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ABSTRACT OF THE THESIS 

THE PHOTOOXIDATION OF DOMOIC ACID 

by 

Punam Parekh 

Florida International University, 2012 

Miami, Florida 

Professor Kevin O’Shea, Major Professor 

 Domoic acid (DA) is a naturally occurring cyanotoxin, which upon 

ingestion, is responsible for amnesic shellfish poisoning (ASP) in both humans and 

animals.   Produced by the marine diatom, Pseudonitzschia, DA is accumulated by a 

number of marine organisms including shellfish, clams and mussels which upon 

consumption can lead to headaches, nausea and seizures.  Possessing a variety of 

functional groups the structure of DA contains three carboxyl groups, a pyrrole ring and a 

potent conjugated diene region allowing for binding to glutamate receptors in the dorsal 

hippocampus of the brain causing the described detrimental effects.  Although limitations 

have been placed regarding the amount of DA that may be contained in seafood no 

limitations have been placed on the amount present in drinking water.  Natural 

degradation of the toxin may occur through reactive oxygen species such as the hydroxyl 

radical and singlet oxygen at the conjugated diene region.  In this work the 

photooxidation of DA via singlet oxygen has been studied using sorbic acid as a model 

compound.  The three major reaction pathways observed during the photooxdiation 

process for both acids include 2 + 4 cycloaddition to produce endoperoxides , 2 + 2 

reaction to afford aldehydes and ketones or an ene reaction to generate hydroperoxides.  
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Under similar reaction conditions for SA and DA, the endoperoxide has been seen to be 

the major product for photoxidation of SA while the hydroperoxide has been seen to be 

the dominant product during photooxidation of DA. 
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Chapter 1 

General Introduction 
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1.1 Causes of Harmful Algal Blooms 

 When an abundance of algal growth occurs, in marine environments as a 

consequence favorable environmental conditions, the event is known as a harmful algal 

bloom (HAB) (Buralge, 2011).  A number of causes of blooms are known.  One such 

cause is a spike in nutrients which can trigger increased unisexual algal reproduction 

(Kalluri, 2007).  The nutrients phosphorus and nitrogen have been shown to be key 

promoters of algal growth (Conley et al., 2009).  Certain physical forces including wind, 

storms, tides and currents also influence HABs through leaching of terrestrial nutrients 

into coastal environments (Sims, 2009).  Temperature also plays a major role in 

contributing to HABs as elevations in temperature, as a result of global warming, have 

led to favorable conditions such as longer seasons of warm temperatures with less ice, 

increased evaporation rates and droughts thereby increasing algal productivity (Paerl et 

al., 2010).  Another known factor contributing to HABs is salinity fluctuations (Pande, 

2008).  Research has revealed that low salinity offer optimal environments for algal 

growth (Round, 1984).   

Generally a beneficial occurrence, HABs provide a means of survival and 

livelihood of marine life, however, they have also been known to produce detrimental 

effects (Soumya et al., 2012).   Such negative consequences of blooms include toxicity, 

clogging of fish gills, a reduction in water quality, and oxygen depletion (Graneli et al., 

2007).  Most HABs involve dinoflagalettes or cyanobacteria but other classes of algae 

also exhibit blooms such as diatoms (Glibert et al., 2005).   
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1.2 Diatoms 

 Diatoms, a group of eukaryotic algae (Hedges e. al., 2009), which produce 

carbohydrates, are a key source of food for zooplankton in the marine food chain 

(Seckbach et al., 2011).  These algae are also responsible for recycling organic matter and 

nutrients in marine environments (Allen, 1934; Allen, 1936).  Although they are believed 

to have appeared during the Creatceous period, they have been studied for about 200 

years and are most notable for their use as environmental indicators (Smol et al., 2010; 

Cholnoky, 1968; Lowe, 1974).  Although all members of the radiation are characterized 

by a siliceous cell wall known as the frustule, different species are characterized by 

different morphologies and occupy several aquatic habitats (Smol et al., 2010).  Diatoms 

are found to have a global distribution (Gregory, 1892).  Classification of diatoms is 

primarily determined by pore structure and the positioning of organelles into the cell wall 

(Round et al., 1990).  The order consists of three famalies, the Coscindiscophyceae 

(centric diatoms), Fragilcriophyceae (araphid diatoms), and Bacillariophyceae (raphid 

pennate diatoms). Bacillariophyceae diatoms are those that contain a raphe, a slit opening 

in the cell wall used in locomotion (Hedges et al., 2009).  The centric diatoms contain 

round valves and have ribs which radiate out from a central ring known as the annulus 

(Round et al., 1990).  In regards to the simple pennate or araphid diatoms, the ribs extend 

out from both sides of a sternum whereas in the raphid diatoms the ribs again extend out 

from the sternum but the sternum contains one or two raphe slits (Round et al., 1990).  

Some examples of the genera of centric diatoms include Thalassiosira, Stephanodiscus, 

Skeletonema and Cyclotella (Stoermer, 2003).  Examples of araphid diatoms include 

Centronella, Fragilaria, Diatoma and Synedra whereas examples of raphid diatoms 
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include Achnatnthes, Karayevia, Planothidium, Rossithidium and Pseudonitzschia (John 

et al., 2002; Falkowski, 2007).   

1.2.1 Diatom Blooms 

 There are at least eight different known methods in which harmful 

phytoplankton can cause fatality (Smayda, 1997). The eight methods can be divided into 

two groups including non-chemical effects that cause physical damage and chemical 

effects which lead to metabolite production and physical-chemical reactions (Smayda, 

1997).  Phytoplankton use such methods during blooms for nutrient acquisition.  The 

most common type of blooms include HABs or harmful algal blooms.  In these types of 

blooms, algal toxins produced by algae accumulate in both predators and prey thereby 

moving the effects up the food web (Backer et al., 2006).  Although these blooms occur 

quite frequently, they are not the only type of blooms present in marine environments.  

Diatoms are commonly known to produce harmful effects by an allelopathic method in 

which specific areas of the human body are targeted by toxins and may be impaired, 

stunned, repelled or experience avoidance reactions including death (Smayda, 1997).  

When certain macronutrients, such as nitrate (NO3
-), phosphate (HPO4

2-) and silicic acid 

(H4SiO4), occur in abundance, rapid growth of diatoms ensues (Bruland et al., 2001).  In 

general it is seen that spring diatom blooms are more extensive than autumn blooms; 

pennate diatoms dominant during the spring blooms and the centric diatoms dominant 

during the autumn blooms (Chandler, 1940).   

1.3 Pseudonitzschia 

 Most diatoms are considered to be harmless however some are known to cause 

harm via oxygen depletion, physical injuries and phycotoxin production (Graneli et al., 
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2006).  Diatoms known to cause such harmful effects are members of the genus 

Pseudonitzschia which are able to produce the neurotoxin, domoic acid (DA); responsible 

for causing amnesic shellfish poisioning (ASP) in humans (Sun et al., 2011).  There are a 

total of 27 species that comprise the genus with members producing chains of various 

sizes by linking their cells end to end (Hasle et al., 1997; Lundholm et al., 2002; 

Lundholm et al., 2003; Prisholm et al., 2002).  Currently ~12 species of the genus 

Pseudonitzschia are known to produce DA (Graneli et al., 2007) with some of these 

members being Pseudonitzschia australis, P. cuspidate, P. galaxiae, P. pungens and P. 

fradulenta to name a few (Thessen et al., 2008).  Most of these species have been found 

to be coastal although some have been found to lie as far as 150 km offshore (Graneli et 

al., 2007).  Typical characteristics of species from this genus include elongated cells with 

a rectangular shape and arrangement of cells in a stepped chain fashion (Tomas, 1997).  

Energy needs of the organism are met through ATP production via photosynthesis, as the 

species contain chloroplasts.  Pseudonitzschia has a global distribution including the 

coasts of California, Japan and New Zealand (Horner et al., 1996); Kotaki et al., 1996; 

Rhodes et al., 1996)  as well as along the coasts of  Denmark, Portugal, Italy, Spain and 

other European countries (Miguez et al., 1996; Vale et al., 1998; Bates et al., 1998).  

Although the genus seems to be ubiquitous there seems to be only limited knowledge 

regarding species identification.  Proper identification of species requires a great amount 

of time as well as the need to discern morphological differences which can only be 

accomplished via scanning or transmission electron mircroscopy (Egmond et al, 2004).  

In regards to reproduction of the genus, species undergo sexual reproduction during 

events known as blooms. 
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1.3.1 Pseudonitzschia Blooms 

 From the needle shaped genus Pseudonitzschia some species are capable of 

contributing significantly to both open-ocean and coastal blooms (Schmidt, 2011). 

Prediction of the timing of Pseudonitzschia blooms is difficult.  However, a positive 

correlation has been established between blooms and an escalated amount of certain 

nutrients including Fe (III), PO4
3- and NO3

- (Fisher et al., 2006).  Heavy rains, winds, and 

high turnovers of the water column facilitate bloom events as they provide a means of the 

species of Pseudonitzschia to gather necessary nutrients (Thessen, 2007; Puschner et al., 

2002).  During blooms some species of the genus are able to produce the neurotoxin, 

domoic acid which has proven to be detrimental to many living beings including humans.      

 Although the exact reason for the production of DA is unresolved, one theory is 

DA complexes iron to enhance nutrition as well as copper to remove toxic trace metals 

(Bruland et al., 2001).   

1.3.2 Monitoring Blooms 

 Many techniques have been utilized and many more have been proposed in 

monitoring harmful algal blooms.  This is a result of the fact that occurrence of algal 

blooms is dependent on a variety of factors including nutrient concentrations and 

temperature (Wong et al., 2009).  Nutrient concentrations have increased in recent 

decades as a consequence of several factors including urban runoff, wastewater treatment 

plants, agriculture and fossil fuel use (CENR, 2000; NRC, 2000).  Increases in nutrient 

levels lead to a decline in water quality as well as a decrease in the size of wildlife 

populations (Summer et al., 2005).  Online monitoring can be used for nutrient 
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monitoring, for example nitrate concentrations in wastewater are measured via the 

sequential fiber optic spectrometer (Summer et al., 2005).   

 Created by the U.S. Global Ocean Observing System (GOOS) Program a 

method for forecasting algal blooms has been developed (Fisher et al., 2002).  The 

subdivision of the program referred to as the Harmful Algal Blooms Observing System 

(HABSOS) has been specifically designed to observe bloom events in the Gulf of Mexico 

(Pennock et al., 2004).  Initially focusing on Karenia brevis (red tide) the project is 

expected to be expanded to study other bloom events (Melzian et al., 2002).  Data on the 

evolution and location of K. brevis blooms were used to forecast future blooms by using 

satellite imagery capable of detecting the increased concentrations of chlorophyll a 

present during blooming events (Melzian et al., 2002).   To date researchers found that 

there is no way to determine a K. brevis bloom 2-3 days before hand since the regional 

environmental data needed to predict a bloom were not available (Pennock et al., 2004).  

Scientists have also concluded that the satellite coverage system known as SeaWIFS 

cannot alone be used to monitor red tide blooms but instead depends on the use of many 

methods including knowledge of wind vectors and currents as well as SeaWIFS (Pennock 

et al., 2004).   

Harmful algal blooms are a worldwide problem affecting many nations.  

Countries of the European Union have joined to form EUROHAB (European initiative on 

Harmful Algal Blooms) which has engaged in the funding of research conducted on 

harmful algal blooms (Anderson, 2005).  The main goal of EUROHAB includes the 

changes in environmental conditions in European coastal ecosystems due to human 

related activities (Graneli et al., 2000).  The creation of EUROHAB and ECOHAB 
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(Ecology and Oceanography of Harmful Algal Blooms), a similar organization in the US, 

has led to the birth of multilateral monitoring agencies created to incorporate 

international collaboration (Anderson, 2005).  These include GEOHAB (Global Ecology 

and Oceanography of Harmful Algal Blooms) and SCOR (Scientific Committee on 

Oceanic Research) (Anderson, 2005). 

