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ABSTRACT OF THE THESIS 

SPATIAL AND TEMPORAL PATTERNS IN THE DISTRIBUTION, BEHAVIOR, 

AND ACTIVITY OF FISHES IN CANALS OF THE EVERGLADES 

by 

Ann Commagere Hijuelos 

Florida International University, 2012 

Miami, Florida 

Professor Joel C. Trexler, Major Professor 

Landscape characteristics, disturbances, and temporal variability influence 

predator-prey relationships, but are often overlooked in experimental studies.  In the 

Everglades, seasonal disturbances force the spatial overlap of predators and prey, 

potentially increasing predation risk for prey.  This study examined seasonal and diel 

patterns of fish use of canals and assessed predation risk for small fishes using an 

encounter rate model.  I deployed an imaging sonar in Everglades canals to quantify 

density and swimming speeds of fishes, and detect anti-predator behaviors by small 

fishes.  Generally, seasonal declines of marsh water-levels increased the density of large 

fishes in canals.  Densities of small and large fishes were positively correlated and, as 

small-fish density increased, schooling frequency also increased.  At night, schools 

disbanded and small fishes were observed congregating along the canal edge.  The 

encounter rate model predicted highest predator-prey encounters during the day, but 

access to cover may reduce predation risk for small fishes.               

         

  



vii 
 

TABLE OF CONTENTS 

CHAPTER                                                                                                                   PAGE 
 
INTRODUCTION .............................................................................................................. 1 
 
MATERIALS AND METHODS ........................................................................................ 4 

Study Site ........................................................................................................................ 4 
Materials ......................................................................................................................... 5 
Data Collection ............................................................................................................... 7 
Post-Processing ............................................................................................................... 9 
Statistical Analysis ........................................................................................................ 11 

Seasonal Patterns in Fish Density and Behavior....................................................... 11 
Diel Patterns in Fish Density and Activity ............................................................... 13 

 
RESULTS ......................................................................................................................... 15 

Seasonal Patterns in Fish Density and Behavior........................................................... 15 
Diel Patterns in Fish Density and Activity ................................................................... 16 

 
DISCUSSION ................................................................................................................... 17 
 
REFERENCES ................................................................................................................. 23 
 
  



viii 
 

LIST OF TABLES 
 

TABLE                                                                                                                        PAGE 
 

1. Sampling Dates   ............................................................................................................. 28
 
2. Results from ANCOVA for Small- and Large-Fish Densities   ..................................... 29
 
3. Model Statistics for Predicting Probability of Detecting a School   ............................... 30
 
4. Model Fit Statistics for Predicting Nearest-Neighbor Distance and Distance-to-
Centroid  ............................................................................................................................. 31
 
5. Results from ANOVA for Small- and Large-Fish Densities   ........................................ 32

 
 

  



ix 
 

LIST OF FIGURES 
  

FIGURE                                                                                                                       PAGE 
 

1. Study Site Map   .............................................................................................................. 35
 
2. Mean Marsh Water-Depth Adjacent to the L67C and L31W Canals   ........................... 36
 
3. Predicted Large-Fish Density in the L67C and L31W Canals Regressed against Marsh 
Water-Depths   .................................................................................................................... 37
 
4. Partial Regression Plots of Small-Fish Density and Large-Fish Density in the L67C 
and L31W Canals   .............................................................................................................. 38
 
5. Probability of Detecting a School as a Function of Small-Fish Density   ...................... 39
 
6. Partial Regression Plots of Nearest-Neighbor Distance and Small-Fish Density and 
Large-Fish Density in the L67C and L31W Canals   .......................................................... 40
 
7. Mean Distance-to-Centroid as by Season   ..................................................................... 41
 
8. Mean Marsh Water-Depth Adjacent to the C111, L67C, and L31W Canals   ............... 42
 
9. Mean Small-Fish Density by Month, Canal, and Time of Day   .................................... 43
 
10. Mean Large-Fish Density by Month, Canal, and Time of Day   .................................. 44
 
11. Frequency Distribution of Swimming Speeds   ............................................................ 45
 
12. Mean Small- and Large-Fish Swimming Speeds by Canal and Time of Day   ............ 46
 
13. Total Encounter Rate for Schooling and Non-Schooling Prey by Time of Day and 
Month in the C111, L31W, and L67C Canals   .................................................................. 47

 
 
 
 



 

1 
 

INTRODUCTION 

The configuration of the landscape is a determinant in large-scale distributions of 

predators and prey, and affects ecological processes that operate on local scales (Poff 

1997, Turner 1989).  Landscape features such as structural complexity, patchiness, and 

connectivity influence the movement or dispersal of individuals (Taylor et al. 1993), 

while localized factors (e.g., colonization rates, predation risk, and food availability) 

drive patch selectivity of predators and prey (Menge and Olson 1990, Verdolin 2006, 

Welborn et al. 1996).  For instance, browsing herbivores in the African savannah make 

habitat-use decisions based on both proximity to waterholes and predator movements 

across the landscape (Valeix et al. 2009).  Environmental variability and disturbances 

(e.g. fire, drought) also act on the landscape to influence community dynamics 

(Schowalter 2012, Sousa 1984, Trexler et al. 2005).  Hydraulic disturbances in streams, 

for example, has shown to increase the impact of predatory benthic invertebrates on their 

prey (Lancaster 1996).  Considering the interplay of landscape processes and disturbance 

regimes across relevant temporal scales can aid in the understanding of habitat-use 

decisions of predators and prey.  The decision-making process of animals determines the 

frequency and duration of spatial overlap, and ultimately shapes predator-prey 

interactions. 

Understanding and examining the behavioral responses of predators and prey to 

joint space-use is fundamental in examining predator-prey community dynamics (Lima 

2002, Sih 2005).  Predators may respond to the presence (or absence) of prey by 

aggregating in patches when prey availability is highest (Anderson 2001, Hassell and 

May 1974), adjusting activities or foraging modes (Gendron and Staddon 1983, 
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Newlands et al. 2004), or making diel shifts in activities and habitat use (Clark et al. 

