
Florida International University
FIU Digital Commons

FIU Electronic Theses and Dissertations University Graduate School

11-9-2012

Adaptive Software Fault Prediction Approach
Using Object-Oriented Metrics
Djuradj Babic
Florida International University, dbabic@mdc.edu

DOI: 10.25148/etd.FI12120408
Follow this and additional works at: https://digitalcommons.fiu.edu/etd

This work is brought to you for free and open access by the University Graduate School at FIU Digital Commons. It has been accepted for inclusion in
FIU Electronic Theses and Dissertations by an authorized administrator of FIU Digital Commons. For more information, please contact dcc@fiu.edu.

Recommended Citation
Babic, Djuradj, "Adaptive Software Fault Prediction Approach Using Object-Oriented Metrics" (2012). FIU Electronic Theses and
Dissertations. 767.
https://digitalcommons.fiu.edu/etd/767

https://digitalcommons.fiu.edu/?utm_source=digitalcommons.fiu.edu%2Fetd%2F767&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.fiu.edu/etd?utm_source=digitalcommons.fiu.edu%2Fetd%2F767&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.fiu.edu/ugs?utm_source=digitalcommons.fiu.edu%2Fetd%2F767&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.fiu.edu/etd?utm_source=digitalcommons.fiu.edu%2Fetd%2F767&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.fiu.edu/etd/767?utm_source=digitalcommons.fiu.edu%2Fetd%2F767&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:dcc@fiu.edu


FLORIDA INTERNATIONAL UNIVERSITY

Miami, Florida

ADAPTIVE SOFTWARE FAULT PREDICTION APPROACH USING

OBJECT-ORIENTED METRICS

A dissertation submitted in partial fulfillment of the

requirements for the degree of

DOCTOR OF PHILOSOPHY

in

COMPUTER SCIENCE

by

Djuradj Babic

2012



To: Dean Amir Mirmiran
College of Engineering and Computing

This dissertation, written by Djuradj Babic, and entitled Adaptive Software Fault
Prediction Approach using Object-Oriented Metrics, having been approved in respect
to style and intellectual content, is referred to you for judgment.

We have read this dissertation and recommend that it be approved.

Xudong He

Masoud Milani

B. M. Golam Kibria

Naphtali Rishe, Major Professor

Date of Defense: November 9, 2012

The dissertation of Djuradj Babic is approved.

Dean Amir Mirmiran
College of Engineering and Computing

Dean Lakshmi N. Reddi
University Graduate School

Florida International University, 2012

ii



c©Copyright 2012 by Djuradj Babic

All rights reserved.

iii



DEDICATION

Dedicated to mom.

iv



ACKNOWLEDGMENTS

First and foremost I would like to thank my mother Gorjana Curcin and mentor

Dr. Peter Clarke for their loving support and understanding throughout my academic

journey. I would also like to thank my academic advisor and friend, Dr. Naphtali

Rishe, and my committee members: Dr. Masoud Milani, Dr. Xudong He, and Dr.

B. M. Golam Kibria for their guidance and insight into my research. Finally, I would

be remiss if I did not acknowledge Ms. Olga Carbonell and the support she has so

graciously provided over the years.

v



ABSTRACT OF DISSERTATION

ADAPTIVE SOFTWARE FAULT PREDICTION APPROACH USING

OBJECT-ORIENTED METRICS

by

Djuradj Babic

Florida International University, 2012

Miami, Florida

Professor Naphtali Rishe, Major Professor

As users continually request additional functionality, software systems will con-

tinue to grow in their complexity, as well as in their susceptibility to failures. Particu-

larly for sensitive systems requiring higher levels of reliability, faulty system modules

may increase development and maintenance cost. Hence, identifying them early would

support the development of reliable systems through improved scheduling and qual-

ity control. Research effort to predict software modules likely to contain faults, as a

consequence, has been substantial.

Although a wide range of fault prediction models have been proposed, we remain

far from having reliable tools that can be widely applied to real industrial systems. For

projects with known fault histories, numerous research studies show that statistical

models can provide reasonable estimates at predicting faulty modules using software

metrics. However, as context-specific metrics differ from project to project, the task

of predicting across projects is difficult to achieve. Prediction models obtained from

one project experience are ineffective in their ability to predict fault-prone modules

when applied to other projects. Hence, taking full benefit of the existing work in

software development community has been substantially limited. As a step towards

solving this problem, in this dissertation we propose a fault prediction approach that

exploits existing prediction models, adapting them to improve their ability to predict

faulty system modules across different software projects.

vi



TABLE OF CONTENTS

CHAPTER PAGE

1 INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 Problem Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.3 Goals and Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.4 Proposed Solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.5 Summary of Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.6 Scope and Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.7 Outline of the Dissertation . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2 LITERATURE REVIEW . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.1.1 Software Measurement . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.1.2 Statistical Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.2.1 Object-Oriented Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.2.2 Fault Prediction Techniques . . . . . . . . . . . . . . . . . . . . . . . . 13

3 MAKING A CORPUS: DATA COLLECTION . . . . . . . . . . . . . . . . 19
3.1 Target Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.2 Fault History Extraction . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.3 Generating Object-Oriented Metrics . . . . . . . . . . . . . . . . . . . . 24

4 RAW DATA PREDICTION MODELS . . . . . . . . . . . . . . . . . . . . 25
4.1 Data Distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
4.2 Comparison of CK Metrics Interrelationships . . . . . . . . . . . . . . . . 27
4.3 Individual Metrics as Fault Predictors . . . . . . . . . . . . . . . . . . . 28
4.4 Combined Metrics as Fault Predictors . . . . . . . . . . . . . . . . . . . 31
4.5 Fault Prediction Models . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
4.6 Models Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

5 ADAPTIVE APPROACH TO FAULT PREDICTION . . . . . . . . . . . 39
5.1 Cross-System Model Validation . . . . . . . . . . . . . . . . . . . . . . . 39
5.2 Descriptive Statistics and Interpretation . . . . . . . . . . . . . . . . . . 42
5.3 Model Selection: Identifying Similarly Distributed Datasets . . . . . . . . 44
5.4 Model Adaptation: Metrics Data Transformations . . . . . . . . . . . . . 47
5.5 Evaluation of Models with Transformed Datasets . . . . . . . . . . . . . 49

vii



6 RESULTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
6.1 Findings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
6.2 Implications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
6.3 Threats to Validity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
6.4 Towards the Framework for Fault Prediction . . . . . . . . . . . . . . . . 58

7 CONCLUSION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
7.1 Research Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
7.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

APPENDICES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

VITA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

viii



LIST OF TABLES

TABLE PAGE

2.1 Selected OO Class Metrics Definitions . . . . . . . . . . . . . . . . . . . 13

2.2 Summary of Related Literature . . . . . . . . . . . . . . . . . . . . . . . 17

3.1 Open Source Projects Analyzed . . . . . . . . . . . . . . . . . . . . . . . 21

3.2 Keywords and Reference Identifiers Used to Find Fix Revisions . . . . . 23

4.1 Bivariate Spearman Interrelationships between CK Metrics . . . . . . . . . . 28

4.2 Class Sample Sizes Used in Regression . . . . . . . . . . . . . . . . . . . 29

4.3 Logistic Regression Results Summary . . . . . . . . . . . . . . . . . . . . 30

4.4 Collinearity Analysis for CK Metrics . . . . . . . . . . . . . . . . . . . . 32

4.5 Multiple LR Results Summary . . . . . . . . . . . . . . . . . . . . . . . . 33

4.6 Binary Logistic Regression Coefficients . . . . . . . . . . . . . . . . . . . . 34

4.7 Multiple Logistic Regression Coefficients . . . . . . . . . . . . . . . . . . . . 35

4.8 Model Evaluation across all Projects . . . . . . . . . . . . . . . . . . . . . . 37

5.1 Cross-System Validation Results Summary for CBO . . . . . . . . . . . . . . 39

5.2 Cross-System Validation Results Summary for WMC . . . . . . . . . . . . . 40

5.3 Cross-System Validation Results Summary for Multiple LR Models . . . . . . 41

5.4 Cross-System Validation Results Summary for LCOM . . . . . . . . . . . . . 41

5.5 Levene’s Test Results Summary . . . . . . . . . . . . . . . . . . . . . . . 47

5.6 The Evaluation Summary of Transformed Data Models . . . . . . . . . . . . 50

ix



LIST OF FIGURES

FIGURE PAGE

2.1 Prediction Uses Historical Faults to Predict Faults of New Modules . . . . 14

3.1 Change Log Entries Example . . . . . . . . . . . . . . . . . . . . . . . . . 20

4.1 Histogram for Scarab CBO . . . . . . . . . . . . . . . . . . . . . . . . . . 26

4.2 Histogram for Eclipse LCOM . . . . . . . . . . . . . . . . . . . . . . . . . 26

4.3 Histogram for Columba WMC . . . . . . . . . . . . . . . . . . . . . . . . 27

5.1 CBO Box Plot . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

5.2 WMC Box Plot . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

5.3 LCOM Box Plot . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

5.4 Context-Specific Fault Prediction . . . . . . . . . . . . . . . . . . . . . . 45

5.5 CBO Box Plot Before and After the Transformation . . . . . . . . . . . . 48

5.6 LCOM Box Plot After the Transformation . . . . . . . . . . . . . . . . . 51

6.1 CBO Model F-Scores for Different Fault Classifier Choices . . . . . . . . . 53

6.2 WMC Model F-Scores for Different Fault Classifier Choices . . . . . . . . 54

6.3 LCOM Model F-Scores for Different Fault Classifier Choices . . . . . . . 55

6.4 High-Level Fault-Prediction Framework Processes . . . . . . . . . . . . . 59

x



ACRONYMS AND ABBREVIATIONS

CBO Coupling Between Objects

CK Chidamber and Kemerer

CVS Concurrent Versions System

DIT Depth of Inheritance Tree

IDE Integrated Development Environment

JDT Java Development Tooling

LCOM Lack of Cohesion of Methods

LR Logistic Regression

NOC Number of Children

OLS Ordinary Least Squares

OO Object-Oriented

RFC Response for a Class

SCM Software Configuration Management System

SVN Subversion

WMC Weighted Methods per Class

xi



CHAPTER 1

INTRODUCTION

As users continually request additional functionality, the software systems will

continue to grow in their complexity, as well as in their susceptibility to failures1.

Particularly for sensitive systems requiring higher levels of reliability, faulty system

modules2 may increase development and maintenance cost. Furthermore, applying

equal validation effort to all parts of a software system has become cost-prohibitive

[12]. Hence, identifying faulty modules early would support the development of reli-

able systems through improved scheduling and quality control. The faulty information

could provide valuable advice to improving effectiveness of resource allocation during

validation activities. As numerous studies show testing software on average consumes

at least 50% of its development effort [31, 41], the identification of faulty modules

might have a significant cost-saving impact on software development.

A wide range of fault3 prediction models have been proposed [10, 25, 27, 37, 45, 48,

50]. Generally, efforts have concentrated on developing statistical models that predict

faulty modules a system is likely to reveal during validation activities, or within a

specified time interval after its deployment. Predictive models rely on fault history

data and a selection of an appropriate quality assessment model, which quantitatively

evaluates some facet of system quality. System quality, such as maintainability [14]

for example, is most frequently described in terms of project’s complexity metrics.

Numerous research studies, such as work of Basili et al. [6], Emam at al. [21],

Gyimothy et al. [30], and Olague at al. [46], show that statistical models can provide

reasonable estimates at predicting faulty system modules using object-oriented (OO)

1 Any deviation of the observed system behavior from the specified behavior [64]

2 A file, OO class, procedure, or some other system component

3Algorithmic cause leading to a failure [15]
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metrics. However, as context-specific metrics differ from project to project, the task of

predicting across projects is difficult to achieve. Prediction models obtained from one

project seldom serve as predictors of fault-prone modules belonging to other projects,

for which fault history data is not available [44].

The next section motivates the need for research projects in the area of software

measurement and fault prediction. More specifically, it emphasizes the need for im-

proved predictive techniques and highlights the benefits to be gained from conducting

the study.