1.4 Domoic Acid 

Significant effort and resources have been dedicated to monitoring HABs, but 

detection of the cyanotoxins is critical to environmental health.  Domoic Acid (DA) (3-

carboxymethyl-4-(2-carboxy-1-methylhexa-1,3-dienyl) proline) [C15H21NO6] with 

molecular weight 311 (Nemoto et al., 2007) and (Bell, 2003), is a harmful algal toxin 

produced by the species in the marine diatom, Pseudonitzschia.  The toxin is produced 

during harmful algal blooms and has led to numerous intoxications of both animals and 

humans.  Domoic acid belongs to a group of neurologically active amino acids known as 

the kainoids, for which kainic acid is the parent (Lefebvre et al., 2002).  The toxicity of 

domoic acid and kainic acid results from their common structural features and their 

affinity for glutamate receptors as illustrated in Figure 1. (Lefebvre et al., 2002).  Domoic 

acid and kainic acid however, are potent agonists of glutamate receptors in the dorsal 

hippocampus of the brain (Scholin et al., 2000).  Acting as an agonist, domoic acid binds 

to specific glutamate receptors mimicking the typical action of glutamic acid.  The dorsal 

hippocampus contains neurons that are responsible for the encoding of past experiences 

(Work et al., 1993).  When domoic acid binds to glutamate receptors, excitatory 

responses throughout the central nervous system are initiated.  Hippocampal 

neurodegeneration results from binding to 2-amino-3-hydroxy-5-methyl-4-
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isoxazolepropionate (AMPA)– type (AMPARs) and kainate (KA)-type GluRs (KARs) 

(Fritz et al., 1992).   

 

 

 

 

 

Figure 1:  Structures of Domoic Acid (DA), Kainic Acid (KA) and Glutamic Acid 

 

The structure of domoic acid contains four chiral centers and three carboxyl 

groups as well as an electron rich conjugated diene region believed to be the center of 

most reactions.  At least nine geometrical isomers of domoic acid exist which can be 

created through irradiation of domoic acid via UV light (He et al., 2010).  These isomers 

are shown in Figure 2. 

1.4.1 Photoisomerization of Domoic Acid 

Isomerization of domoic acid can occur either thermally or photochemically 

(Wilson et al., 2000).  Because there are four chiral centers in DA there are a total of 16 

stereoisomers each with four geometric isomers resulting in a total of 64 isomers.  

Currently there are at least nine known isomers of domoic acid with six of the isomers 

being constitutional isomers (Zhao et al., 1997).  These isomers are isolated from mussel 

tissue and separated via the employment of SAX-SPE for LC analysis followed by the 

use of the basic background electrolyte (BGE), ß- cyclodextrin for increased efficiency 
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(Zhao et al., 1997).  Domoic acid can photoisomerize to isodomoic acids D, E and F, with 

a greater production of acids D and E over F, under stimulated sunlight (Bouillon et al., 

2008).  These three acids can interconvert by cis-trans isomerization of the conjugated 

diene (Wright et al., 1990).  Studies have shown that photoisomerization requires UV 

light with wavelength in the range of 280-400 nm and can occur in natural waters 

(Bouillon et al., 2006).  Exposure of domoic acid to UV light (250 nm) for 9-12 minutes 

leads to the production of three geometric isomers (Clayden et al., 2005).  On the basis of 

the findings of Zhao, DA is also seen to epimerize through deprotonation and 

reprotonation at reverse ends of a planar intermediate (Zhao et al., 1997; Soderberg, 

2012).  The resulting intermediate is an enolate anion which is stabilized by resonance 

(Soderberg, 2012).   

The three isomers produced under UV irradiation exhibit toxic effects similar but 

less potent to domoic acid (Wright, 1995).  The differences in toxicity of DA and its 

isomers lies in the configuration of the double bond in the hexadienyl side chain 

extending from the ring structure (Sawant et al., 2010).  The Z configuration on the first 

double bond of DA allows for an increased binding strength and biological activity of the 

toxin to kainic acid receptors, characteristic of the binding site (Hampson et al., 1992).   
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Figure 2:   Isomers of Domoic Acid 
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Rue et al., have proposed synthesis of domoic acid by Pseudonitzschia as a 

means of preventing the iron deficiency that occurs during HABs (Rue et al., 2001).  The 

main reason for this lies in DA’s structural similarity to iron-complexing agents, such as 

mugineic acid, generated by terrestrial plants and shown in Figure 3 (Takagi et al., 1993).  

Mugineic acid, generated by the roots of barley plants, is capable of solubilizing iron 

through the formation of a stable acid-metal complex (Sugiura et al., 1981).   Similarities 

between mugineic acid and DA are found in the size, overall structure, especially the 

carboxylic acid functionality, as metal-binding sites are major factors leading to the belief 

of DA as an iron-binding chelator (Rue et al., 2001).  Another possible function of DA is 

the removal of the toxic cuprate ion which may hinder the reproduction of 

Pseudonitzschia phytoplankton (Brand et al., 1986).  It is believed therefore that in order 

to combat this potential problem; domoic acid is created to remove free cupric ions to 

prevent their entrance into cells while enhancing the cell’s resistance to toxicity caused 

by the ion (Rue et al., 2001).          

 

  

                                                  

 

 

Figure 3: Structures of Domoic Acid and Mugenic Acid 
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1.4.2 Toxicity of DA 

Domoic acid is the toxin responsible for causing amnesic shellfish poisioning 

(ASP) (Sun et al., 1999).  Although used as an ascaricide and first discovered to be 

produced in 1958, in Japan, by the red microalga, Chondria armata Okamura, DA 

production has seen to occur mainly in Pseudonitzschia (Work et al., 1993; Bell, 

2003).  Potency of the toxin occurs when contaminated shellfish are consumed by 

humans (Smith et al., 1995).  Shellfish are able to feed on phytoplankton and 

concentrate DA to the point where consumption of contaminated shellfish becomes 

toxic to humans (Duxbury, 2000).  Several major incidences involving DA toxicity 

have occurred in the past.  One major incident occurred in Prince Edward Island, 

Canada during December 1987 when a domoic acid outbreak occurred in cultured 

blue mussels (Smith et al., 1995).  A total of 153 people suffered acute intoxication 

and three elderly people died (Sun et al., 1999).  It was later discovered that deaths 

were the result of a combination of preexisting conditions such as renal disease and 

hypertension along with domoic acid intoxication (Scallet et al., 2005).  The 

symptoms people suffered included cardiovascular fluctuations, gastrointestinal 

distress, seizures and respiratory secretions (Scallet et al., 2005).  Other symptoms of 

those intoxicated were vomiting, loss of balance, short term memory loss, confusion, 

nausea, diarrhea and coma (Duxbury, 2000).  Additionally, damage to the 

hippocampus and amygdale have been seen to occur in those affected by ASP 

through post-mortem evaluations (Scallet et al., 2005).  Those most severely affected 

were seen to still have memory loss after 5 years (Todd, 1993).  During this Canadian 

poisoning it was discovered that the amount of DA in affected shellfish was around 
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300g/µg (Duxbury, 2000).  Domoic acid has not only harmed Canadians but 

Americans as well when in November 1991 consumption of razor clams and crabs 

raised in Washington D.C. and Oregon caused illness to consumers (Todd, 1993). 

 Domoic acid affects humans and animals.  When marine diatoms are ingested by 

creatures such as oysters, mussels, sardines, clams, scallops, crabs and anchovies, DA 

becomes concentrated in their gill structures (Scallet et al., 2005).  When various 

marine lives consisting of dolphins, pelicans, sea lions, loons, grebes and cormorants 

feed on the intoxicated seafood the result is often disorientation followed by death 

(Lefebvre et al., 1999; Lefebvre et al., 2002; Scholin et al., 2000).     

One major incident involving ingestion of DA by brown pelicans and Brandt’s 

cormorants occurred in Monterey Bay California in September 1991 (Work et al., 

1993).  A great number of birds died following exposure to DA (Fritz et al., 1992).  

The poisoned animals experienced vomiting and loss of balance and also showed 

unusual head movements (Duxbury, 2000).  It was shown that the pelicans in 

particular endured hemorrhages and necrosis of the skeletal muscle (Work et al., 

1993).  Another similar incident of pelican poisoning through domoic acid occurred 

in Cabo San Lucas, Mexico in 1996, causing hundreds of pelicans to die (Beltran et 

al., 1997).  Domoic acid was found in the stomachs of the deceased animals as a 

result of their feeding on contaminated anchovies (Work et al., 1993).   

Sea lions are another species which have been victims to DA intoxication.  The 

incident arose in May 1998 along the central beaches of California (Gulland, 1999).  

Forty-seven sea lions died and an additional twenty-three required rehabilitation 

before being released into the wild (Gulland, 1999).  Examination via autopsy 
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demonstrated for sea lions that died, shortly after exposure to DA,  detectable levels 

of DA in the urine and blood and also lesions and necrosis in the hippocampus were 

observed (Scholin et al., 2000; Silvagni et al., 2005).  Currently it has also been 

speculated that domoic acid exposure to a developing fetus may cause detriments 

leading to long-term cognitive impairment (Ramsdell et al., 2008; Tiedeken et al., 

2010).  Domoic acid has not only shown to distress to wildlife but also has shown to 

influence lab animals such as mice, rats and monkeys who have dealt with acute 

intoxication subsequent to exposure of domoic acid (Lefebvre et al., 1999).   

To ensure food safety, limits have been placed on the amount of DA seafood can 

contain.  In Canada, since the domoic acid limit in mussels was ≤ 20 µg/g, there have 

been no major episodes of DA poisoning in humans (Truelove et al., 1994).  The 20 

µg/g of DA in seafood has been enforced in other countries as well including the 

United States, New Zealand, Australia and the European Union (He et al., 2010).  

One current method of detecting domoic acid in shellfish is through use of LC-

tandem mass spectrometry, a specialized technique that provides the sensitivity 

needed for indisputable evidence of domoic acid (Tor et al., 2003).  Other methods 

that have been used include surface plasmon resonance biosensors, receptor binding 

assays, and a modified version of the paralytic shellfish poisoning (PSP) mouse 

bioassay (Van Dolah et al., 1997; Beani et al., 2000).  However as receptor binding 

assays and PSP mouse assays use radioisotopes and animals for domoic acid 

identification they have limited usage (Tsao et al., 2007). 

As a member of the kainoid class of amino acids, domoic acid closely resembles 

both kainic acid and glutamic acid as seen in Figure 3 (Bell, 2003).  The kainoid class 
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is one comprised of excitatory neurotransmitters (He et al., 2010).  Domoic acid 

specifically works by acting as an agonist of glutamate receptors in the dorsal 

hippocampus of the brain (Todd, 1993; Mos, 2001).  When DA enters the body the 

toxin attaches to N-methyl-D-aspartate (NMDA) receptors, located in the central 

nervous system (CNS), which in turn causes depolarization of the neurons (Berman et 

al., 1997).  As these neurons are located in the dorsal region of the brain, many 

infected persons experience short term memory loss (Yu et al., 2004).  Brain damage 

associated with both intoxication of DA and kainic acid has been found to be similar 

in humans and animals (Teitelbaum et al., 1990).  Neuronal fatalities have been 

discovered to be a result of apoptosis when a lower concentration of DA has been 

consumed (100 nM) (Giordano et al., 2007).  Fatalities are seen to occur due to the 

fact that only the AMPA/kainite receptors are affected (Giordano et al., 2007).  

Another form of neuronal death is through necrosis (Berman et al., 1997; Giordano et 

al., 2006).  Necrosis occurs when a high concentration of domoic acid (10 µM) is 

consumed (Berman et al., 1997; Giordano et al., 2006).  In the case of cell death by 

necrosis, domoic acid attaches to both AMPA/kainite and NMDA receptors 

(Giordano et al., 2006).     