2003, Løkkeborg and Fernö 1999).  The inherent variability in these responses causes 

predation risk to fluctuate on diurnal and seasonal scales.  Mobile prey may counteract 

predation risk with anti-predator defenses, habitat shifts, or by altering activity, foraging 

rates, or morphology (Creel and Christianson 2008, Lima and Dill 1990, Preisser et al. 

2005, Schlosser 1987, Werner et al. 1983).  The ability of prey to respond to the presence 

of predators is facilitated by access to cover, refuge, or other landscape features, and this 

may ultimately influence the decision-making process of prey (Heithaus et al. 2009).   

Traditional foraging models developed to understand and predict patch-use 

decisions (e.g., optimal patch use, ideal free distribution [Fretwell and Lucas 1969, Pyke 

et al. 1977]) have expanded to incorporate freely interacting predators and prey (e.g., 

game theory [Brown et al. 1999, Hugie and Dill 1994, Lima 2002, Sih et al. 1998]).  

These advancements improve our predictive ability of community dynamics, but 

considering the behavioral responses of predator and prey in the context of heterogeneous 

landscapes and temporal environmental variability would provide additional insight into 

the decision-making process of animals.   

Canals of the Florida Everglades provide an ideal setting for exploring predator 

and prey distributions and subsequent behavioral responses.  Although rarely studied, 

canals harbor large-bodied piscivores and serve as aquatic refuges for small and large 

fishes during periods of low marsh water-levels (Loftus and Kushlan 1987, Rehage and 

Trexler 2006).  Seasonal and regional fluctuation in water levels limits connectivity 

between the canal and adjacent wetlands and may ultimately control the spatial overlap of 

small and large fishes in canals.  Limited access to the adjacent vegetated marsh during 
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the dry season may impede prey’s ability to avoid predators, and impose a predation risk 

for prey.  Gut contents of several species of large fishes found in canals (e.g., Florida gar, 

largemouth bass, bullhead catfish, and sunfishes) have shown small fishes to be a 

dominant food source (Loftus 2000), indicating the risk of predation in canals is 

potentially high for small fishes.  It has been suggested that the relationship of 

piscivorous fishes and small prey fishes is mainly influenced by wetland hydroperiod and 

access to canals (Chick et al. 2004, Trexler et al. 2005), but it is unknown how predators 

and prey respond behaviorally to joint space-use of canals across diel and seasonal scales 

and in the context of connectivity to the adjacent wetland.   

The objective of this study was to examine diel and seasonal patterns of canal 

habitat use by small and large fishes, and use an encounter-rate model to assess the level 

of risk associated with these canals for small fishes.  I deployed a high-resolution 

imaging sonar (DIDSON, Dual-frequency Identification Sonar) to quantify the density of 

large and small fishes, detect anti-predator behaviors by small fishes, and document 

activity among canals.  I predicted small- and large-fish densities would exhibit seasonal 

increases in canal habitat-use in response to decreasing water levels in adjacent marshes.  

Regional changes in the timing and delivery of water would cause this response to vary 

among canals.  I predicted schooling frequency of small fishes would increase as the 

density of large fishes increased and as a response to increased threat of predation.  I also 

expected these schools would become more compact in shape, typical of anti-predator 

behavior in fishes.  I predicted small- and large-fish densities and swimming speeds 

would decrease at night because of decreased foraging opportunities from reduced visual 

cues.       
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MATERIALS AND METHODS 

Study Site 

I studied the temporal distribution of fishes in three canals that varied in their 

connectivity to adjacent marsh habitats.  The potential for fishes to swim between the 

canals and surrounding wetlands is highly variable in the Everglades because of seasonal 

changes in local and regional rainfall and water management.  The L67C canal 

(25.767865° N, -80.673309° W) separates Water Conservation Area (WCA) 3B from the 

Gap region and is bordered by a levee on its eastern edge and long-hydroperiod wetlands 

(flooded > 300 days per year) on its western edge (Figure 1).  The canal is approximately 

10 m wide and 3.5 m deep with a large littoral zone connecting the canal to the 

surrounding wetlands.  Dense patches of periphyton intermixed with submerged aquatic 

vegetation line the canal-marsh edge.  The L31W canal (25.398489° N, -80.572974° W) 

is bordered by short-hydroperiod wetlands (flooded < 300 days per year) of Everglades 

National Park (ENP) on its western edge and a levee on its eastern edge.  The canal 

morphology is similar to the L67C, but fish access to the marsh edge is limited during 

periods of low water.  The C111 canal (25.289333° N, -80.445068° W) is also bordered 

by short-hydroperiod wetlands (flooded < 300 days per year) of ENP on its western edge 

and fishes have limited access to the marsh edge when water levels recede.  It is also 

considerably larger than the other two canals, 35 m wide and 5 m deep.   

Three sites were established in both the L67C and L31W canals for addressing the 

seasonal component of the study.  The site locations were selected to be adjacent to areas 

with ongoing studies of fish ecology in the adjacent marshes and three subsamples were 

collected at each site.  To assess diel variation in fish behavior and activity, six additional 
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sites within the L67C, L31W and C111 canals were selected using the Create Random 

Points tool in ArcGIS 10 (ESRI).  Sites were constrained to be at least 200 meters apart 

and accessible from a boat launch.  Three sets of six points were created and upon field 

inspection, an individual site was selected out of the three possible locations.  Sites were 

selected such that among sites, cover and submerged aquatic vegetation density was 

similar and no physical structures prevented data collection. 

Materials 

A Dual-frequency Identification Sonar (DIDSON) was deployed to quantify 

density, length, swimming speeds, and behavior of fishes.  The DIDSON is a multi-beam, 

imaging sonar that records high-resolution, acoustic data at short ranges (< 30 m).  