1.1 Motivation

Several studies have shown that software faults tend to be clustered within OO classes

comprising a smaller part of the system as a whole. Ostrand et al. [49] used historical

data from two large software systems with up to 17 releases to predict the files with

the highest fault density in the following release. For each release, the 20% of the files

with the highest predicted number of faults contained between 71% and 92% of the

faults being detected. Similiary, Koru and Liu [28] showed that 80% of the changes to

KOffice and Mozilla projects were centered in 20% of the classes. Given the immense

weight software testing exerts on the overall software development effort outlined in

the introduction, we could significantly improve effectiveness of resource allocation

during validation activities by focusing testing effort on that part of the software that

is likely to need it most. Research effort to predict software modules likely to contain

faults, as a consequence, has been substantial.

Predictive model, alternatively referred to as a classifier, maps historical fault data

of some project to its modules, and then uses their complexity metrics to predict faults

in newly developed modules. We assume that if certain types of software modules

were likely to fail in the past, they are also likely to do so in the future. However,

2



accurate predictions require a long fault history, which may not exist for the project

at hand; in fact, a long fault history is something one would like to avoid altogether

[44]. Hence, projects without prior fault history rely on predictive models developed

from other, unrelated projects. And even though complexity metrics have been shown

to correlate with fault density in a number of case studies [10, 25, 27, 37, 45, 48, 50],

how do we know that chosen metrics and the predictive model are appropriate for the

project at hand? Context-specific metrics differ from project to project, making the

task of predicting across projects difficult to achieve. Prediction models obtained from

one project seldom serve as adequate predictors of fault-prone modules belonging to

other projects, for which fault history data is not available [44]. Taking full benefit of

the existing work in software development community predicting faults has therefore

been substantially limited.

In order to be widely adopted, suggested fault-prediction techniques should be

easy-to-use and applicable across different domains. Additionally, prediction models

obtained using those techniques should be simple and intuitive enough to be easily

understood and interpreted by developers [28]. As new fault predictive techniques

are introduced, it is necessary that researchers exchange ideas on how to utilize these

techniques on arbitrary projects for which fault history data are not available. Given

an arbitrary project, this includes: identifying approaches for choosing the appropri-

ate set of complexity metrics for the project; identifying approaches for selecting and

modifying existing datasets from which prediction models are developed for project

at hand; and sharing the software engineering experiences of conducting such research

studies. The next section concisely describes the research problem being explored in

this dissertation and summarizes the major benefits to be gained from conducting

the investigation.
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1.2 Problem Statement

The problem under investigation is in the area of software measurement and fault pre-

diction. More precisely, the study focuses on investigation of an adaptive fault predic-

tion approach that exploits existing prediction techniques, adapting them to improve

their ability to predict faulty system modules across different software projects. We

postulate that taking advantage of the existing fault prediction techniques commer-

cially can only be achieved through these channels of investigation. The effort is

divided into the following sub-problems:

1. Devise a strategy that facilitates identifying similar projects. Project similar-

ity implies that fault predictors obtained from one project become reasonably

accurate in predicting faults in another project.

2. Formulate an approach that adapts or transforms datasets used in development

of the fault-proneness prediction models in order to improve their predictive

ability to identify fault-prone modules across different projects, independent of

the domain used in the derivation of the predictive model.

3. Propose a high-level design methodology to support the implementation of the

strategy devised in (1.) and the adaptive approaches formulated in (2.).

The results of the proposed study can lead to the: (1) discovery and understanding

of deeper issues surrounding the challenges of software OO metrics as related to the

fault prediction techniques; (2) development of reusable and adaptable approach to

fault prediction applicable across different software projects.

1.3 Goals and Objectives

This section describes the goal of the research contained in this dissertation, including

specific, measurable objectives that must be attained in order to satisfy that goal.

4



Research Goal

To assist developers identify fault prone modules for projects without prior fault

history, thereby supporting the development of reliable systems and lowering the cost

of software development and maintenance.

The stated research goal seeks to support the practical applicability of existing

predictive techniques on projects for which the prior fault history data is not known.

Without history data, rather than testing effort being distributed on the entire soft-

ware project, using the techniques in this dissertation, developers can generate lists

of modules likely to contain faults. This reduces the scope of software that needs

to be examined, and allows more efficient resource allocation during validation and

maintenance activities. The following objective and evaluation criterion will be used

to measure the extent to which the research goal has been accomplished:

Objective: Allocating software validation effort on the part of the system identified

by our approach shall produce better results than allocating the same effort on the

part that has been selected by chance, or identified by randomly selected raw-data

model.

Evaluation Criteria - Given a software system comprised of individual class mod-

ules and its fault history data summarizing each module’s fault count, and the three

classifiers independent of the system’s domain, P, PRand (for binary and multiple

logistic regressions), and PChance such that:

P is a prediction model developed by our adaptive approach to identify class

modules most likely to contain faults,

PRand is a randomly selected raw-data fault-proneness prediction model, and

PChance is a model predicting fault-prone class modules by chance,

5



then the predictive accuracy4 of our model P will be greater than the accuracy of

PRand or PChance, when applied to our given system.

1.4 Proposed Solution

To address the research problem defined in Section 1.2, we suggest an informed se-

lection approach which identifies similar, but unrelated projects, and a general trans-

formation function that adapts their metrics datasets in order to develop calibrated

fault-proneness prediction model usable across different software systems.

We identify a set of OO metrics to be used as fault predictors by empirically

validating several OO metrics that were shown to be good fault predictors in the past

studies on a set of selected target applications using statistical correlation analysis.

Applications serve as both our training5 and testing datasets. Their selection is

restricted to open-source applications with existing fault histories accessible through

mining software repositories.

For each identified metric, along with the projects’ fault history data, we generate

a repository of training datasets, a necessary component used in the development of

fault-proneness prediction models. Each pair of metric measures and fault history

data within repository include a metric dataset with its fault histories from which the

model can be derived.

Exploiting statistical variance analysis techniques, for a given arbitrary project,

our adaptive approach to fault-proneness prediction first considers all metrics and

history data pairs within the repository to identify the pair whose metric distribution

most closely resembles the given project. Following the selection process, our adapta-

tion approach utilizes general transformation function on both sets of metrics, training

4As measured by F-Score, the harmonic mean of precision and recall defined in Section 4.6

5A set of data used to discover potentially predictive relationships and used in the regression for
development of prediction models
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dataset and the given project dataset – the result is the calibrated fault-proneness

prediction model with optimized predictive abilities for the given project. Finally,

the proposed solution is supported with a high-level design methodology for an ex-

pandable fault prediction framework that supports practical use of fault prediction

techniques in commercial setting.

1.5 Summary of Contributions

This dissertation establishes the following novel contributions in the area of software

measurement and fault prediction:

1. Creation of an adaptive and reusable approach to building fault-proneness pre-

diction models based on a set of OO complexity metrics and its available fault

history data, applicable across system projects, and particularly to arbitrary

system projects for which fault history data is not available. This includes

inferential statistics and regression-based tools, and methods to assess the ap-

plicability of the these models in the practical setting.

2. Elaboration of a case study showing a systematic development of predictors

for system faulty modules from failure history of other projects from the field,

and successful use of product complexity metrics to predict these failures. This

includes the experiences and lessons learned from systematic empirical investiga-

tion of available data, which will provide guidance in several software engineer-

ing decisions and further strengthen the existing empirical body of knowledge

in software engineering.

7



1.6 Scope and Limitations

The scope of this dissertation is confined to the investigation of an adaptive fault pre-

diction approach and supporting design methodology for identifying faulty modules

belonging to systems for which historical fault data are not available. We neither

promote specific software quality measure, nor do we suggest that the underlying

statistical methods used in this dissertation for fault prediction produce best results.

Rather, the usability of the presented fault prediction approach in commercial setting

is the primary focus of the work. The use of software quality measurements and fault

detection techniques are provided as means to validate presented approach.

Furthermore, findings identified in this dissertation hold across the investigated

open-source domain projects. It may not be possible to extend the findings of the

study involving open-source software systems to proprietary software due to the dif-

ferent development practices adopted [40]. Further validations with both open-source

and proprietary software systems are necessary to help us draw stronger conclusions.

1.7 Outline of the Dissertation

The rest of this dissertation is organized as follows: Chapter 2 provides the back-

ground and related work on the problem under investigation. Chapter 3 presents the

data collection process in detail. We present the development of the predictive models

in Chapter 4. Our adaptive fault prediction approach is explained in Chapter 5. The

results of our study are presented in Chapter 6. Chapter 7 concludes the research

investigation and discusses future work.
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CHAPTER 2

LITERATURE REVIEW

In this chapter we provide background material (Section 2.1) essential to under-

standing the problem under investigation and summarize the prior literature in the

area of software measurement and prediction (Section 2.2).

2.1 Background

Our research introduces an approach that, for a given project, selects and adapts

the appropriate training dataset used in the development of a fault-proneness predic-

tion model, improving its ability to predict fault-prone modules across projects. As

predictive models rely on the observation of historical data obtained through measure-

ments, in the next section we relate the process of measurement to software systems.

Statistical analysis used for development of predictive models is described in Section

2.1.2.

2.1.1 Software Measurement

Fenton et al. [24] define the measurement as the process by which numbers are

assigned to attributes of entities in the real world in such a way as to describe them

according to clearly defined rules. He further introduces a notion of software metrics

as a collective term used to describe the very wide range of activities concerned with

measurement in software engineering.

Software engineering incorporates three distinct entities: (1) processes or collec-

tion of software-related development activities, (2) products or artifacts, deliverables

and documents resulting from processes, and (3) resources required by a process ac-

tivity. Each entity has a set of related attributes. Software metrics produce numbers

9



that characterize an attribute of a software engineering entity, and can therefore be

classified into three categories:

1. Process metrics inform on duration, cost, effectiveness and efficiency of the

software development process. Examples include the duration of the process or

activity and the effort associated with process or activity.

2. Product metrics quantify some attribute of artifacts, deliverables and documents

resulting from software development process in terms of size, complexity, and

design features.

3. Resource metrics describe the project resources like personnel, materials and

methods required by software development process. Examples include program-

mer’s productivity and skill level.

Additionally, within each entity we distinguish between internal attributes, mea-

surable purely in terms of the entity itself, separate from its behavior, and external

attributes, measurable only with respect to how the entity relates to its environment

[24]. Internal product attributes measure product in terms of size, length, and func-

tionality for example and are generally easily obtainable prior to actual deployment

of the system, but of little use unless related to product external attributes. External

attributes are concerned with product quality, such as usability, testability, reusabil-

ity, and portability [24]. As external attributes are directly observable only after the

system has already been deployed and operational for some time, the focus has been

on relating internal attributes (these are the classic software metrics) to their external

qualities.

To support their usefulness in practical applications, it is necessary to empiri-

cally validate software metrics [23]. Empirical studies frequently rely on data sets.

However, large software data repositories from which representative samples can be

10



drawn are often accessible only internally in a company or organization doing soft-

ware development. Even though open source software projects are exception, their

development methodology, often performed by volunteers, is different from the usual

formalized methods applied by all team members in commercial software develop-

ment [30]. Hence their process and resource data are often incomplete and unreliable.

Consequently, to conduct and validate our empirical work, we exploit product metrics

only.

2.1.2 Statistical Methodology

Regression analysis is a statistical tool for the investigation of relationships between

dependent and independent variables (also called predictors). Regression models are

widely used for prediction. In regression model, the dependent variable is assumed

to be a function of one or more independent variables, called the regression function:

Y ≈ f(X, β) (2.1)

where X represents a set of independent (or explanatory) variables, Y is the de-

pendent (or response) variable, and β denotes unknown parameters. Given a data

set of known X and Y values, regression analysis estimates the values of unknown

parameters β to fit a regression model.

Logistic regression approaches have been widely used to estimate the impact of

various independent variables (OO metrics) on the dependent variable (faults) in prior

studies [6, 21, 22, 58].

Logistic regression: When the dependent variable yi within our data set as-

sumes only two values (yes/no), logistic regression analysis provides a model to pre-

dict the probability pi for a specific event for yi (fault-prone) given the values of
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k -vector of regressors xi (OO metrics). The multiple logistic regression function has

the following form:

ln(
pi

1− pi

) = β0 + β1xi1 + β2xi2 + ...+ βkxik (2.2)

Parameters of a logistic regression model are usually estimated using the maxi-

mum likelihood method. For a fixed set of data and underlying probability model,

maximum likelihood picks the values of the model parameters that make the data

”more likely” than any other values of the parameters would make them. Within the

scope of this work, we use the logistic regression model.

2.2 Related Work

First, we introduce several metrics suites for OO software that were relevant to fault

prediction in past studies. In Section 2.2.2 we overview and compare prior literature

on fault prediction using OO metrics.