1.4.3 Monitoring DA 

After the major domoic acid poisoning incident in Canada, a number of methods 

have been developed for the detection of domoic acid in marine organisms.  Currently the 

accepted methods for DA detection in biological samples are via liquid chromatography 

with ultraviolet absorbance (LC-UV) and mass spectrometric (LC-MS) detection 
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(Quillam et al., 1989; Holland et al., 2003).  The detection limit of DA using LC-UV is 

around 0.1-1.0 mg /g of tissue, depending on the sensitivity of the UV detector (He et al., 

2010).  The low detection limit is attributed to the diene chromophore in DA to absorb 

sufficient light absorbing at 242 nm (Lawrence et al., 1991).  The United States, Canada, 

Peru, New Zealand, Mexico, Chile as well as countries in the European Union monitor 

domoic acid levels via LC-UV all with a tolerance level of 20 mg/kg (Botana, 2008).  

Although LC-UV has proven to be a simple technique in detecting trace amounts of the 

toxin, false positives occur commonly due to interferences from crude extracts (Hess et 

al., 2001).  Specifically the amino acid tryptophan and its derivatives, commonly found in 

shellfish, in some chromatographic conditions, elute closely to DA resulting in incorrect 

analysis (He et al., 2010).  Additionally operation of HPLC methods demand highly 

trained personnel, sufficient sample clean up as well as expensive equipment (Yu et al., 

2004).  Therefore a number of other methods for DA detection have been developed. 

 Use of LC-electrospray-tandem MS for DA detection has provided 

unambiguous results for both the quantification and identification of the neurotoxin 

(Wang, 2007).  Such a method allows for the monitoring of DA in biological samples 

thus giving pertinent epidemiological information needed to monitor certain species of 

marine organisms in order to protect and maintain human health (Tor et al., 2003).  A 

particular method centering on LC-MS, created by Wang et al., focuses on domoic acid 

detection in seawater and phytoplankton (Wang, 2007).  More specifically detection is 

achieved via use of SPE under an acidic condition followed by the employment of LC-

MS using a Luna C18(2) column giving an unequivocal way of identifying both domoic 
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acid and its isomers in both seawater and phycoplankton (Wang, 2007).  Another method 

created by Tor et al., aimed to detect DA in marine organisms, utilizes LC-MS.  

A number of bioassays have been developed for DA detection such as the mouse 

bioassay, hippocampal slice preparations and receptor binding bioassay (He et al., 2010).  

Derived from a modification of the mouse bioassay for PSP toxins, a corresponding assay 

for the ASP toxin DA has been developed to detect concentration levels of 40 μg/g (Yu et 

al., 2004).  With this method monitoring of DA occurs when shellfish tissue is boiled in 

HCl, cooled and injected using serial dilutions (Botana, 2008).  The toxicity symptoms 

based both on time and dosage are then recorded over a four hour time period and used to 

determine concentration via extrapolation with calibration curves (Botana, 2008).  Other 

than having a DA limit of detection higher than the standards of most countries, the 

mouse bioassay also presents a host of other problems.  Such problems are the ethical 

issues surrounding the treatment and sacrifice of the mice, lack of specificity in 

determination of the toxin and a high rate of both false positives and negatives (Sauer, 

2005; Holland, 2008; Combes, 2003).   

 As antibodies produced against DA have led to the production of enzyme linked 

immunoabsorbent assays for DA, use of certain antibodies have led to the synthesis of 

another detection method, direct competitive enzyme-linked immunosorbent assay 

(cELISA) (Smith et al., 1994; Garthwaite et al., 1998; Kleivdal et al., 2007).  The assay 

has now been commercialized and serves mainly for the detection of DA in shellfish 

(Kleivdal et al., 2007).  In a study conducted by Hesp et al., research has shown results of 

close correlation between use of LC-MS and cELISA in the detection of DA in 
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mammalian tissues (Hesp et al., 2005).  cELISA has also been demonstrated as being an 

effective method for the quantification of DA in mammalian tissues (Maucher et al., 

2005).  Through a study performed by Maucher et al., biomonitoring of DA was 

accomplished in female mice (Maucher et al., 2005).  More specifically the mice, after 

being injected with known concentrations of DA, were bled after 48 hours and extraction 

of DA was carried out via cELISA demonstrating that DA was quantifiable after 4 hours 

of exposure and was still quantifiable even after 24 hours thus proving to be a potential 

technique of rapid biomonitoring of DA (Maucher et al., 2005).  These assays and 

antibodies provide a possible means of monitoring levels of DA during different times in 

the photooxidation process thus allowing the establishment of rate of DA degradation.   

1.4.4 DA Degradation 

 Over the past, a number of both natural and chemical methods for degradation of 

DA have been investigated.  In a study conducted by Mok et al. (2009), the effects of 

temperature and pH on DA degradation were monitored through the use of HPLC (Mok 

et al., 2009).  Extracts in methanol were derived from oyster, blue mussels and neck 

clams and results demonstrated that DA was very stable for up to a month in -18 º, 4 º 

and room temperature.  Results also showed that DA was stable when adjusted to a pH 

range of 3-9 and heated to a temperature of 121 º for a period of up to 30 minutes (Mok et 

al., 2009).   

Natural degradation in a variety of different water matrices has demonstrated DA 

is mostly photodegraded through a direct photochemical pathway (Bouillon et al., 2006).  

Using light of a wavelength range of 280-400 nm, Bouillon et al., discovered that the rate 

of DA degradation decreased with increasing wavelength and that the optimum range for 
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DA degradation was 280-300 nm with no effect through use of visible light (Bouillon et 

al., 2006).  Studies have also shown temperature to be an important environmental factor 

of DA degradation as an increase in temperature has led to an increased rate of 

degradation (Bouillon et al., 2006).   

Other studies have also shown that immediate degradation of DA can occur when 

it is complexed by Fe III in natural sunlit waters (Fisher et al., 2006; Rue et al., 2001; 

Wells et al., 2005).  Through a study conducted on the environmental degradation of 

mixtures of KA and DA in seawater with and without the addition of transition metals, 

almost all of the KA used was seen to bind to a transition metal, either Cu II or Fe III in 

the employed photodegradation conditions.  Binding of KA to these metals was 

monitored using an 1H NMR titration technique in which KA as most other amino acids 

most likely binds to Fe III in the deprotonated form and that as pD increased the line 

width broadened thus indicating the presence of an Fe III-KA complex (Burns et al., 

2007).  Since the binding constants for the Fe III- KA complex were the same order as 

those found for the complexation of Fe III and DA, competitive binding experiments 

were performed and illustrated that KA took four times as long to degrade in the presence 

of DA than when photodegraded alone (Burns et al., 2007).  The acid-metal complexes 

are believed to become labile after photoreduction of Fe III thus allowing for catalytic 

cycling of the transition metal (Burns et al., 2007).  Although scarce, DA has also been 

shown to undergo microbial degradation through a limited variety of bacteria present in 

shellfish tissues (Stewart et al., 1998).  A recently explored avenue for DA degradation is 

the use of reactive oxygen species (ROS).  In a study conducted by Djaoued et al. (2008), 

UV degradation of DA was catalyzed through use of TiO2 thin films prepared by a sol-
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gel dip coating method using UVA light (~350 nm).  Titanium dioxide was used as it 

provides a method for the production of O2
- ● upon the abstraction of an electron from the 

conduction band of TiO2 (Djaoued et al., 2008).  The O2
- ● radical then in turn reacts with 

a proton to give the hydroperoxide radical (HO2
●) another species along with O2

- ● that is 

capable of degradation of organic pollutants (Djaoued et al., 2008).   Initially during 

photocatalytic degradation several isomers DA were formed including isodomoic acids 

D, E, F as well as C5 ‘epidomoic acid which upon continued exposure led to degradation 

of DA and its isomers (Djaoued et al., 2008).         

1.5 Reactive Oxygen Species   

Reactive oxygen species (ROS) are highly reactive species that contain one 

unpaired electron in an outer orbital (Avner et al., 2009).  Examples of ROS include free 

radicals such as hydroxyl (OH ●), superoxide (O2
 - ●), perhydroxyl (HO2 

●) as well as 

hydrogen peroxide (H2O2), singlet oxygen (1O2) and perferryl ions (FeO2 
2+) (Afanas-ev, 

1991).  Although ROS occur naturally in the body overproduction can lead to oxidative 

damage via the alteration of both chemical structure and function of critical biological 

macromolecules such as sugars, proteins, lipids and nucleic acids (Houdy et al., 2011).   

Environmentally, the ROS, OH● is produced by the Fenton process which 

involves the catalyzed decomposition of H2O2 by Fe II under acidic conditions (Chen et 

al., 2010).  The Fenton process has been used by Bandala et al. (2009) as a means of DA 

degradation in order to supply water with reduced toxicity to desalination plants.  In the 

study both Fenton processes involving the use of Co and peroxymonosulfate (PMS) and 

the photo-Fenton process resulted in DA oxidation with use of UV light (365 nm) 

(Bandala et al., 2009).  The photo-Fenton reaction leads to 85% degradation of DA after 
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60 minutes due to inhibition by the Cl ion in salt water while almost complete 

degradation is achieved using Co, PMS and UVA light after 5 minutes of irradiation 

(Bandala et al., 2009).  Another potential ROS which may lead to DA degradation is 

singlet oxygen which is also produced in water where pigments function as 

photosensitizers (Kohn et al., 2007).  Naturally occurring sensitizers, waste stabilization 

pond constituents (WSP), Fluka humic acid (FHA) and Suwannee River Humic Acid 

(SRHA) (Kohn et al., 2007) produce singlet oxygen on the order of 10-13 M using WSP 

and 5 × 10-14 M when using FHA and SRHA (Kohn et al., 2007).    

1.5.1 Singlet Oxygen Generation 
 

The overall reaction scheme for generation of singlet oxygen is illustrated in 

Figure 4.  The first step in the generation of singlet oxygen occurs when a photosensitizer 

absorbs enough light energy to transition to an excited singlet state (Kadish et al., 2003).  

Upon excitation the singlet state can either return to the ground state or undergo 

intersystem crossing to produce the triplet excited state (Nyokong et al., 2012).  The 

excited triplet state can then undergo an energy transfer reaction with molecular oxygen 

to generate singlet oxygen (Kadish et al., 2003).   

 

 

 

 

Figure 4: Production of Singlet Oxygen using a Photosensitizer 
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sensitizer reacts with the substrate to either undergo hydrogen abstraction or an electron 

transfer process (Kadish et al., 2003).  In the Type II mechanism the excited 

photosensitizer undergoes energy transfer with molecular oxygen first to produce singlet 

oxygen (Calzavara-Pinton et al., 2001).  The type of process that occurs during 

photosensitization depends on the solvent, the chemical nature of the sensitizer and also 

the presence of other substrates in the solution (Rhodes, 2000).  In regards to the solvent, 

a number have been studied for singlet oxygen generation showing that deuteration of 

solvents increases the lifetime of singlet oxygen significantly (Anslyn et al., 2006).  A 

number of dyes including Rose Bengal and erythrosine B are excellent photosensitizers 

for the production of 1O2 (DeRosa et al., 2002).   

 

 

 

 

 

 

 

 

 

 

 

Figure 5: Type I and Type II Photosensitization Reactions (Olenick, 2011) 

1.5.2 Rose Bengal 

 The vegetable dye Rose Bengal (RB), Figure 6, (4,5,6,7-Tetrachloro-2′,4′,5′,7′-

tetraiodofluorescein disodium salt ) [C20H2Cl4I4Na2O5]  serves a variety of purposes 
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including tissue welding, use as an opthamological agent, a photobacteriocide and a 

photosensitizer (Wainwright, 2009).  Operation as a 1O2 sensitizer occurs when there is 

energy transfer between the triplet excited state of the sensitizer and the oxygen molecule 

to generate singlet oxygen (Kruk, 1998).  Effectiveness of the sensitizer arises from its 

possession of the halogen, I, which allows for greater intersystem crossing because of the 

heavy atom effect and thus an increased production of the triplet excited state of the 

sensitizer (Nyokong, 2012).  As RB is a polar molecule it can be used in polar solvents 

however the dye can also be used in non polar solvents when attached to a polystyrene 

bead which acts as a non-polar polymer support (Paczkowski et al., 1984).  Studies have 

shown that in polar solvents the salt form of RB follows Beer’s law indicating that the 

dye does not aggregate and therefore results in no change in the maximum absorption in 

spectral analysis but as the solvent is changed to a non polar one, aggregation may occur 

(Neckers et al., 1987).  