Originally developed by the University of Washington’s Applied Physics Laboratory for 

military applications, it has been adapted by fisheries biologists to observe fish behavior 

(Moursund et al. 2003, Tiffan et al. 2010) and estimate fish abundance and size (Boswell 

et al. 2008, Burwen et al. 2010, Han et al. 2009, Holmes et al. 2006, Tiffan et al. 2004).  

The sonar is advantageous over underwater video cameras in its ability to record at night 

and in turbid conditions without any modifications or artificial lighting (Maxwell and 

Gove 2007, Moursund et al. 2003).  The sonar is also capable of ensonifying individual 

fish located directly behind other individuals, which may have otherwise gone undetected 

using optical methods.   

The DIDSON is capable of recording images at distances of 60 m from the unit 

when operating at low frequency (1.1 MHz) or to 15 m at high frequency (1.8 MHz).  

The DIDSON transmits 48 beams (1.1 MHz) or 96 beams (1.8 MHz) with 512 samples 

per beam, ensonifying an area 29° in the horizontal axis and 14° in the vertical axis.  The 
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acoustic data are represented as two dimensional images, displaying the horizontal 

dimensions while suppressing the vertical, when deployed horizontally.  The resolution 

of the image is a function of the window length (i.e., the specified length of the area 

sampled) and varies depending on the range of interest, such that objects further away are 

viewed at a lower resolution than those closer.  For this study, the DIDSON was 

deployed in high-frequency mode to maximize resolution.  Window length during the 

seasonal study was originally set at 10 m, but reduced to 5 m to improve imaging of small 

fishes.  For the diel component of the study that focused on schooling prey and predator 

behavior, the window was set to 10 m (Table 1).  For all window lengths, the starting 

distance was 1.67 m from the sonar and extended outwards toward the canal-marsh edge  

either 5 or 10 m.   

Although acoustic sampling generally alleviates problems associated with direct 

capture techniques (see Lucas and Baras 2000 and references therein), sonar images do 

not contain enough detail to distinguish among species, particularly for small fishes.  As a 

result, fish were categorized as small (< 12 cm) or large (> 20 cm) based on their total 

length.  Fish in the medium size category (12 – 20 cm) were excluded from my analysis.  

The classification scheme represents an assemblage of prey and piscivores, respectively.  

Small fish in the Everglades are typically defined as fish < 8 cm (Trexler et al. 2001) and 

in the canals are dominated by cyprinodontids, poecilids, and juvenile centrarchids 

(Loftus and Kushlan 1987).  Juvenile centrarchids (Lepomis spp., especially L. 

punctatus), eastern mosquitofish (Gambusia holbrooki), and brook silverside 

(Labidesthes sicculus) have been observed schooling in the canals (Loftus and Kushlan 

1987, J. Trexler pers. comm.).  The small-fish category was increased to include fish up 
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to 12 cm to account for overestimation of lengths (Burwen et al. 2010).  Large piscivores 

include largemouth bass (Micropterus salmoides), Florida gar (Lepisosteus platyrhincus), 

bowfin (Amia calva), and adult centrarchids (Lepomis spp.) (Chick et al. 2004).  

Data Collection 

Seasonal acoustic data were collected monthly during daylight hours in the L67C 

and L31W canals in the early-dry season (December 2010 – March 2011), dry season 

(April – June 2011, and wet season (July – October 2011) to capture seasonal fluctuation 

in marsh water-levels.  Equipment malfunction prevented a July 2011 sample.  To 

maintain a balanced sampling design across seasons, the December 2010 data were 

excluded from analysis.  The DIDSON was deployed horizontally off the side of a 

stationary boat, approximately 20 cm below the surface and directed perpendicular to the 

canal-marsh edge.  Additional videos were collected towards the center, deeper portion of 

the canal and preliminary analyses suggested fish, particularly smaller prey, were not 

uniformly distributed.  As a result, the present study focused on the canal-marsh 

interface, where fish densities would be highest.  The unit was angled 4-7° downward to 

maximize video quality and target detection.  A laptop computer on the boat provided 

live-viewing of the DIDSON image and enabled adjustments to the sonar if necessary.  

Acoustic data were collected at 5 to 7 frames s-1 for five minutes with a set window 

length of 5 or 10 m (Table 1).  

Diel acoustic data of fish activity and behavior were collected during the dry 

season in the L67C, L31W, and C111 canals from February 2012 through May 2012.  

Day-time collection began at least one hour after sunrise and concluded mid-afternoon.  

The subsequent night sample was collected within three nights of the day sample, 
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beginning at least one hour after sunset.  Inclement weather prevented data collection 

during some sampling periods and locations (Table 1).  A floating mount was used to 

suspend the DIDSON in the upper portion of the water column (approximately 20 cm 

below surface) and a four-point anchor system was used to secure the float to the bottom 

of the canal.  Use of this platform reduced movement in the DIDSON, resulting in stable 

background data that improved subsequent analysis.  Acoustic data were collected at each 

site at 5-7 frames s-1 for 15 minutes with a window length of 10 m.  Each site was visited 

once per sampling event.   

Water levels in the adjacent wetlands were obtained from the Everglades Depth 

Estimation Network (EDEN, http://sofia.usgs.gov/eden/) and were used as a proxy for 

landscape connectivity.  Water depth information was provided on 400 m2 grids.  Grids 

adjacent to each site were selected and water depth was estimated for use in calculating 

marsh water-depth and days of connectivity between the canal and marsh surface.  

Connectivity was defined for small fishes as marsh water-depth > 5 cm (Trexler and Goss 

2009), while for large fishes marsh water-depths >15 cm.  Chick et al. (2004) defined 

connectivity for large (> 8cm TL) fishes as marsh water-depths > 10 cm, but since the 

large-fish category in this study was fish > 20 cm, I increased the marsh water-depth 

threshold to account for larger body sizes.  At these depths, fishes are assumed to move 

freely between the marsh and canal habitats.  Days of connectivity ranged from negative 

(number of days without connectivity) to positive (number of days with connectivity).  