2.2.1 Object-Oriented Metrics

Development under the OO paradigm has spurred a burst in the availability of OO

product metrics. Generally, each metric is considered as either a size or a design

measure. Size metrics typically measure some attribute of software code while design

metrics relate to various OO design constructs. In this section we introduce two most

commonly cited OO class metrics suites in the literature.

Abreu et al. [1] presented a suite of metrics for OO design (MOOD) that do not

depend to a great extent on the definitions of functions, so they can be collected early

in the design phase. The metrics values are independent of the system size, and hence

return values between 0 (absence of a factor) and 1 (the maximum possible presence

of a factor). Selected MOOD class metrics are described in Table 2.1.
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Table 2.1: Selected OO Class Metrics Definitions

Abreu’s MOOD Metrics [1]
Metric Name Definition

Attribute Hiding The ratio of (1 - total number of accessible attributes)
Factor (AHF) to the total number of attributes in a class.

Method Hiding The ratio of (1 - total number of accessible methods)
Factor (MHF) to the total number of methods in a class.

Attribute Inheritance The ratio of inherited attributes to the total
Factor (AIF) number of attributes in a class.

Method Inheritance The ratio of inherited methods to the total
Factor (MIF) number of methods in a class.

Chidamber and Kemerer’s (CK) Metrics [17]
Metric Name Definition

Weighted Methods The sum of the weights of all methods in a class. If
per Class (WMC) all method weights are unity, same as number of methods.

Depth of Inheritance The maximum distance in the inheritance tree of a
Tree (DIT) given class from the root node of hierarchy.

Number of The number of children classes inheriting directly from
Children (NOC) a given class.

Coupling Between Counts other classes whose members are used by a given
Objects (CBO) class + those that use the members of a given class.

Response for a Counts all local methods of a class + all methods on other
Class (RFC) classes directly called by any methods on a given class.

Lack of Cohesion Number of disjoint sets of local methods where any two
of Methods (LCOM) methods on same set share at least one local variable.

The metrics defined by Chidamber and Kemerer [17] (CK) cover many aspects of

the OO paradigm and are most widely validated in fault prediction studies. Table

2.1 presents selected size and complexity CK metrics representing characteristics of

the OO code.

2.2.2 Fault Prediction Techniques

The general principle behind prediction model development is depicted in Figure 2.1.

Projects with available code and fault histories allow us to map their faults back to
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individual modules. The metrics for each module involved in the mapping process are

then computed. Relationships between metrics and faults are analyzed. The result is

a prediction model, which can then be used to estimate the fault probability of new

modules.

 

  Bug 
Database 

  Code 

Module 
 

Module 

Module 
 

New 
Module 

Predictor 

Fault 
Probability 

1. Collect Input Data 2. Map faults to modules 3. Predict faults 

Figure 2.1: Prediction Uses Historical Faults to Predict Faults of New Modules

Numerous studies have empirically validated the association between OO metrics

and faults. The selected literature included in this section is most related to our

work and includes OO metrics based prediction models that focus on validating the

effectiveness of OO metrics for either predicting fault-prone classes or number of faults

in the classes. We present related studies in chronological order, starting with earliest

and ending with most recent literature.

Basili et al. [6] conducted experiments on eight medium-sized student C++

projects for which they collected fault data during acceptance testing. The met-

rics under the investigation were the CK metrics and logistic regression was utilized

to perform the data analysis. By dividing classes into two distinct categories, faulty

(contained one or more faults) and non-faulty (fault free), they showed that CK met-

rics were statistically independent and all CK metrics except LCOM were significantly

associated with class fault-proneness.
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Tang et al. [58] conducted their study on data from an industrial system comprised

of over 200 subsystems implemented in C++. In addition to CK metrics, additional

metrics were investigated, and logistic regression was carried out to evaluate those

metrics. The results illustrated that WMC and RFC were significant indicators of

fault-prone classes, but CK metrics alone were not sufficient predictors of quality.

Emam et al. [21] also chose logistic regression to analyze data from a telecommu-

nication system consisting of 174 C++ classes. They found WMC, RFC, and CBO

were closely associated with fault-proneness. However, they also demonstrated that

the significance of the metrics no longer existed when size controlling was imposed

on the analysis, urging other researchers to reexamine their studies.

Yu et al. [63] completed another validation study of CK metrics with data from

the client side application of a large network service management system, which

contained 123 Java classes and approximate 34,000 lines of code. The dependent

variable was the number of faults present in a class, and linear regression (ordinary

least square) and linear discriminant analysis were their analysis methodology. They

came to conclusion that except DIT all CK metrics were sound predictors of fault-

prone classes.

Subramanyam et al. [56] validated the association between WMC, CBO, and DIT

metrics and the fault counts, rather than fault-proneness. They analyzed around 400

C++ and 300 Java classes, concluding that CK metrics were significantly associated

with faults counts, but they found that effectiveness of these metrics vary in the

two programming languages investigated. While C++ classes found WMC, DIT,

and interaction term (CBO*DIT) all significantly associated with faults counts, Java

classes were significantly associated with faults through interaction term (CBO*DIT)

only.
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Gyimothy et al. [30] also validated the CK metrics as significantly associated

with class fault-proneness using logistic and linear regression, and machine learning.

They investigated an open source software Mozilla version 1.6 by inspecting over

3,000 C++ classes and investigating their fault histories collected from the Bugzilla

database. All metrics except NOC were significant predictors of class fault-proneness

in their study.

Zhou et al. [65] explored C++ data set from the public NASA data set repository

and took severity of faults into account when researching the relationship between

CK metrics and fault-prone classes. Their analysis method was logistic regression and

machine learning. They maintained that all CK metrics except DIT were significant

regardless of severity levels. Moreover, they held that severity levels could greatly

influence the predicting power of CK metrics upon class fault-proneness.

Olague et al. [46] empirically validated three sets of metric suites to predict fault-

proneness of OO classes using highly iterative or agile software development process:

CK metrics, Abreu’s Metrics for OO Design (MOOD) [2], and Bansiya and Davis’

quality metrics for OO design (QMOOD) [5]. They used fault data for six versions of

Rhino, an open source implementation of JavaScript written in Java, and concluded

that the CK and QMOOD metric suites both produce logistic regression models that

are effective in detecting fault-prone classes. Their study showed WMC and RFC as

consistent predictors of fault-prone classes across all versions of Rhino, while CBO

was significant for five, LCOM for four, and both DIT and NOC for two out of six

versions. In their study, MOOD metric suite was not effective in detecting fault-prone

classes.

Xu et al. [62] utilize linear regression and a neuro-fuzzy approach to validate rela-

tionships between CK metrics suite and number of faults in OO classes. Investigated

applications belong to the public NASA data set repository and are implemented in
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C++. Their results indicate that all CK metrics but DIT are reliable metrics for

estimating the number of faults present in a class. Overall, they report that SLOC

metric imposes most significant impact on the number of faults.

English et al. [22] explored fault-proneness of a Java-based open-source subsystem

belonging to an integrated development environment Eclipse, using logistic regression.

Again, the CK metrics were selected as quality predictors. They conclude that in-

heritance based metrics NOC and DIT were not very useful in any of the prediction

models. The coupling metrics CBO and RFC were the best predictors of fault prone

classes in their study.

A summary of the selected literature is listed in Table 2.2. We can easily see

that (1) the fault-proneness is the most employed dependent variable choice among

researchers, (2) logistic regression is most frequently utilized statistical method, and

(3) WMC, CBO, and RFC are most widely accepted as useful indicators for faults or

fault-prone classes.

Table 2.2: Summary of Related Literature

Study Method Dependent Var. WMC DIT NOC CBO RFC LCOM
Basili et al. [6] LR Fault-proneness + + + + + -
Tang et al. [58] LR Fault-proneness + - - - + -
Emam et al. [21] LR Fault-proneness + - - + + -
Yu et al. [63] OLS+LDA Faults + - + + + +
Subramanyam et al. [56] OLS Faults + + x + x x
Gyimothy et al. [30] LR+ML Fault-proneness + + - + + +
Zhou et al. [65] LR+ML Fault-proneness + - + + + +
Olague et al. [46] OLS+LR Fault-proneness + - - + + +
Xu et al. [62] OLS Faults + - + + + +
English et al. [22] LR Fault-proneness + - - + + +
Method legend: LR-Logistic regression; ML-Machine Learning; LDA-Linear Discriminant Analysis
OLS-Ordinary Least Square. Metrics legend: + (predictor); - (not predictor); x (not used)

Even though there is a general consensus over the limited use of existing models to

predict faults across different software projects, to our knowledge, effort to combine

or modify existing models in order to improve their cross-project performance has

virtually been nonexistent within published literature. The most notable work is by
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Bouktif et al. [10]. They use a genetic algorithm based approach to improve the

cross-project performance of existing models using a combinations of several existing

models. Their results show that combining existing models can yield significantly

better results than using any of the existing models individually.
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CHAPTER 3

MAKING A CORPUS: DATA COLLECTION

The key component behind this dissertation is learning from software evolution

history. Fault prediction models in this dissertation are based on software history

mining that involves the extraction of useful information from software evolution

data. Most software projects today use some type of software configuration manage-

ment (SCM) system to manage and record the evolution data. For the open source

projects we analyzed, the SCM system includes either Concurrent Versions (CVS) [9]

or Subversion (SVN) [8] component.

Within both CVS and SVN components, each developer has their own isolated

working space called a workspace. The workspace is a directory on the developers’

local workstation. From the SCM systems, developers check out source code into

their own workspace. Developers usually change files in their workspace and when

they want to store their changes in the SCM system, they submit their changes

using the commit command. Changes made in workspaces are not visible to other

developers until changes are committed to the SCM system, and then each developer

updates their local workspace from the SCM system to apply changes from others.

When developers commit changes, they can commit more than one file change at the

same time. A group of changes at the same time is called a revision. The details

of each revision are recorded in the shared change log, and include author, date, a

list of changed files, and log message indicating the type of revision. For change log

example, please refer to Figure 3.1.

Since each project’s evolution data also includes years of fault fix revisions, they

can be a good resource for predicting faults, by learning from previous mistakes. We

refer to a collection of analyzed systems and their respective data as a corpus. Corpus
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‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐ 

Revision 

  r25409 | joerg | 2003‐08‐11 16:41:26 EDT 
Changed paths: 

    M  /src/transformation/SendMailTransformer.java 
    M /src/acting/CommandAction.java 
File Change 

  Cleaned up unused local variables 
‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐ 
r25404 | cziegeler | 2003‐08‐11 07:03:31 EDT 

Fix Revision

  Changed paths: 
M /src/resolver/test/ResolverImplTestCase.java 

    M /src/blocks/mail/mocks/javax/mail/Transport.java 
Fix Change 

    M /src/blocks/mail/mocks/javax/mail/Message.java 
    M /src/blocks/mail/mocks/javax/mail/Session.java 
  This fixes bug 20096 Log Message 

‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐ 
 

Keyword 

Figure 3.1: Change Log Entries Example

is described in detail in this chapter, and for each system within it includes project’s

complete source code (Section 3.1), its fault fix revisions (Section 3.2), and relevant

OO metrics (Section 3.3).

3.1 Target Applications

Open source projects listed in Table 3.1 are used in this dissertation, and are all

developed in Java. These projects are chosen due to availability of their full source

code and the entire project evolution history.

A more detailed description of each project is described as follows:

• Cacoon (http://cocoon.apache.org/) - Apache Cocoon is a web application

framework built around the concepts of pipeline, separation of concerns and

component-based web development. Full source code and change code entries

are available through SVN at http://svn.apache.org/repos/asf.
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Table 3.1: Open Source Projects Analyzed

Project Version Software Type SCM Class Count
Cacoon 2.1 Web development framework SVN 1961
Columba 1.0 Email client SVN 1941
Cosmos 1.0 System management framework CVS 1828
Derby 10.3 Relational database SVN 2488
Eclipse JDT 3.1 Java development tools CVS 3410
JEdit 4.0 Text editor SVN 642
OpenOffice 3.1 Office suite SVN 537
Scarab 1.0 Bug tracker SVN 475

• Columba (http://sourceforge.net/projects/columba/) Columba is an email client,

featuring a user-friendly graphical interface with wizards and internationaliza-

tion support. Its a powerful mail management tool. Full source code and change

code entries are available through SVN at

https://columba.svn.sourceforge.net/svnroot/columba/.

