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ABSTRACT OF THE THESIS 

DESIGN OPTIMIZATION OF NOZZLE SHAPES  

FOR MAXIMUM UNIFORMITY OF EXIT FLOW  

by 

Karla Keldani Quintão 

Florida International University, 2012 

Miami, Florida 

Professor George S. Dulikravich, Major Professor 

The objective of this study is to identify the optimal designs of converging-

diverging supersonic and hypersonic nozzles that perform at maximum uniformity of 

thermodynamic and flow-field properties with respect to their average values at the nozzle 

exit. 

Since this is a multi-objective design optimization problem, the design variables 

used are parameters defining the shape of the nozzle. This work presents how variation of 

such parameters can influence the nozzle exit flow non-uniformities. 

A Computational Fluid Dynamics (CFD) software package, ANSYS FLUENT, was 

used to simulate the compressible, viscous gas flow-field in forty nozzle shapes, including 

the heat transfer analysis. The results of two turbulence models, k-ε and k-ω, were 

computed and compared. 

With the analysis results obtained, the Response Surface Methodology (RSM) was 

applied for the purpose of performing a multi-objective optimization. The optimization was 

performed with ModeFrontier software package using Kriging and Radial Basis Functions 

(RBF) response surfaces. Final Pareto optimal nozzle shapes were then analyzed with 

ANSYS FLUENT to confirm the accuracy of the optimization process. 
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CHAPTER I   

INTRODUCTION 

1.1. PROBLEM STATEMENT 

Flow of gases through a converging-diverging nozzle is one of the benchmark 

problems used for modeling compressible flow using computational fluid dynamics 

algorithms.  

In a converging nozzle, the highest speed that a fluid can be accelerated to is 

sonic speed, which occurs at the exit. The converging – diverging nozzles are used to 

accelerate the fluid to supersonic speeds past the throat of such a nozzle. In this case, 

depending on the ratio of the average exit pressure to the inlet stagnation pressure, 

there is a possibility of creating shock waves in the flow-field.  

Exit flow from a converging-diverging nozzle often has strong gradients of 

pressure, temperature, density, and speed in radial and axial direction. These non-

uniformities at the nozzle exit are the result of the non-uniformities in the flow-field 

entering the nozzle. The causes of the nozzle inlet flow non-uniformities could be as 

follows: inhomogeneous combustion in the combustion chamber upstream of the 

nozzle, injection of cooling gas tangentially or radially through the slots on the 

combustion chamber wall, pre-swirl that exists in the combustion chamber created by 

the compressor upstream of the combustion chamber, flow separation behind fuel 

injector and flame holders in the combustion chamber, among others. 

In many practical applications, non-uniformities in the nozzle exit flow are 

unacceptable. An example is the use of a converging-diverging nozzle to accelerate 

gas flow to a hypersonic speed in order to simulate actual conditions when a 

hypersonic missile moves through a uniform atmosphere. In the existing high 

enthalpy hypersonic testing facilities the gas is heated using powerful electric arcs. 
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The gas heated by the electric arcs is extremely hot (up to 15,000K) in the area of the 

arc which is along the axis of a heating chamber. This temperature drops off to 

approximately 1000K close to the wall of the heating chamber. Thus, the gas has 

extreme radial gradient of temperature and other thermodynamic and flow-field 

properties as it enters the converging-diverging nozzle.  

Another example is the air entering a gas turbine. The conditions within gas 

turbines are extreme. The pressure can be as high as 40 bar and the temperature more 

than 1000 K. The most extreme conditions are found in the high pressure part 

downstream of the combustion chamber where hot combustion gases flow through a 

cascade of rotors and stators. A great radial gradient of temperature increases thermal 

stresses on stator blades which may damage them. Because of the high rotational 

speeds, this can result in a rupture of the entire turbine. 

The question is: how to mix this flow so that it exits the nozzle with a 

minimum possible radial gradient of each of these properties? This is the main 

motivation for this thesis. 

1.2. RESEARCH OBJECTIVE 

This problem presents a minimization of variations (positive or negative) of 

thermodynamic and flow-field property with respect to their average values at the 

nozzle exit. The question is: what can be used as design variables (parameters) that 

can be varied in order to influence the nozzle exit flow non-uniformities?  

The design variables evaluated are parameters defining the shape of the 

converging-diverging nozzle. The parameters to be varied are: the distance between 

the inlet and the throat, the distance between the throat and the exit, the inlet radius, 

the exit radius, the inlet angle of the wall and the exit angle of the wall. The throat 

radius is considered constant. 
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The objective is to find the optimal designs that present the minimum 

variation of temperature, density and Mach number at the nozzle exit. 

1.3. METHODOLOGY 

In order to create the nozzles shapes, a FORTRAN code was used to read the 

design variables inputs. It uses a fifth order polynomial to find the values of nozzle 

radius along the axis.  

A computational fluid dynamics software package was used to simulate 2D 

axisymmetric fluid and thermal flows through forty hypersonic nozzles. ANSYS 

GAMBIT was used for mesh generation and ANSYS FLUENT for flow analysis. The 

analyzes were made for two turbulence models. A non-uniform temperature 

distribution profile at the inlet was used to simulate different conditions.  

With the results obtained, the optimization was performed. To significantly 

accelerate the entire design optimization process, response surfaces (meta-models) 

were generated in order to perform the virtual optimization. They are mathematical 

functions that replace very complicated physical models, generate correlations of 

experimental data and reduce the computational cost involved with the optimization 

process [1].  

There are a lot of different methods for generating response surface models. 

Kriging is a semi–parametric approach that does not rely on any specific model 

structure, which makes it much more flexible than approaches based on parametric 

behavioral models. On the other hand, accurate predictions are obtained for short 

training sequences [2]. As this work presents only six design variables, Kriging could 

be applied.  
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A multi-objective optimization software (ModeFrontier) was used to generate 

the response surfaces and to perform an optimization using Multi Objective Genetic 

Algorithm (MOGA).  

Designs evaluations with the optimal configurations were validated by real 

computation. 

1.4. LITERATURE REVIEW 

The non-uniformities in nozzle flows have been studied over the years. Some 

previous research in this field will be reviewed. 

In 1989, Doty et al. [3] [4], showed that moderate non-uniformities in the flow 

properties leaving the combustor and entering a supersonic nozzle had effect on thrust 

produced by the nozzle.  Later, Doty et al. [5] studied non-uniform profiles which 

were more severe and consequently had more influence on nozzle performance.   

In 1991, Snelling [6] also examined the effects of non-uniform entrance flow 

profiles of hypersonic nozzles for scramjet-powered flight vehicles, but the studies 

were centered on pitching moment. A uniform and a non-uniform inlet profile were 

compared. The effects of non-uniformities in the flow-field were an increase in the 

overall vehicle thrust and a decrease in the overall vehicle moment for the inlet 

conditions in the single nozzle geometry used in the study. The increased thrust for 

the non-uniform case was due to higher compression on the nozzle wall caused by 

expansion waves from the nozzle wall reflecting off the non-uniformities in the flow-

field as compression waves. The decreased moment for the non-uniform case was due 

to lower pressure on the nozzle wall than the uniform case for the aft portion of the 

nozzle combined with the longer moment arm canceling out the effect of the higher 

compression region. The lower pressure on the nozzle wall was the result of 
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compression waves from the nozzle wall reflecting off the non-uniformities in the 

flow-field as expansion waves.  

In 2003, Palma et al. [7] executed some experiments in which planar laser-

induced fluorescence (PLIF) of nitric oxide (NO) was used to measure vibrational and 

rotational temperatures. The experiments took place in a small shock-tunnel facility, 

which is an impulse facility that can generate the pressures and stagnation enthalpies 

required for simulation of hypersonic atmospheric re-entry flows [8]. Good agreement 

between measured rotational temperature and a non-equilibrium one-dimensional 

nozzle calculation was demonstrated. The measured vibrational temperatures were 

higher than the computed value, although they exhibited the expected vibrational 

freezing behavior. This disagreement was attributed to non-linearities in the imaging 

system and non-uniformity in the flow. The non-uniformities were assumed to be due 

to contamination by driver gas and were found in 32% of the images.  

In 2006, O’Byrne et al. [9], in a similar experiment, used nitric oxide PLIF to 

visualize the flow at the exit of a hypersonic conical nozzle, to determine operating 

conditions that would allow more uniform nozzle flow than that of [7] and to explain 

the mechanism most likely to be responsible for the non-uniform flow. Two nozzle-

throat inserts were fabricated: one with a converging conical end-wall, having a half-

angle of 30° and the other with a flat end-wall. Possible causes for the non-uniformity 

were outlined and investigated and the problem was shown to be due to a small step at 

the nozzle throat. They postulated that the cause of the flow non-uniformity was the 

entrainment of cooler gas from the boundary layer into the freestream caused by flow 

separation at the throat. Upon modifying the nozzle throat, images were significantly 

more uniform and the standard deviation in average signal between tunnel runs 

reduced from 25% to 15%.  
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1.5. THESIS STRUCTURE  

Chapter I introduces the study. First, the problem statement is presented. Then 

the research objectives and methodologies applied are explained. Some literature 

reviews about non-uniformities in nozzle flows are given in order to place this work 

in context. 

Chapter II provides a brief review of the main topics of Computational Fluid 

Dynamics involved in this study. Governing equations, turbulence modeling, 

discretization methods, and grid generation are some of the covered subjects.   

Chapter III presents a review of optimization, including basic concepts, main 

methods and Response Surfaces Methodology. 

Chapter IV describes methodologies used to arrive at the solutions. The shapes 

and mesh generation were explained as well as the simulations in ANSYS FLUENT 

and the optimization using ModeFrontier.  

Chapter V presents the results from the CFD simulations and the optimization. 

Comparisons between two turbulence models are shown. The errors between the 

results of real designs and virtual designs using meta-models are discussed.    

Chapter VI is a summary of the thesis with concluding remarks and proposed 

future work. 
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CHAPTER II  

COMPUTATIONAL FLUID DYNAMICS 

CFD is dedicated to the study of fluids in motion and how the fluid flow 

behavior influences processes that may include heat transfer and possibly chemical 

reactions in combusting flows. Additionally, the physical characteristics of the fluid 

motion can usually be described through fundamental mathematical equations, usually 

in partial differential form, which govern a process of interest and are often called 

governing equations in CFD [10]. 

A complete analysis which appears in CFD codes, including ANSYS 

FLUENT, consists of three main elements: pre-processor, solver and post-processor. 

Figure 1 presents the inter-connectivity functions of these three main elements.  
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Figure 1: The inter-connectivity functions of these three main elements within a 

CFD analysis framework [10]. 

2.1. GOVERNING EQUATIONS 

The governing equations are based on the conservation of mass, momentum 

and energy. The conservation equations are related to the rate of change in the amount 

of that property within an arbitrary control volume to the rate of transport across the 

control volume surface and the rate of the production within that volume [10].  

The Navier-Stokes equations for compressible flows are examples of 

governing equations. The following examples include heat source (
•

q ) and body 

forces ( b


). 

Continuity equation: describes the conservation of mass: 

( ) (2.1)       0Vρ
t
ρ

=⋅∇+
∂
∂ 

       

Linear Momentum Conservation: 
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( ) ( ) (2.2)       bρTVVρ
t
Vρ 


=−⋅∇+
∂

∂

 

 Energy Conservation in total energy form: 

(2.3)        )qbVρ()qqVTVρ(e
 t

ρ)(e
rco

o
•••

+⋅=++⋅−⋅∇+
∂

∂

 

Where: ρ is the fluid density,  is the flow velocity, T is the stress tensor,  is 

the body forces, is the internal energy,  is the conduction heat transfer flux and  

is the radiation heat transfer flux and  is the heat source. 

2.2. TURBULENCE MODELS 

Most flows of engineering significance are turbulent in nature. Flow structure 

in the turbulent regime is characterized by random, three-dimensional motion of fluid 

particles in addition to the mean motion, which is macroscopic mixing of fluid 

particles from adjacent fluid layers.  

The Reynolds averaged Navier-Stokes (RANS) equations is a mathematical 

model of turbulent flow that introduces additional terms in the governing equations 

that need to be modeled in order to include the turbulence effects. The RANS 

equations govern the transport of the averaged flow quantities, with the whole range 

of the scales of turbulence being modeled. The RANS-based modeling approach 

therefore greatly reduces the required computational effort and resources and is 

widely adopted for practical engineering applications.  

However, it is an unfortunate fact that no single turbulence model is 

universally accepted as being superior for all classes of problems. The choice of 

turbulence model will depend on considerations such: the physics encompassed in the 

flow, the established practice for a specific class of problem, the level of accuracy 

required, the available computational resources, and the amount of time available for 

the simulation [11]. 