The negative value indicates the number of days since the marsh was last connected to 

the canal, and the positive value represents the number of days since the canal 

reconnected to the adjacent marsh. 
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Post-Processing 

 Seasonal acoustic data collected from January 2010 to October 2011 were 

processed using DIDSON topside software (SoundMetrics Corp., V5.25.28) and ImageJ 

(V1.47a, http://rsb.info.nih.gov/ij/).  Acoustic scattering intensity values (dB) of the 96 

beams within each frame were analyzed to display the maximum per-sample value across 

all beams within each frame, yielding an echogram with window range on the Y axis and 

time on the X axis.  The echogram was displayed in unison with the raw DIDSON 

footage to assist in fish detection.  Actively swimming fish were manually marked on the 

echogram using the DIDSON software and lengths derived from manual measurements 

using the “measure tool” in the DIDSON software.  The threshold slider was adjusted 

when necessary to reduce background noise and improve target detection.  Vegetation 

within the video may have decreased the probability of detecting fish and biased density 

estimates downward.  It was assumed any diminution in detectability is randomized 

across space and time.  When a large school of fish (> 10) was present, the lengths of at 

least three fish were measured and the average of those measurements was applied to all 

fish in the school.  A school was defined in the present study as a social assembly of fish 

that exhibited unified changes in direction or speed or were clustered in distinct groups 

(e.g., bait balls) (Pitcher and Parrish 1992). 

I used the ImageJ software (V1.47a) to characterize schools of fish, including 

estimating the number fish in the school, nearest-neighbor distance, and mean distance to 

school center.  To process schools in ImageJ, a single frame (snapshot) of the school was 

exported as a jpeg-formatted file and imported into ImageJ.  An outline was created 

around the school and the area outside the outline was deleted.  This school image was 
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converted to grayscale and contrast thresholds were applied to distinguish schooling 

individuals from the background.  The school was then converted to a binary image, with 

schools pixilated white and background pixilated black.  The conversion of the original 

image to binary resulted at times in multiple fish being clumped together as one.  

Subtracting the static background prior to exporting the image from the DIDSON 

software and adjusting the contrast thresholds in ImageJ improved target definition and 

reduced this clumping effect.   

The Analyze Particles tool in ImageJ was used to export the total number of fish 

in a school and the center coordinates of each fish.  The school’s centroid was calculated 

as the average of the fish coordinates.  Mean distance-to-centroid was the straight-line 

distance of each fish to the centroid, averaged across fish.  Mean nearest-neighbor 

distance (NND) was calculated as the straight line distance between an individual fish 

and the nearest fish (NND macro from Yuxiong Mao, https://icme.hpc.msstate.edu/).  

Current technology limited the representation of three-dimensional schools to two-

dimensions resulting in imperfect calculations of these metrics.  Nonetheless, this 

analysis is appropriate for looking at relative differences among schools.  Individual fish 

counts, lengths, and schooling metrics were exported from the DIDSON software and 

ImageJ as text files for data analysis.  Fish abundance was standardized as density per 5 

minutes (length of video) by dividing the counts in a single video by the area of the video 

image.  Standardizing density allowed for comparison of data collected at the 5 m and 10 

m window lengths.   

   Diel acoustic data collected between February and May 2012 were processed in 

Echoview (version 5.2.59) using a semi-automated analysis pathway (Boswell et al. 
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2008).  The 15-minute data files were stratified into 30-second sub-samples and ten were 

randomly selected for analysis.  Sub-sampling reduced the probability of counting the 

same fish twice within an interval, while still providing a sufficiently long window to 

track fish and calculate their speed.  The image enhancement and multibeam single-target 

detection methods described as “Process 3” by Boswell et al. (2008) enabled the 

calculation of fish abundance, length, and speed.  At times, manual counting and length 

measurements were required when fish were undetected by the semi-automated process 

or when fish were closely spaced.  As a result, speed was not calculated for those 

individuals.  Fish were then categorized as small fish (< 12 cm) or large fish (> 20 cm) as 

previously described.  Schools were processed in ImageJ to calculate number of 

individuals, mean nearest-neighbor, and mean distance-to-centroid.  The number of 

individuals in each school was then added to the “small fish” category and all metrics 

were averaged across the 10 intervals to produce small-fish density, large-fish density, 

mean nearest-neighbor and mean distance-to-centroid for each DIDSON video.   

Statistical Analysis 

Seasonal Patterns in Fish Density and Behavior 

Small- and large-fish densities were analyzed separately with analysis of 

covariance (ANCOVA) using restricted maximum likelihood estimation (Proc MIXED; 

SAS V9.2).  The Durbin-Watson statistic was used to test for autocorrelation in the 

residuals and significance tests indicated first-order autocorrelation was present              

(p < 0.05).  A first-order autoregressive covariance structure was applied to account for 

correlation in fish densities between sampling events (Proc MIXED; SAS V9.2).  Season 

and canal were treated as fixed effects and marsh water-depth was a covariate.  In the 
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small-fish model, large-fish density was also used as covariate.  Covariates were nested 

within canal to account for spatial variability among canals.  Large-fish density was 

square-root transformed and small-fish density was natural-log transformed to meet the 

assumption of normality.  The smallest non-zero observed value was added as a constant 

prior to all natural-log transformations described in this study.  Shapiro-Wilk tests on 

models residuals confirmed that these transformations satisfied the assumption of 

normality.  Plots of residuals versus predicted values and QQ plots of residuals were also 

inspected to assess homogeneity of variance and linearity of model.   

Nearest-neighbor distance and distance to school’s centroid were analyzed with 

ANCOVA models using maximum likelihood techniques.  Canal and season were treated 

as fixed effects while marsh water-depth, large-fish density, and small-fish density were 

covariates.  Schooling metrics and marsh water-depth were natural-log transformed.  

