148 0.182 0.184 0.202 0.014 0.196 0.168 0.190 0.194 0.218 0.220 0.213 0.251 0.137 0.089
0.061 0.062 0.047 0.051 0.044 0.007 0.010 0.051 0.035 0.037 0.045 0.049 0.045 0.033 0.030 0.049 0.049 0.059 0.010
0.088 0.089 0.068 0.073 0.064 0.010 0.014 0.074 0.050 0.053 0.065 0.071 0.064 0.048 0.044 0.070 0.070 0.084 0.015
0.163 0.148 0.142 0.140 0.142 -0.004 0.138 0.146 0.146 0.148 0.140 0.152 0.143 0.142 0.140 0.147 0.147 0.111 0.150
0.235 0.213 0.205 0.202 0.205 -0.005 0.199 0.210 0.211 0.213 0.201 0.219 0.207 0.204 0.202 0.212 0.212 0.161 0.217
0.095 0.106 0.097 0.101 0.104 0.022 0.090 0.102 0.099 0.080 0.094 0.101 0.098 0.100 0.103 0.106 0.099 0.098 0.102
0.137 0.153 0.140 0.146 0.150 0.032 0.130 0.147 0.143 0.115 0.136 0.146 0.142 0.144 0.148 0.153 0.143 0.142 0.147
0.227 0.216 0.221 0.215 0.217 0.199 0.214 0.232 0.222 0.046 0.232 0.224 0.218 0.230 0.233 0.211 0.223 0.222 0.203
0.328 0.311 0.319 0.311 0.313 0.288 0.309 0.334 0.320 0.066 0.335 0.323 0.314 0.332 0.336 0.305 0.322 0.320 0.292
0.233 0.221 0.177 0.225 0.236 0.219 0.236 0.240 0.236 0.230 0.242 0.246 0.244 0.245 0.239 0.242 0.226 0.230 0.237
0.335 0.319 0.255 0.324 0.341 0.315 0.341 0.346 0.340 0.332 0.349 0.355 0.353 0.354 0.345 0.350 0.326 0.332 0.342
0.306 0.305 0.314 0.287 0.290 0.287 0.290 0.292 0.282 0.285 0.278 0.281 0.271 0.276 0.211 0.265 0.301 0.309 0.296
0.441 0.440 0.453 0.414 0.419 0.415 0.419 0.422 0.407 0.411 0.401 0.405 0.391 0.397 0.304 0.383 0.434 0.446 0.426
0.217 0.223 0.179 0.187 0.178 0.182 0.187 0.223 0.226 0.130 0.138 0.150 0.148 0.150 0.160 0.190 0.236 0.183 0.163
0.313 0.322 0.258 0.270 0.257 0.263 0.270 0.322 0.327 0.187 0.199 0.217 0.214 0.217 0.230 0.275 0.340 0.264 0.235
0.151 0.107 0.145 0.139 0.122 0.071 0.186 0.142 0.120 0.153 0.154 0.163 0.193 0.189 0.185 0.140 0.135 0.118 0.162
0.218 0.155 0.209 0.201 0.177 0.102 0.268 0.205 0.173 0.220 0.223 0.235 0.278 0.273 0.267 0.202 0.194 0.170 0.234
0.179 0.130 0.141 0.163 0.152 0.007 0.160 0.167 0.168 0.055 0.148 0.167 0.167 0.175 0.179 0.181 0.145 0.164 0.150
0.259 0.187 0.204 0.235 0.219 0.010 0.231 0.241 0.242 0.080 0.213 0.241 0.241 0.253 0.258 0.261 0.210 0.237 0.217
0.092 0.036 0.020 0.013 0.010 0.017 0.047 0.044 0.036 0.043 0.014 0.023 0.011 0.025 0.046 0.040 0.079 0.075 0.097
0.133 0.053 0.029 0.019 0.014 0.025 0.068 0.063 0.052 0.062 0.020 0.033 0.016 0.036 0.066 0.057 0.113 0.108 0.140
0.078 0.089 0.073 0.080 0.079 0.060 0.078 0.083 0.081 0.068 0.069 0.074 0.094 0.063 0.064 0.065 0.091 0.085 0.066
0.112 0.128 0.106 0.115 0.114 0.087 0.113 0.119 0.117 0.098 0.099 0.107 0.136 0.091 0.093 0.094 0.132 0.123 0.095
0.147 0.131 0.126 0.118 0.133 0.021 0.126 0.139 0.125 0.097 0.118 0.132 0.125 0.118 0.081 0.127 0.159 0.131 0.132
0.211 0.189 0.181 0.170 0.192 0.030 0.182 0.200 0.180 0.140 0.171 0.191 0.181 0.171 0.117 0.183 0.229 0.188 0.190

6 3 3 3 9 3 4 4 11 4 6 5 6 2 3 5 4 4 7
0 0 0 1 0 0 0 0 0 0 1 0 1 1 1 2 0 0 1

No. Isolates Inhibited
No. Isolates Stimulated

BSML-FLK-1d 0 0

HSML-FTL-10r 1 0

BSML-FTL-7d 9 0

BSML-FTL-7q 12 0

BBD-FLK-1e 7 0

BSML-FTL-6u 0 0

BBD-FTL-6n 2 3

BBD-FTL-6p 4 0

BBD-FTL-1h 2 4

BBD-FTL-6d 5 0

HSML-FTL-9i 0 0

HSML-FTL-10a
14 0

HSML-FTL-9c 2 0

HSML-FTL-9e 2 1

BSML-FTL-6w 7 0

BSML-FTL-7l 3 0

BBD-FTL-8c 16 0

BBD-FLK-1d 1 0

Culture Filtrates No.CFs 
Inhibiting 
Isolate 
Culture

No.CFs 
Stimulating 

Isolate 
Culture

BBD-FTL-6j 5 0
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