Although demonstrated to be an effective sensitizer, RB and all other dyes 

undergo a process known as photobleaching, with some dyes more susceptible than 

others (Whitaker, 2010).  The amount of photobleaching relies predominantly on three 

factors including the dye, the amount of oxygen or the amount of extinction light 

(Pawley, 2006).  In order to reduce bleaching and other problems presented by RB 

several derivatives of RB have been synthesized. 
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Figure 6: Structure of Rose Bengal (RB) 

 

1.6 Reactions of Singlet Oxygen with Dienes 

 

 Singlet oxygen commonly reacts with 1, 3 conjugated diene functionalities, such 

as that present in domoic acid, in three specific ways: the ene reaction, the 2+2 reaction 

and the Diels-Alder or 4+2 reaction (Pattenden, 1980).  Figure 7 below depicts the 

general reactions of dienes and singlet oxygen.  Presence of these reaction products forms 

a complex mixture for which product distribution is influenced by reactant confirmation, 

geometry and substituents.  Some of these products are unstable and difficult to isolate 

and purify.  Therefore in order to gain a better understanding of product formation and 

stability the reaction of a simpler model compound, sorbic acid, with singlet oxygen is 

explored in chapter two. 
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Figure 7: Possible Reactions of Conjugated Dienes and Singlet Oxygen 
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Chapter 2 

 

Photooxidation of Sorbic Acid (SA), a Model Compound for Domoic Acid 
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2.1 Introduction 

The reactions of singlet oxygen with DA may play an important role in the 

environmental fate of DA and also may be attractive for treatment of waters 

contaminated with DA.  Domoic acid contains amine, carboxylic acid and diene 

functional groups.  The carboxylic acid group is unreactive towards singlet oxygen 

because of the resonance present between the carbonyl and hydroxyl groups (Macomber, 

1996).  The resonance effect results in a decreased electrophilicity of the carbonyl carbon 

making it less susceptible to attacks from incoming nucleophiles (Patrick, 2004).  As for 

the pyrrolidine ring on DA, it is known that amine groups can quench singlet oxygen. 

(Matysik et al., 2002).  The pyrrolidine ring causes quenching of singlet oxygen via DA 

(Matysik et al., 2002).  In addition, it has a number of chiral centers and thus synthesis of 

DA for my photoxidation studies is not practical.  While DA can be isolated from cell 

cultures or purchased both options are expensive. 

  While DA contains a number of functional groups, the conjugated diene 

functional group is most susceptible to singlet oxygenation. With this in mind I chose to 

use the potassium salt of SA as a model compound for DA to study the reactions with 

singlet oxygen, as seen in Figure 8.  Sorbic acid is less complicated structurally and 

spectroscopically than DA allowing for product studies with easier optimization of the 

reaction conditions.  Despite the simple structure of SA compared to DA both compounds 

are expected to react with 1O2 at the diene and in an analogous fashion.   
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                       Domoic Acid                                                  Potassium Sorbate 

 

Figure 8: Structures of DA and SA Highlighting the Reactive Diene Region 

Given the presence of the diene and CO2H functionality, aqueous solubility and 

preference for 1O2 to react at the diene, SA is an excellent and inexpensive model for 

studying reactions of 1O2 of DA.  The high costs of DA seriously limit my ability to run 

detailed product studies.  The price of DA is found to be $154.50 for 1 mg of the 

compound while the price of SA is seen to be only $21.50 for 100 g (Aldrich, 2012).  The 

solubility of the salt form of SA, potassium sorbate, is found to be as soluble as DA 

(Luck, 1990; Falk et al., 1991).   

2.2 Sorbic Acid  

While I employed SA as a model compound for DA, the reactions of 1O2 with 

SA have yet to be studied in detail and are of significant interest.  Sorbic Acid (SA) (2,4-

hexadienoic acid) [CH3CH=CHCH=CHCOOH] with molecular weight 112.13 (Aldrich, 

2012) is a commonly used food additive that was discovered to possess antimicrobial 

properties in the 1930s (Naidu, 2000).  Synthesized through the heating of parasorbic 

acid found in rowan berries, sorbic acid has a variety of uses including food preservative, 

cosmetics, pharmaceuticals, animal feeds and industrial processes (Davidson et al., 

2005).  Chemically, the structure of sorbic acid consists of a short chain trans –trans 
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conjugated diene and is classified as a fatty acid (Fennema, 1996).  The antimicrobial 

activity of SA is believed to rest on a number of factors including changes in cell 

transport functions as well as changes in cell membranes, enzyme inhibition, and changes 

in genetic composition (Naidu, 2000).  Numerous derivatives of SA, which also function 

as food preservatives, have been synthesized including esters, amides, alcohols, amine 

salts and alkaline salts (Naidu, 2000).  One such salt includes potassium sorbate which is 

favored in certain foods over sorbic acid because of its greater water solubility (Pearson 

et al., 1996).   

 2.2.1 Photoisomerization of SA 

 SA, its potassium salt, and its ester form undergo isomerization when exposed to 

UV irradiation (Cigic et al., 2001).  There exist a total of four geometrical isomers of SA 

produced by cis-trans isomerization just as in DA (Grebel et al., 2011).  The wavelength 

shown to isomerize SA is 248 nm (Waldron et al., 1996).  An UV irradiation time of 120 

minutes has been found to be ideal leading to the greatest production of isomers without 

product degradation (Cigic et al., 2001).   Photoisomerization of potassium sorbate with 

UV light also gave the four geometrical isomers (E, E), (E, Z) and (Z, E) (Cigic et al., 

2001).  The cis isomers exhibit lower microbial activity as the permeability across cell 

membranes was decreased subject to steric hindrances (Xiang et al., 1998).  Figure 9 

displays the geometrical isomers of potassium sorbate. 
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Figure 9: Geometrical Isomers of Potassium Sorbate 

2.2.2 Toxicity of SA 

Although when SA is metabolized by the human body it is considered non-toxic; 

acute toxicity is exhibited at 10g kg-1 of body weight (Hornsey, 2007).  As a consequence 

of these findings, the WHO has set the daily guideline of SA to 25 mg kg-1 (Hornsey, 

2007).  Acute toxicity of SA has been studied in rats.  After a feeding period of 120 days, 

the animals experienced increases in growth rate and liver weight when exposed to SA 

(Davidson et al., 2005).  A prolonged SA intake for rats, up to a life span of one or more 

generations, has shown to induce chronic toxicity resulting in increased weights of the 

liver, ovary and kidney as well as a decrease in body weights (Maga et al., 1995).  

Occurrence of toxicity may be the result of reaction between SA and sodium nitrates or 

sulfur dioxide to produce mutagenic products (Naidu, 2000).  It is likely that biological 

and environmental transformation involves reactive oxygen species, such as 1O2.   
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2.3 Reactions of SA with Singlet Oxygen 

 As a 1,3-conjugated diene, SA is expected to react with singlet oxygen in three 

specific ways: the [4 + 2] or Diels-Alder reaction to form endoperoxides, the [2 + 2] 

reaction to give 1,2-dioxetanes and the Schenck or ene reaction to afford hydroperoxides 

(Ramamurthy et al., 2001).  These reactions are shown in Figure 10. 
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Figure 10: Possible Reactions and Products of SA Photooxidation 
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2.4 Experimental   

2.4.1 Materials 

 Potassium Sorbate (MW = 150.22) was purchased from Aldrich and used 

without further purification.  Deuterium oxide (D2O) the NMR solvent, was purchased 

from Cambridge Isotope Laborotories Incorporated.  Rose Bengal was purchased from 

Aldrich and had a purity of 95%.  The NMR tubes (OD 5 mm) were purchased from 

Kimble Chase.     

2.4.2 Stock Solutions 

 A stock solution of (1 x 10-4 M) Rose Bengal and D2O was prepared using 

volumetric glassware and stored in a glass vial (O.D. 3 cm) for future use.  The vial was 

tightly capped and wrapped with parafilm.    

2.4.3 Sample Preparation 

 For a typical experiment, a specific amount of SA was weighed out and added to 

0.7 mL of stock D2O/RB solution.  Each sample run was transferred to a clean dry NMR 

tube (O.D. 5 mm) and stored prior to irradiation in the refrigerator.  The NMR tube was 

placed in a windowed Dewar containing an ice bath for irradiation.       

2.4.4 Photoxidation 

 Photooxidation was conducted via a Xenon lamp (Oriel), model 68806, 

equipped with a heat filter containing deionized water and connected to a lamp housing, 

model 7240, outfitted with a cooling fan positioned on an adjustable jack.  The xenon 

lamp contained inside possessed a rating of 15 W and was set to a current of 7.5 Amps.  

The NMR tube containing the sample was placed in a windowed Dewar filled with water 

and a thin layer of ice.  The liquid level was marked on the NMR tube for extended 
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photooxidation.  The RB/D2O stock solution was added to the mark to compensate for 

photobleaching of the RB and/or loss of solvent.  At specific reaction times the NMR 

tube was removed from the windowed Dewar and excess water on the outside of the tube 

was cleaned off prior to NMR analysis   

2.4.5 NMR Analysis 

  The 1H NMR (Bruker, 400 MHz) was used for the majority of 1D NMR and 2D 

NMR experiments involving SA, but the 600 MHz was instead used for product 

confirmation.  Spectra were analyzed and integrated with a TMS peak centered at 0 parts 

per million.  The integration of SA and products were used to determine the relative 

ratios of starting material and products as a function of irradiation time.     

2.4.6 Photooxidation Experiments 

 For a typical experiment 3 mg of SA was transferred to an NMR tube with 0.7 

mL of the RB/D2O stock solution.  The NMR tube was irradiated using the Xe lamp and 

the reaction monitored by 1H NMR.  Under these experimental conditions the reaction 

was run for up to 7 hours until most of the SA was reacted in order to determine the 

percentage of products through 1H NMR.  In order to establish the reaction profile, 

samples were analyzed at intermediate times, i.e., after two hours of irradiation.  2D 

COSY were taken of the sample.  For better resolution and lower detection limits select 

samples were run at 600 MHz.   

2.4.7 Variable Temperature NMR 

 To probe the presence of equilibrating confirmations variable temperature 1H 

NMR was performed.  The sample was gently heated and 1H NMR spectra collected of 
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the sample and measurements were equilibrated for 10 minutes at each temperature 24, 

35, 45, 55 and 65 ºC.  A total of 80 scans were collected at each temperature.   

2.5 Results and Discussion 

Through the graph seen below in Figure 11, evidence shows that oxygen gas, as 

well as RB are necessary to ensure the photooxidation of SA.  Through the control 

involving oxidation without use of RB results confirm that there is no direct photolysis.  

Through the control involving oxidation without use of O2 gas evidence demonstrated 

there was no direct energy transfer from RB to DA.   