 

10 

Among available CFD models, the RANS approach commonly based on 

turbulent kinetic energy (k) closure schemes is used for engineering applications. It is 

increasingly used in simulations of flow. The most widely used RANS models are 

two equation models, which solve two transport equations [10]. The k-ε model and its 

variants are the best known among these models, which require the solutions of (k) 

equation and dissipation rate equation (ε) The k-ω model and its variants, where (ω)  

is the specific dissipation rate are also very used. In this thesis, two models are going 

to be studied: the standard k-ε model and the standard k-ω model.  

2.2.1. STANDARD K-Ɛ MODEL 

The standard k- ε model is a semi-empirical model based on model transport 

equations for the turbulence kinetic energy (k) and its dissipation rate (ε). The model 

transport equation for k is derived from the exact equation, while the model transport 

equation for ε is obtained using physical reasoning and bears little resemblance to its 

mathematically exact counterpart [11]. 

 

and 

 

In these equations,  represents the generation of turbulence kinetic energy 

due to the mean velocity gradients.  is the generation of turbulence kinetic energy 

due to buoyancy.  represents the contribution of the fluctuating dilatation in 

compressible turbulence to the overall dissipation rate. ,  and  are constants. 

 and  are user-defined source terms. 
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The turbulent (or eddy) viscosity, , is computed by combining κ and ɛ as 

follows: 

 

The model constants , , ,  and  have the following default values 

in ANSYS FLUENT: 

          =1.3 

These default values have been determined from experiments with air and water for 

fundamental turbulent shear flows including homogeneous shear flows and decaying 

isotropic grid turbulence. They have been found to work fairly well for a wide range 

of wall-bounded and free shear flows [11]. 

2.2.2. STANDARD K-Ω MODEL 

The standard k-ω model is an empirical model based on model transport 

equations for the turbulence kinetic energy (k) and the specific dissipation rate (ω), 

which can also be thought of as the ratio of ω to k [12]. 

 

 

and 

 

In these equations,  represents the generation of turbulence kinetic energy 

due to the mean velocity gradients.  represents the generation of ω. and  

represent the effective diffusivity of κ and ω.  and  are user-defined source terms. 

The turbulent viscosity, , is computed by combining κ and ω as follows: 
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2.3. CFD TECHNIQUES 

2.3.1.  OVERVIEW OF FLOW SOLVERS 

ANSYS FLUENT has two solvers which use different numerical methods: 

pressure-based solver and density-based solver. 

The pressure-based approach was developed for low-speed incompressible 

flows, while the density-based approach was mainly used for high-speed compressible 

flows. However, recently both methods have been extended and reformulated to solve 

and operate for a wide range of flow conditions beyond their traditional or original 

intent.  

In both methods the velocity field is obtained from the momentum equations. 

In the density-based approach, the continuity equation is used to obtain the density 

field while the pressure field is determined from the equation of state. On the other 

hand, in the pressure-based approach, the pressure field is extracted by solving a 

pressure correction equation which is obtained by manipulating continuity and 

momentum equations. 

In both methods, the governing integral equations for the conservation of 

mass, momentum, energy, and other scalars such as turbulence will be solved. In both 

cases a control-volume-based technique is used. It consists of three subjects: the 

division of the domain into discrete control volumes using a computational grid; the 

integration of the governing equations on the individual control volumes to construct 

algebraic equations for the discrete dependent variables such as velocities, pressure, 

temperature and conserved scalars; and the linearization of the discretized equations 

and solution of the resultant linear equation system to yield updated values of the 
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dependent variables. The two numerical methods employ a similar discretization 

process (finite-volume), but the approach used to linearize and solve the discretized 

equations is different [11]. 

The density-based solver, the one used in this study, solves the governing 

equations of continuity, momentum, energy, and also species transport equations 

simultaneously (i.e., coupled together). Governing equations for additional scalars are 

solved afterward and sequentially (i.e., segregated from one another and from the 

coupled set). Because the governing equations are non-linear (and coupled), several 

iterations of the solution loop must be performed before a converged solution is 

obtained. This solver can be implicit or explicit. The one applied in this work is the 

implicit solver, which allows longer time steps while preserving stability at higher 

Courant numbers. 

2.3.2. DISCRETIZATION 

There are some computational techniques that are required to solve the 

governing equations. The process of obtaining the computational solution consists of 

two stages. The first stage involves the conversion of the partial differential equations 

(PDE) and auxiliary (boundary and initial) conditions into a system of discrete 

algebraic equations. This stage is known as the discretization stage. The second stage 

involves numerically solving the system of algebraic equations, which can be 

achieved by either direct methods, such as Gaussian Elimination and Thomas 

Algorithm, or iterative methods, such as Jacobi and Gauss-Siedel [10]. 

An overview process of the computational solution procedure is presented in 

Figure 2. 
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Figure 2: Overview process of the computational solution procedure [10]. 
 

Two of the most known discretizations tools are the finite difference and 

finite-volume method.  

In the finite-difference method, at each point of the grid used to describe the 

fluid-flow domain, the Taylor series expansions are used to generate finite-difference 

approximations to the partial derivatives of the governing equations. These 

derivatives, replaced by finite-difference approximations, yield an algebraic equation 

for the flow solution at each grid point.  This method generally requires a uniform 

distributed mesh. For a non-uniform grid distribution, some mathematical 

manipulation is required to transform the governing equations into a computational 

domain in generalized coordinates before applying the finite-difference 
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approximations. Figure 3 shows a representation of a one and two-dimensional 

uniformly distributed Cartesian grid for the finite difference method. 

In the finite-volume method, the computational domain is subdivided into a 

finite number of contiguous control volumes. Therefore, because this method doesn`t 

work with grid intersection points, it has the capacity to accommodate any type of 

grid. Then, instead of structured grids, unstructured grids can be employed. This 

feature allows this method to be adopted by almost all commercial CFD codes, 

including ANSYS FLUENT [10]. Figure 4 shows a representation of structured and 

unstructured mesh for the finite-volume method. 

 

 

Figure 3: Representation of a one and two-dimensional uniformly distributed Cartesian grid for 

the finite difference method [10]. 
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Figure 4: Representation of structured and unstructured mesh for the finite-volume method [10]. 

 

The equation governing the steady convection and diffusion process of a 

property  in a given one-dimensional flow field u is:  

 

By default, ANSYS FLUENT stores discrete values of the scalar  at the cell 

centers. However, face values  are required for the convection terms in the 

discretized transport equations and must be interpolated from the cell center values. 

This is accomplished using an upwind scheme. Upwinding means that the face value 

 is derived from quantities in the cell upstream, or "upwind,'' relative to the 

direction of the normal velocity [11]. 

The first order upwind scheme is stable and satisfies transportiveness, 

boundedness and conservativeness. Although this scheme promotes numerical 
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stability, it is widely known to cause unwanted numerical diffusion in space. In order 

to reduce these numerical errors, high order approximations, such as the second-order 

upwind and third-order QUICK scheme are widely applied. In this work, as it consists 

of 2D analyses, third-order approximations were not necessary. Only first and second-

order upwind schemes were used.  

2.3.3. GRID GENERATION 

CFD requires the subdivision of the domain into a number of smaller 

subdomains in order to solve the flow physics within the domain geometry that has 

been created. This result in the generation of a grid (or mesh) of cells (elements or 

control volumes) overlaying the whole domain geometry [10]. The essential fluid 

flows that are described in each of these cells are usually solved numerically so that 

the discrete values of the flow properties are determined. It is very important to create 

a well-constructed mesh because it will have a great influence on the solution. A mesh 

can be structured, unstructured or hybrid. 

A single block structured mesh usually may comprise square elements (2D) or 

hexahedral elements (3D) which are orthogonal in i, j space (2D) or i, j, k space (3D) 

and follow a uniform pattern. However, it is also possible to have wedges (3D), 

triangles (2D) and pyramids (3D) in a structured mesh. 

The connectivity on this type of mesh is straightforward because cells adjacent 

to a given elemental face are identified by the indices and the cell edges form 

continuous mesh lines that begin and end on opposite elemental faces as illustrated in 

Figure 5. The regularity of the connectivity allows conserving space since 

neighborhood relationships are defined by the storage arrangement.  
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Figure 5: Nodal indexing of Elemental cells in two and three dimensions for a structured mesh 

[10]. 

 

An unstructured mesh does not follow a uniform pattern. It is usually 

comprised of triangle elements (2D) or tetrahedron (3D). The cells are allowed to be 

assembled freely within the computational domain. The connectivity information for 

each face thus requires appropriate storage in the form of a table. Compared to 

structured meshes, the storage requirements for an unstructured mesh can be 

substantially larger. Figure 6 shows the representation of four neighboring surface 

triangles for unstructured grids that illustrates the indexing scheme. 
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Figure 6: Representation of four neighboring surface triangles for unstructured 

grids that illustrates the indexing scheme [13]. 

 

A hybrid mesh is a mesh that contains structured and unstructured portions. 

There is also a possibility of a "mixed" mesh. The term "mixed" is usually applied to 

meshes that contain both elements associated with structured meshes and elements 

associated with unstructured meshes. 

In this thesis, the designs were analyzed using structured grids. 
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CHAPTER III   

OPTIMIZATION 

Optimization is a tool to obtain the optimum value of a certain function. For a 

given application, several engineering projects are possible. However, due to 

economical costs, it is important to find the best configuration, which represents the 

optimum.  

3.1. BASIC CONCEPTS 

3.1.1. OBJECTIVE FUNCTIONS 

Defined as a mathematical expression of some value to be optimized. It can be 

either maximized or minimized. It can be represented as: 

 

Where  are variables that must be modified in order to reach the 

optimal values of U.  

3.1.2. CONSTRAINTS 

In real engineering problems there will always be constraints. For example, 

constraints can be due to environmental concerns or materials limitations. There are 

equality and inequality constraints. 

 → equality          (3.2) 

 → inequality       (3.3) 

3.2. DETERMINISTIC METHODS 

These are methods with strong mathematical background, thus, it is possible to 

prove that the minimum of a function under certain conditions was found. Because 

they require the computation of the gradient of the vector, which is the vector of the 

first derivatives of the object function, this is also called gradient-based methods. 
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Steepest descent method, the conjugate gradient method, the Newton–Raphson, and 

the quasi-Newton method are examples of deterministic methods. 

3.3. EVOLUTIONARY AND STOCHASTIC METHODS 

Evolutionary methods, in contrast to the deterministic methods, do not rely, in 

general, on strong mathematical basis and do not make use of the gradient nor second 

derivative of the objective function as a direction of descent. The evolutionary 

optimization algorithms attempt to mimic nature in order to find the minimum of the 

objective function [14]. However, there is no proof of convergence to a global 

minimum, although they usually converge. These methods require more function 

evaluations than the gradient-based ones. Genetic algorithm, differential evolution, 

particle swarm and simulated annealing are examples of evolutionary methods. 

3.3.1. GENETIC ALGORITHM 

This algorithm was used in this work. Genetic algorithms are heuristic global 

optimization methods that are based on the process of natural selection. They use only 

the values of the objective function, that is, they do not use gradients of the objective 

function.  Instead of starting from an initial guess, the optimizer starts from a 

randomly generated population of candidate designs and seeks to produce improved 

designs from one generation to the next. This is accomplished by exchanging genetic 

information between designs in the current population, in what is referred to as the 

crossover operation. Hopefully, this crossover produces improved designs, which are 

then used to populate the next generation [15], [16]. The size of the initial population 

is typically 5N to 10N, where N is the total number of design variables.  

The basic genetic algorithm works with a collection or population of candidate 

solutions to the optimization problem. The algorithm works in an iterative manner. At 

each iteration, also called generation, three operators are applied to the entire 
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population of designs. These operators are: selection, crossover and mutation [15]. In 

this method, the design variable is represented as a string of chromosomes, expressed 

in terms of binary variables.  

3.3.2. PARTICLE SWARM ALGORITHM 

This algorithm was also used in this work. It is a heuristic search method 

whose mechanics are inspired by the swarming or collaborative behavior of biological 

population [14].  

Particle Swarm Optimization (PSO) attempts to simulate the behavior of 

swarms of birds. This behavior is a combination of sociability and individuality of 

every member of the population. In PSO, a set of randomly generated solutions 

(initial swarm) propagates in the design space towards the optimal solution over a 

number of iterations based on large amount of information about the design space that 

is assimilated and shared by all members of the swarm. 

Particle Swarm is similar to the Genetic Algorithm (GA) in the sense that 

these two evolutionary heuristics are population-based search methods. In other 

words, PSO and the GA move from a set of points (population) to another set of 

points in a single iteration with likely improvement using a combination of 

deterministic and probabilistic rules. 