Covariance structure, fish-density transformations, and tests of model assumptions were 

conducted as described for the seasonal fish-density analysis.  I used Akaike’s 

information criterion with the small sample size adjustment (AICc) to compare various 

nested and unnested models and to objectively determine the most appropriate model to 

describe the data (Anderson 2008).  The AICc scores for the models were standardized 

by subtracting the minimum AICc from each AICc score and then ranked based on 

∆AICc (smaller is better).  All plausible models were assessed by generating Akaike 

weights as the probability that a given model is the best among all candidate models.  The 

ratio of Akaike weights for any two models computes an evidence ratio, and can be used 

to provide support for one model over another.  I calculated evidence ratios for the best 

model (∆AICc = 0) versus all other models such that the larger the evidence ratio, the 
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stronger the empirical support for the best model.  Goodness of fit was also calculated 

using pseudo-R2: 

( ) ( )[ ]{ }
n

pLlogLlogexpR −−−
−=

0212  

where logL(0) is the log-likelihood of the model containing only an intercept term, 

logL(p) is the log-likelihood for the fitted model with p covariates, and n is sample size.   

Schooling events were modeled as a binary response (school present versus 

school not present) using logistic regression fit by maximum likelihood estimation.  

Individual samples within a site were treated independently in this analysis.  I tested for 

the effect of canal, days of connectivity, small-fish density and large-fish density on the 

probability of detecting a school.  I tested various nested and unnested models and 

compared ∆AICc scores to select the best model, as described above.   

 Diel Patterns in Fish Density and Activity 

Diel patterns in fish density and activity were examined during the dry season 

when limited access was available to the adjacent marsh.  Small- and large-fish densities 

were analyzed with ANOVA to test for effects of time of day (day and night), canal 

(L67C, L31W, and C111) and month (February, April, and May).  Covariance structure 

was applied to the small-fish model only, as described for previous analyses.  The density 

of large fish was initially used as a covariate in the small-fish model, but no significant 

differences were detected at α = 0.05, thus the covariate was removed from the model.  

Densities were natural-log transformed to meet model assumptions as previously 

described.  Small- and large-fish swimming speeds were analyzed with ANOVA to test 

for effect of time of day, canal, and month.  Speeds were natural-log transformed.  
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Frequencies of schooling events in the L67C, L31W, and C111 were compared among 

months and canals using logistic regression.  Time of day was excluded from the analysis 

because schools were observed exclusively during the day.   

I calculated encounter rate of small and large fishes using Gerritsen and 

Strickler’s (1977) model as:  

( )
s

suNR upz 3
3 22

2 +
= π  

where Zp is the encounter rate of an individual predator with its prey population (no. prey 

s-1); R is the detection distance; Nu is prey density; u is prey swimming speed; and s is 

predator swimming speed.  I used two different calculations of prey density to assess the 

role of schooling on encounter rates.  First, I calculated prey density as the sum of all 

prey in a given time interval, divided by the volume of the DIDSON video which was 

treated as a rectangular prism.  I then assumed a predator would only be able to capture 

one prey from a school, regardless of school size, so prey density was revised by treating 

each school as one fish (Turesson and Brönmark 2007).  Prey density was then defined as 

the mean number of fish (no. m-3) by canal, time of day, and month.  The reaction 

distance variable is a squared term and consequently, is the most sensitive variable in the 

model (Muirhead and Sprules 2003).  I used published values of largemouth bass 

(Micropterus salmoides) detection distances of prey at different light levels (McMahon 

and Holanov 1995): 0.5 m at night and 2 m during the day.  I then calculated total 

encounter rate of all predators with their prey population in an hour time frame as: 

pp NZQ ⋅=  

where Zp is predator encounter rate and Np is predator density (no. m-3).   



15 
 

RESULTS 

Seasonal Patterns in Fish Density and Behavior 

 Water levels dropped considerably during the study, reducing connectivity 

between the canals and surrounding wetlands (Figure 2).  The seasonal decrease in marsh 

water-levels occurred in November 2010 in the L31W, but not until February 2011 in the 

L67C.  The onset of wet-season conditions occurred earlier in the L31W as well, whereby 

marsh-water levels increased above 5 cm in August 2011, but not until October 2011 in 

the L67C.  The effect of marsh water-levels on fish density was different between the 

L31W and L67C canals.  In the L67C, large-fish density was negatively correlated with 

marsh water-levels (p < 0.05) and as a result, was lowest during the wet season (0.20 fish 

m-2; Figure 3).  Conversely, large-fish density in the L31W was lowest during the early 

dry season (0.20 fish m-2 versus 1.37 fish m-2 wet season; Figure 3), but showed no 

significant response to marsh water-depths (Table 2).   

Contrary to the large-fish, small-fish density did not vary with marsh water-depth 

(Table 2) and did not vary seasonally within either canal.  A positive relationship was 

detected, however, between small and large-fish density in the L67C (p = 0.04; Figure 4).  

I did not detect a relationship between small and large fish density in the L31W, and 

small-fish densities were 85% lower than in the L67C.    

The probability of detecting a school was best described by models that included 

canal and large and small-fish densities (Table 3).  The top five models with the lowest 

∆AICc score fit the data equally well, so I selected the most parsimonious model to 

predict schooling frequency, which only included small-fish density.  The small-fish 
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density model predicted that the probability of detecting a school increased above 50% 

when density of small fish was great than 5 fish m-2 (Figure 5).   

Predicting mean nearest-neighbor distance in schools was best supported by the 

model that incorporated canal, large-fish density, and small-fish density (Table 4).  

Nesting the covariates within canal and removing the canal main effect from the model 

also performed well.  Preference for these two models was supported by the evidence 

ratio for the next best model that excluded canal altogether (evidence ratio: 6).  The 

model predicted mean nearest-neighbor distance of schooling fish decreased as small-and 

large-fish densities increased (Figure 6).  This relationship was detected in both canals 

but was strongest in the L67C.   