 

 

 

Figure 11: Graph of SA Controls 

The time plot for the photooxidation of SA in Figure 12 shows that starting 

material is still present after two hours of reaction.   However the reaction is proven to 

occur due to the presence of the methyl peak at ~1.7 ppm as a result of a proposed 
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product.  The time plot shows that although the rate of product formation is quick, as 

products are evidenced as early as 15 minutes of photooxidation, the rate of SA 

degradation seems very slow as a significant amount still remains after the two hour 

oxidation time.  Upon an oxidation of 7 hours the starting material is still seen to remain 

in the reaction mixture as shown in Figure 13.  However the dominant product seems to 

be the endoperoxide followed by the hydroperoxide and then the aldehydes.  The percents 

of products formed are ~78% endoperoxide, 1.5% crotonaldehyde, 1% fumaraldehydic 

acid and 0.2% acetaldehyde. 
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Figure 12:  Time Plot of the Photooxidation of SA 
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Sorbic Acid: 1H NMR (400 MHz, D2O, δ):  1.7; 5.7; 5.9; 6.2; 6.9.  From the above 

figure it is noted that SA is still present after two hours of photooxidation when starting 

with 3 mg of SA. 
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Clearly the 1H NMR show the disappearance of SA with the formation of 

several sets of new peaks.  Control experiments established that the reaction involves 

singlet oxygen which generally reacts by 2 + 2, 4 + 2 and ene reactions.  I will attempt to 

assign and evaluate the different reaction products by reaction type first 2 + 2, second ene 

and last 4 + 2.   2 + 2 reactions of singlet oxygen are known to produce dioxetanes which 

readily collapse to the corresponding carbonyl compounds.  In the case of SA, the 2 + 2 

addition of 1O2 can occur at C2-C3 and C4-C5 double bonds resulting in two sets of 

products.   The double bonds are labeled in the figure below.  Upon reaction at the C2-C3 

the anticipated products from collapse of the dioxetane are glyoxylic acid and 

crotonaldehyde shown below.  The two products produced at reaction of the C4-C5 and 

collapse of the corresponding dioxetane are fumaraldehydic acid and acetaldehyde shown 

below.  The 2 + 2 reaction pathways are summarized in Figure 14.       

 

 

 

 

 

 

Figure 14:  2 + 2 Reactions between SA and Singlet Oxygen  

 The 1H NMR of the reaction products from 1O2 and SA, Figure 15, has four 

peaks in the aldehyde region 9-10 ppm (Pavia et al., 2001) indicating a number of 

aldehydes are produced.  Product confirmation has been attained through use of both 

HO

O HO
H

O

O
H CH3

O

1
2

3

4

5

6

Fumaraldehydic acid Acetaldehyde

1O2

Dioxetane

HO

O
OO

-O

O
HOOC H

O

H

O

1 2

3

4

5

6
Glyoxylic acid Crotonaldehyde

1O2

Dioxetane

HO

O

O
O



 
 

  42

COSY and 1H NMR as depicted in the spectra below.  The products expected from 

collapse of the dioxetane are fumaraldehydic acid, acetaldehyde, glyoxylic acid and 

crotonaldehyde.  To confirm their presence I consulted the literature, 1H NMR values 

and/or reaction NMR spectra of authentic samples. 
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Reaction at the C4-C5 bond is expected to produce fumaraldehydic acid and 

acetaldehyde.   Assignments of both products were based on the structures shown in 

Figure 16.              

 

  

 

 

 

 

Figure 16: Numbered Structures of Fumaraldehydic Acid and Acetaldehyde 

Literature reference regarding 1H NMR of fumaraldehydic acid, in acetone-d6, 

gave values of chemical shifts of 10.0 ppm, 6.70 ppm, 6.70 ppm and 11.2 ppm for H1, 

H2, H3 and H4 respectively (Scharf et al., 1978).  The COSY spectra for the 

fumaraldehydic acid peaks are displayed in Figure 18.  The aldehydic peak at ~9.40 ppm 

was assigned as H1 of fumaraldehydic acid with an integration value of 0.86. The 

coupling constant is 7.98 Hz which is in agreement with the range of 5-8 Hz (Silverstein 

et al., 1991).  Even in the COSY the exact peak assignment for H2 is unclear, because of 

overlap.  However the splitting pattern for H2, a doublet of doublets peak at ~ 6.23 ppm 

with an integration of 0.64 was further considered.  While the chemical shift and 

multiplicity are consistent with fumaraldehydic acid, the small coupling constant of ~1.7 

Hz suggests the peak is not associated with fumaraldehydic acid.  With this in mind the 

peak representing H2 is assigned to ~6.18 ppm for which the coupling constant and 

integration values are not definitive.  Upon inspection of the COSY and crosspeaks for 
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H2, I observed coupling to a peak at 6.90 which I assigned as H3.  The splitting pattern 

for H3 is only expected to be a doublet with a trans coupling constant, but it is masked by 

the large doublet of doublets.  Although acetaldehyde and fumaraldehydic acid are 

produced in a 1:1 ratio upon collapse of the dioxetane the integration of 1H NMR indicate 

a ratio of 0.16: 0.86 of acetaldehyde to fumaraldehydic acid.  I explain the inequity as a 

result of the evaporation of volatile acetaldehyde during bubbling of solution with O2.  

The trans geometry of the olefin is retained in the reaction with singlet oxygen as the 

process is believed to be a one step concerted mechanism involving antarafacial attack of 

singlet oxygen and suprafacial attack of the alkene (Olah et al., 2003).  The mechanism 

expected to occur via formation of a dioxetane showed no signs of the intermediate in the 

1H NMR spectra of any of the reactions performed.  A summary of the chemical shifts, 

multiplicities and coupling constants is displayed in Figure 17. 

 

 

 

 

 

 

 

 

 
 
Figure 17: Structure of Fumaraldehydic Acid Showing Chemical Shifts, Multiplicities 
and Coupling Constants 
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The 

complementary product to 

fumaraldehydic acid is 

acetaldehyde.  The 1H 

NMR of the product 

mixture exhibits a peak at ~ 

9.60 ppm as a quartet with 

a coupling constant of 2.7 

Hz which is assigned to 

acetaldehyde.    

As shown in 

Figure 19, the COSY spectrum shows  

coupling with the aldehyde peak,  

H2 is found at ~2.15 ppm is a doublet with a coupling constant of 2.8 Hz.  For the peaks 

at 9.60 ppm and 2.15 ppm the ratio of integration values is 1:3 further supporting the 

acetaldehyde assignment.  The integration value for this peak is 0.59 which about three 

times that of the aldehydic proton.  Chemical shifts, coupling constants and integrations 

for acetaldehyde are summarized below in Table 1 and match with literature values. 

 

 

 

 
 
 

Table 1: 1H NMR Chemical Shifts and Coupling 
Constants and Integration Values for Acetaldehyde 
Position 1H, δ (ppm) J (Hz) Integration 

1 9.60 2.70 0.16
2 2.15 2.88 0.59

Figure 19: COSY of Acetaldehye Peaks
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Singlet oxygen can also form a dioxetane by 2 + 2 reaction at the C2-C3 bond.  

Since these dioxetane products tend to collapse to the corresponding carbonyl products at 

room temperature glyoxylic acid and crotonaldehyde, seen in Figure 20, are indicative of 

2 + 2 addition at C2-C3. 

 

 

 

  

Figure 20: Structures of Glyoxylic Acid and Crotonaldehyde  

  From the structure and 1H NMR chemical shift for aldehydes one may expect to 

have a singlet peak for glyoxylic acid between 9-10 ppm.  However the literature 

chemical shift for this aldehydic proton is 5.2 ppm.  Upon acquisition of 1H NMR 

spectrum of an authentic sample of glyoxylic acid there was no peak in the aldehyde 

region, thus none of the peaks observed between 9-10 ppm for the reaction mixture can 

be assigned to glyoxylic acid.  The aldehydic peak for glyoxylic acid occurs at ~5.20 ppm 

due to the hydration of the carbonyl group.  As C1 of the carbonyl group is electrophilic, 

and can hydrolyze to the acetal product (Anslyn et al., 2006) the result is in an upfield 

shift for H1.  I was unable to confirm a peak assignment for the glyoxylic acid peak in the 

SA photooxidation reaction because of overlap with the water (HOD) peak from the 

NMR solvent.   

   Crotonaldehyde is the other product expected from collapse of the C2-C3 

dioxetane intermediate.  Chemical shifts and peak assignments were made using 1H and 

COSY spectra and confirmed with literature and/or authentic samples (Balci, 2005).  1H 
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NMR analysis authentic on crotonaldehyde performed in D2O was compared to the SA 

photooxidation reaction mixture for peak assignments as shown in Figure 21.  The 

aldehydic peak present at ~9.30 ppm represents a very minor product and is consistent 

with the cis-crotonaldehyde product allowing for possible research in the future.  

Comparison of the integration value for fumaraldehydic acid and crotonaldehyde as a 

measure for reaction at C2-C3 indicates reaction of SA does not occur predominantly at 

the double bond further away from the acidic electron withdrawing group.   
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Figure 21:   Stacked Plot of Crotonaldehyde (top) and SA Photooxidation Reaction 

Mixture (bottom) 
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The reaction of singlet oxygen with an allylic hydrogen via ene reaction yields 

the hydroperoxide shown in Figure 22.  The chemical shifts for many of the peaks 

representing the protons of the hydroperoxide product appear in regions overlapping with 

other products and the starting material.  With this in mind COSY experiments were run 

to try and distinguish and assign peaks from the hydroperoxide product.  Only one 

hydroperoxide product is possible from the singlet oxygenation of sorbic acid.   
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Figure 22: Ene Reaction of SA 

The hydroperoxide product is expected to show up to six individual peaks in the 

1H nuclear magenetic resonance.  The acid and hydroperoxide protons will not be 

observed because of exchange with the D2O solvent.  Five of these six protons are 

olefinic and expected to appear between 5-7 parts per million, the sixth proton is aliphatic 

but doubly allylic and α to an oxygen and may appear ~ 4-5 parts per million.  With this 

in mind, I began my assignments for the hydroperoxide.  The proton attached to the C2 

should be a doublet with a characteristic trans-coupling constant.  Using the 1H NMR the 

doublet at 5.80 ppm (J = 15.6) is assigned to H1.  Although the chemical shift for H1 

appears to be lower than the expected value the chemical shift values for the other 

protons are in good agreement with expected ones.  The H2 proton should couple to H1 

(COSY, Fig. 23) and appear as a doublet of doublets and have 1:1 integration with H1.  
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The doublet of doublets around 6.96 ppm matches expectations for H2, 1:1 integration 

and J = 15.6, 10.9.  Coupling of H2 is observed in the COSY with a peak at ~ 6.24 ppm, 

which in an area with several overlapping peaks, but the assignment is made at 6.24 ppm 

(J = 15.1, 10.2 Hz) determined by the coupling constants and the integration value.  From 

the COSY, Figure 22 the peak for H3 couples to another peak at ~6.12 ppm which is 

assigned to H4.  The splitting pattern is a complex multiplet because of coupling to H3 

and cis and trans orientations to the terminal olefinic protons. Because of overlapping 

peaks and a complex splitting pattern I was unable to obtain accurate coupling constants 

and integration values. However crude integration value of 40.25 is consistent with 

expectations for a single proton.  The peak assigned to H4 exhibits coupling to a set of 

peaks at ~5.10 ppm.  The HOD peak for D2O also occurs in this region.  It is difficult to 

make the proper assignments for these geminal protons but the COSY crosspeaks and 

chemical shifts are consistent with geminal olefin protons.  A summary of the chemical 

shifts, coupling constants and integration values are displayed in Table 2. 

 

Table 2: 1H NMR Chemical Shifts, Coupling Constants and Integration  
Values for SA Hydroperoxide  
Position 1H, δ (ppm) J (Hz) Integration       

1 5.8 15.6 46    
2 6.97 10.9, 15.6 37    
3 6.24 10.2, 15.1 61    
4 6.12 * 40    
5 5.1 *   *    
6 5.1 * *    

*Not all coupling constants and integration values could be determined due to overlap of peaks. 
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The final product expected from singlet oxygenation of SA is the 4 + 2 or 

endoperoxide shown in Figure 24.   
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Figure 24:  Diels-Alder Reaction of SA with Singlet Oxygen 

The endoperoxide is expected to exhibit 5 different signals in 1H nuclear magnetic 

resonance.  The carboxylic acid group will not be observed because of exchange with 

D2O. Aliphatic protons H1, H2 and H5, are expected to have multiplicities and chemical 

shifts: H1, d, ~3 ppm, H2, multiplet, ~ 4 ppm, H5, d, 4 ppm.  H3 and H4 will appear as 

doublet of doublets in the olefinic region ~4 parts per million.  The exact chemical shifts 

are listed in Table 3 below.  Confirmations of the endoperoxide peaks were assigned 

through use of COSY, Figure 30, using the assignments seen below in Figure 25. 
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Figure 25: Numbered SA Endoperoxide Product 

From these expectations and elimination of 1H NMR peaks assigned to 2 + 2 and 

ene products I began my assignment of peaks for the endoperoxide.   