3.4. HYBRID OPTIMIZATION 

A hybrid optimization is a combination of the deterministic and the 

evolutionary/stochastic methods, in the sense that it utilizes the advantages of each of 

these methods. The hybrid optimization method usually employs an 

evolutionary/stochastic method to locate a region where the global extreme point is 

located and then automatically switches to a deterministic method to get to the exact 
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point faster. The hybrid optimization method is quite simple conceptually, although 

its computational implementation is more involved [17]. 

3.5. RESPONSE SURFACE METHODS 

To significantly accelerate the entire design optimization process, response 

surfaces (metamodels) were be used in this study. They are often used to replace very 

complicated physical models, to generate correlations of experimental data and to 

reduce the computational cost involved [1]. Response surfaces are mathematical 

functions used to simulate the behavior of processes, experiments, and complex 

engineering analysis techniques. They allow optimization techniques to be feasibly 

applied to classes of problems outside of computer evaluated objective functions. This 

occurs because a properly constructed response surface that captures the behavior of a 

complex, computationally intense objective can be used to speed up the optimization 

process. Also, a properly constructed response surface can be used to optimize a 

process, or experimental work, where only discrete, empirical samples of the 

underlying system’s response to process parameters can be evaluated [18]. There are a 

lot of different methods for generating response surface models. One of the most 

popular uses radial basis functions (RBFs). It was found that RBFs were able to 

construct an interpolation scheme with favorable properties such as high efficiency, 

good accuracy, and capability of dealing with scattered data, especially for higher 

dimension problems [14]. 

Another interpolation method is Kriging. This model is a response surface 

model that represents a relationship between objective function (output) and design 

variables (input) using a stochastic process. The Kriging model drastically reduces the 

computational time required for objective function evaluation in the optimization 

(optimum searching) process [19]. This method is based on the assumption that the 
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parameter being interpolated can be treated as a regionalized variable. A regionalized 

variable is intermediate between a truly random variable and a completely 

deterministic variable in that it varies in a continuous manner from one location to the 

next and therefore points that are near each other have a certain degree of spatial 

correlation, but points that are widely separated are statistically independent [20]. In 

optimization, this method is very accurate when the number of design variables is 

small. It was used in this research. 
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CHAPTER IV   

METHODS OF SOLUTION 

4.1. SHAPE GENERATION 

 In order to create the nozzle shapes, the Fortran code Shock-GSD-newH.for 

was used. This code can be found in Appendix B. Originally this code was created to 

find the location of a normal shock inside a quasi 1D converging-diverging nozzle. 

Therefore, by running the code, the shape and the mesh are generated and also other 

parameters are calculated, such as ratio of absolute temperatures, static pressure and 

gas density across the shock, Mach number computed just upstream and downstream 

of the shock and change in entropy. Several output files are created with all these 

data. However, for this study, only the information related to the nozzles’ shapes were 

considered.  

This code gives two options to the user specify the nozzle shape. The first one 

uses a fifth order polynomial in the x axis to find values of nozzle radius at any x 

location. In this case, parameters such as the inlet, throat and exit radii must be input 

by the user. The second one utilizes Mach number-area analytical relation. The 

parameters such as inlet, throat and exit Mach numbers must be specified in this 

option are. 

The first option was the one adopted in this thesis. The relevant input 

parameters to generate the shapes are the design variables considered in this work, 

except the throat radius, which is constant. The ranges of their values are presented in 

Table 1, below. The throat is placed at x = 0.0. Figure 7 shows the representation of 

input parameters. 
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Table 1: Range of input parameters (design variables). 

Inputs Range of values 

x- location of the inlet (Xi) -4 to -2.5 m 

x- location of the exit (Xe) 4 to 5.5 m 

nozzle inlet radius (Ri) 2 to 5 m 

nozzle exit radius (Re) 1.5 to 7 m 

nozzle inlet wall slope (alpha_i) -14 to -3 ° 

nozzle inlet wall slope (alpha_e) 3 to 15° 

nozzle throat radius (Rt) 0.5 m 

 

 

 
Figure 7: Representation of input parameters. 

4.2. MESH GENERATION 

After creating the geometries of the nozzles, they were imported by the 

software ANSYS GAMBIT, which was used to generate the grids.  

In order to mesh geometry in ANSYS GAMBIT, first it is necessary to mesh 

the edges and then mesh the face. 



 

27 

For the four edges considered (inlet, exit, axis and wall), the grid grading 

scheme chosen were different. For the axis and the wall, the grading scheme was 

constant with 200 intervals uniformly distributed from inlet to exit of the nozzle. 

However, because of the need of boundary resolutions near the wall, the grids have to 

be more clustered in this area. Therefore a non-symmetric grading scheme was 

applied to the inlet and exit edges. 

For each of the non-symmetric grading schemes, ANSYS GAMBIT positions 

mesh nodes along the edge, such that the ratio of any two succeeding interval lengths 

is constant [21]. That is, 

     

where  and are the lengths of intervals i and i+1, respectively and R is a fixed 

value. For any given number of intervals (n), the grading schemes differ from each 

other only with respect to the manner in which ANSYS GAMBIT determines the 

value of the interval length ratio (R). The Figure 8 describes the grading scheme. 

 

Figure 8: Edge mesh grading parameters [21]. 
 

The two grading schemes used were Successive Ratio and First Length. The 

Successive Ratio was applied to create the 200 uniforms intervals mentioned above. 

Therefore the interval length ratio (R) inputted was 1. The First Length scheme was 
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applied in the other 2 edges. The formula that GAMBIT uses to determine the interval 

length ratio (R), for this scheme is: 

 

In this scheme, the parameter to be input by the user is the first length, instead 

of the ratio. The values used varied depending on the nozzle inlet and exit radii, but 

they were between 0.1 and 0.2. The number of intervals chosen was 40, 50 or 60. 

Therefore, the nozzzles created had 8,000, 10,000 or 12,000 cells initially. Some 

adaptations were necessary later in some cases. Figure 9 shows mesh nodes along the 

nozzle edges in ANSYS GAMBIT. 

 

 

Figure 9: Mesh nodes along the edges of a CD nozzle in ANSYS GAMBIT. 

 

After creating the mesh nodes, it is necessary to mesh the face. In order to do 

that, two parameters must be specified: the “Elements” defines the shape of the 

elements that are used to mesh the face. The “Type” defines the pattern of mesh 

elements on the face. The element parameter chosen was “Quad”, which specifies that 

the mesh includes only quadrilateral mesh elements. The type parameter chosen was 
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“Map”, which creates a regular, structured grid of mesh elements. The Figure 10 

presents an example of a nozzle mesh generated in ANSYS GAMBIT. 

After those procedures, the boundary types were specified. Then, the nozzles            

meshes were ready to be exported to ANSYS FLUENT as a 2D mesh. 

 

Figure 10: Example of a nozzle mesh generated in ANSYS GAMBIT. 

 

4.3. ANSYS FLUENT 

As previously mentioned, the CFD software package used to analyze the fluid 

flow was ANSYS FLUENT. Two turbulence models were compared. 

4.3.1. DEFINING MODELS AND MATERIAL 

The converging-diverging nozzles were defined as 2D axisymmetric and 

solved using double precision. This solver gives more accurate results in cases that 

involve high speed and high thermal-conductivity ratios than the single-precision. 

Also, the density-based solver with implicit formulation was applied, 

considering the high Mach number flow. It is said that both pressured-based and 

density-based solvers were recently reformulated in order to be able to cover wider 

range of flow conditions. However, in the case studies performed in this work, it was 
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not possible to get convergence using pressure-based solver. This probably happened 

because the nozzle exit Mach number of the flow can reach a value of 8. 

Material properties were specified in ANSYS FLUENT.  The geometric 

domain (nozzle) was defined as a single-phase system which consisted of air modeled 

as ideal-gas. 

Two turbulence models were compared: standard k-ε and standard k-ω. For 

both models, the default constants presented in section 2.2 were used.    

4.3.2. DEFINING OPERATING PRESSURE 

 

It is important to set the operating pressure correctly in compressible flow 

calculations since the software uses it to compute the absolute pressure used in the 

ideal gas law. 

However, the operating pressure is only important for low Mach number flows 

(Ma << 1), when it is influenced by the numerical roundoff. For high Mach number 

flows, as the case in this work, this pressure should be set to zero. 

4.3.3. DEFINING BOUNDARY CONDITIONS 

INLET

So as to simulate the real condition of a flow entering a CD nozzle, instead of 

using a constant inlet temperature, a non-uniform profile was applied. The 

: In order to have hypersonic flow at the exit of the nozzles, the inlet 

pressure applied must be very high. The value defined as inlet total pressure was 20 

MPa. An initial guess had also to be input. For a subsonic inlet, as in this work, the 

initial guess should be the value of the static pressure. This value can be calculated 

from the 1D analysis. This value is updated by the code, but if it is not specified 

correctly, the solution will not converge. The initial guess chosen was 19.90 MPa.  



 

31 

temperature considered near the axis was 2200 K and it was decreasing radially at the 

inlet until 1000 K near the wall. One example of this profile is presented in Figure 11. 

 

 

Figure 11: Example of non-uniform radial temperature profile applied at the nozzle inlet. 

 

EXIT: The exit pressure was defined as 100 kPa. However, this value is used 

for subsonic flow only. Should the flow become locally supersonic, the pressure is 

extrapolated at the exit boundary. 

WALL

4.3.4. SOLVING 

: The wall was considered adiabatic. Therefore, the heat flux is zero.  

After applying all settings, the simulation should be initialized. However, the 

discretization methods and the under-relaxations factors must be defined first. The 

aim is to get convergence by using the second-order upwind method for flow, 

turbulent kinetic energy and specific dissipation rate, in order to reduce the numerical 

diffusion. Higher order approximations, such as the third-order QUICK scheme is not 

necessary. Since the cases are 2D, the second-order provides accurate results. 

However, in most of the cases, it was not possible to achieve the convergence 

directly, using the initial guess specified in boundary conditions. Therefore, it was 

necessary to start with the first-order upwind scheme. Since the convergence was 

reached, this solution was used as initial guess for the second-order upwind.  
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The default under-relaxations factors were used. In ANSYS FLUENT, the 

default under-relaxation parameters for all variables are set to values that are near 

optimal for the largest possible number of cases. However, sometimes when the 

solution was not converging, it was necessary to decrease these factors to obtain the 

convergence. 

Each of the 40 nozzle shape designs was solved until the residuals decreased 

by five orders of magnitude. The results of the 80 analyses were recorded; 40 using k-

ɛ  and 40 using k-ω turbulence models. Since the main purpose of this thesis is to 

optimize nozzle shapes in order to have the most uniform flow at exit, the density, 

temperature and Mach number distribution at the nozzle exit were computed and their 

standard deviations calculated by using the following formula: 

SD =  

Here,  is the mean and n is the size of the sample, which in this case is the 

number of points computed at the nozzle exit. 

4.4. MODEFRONTIER OPTIMIZATION SOFTWARE 

The multi-objective optimization software package utilized in this work was 

ModeFrontier [22]. All input variables and the standard deviations calculated from the 

density, temperature and Mach number distribution at the nozzle exit computed for 

the 40 shapes were placed in an Excel sheet and imported by ModeFrontier through a 

tool called “Data Wizard.” After defining in the software which parameters will be the 

input variables, outputs, objectives and constraints, a workflow was built and a 

Design Table was filled with the imported data. Table 2 presents the definition of 

those parameters in the software and Figure 12 shows the workflow created with these 

data. 
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Table 2: Definition of the imported data in ModeFrontier. 

Parameters Description Symbols Range of values 

Input variables x- location of the inlet Xi -4 to -2.5 m 

x- location of the exit Xe 4 to 5.5 m 

nozzle inlet radius Ri 2 to 5 m 

nozzle exit radius Re 1.5 to 7 m 

nozzle inlet wall slope Alpha_i -14 to -3 ° 

nozzle exit wall slope Alpha_e 3 to 15° 

Outputs standard deviation of the density 

distribution at the nozzle exit 

dens 
> 0 

standard deviation of the temperature 

distribution at the nozzle exit 

temp 
> 0 

standard deviation of the Mach number 

distribution at the nozzle exit 

Mach 
> 0 

Objectives Minimize the standard deviation of the 

density distribution 

Min_dens 
- 

Minimize the standard deviation of the 

temperature distribution 

Min_temp 
- 

Minimize the standard deviation of the 

Mach number distribution 

Min_mach 
- 

Constraints The standard deviation of the density 

distribution has to be greater than zero. 

Const_dens 
Dens > 0 

The standard deviation of the temperature 

distribution has to be greater than zero. 

Const_temp 
Temp > 0 

The standard deviation of the Mach number 

distribution has to be greater than zero. 