• Cosmos (http://www.eclipse.org/cosmos/) - The Cosmos (Community-driven

Systems Management in Open Source) project aims to provide an extensible,

standards-based framework upon which software developers can create special-

ized, differentiated and inter-operable offerings of tools for system manage-

ment. Full source code and change code entries are available through CVS

using :pserver:anonymous@dev.eclipse.org:/cvsroot/technology.

• Derby (http://db.apache.org/derby/) - Apache Derby is an open source rela-

tional database. Full source code and change code entries are available through

SVN at http://svn.apache.org/repos/asf.

• Eclipse JDT (http://www.eclipse.org/jdt/) Eclipse is a universal and extend-

able integrated development environment (IDE) for software development. The

JDT project is the part of Eclipse and provides the tool plug-ins that implement
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a Java IDE, supporting the development of any Java application. Full source

code and change code entries are available through CVS using

:pserver:anonymous@dev.eclipse.org:/cvsroot/eclipse.

• JEdit (http://www.jedit.org/) JEdit is a programmers text editor that supports

plug-ins. It is a highly configurable and customizable editor. Full source code

and change code entries are available through SVN at

https://jedit.svn.sourceforge.net/svnroot/jedit.

• OpenOffice (http://www.openoffice.org/) - OpenOffice is an open-source of-

fice software suite for word processing, spreadsheets, presentations, graphics,

databases and more. Full source code and change code entries are available

through SVN at svn://svn.services.openoffice.org/ooo.

• Scarab (http://scarab.tigris.org/) Scarab is a Bugzilla-like bug tracking sys-

tem that is highly customizable. Full source code and change code entries are

available through SVN at http://scarab.tigris.org/svn/scarab/trunk.

3.2 Fault History Extraction

A fault is created during the development process and causes abnormal software be-

havior. These abnormal behaviors are often reported by users and developers, and

are typically recorded in a tracking system such as Bugzilla [47]. Developers then

locate the fault and fix it by changing one or more files related to the fault. Tra-

ditionally, faults are identified in software by examining the output from software

execution, performing software inspections, or running static analysis tools. Develop-

ers are assumed to have been using these traditional methods for fault identification

throughout a project’s evolution, and have been fixing the faulty code. The method
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for fault identification used in this dissertation thus relies on identifying these revi-

sions, which constitute fault fixes. We will refer to such revisions as fix revisions.

There are some heuristic ways to identify fix revisions in software evolution history.

They rely on the history logs (Figure 3.1) left by the developers [26, 54, 60]. If

the change logs can provide any clue that indicates that the revision is fixing some

problem, it is then considered a fix revision. We use a simple algorithm that parses

project’s change log for special keywords that indicate fixes, such as Fixed or Fault

[43], and for references to fault reports like #1234567 [26, 54, 60]. This heuristic

identifies whether an entire revision contains a fault fix. If it does, all files in the

revision are marked as fix changes. Manual inspection of the change logs for each

project is used to identify the keywords that indicate fix revisions for each project.

The project keywords are shown in Table 3.2.

Table 3.2: Keywords and Reference Identifiers Used to Find Fix Revisions

Project Keywords or Phrases
Cacoon patch, fix, bug
Columba [bug], [bugfix]
Cosmos bug
Derby patch, fix, bug
Eclipse JDT * bug id reference
JEdit patch, fix, bug
OpenOffice * bug id reference
Scarab patch, fix, bug, issue number
* Bug id reference is a 7-digit number.

As developers record which files have been changed within the history log, rather

than which specific classes have been modified, in this study we exclude revisions to

files containing two or more class definitions, and exclude their classes from the scope

of this investigation. There is no way to determine whether a revision is attributed

to the public class with the same name as its encompassing file, or some other non-

public class definition within the same file. Thus, attributing some specific complexity
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metric value of the public class contained within the same-named file to the fix revision

performed on a completely different class would negatively influence the validity of

this study.

3.3 Generating Object-Oriented Metrics

As discussed in Section 2.2.1, most widely validated metrics in fault prediction studies

across different projects are metrics defined by Chidamber and Kemerer [17]. While

our future work might include investigating other software quality measures and their

correlation to faults, in this dissertation we investigate five CK metrics that have

shown to be most suitable for predicting fault prone OO classes. They are WMC,

CBO, RFC, DIT, and LCOM. Again, their full definitions are discussed in detail in

Table 2.1 of Section 2.2.1.

We calculate metric values by using a third party software tool Understand [51]

by Scientific Toolworks. It includes a set of static analysis tools that measure various

metric calculations, including CK metrics. We then generate descriptive statistics

summary for a given project in terms of its metrics using IBM SPSS [35] software

for predictive analysis, which is also used for regression analysis and development of

prediction models.
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CHAPTER 4

RAW DATA PREDICTION MODELS

In this study we first describe the process involved in developing raw data fault

prediction models using CK metrics. We chose to use logistic regression [34] instead

of the traditional linear regression technique to discover the relationships between

the values of the metrics and the fault-proneness of classes. Thus, we are predicting

fault-proneness as a dichotomous response variable. As previously noted in Section

2.1.2, the logistic regression method only predicts if a class is faulty or not, but

does not say anything about the possible number of faults in that class. We develop

logistic regression models through SPSS statistical software tool [35] using the forward

stepwise regression method. Again, as stated in Section 1.6, we do not make the case

in favor of the regression method used. Rather, the usability of the presented fault

prediction approach in commercial setting is the primary focus of the work. Logistic

regression does not assume linearity of relationship between the independent (CK

metrics) and dependent (class fault-proneness) variable nor does it require normal

distribution assumption. Logistic regression has been shown to provide good models

for fault-proneness prediction in previous studies [20].

4.1 Data Distribution

In order to determine the appropriate statistical procedures for our data analysis and

the overall research conducted in this dissertation, it is imperative that we establish

whether the values of our metrics belong to a normally distributed population, also
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Figure 4.1: Histogram for Scarab CBO

known as Gaussian. Manipulating nonparametric1 data requires a different set of

statistical tools than manipulating its parametric2 counterpart.

Figure 4.2: Histogram for Eclipse LCOM

To obtain a visual impression of the distribution of metrics data, we generated

their graphical representation in the form of histogram. Histogram is an approxima-

tion of the probability distribution of a variable and consists of tabular frequencies,

shown as adjacent rectangles, erected over discrete intervals, with an area equal to

1We do not make any assumptions about the population distribution of our metrics data. Metrics
data do not belong to any specific distribution such as Gaussian.

2Normal distribution assumption
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the frequency of the observations in the interval [33]. We present an example of

histogram generated for the distribution of three metrics, CBO metric within the

project Scarab (Figure 4.1), then for the distribution of LCOM metric within the

project Eclipse (Figure 4.2), and finally for the distribution of WMC metric within

the project Columba (Figure 4.3) respectively. Please note that the chunk of the

histogram Frequency scale is missing, without any information being omitted. Oth-

erwise, the figures would have been unnecessarily high. From Figures 4.1, 4.2, and 4.3

we observe that our data are skewed. We therefore rely on nonparametric statistical

approach.

Figure 4.3: Histogram for Columba WMC

4.2 Comparison of CK Metrics Interrelationships

In order to determine if individual CK metrics measure different quality properties

of software, we compared inter-correlation between the individual metrics within the

CK metric suite using the Spearman Rank’s correlation. Spearman Rank’s corre-

lation is a nonparametric statistical measure of dependence between two variables
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[18]. The complete results of the Spearman Rank correlation are presented in the

Appendix, Table A1 for projects Cocoon, Columba, Cosmos, and Derby, and Table

A2 for projects Eclipse, JEdit, OpenOffice, and Scarab. Table 4.1 summarizes the

correlation for all six CK metrics across all eight projects by evaluating the correla-

tion coefficients against the Hopkins criteria [61](<0.10 trivial (T), 0.11-0.30 minor

(S), 0.31-0.50 moderate (M), 0.51-0.70 large (L), 0.71-0.90 very large (VL), 0.91-1.00

almost perfect (P)).

Our correlation results indicate that across all projects, RFC at times showed very

large correlation with WMC and DIT metrics, and large correlation with CBO metric.

NOC metric shows trivial to minor correlation with the remaining metrics within the

suite. CBO metric shows medium to large correlation with WMC and RFC, while

it remains unrelated to remaining metrics. No two metrics show perfect correlation.

Results suggest that WMC and RFC metrics are the only that consistently show

significant correlation when compared to one another across all projects.

Table 4.1: Bivariate Spearman Interrelationships between CK Metrics

CBO NOC WMC RFC DIT LCOM Metric
1 T-S S-L M-L S-M S-M CBO

1 T-S T-M T-S T-S NOC
1 L-VL T-S M-L WMC

1 M-VL M RFC
1 T-S DIT

1 LCOM
Legend: T=Trivial(<0.10); S=Minor(0.11-0.30);

M=Moderate(0.31-0.50); L=Large(0.51-0.70);
VL=Very Large(0.71-0.90); P=Perfect(0.91-1.00);

4.3 Individual Metrics as Fault Predictors

In this subsection, we performed binary logistic regression (LR) analysis of the met-

rics versus faults on all projects within our corpus to identify which CK metrics were

statistically significant fault-proneness indicators. In turn, each individual CK metric
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was used as the independent variable in the regression. The dependent variable was a

boolean variable representing whether or not classes were classified as faulty. Follow-

ing guidelines for most suitable logistic regression sample size selection as suggested

by Long [39], we ensure that each training sample extracted from individual projects

and used in regression contains the same number of faulty and non-faulty classes.

Table 4.2: Class Sample Sizes Used in Regression

Total Class Classified as Sample
Project Count Faulty Size
Cacoon 1961 15% 500

Columba 1941 12% 450
Cosmos 1828 34% 600

Derby 2488 26% 600
Eclipse 3410 36% 1000

JEdit 642 30% 200
OpenOffice 537 32% 200

Scarab 475 38% 300

Table 4.2 indicates the size of the class training dataset used for each project,

as well as the total number of classes within the project and what percent of the

total number of classes within the project were classified as faulty. We randomly

selected the equal number of classes from the faulty and non-faulty subsets of the

project classes to arrive at the training dataset used in the regression. For each faulty

and non-faulty subset of classes, we created a Collection structure, ArrayList, and

loaded it with the appropriate classes. We then used the shuffle static method within

Collections class that resides in java.util package within the JDK 5.0 [57]. Following

a randomized shuffle, we retrieved the first n elements from each collection, arriving

at the sample size for each project equaling 2n classes, as indicated within the Table

4.2 under column titled Sample Size.

The complete results of the LR analysis for CK metrics are shown in the Ap-

pendix, Table A3 for projects Cocoon, Columba, Cosmos, and Derby, and Table A4
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Table 4.3: Logistic Regression Results Summary

Project CBO NOC WMC RFC DIT LCOM
Cocoon S N SG S S S

Columba SG N SG N S SG
Cosmos SG N S S S S

Derby S N S S N S
Eclipse S N S S S S

JEdit SG N S S S SG
OpenOffice SG S S N N SG

Scarab SG N SG S SG S
Legend: N=Not Significant(p-value≥0.05); S=Significant(p-value<0.05);

SG=Significant(p-value<0.05) and Good Fit(HL p-value≥0.05);

for projects Eclipse, JEdit, OpenOffice, and Scarab. The results are summarized in

Table 4.3. Consistent with the results presented in Section 2.2, only three investi-

gated metrics (CBO, WMC, and LCOM) have coefficients that are significant at the

α=.05 level for all projects we examined. NOC metric was not significant for all

but OpenOffice project. RFC and DIT metrics were significant for some projects,

while not significant for other projects. We used Hosmer-Lemeshow (HL) test as

an inferential goodness-of-fit test [34], which is also contained in the Appendix Ta-

bles A3 and A4 with its chi-square values, degrees of freedom (DF) and p-values.

It showed a good fit of data (p-value>0.05) for CBO (Columba, Cosomos, JEdit,

OpenOffice, and Scarab), WMC (Cacoon, Columba, and Scarab), DIT (Scarab), and

LCOM (Columba, JEdit, and OpenOffice). We were quite surprised, that otherwise

metric identified as good predictor in previous studies [6, 22, 62, 46], RFC has not

exhibited even a single good fit of data value produced by the HL test as an inferen-

tial goodness-of-fit test. In the wake of our findings, we select three metrics as best

candidates for our logistic regression and ultimately the development of our fault

prediction models: CBO, WMC, and LCOM.
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4.4 Combined Metrics as Fault Predictors

Olague et al. [46] emphasized that multiple logistic regression, which considers several

metrics together within a single prediction model, may produce better fault-proneness

prediction than a binary logistic regression model developed from a single metric

alone. In order to evaluate our adaptive approach to fault-prediction against their

approach, we also develop multiple regression models and compare their predictive

ability with our results.