 

 

 

 

 
*Coupling constants and integration values could not be determined due to  
overlap of peaks 
 

Primary identification of the endoperoxide product is determined by the upfield 

methyl peak of the compound.  

 Notable is the presence of two doublets assigned to the methyl group, initially 

assumed the result of long range coupling may exist between the methyl group and the 

vinyl proton.  However upon closer inspection the coupling constant between the two 

methyl peaks is 23.65 Hz, a value too large to be attributable to normal coupling 

constants (Silverstein et al., 1991).  A reasonable explanation could involve slow 

conformational equilibria as shown in Figure 26.   

Table 3: 1H NMR Chemical Shifts for SA  
Endoperoxide  
Position 1H, δ (ppm)     

1 3.10   
2 4.87   
3 6.08   
4 6.25   
5 4.65   
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Figure 26: Half-Chair-Half-Chair SA Endoperoxide Interconversion 

Peroxides are known to adopt a gauche conformation to reduce the Coloumb 

repulsion between the lone pairs in oxygen (Rappoport, 2007).  However in most medium 

to small endoperoxides such energetically favorable conformations are not formed 

because of ring strain (Rappoport, 2007).  As a result of this knowledge, temperature 

control experiments using 1H NMR were explored to seek potential interconversions of 

the endoperoxide.  It is known that two conformers are likely depending on whether the 

hydrogen is either in the axial or equatorial position (McMurray, 2009).  Using the work 

of Drago temperature control performance 1H NMR experiments were considered.  Drago 

noted that at room temperature the conversion between the axial and equatorial positions 

is so rapid that there is no contribution to the observed line width resulting in the 

observance of only one peak.  However upon a series of temperature control experiments 

involving 1H NMR, the line width is observed to broaden and eventually separate into 

two distinct peaks (Drago, 1992).  Thus for the DA endoperoxide product at room 

temperature the conversion between positions is so slow two sets of peaks are observed. 

These peaks, upon warming, may coalesce into a single peak if the equilibrium becomes 

faster than the NMR time scale.  As peaks for the endoperoxide were observed, higher 

temperatures were employed to see if the two peaks would merge.  Using temperatures of 
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24 º, 35 º, 45 º, 55 º and 65 º the two methyl peaks were seen to converge as the 

temperature rose with coalescence taking place at 65 º.  Existing as the E, E geometrical 

isomer, SA is expected to give a cis-endoperoxide upon the Diels Alder reaction with 

singlet oxygen (O’Shea et al., 1988).     

Research focused on the conformational analysis of 3,6-dihydro-1,2-dioxin 

generated through the photooxidation of 1-3 butadiene with singlet oxygen has been 

investigated by Kondo et al. (1978).  On the basis of findings, explanations have been 

provided in support of half-chair-half-chair interconversions of such endoperoxide 

products (Kondo et al., 1978).   The formula expressed as GΔ c
‡ = 4.56 X 10 -3 Tc(9.97 + 

log Tc/δv)(kcal/mol) allows for the calculation of the free energy of activation for 

conformational equilibria represented by ∆Gc
‡ through the coalescence temperature 

denoted by Tc and the chemical shift difference between the two peaks given by δv 

(Kondo et al., 1978).   

Figure 27 displays the 1H NMR peaks representative of the methyl group of the 

endoperoxide product at a series of different temperatures.  Two separate peaks are 

observed until a coalescence temperature of 65 º is reached.  The temperature dependence 

1H NMR confirms half-chair-half-chair interconversions for the endoperoxide product.  

Using the above equation, a coalescence temperature, Tc, of 343.15 K and a chemical 

shift difference, δv, of 22.97 Hz a Gibbs energy of activation, ∆Gc value of 15.8 kcal/mol 

was obtained.              
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Figure 27: Temperature Control Experiments of the Endoperoxide Product 
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In order to confirm the structure of the endoperoxide, I used Co(II)TPP as a 

catalyst to convert the endoperoxide to the highly stable furan.  Confirmation of the 

endoperoxide isomerization was endeavored through the work of O’Shea et al. (1988) 

which involved the application of Co(II)TPP to produce a furan product upon reaction 

with the endoperoxide.  Cobalt (II) tetraphenylporphyrin Co(II)TPP, is a macrocyclic 

metal complex with cobalt II coordinated to 4 nitrogen atoms (Kadish et al., 2003).  The 

structure for the compound is shown in Figure 28 (Aldrich, 2012).   

 

 

 

 

 

 

 

Figure 28: Structure of Co(II)TPP 

 As a porphyrin, Co(II)TPP is expected to produce a furan upon reaction with an 

endoperoxide (O’Shea et al., 1988).  A proposed mechanism for the reaction involves the 

catalytic cleavage of the peroxide bond followed by a hydrogen shift, expulsion of 

Co(II)TPP and closure to form a furan product (O’Shea et al., 1988).  The overall 

reaction scheme is exhibited in Figure 29.  Progress of such a reaction was monitored by 

1H NMR however no change in the methyl peaks were observed as the peaks remained as 

two separate doublets.  Peaks of the endoperoxide were assessed using COSY for each 

conformer.   



 
 

  60

 

 

 

Figure 29: Co(II)TPP Catalyzed Rearrangement of DA Endoperoxide Product to Give 

a Furan 

  The chemical shifts of the endoperoxide product for SA are summarized in 

Table 4 as seen below. 

Table 4: 1H NMR Chemical Shifts for SA 
Endoperoxide Conformers  
Position 1H, δ (ppm) 1H, δ (ppm)   

1 2.50 3.10  
2 5.07 4.87  
3 5.81 6.08  
4 6.25 6.25  
5 4.63 4.65  

*Coupling constants and integration values could not be determined due to overlap of peaks 
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Conclusion 

 Sorbic acid was used as a model compound to investigate the photooxidation 

products for DA.  Upon reaction of singlet oxygen, products resulting from 2 + 2 and 

Diels Alder reaction were determined.  Although the ene reaction was also expected to 

occur the peaks representing the hydroperoxide product were masked by the starting 

material and also other products.  Neither of the two expected dioxetane intermediates 

afforded by the 2 + 2 reaction were observed.  However three of the four aldehydes 

expected upon cleavage of the dioxetanes were confirmed.  Reaction at the C4-C5 olefin 

led to generation of the confirmed fumaraldehydic acid and acetaldehyde while reaction 

at the C2-C3 olefin led to the confirmed crotonaldehyde and the unconfirmed glyoxylic 

acid.   

 Two peaks were observed in the methyl region for the endoperoxide product.  

Upon conducting a temperature controlled 1H NMR experiment the two methyl peaks 

coalesced at 65 º indicating slow half-chair-half-chair interconversions of the 

endoperoxide.  Through use of 1D and 2D NMR techniques the peaks for both 

conformers were identified.   

 Out of the verified products, the endoperoxide was produced in the greatest 

yield followed by crotonaldehyde, fumaraldehydic acid and then acetaldehyde.  Although 

crotonaldehyde and acetaldehyde were expected to occur at a 1:1 ratio the generation of 

acetaldehyde was much less than that of crotonaldehyde due to the bubbling off of 

acetaldehyde.  The percents of these products after 7 hours of oxidation of the 3mg SA 

sample were seen to be ~78% for the endoperoxide, ~1.4% for crotonaldehyde, ~0.84% 

for fumaraldehydic acid and ~0.2% for acetaldehyde.  As no definitive peak could be 
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identified for the hydroperoxide, the percent composition of the product could not be 

determined. 
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Chapter 3 

Photooxidation of DA 
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3.1 Introduction 

Domoic Acid (DA), Figure 31, (3-carboxymethyl-4-(2-carboxy-1-methylhexa-

1,3-dienyl) proline) [C15H21NO6] with molecular weight 311 (Nemoto et al., 2007; Bell, 

2003), is a harmful algal toxin produced by a marine diatom in the genus, 

Pseudonitzschia.  Toxicity of DA and its isomers varies depending on the geometry of 

the double bond in the hexadienyl side chain (Sawant et al., 2010).  Research has 

indicated that the Z configuration on the first double bond of DA shows the highest 

biological activity because of an increased binding strength of the toxin to KA receptors 

(Hampson et al., 1992).  Until now not much research has been conducted on the toxicity 

of DA oxidation products and degradation.  One possible solution to reduce or eliminate 

the toxicity of DA is through degradation via photooxidation.  I reported the singlet 

oxygen initiated degradation of my DA model compound, SA occurs at the diene in 

chapter 2.  I expect similar reaction pathways for the singlet oxygenation of DA.  The 

possible reaction pathways are 4 + 2, 2 + 2 and ene processes leading to the products 

shown in Figure 32.  In this chapter, I will first discuss the 2 + 2 reaction followed by the 

ene reaction and concluded with discussion on the Diels Alder reaction.    

 

 

 

 

 

 

Figure 31:  Structure of DA 
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Figure 32:  Possible Products of DA Photooxidation 
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3.2 Experimental 

 3.2.1 Materials 

Domoic acid (MW = 311 g/mol) was purchased from Aldrich and Ascent 

Scientific based on costs and availability.  Deuterium oxide (D2O), the NMR solvent, was 

acquired from Cambridge Isotope Laboratories Incorporated.  Rose Bengal was 

purchased from Aldrich.  NMR tubes (OD 5 mm) were purchased from Kimble Chase.  

Kainic acid (MW = 231.25 g/mol) was purchased from Aldrich. 

3.2.2 Stock Solutions 

The stock solution of 1 mg/1 mL, domoic acid and D2O was prepared using 

volumetric glassware, stored in the glass vial containing the original DA and stored in the 

refrigerator for further use.  A stock solution of (1 x 10-4 M) RB and D2O was also 

prepared and stored in a glass vial in the refrigerator until used.  The glass vial (O.D. 3 

cm) containing the RB was sealed to avoid contamination with moisture.  A stock 

solution of 10 mg/ 3 mL, kainic acid and D2O was prepared using volumetric glassware, 

stored in the glass vial containing the original KA and stored in the refrigerator for 

further use. 

3.2.3 Sample Preparation 

 For each experiment 0.1 mL or 0.2 mL of DA/D2O stock solution was 

transferred to the NMR tube with 0.7 mL of the Rose Bengal and D2O stock solution 

using glass pipets.  To ensure complete mixing the sample was sonicated for a minimum 

of 2 minutes.  All NMR tubes were cleaned with acetone and stored in the oven for a 

minimum time of 8 hours before use.  In specific cases, the samples were stored in the 

refrigerator for further experiments or characterization.  Purging of the solution with O2 
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gas took place before and during the photooxidation process.  Unless indicated otherwise 

the solution was purged prior for 2 minutes and throughout the irradiation.    

3.2.4 Photooxidation 

 Photooxidation was conducted via a Xenon lamp (Oriel), model 68806, 

equipped with a heat filter containing deionized water and connected to a lamp housing, 

model 7240, outfitted with a cooling fan positioned on an adjustable jack.  The xenon 

lamp contained inside, possessed a rating of 15 W and was set to a current of 7.5 Amps.  

The NMR tube containing the sample was placed in a windowed Dewar filled with water 

and a thin layer of ice.  After one hour of photooxidation, more RB/D2O solution was 

added in all cases to compensate for photobleaching of the RB photosensitizer. 

  3.2.5 Sample Workup 

 After photooxidation, the NMR tube was removed from the windowed dewar 

and excess water on the outside of the tube was cleaned off.  The tube was kept outside 

until room temperature was reached before NMR analysis ensued. 