Conts_Mach 
Mach > 0 

 

It is obvious that the standard deviation has to be greater than zero. However, 

when the solutions were calculated without these constraints, some negative standard 

deviation appeared among them. This probably happened because of some fail on 

interpolation using response surfaces. In order to fix this problem, the constraints 

were added. 
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Figure 12: Workflow created in ModeFrontier. 

 

Since the Design Table is prepared, the process to generate response surfaces 

can start. At this point, the method to create them was specified. The Kriging method 

was chosen. In general, regardless of the meta-model type, design type, or the 

complexity of the response, the performance tends to improve when the number of 

real designs evaluated increases. 

After generating the surrogate models for density, Mach number and 

temperature standard deviations, the optimization starts. The method chosen was the 

Multi Objective Genetic Algorithm II (MOGA-II) designed for fast Pareto 

convergence. It supports geographical selection and directional cross-over and 

implements elitism for multi-objective search. Five hundred generations were created. 

Considering that the number of real analyses (shapes) imported was 40 (the design 

population size was 40 and kept constant), then 20,000 evaluations were made. 

The general aim of a single-objective optimization is to find one global 

optimum design. In a multi-objective optimization such as this one, the aim is to find 

a set of non-dominating solutions, which are defined as those designs whose one 
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objective cannot be improved without compromising the values of the remaining 

objectives. This set is called the Pareto frontier [16]. 

The Pareto frontier solutions were calculated. In order to validate the results of 

the optimization, three randomly chosen Pareto frontier solutions were evaluated as 

real designs. The three shapes were generated, meshed and analyzed in ANSYS 

FLUENT. The results for density, temperature and Mach number standard deviation 

were compared to the ones obtained using meta-models. 

Another optimization algorithm, Particle Swarm, was also used. The solutions 

calculated from both optimization algorithms were compared. 
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CHAPTER V   

RESULTS 

5.1. RESULTS FROM CFD 

Initially, eighty simulations were run in ANSYS FLUENT (40 using k-ɛ 

turbulence model and 40 using the k-ω turbulence model) and their results for density, 

Mach number and temperature standard deviations were computed. 

5.1.1. K-Ɛ   MODEL 

Among the 40 initial real designs, the test cases which had the minimum 

standard deviation for density, Mach number and temperature, respectively, for the k-

ɛ model analysis are shown in Table 3. Case 25 presented the most uniform flow in 

terms of density. Case 28 was the most uniform for Mach number and case 7, for 

temperature. 

Table 3: Designs which results in minimum standard deviation for density (case 25), Mach 

number (case 28) and temperature (case 7) using the k-ɛ model. 

Case 
X 

inlet 

X 

exit 

Inlet 

Radius 

Exit 

Radius 

Inlet 

angle 

Exit 

angle 

Standard Deviations 

Density 
Mach 

number 

Tempe-

rature 

25 -3.2 5.23 3.24 4.5 -9 8 0.1557 0.9950 96.5519 

28 -3 4.3 2 2.4 -6 9 0.4547 0.5436 88.3194 

7 -3.9 5 3.2 6 -10 9 0.4125 2.6141 52.3236 

 

Figure 13, Figure 14 and Figure 15 present the contour plots of density, Mach 

number and temperature distribution along the nozzles for cases 25, 28 and 7, 

respectively.  
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Figure 13: Contour plot of density distribution of case 25. 

 

 
Figure 14: Contour plot of Mach number distribution of case 28. 

 

 
Figure 15: Contour plot of temperature distribution of case 7. 
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In Figure 15, the inlet temperature profile applied can be observed, and Figure 

13 illustrates its influence on density. It can be observed that the fluid keeps roughly 

the same profile, until the throat, where the mixture occurs and it becomes more 

uniform downstream. 

In summary, Figure 13, Figure 14 and Figure 15  show the flow behavior 

aimed in this work. A flow with a non-uniform inlet temperature profile and low 

Mach number becomes sonic at the throat, where the fluid mixes and leaves the 

nozzle with a very high Mach number (around 5 or higher) and more uniform. Since 

these are hypersonic nozzles, no shock is expected inside the nozzle. Then, the flow 

will keep accelerating until the exit. However, in some cases, flow separation was 

observed. When it occurred in a very thin layer, it did not present a great impact at the 

velocity at the exit. However, when recirculation occurred, especially in designs with 

a large exit radius, it drastically decreased the Mach number near the wall. An 

example of recirculation and a thin layer of flow separation are respectively presented 

in Figure 16. 

 

Figure 16: Examples of a large recirculation and a thin layer of flow separation in nozzles. 

 

5.1.2. K-Ω  MODEL 

The same analysis was made for the k-ω model and it is presented Table 4. 
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Table 4: Designs which results in minimum standard deviation for density (case 25), Mach 

number (case 28) and temperature (case 15) using the k-ω model. 

Shape 
X 

inlet 

X 

exit 

Inlet 

Radius 

Exit 

Radius 

Inlet 

angle 

Exit 

angle 

Standard Deviations 

Density 
Mach 

number 

Tempe-

rature 

25 -3.2 5.23 3.24 4.5 -9 8 0.1528 1.0611 102.5766 

28 -3 4.3 2 2.4 -6 9 0.4544 0.5450 89.3406 

15 -3.4 4.9 4 7 -7 6 0.4124 2.5526 52.9310 

 

By analyzing Table 4, it can be observed that the case which presented the 

minimum standard deviation for density (shape 25) and the case which presented the 

minimum standard deviation for Mach number (shape 28) were the same as using the 

k-ɛ turbulence model. However, for the temperature, shape 15 obtained the minimum 

deviation. 

Comparing the cases presented for the two turbulence models, it was observed 

that the difference between their results was very small, although k-ω is a more robust 

model. k-ω performed slightly better for density, while the k-ɛ performed better for 

temperature and Mach number. 

5.2. RESULTS FROM OPTIMIZATION 

5.2.1. RESPONSE SURFACES ANALYSES 

As mentioned before, the response surface method was used for the 

optimization. Only the results from the k-ɛ turbulence model were considered. Meta-

models for density standard deviation, Mach number and temperature were created 

using the Kriging and RBF methods. Since the response surfaces were calculated, it 

was necessary to check if the output computed in the Designs Table in ModeFrontier 

coincided with the corresponding values computed by them. Ideally, if a response 

surface is able to identify the behavior of the system, the designs computed by the 
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response surface will coincide with the designs evaluated in the original workflow 

(real simulations) and contained in the Designs Table. A tool called “RSM distance” 

plots a diagonal line of approximately 45° which shows the distance between selected 

response surface and some evaluated designs. 

Figure 17 and Figure 18 illustrates that the meta-models created from the 40 

real design evaluations by using both Kriging and RBF methods, could identify their 

behaviors since the results coincided.  

Figure 19 shows two 3D response surfaces created by using both methods, 

which shows the minimum value calculated for density. In this case, it presents how 

the density is varying with the variables inlet radius (Ri) and exit radius (Re). When 

the other design variables are changed, this response surface behavior automatically 

changes.  

 

Figure 17: Comparison between k-ɛ model real designs evaluations and designs computed by 

response surfaces by using the Kriging method. 
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Figure 18: Comparison between k-ɛ model real designs evaluations and designs computed by 

response surfaces by using the RBF method. 
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Figure 19: Response surfaces of density, created by using Kriging and RBF method, seen from 

two different views. 

 

5.2.2. OPTIMIZATION RESULTS 

After creating the response surfaces and running the optimization for 500 

generations by using the Multi Objective Genetic Algorithm II (MOGA-II), 20,000 

virtual designs were evaluated and the Pareto Frontier solutions were calculated. The 

Figure 20 shows a 3D scatter plot of all the solutions calculated for both Kriging and 

RBF interpolation methods.  
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Figure 20: Scatter plot of the solutions for Kriging and RBF. 

 

By comparing those solutions, it is possible to see that the RBF method 

produced more unfeasible designs (errors), in other words, designs which parameters 

are out of those specified by the constraints. However, this is not enough to prove that 

the Kriging method performed better. In order to affirm that, it was necessary to 

validate the results of both methods in ANSYS FLUENT. The validations are 

presented in the next section. 

It can be observed that after each generation, the solution tends to move to the 

right side of the plot, which means that the values of the objectives are decreasing. 

This represents an improvement of the solution, since this is a minimization problem. 

The best designs are the rightmost points, which are also called “the Pareto Frontier 

solution” and are represented in two different views in Figure 21. 
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Figure 21: 3D scatter plot of the Pareto Frontier results seen by two different views. 

 

5.3. VALIDATION 

After obtaining the optimum virtual designs by using meta-models, it is 

necessary to check if the density, Mach number and temperature standard deviations 

computed correspond to the values obtained by real simulations. In order to validate 

these solutions, one randomly chosen Pareto design was evaluated in ANSYS 

FLUENT. The error between the virtual Pareto design and the real simulation is a 

good indicator of how accurate the response surfaces are. Table 5 presents the chosen 

Pareto designs and its parameters for Kriging and RBF methods and Table 6 presents 

the errors.  
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Table 5: Pareto design and their design variables for Kriging and RBF methods. 

ID in MF X inlet X exit 
Inlet 

Radius 

Exit 

Radius 

Inlet 

angle 

Exit 

angle 

 962 (Kriging) -3.4762 4.8447 3.4597 5.9169 -9.1095 8.1797 

2453 (Kriging) -2.854 4.1857 4.2 5.3958 -7.8333 1.4999 

7123 (RBF) -3.3785 4.2830 2.8065 2.9127 -13.401 14.972 

11823 (RBF) -2.9322 4.0497 4.7013 3.5526 -7.4868 1.4534 

 

Table 6: Errors related to density, Mach number and temperature standard deviations, between 

the virtual Pareto design and the real simulation. 

ID in 

MF 

ANSYS FLUENT ModeFrontier Error 

Standard Deviations Standard Deviations Standard Deviations 

Dens Mach Temp Dens Mach Temp Dens Mach Temp 

962 

(Kriging) 
0.1077 1.9058 132.025 0.037 2.57 42.47 65.66% 34.85% 67.83% 

2453 

(Kriging) 
0.4374 2.7618 63.5541 0.254 1.855 65 41.9% 32.8% 2.3% 

7123 

(RBF) 
0.2285 0.5477 97.1084 0.2833 0.2352 35.69 23.95% 57.05% 63.25% 

11823 

(RBF) 
0.3813 2.534 51.7169 0.49 3.838 58.51 28.5% 51.46% 13.14% 

 

By analyzing the values in table 6, it is possible to say that the response 

surfaces did not perform well for both methods, since the errors are large. Although 

the designs 2453 and 11823 presented a small error for temperature standard 

deviation, the other two designs presented a large error. This means that those 

response surfaces are not accurate and must be improved. 

Besides, analyzing the errors of standard deviations, it is possible to observe 

that the behavior of the response surfaces is unstable. By comparing the Kriging 

method designs, for the 2453, the smallest error was for temperature standard 

deviation. However, for the 962, the temperature standard deviation presented the 

largest error. The same happened with the RBF designs 7123 and 11823. 
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Figure 22 shows the contours plots of density, Mach number, static 

temperature and static pressure for the design 2453 obtained by Kriging method.  

By analyzing the Mach number contours plot, it is possible to see that there is 

recirculation at the divergent part. Therefore, although the Mach number can reach 

6.5 at the exit, where there is recirculation it is less than 1. Then, this should be 

avoided, since it decreases the velocity of the flow at the exit. However, among the 

real designs evaluated, 40 percent presented recirculation. It happened when the 

nozzle exit radius was very large compared to the throat radius. 

 

 
Figure 22: Contours of density, Mach number, static temperature and static pressure of the 

design 2453. 

 

 

5.4. ADDITION OF NEW REAL DESIGNS 

One way to improve the accuracy of response surfaces is by adding new real 

designs (increasing the number of high fidelity function evaluations). Their 
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performance tends to improve with the size of the design. This is especially true for 

Kriging method. Another way is by improving the quality of the real designs in terms 

of the distribution of the design variables within their own ranges. Although the range 

of each variable is specified, it may happen that some points be concentrated in a 

determined area instead of filling the entire range uniformly. Therefore, it is important 

to randomize the combination of each design defined by the six geometric design 

variables.  

Figure 23 illustrates an example of the non-uniform distribution of the 

variables (x-location of the exit, inlet radius, exit radius, inlet angle and exit angle) 

related to the x-location of the inlet, in the design space. It can be observed that some 

areas have a high concentration of points while some spaces are empty. Most 

probably, this is the cause of errors in the response surfaces evaluations. 