In order to identify which metrics to use in our multiple logistic regression models,

we performed a collinearity analysis to determine if there are any potential collinear-

ity problems in the bivariate correlations between the CK metrics within their CK

metric suite. When there is a perfect linear relationship among the predictors, the

estimates for a regression model cannot be uniquely computed. The term collinearity

implies that two variables are near perfect linear combinations of one another. The

primary concern is that as the degree of multicollinearity increases, the regression

model estimates of the coefficients become unstable and the standard errors for the

coefficients can get wildly inflated. We compute the variance inflation factor (VIF)

values for each CK predictor as a check for multicollinearity, which is the reciprocal

of the tolerance. The tolerance is an indication of the percent of variance in the

predictor that cannot be accounted for by the other predictors. A commonly given

rule of thumb is that VIF value of 10 or higher may be reason for multicollinearity

concern. This is, however, just a rule of thumb; Allison [3] says he gets concerned

when the VIF is over 2.5. The VIF values within this work, as suggested by Univer-

sity of Kentucky Information Technology [36], if greater than 3.0 may merit further

investigation of potential regressors for multicollinearity problems. We present the

VIF analysis for the CK metrics suite in Table 4.4.
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Table 4.4: Collinearity Analysis for CK Metrics

Metric Cocoon Columba Cosmos Derby Eclipse JEdit OpenOffice Scarab
VIF Values (Using all CK metrics)

CBO 1.1868 1.4442 1.2839 1.5373 1.8568 1.7564 1.1399 2.2140
NOC 1.0041 1.0107 1.0256 1.0068 1.0338 1.0343 1.0650 1.0147

WMC 2.5228 1.5221 2.6055 1.8869 2.2542 21.0076 2.8213 7.2215
RFC 3.0025 2.8242 3.7338 2.6052 1.9160 20.2597 3.4745 6.4637
DIT 1.9840 2.9294 2.2318 1.9279 1.3817 1.4461 2.0522 2.0545

LCOM 1.2916 1.3568 1.2122 1.2381 1.1628 1.3305 1.3438 1.4131
VIF Values (Removing Metric RFC)

CBO 1.1792 1.4441 1.2792 1.4770 1.4770 1.7379 1.1341 2.2039
NOC 1.0030 1.0099 1.0156 1.0068 1.0068 1.0334 1.0470 1.0147

WMC 1.3332 1.5089 1.3700 1.4929 1.4929 1.6418 1.2629 2.4238
DIT 1.0799 1.1179 1.0764 1.0351 1.0351 1.1007 1.0990 1.1348

LCOM 1.2914 1.3567 1.2009 1.2351 1.2351 1.3206 1.3390 1.4008

The table shows VIF analysis with all potential regressors. Collinearity problems

are suspected with WMC and RFC since they exceed our VIF threshold for all projects

except Columba, Derby, and Eclipse. As RFC includes the count of all local methods

of a class, which are also accounted for in WMC, the VIF results are expected. We

thus need to remove one of the regressors from the model. The univariate binary

logistic regression analysis presented in the Section 4.3 shows both WMC and RFC

as significant indicators of quality for all projects. However, given the results of

the Hosmer-Lemeshow (HL) test (inferential goodness-of-fit test) also presented in

Section 4.3, we selected WMC as the better predictor candidate. RFC did not show

a good fit of data for even a single project within our project set. After removing

RFC from the model, a subsequent VIF analysis shows (Table 4.4) that the remaining

variables are within VIF threshold and objective values. The results in Section 4.3

showed NOC metric as not significant across most projects, and DIT metric showing

a good fit of data for Derby project solely. Based on these results, we develop and

explore the performance of one multiple LR model for CK metrics which includes

CBO, WMC, and LCOM as its predictors.
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Table 4.5: Multiple LR Results Summary

Project CBO WMC LCOM HL
Cocoon S N S G

Columba S N N G
Cosmos S S N -

Derby S S N -
Eclipse S N S -

JEdit S N S G
OpenOffice S N S G

Scarab S S N G
Legend: N=Not Significant(p-value≥0.05);

S=Significant(p-value<0.05);
HL=Hosmer-Lemeshow goodness of fit test;
G=Good data fit (HL p-value≥0.05);

To determine coefficients of selected CK metrics for our combined metrics fault

prediction models, we performed LR on CBO, WMC, and LCOM versus faults for

each project analyzed in this dissertation. Detailed results of the multiple LR analysis

are presented in the Appendix, Table A5. The results are summarized in Table 4.5.

None of the projects had all investigated CK metrics as significant regressors (p-

value<0.05). CBO and LCOM were significant regressors in the multiple LR model

for projects Cocoon, Eclipse, JEdit and OpenOffice. CBO and WMC were significant

regressors in the multiple LR model for Cosmos, Derby, and Scarab. And project

Columba had a single significant regressor CBO.

4.5 Fault Prediction Models

Given the coefficient values presented in the Appendix Tables A3 and A4, we de-

veloped twenty-four binary logistic regression models to predict fault-proneness of

classes. Their coefficients’ values along with their constants are presented in Table

4.6.
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Table 4.6: Binary Logistic Regression Coefficients

Models CBO WMC LCOM
Const. Coeff. Const. Coeff. Const. Coeff.

Cocoon -0.603 0.193 -0.530 0.075 -0.653 0.016
Columba -1.208 0.096 -0.384 0.058 -0.507 0.014

Cosmos -0.495 0.139 -0.825 0.129 -0.402 0.010
Derby -0.921 0.092 -0.871 0.064 -0.738 0.015

Eclipse -0.687 0.081 -0.585 0.055 -0.711 0.015
JEdit -0.931 0.255 -0.689 0.119 -1.084 0.031

OpenOffice -0.683 0.134 -0.395 0.050 -0.531 0.014
Scarab -1.651 0.345 -1.393 0.204 -0.677 0.020

Given the presented values of the constants and the coefficients for individual

metrics, we show the example of the general CBO fault prediction model developed

using data for project Cocoon as:

ln(
p

1− p
) = −0.603 + 0.193 ∗ CBO (4.1)

where the ln symbol refers to a natural logarithm.

Therefore, we calculate the probability p that the class is faulty as follows:

p =
e(−0.603+0.193∗CBO)

1 + e(−0.603+0.193∗CBO)
(4.2)

Similarly, given the coefficient values presented in the Appendix Table A5, we de-

veloped eight multiple logistic regression models to predict fault-proneness of classes.

Their coefficients’ values along with their constants are presented in Table 4.7.

Given the presented values of the constants and the coefficients for individual

metrics, we show the example of the general CBO fault prediction model developed

using data for project Cocoon as:

ln(
p

1− p
) = −0.990 + 0.165 ∗ CBO + 0.011 ∗ LCOM (4.3)
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Table 4.7: Multiple Logistic Regression Coefficients

Models CBO WMC LCOM
Const. Coeff. Coeff. Coeff.

Cocoon -0.990 0.165 - 0.011
Columba -1.208 0.096 - -

Cosmos -1.021 0.101 0.104 -
Derby -1.181 0.062 0.041 -

Eclipse -1.008 0.066 - 0.009
JEdit -1.537 0.187 - 0.025

OpenOffice -0.955 0.119 - 0.009
Scarab -1.990 0.281 0.100 -

Therefore, we calculate the probability p that the fault in a class is present as

follows:

p =
e(−0.990+0.165∗CBO+0.011∗LCOM)

1 + e(−0.990+0.165∗CBO+0.011∗LCOM)
(4.4)

We present the evaluation of the models in the following section.

4.6 Models Evaluation

We evaluate the performance of the models with a threshold value of 0.5, which

means that, if probability p≥0.5, the class is identified as fault-prone. Otherwise, if

probability p<0.5, the class is identified as not fault-prone [11]. We evaluate models

across three standard measures used for classification techniques: recall, precision and

F-score [42].

To understand the three measures essential to evaluating model performance, we

define the following variables:

• True Positives (TP): The number of faulty classes correctly identified as faulty.

• True Negatives (TN): The number of non-faulty classes correctly identified as

non-faulty.
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• False Positives (FP): The number of non-faulty classes incorrectly identified as

faulty.

• False Negatives (FN): The number of faulty classes incorrectly identified as

non-faulty.

The recall R (also called sensitivity) is defined as:

R =
TP

TP + FN
(4.5)

Recall measures the proportion of the actual faulty classes which are correctly

identified as such. From a theoretical point of view, a prediction model which always

indicates positive result of a class being fault-prone, regardless of the actual fault-

proneness status of the class, will achieve 100% recall. However, such result says

nothing about how many non-faulty classes were identified as faulty in the process.

Therefore the recall alone cannot be used to determine whether a prediction model

is useful in practice [42].

Consequently, we define the precision P as:

P =
TP

TP + FP
(4.6)

Precision measures the proportion of the classes identified as faulty that are ac-

tually faulty. In contrast to recall, a model achieving a perfect precision score of

100% indicates that all classes identified as faulty are indeed faulty, but says nothing

about whether all faulty classes were identified in the process [42]. Therefore, recall

and precision scores are not discussed in isolation. Instead, both are combined into

a single measure, such as their harmonic mean, the F-score.

The F-score, the harmonic mean of the recall R and the precision P, is defined as:
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F = 2 ∗ R ∗ P
R + P

(4.7)

As a single measure of model’s performance, the F-score can be interpreted as a

weighted average of the precision and recall, reaching its best value at 1 and worst

value at 0.

Table 4.8: Model Evaluation across all Projects

Cocoon Recall Precision F-Score Columba Recall Precision F-Score
CBO 46% 26% 0.33 CBO 62% 26% 0.37

WMC 48% 30% 0.37 WMC 41% 18% 0.25
LCOM 64% 22% 0.32 LCOM 60% 17% 0.26
MRM 58% 24% 0.34 MRM 62% 26% 0.37

Cosmos Recall Precision F-Score Derby Recall Precision F-Score
CBO 47% 74% 0.58 CBO 57% 46% 0.51

WMC 55% 76% 0.64 WMC 54% 53% 0.53
LCOM 59% 62% 0.61 LCOM 67% 34% 0.45
MRM 57% 75% 0.65 MRM 60% 51% 0.55

Eclipse Recall Precision F-Score JEdit Recall Precision F-Score
CBO 52% 60% 0.56 CBO 56% 46% 0.50

WMC 48% 53% 0.50 WMC 53% 60% 0.56
LCOM 68% 45% 0.54 LCOM 71% 53% 0.61
MRM 60% 55% 0.58 MRM 72% 54% 0.62

OpenOffice Recall Precision F-Score Scarab Recall Precision F-Score
CBO 43% 91% 0.58 CBO 67% 87% 0.76

WMC 38% 55% 0.45 WMC 53% 74% 0.62
LCOM 63% 64% 0.63 LCOM 55% 64% 0.59
MRM 52% 75% 0.61 MRM 64% 85% 0.73

Legend: MRM = Multiple regression model;

In this section, we first estimate the predictive power of our models by cross

validating [55] against the entire dataset from which the subset training dataset was

drawn during the model construction. In other words, both training dataset used in

the construction of the prediction model and the testing dataset which the prediction

model is evaluated against belong to the same project. Table 4.8 shows the values for

the recall, precision and F-Score measures of the logistic regression fault prediction

models (CBO, WMC, and LCOM as individual predictors, and multiple LR model

which combines all three metrics) when applied to the entire project testing dataset.

37



However, to obtain realistic estimates of our model applicability in practical setting,

we must employ cross-system validation, which consists of applying models to testing

datasets other than those the models were derived from [11]. Hence, in the following

section, we use F-scores as our threshold values to apply and assess the prediction

models derived from one project’s training dataset (e.g. Cocoon) to a testing dataset

belonging to an entirely different project (e.g. Eclipse).
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CHAPTER 5

ADAPTIVE APPROACH TO FAULT PREDICTION

In this chapter, we first apply the prediction models that are built in the previous

chapter to test datasets belonging to entirely different projects (Section 5.1). Hence,

using cross-system validation [11], we evaluate the practical applicability of the exist-

ing prediction techniques across entirely different projects. In Section 5.2 we present

the descriptive statistics of the metrics as design measures and their analysis. The

process of selecting an appropriate training dataset from our repository by identifying

similarly distributed datasets is described in Section 5.3. We then preform metrics

data transformations and the development of calibrated models in Section 5.4, and

then re-evaluate obtained models on our transformed testing datasets in Section 5.5.