3.2.6 NMR Analyses 

 Oxidation of DA was monitored using NMR (Bruker, 400 MHz and 600 MHz).   

Magnetic field strengths of 400 and 600 MHz were applied for sample analysis using two 

different NMR instruments.  Both proton and COSY NMR spectra were obtained.   

3.2.7 Control Experiments 

Prior to commencing any experiments 1H NMR was taken of the DA/RB solution 

to identify starting material peaks as shown in Figure. 33.  To ensure that both RB and O2 

gas were necessary for the production of singlet oxygen and photooxidation two control 

experiments were run.  The first involved the creation of a DA/D2O sample with 0.7 mL 
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of D2O solution without RB.  The sample was gently purged with O2 gas.  As for the 

second case, another sample was prepared using the RB/D2O stock solution but the 

solution was purged with Argon (without O2 ).  Both samples were irradiated (Xe lamp) 

for a time of 2 hours and then analyzed via NMR 400 megahertz.    

3.2.8 Singlet Oxygenation Experiments 

Photooxidation with another DA/D2O sample followed next with the addition of 

the RB/D2O stock.  The sample was subject to a slow purging of O2 gas for 2 hours.  The 

sample was aligned with the beam of the Xe lamp so that the light hit the center of the 

sample.  Such alignment resulted in optimal results as there was no starting material 

present after the 2 hours.   

3.2.9 Montioring of Photooxidation 

 1H NMR (600 MHz) of a DA/D2O sample was taken at specific intervals to 

monitor product formation and identify intermediate products.  The sample was irradiated 

for a total time of 2 hours.  The 1H NMR spectra were obtained at 0, 15, 30, 60 and 120 

minutes of irradiation.  The NMR sample was allowed to equilibrate to room temperature 

for ease of optimization of shimming and tuning parameters.   

 

3.3 Results and Discussion 

3.3.1 Structure Confirmation 

Before commencing photooxidation, a proton NMR of DA was taken to identify 

starting material peaks.  Preparation of the sample occurred immediately before NMR 

analysis to avoid any degradation.  A sample was prepared using 0.7 mL of D2O without 

RB and spectrum was obtained using the 400 MHz NMR.  Peak assignments were made 
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and then verified by comparison with literature (Kotaki et al., 1996).   A sample of DA in 

RB/D2O solution was also run to assign the RB peaks in the 1H NMR spectrum prior to 

the photooxidation, as shown in Figure 34.  However the spectrum in Figure 34 showed 

additional peaks besides those present for DA and RB.  As a result an 1H NMR was taken 

of just the RB/D2O stock solution which showed the same additional peaks shown in 

Figure 35.  These peaks seen to occur at 1.25 ppm, 2.1 ppm and 3.1 ppm are the result of 

the presence of impurities in the RB stock.  

Control experiments were conducted to assess the significance of direct photolysis 

and energy transfer from RB to DA as shown in Figure 33.  Irradiation of the DA sample 

using the Xe lamp in the presence of RB under Ar purge (no O2) showed no reaction 

eliminating the possible involvement of energy transfer induced transformation of DA.  

To probe the role of direct photolysis a solution purged with O2 gas without addition of 

RB was photolyzed.  I observed no change in the spectra demonstrating that direct 

oxidation does not occur under my experimental conditions.  Irradiation of a solution 

with RB, O2 and DA resulted in rapid transformation producing a complex reaction 

mixture. These experiments confirm photooxidation processes are occurring.    

Further confirmation of the occurrence of photooxidation is shown in Figure 36.   

Through comparison of Figures 34 and 36 the presence of new peaks can be observed.  

These new peaks have been assigned to 3 major products including an aldehyde, a 

hydroperoxide and an endoperoxide.  With better alignment and a more consistent flow 

of oxygen gas to the sample the maximum yield of products obtained was roughly 0.49% 

of the endoperoxide, 0.62% of the hydroperoxide and 0.24% of the aldehyde.  The 
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analysis performed for assignment of these peaks to the above mentioned products will 

be discussed in this chapter. 

 

 

 

 

 

 

 

 

 

Figure 33:  Control Experiments for Photooxidation of DA 
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The photooxidation of DA, as a function of time was monitored at 0, 15, 30, 60 

and 120 minutes using the NMR (400 MHz) as illustrated in Figure 37.  The reaction 

times are strongly dependent on sample alignment in the light beam, sample 

concentration and O2 purge.  Results demonstrate that there is still starting material 

present after a total reaction time of 2 hours however appearance of additional peaks in 

the aldehyde and diene regions indicate reaction has occurred.  Reaction times were 

varied based on desired results, product formation was significant after 30 minutes of 

irradiation and among the initial products are characteristic peaks indicating aldehyde 

products.  As the aldehyde peak was easily observed, the corresponding product was 

analyzed first.  
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Figure 37: Time Profile for DA Photooxidation 
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First I attempted to assign peaks and compounds resulting from the 2 + 2 

addition.  While the 2 + 2 yields a dioxetane it readily collapses to the corresponding 

carbonyl compounds at room temperature.  With this in mind, I begin my assignments in 

the 9-10 ppm region characteristic of aldehyde peaks.  Reaction of DA and 1O2 at the 

C1’-C2’ bond affords the aldehyde product denoted A and the methyl ketone product 

represented as A’ as depicted in Figure 38.  The C1-C2 bond is more substituted and thus 

more electron rich and expected to be more reactive towards 1O2.   Reaction at the C3’-

C4’ bond would produce the aldehyde products labeled B and B’.   

 

 

 

 

 

 

 

Figure 38:  2 + 2 Reactions of DA and 1O2 

The 1H NMR spectra obtained for the reaction mixture of DA and 1O2 products 

exhibits only a doublet peak in the aldehyde region.  Reaction at the C3-C4 bond yields 

two aldehyde products which would show two doublets in the aldehyde region. Such 

peaks were not observed indicating no measurable reaction via 2 + 2 at the C3-C4 bond.  

Unlike SA in which only aldehydes are formed at reaction with both double bonds a 
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ketone is made as the C1’-C2’ bond in DA is trisubstituted instead of disubstituted.  The 

aldehyde peak at 9.35 ppm indicates “A” as a reaction product.  Analysis of the aldehyde 

product has been conducted through COSY NMR spectra shown in Figure 40.  

Assignments have been made using the numbered structure for the aldehyde below in 

Figure 39.  

 

 

 

 

Figure 39:  Numbered Structure of DA Aldehyde Product 

The NMR spectra indicate only one aldehydic doublet at 9.35 ppm proposed as 

the product from collapse of the C1’-C2’ dioxetane and labeled as H1 in Figure 39.  The 

measured coupling constant for H1 of 8.40 Hz is in good agreement with the literature 

values for such a proton.  In the COSY spectrum, H1 is coupled to a peak at 6.13 ppm 

which I assign as H2.  Although identification of the chemical shift can be established via 

COSY accurate integration values and coupling constants cannot be made due to overlap 

of peaks.  The H2-H3 coupling occurs at a chemical shift value of 7.11 ppm.  However 

the peak shows an integration value which indicates overlapping peaks in this region.  

Continuing with my assignment from the COSY spectrum confirmation of the methine 

proton H4 is seen through COSY via coupling to H3.  The H4 peak shows at 3.3 ppm and 

couples to a peak at 1.23 ppm assigned to H5.  All the peaks of this aldehyde product, 

except for the aldehyde peak at 9.35 ppm, are masked by other peaks based on complex 

sets of peaks.  The chemical shifts for the respective peaks are listed in Table 5. 
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Table 5:  1H NMR Chemical Shifts for  
the DA Aldehyde Product 

Position 1H, δ (ppm)    
1 9.36  
2 6.13  
3 7.11  
4 3.30  
5 1.23  

* Integration values and coupling constants were not given due to overlap of peaks for some protons 
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Complementary to this aldehyde product was the methyl ketone labeled A’ in 

Figure 38.  Identification of the product proved difficult because of the complex nature of 

the 1H NMR coupling expected for the compound and the heavy overlap of peaks in the 

aliphatic region (1.5-2.5 ppm).  An authentic sample of the methyl ketone would help 

confirm its presence in the reaction solution.  The methyl ketone is not commercially 

available, but could be produced by oxidation of DA or kainic acid (KA).  Given that the 

cost of KA is half of DA I chose to employ KA for my initial attempts to synthesize a 

methyl ketone.   

3.3.2 Kainic Acid 

Kainic acid (KA), Figure 41, (2-Carboxy-3-carboxymethyl-4-

isopropenylpyrrolidine) [C10H15NO4] with molecular weight 231.25 (Aldrich, 2012) is a 

compound that may also be used as a model for DA.  KA is an amino acid that contains a 

pyrrolidine ring with three stereogenic centers (Anderson et al., 2003).   

 

 

 

 

 
 
 
 
Figure 41: Structure of KA 
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3.3.3 Oxidation of Kainic Acid 

 Two methods were attempted to oxidize KA.  The conjugated diene region of 

KA should be subject to oxidative cleavage by ozonolysis to yield the desired methyl 

ketone adduct, shown in Figure 42 (Hart et al., 2011).  There are a number of ways to 

generate O3, I employed an ozone generator which operates via the passing of O2 through 

a high voltage spark created by a Tesla coil (Millar, 1998).   Although a definite 

possibility, the final reductive step of the ozonolysis procedure offers complications for 

product purification (Isobe et al., 1977; Dai et al., 2004).  A solution proposed by 

Schiaffo et al. (2008) entailed the use of water with a water-miscible organic solvent to 

act as a nucleophile for carbonyl oxides based on the idea of a phase transfer catalyst 

(PTC).  

 

 

 

 

 

 

 

Figure 42: Reductive Ozonolysis of KA 

 An alternative method for the oxidation of KA involves the use of KMnO4.  

When used as an oxidizing agent for alkenes KMnO4 is reduced to manganese dioxide 

(Morse, 1905).  As a strong oxidizing agent, KMnO4 first reacts with alkenes to produce 
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diols which then oxidize to form the corresponding carbonyl compounds (Fox et al., 

2004).   

3.3.4 Ozonolysis of Styrene to Confirm Production of O3  

 Styrene was used as an initial compound for establishing the oxidation 

conditions.  Styrene should produce benzaldehyde and formaldehyde through cleavage of 

the double bond as seen in Figure 43. 

 

 

 

 

 

Figure 43: Reductive Ozonolysis of Styrene to form Benzaldehyde and Formaldehyde 

  Styrene (5.52 µL) was transferred into a glass test tube along with 4.75 mL of 

acetone and 0.25 mL of D2O.  The reaction solution was then purged with O2 gas for two 

minutes and prior to turning on the ozone generator.  The reaction ran for 75 minutes.  

After 75 minutes, the ozone generator was turned off and the reaction mixture was 

purged with O2 gas for another 2 minutes.   The reaction solution was diluted with 5 mL 

of water and the mixture extracted twice with CH2Cl2 (5 mL) and once with hexanes (5 

mL).  The organic layers were combined and then dried with Na2SO4.  The Na2SO4 was 

then gravity filtered off and the resulting solution was rotovapped to remove CH2Cl2 and 

hexanes.  Analysis of the mixture by 1H NMR (400 MHz) resulted in a spectrum without 

the aldehyde peak (9-10 ppm) expected for the benzaldehyde product.  Subsequent repeat 

of the experiment gave similar results without any indication of oxidative cleavage.  
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Failure to observe peaks in the aldehyde region led to the trial of a new oxidation 

technique and may be a result of the lack of significant ozone production as a result of the 

generator.   

3.3.5 Oxidation of KA with KMnO4 

Given the inability to achieve oxidative cleavage using the available O3 in our 

laboratory, I chose to use KMnO4 as an oxidant to KA to make the desired methyl ketone 

following a procedure described in Laboratory Manual Organic Chemistry I & II (Keller 

et al., 2010).  A KA/D2O stock solution (0.2 mL) was placed in an NMR tube.  The tube 

was capped with a needle pierced through the top for ventilation and placed in a hot water 

bath set at approximately 60 º for 2 hours.  After heating, the hot solution was gravity 

filtered using Whatman 4 filter paper to remove MnO2 solids.   Several attempts were 

made with the utilization of higher temperatures and longer reaction times.  