 

Figure 23: Non-uniform distribution of variables within the design space. The x-location of the 

exit (Xe), the inlet radius (Ri), the exit radius (Re), the inlet angle (alpha_i) and exit angle 

(alpha_e) are related to the x-location of the inlet (Xi). 
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In order to improve the accuracy of the response surfaces, 10 real designs were 

added to the 40 initial real designs. They were chosen in such a way to fill the gaps of 

the design spaces shown in Figure 24. 

 
Figure 24: Non-uniform distribution of variables within the design space after the addition of 10 

real designs. The x-location of the exit (Xe), the inlet radius (Ri), the exit radius (Re), the inlet 

angle (alpha_i) and exit angle (alpha_e) are related to the x-location of the inlet (Xi). 

 

After creating the new response surfaces and running the optimization with the 

same algorithm (MOGA II) for 500 generations, 25,000 virtual designs were 

computed for each interpolation method (Kriging and RBF). 

In order to validate the results, 2 designs from Kriging method and 1 from 

RBF were computed in ANSYS FLUENT. The input parameters of those designs are 

presented in Table 7. The comparison between the values from ANSYS FLUENT 

analysis and the ModeFrontier optimization are showed in Table 8. 
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Table 7: Pareto designs chosen and their design variables for Kriging and RBF methods. 

ID in 

MF 
X inlet X exit 

Inlet 

Radius 

Exit 

Radius 
Inlet angle 

Exit 

angle 

16303 

(Kriging) 
-2.9561 4.3217 4.1209 4.5218 -9.2470 13.7640 

18394 

(Kriging) 
-2.7357 4.4164 3.7784 4.3676 -10.0710 14.4640 

24680 

(RBF) 
-2.8638 4.3959 3.8301 3.9222 -9.9610 12.9330 

 
Table 8: Errors related to density, Mach number and temperature standard deviations, between 

the virtual Pareto designs and the real simulations after the addition of 10 real designs. 

ID in 

MF 

ANSYS FLUENT ModeFrontier Error 

Standard Deviations Standard Deviations Standard Deviations 

Dens Mach Temp Dens Mach Temp Dens Mach Temp 

16303 

(Kriging) 

 

0.4140 

 

 

2.6952 

 

 

86.2205 

 

 

0.2104 

 

 

2.386 

 

 

55.166 

 

 

49.18% 

 

 

11.47% 

 

 

36.02% 

 

18394 

(Kriging) 

 

0.1502 

 

 

1.3347 

 

 

125.9933 

 

 

0.034 

 

 

1.1929 

 

 

91.102 

 

 

77.36% 

 

 

10.63% 

 

 

27.69% 

 

24680 

(RBF) 

 

0.2151 

 

 

1.2640 

 

 

122.1156 

 

 

0.0403 

 

 

1.4544 

 

 

81.851 

 

 

81.29% 

 

 

15.06% 

 

 

32.97% 

 

 

 

After analyzing Table 8, it is possible to observe that the errors of the standard 

deviations are still large. However, by analyzing the designs of Kriging method, it is 

notorious that the behaviors of the response surfaces are more stable with the addition 

of the 10 real designs. For the 3 designs, the Mach number standard deviations 

presented the smallest errors, while the density, presented the largest. Figure 25 

presents the contours plots of design 24680. 
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Figure 25: Contours of density, Mach number, static temperature and static pressure of the 

design 24680. 

 

5.5.  COMPARISON BETWEEN TWO OPTIMIZATION ALGORITHMS 

In this section, the solution of the optimization of 50 real designs, using 

another evolutionary method, will be presented. Instead of MOGA II, the Multi-

Objective Particle Swarm algorithm (MOPSO) will be utilized. The same procedure 

will be followed.  

First, the response surfaces for the density, Mach number and temperature 

standard deviations were created from the 50 real designs using Kriging method (RBF 

was not used in this analysis). After that, the optimization was run for 500 

generations, using MOPSO. The computing time in this case was much greater than in 

MOGA II. While in MOGA II the optimization run in around 1 minute, in the case of 

MOPSO it took 2 hours. The results of this optimization process are presented in 

Table 9 and Table 10. 
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Table 9: Pareto design 4343 and its design variables computed using MOPSO. 

ID in 

MF 
X inlet X exit 

Inlet 

Radius 

Exit 

Radius 
Inlet angle 

Exit 

angle 

4343 

(Kriging) 
-3.398 4.3737 3.2207 2.3775 -10.2260 11.1450 

 
Table 10: Errors related to density, Mach number and temperature standard deviations, between 

the virtual Pareto design and the real simulation using MOPSO. 

ID 

in 

MF 

ANSYS FLUENT ModeFrontier Error 

Standard Devations Standard Devations Standard Devations 

Dens Mach Temp Dens Mach Temp Dens Mach Temp 

4343 0.591904 0.715677 80.15203 0.699 1.4502 56.324 18.09% 50.65% 29.73% 

 

By analyzing Table 10, it can be observed that, as in MOGA II, the errors of 

the standard deviations are large. However, by comparing the standard deviations 

calculated by ANSYS FLUENT, to the ones in Table 8, which represents the 

solutions using MOGA II, it can be observed that for Mach number and temperature, 

the standard deviations are smaller. This shows that the particle swarm algorithm is 

capable of converging further than a genetic algorithm, although both of them are able 

to find global minima.  
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CHAPTER VI  

CONCLUSIONS AND FUTURE WORK 

This research aimed to identify the optimal designs of converging-diverging 

supersonic and hypersonic nozzles that perform at maximum uniformity of 

thermodynamic and flow-field properties with respect to their average values at the 

nozzle exit. In order to solve this multi-objective design optimization problem, the 

parameters defining the shape of the nozzle were used as design variables. This work 

showed how the variation of such parameters influenced the nozzle exit flow non-

uniformities. 

Initially, 80 simulations were run, using two different turbulence models. The 

steps followed to find the solutions were as follows:  

1- Generation of 40 real nozzle shapes using a Fortran code. 

2- Generation of the computational mesh using a grid generator software 

package ANSYS GAMBIT. 

3- Simulations of the flow-fields and thermal analysis were run in the CFD 

software package ANSYS FLUENT for the 40 shapes, using k-ɛ and k-ω turbulence 

models with a total of 80 simulations. 

4- The standard deviations of the density, Mach number and temperature 

results at the exit of the nozzles were calculated and exported to the Optimization 

Software package, ModeFrontier. 

5- Response surfaces were generated through Kriging and RBF methods, using 

the data from the real simulations. 

6- The optimization was run using a multi-objective genetic algorithm. 

7- The Pareto solutions (the optimal designs) from the optimization were 

validated by randomly choosing one of the virtual designs generated and using its 
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values for the design variables in ANSYS FLUENT and computing the solutions for 

density, Mach number and temperature standard deviations. In order to compare both 

solutions, the errors were calculated. 

8- Ten more real designs were added to the 40 initial real designs population 

and the 50 real designs were optimized using genetic algorithm. 

9- The Pareto solutions (the optimal designs) were validated and compared to 

the previous optimization (of 40 real designs). 

10- A new optimization was run for the 50 real designs using Multi-Objective 

Particle Swarm algorithm (MOPSO) instead of genetic algorithm. 

11- The results were validated and compared to the ones of MOGA II. 

After this process, some conclusions were made. First, a comparison between 

the k-ε and k-ω turbulence models showed that there was not a great difference 

between the solutions for the two turbulence models. k-ω performed slightly better for 

density, while k-ε performed better for temperature and Mach number. 

After that, a first analysis has shown that the response surfaces created could 

identify the behaviors of the real designs by using Kriging and RBF methods. 

However, after validating in ANSYS FLUENT four of the virtual shapes, it was 

observed that the errors calculated were large for density and Mach number and 

temperature standard deviations and the behavior of the response surfaces were 

unstable. One possibility to explain those large errors encountered is the fact that, in 

order for the response surfaces to present a good accuracy, entire range of each design 

variable must be well explored to fill the design space uniformly. If the opposite 

happens, the area which does not have a lot of points, will be badly interpolated and 

therefore, inaccurately represented by the response surfaces. Figure 23 showed that 

the distribution used was not uniform. One way to try solving this problem was to add 
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10 real designs to the initial population of 40 designs. However, it was shown that it 

did not affect the errors as much as expected, but improved the behavior of the 

response surfaces.  

By running the optimization of the same problem, but using another 

optimization algorithm (particle swarm) instead of MOGA II, it could be observed 

that although the errors of the response surfaces were large, the values of Mach 

number and temperature standard deviations calculated in ANSYS FLUENT were 

smaller than those when optimization was done by using genetic algorithm. This can 

represent a better capacity of particle swarm to find the global minima. 

By adding 10 real designs to the 40 initial ones, it was possible to see an 

improvement of the response surfaces. By adding more real designs, the accuracy of 

response surfaces can increase, since it will improve the quality of the interpolation 

and thus, the performance of the surrogate models. This can be done in a future work. 

It is important to emphasize that not only the numbers of real designs will influence, 

but also the distribution of the design variables values in the design space. It should be 

as uniform as possible. In order to get this uniformity, a Sobol`s algorithm [23] can be 

used to generate the design variables randomly. Also, other response surface 

algorithms (such as RBF polynomial method [14], [17]) could be tested to try to get 

better results. Hybrid multi-objective optimization, which was explained in this thesis 

although it has not been used, can also be tested. Since it is a combination of the 

deterministic and the evolutionary/stochastic methods, in the sense that it utilizes the 

advantages of each of these methods, the results of this challenging optimization 

problem may be better. 
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APPENDICES 

A. FIFTY  REAL DESIGNS INPUTS AND STANDARD DEVIATIONS CALCULATED  IN 

ANSYS FLUENT 

Shape 
X 

inlet 

X 

 exit 

Inlet 

Radius 

Exit 

Radius 

Inlet 

angle 

Exit 

angle 

Standard deviation 

Dens 
Mach 

Number 
Temp 

1 -4 5 3 5 -10 10 0.3662 2.5994 75.2607 

2 -3 4 3 2.5 -5 5 0.5814 0.7320 105.1199 

3 -3.8 4.2 4 6.5 -8 12 0.4158 2.6510 57.0631 

4 -4 4.8 5 4 -9 12 0.2007 0.9256 107.9418 

5 -3.7 5 2.4 4.2 -13 13 0.3987 2.6361 77.2453 

6 -3.9 5 3.2 6 -10 9 0.4125 2.6141 52.3236 

7 -3.4 4 4 2.8 -12 12 0.4160 2.6156 54.8807 

8 -3.4 4 2.5 3.7 -14 8 0.3553 2.4983 79.6133 

9 -3.5 4.8 2.9 5 -8 9 0.4129 2.6144 55.5327 

10 -3.6 4 3 3.5 -3 5 0.3689 2.5223 72.1669 

11 -3.8 4.8 5 7 -10 9 0.4035 2.4738 54.0524 

12 -3.6 4.9 4.2 5.9 -12 10 0.4309 2.7005 53.5624 

13 -3.2 4.1 2.6 1.9 -9 12 0.8701 0.6404 70.6060 

14 -3.4 4.9 4 7 -7 6 0.4137 2.5533 52.5845 

15 -4 4.3 2.5 3.3 -7 8 0.3146 2.3228 93.9024 

16 -3.4 4 4 2.8 -13 11 0.5124 0.9127 119.6306 

17 -3.8 4.3 4.6 4.1 -10 12 0.4070 2.6639 71.4028 

18 -3.4 4.4 2.4 4.1 -9 12 0.3821 2.5850 72.5221 

19 -3 4.5 2.3 1.9 -10 12 0.8587 0.7491 73.8689 

20 -3.1 4.9 2.5 3.2 -10 12 0.4618 0.9310 95.7283 

21 -3.1 4.8 2 3.2 -10 6 0.3073 0.6823 95.9651 

22 -3.4 4.8 2.5 2.2 -8 9 0.7077 0.6709 73.9122 

23 -2.7 4.15 3.5 4.2 -6 9 0.1747 1.1550 117.4955 

24 -3.2 5.23 3.24 4.5 -9 8 0.1557 0.9950 96.5519 

25 -2.9 4.6 2.3 4.1 -6 9 0.3980 2.6038 75.5317 

26 -3.24 5.2 3.2 4.1 -7 10 0.1843 1.0161 100.2541 
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27 -3 4.3 2 2.4 -6 9 0.4547 0.5436 88.3194 