Table 5.1: Cross-System Validation Results Summary for CBO

Model: CBO Testing Dataset
Training Dataset Cocoon Columba Cosmos Derby Eclipse JEdit OpenOffice Scarab

Cocoon - - Y Y Y Y Y Y
Columba - - - - - - - -

Cosmos Y - - Y Y Y Y Y
Derby - - - - - - - -

Eclipse - - - Y - - - -
JEdit Y - Y Y Y - Y Y

OpenOffice - - - Y Y - - -
Scarab Y - - Y Y - Y -

Legend: Y = model is applicable;

5.1 Cross-System Model Validation

In this section, we investigate whether prediction models built from the history and

metrics of one project are applicable to other unrelated projects. Hence, every raw-

data model developed in Section 4.5 has been in turn applied to the set of classes of

each of the other seven remaining projects. Using F-Score baseline values presented

in Section 4.6 and obtained when both training and testing datasets belonged to
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the same project, we calculate and compare F-Score values of using the same mod-

els across all projects. We then analyze our results to see which of the raw data

models can be considered reasonably appropriate model for unrelated project under

investigation.

Table 5.2: Cross-System Validation Results Summary for WMC

Model: WMC Testing Dataset
Training Dataset Cocoon Columba Cosmos Derby Eclipse JEdit OpenOffice Scarab

Cocoon - Y - - Y - Y -
Columba - - Y - Y - Y Y

Cosmos - Y - - Y - Y Y
Derby - - - - - - - -

Eclipse - - - Y - - - -
JEdit - - Y - Y - Y Y

OpenOffice Y - - - Y - - -
Scarab - Y Y - Y - Y -

Legend: Y = model is applicable;

The complete results of F-Scores values obtained during the cross-system vali-

dation process are presented in the Appendix, Table A6. Consistent with findings

reported by Nagappan et al. [44], some project histories can serve as predictors for

other projects, while most cannot. This is true for prediction models derived from

the metrics CBO, WMC, and particularly for multiple LR model. Our findings for

CBO, WMC, and multiple LR model prediction across projects is summarized in

Table 5.1, Table 5.2, and Table 5.3 respectively. The Y entry indicates that the

model derived from one project is applicable (the F-Score value is either equal or

higher than its baseline value counterpart) to the indicated unrelated project. The

frequency of Y entries is comparable between CBO, WMC, and multiple LR mod-

els. We noticed that the increased complexity of the model makes it less likely to

be applicable across different projects, as demonstrated by the least number of Y

entries within the multiple LR model in Table 5.3. From a general standpoint, this

suggests that, in the common situations where development practices and project do-

mains are evolving, an absolute and general interpretation of predicted probabilities

is not possible when they come from prediction models built from different systems.
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As such, we are prevented from using a predetermined cut-off value and predicted

probabilities to classify classes according to their fault-proneness. And as one would

intuitively suspect, learning from earlier fault history data can only be successful if

the two projects are similar, and sharing the same heterogeneous metric and fault

distribution across comprising modules.

Table 5.3: Cross-System Validation Results Summary for Multiple LR Models

Model: Multi. Testing Dataset
Training Dataset Cocoon Columba Cosmos Derby Eclipse JEdit OpenOffice Scarab

Cocoon - - Y - Y - Y Y
Columba - - - - - - - -

Cosmos Y - - - Y - Y Y
Derby - - - - - - - -

Eclipse Y - - - - - - -
JEdit - - Y - Y - Y Y

OpenOffice Y - - - Y - - -
Scarab Y - - - Y - - -

Legend: Y = model is applicable; Multi. = Multiple LR model

However, the LCOM model showed some rather interesting results, as indicated

within its cross-validation summary within Table 5.4. We have observed a substan-

tially larger number of Y entries across almost all projects. In order to understand the

discrepancy in findings, in the following section, we present and investigate descrip-

tive statistic for metrics and fault distributions, and devise strategy for identifying

similar projects.

Table 5.4: Cross-System Validation Results Summary for LCOM

Model: LCOM Testing Dataset
Training Dataset Cocoon Columba Cosmos Derby Eclipse JEdit OpenOffice Scarab

Cocoon - Y Y Y Y - Y -
Columba Y - Y Y Y Y Y Y

Cosmos Y Y - Y Y - Y Y
Derby Y Y Y - Y - Y -

Eclipse Y Y Y Y - - Y -
Jedit Y Y Y Y Y - Y Y

OpenOffice Y Y Y Y Y Y - -
Scarab Y Y Y Y Y Y Y -

Legend: Y = model is applicable;
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5.2 Descriptive Statistics and Interpretation

The object oriented metrics measure unique aspects of the object oriented approach

and the complexity of the design. To explain why some project histories can serve as

predictors for some projects, but not others, we analyzed the individual metric mea-

sures within our target applications using box plots. A box plot, also known as a box-

and-whisker diagram, is a suitable way of graphically depicting groups of numerical

data through their five-number summary statistics: the smallest observation (sam-

ple minimum), lower quartile1 (representing 25th percentile), median, upper quartile

(representing 75th percentile), and the largest observation (sample maximum). Box

plots display differences between populations without making any postulations of the

underlying statistical distribution [33]. The spacing between the different parts of the

box assist in identifying the degree of dispersion2 and skewness3 in the data.

CBO

25

30

15

20

5

10

0
Cocoon Columba Cosmos Derby Eclipse JEdit OpenOffice Scarab

Figure 5.1: CBO Box Plot

The box plots for each investigated metric used in the development of prediction

models across all projects are presented in Figure 5.1 for CBO metric, Figure 5.2 for

1In descriptive statistics, the quartiles of a set of values are the three points that divide the data
set into four equal groups, each representing a fourth of the population being sampled

2Dispersion measures variability or spread of metric data distribution [33]

3Skewness measures asymmetry of the metric data distribution [33]
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WMC metric, and Figure 5.3 for LCOM metric respectively. Notice that diagram

whiskers extending from the upper quartile to the largest observation are represented

with a dotted line for both CBO and WMC box plots. Due to the consequent clarity

of the figure presented, we decided to depict whiskers in a proportionally reduced size.

As a result, indicated whiskers, while suitably proportional to one another, do not

indicate their factual value within the graph. For exact values of box plot statistics,

please refer to Table A7 in the Appendix.
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Figure 5.2: WMC Box Plot

The box plots suggest that there is a tendency for data spread variability across

different projects. Moreover, we have observed that as the number of classes com-

prising the project increases, so does the probability of its data being more dispersed.

This was in particular true for CBO and WMC metrics, as evident in Figures 5.1

and 5.2. However, we noted that LCOM metric did not experience a great degree of

variability across projects, regardless of the individual size of the target applications.

The lack of variability of LCOM data from one project to another may intuitively

explain why did the LCOM prediction models derived from one project prove consis-

tently applicable to other unrelated projects, as demonstrated by the high number of

Y entries within the Table 5.4.
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Figure 5.3: LCOM Box Plot

Following the analysis of the box plots, in particular considering CBO and WMC

metrics, we conclude that the ability of prediction models for fault-proneness derived

from the context-specific OO metrics is diminished when applied to other, unrelated

projects. To demonstrate the problem at hand, let suppose that we have an existing

LR model which considers the WMC as predictor of fault-proneness. And let’s assume

that it has been derived from a training dataset belonging to a large sized project A,

where the faulty classes have been identified as those with WMC≥12. Our attempt

to use the same prediction model on a much smaller project B, with a maximum

WMC value of 11, would produce an empty dataset for classes identified fault-prone,

as illustrated in Figure 5.4. We attempt to solve this problem in the following two

section, by first identifying projects that share similarly distributed datasets, and

then by employing simple log transformations further making the value of metrics

comparable among unrelated projects.

5.3 Model Selection: Identifying Similarly Distributed Datasets

The first step in addressing the problem statement illustrated in Figure 5.4 involves

identifying projects that share the same heterogeneous metric distribution across com-
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Figure 5.4: Context-Specific Fault Prediction

prising modules. Assume we are given some project P for which the prior fault history

data is not known and we are interested in computing fault-proneness probabilities

across its modules. Additionally, assume we have a set of projects P ′i with known

fault histories that can serve as training datasets for the development of classifiers.

How do we select the most appropriate single project from the P ′i for P , as to avoid

problem statement illustrated in Figure 5.4? We have observed that the most ap-

propriate project selection is such that the single selected project from the P ′i set

and project P share similar measure of how far a set of its particular metric values is

spread out from the median value. Therefore, we are interested in testing the equality

of variances between two data samples.

In this dissertation, we use the nonparametric Levene’s Test based on rank trans-

formations [19] as an inferential statistic to assess the equality of variances in different

metric samples. In general terms, given a variable Y with sample of size N divided

into k subgroups, where Ni is the sample size of the ith subgroup, the Levene’s Test

statistic F is defined as:

F =
(N − k)

(k − 1)

∑k
i=1 Ni(Zi. − Z ..)

2∑k
i=1

∑Ni

j=1(Zij − Zi.)2
(5.1)
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where Zi. are the group means of the Zij, Z .. is the overall mean of the Zij, Zij =

|Yij − Ỹi.|, and Ỹi. is the median of the ith subgroup. We use median values instead

of traditional mean values, as median values showed to perform better when the

underlying data followed skewed distribution, while mean provided better results for

symmetric, slightly-tailed distributions [13, 52].

If the resulting p-value of Levene’s test is less than level of significance 0.05,

the obtained differences in sample variances are unlikely to have occurred based on

random sampling. Thus, the null hypothesis of equal variances is rejected and it is

concluded that there is a difference between the variances in the population.

We have calculated Levene’s Test statistics on every single project pair across

three metrics CBO, WMC, and LCOM. The complete results of the test with their

F statistics and p-values is presented in Table A8 in the Appendix. Most of the

p-values within the table are less than 0.05, indicating that substantial differences

between metric variances of the two projects exist. However, for each project, except

fully for Cosmos, we were able to find a corresponding project that showed p-values

larger than 0.05, indicating high probability of data’s equality of variances. The sum-

mary of our findings is presented in Table 5.5. For example, given the Cocoon project

as the project for which we are interested computing fault-proneness probabilities, and

a set of remaining seven projects as possible training datasets for the development

of a classifier appropriate for Cacoon, we determined that the variance of the Co-

coon’s CBO metric is most comparable to the CBO metric of OpenOffice. Therefore,

we would use the fault histories and CBO metric values belonging to OpenOffice

for the development of the CBO classifier appropriate to generate Cocoon’s fault-

proneness probabilities. However, please note that CBO variance equality did not

imply WMC variance equality. Rather than being similar to OpenOffice across all

design-complexity measures and consistent with our findings in Section 5.1, Cocoon’s

46



WMC metric was most comparable to the WMC metric of JEdit. Therefore, we

would use the fault histories and WMC metric values belonging to JEdit for the de-

velopment of the WMC classifier appropriate to generate Cocoon’s fault-proneness

probabilities. The only project for which we have not identified a statistically signifi-

cant comparable project was Cosmos for metrics CBO and LCOM. However, we can

still assign the preferred project, indicated in the parenthesis, as the one exhibiting

the highest statistically non-significant p-value.

Table 5.5: Levene’s Test Results Summary

Project
Equality of Variances

CBO WMC LCOM
Cocoon OpenOffice JEdit Columba
Columba Scarab OpenOffice Scarab
Cosmos (Derby) Cocoon (Eclipse)
Derby Scarab Scarab Eclipse
Eclipse Scarab Scarab Derby
JEdit OpenOffice Cocoon Scarab
OpenOffice Cocoon Scarab Scarab
Scarab Eclipse Derby JEdit

5.4 Model Adaptation: Metrics Data Transformations

The second step in addressing the problem statement illustrated in Figure 5.4 involves

further reducing variability and promoting equality of spread among the datasets

through the use of statistical data transformation techniques. Statistical data trans-

formation includes the application of a deterministic mathematical function to each

point in a data set – that is, each data point mi is substituted with the transformed

value m′i = f(mi), where f is some transformation function [33].