The best performing model for predicting mean distance to school’s centroid 

included season as a main effect.  The next best model included small-fish density as a 

covariate and season as a main effect.  Several other models had ∆AIC < 3 and evidence 

ratios < 5, but these models also yielded low R2 values (Table 4).  The season-only model 

showed distance to centroid was smallest during the dry and wet seasons relative to the 

early-dry season (Figure 7).    

Diel Patterns in Fish Density and Activity 

Marsh water-depths were approximately 10 cm in the L67C and C111 and 5 cm in 

the L31W at the start of the diel study (Figure 8).  All canals exhibited declines in water 

levels during the study, but marsh water-levels began to increase above 15 cm in the 

C111 and L31W canals by May.  A significant interaction between time of day, month, 

and canal was detected for small- and large-fish densities (Table 5).  Significant declines 

in small-fish density from day to night were only detected in the L67C (up to 95% 
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decrease in densities), while no differences between day and night were detected in the 

L31W (Figure 9).  Small-fish density increased from day to night in the C111 in April 

(5.6% increase).  Large-fish density declined significantly only in the L31W in May 

(Figure 10).   

Frequency distributions of swimming speeds revealed the majority of small-fish 

swim at speeds between 5-15 cm s-1 and large fish at 5-20 cm s-1, with occasional 

occurrences of faster individuals in both size classes (Figure 11).  A significant decline in 

fish swimming speed from day to night was detected only in the C111 (Figure 12). 

The encounter rate model predicted more predator-prey encounters per hour 

during the day than at night, with rates being near zero at night across all canals (Figure 

13).  Under the assumption that predators can encounter and capture only one prey in a 

school, daytime encounter rates dropped dramatically versus those in which all fish had 

equal probability of being captured.  For instance, when schools were treated as one fish, 

encounter rates ranged from 0 to 5 fish m-3 h-1 in the L31W and L67C canals and 0 to 1.5 

fish m-3 h-1 in the C111.  Conversely, assuming all individuals in a school can be 

encountered equally, daytime encounter rates ranged from 15 to 80 fish m-3 h-1 (Figure 

13C).   

 

DISCUSSION 

Landscape characteristics, environmental disturbances, and temporal variability 

influence predator-prey relationships, but are often overlooked in experimental studies.  

My study used an observational field-based approach to examine seasonal and diel 

patterns in the spatial overlap of small and large fishes in deep-water refuges, and explore 
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their relationship in the context of varying connectivity to the adjacent wetland.  Patterns 

were not always uniform among canals, highlighting the importance of incorporating 

spatial and temporal gradients in evaluating predator-prey relationships.   

As predicted, large-fish density was negatively correlated with water depth of the 

adjacent wetland, but only in the L67C canal.  A significant decline in large-fish density 

was also detected with the onset of the wet season in the L67C, suggesting large fishes 

were dispersing out of the canal and into the adjacent marsh.  In the L31W, a 360% 

increase in large-fish density was detected from the early dry to dry season, but no 

change from the dry to wet season.  The initial increase may reflect decreases in canal 

depth or water quality, reducing available habitat and causing fishes to congregate along 

the edge and upper portion of the water column, where acoustic data were recorded.  

Despite increasing water levels in the adjacent marsh with the onset of the wet season, 

large-fish density remained high in the canal (1.4 fish m-2), indicating fishes did not 

immediately disperse into the neighboring marshes.  The L31W is adjacent to a short-

hydroperiod wetland (flooded < 300 days per year) and as a result, large fishes are reliant 

on deep-water refuges for much of the year.  Choosing not to disperse in the adjacent 

marsh may be a learned behavior and cost-effective strategy for large fishes.  Tracking 

data on Mayan cichlids, largemouth bass, and bowfin shows many individuals do not 

travel far from the canal, while others disperse several kilometers (J. Parkos, M. Bush, 

and J. Trexler, unpublished data).  Additional research into the movement patterns of 

these predators aims to elucidate the underlying mechanism driving their decisions to 

disperse. 
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No relationship was detected between marsh water-levels and small-fish density 

in either canals.  Water levels in the marshes adjacent to the L31W were well below the 

small-fish threshold (5 cm; Trexler and Goss 2009) during the early-dry season, so it is 

likely that small fishes dispersed into the canal prior to the start of this study.  

Conversely, water levels in the L67C dropped below the threshold from the early dry to 

dry season, yet no difference in small-fish density was detected across seasons.  The 

ability to respond to decreasing water levels was noted by Rehage and Trexler (2006), 

who recorded a 200% increase in small-fish (< 8 cm TL) density in marshes adjacent to 

the C111 canal with the onset of the dry season.  It is possible that the initial flux of small 

fishes into the L67C canal happened prior to sampling, as was noted with the L31W.  

Alternatively, small fishes may have had access to refuge along the very edge of the 

marsh and withheld moving into the L67C until the refuges were unavailable (< 5 cm 

water depth).  A large increase (> 155%) in small-fish density was observed in the L67C 

from May to June and again from June to August 2011, when the surrounding marshes 

were completely dry.  This analysis sought to explore seasonal variation in fish use of 

canals, but canal habitat use for small fishes may happen on shorter temporal and spatial 

scales than large fishes.  Additional sampling during periods of decreasing water levels 

and exploring the role of microtopography may offer resolution on the timing and 

duration of small fish use of canals.   