28 -3.45 5.4 4.2 5 -10 11 0.4544 2.9048 80.0762 

29 -3.4 4.5 3.1 3.4 -4 6 0.3236 0.8333 97.0224 

30 -3.09 4.7 2.3 3.9 -10 10 0.2240 0.9564 101.7904 

31 -3.3 4.8 2.4 2.9 -12 12 0.3052 0.5494 85.4182 

32 -3.2 4.9 2.8 3.5 -4 6 0.3260 0.8423 95.1974 

33 -2.9 4.7 3.1 3.7 -13 14 0.2047 0.9922 104.1040 

34 -3.1 4.4 2.4 2.65 -10 9 0.4615 0.5769 87.3665 

35 -3 4.8 3.2 4 -9 12 0.1818 1.0289 103.3060 

36 -3.4 5.2 2 2.8 -4 7 0.3571 0.5758 87.6335 

37 -2.8 4.5 3.2 4 -13 15 0.1684 1.0223 102.2231 

38 -3 4.9 2 2.6 -10 15 0.3249 0.5645 80.9213 

39 -3.4 5.05 3.1 4 -9 4 0.2195 0.8941 103.5500 

40 -3 5.15 2.6 4.2 -8 3 0.2409 1.1435 110.4944 

41 -2.7 5 4 6 -8.5 6 0.4652 2.9439 69.7593 

42 -2.7 5.1 3.8 6.5 -11 7 0.4640 2.9172 63.6838 

43 -3.2 4.4 4.8 5.5 -3.2 15 0.4375 2.7720 61.9109 

44 -3.8 5.4 3.5 7 -5.5 3.8 0.4002 2.5283 49.0601 

45 -3.7 4.4 3.4 2 -7 7 0.9856 0.8323 81.7401 

46 -3.2 5.4 3.6 6.6 -11 13.5 0.4597 2.9051 59.7186 

47 -2.8 4.2 4.9 4.8 -3.5 10.5 0.4379 2.7732 77.6269 

48 -4 5.3 4.4 6.8 -13.5 4.2 0.4470 2.8170 56.0074 

49 -3.5 5.2 4.6 6.2 -5 14.5 0.4580 2.8729 62.0783 

50 -3.75 5.2 2.8 2.8 -11 15 0.3031 0.5280 81.5569 
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B. FORTRAN CODE USED TO CREATE THE NOZZLE SHAPES 

parameter (idm=201) 
 IMPLICIT REAL*8 (A-H,O-Z) 
 dimension mat(4,4),b(4),coeff(6),XX(idm),RR(IDM),AA(idm) 
 dimension xmach(idm),temperature(idm),density(idm),pressure(idm) 
 dimension radius(idm) 
      real*8 k,mat 
C 
C.... OPEN OUTPUT FILE FOR FINAL COMPUTATIONAL VALUES 
      OPEN(UNIT =12,FILE = 'Q1D-output.dat',status='unknown') 
      OPEN(UNIT =30,FILE = 'Q1D-X-coord.dat',status='unknown') 
      OPEN(UNIT =31,FILE = 'Q1D-Radius.dat',status='unknown') 
      OPEN(UNIT =32,FILE = 'Q1D-Area.dat',status='unknown') 
      OPEN(UNIT =34,FILE = 'Q1D-Machisent.dat',status='unknown') 
      OPEN(UNIT =36,FILE = 'Q1D-TT01isent.dat',status='unknown') 
      OPEN(UNIT =38,FILE = 'Q1S-RR01isent.dat',status='unknown') 
      OPEN(UNIT =40,FILE = 'Q1D-PP01isent.dat',status='unknown') 
      OPEN(UNIT =42,FILE = 'Q1D-Machshock.dat',status='unknown') 
      OPEN(UNIT =44,FILE = 'Q1D-TT01shock.dat',status='unknown') 
      OPEN(UNIT =46,FILE = 'Q1D-RR01shock.dat',status='unknown') 
      OPEN(UNIT =48,FILE = 'Q1D-PP01shock.dat',status='unknown') 
 OPEN(UNIT =50,FILE = 'Q1D-
SHOCKDATA.DAT',STATUS='UNKNOWN') 
 OPEN(UNIT =51,FILE = 'Q1D-x-r-grid.DAT',STATUS='UNKNOWN') 
 
      write(*,*)' Finding location of a shock in a choked diffuser for' 
 write(*,*)' a specified exit static press./inlet stagnat. press.' 
 write(*,*)'Program put together by Prof. George S. Dulikravich' 
 write(*,*)'August 4, 2012,  Florida International University' 
      write(*,*) 
      write(12,*)' Finding location of a shock in a choked diffuser for' 
 write(12,*)' a specified exit static press./inlet stagnat. press.'  
 write(12,*)'Program put together by Prof. George S. Dulikravich' 
 write(12,*)'August 4, 2012,  Florida International University' 
      write(12,*) 
 
      write(*,*)' Enter specific heat ratio "k" for the gas' 
      read(*,*)   k 
      write(12,*)' Specific heat ratio: ',k 
 
 pi   = acos(-1.0000000000000000) 
 twopi= 2.00000000000000*pi 
 gp1  = k + 1.0 
 gm1  = k - 1.0 
 gp1h = gp1/2.0 
 gm1h = gm1/2.0 
 EX   = -gp1h/gm1 
 BLA1 = 2.0/(K + 1.0000000) 
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 GEX  = (K + 1.0000)/(K - 1.00000) 
 
 write(*,*) 'Input for a 2D conv./diverg. nozzle shape generator:' 
 write(*,*) 'COORDINATE ORIGIN IS AT THE CENTER OF THE 
THROAT' 
 write(*,*)'Number of grid cells desired along the nozzle (ICELLS)' 
      write(*,*) '(important:  ICELLS < idm)' 
 read(*,*)   ICELLS 
      write(*,*) 'x-location of the inlet (must be negative) = ' 
      read(*,*) xin 
      write(*,*) 'x-location of the exit (must be positive) = ' 
      read(*,*) xex 
c------ echo 
 write(*,*) 'Input for a 2D conv./diverg. nozzle shape generator:' 
 write(*,*) 'COORDINATE ORIGIN IS AT THE CENTER OF THE 
THROAT' 
 write(*,*)'Number of grid cells desired along the nozzle (ICELLS)' 
      write(*,*) '(important:  ICELLS < idm)' 
 write(*,*)   ICELLS 
      write(*,*) 'x-location of the inlet (must be negative) = ' 
      write(*,*) xin 
      write(*,*) 'x-location of the exit (must be positive) = ' 
      write(*,*) xex 
 
 If ((icells+1) .gt. idm) then 
 write(*,*) 'You must make IDM larger than ICELLS' 
 stop 
 endif 
 
      XTH    = 0.0000000000000 
      CELLS1 = ICELLS*((XTH - XIN)/(XEX - XIN)) 
 ICELLS1= CELLS1 
 ICELLS2= ICELLS - ICELLS1 
 IMAX1  = ICELLS1 + 1 
 IMAX2  = ICELLS2 + 1 
 IMAX   = ICELLS  + 1 
C WRITE(*,*) 'IMAX1, IMAX2, IMAX', IMAX1,IMAX2,IMAX 
          dx1 = (xth - xin)/float(IMAX1-1) 
      do 10 i = 1,IMAX1 
 XX(I) = xin + (i-1)*dx1 
10    continue 
          dx2 = (xex - xth)/float(IMAX-IMAX1) 
      do 20 i = IMAX1,IMAX 
 XX(I) = xth + (i-IMAX1)*dx2 
20    continue 
 
      write(*,*) 'Enter index choosing nozzle shape creation method:' 
 write(*,*) 'GGG=1 use 5th order polynomial to fit input values' 
 write(*,*) 'GGG=2 use area-Mach number relation to create shape' 
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      read(*,*) GGG 
      write(12,*) 'Enter index choosing nozzle shape creation method:' 
 write(12,*) 'GGG=1 use 5th order polynomial to fit input values' 
 write(12,*) 'GGG=2 use area-Mach number relation to create shape' 
      write(12,*) GGG 
 
C----- determine coefficients of 5th order polynomial defining nozzle 
      IF(GGG.EQ.1) then 
      write(*,*) 'inlet radius of the nozzle = ' 
      read(*,*) radin 
      write(*,*) 'throat radius of the nozzle = ' 
      read(*,*) radth 
      write(*,*) 'exit radius of the nozzle = ' 
      read(*,*) radex 
      write(*,*) 'inlet angle(deg) of the wall (negative and <|75|)' 
      read(*,*) angin 
      write(*,*) 'exit angle(deg) of the wall (positive and <|75|)' 
      read(*,*) angex 
c--echo of the inputted data    
      write(12,*) radin 
      write(12,*) 'throat half-width of the nozzle = ' 
      write(12,*) radth 
      write(12,*) 'exit half-width of the nozzle = ' 
      write(12,*) radex 
      write(12,*) 'inlet angle(deg) of the wall (negative and <|75|)' 
      write(12,*) angin 
      write(12,*) 'exit angle(deg) of the wall (positive and <|75|)' 
      write(12,*) angex 
 
   tanin = tan((angin/180.0000000000000)*pi) 
      tanex = tan((angex/180.000000000000)*pi) 
 
c   solves for the 5th order equation describing the nozzle shape 
   coeff(1) = radth 
   coeff(2) = 0.0 
c   Load mat 
   mat(1,1) = xin*xin 
   mat(2,1) = xex*xex 
   mat(3,1) = 2.0*xin 
   mat(4,1) = 2.0*xex 
   mat(1,2) = xin**3 
   mat(2,2) = xex**3 
   mat(3,2) = 3.0*(xin*xin) 
   mat(4,2) = 3.0*(xex*xex) 
   mat(1,3) = xin**4 
   mat(2,3) = xex**4 
   mat(3,3) = 4.0*(xin**3) 
   mat(4,3) = 4.0*(xex**3) 
   mat(1,4) = xin**5 
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   mat(2,4) = xex**5 
   mat(3,4) = 5.0*(xin**4) 
   mat(4,4) = 5.0*(xex**4) 
c   Load b 
   b(1) = radin - coeff(1) 
   b(2) = radex - coeff(1) 
   b(3) = tanin 
   b(4) = tanex 
C------ solve a 5x5 matrix to find coefficients of 5th order polynomial 
 
 CALL GAUSSJ(mat,4,4,b,1,1) 
 
   coeff(3) = b(1) 
   coeff(4) = b(2) 
   coeff(5) = b(3) 
   coeff(6) = b(4) 
 
      do 40 i = 1,imax 
      x = xx(i) 
   r = 0.0000000000 
 do 30 n=1,6 
   r = r + coeff(n)*(X**(n-1)) 
30    continue 
 rr(i)    = r 
      AA(i)    = r*r*pi 
40    continue 
         endif 
 
C------use area-Mach number relation to find nozzle shape 
      IF(GGG.EQ.2) then 
C----------------------------------------------------------------------- 
      write(*,*) 'inlet Mach number' 
      read(*,*) EMin 
      write(*,*) 'exit Mach number = ' 
      read(*,*) EMex 
 write(*,*) 'inlet-to-throat clustering amplitude (0.0 < 0.9)' 
 read(*,*) AMP1 
 write(*,*) 'throat-to-exit clustering amplitude (0.0 < 0.9)' 
 read(*,*) AMP2 
c--echo of the inputted data 
      write(*,*) 'inlet Mach number = ' 
      write(*,*) EMin 
      write(*,*) 'exit Mach number = ' 
 write(*,*) EMex 
 write(*,*) 'inlet-to-throat clustering amplitude (0.0 < 0.9)' 
 write(*,*) AMP1 
 write(*,*) 'throat-to-exit clustering amplitude (0.0 < 0.9)' 
 write(*,*) AMP2 
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 BLA1= 2.0/(K + 1.0000000) 
      GM1H= (K - 1.0000000)/2.000000000 
 GEX = (K + 1.0000)/(K - 1.00000) 
 EMTH= 1.00000000000 
        DO 45 I=1,IMAX1 
 XBAR = (XX(I) - XIN)/(XTH - XIN) 
 BLA  = XBAR - (AMP1/TWOPI)*SIN(TWOPI*XBAR) 
 EM   = EMIN + (EMTH - EMIN)*BLA 
 EM2  = EM*EM 
 A2AT2= (BLA1*(1.0 + GM1H*EM2))**GEX 
C        WRITE(*,*) 
'I,XX(I),XBAR,BLA,EM,A2AT2',I,XX(I),XBAR,BLA,EM,A2AT2 
 A    = SQRT(A2AT2/EM2) 
 RR(I)= SQRT(A/PI) 
 AA(I)= A 
45    CONTINUE 
        DO 50 I=IMAX1,IMAX 
 XBAR = (XX(I) - XTH)/(XEX - XTH) 
 EM   = EMTH + (EMEX - EMTH)*(XBAR-
(AMP2/TWOPI)*SIN(TWOPI*XBAR)) 
 EM2  = EM*EM 
 A2AT2= (BLA1*(1.0 + GM1H*EM2))**GEX 
C        WRITE(*,*) 'I,XX(I),EM,A2AT2',I,XX(I),EM,A2AT2 
 A    = SQRT(A2AT2/EM2) 
 RR(I)= SQRT(A/PI) 
 AA(I)= A 
50    CONTINUE 
        endif 
 