In the previous studies [16], power transformations have showed to be a preferable

choice used to stabilize variance, make the data more normal distribution-like, and
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improve the validity of measures. Generally, power transformation function trans-

forms every metric data point m by either mp for p values greater than zero, or

by log(m) for p values equal to zero [33]. In this dissertation, we chose to use the

power transformation function with the value of p=0. However, given that many of

our metrics assume zero values, simply using the log(m) transformation would pro-

duce infinite results. We solve this by a simple and commonly used transformation,

m′ = log(m + 1) [33]. In addition, we align testing dataset with its appropriate

training dataset, so that both have a common reference point – their median value.

Thus, the final transformation function we use on our datasets is m′ = log(m+1)+d,

where m is the initial metric value to be transformed, d is the difference between the

median values of the transformed datasets, and m’ is the new transformed value. The

box plot example of the transformation applied to the CBO metric for two projects

identified as having CBO similarly distributed Cocoon and OpenOffice is presented

in Figure 5.5.

 

Figure 5.5: CBO Box Plot Before and After the Transformation

For the project pairs identified in previous section, we performed logistic regres-

sion analysis identically as in Section 4.3, but this time using project’s transformed

datasets. The detailed results of the logistic regression analysis are presented in Ta-

ble A9 in the Appendix, containing the regressors’ coefficients, their corresponding
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p-values, as well as chi-square values and p-values of the inferential goodness-of-fit HL

test. In the next section, we perform their evaluation and compare their performance

with results previously obtained in Section 4.6.

5.5 Evaluation of Models with Transformed Datasets

First, we wanted to assess the overall goodness of fit for our new models developed

using transformed datasets. We use the Hosmer-Lemeshow (HL) test as an inferen-

tial goodness-of-fit test [34], as we did during logistic regression performed on our

raw data in Section 4.3. Similarly, several datasets showed a very good fit of data

(p-value>0.05) for CBO (Cocoon, Derby, Eclipse), WMC (Cocoon, Derby, JEdit,

OpenOffice, Scarab), and LCOM (Columba, Derby, JEdit). In order to determine

whether our transformed dataset models achieve better fit of data, we compared

their HL statistics and p-values (presented in Table A9 in the Appendix) against

their respective counterparts (presented in Tabels A3 and A4 in the Apendix) ob-

tained during the logistic regression analysis performed on raw data. Results are

mixed. For investigated CBO metric, Cocoon, Derby, and Eclipse projects exhibited

good fit of data for their transformed datasets, but not their raw datasets. However,

during the transformation process, the CBO good fit of data test values decayed for

projects OpenOffice and Scarab, which showed very good fit of data for their raw val-

ues. In addition to transforming the fit of data from no good to good for Cocoon and

Derby, metric WMC was the only one to show consistent improvements in goodness

of fit test across the board for all investigated models. However, except for one single

project Derby, LCOM transformed data showed consistent decay in goodness of fit

test values across all prediction models that are generated.

Following the goodness of fit analysis, we compared the predictive ability of our

new transformed classifiers against their raw data counterparts. The summary of the
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Table 5.6: The Evaluation Summary of Transformed Data Models

Project: Cocoon Project: Columba
Model from: OpenOffice JEdit Columba Model from: Scarab OpenOffice Scarab
Used metric: CBO WMC LCOM Used metric: CBO WMC LCOM

Effect + = - Effect + = =
F1-Score 0.32 0.36 0.32 F1-Score 0.28 0.24 0.25
F2-Score 0.35 0.36 - F2-Score 0.36 0.24 0.25
Project: Cosmos Project: Derby

Model from: Derby Cocoon Eclipse Model from: Scarab Scarab Eclipse
Used metric: CBO WMC LCOM Used metric: CBO WMC LCOM

Effect + + + Effect = + -
F1-Score 0.34 0.59 0.61 F1-Score 0.51 0.51 0.46
F2-Score 0.63 0.67 0.62 F2-Score 0.51 0.53 0.44
Project: Eclipse Project: JEdit

Model from: Scarab Scarab Derby Model from: OpenOffice Cocoon Scarab
Used metric: CBO WMC LCOM Used metric: CBO WMC LCOM

Effect = - + Effect + + =
F1-Score 0.57 0.57 0.45 F1-Score 0.49 0.51 0.61
F2-Score 0.57 0.50 0.55 F2-Score 0.51 0.62 0.61
Project: OpenOffice Project: Scarab

Model from: Coccoon Scarab Scarab Model from: Eclipse Derby JEdit
Used metric: CBO WMC LCOM Used metric: CBO WMC LCOM

Effect = - - Effect + + =
F1-Score 0.66 0.51 0.63 F1-Score 0.65 0.43 0.59
F2-Score 0.66 0.45 - F2-Score 0.79 0.67 0.59

Legend: + Model Improvement; - Model Decay; = No Change

observations is presented in Table 5.6. The CBO classifiers showed an improvement in

predicting fault-prone classes across five different projects using transformed datasets:

Cocoon (using OpenOffice’s classifier), Columba (using Scarab’s classifier), Cosmos

(using Derby’s classifier), JEdit (using OpenOffice’s classifier), and Scarab (using

Eclipse’s classifier). Their improvement is denoted with a +(plus) entry within the

Table 5.6. For Derby (using Scarab’s classifier), Eclipse (using Scarab’s classifier), and

OpenOffice (using Cocoon’s classifier), the transformed classifiers achieved identical

predictive power, as measured by their F-Scores and indicated by the =(equal) en-

try within the Table 5.6. WMC classifiers showed an improvement over four projects:

Cosmos (using Cocoon’s classifier), Derby (using Scarab’s classifier), JEdit (using Co-

coon’s classifier), and Scarab (using Derby’s classifier). Except for the Eclipse (using

Scarab’s classifier) project, where transformed classifier experienced decay (denoted

by -(minus) entry within the Table 5.6), the WMC classifiers for transformed datasets

showed no change for the remaining three projects. Our final investigated metric
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LCOM showed improvement across only two projects: Cosmos (using the Eclipse’s

classifier) and Eclipse (using Derby’s classifier). While remaining unchanged across

three projects, Columba (using Scarab’s classifier), JEdit (using Scarab’s classifier),

and Scarab (using JEdit’s classifier), consistent with its values exhibited by the good-

ness of fit test, LCOM showed decay for three remaining projects. Two of those

however, showed a complete collapse of the transformed classifier.

LCOM Transformed

33

2

11

0
Cocoon Columba

Figure 5.6: LCOM Box Plot After the Transformation

To make sense of these observations, we first wanted to address LCOM metric,

as it is clearly the one that has exhibited behavior that is contrary to what we were

trying to achieve in the first place. We point out that LCOM metric is unlike the

other two metrics investigated in this dissertation, as demonstrated by its histogram

in Figure 4.2 and its box plot in Figure 5.3. The frequency of LCOM data values

are in great deal concentrated at the value of zero or the other end of the interval

in which the values appear (0-100), across all projects from our application dataset.

Our transformation technique minimizes variable variance between the two datasets

by transforming them to a single common reference point: the higher median value

of the two. Since median values between datasets might vary significantly, as they

will always amount to either a value of zero or value at the higher end of the interval
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LCOM assumes, at times data transformation produces an exact opposite of what

we intend to do. We demonstrate that in Figure 5.6 by the comparison of LCOM

transformed datasets between Cosmos and its matched project Cocoon, from which

we developed appropriate LCOM classifier. Such scenario is certain to bring about an

entire collapse of the classifier’s ability to predict any fault-prone modules within the

system, as presented in Table 5.6 for projects Cocoon (using Columba’s classifier) and

OpenOffice (using Scarab’s classifier). We thus conclude that the data transformation

technique used in this dissertation is not an appropriate choice for LCOM metric.

Perhaps, using power transformation with mean values instead median values as

common reference points might generate better results, but given the results presented

in Table 5.4 and LCOM’s consistent ability to achieve reasonable classification results

across different projects, such investigation is outside of the scope of this study.

In general, log transformations for metrics CBO and LCOM improved the predic-

tion results, as their measures were not as spread as those used in the construction of

the raw dataset in Chapter 4. Out of eight transformed CBO models evaluated, five

showed an improvement in identifying fault-prone classes, while the remaining three

models stayed unchanged. We observed no deterioration of transformed CBO classi-

fiers. WMC metric did not perform as well. Out of eight transformed WMC models

evaluated, four showed an improvement in identifying fault-prone classes, while two

remained unchanged, and two showed deteriorated performance. And considering the

complete collapse of transformed classifiers across two projects, LCOM metric showed

the least degree of improvement, achieving higher predictive results for only two out

of eight models evaluated. The two remained LCOM transformed classifiers remained

unchanged. In the following chapter, we discuss the results of our study.
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CHAPTER 6

RESULTS

In this chapter, we discuss the findings (Section 6.1) in terms of lessons learned

and in terms of the extent to which the research goal has been accomplished, and the

implications (Section 6.2) in terms of practical suggestions for addressing the issues

that have been raised in the research. Threats to validity are presented in Section

6.3. Framework for fault prediction is discussed in Section 6.4.

6.1 Findings

One of the main objectives of this dissertation was to propose an approach assisting

developers to use fault-proneness models, based on design measurements, as viable

decision making tools when applied from one object-oriented system to the other.

During our investigation, we applied a fault-proneness classifiers developed using the

training dataset from one project to another unrelated project.
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Figure 6.1: CBO Model F-Scores for Different Fault Classifier Choices

Our results suggest that choosing OO metrics without a proper validation is un-

likely to predict fault-prone modules. On the other side, OO metrics did prove to be
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useful as abstractions over program source code, capturing similarity over OO classes

that turned out to be reasonable indicators of module’s fault-proneness. Even though

the projects used in this research stem from the same open-source development envi-

ronment, the distributions of OO measures change significantly from one project to

other, making the task of predicting across projects difficult to achieve. As a solution,

we develop an approach consisting of a systematic selection technique complemented

by the data transformation technique to construct adapted classifiers applicable across

unrelated projects. Recall that our criterion for the research objective identified in

Section 1.3 requires that the predictive accuracy, as measured by the F-Score values,

of the fault-proneness prediction model developed using our approach is greater than

the accuracy of a randomly selected raw-data fault-proneness prediction model or a

model predicting fault-prone class modules by chance.
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Figure 6.2: WMC Model F-Scores for Different Fault Classifier Choices

Figure 6.1 illustrates side-by-side comparison of the performance of our fault-

proneness prediction models based on CBO metric and expressed in models’ F-Score

values. The series within figure labeled as Adaptive represents the performance of the

appropriate classifier selected and calibrated by our adaptive approach. The series

within figure labeled as Random Multiple represents the average performance of all

multiple LR raw-data models considered in the random selection process. Similarly,
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the series within figure labeled as Random Binary represents the average perfor-

mance of all single metric LR raw-data models considered in the random selection

process. And the series labeled Chance represents the performance of the classifier

that randomly selects the set of modules, which results in the percentage value of

the fault-prone classes within a given project. The performance of the CBO classi-

fier produced by our approach clearly outperforms the other three approaches across

all investigated projects, except for the Eclipse project for multiple LR model. For

Eclipse project, our approach and multiple LR approach achieved the same prediction.
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Figure 6.3: LCOM Model F-Scores for Different Fault Classifier Choices

Similarly, Figures 6.2 and 6.3 illustrate side-by-side comparison of the performance

of our fault-proneness adaptive prediction approach based on WMC and LCOM met-

rics respectively, and both are also expressed in models’ F-Score values. We observed

that WMC models did not do as well as their CBO counterparts, even though they

did outperform five out of eighth models generated by randomly selected raw data

for both binary and multiple LR. They showed a slight deterioration against two

projects using randomly selected raw data models (binary and multiple LR): Eclipse

and OpenOffice. Additionally, the multiple LR model outperformed our approach for

Columba project. WMC models did significantly better when compared to selection

made by chance across all projects. And as discussed in previous chapter, LCOM
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metric showed mixed results. While two of our calibrated classifiers experienced a

complete collapse, we did still observe an improvement over four different projects,

Cosmos, Eclipse, JEdit, and SCarab when compared to a single metric raw-data

model. Besides for Cosmos and JEdit projects, multiple LR models outperformed

our approach.

Therefore, our results suggest that even though applying the models across sys-

tems is far from straightforward, using the approach presented in our research, the

model from one project can in fact be helpful at focusing verification and testing effort

on fault-prone classes belonging to the other, unrelated project. That is in particular

true for CBO and WMC metric. However, logistic regression model performed very

well for LCOM model. As set in the objective and dissertation evaluation criteria

in Section 1.3, in general terms, the fault-proneness class ranking clearly performs

better than chance and also performs at a higher degree than a randomly selected

raw-data model developed from a single or multiple metrics.