The seasonal movement of fishes into the canal led to the development of daytime 

schools when prey density increased above 5 fish m-2 (Figure 5).  The schooling response 

may explain the positive relationship detected between large-fish density and small-fish 

density.  In the presence of predators, fish form schools as an anti-predator tactic to 
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reduce the probability of being consumed (Parrish 1991, Pitcher and Parrish 1992).  This 

assumes small prey recognized and responded to the threat of predation.  Small fish in the 

Everglades have multiple generations per year and it could be argued those entering 

canals are naïve to large predatory fishes.  Rehage et al.(2009) tested the role of naiveté 

for eastern mosquitofish (Gambusia holbrooki), a numerically dominant prey item in the 

Everglades, by exposing them to a predator they readily encounter and a novel predator 

infrequently encountered.  Behavioral responses of prey were observed in the presence of 

either predator via schooling and altering microhabitat use, suggesting prey naiveté did 

not impede their ability to detect and recognize predators.  Consequently, the increased 

presence of schools is likely an emergent outcome of increased threat of predation from 

predatory fishes in canals.  This is supported by the school structure, because schools 

were tightly grouped as their density, along with large-fish density, increased.  This 

relationship was strongest in the L67C, suggesting other factors, such as microhabitat 

characteristics, may be more important drivers in the distribution of small fishes in the 

L31W.  Habitat selection within the L31W could play an important role in structuring 

fish communities (Magoulick and Kobza 2003), with cypress, willow, and pond apple 

providing cover along the edge and refuge from predators.  Additional research is 

necessary to understand how cover and submerged aquatic vegetation influence the 

decision-making process of individual fish. 

 The diel patterns in canal habitat use were not uniform among canals.  Declines in 

small-fish density at night only occurred in the L67C, while an increase was observed in 

the C111 in April.  One possible explanation is that small fishes made horizontal 

migrations into the shallow portions of the littoral zone or adjacent marsh to forage or 



21 
 

reduce risk from nocturnal piscivores.  If access to the marsh was limited, as in the C111 

in April, prey may have opted to congregate along the canal-marsh edge, which would 

explain the increase in density.  Diel horizontal migrations have been observed in lakes, 

but in the reverse direction, from the littoral zone to the pelagic zone at night for foraging 

opportunities (Gaudreau and Boisclair 1998, Hall et al. 1979, Naud and Magnan 1988).  

In the Everglades, small fishes feed on invertebrates that live in periphyton mats and 

flocculent benthic detritus (Dorn et al. 2006), which are abundant along the canal-marsh 

edge.  This may explain the reverse direction of the horizontal migration.   

 No diel pattern was detected in large-fish density, except for the L31W in May 

when a decrease in density was observed at night.  Overall, large-fish densities in the diel 

study were relatively low, which could be an artifact of sub-sampling of data.  A longer 

sub-sample time interval (> 30 sec.) may be more appropriate to capture the full range of 

large-fish densities in these canals.  Alternatively, a larger window length (> 10 m) may 

be needed to accurately census large fishes in these canals, particularly the C111, which 

is three times as wide as the other two canals.  The low range of large-fish densities 

detected in the diel study may also explain the lack of a significant relationship between 

small and large fishes. 

 The encounter rate model in this study predicted highest encounters during the 

day versus night, and this difference was largest when individual fish in a school were 

included in the model.  Treating schooling fish as one individual, under the assumption 

that predators can only capture one prey out of the school, resulted in lower encounter 

rates during the day.  Encounter rates can be used a proxy for predation risk and the 

results of this model suggest risk is lowest for all individuals when schools are present.  It 
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is unclear how the presence of schooling fish affects the predation risk for individuals not 

schooling.  Further, prey’s proximity to the littoral zone and vegetation structure (i.e., 

predation refuge) can lower the capture efficiency of predators, so incorporating 

likelihood-of-capture or access-to-refuge may improve model predictions.  Additional 

diel sampling along a marsh water-depth gradient would also provide insights into how 

predator-prey encounters in the canal are mediated by access to prey refuge via the 

littoral zone or marsh surface.  In addition to piscivorous fish, small fish are also at risk 

of predation from wading birds.  Vulnerability to capture is greatest at water depths < 19 

cm (Gawlik 2002), and as a result, this predation risk is likely highest in the marshes 

adjacent to the canal, and not in the canal itself.   

The results from both the seasonal and diel studies highlight the importance of 

assessing predator-prey relationships across environmental gradients (e.g., water depth, 

landscape connectivity) to accurately predict the responses of prey to predator abundance.  

In this study, seasonal reductions in marsh water-levels caused predators to move into the 

canals, increasing predation risk, resulting in anti-predator behavior by prey in the form 

of schooling.  At night, schools disbanded and individual prey congregated along the 

edge or possibly made horizontal movements into the adjacent marsh.  The diel patterns 

in prey space use suggest prey may increase foraging effort at night when the threat of 

predation is reduced.  This research provides new insight into the behavioral responses of 

mobile predators and prey in the Everglades and facilitates our understanding of the role 

of environmental gradients in shaping these interactions.     
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Table 1.  Date of sampling events for the seasonal and diel studies.  Window length (5 or 
10 m) used to collect acoustic data is listed under each canal sampling event.  Samples 
not collected are indicated by ‘-‘. 
 

Date Study Season 
Category 

Canal 
L67C L31W C111 

Day Night Day Night Day Night 
12-2010 Seasonal  10 - 10 - - - 
1-2011 Seasonal Early Dry 10 - 10 - - - 
2-2011 Seasonal Early Dry 10 - 10 - - - 
3-2011 Seasonal Early Dry 10 - 10 - - - 
4-2011 Seasonal Dry 10 - 5 - - - 
5-2011 Seasonal Dry 5 - 5 - - - 
6-2011 Seasonal Dry 5 - 5 - - - 
7-2011 Seasonal Wet - - - - - - 
8-2011 Seasonal Wet 5 - 5 - - - 
9-2011 Seasonal Wet 5 - 5 - - - 
10-2011 Seasonal Wet 5 - 5 - - - 
2-2012 Diel  10 10 10 10 10 10 
3-2012 Diel  10 - 10 10 - - 
4-2012 Diel  10 10 10 10 10 10 
5-2012 Diel  10 10 10 10 10 10 
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Table 2.  Results from nested ANCOVA for small- and large-fish densities. 
 