      AINLET = AA(1) 
 ATHROAT= AA(IMAX1) 
 AEXIT  = AA(IMAX) 
 WRITE(*,*) 'AINLET  =',AINLET 
 WRITE(*,*) 'ATHROAT =',ATHROAT 
 WRITE(*,*) 'AEXIT   =',AEXIT 
 WRITE(12,*) 'AINLET  =',AINLET 
 WRITE(12,*) 'ATHROAT =',ATHROAT 
 WRITE(12,*) 'AEXIT   =',AEXIT 
 write(12,*)'There are',IMAX,' points along the nozzle' 
 write(12,*) '     xnozzle                   rnozzle  ' 
      WRITE(30,*) IMAX,IMAX 
 WRITE(31,*) IMAX,IMAX 
 WRITE(32,*) IMAX,IMAX 
 
      DO 55 I=1,IMAX 
      write(12,*) XX(I),RR(I),I 
 write(30,*) XX(I) 
 write(31,*) RR(I) 
 write(32,*) AA(I) 
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55    continue 
 
      write(*,*)' Enter minimum desired exit pressure ratio pB1/p01' 
 write(*,*)'(0.0 < pB1/p01 < 1.0; typically 0.2 to 0.9)' 
      read(*,*)   pB1P01 
 write(12,*)'Minimum desired exit pressure ratio PB1/P01=',PB1P01 
      write(*,*)' Enter maximum desired exit pressure ratio pB2/po1' 
 write(*,*)'(0.0 < pB2/p01 < 1.0; typically 0.2 to 0.9)' 
 write(*,*)'NOTE: pb2/p01 must be grater than pB1/p01' 
 read(*,*)   pB2P01 
      write(12,*)'Maximum desired exit pressure ratio PB2/P01=',PB2P01 
 write(*,*)' Enter increments in exit pressure ratio to analyze' 
      read(*,*)   DpBP01 
      write(12,*)'Increments in exit pressure ratio to analyze=',DPBP01 
C 
      write(12,*) 
 write(12,*)'ONE OF THE FOLLOWING MESSAGES MIGHT 
EVENTUALLY APPEAR'  
      write(12,*)' XSHOCK < XIN means nozzle is entirely subsonic' 
      write(12,*)' (that is, back pressure is too high to choke nozzle)' 
      write(12,*) 
      write(12,*)' XSHOCK > XEX means fully supersonic nozzle case' 
      write(12,*)' (that is, shock is outside of nozzle)' 
      write(12,*) 
      write(*,*) 
 write(*,*)'ONE OF THE FOLLOWING MESSAGES MIGHT 
EVENTUALLY APPEAR'  
      write(*,*) ' XSHOCK < XIN means nozzle is entirely subsonic' 
      write(*,*) '(that is, back pressure is too high to choke nozzle)' 
      write(*,*) 
      write(*,*) ' XSHOCK > XEX means fully supersonic nozzle case' 
      write(*,*) ' (that is, shock is outside of nozzle)' 
      write(*,*) 
 WRITE(12,*)'XSHOCK = CONVERGED LOCATION OF THE NORMAL 
SHOCK' 
 WRITE(12,*)'PBP01= EXIT STATIC PRESSURE/INLET STAGNATION 
PRESSURE' 
 WRITE(12,*)'T2T1=RATIO OF ABSOLUTE TEMPERATURES ACROSS 
THE SHOCK' 
 WRITE(12,*)'R2R1=RATIO OF GAS DENSITIES ACROSS THE SHOCK' 
 WRITE(12,*)'P2P1=RATIO OF STATIC PRESSURES ACROSS THE 
SHOCK' 
 WRITE(12,*)'EM1=MACH NUMBER COMPUTED JUST UPSTREAM OF 
THE SHOCK' 
 WRITE(12,*)'EM2=MACH NUMBER COMPUTED JUST DOWNSTREAM 
OF THE SHOCK' 
 WRITE(12,*)'EMEX=MACH NUMBER COMPUTED AT THE NOZZLE 
EXIT' 
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 WRITE(12,*)'DELSR=CHANGE IN ENTROPY ACROSS THE NORMAL 
SHOCK/ 
     # GAS CONSTANT' 
 
      write(12,*) 
      WRITE(12,*) '        CALCULATED VALUES ALONG THE NOZZLE' 
 WRITE(12,*) 'USING AREA - MACH NUMBER (ISENTROPIC 
RELATIONS ONLY)' 
 WRITE(12,*) ' NOTICE: THIS WILL GIVE A LOWER ENVELOPE P/P01 
CURVE' 
      WRITE(12,60)  
60    
FORMAT(5x,1HI,7x,1HX,8x,6HRADIUS,4x,4HAREA,9x,4HMACH,6x,5HT/T
01,6x, 
     #       5HR/R01,6x,5HP/P01) 
C2345678901234567890123456789012345678901234567890123456789012345
6789012 
C-----------------------------------------------------------------------  
C------ Use second order Newton (or Housdorfer) iterative method to find 
C------ local Mach number values from the local cros-sectional nozzle area 
C------ values (from Area - Mach number relation). NOTICE: This assumes 
C------ no shock in the nozzle and isentropic flow throughout 
 write(34,*) imax,imax 
 write(36,*) imax,imax 
 write(38,*) imax,imax 
 write(40,*) imax,imax 
 
      emc    = 0.1 
 
       do 100 i =1,imax 
      X      = xx(i) 
 R      = RR(I) 
 A      = AA(I) 
      AC     = A/ATHROAT 
 if(x .ge. 0.0001) emc = 1.1*emc 
 
   DO 65 ITR=1,1000 
      BLA   = 1.0D+00 + gm1h*EMC*EMC 
      BLAD  = 1.0D+00 + gm1h 
 G     = (BLAD/BLA)**EX 
        F     = G/EMC - AC 
      H     = gp1h/BLA - 1.0D+00/(EMC*EMC) 
        FP    = G*H 
 HH    = (gp1h/(BLA*BLA))*EMC*((1.0D+00 - K)+gp1h) 
 HHH   = -
(gp1h/BLA)*(1.0D+00+1.0D+00/EMC)+2.0D+00/(EMC*EMC*EMC) 
   FPP   = G*(HH+HHH) 
 FNC   = F/FP 
 FNCP  = 1.0D+00 -(F*FPP)/(FP*FP) 
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 DMC   = FNC/FNCP 
C   if(x .gt. 0.0001) then 
 FNCP  = 1.0D+00 - fnc*(fpp/(2.0d+00*fp)) 
 DMC   = FNC*FNCP 
C   endif 
 EMCO  = EMC 
 EMC   = EMC - DMC 
c WRITE(12,49) ITR,F,FP,DMC,EMC 
c49    FORMAT(4HITR=,I5,4H  F=,E15.6,5H  FP=,E15.6,6H  DMC=, 
c     #       E15.6,5H EMC=,F12.6) 
C      if ((Dabs(f).lt.0.00000001).or.(Dabs(fp).lt.0.00000001)) goto 75 
      IF(DABS(DMC).LT.0.00000001) GO TO 75 
65    CONTINUE 
75    continue 
 tt01  = 1.0000000/(1.00000000000000000 + gm1h*emc*emc) 
 rr01  = tt01**(1.00000000000000/gm1) 
 pp01  = rr01**k 
  xMach(i)       = emc 
  Temperature(i) = tt01 
  Density(i)     = rr01 
  Pressure(i)    = pp01 
      WRITE(12,110) I,X,R,AC,EMC,TT01,RR01,PP01 
100   continue 
110   FORMAT(1X,I5,7f11.4) 
111   format(1x,f15.6) 
 
c------ Save subsonic-to supersonic isentropic flow along the nozzle 
 write(34,111) (xMach(i),i=1,imax) 
 write(36,111) (temperature(i),i=1,imax) 
 write(38,111) (density(i),i=1,imax) 
 write(40,111) (pressure(i),i=1,imax) 
 
      write(12,*) 
      write(12,*) 'Following values were computed at',imax,' locations' 
 write(12,*) 'from inlet to exit of the entire nozzle for the' 
 write(12,*) 'case of ISENTROPIC flow and saved in these files:' 
 write(12,*) 'Q1D-Machisent.dat (local Mach number)' 
 write(12,*) 'Q1D-TT01isent.dat (local Temp./inlet stagnat. temp.)' 
 write(12,*) 'Q1D-RR01isent.dat (local Dens./inlet stagnat. dens.)' 
 write(12,*) 'Q1D-PP01isent.dat (local Pres./inlet stagnat. pres.)' 
 
C****************************************************************
****C 
C2345678901234567890123456789012345678901234567890123456789012345
6789012 
c$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$
$$$ 
 
C----- main loop starts here TO FIND A POSSIBLE SHOCK IN THE NOZZLE 
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 WRITE(12,*) 
      WRITE(12,*)'Main loop starts here TO FIND A POSSIBLE SHOCK' 
 WRITE(*,*) 
      WRITE(*,*) 'Main loop starts here TO FIND A POSSIBLE SHOCK' 
 WRITE(50,120) 
120   
FORMAT(2X,4HITER,3X,6HXSHOCK,2X,5HPBP01,3X,4HP2P1,4X,4HR2R1, 
     #       4X,4HT2T1,5X,3HEM1,5X,3HEM2,5X,4HEMEX,3X,5HDELSR) 
C     Guess a location at which the shock is located 
 
         do 500 pBP01 = pB1P01,pB2P01,dpBP01 
 
      XSHOCK = 0.001 
      EM1    = 1.01 
 
      write(12,125) pbp01 
125   format(//,'CASE WHEN EXIT PRESS/INLET STAGNATION 
PRESS=',F10.4) 
 write(12,126)  
126   format(1x,4Hiter,9x,3Hem1,11x,3Hem2,11x,4Hemex,9x,5Hpep01, 
     #       8x,6Hxshock) 
      iter   = 0 
      nsign  = 0 
      step   = 0.01 
  
150    continue 
      AD = 1.000000000 
 
        IF(GGG.EQ.1) THEN 
   r = 0.0000000000 
 do 160 n=1,6 
   r = r + coeff(n)*(XSHOCK**(n-1)) 
160   continue 
        ENDIF 
 
        IF(GGG.EQ.2) THEN 
      do 165 i=imax1+1,imax 
 if(xx(i).lt.xshock) go to 164 
 ishock = i 
 go to 166 
164   continue 
165   continue 
166   continue 
      rbar = (xshock - xx(i-1))/(xx(i) - xx(i-1)) 
 r = rr(i-1) + rbar*(rr(i)-rr(i-1)) 
   endif 
      AC  = r*r*pi/ATHROAT 
      EMD = 1.0000000000000 
      EMC = EM1 
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c      write(*,*) 'rbar,r,i',rbar,r,i 
C     Calculate Mach number ahead of the guessed shock point (eq.159) 
      ICNT1 = 1 
170    continue 
      BLA   = 1.0D+00 + gm1h*EMC*EMC 
      BLAD  = 1.0D+00 + gm1h*EMD*EMD 
 G     = (BLAD/BLA)**EX 
        F     = AD*G*(EMD/EMC) - AC 
      H     = gp1h/BLA-1.0D+00/(EMC*EMC) 
        FP    = AD*G*EMD*H 
 HH    = (gp1h/(BLA*BLA))*EMC*((1.0D+00 - K)+gp1h) 
 HHH   = -(gp1h/BLA)*(1.0D+00 + 
1.0D+00/EMC)+2.0D+00/(EMC*EMC*EMC) 
   FPP   = AD*G*EMD*(HH+HHH) 
 FNC   = F/FP 
 FNCP  = 1.0D+00 -(F*FPP)/(FP*FP) 
 DMC   = FNC/FNCP 
      if ((Dabs(f).lt.0.00000001).or.(Dabs(fp).lt.0.000000001)) goto 175 
 FNCP  = 1.0D+00 - fnc*(fpp/(2.0d+00*fp)) 
 DMC   = FNC*FNCP 
 EMCO  = EMC 
 EMC   = EMC - DMC 
c      write(12,177) ICNT1,F,FP,FPP,FNC,FNCP,DMC,EMC 
 ICNT1  = ICNT1 + 1 
        goto 170 
175    continue 
c      write(*,*) 'icnt1,emc=',icnt1,emc 
      EM1 = EMC 
 em12= em1*em1   
177   FORMAT(I5,7E14.5) 
C     Find the Mach number after a guessed shock point with the initial 
C     Mach number, M1. 
c      EM2 = sqrt((EM12+2.00000/gm1)/(2.00000*k*EM12/gm1-1.00000)) 
      em2 = sqrt((1.00000 + gm1h*em12)/(k*em12-gm1h)) 
C     Find stagnation pressure, p02, (after the shock) 
C     as a ratio to p01, (the initial stagnation pressure) 
      G     = (2.00000*k*EM12/gp1-gm1/gp1)**(1.00000/gm1) 
      H     = ((1.00000 + gm1h*EM12)/(gp1h*EM12))**(k/gm1) 
      P02P01= 1.00000/G/H 
  