Unfortunately repeated attempts to obtain clean spectrum of the desired compound were 

unsuccessful.  Difficulties with the procedure included small scale reactions (1-2 mg), 

work-up and interference from MnO2, relatively messy spectra including starting material 

and undesired by-products.    

3.3.6 Refining Conditions for MnO4 Oxidation 

Crotonic acid as a model to establish conditions for oxidative cleavage of double 

bonds, was oxidized to produce glyoxylic acid and acetaldehyde as a side product as seen 

in Figure 44.   



 
 

  85

(2) H3C

(1) H

OH

O

H (3)
H CH3

O

H OH

O O

Crotonic Acid
Glyoxylic Acid Acetaldehyde

KMnO4

 

Figure 44: Oxidation of Crotonic Acid Using KMnO4 to Produce Glyoxylic Acid and 

Acetaldehyde 

Crotonic acid (0.00538 g) was placed inside an NMR tube followed by the 

addition of D2O (0.7 mL) and 1H NMR (400 MHz) was taken of this starting material.  

Another sample was prepared with crotonic acid (5 mg) with the addition of Millipore 

water (432.7 µL) and KMnO4 (0.200 g).  The reaction mixture was heated in a hot water 

bath at approximately 70 º for 1 hour using the high heat setting of the heating mantle.  

After allowing the solution to equilibrate to room temperature, CH2Cl2 (0.75 mL) was 

added and extraction was performed once.  Crotonic acid established clean oxidation.  

Analysis of the resulting mixture was performed via 1H NMR (400 MHz) glyoxylic acid 

δ: 5.3; acetaldehyde δ: 2.1, 9.7.    

3.3.7 KA Oxidation (Revisited)       

 On the basis of the success from the oxidation of crotonic acid, an attempt was 

made to obtain the methyl ketone oxidation product of kainic acid.  Kainic acid stock 

solution (0.2 mL) was placed in an NMR tube.  Deuterium oxide (0.6 mL) was also added 

to the NMR tube followed by addition of potassium permanganate (0.0012 g).  The NMR 

tube was then kept in a hot water bath at approximately 70 º for 2 hours.  Work up of the 

reaction involved extraction using CH2Cl2 (0.2 mL) followed by 1H NMR (400 MHz) 
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analysis of the organic layer however a product could not be identified.  However no 

product was detected likely the result of the inability of the methyl ketone to dissolve in 

dichloromethane. 

    Alternatively kainic acid (0.2 mL) was placed inside an NMR tube along with 

the appropriate amounts of D2O and KMnO4 as before.  Heating of the NMR tube took 

place in a water bath set at 75 º for a time of 2 hours.  After heating, the solution was 

filtered through a pipet and extra amounts of unreacted KMnO4 were quenched by adding 

a small amount of sodium bisulfite resulting in a clear solution.  The resulting solution 

was analyzed via 1H NMR (400 MHz).  While numerous variations in reaction conditions 

and workup were attempted the isolation of the methyl ketone was unsuccessful.  I did 

not pursue this further.   

 The next set of products I attempted to identify were hydroperoxides.  The ene 

reaction of 1O2 can yield the three hydroperoxides depicted in Figure 45. The least likely 

product is “C” since tertiary hydrogens are the least likely to be abstracted (Kurti et al., 

2005).  Through comparison of the reactions leading to products “A” and “B” greater 

formation of product A is predicted by the fact that the proton that is abstracted to 

produce “B” is more hindered than that needed to produce “A”.  There are three 

equivalent protons that may be abstracted to give product “A”.   
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Figure 45: Possible Ene Reactions for DA 
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Although three hydroperoxide products are possible, using the 1H NMR, I was 

able to assign peaks consistent with the one expected major hydroperoxide.  Peak 

assignments of the hydroperoxide product were made using the numbered structure 

shown in Figure 46. 

 

 

 

 

 

Figure 46:  Numbered Structure of Hydroperoxide Product 

Observation of the 1H NMR in Figure 48 reveals H1 to have an upfield shift of 

1.15 ppm and a coupling constant of 7.7 Hz.  Using COSY in Figure 47, H1 is seen to 

couple to a peak at 3.10 ppm which is assigned as H2.  The coupling constants for H2 are 

6.8 Hz and 6.5 Hz which are consistent of coupling to a methyl group and an olefinic 

proton respectively.  Further confirmation of peak assignments is provided through 

integration values.  The ratio of integration values for H1/H2 is 1.12/0.38 which falls in 

near proximity to the expected 3/1 ratio.  COSY shows H2 couples to a peak with a 

chemical shift value of 6.95 ppm assigned to H3.  As H3 couples with both a methine 

proton and an olefinic proton the multiplicity of the peak is expected to be a doublet of 

doublets. The coupling constants of 7.3 Hz corresponding to coupling with a methine 

proton and a trans coupling constant of 15.1 Hz based on coupling with an olefinic proton 

confirm this.  The integration ratio of 0.38/0.31 is close to the expected ratio of 1/1 for 

H2/H3.  The H3 proton couples to a peak seen at 5.80 ppm assigned to H4 which is 
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predicted to have a doublet of doublets splitting pattern.  The coupling constants for H4 

are 9.1 Hz and 15.5 Hz due to coupling with a methine proton and an olefinic proton 

respectively.  The integration ratio of 0.31/0.43 fits near the expected integration ratio of 

1/1 for H3/H4.  Via the COSY it is observed that H4 couples to a peak at 5.15 ppm 

assigned as H5.  With a splitting pattern of a doublet H5 shows a coupling constant of 8.2 

Hz, which is in good agreement with coupling to an olefinic proton.  The integration ratio 

for H4/H5 is 0.43/0.32 which is close to the expected 1/1 ratio.  From the COSY it seems 

as though H5 may couple other protons at around 5.00 ppm.  This may be a result of long 

range coupling with the geminal protons H6 and H7.  The coupling constants and 

integration values for these protons however could not be determined as a result of 

overlap with other product peaks.  These values have all been summarized in Table 6.        

Table 6:  1H NMR Chemical Shifts, Coupling Constants and Integration  
Values for DA Hydroperoxide Product 

Position 1H, δ (ppm) J (Hz) Integration   

1 1.15 7.7 1.12    
2 3.10 6.8, 6.5 0.38    
3 6.95 7.3, 15.1 0.31    
4 5.80 15.5, 9.1 0.43    
5 5.15 8.2 0.32    
    
    

* Not all coupling constants and integration values could be obtained due to overlap of peaks 
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The next expected product which I tried to identify was the endoperoxide.  The 

4 + 2 product is an endoperoxide resulting from a Diels Alder reaction between DA and 

singlet oxygen as displayed in Figure 49.  As singlet oxygen is able to attack either from 

the bottom or the top, a pair of diastereomeric products are expected.  However, only one 

endoperoxide product has been identified using 1D and 2D NMR.  Peak assignments 

have been finalized via COSY analysis as displayed in Figure 51 with all product peaks 

displayed in the 1H NMR spectrum in Figure 52. 
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Figure 49: Diels-Alder Reaction between DA and Singlet Oxygen to Give an 
Endoperoxide 

 

Assignments for the endoperoxide peak were made using both 1D and 2D NMR.  

Peak assignments have been made relative to the endoperoxide structure depicted in 

Figure 50. 
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Figure 50: Endoperoxide Structure with Numerically Assigned Protons 

For the endoperoxide product, the peak present at 1.17 is indicative of a methyl 

group and represents H1.  With a coupling constant of 6.8 Hz a reasonable assumption 

can be made in regards with H1 coupling to a methine proton.  Through the COSY H1 is 

seen to couple to a peak at 2.73 ppm assigned as H2.  The coupling constant for H2 is 6.2 

Hz which is in good agreement for coupling to an aliphatic proton.  As with the 

hydroperoxide product further confirmation of peak assignments can be made using 

integration values.  Having an integration ratio of 0.89/0.23 for H1/H2 the ratio is 

consistent with the expected ratio of 3/1.  H2 couples to a peak found at 4.24 ppm which 

represents H3.  The coupling constants for H3 are found to be 6.7 Hz and 9.5 Hz have 

been determined indicating coupling with a methine proton and the olefinic proton 

respectively.  The ratio of H2/H3, 0.23/0.32 falls close to the expected 1/1 ratio.  H3 

couples to a peak at 6.87 ppm representative of the H4 proton having coupling constants 

of 7.3 Hz and 15.7 Hz.  The value of 7.3 Hz represents coupling to the methine proton 

H3.  Although the value isn’t exactly 9.5 Hz as expected it is near proximity and may be 

difficult to discern exactly due to overlap.  The integration ratio of 0.32/0.27 for H3/H4 

lies close to the expected ratio of 1/1 for these protons.  Through the COSY it is seen that 
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H4 couples to a peak at 6.71 ppm which may assigned to H5.  The coupling constant for 

H5 is 15.8 Hz which is consistent with the coupling constant found for H4.  The 

integration ratio of H4/H5 is 0.27/0.23 which lies near the expected 1/1 ratio.  These 

values have been summarized in Table 7. 

 

 

 

 

 

 

*Coupling constants and integration values for all peaks could not be determined due to 
 overlap of peaks. 
 
 

 

 

 

 

Table 7: 1H NMR Chemical Shifts, Coupling Constants, and Integration 
Values for the DA Endoperoxide Product 
Postion 1H, δ (ppm)  J (Hz)  Integration   

1 1.17 6.8 0.89  
2 2.73 6.2 0.23  
3 4.24 6.7, 9.5 0.32  
4 6.87 7.3, 15.7 0.27  
5 6.71 15.8 0.23  
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3.4 Conclusions 

 Based on my findings SA is confirmed to be a good model compound for 

studying photooxidation reactions between DA and singlet oxygen.  The reactions 

between both DA and SA and singlet oxygen include the Diels-Alder reaction, the ene 

reaction and the 2 + 2 addition.  In the case of the Diels-Alder an endoperoxide product is 

produced which is the major product in the case of SA but is only the second major 

product during photooxidation of DA.  As for the ene reaction, the resulting 

hydroperoxide is the second major product for SA while is the leading product for DA.  

In both cases, the 2 + 2 addition products are minor constituents in the reaction mixture 

for both compounds.  The difference in the quantity of the endoperoxide versus 

hydroperoxide product for DA and SA photooxidation may be due to the substitution in 

the conjugated diene moiety for both compounds.  Possessing a greater electron density 

the trisubstituted olefin closer to the pyrrole ring is more likely to react with singlet 

oxygen than the olefin located further away from the ring thus giving an increased 

potential of occurrence of the ene reaction.  However in the case of SA since both olefins 

are di-substituted the case of reaction seems equal despite the electron withdrawing acid 

group.  In addition, the prominence of the ene product for the photooxidation of DA may 

also be due to rate of conformer production of DA versus SA.  For SA the s-cis 

conformer may be produced at a higher rate than for DA due to the repulsion caused by 

the large pyrrole ring structure held by DA.  Thus the Diels-Alder reaction seems more 

significant in SA than DA therefore leading to a greater production of the endoperoxide 

product in SA compared to DA.   
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3.5 Future Directions 

To gain a better understanding of DA photooxidation HPLC will be employed to 

assess the formation of expected products at different reaction times.  Such a method will 

allow for greater information on product confirmation.  Once characterized, the products 

may be isolated by different chemical methods and the toxicity of the products tested 

using ELISA.  Also for DA and SA the rate of photooxidation will be monitored using 

HPLC.  The technique of HPLC may also prove fruitful for isolation of the SA 

hydroperoxide product so that it may be fully characterized.  Other methods used to 

generate singlet oxygen such as TiO2 photocatalysis may also be employed to compare 

the products found for photooxidation for both SA and DA.  The research in this study 

offers many possible avenues that may be explored allowing one to gain greater insight 

on the topic of water treatment. 
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