Effect Small Fish Large Fish 
df F p df F p 

Season 2, 44 1.85 0.17 2, 46 2.21 0.12 
Canal 1, 44 0.05 0.83 1, 46 0.77 0.38 
Season * Canal 2, 44 4.32 0.02 2, 46 11.20 < 0.001 
Water Level(Canal) 2, 44 0.10 0.90 2, 46 7.26 0.002 
Large Fish(Canal) 2, 44 2.93 0.06 - - - 
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Table 3.  Model fit statistics from the five best models for predicting the probability of 
detecting a school as a function of canal, large-fish density (LF), small-fish density (SF), 
or days of connectivity, and their combinations.   
 

Model ∆AICc R2 Evidence Ratios 
LF + SF 0 0.92 1 
SF 0.26 0.92 1.1 
SF(Canal) 0.91 0.92 1.6 
SF Canal 1.23 0.92 1.8 
LF(Canal) + SF(Canal) 1.35 0.93 2.0 
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Table 4.  Model fit statistics from the five best models for predicting nearest-neighbor 
distance and distance to school’s centroid as a function of canal, season, large-fish 
density (LF), small-fish density (SF), or marsh water-depth (MWD), and their 
combinations.   
 

Model ∆AICc R2 Evidence Ratios 

Nearest-Neighbor Distance 
Canal + LF + SF 0 0.74 1 
LF(Canal) + SF(Canal) 1.9 0.75 2.6 
LF + SF 3.6 0.68 6 
LF + SF + MWD 5.8 0.69 18.2 
Canal + LF + SF + Season 6.7 0.74 28.5 

Distance to Centroid 
Season 0 0.34 1 
Season + SF 1.9 0.36 2.6 
Season + Canal 2.4 0.35 3.3 
Season + LF 2.9 0.34 4.3 
Season + MWD 3 0.34 4.5 
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Table 5.  Results from ANOVA for small- and large-fish densities. 
 
  

Effect Small Fish Large Fish 
df F p df F p 

Month 2, 53 9.05 < 0.001 2 8.09 < 0.001 
Canal 2, 50 5.10 0.012 2 4.29 0.017 
Time of Day(Canal) 3, 30 2.87 0.053 3 3.36 0.023 
Month * Time of Day(Canal) 10, 53 3.31 0.002 10 3.47 < 0.001 
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FIGURE CAPTIONS 
 

Figure 1. Map of study sites within Florida Everglades, USA.  The L67C is located in the 
Gap between Water Conservation 3A and 3B and the L31W and C111 canals are located 
adjacent to Everglades National Park.   
 
Figure 2.  Mean marsh water-depth adjacent to the L31W and L67C canals from 
November 1, 2010 – November 1, 2011.  Water levels < 15 cm and < 5 cm are not 
accessable by large and small fish, respectively.  Seasons were defined as early dry (Jan. 
– Mar. 2011), dry (Apr. – Jun. 2011), and wet (Aug. – Oct. 2011).   
 
Figure 3.  Observed large-fish density in the (A) L67C and (B) L31W canals regressed 
against marsh water-depths pooled across seasons.  Solid black lines are predicted values.  
(C) Least squared means (± standard error) of large-fish densities for each canal and 
season.  Letters above bars indicate pair-wise differences among means.  Means are 
significantly different (p < 0.05) if there are no letters in common.  Densities in all panels 
are plotted on square-root transformed scale.   
 
Figure  4.  Partial regression plots for residuals of natural-log transformed small-fish 
density and residuals of large-fish density in (A) L67C and (B) L31W canals.  Plots 
remove the effect of the remaining independent variables to illustrate the actual model fit 
for each independent variable.  Residuals were obtained from separate regressions of 
small- and large-fish densities on marsh water-depth and season for each canal. 
 
Figure 5.  Probability of detecting a school as a function of small-fish density.   
 
Figure 6.  Partial regression plots for residuals of natural-log transformed nearest-
neighbor distance and residuals of natural-log transformed small-fish density in the (A) 
L67C and (B) L31W canals, and residuals of square-root transformed large-fish density 
in the (C) L67C and (D) L31W canals.  Plots partial out the effect of remaining 
independent variables.   
 
Figure 7.  Least squared means (± standard error) of distance to school’s centroid for the 
early dry, dry, and wet seasons.  Distance is plotted on natural-log transformed scale. 
 
Figure 8.  Mean marsh water-depth adjacent to the C111, L31W, and L67C canals from 
January 1 – June 1, 2012.  Arrows indicate sampling dates.  Water levels < 15 cm and < 5 
cm are not accessable by large and small fish, respectively. 
 
Figure 9.  Least squared means (± standard error) of small-fish density for the (A) L31W, 
(B) L67C, and (C) C111 canals from February – May 2012.  Asterisks indicate day and 
night mean densities are significantly different for that month (p < 0.05).  Densities are 
plotted on natural-log transformed scale. 
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Figure 10.  Least squared means (± standard error) of large-fish density for the (A) 
L31W, (B) L67C, and (C) C111 canals from February – May 2012.  Asterisks indicate 
day and night mean densities are significantly different for that month (p < 0.05).  
Densities are plotted on natural-log transformed scale. 
 
Figure 11.  Frequency distribution of swimming speeds for (A) L67C small fish, (B) 
L67C large fish, (C) L31W small fish, (D) L31W large fish, (E) C111 small fish, and (F) 
C111 large fish. 
 
Figure 12. Least squared means (± standard error) of (A) small- and (B) large-fish 
swimming speeds.  Asterisks indicate day and night mean densities are significantly 
different for that month (p < 0.05).  Densities are plotted on natural-log transformed 
scale. 
 
Figure 13.  Total encounter rate (no. predators and prey m-3 h-1) by time of day and month 
in the (A) C111, (B) L31W, and (C) L67C Canals.  Daytime encounter rates were 
calculated with two measures of prey density: all prey and schools treated as one fish. 
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Figure 6.  
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Figure 9.   
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46 
 

Figure 12.  
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