C     Find the Mach number at the exit of the nozzle 
      AD  = AC 
      AC  = AEXIT 
      EMD = EM2 
      EMC = 0.95*EM2 
c      write(*,*) 'em2,p02p01,emc',em2,p02p01,emc 
C------ Second order Newton-Raphson iterative method to find M-exit 
      ICNT2 = 1 
200    continue       
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      BLA   = 1.0D+00 + gm1h*EMC*EMC 
      BLAD  = 1.0D+00 + gm1h*EMD*EMD 
 G     = (BLAD/BLA)**EX 
        F     = AD*G*(EMD/EMC) - AC 
      H     = gp1h/BLA-1.0D+00/(EMC*EMC) 
        FP    = AD*G*EMD*H 
 HH    = (gp1h/(BLA*BLA))*EMC*((1.0D+00 - K)+gp1h) 
 HHH   = -(gp1h/BLA)*(1.0D+00 + 
1.0D+00/EMC)+2.0D+00/(EMC*EMC*EMC) 
   FPP   = AD*G*EMD*(HH+HHH) 
 FNC   = F/FP 
 FNCP  = 1.0D+00 -(F*FPP)/(FP*FP) 
 DMC   = FNC/FNCP 
      if ((Dabs(f).lt.0.00001).or.(Dabs(fp).lt.0.0000001)) goto 250 
c FNCP  = 1.0D+00 - fnc*(fpp/(2.0d+00*fp)) 
c DMC   = FNC*FNCP 
 EMCO = EMC 
 EMC  = EMC - DMC 
 ICNT2= ICNT2 + 1 
c      write(12,177) ICNT2,F,FP,FPP,FNC,FNCP,DMC,EMC 
       goto 200 
250    continue 
      EMEX = EMC 
C     Find the pressure at the nozzle exit as a ratio to 
C     p01, the initial stagnation pressure, using eq. (149) 
      PEP01= P02P01*(1.0d+00 + gM1h*EMEX*EMEX)**(k/(1.0d+00-k)) 
C      write(12,*) 'iter,xshock,em1,em2,emex,pep01' 
C write(12,255) iter,xshock,em1,em2,emex,pep01 
C255    format(i5,5f15.6) 
 
      iter = iter + 1 
c      write(12,177) iter,Xshock,pEp01,pBp01,EM1,EM2,EMex 
C     Compare this pressure ratio, p03, to the given back pressure 
C     ratio, pB.  If the two are not equal, repeat the entire 
C     procedure starting with a new location for the shock. 
      if (Dabs(PEP01-pBP01).lt.0.000001) goto 275 
      Esign = nsign 
      if (pEp01.gt.pBP01) then 
         nsign = 1 
      else 
         nsign = -1 
      end if 
      if (nsign.eq.Esign*(-1)) step = step/10.0 
      XSHOCK = XSHOCK + nsign*step 
 
 write(12,251) iter,em1,em2,emex,pep01,xshock 
251   format(i5,5F14.4) 
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      if (XSHOCK.gt.XEX) then 
      write(*,*)  'When pbp01 =',pbp01,'SHOCK BLOWN OUT THE NOZZLE 
EXIT' 
      write(12,*) 'When pbp01 =',pbp01,'SHOCK BLOWN OUT THE NOZZLE 
EXIT' 
 DXSHOCK=2.0D+00 
         goto 499 
      end if 
      if (XSHOCK.lt.0.00001) then 
      write(*,*)  'When pbp01 =',pbp01,' ENTIRE NOZZLE FLOW IS 
SUBSONIC' 
      write(12,*) 'When pbp01 =',pbp01,' ENTIRE NOZZLE FLOW IS 
SUBSONIC' 
 DXSHOCK=-2.0D+00 
         goto 499 
      end if 
 
      goto 150 
 
275   CONTINUE 
C------ RATIO OF STATIC PRESSURES ACROSS THE SHOCK 
      P2P1    = (1.0+K*EM1*EM1)/(1.0+K*EM2*EM2) 
C------ RATIO OF ABSOLUTE TEMPERATURES ACROSS THE SHOCK 
      T2T1    = (1.0+gm1h*EM1*EM1)/(1.0+gm1h*EM2*EM2) 
C------ RATIO OF DENSITIES ACROSS THE SHOCK 
      R2R1    = P2P1/T2T1 
C------ ENTROPY JUMP ACROSS THE SHOCK (DIVIDED BY SPECIFIC 
GAS CONSTANT) 
 DELSR = (K/gm1)*LOG(T2T1)-LOG(P2P1) 
      write(*,120) 
 write(*,277) 
iter,XSHOCK,PBP01,P2P1,R2R1,T2T1,EM1,EM2,EMEX,DELSR 
 write(12,120) 
      
write(12,277)iter,XSHOCK,PBP01,P2P1,R2R1,T2T1,EM1,EM2,EMEX,DELSR 
 write(50,120) 
      
write(50,277)iter,XSHOCK,PBP01,P2P1,R2R1,T2T1,EM1,EM2,EMEX,DELSR 
277   format(1x,i4,1x,9(f8.3)) 
c------ find out variation of Mach number, temperature/T01, density/D01, 
c------ pressure/P01 from shock location until nozzle exit and save them 
      ishock = 1 
      do 280 i=1,imax 
   if(xx(i) .gt. xshock) then 
 ishock=i 
      go to 281 
   endif 
280   continue 
281   continue 
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 write(42,*) imax,imax 
 write(44,*) imax,imax 
 write(46,*) imax,imax 
 write(48,*) imax,imax 
      emc = 0.9*em2 
        do 400 i=ishock,imax 
      AD = aa(ishock) 
      AC = aa(i) 
      EMD = EM2 
      EMC = 0.9*EMc 
C------ Second order Newton-Raphson iterative method to find local Mach 
290    continue 
      BLA = 1.0D+00 + gm1h*EMC*EMC 
      BLAD= 1.0D+00 + gm1h*EMD*EMD 
 G  =(BLAD/BLA)**EX 
         F=AD*G*(EMD/EMC) - AC 
      H= gp1h/BLA-1.0D+00/(EMC*EMC) 
         FP=AD*G*EMD*H 
 HH=(gp1h/(BLA*BLA))*EMC*((1.0D+00-K)+gp1h) 
 HHH= -(gp1h/BLA)*(1.0D+00 + 1.0D+00/EMC) + 2.0D+00/(EMC**3) 
    FPP=AD*G*EMD*(HH+HHH) 
 FNC = F/FP 
 FNCP= 1.0D+00 -(F*FPP)/(FP*FP) 
 DMC = FNC/FNCP 
      if ((Dabs(f).lt.0.00001).or.(Dabs(fp).lt.0.0000001)) goto 300 
 FNCP  = 1.0D+00 - fnc*(fpp/(2.0d+00*fp)) 
 DMC   = FNC*FNCP 
 EMCO = EMC 
 EMC  = EMC - DMC 
       goto 290 
300    continue 
 tt01  = 1.0000000/(1.00000000000000000 + gm1h*emc*emc) 
 rr01  = tt01**(1.00000000000000/gm1) 
 pp01  = rr01**k 
  xMach(i)       = emc 
  Temperature(i) = tt01 
  Density(i)     = rr01 
  Pressure(i)    = pp01 
400   continue 
 write(42,111) (xMach(i),i=1,imax) 
 write(44,111) (temperature(i),i=1,imax) 
 write(46,111) (density(i),i=1,imax) 
 write(48,111) (pressure(i),i=1,imax) 
c------ 
      write(12,*) 'Following values were computed at',imax,' locations' 
 write(12,*) 'from inlet to exit of the entire nozzle for the' 
 write(12,*) 'case of SHOCKED flow for pbp01 =',pbp01, 'and saved' 
 write(12,*) 'in these files:' 
 write(12,*) 'Q1D-Machshock.dat (local Mach number)' 
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 write(12,*) 'Q1D-TT01shock.dat (local Temp./inlet stagnat. temp.)' 
 write(12,*) 'Q1D-RR01shock.dat (local Dens./inlet stagnat. dens.)' 
 write(12,*) 'Q1D-PP01shock.dat (local Pres./inlet stagnat. pres.)' 
c------ 
 EMC    = EM1 
 XSHOCK = XSHOCK - DXSHOCK*STEP 
499   continue 
500   CONTINUE 
      write(12,*) 
      WRITE(12,*) 'SHOCK LOCATIONS AND JUMP CONDITIONS FOR 
DIFFERENT' 
 WRITE(12,*) 'EXIT PRESS/INLET STAG. PRESS SAVED ON Q1D-
SHOCKDATA' 
c------ generate a 2D grid 
 write(*,*)'Give number of grid cells from axis to wall (JCELLS)' 
      write(*,*) '(important:  JCELLS < idm)' 
 read(*,*)   JCELLS 
 write(*,*) 'Give axis-to-wall clustering amplitude (0.0 < 0.9)' 
 read(*,*)   AMPJ 
 write(12,*)'Give number of grid cells from axis to wall (JCELLS)' 
      write(12,*) '(important:  JCELLS < idm)' 
 write(12,*)  JCELLS 
 write(12,*) 'Give axis-to-wall clustering amplitude (0.0 < 0.9)' 
 write(12,*)  AMPJ 
 ampjpi = ampj/pi 
      jmax = jcells + 1 
 dr = 1.000000000000000/float(jmax-1) 
        do 600 j=1,jmax 
 rbar = (j-1)*dr 
        do 550 i=1,imax 
 r = rr(i)*(rbar + ampjpi*sin(pi*rbar)) 
 write(51,560) xx(i),r,i,j 
550   continue 
560   format(2f15.6,2i6) 
600   continue 
      write(*,*)  'x,r,i,j written on file: QID-x-r-grid.data' 
      write(12,*) 'x,r,i,j written on file: QID-x-r-grid.data' 
      stop 
      end 
 
      SUBROUTINE GAUSSJ(a,n,np,b,m,mp) 
C*********************************************** 
C******* From Numerical Recipes in Fortran 
C*********************************************** 
 IMPLICIT REAL*8 (A-H,O-Z) 
   parameter (idm=201) 
   real*8 a(np,np), b(np,mp) 
   integer indxc(idm),indxr(idm),IPIV(idm) 
C--------------------------------------------------------------------- 
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 do 11 j=1,n 
   ipiv(j)=0 
11   enddo 
 do 22 i=1,n 
   big=0.0000000000 
 do 13 j=1,n 
   if(ipiv(j).ne.1)then 
 do 12 k=1,n 
   if(ipiv(k).eq.0)then 
   if(Dabs(a(j,k)).ge.big)then 
   big=Dabs(a(j,k)) 
   irow=j 
   icol = k 
   endif 
   endif 
12    enddo 
   endif 
13    enddo 
   ipiv(icol)=ipiv(icol)+1 
   if(irow.ne.icol) then 
   do 14 l=1,n 
   dum = a(irow,l) 
   a(irow,l)=a(icol,l) 
   a(icol,l)=dum 
14    enddo 
      do 15 l=1,m 
   dum = b(irow,l) 
   b(irow,l)=b(icol,l) 
   b(icol,l)=dum 
15    enddo 
   endif 
   indxr(i)=irow 
   indxc(i)=icol 
   if(a(icol,icol).eq.0.000) pause 'singular matrix' 
   pivinv = 1.0D+00/a(icol,icol) 
   a(icol,icol)=1.0D+00 
   do 16 l=1,n 
   a(icol,l)=a(icol,l)*pivinv 
16    enddo 
      do 17 l=1,m 
   b(icol,l)=b(icol,l)*pivinv 
17    enddo 
   do 21 ll=1,n 
   if(ll.ne.icol) then 
   dum=a(ll,icol) 
   a(ll,icol)=0.0D+00 
   do 18 l=1,n 
   a(ll,l) = a(ll,l)-a(icol,l)*dum 
18    enddo 
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      do 19 l=1,m 
   b(ll,l) = b(ll,l)-b(icol,l)*dum 
19    enddo 
   endif 
21    enddo 
22    enddo 
   do 24 l=n,1,-1 
   if(indxr(l).ne.indxc(l))then 
   do 23 k=1,n 
   dum = a(k,indxr(l)) 
   a(k,indxr(l)) = a(k,indxc(l)) 
   a(k,indxc(l)) = dum 
23    enddo 
   endif 
24    enddo 
   return 
   end 
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