6.2 Implications

The results of our research strongly suggest that complexity measures used in this dis-

sertation can indeed be successfully used to predict fault-prone class modules across

seemingly unrelated projects. Using our approach, organizations can leverage fault

history data to build reasonable predictors which are likely to be applicable across

software systems. And as modern software development produces an abundance of

process and product measures along with their fault histories, systematic empirical in-

vestigation of this data will provide guidance in several software engineering decisions,

and further strengthen the empirical body of knowledge in software engineering.

Furthermore, rather than solely predicting fault-proneness of class modules based

on OO metrics, the adaptive approach demonstrated in this work can be adapted to
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arbitrary measures of software quality. For example, our measures might involve the

cost or severity of investigated faults, but also risk considerations, development costs,

or maintenance costs. The underlying idea of developing classifiers, however, remains

identical: from the earlier history, we select the appropriate set of metrics which best

predicts the future, and develop prediction models in a step-by-step manner as we

did in this dissertation. Hence, we show how to systematically build predictors for

arbitrary system using fault history data.

6.3 Threats to Validity

In this dissertation, we have reported our experience with eight different open-source

projects of varying goal, purpose, and domain. Although we could derive successful

fault-proneness predictors from the failure history in each of the projects, this may

not necessarily generalize to other projects. The work in this dissertation certainly

suffers from the project selection bias [32]. Unfortunately, the target application

selection process was limited to open-source domain projects implemented in Java

programming language. It may not be possible to extend the findings of this study

involving open-source software systems to proprietary software due to the different

development practices adopted [40]. Further validations with both open-source and

proprietary software systems are necessary to help us draw stronger conclusions [7].

Additionally, we have no way of verifying the quality and completeness of the

history logs obtained through the SCM system. Even though projects that have been

selected seem to have a good quality change log entries, our heuristic for identifying

faults for individual modules is far from perfect. It is quite possible that our heuristic

fault identification method has not accurately identified every single type of fault

present across eight different projects. Manually inspecting change logs containing

tens of thousands of lines of text in order to extract fault information is surely bound
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to produce errors. We might have identified some log entries as faults, where in

actuality they were not faults at all. Or to the contrary, there might be some log

entries our heuristic has omitted, while these were in actuality very much representing

revisions to faulty modules.

6.4 Towards the Framework for Fault Prediction

In order to be widely adopted, suggested fault-prediction techniques should be easy-

to-use and applicable across different domains. Additionally, prediction models ob-

tained using those techniques should be simple and intuitive enough to be easily

understood and interpreted by developers [28]. As a step toward achieving this goal,

in this section we present a high-level framework design to support automation of

processes described in this dissertation.

The proposed framework supports the four basic processes shown in Figure 6.4:

(1) Select Metrics, (2) Adapt Metrics, (3) Create Model, and (4) Predict.

SELECT�
METRICS�

�

ADAPT�
METRICS�

CREATE�
MODEL�

M� M�M�

F�F�F�

IM� PREDICT�

Output

Figure 6.4: High-Level Fault-Prediction Framework Processes
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Select Metrics: This framework process is responsible for accepting a project

as an input for which the history data is not available, and for which we are interested

computing the class fault-proneness probability. Considering that generating predic-

tive values for project’s individual modules does not involve software code, framework

allows the project to be inputted as source code, but also as the collection of its met-

ric values in case of the intellectual property concerns. The input project within the

Figure 6.4 is represented as the IM shape. Regardless of the input selection method,

we encounter problems related to software measurements that need addressing. In

case of metrics, it compels a standardized naming convention. Some metrics, even

though identical in terms of their measurement, could possibly use inconsistent nam-

ing conventions. Other metrics, on the other hand, might follow the same naming

convention, but in fact measure two slight variations of a system’s attribute or even

quite different attributes altogether. In case of an input as a source code, the frame-

work has to include a mechanism for calculating its metrics. We could certainly

allow framework to integrate a third party software tool for metric extraction. How-

ever, computing metrics must consider nothing else but its rigorous definition, leaving

nothing to interpretation. Presently, there are number of available tools that generate

metric values for OO software. How do we ensure that all tools generate the same

values for the same metrics? In this dissertation, in Section 3.3 for example, we used

the third party tool named Understand to extract CK metrics. Even though this

particular issue is outside the scope of this study, such inconsistencies could affect the

performance of developed prediction models significantly.

The Select Process component of the framework also interacts with the uploadable

repository containing projects for which the fault history data is available. Such

projects are represented by the combination of M and F shapes within the the Figure

6.4, and will be used as training datasets for the development of our prediction models.
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Again, as with our input project without known fault history data, the framework

should handle inputting projects with known history data as source code or metric

values. Furthermore, history data must also be inputed alongside with the project,

and it’s complemented with internal extraction and the fault mapping process as

presented in this dissertation in Section 3.2.

And finally, the component must also include the statistical inference algorithm

that compares our input project metric distribution against every project within the

repository for which the fault history data is known. To support the work presented

in this dissertation, the framework would have to include a Levene’s Test algorithm

(Equation 5.1) for the equality of variances presented in Section 5.3 in order to identify

a single project most similar to our input project (a single shaded shape identified

with M and F within the Figure 6.4), which will be used in the development of

our prediction model. Following this process, the flow within the framework can go

either to the Adapt Metrics process component, or bypassing it (as in case with our

LCOM metric, which showed significant decay in classification of faulty classes after

the power transformations) to go directly to Create Model component.

Adapt Metrics: This framework process component is responsible for calibrating

metrics data values for both, our input project designated as IM in Figure 6.4 and the

metrics of the project residing in our metric and fault history repository identified

as the most similar to our input project during the Select Metrics process. Adapt

Metrics process component is relatively easy to implement. We need a mechanism

for developers to be able to input new and verified transformation techniques that

have been proven to improve the validity of statistical measurements. To support the

study presented in this dissertation in Section 5.4, we would only need to implement

a simple power transformation algorithm as discussed in the previous chapter.
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Create Model: Within this component, we must implement statistical regression

algorithms used to determine the correlation between the chosen metric values of each

individual module from the project selected in Select Metrics process component and

its respective fault-proneness measures. For the framework to support our work, this

process component would have to include a logistic regression algorithm presented by

Equation 2.2, to arrive at the appropriate values of a metric coefficient and a constant

value used to identify fault-proneness probabilities across all input project modules.

Predict: Once the fault-proneness model is developed, using the values of project’s

metrics, this process component calculates the estimated probability values for each

module belonging to a project as presented by Equation 4.5. Fault-proneness proba-

bility values for each individual module are piped into an accessible output file used

by developers as viable decision making tools for the resource allocation during vali-

dation activities.
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CHAPTER 7

CONCLUSION

This chapter provides a summary of the research presented in this dissertation,

and discusses future directions in the areas of software measurement and fault pre-

diction. In the summary, we present the overview of the conducted work, the results

of our empirical study, and the discussion of the extent to which our proposed so-

lution satisfied the research goal. The future work section describes several topics

concentrating on complexity design measures, project and data diversity, measures of

project similarity and approach automation. This final chapter contains both research

summary and possible future work.

7.1 Research Summary

One of the main objectives of this dissertation was to propose an approach assisting

developers to use fault-proneness models, based on design measurements, as viable

decision making tools when applied from one object-oriented system to the other. The

identified research problem was divided into the following sub-problems: 1. Devise a

strategy that facilitates identifying similar projects; 2. Formulate an approach that

adapts or transforms datasets used in development of existing prediction models in or-

der to improve their predictive ability to identify fault-prone modules across different

projects, independent of the domain used in the derivation of the predictive model;

and 3. Propose a high-level design methodology to support the implementation of

the strategy devised in (1.) and the adaptive approach formulated in (2.).

The solution to the first sub-problem included identifying projects that share the

same heterogeneous metric distribution across comprising modules. We were inter-

ested in calculating the probability that the two independent data samples belong to
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the same population. However, since our datasets did not belong to a normally dis-

tributed population, we investigated a plethora of alternative, nonparametric equality

of variance techniques. At the end of the investigative process, we chose the nonpara-

metric Levene’s Test as the most robust and appropriate for the type of skewed data

used in this dissertation. The Levene’s Test statistic and model selection process is

presented in detail in Section 5.3.

Even though the systems used in this work stem from the same open-source de-

velopment environment, the distributions of metric measures vary across different

projects and thus affect the applicability of fault-proneness models, as demonstrated

in Section 5.1. The investigation into the second sub-problem consisted of further re-

ducing variability and promoting equality of spread among the datasets through the

use of data transformation techniques. Our research into data transformation tech-

niques has led us to a selection of power transformations. They were used to stabilize

variance, make the data more normal distribution-like, and improve the validity of

measures.

We then used the model selection process identified as a solution to the first sub-

problem and power transformation techniques to transform data. We transform the

training dataset project that lends itself for the development of the prediction model.

Additionally, we transform the testing dataset project which acts as the unrelated

project for which the fault history data is not available. Only then do we generate the

adapted prediction model from the transformed data making it relevant to unrelated

project.

Our results suggest that even though applying the models across systems is far

from straightforward, by using the approach presented in this work, the model from

one project can in fact be helpful at focusing verification and testing effort on fault-

prone classes of the other system. As required in the objective and dissertation
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evaluation criteria set in Section 1.3 and evaluation of the extent to which the research

goal has been accomplished presented in Section 6.1, in general terms, the fault-

proneness class ranking clearly performs better than chance and in large part also

outperforms a randomly selected raw-data model.

A third contribution of the paper is to propose of the high-level fault-prediction

framework, which is only the first step toward the integrated environment that sup-

ports automated approach to fault prediction. Furthermore, rather than solely pre-

dicting fault-proneness of class modules based on OO metrics, the adaptive approach

demonstrated in this work can be adapted to arbitrary measures of software quality.

For example, our measures might involve the cost or severity of investigated faults,

but also risk considerations, development costs, or maintenance costs. Hence, we

show how to systematically build predictors for arbitrary system using fault history

data.

7.2 Future Work

The research presented in this dissertation provides the foundation for investigating

practical applicability of the existing predictive techniques on projects for which the

prior fault history data is not known. Presently, the design complexity measures

used in this dissertation are rather simple in nature. While CBO turned out to be an

overall good fit for our fault prediction, in this dissertation, we solely consider product

metrics. We plan to expand the failure data investigation to proprietary software

systems due to the different development practices used during their development,

and particularly by including more sophisticated product measures [4], as well as

process and resource metrics to complement our product measures [59].

A fundamental step in the adaptive approach presented in this work involves the

selection process, during which a relevant model from the existing model set is selected
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for the new project at hand. We accomplish the selection process by using the test

of equality of variances between two projects. Again, we define similar projects by

comparing the properties and distributions of their product metrics. In the future,

we would like to include data on the process and domain characteristics [38], and

consequently determine which process features correlate with the quality of software

systems.

In addition to the regression, machine learning approaches have been used in fault

prediction. Machine learning approaches are inherently different from regression,

raising our interest to evaluate the results of these methods. Thus, in our future

research, we would like to investigate and empirically validate the results of several

machine learning methods [29, 53], and compare them with the results obtained in

this work.

And finally, in order to be widely adopted, suggested fault-prediction techniques

should be easy-to-use and prediction models obtained using those techniques should

be simple and intuitive enough to be easily understood and interpreted by developers.

As a step toward achieving that goal, the extraction and the fault mapping process

presented in this dissertation have been automated. However, we still rely on a

third party statistical software to manually develop prediction models. In the future,

we plan to implement statistical algorithms directly into the framework design, and

ultimately into development environments, supporting the decisions of programmers

and managers.
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APPENDICES

A Tables

A1 Collinearity Analysis using Bivariate Spearman Interrelationships between CK

Metrics for Cacoon, Columba, Cosmos, and Derby

Table A1: Bivariate Spearman Interrelationships between CK Metrics for Cacoon,
Columba, Cosmos, and Derby

CBO NOC WMC RFC DIT LCOM Cocoon
1 -0.083** 0.299** 0.320** 0.311** 0.265** CBO

1 -0.038** -0.151** -0.120** 0.067** NOC
1 0.673** -0.003 0.638** WMC

1 0.523** 0.423** RFC
1 0.058 DIT

1 LCOM
CBO NOC WMC RFC DIT LCOM Columba
1 -0.306** 0.341** 0.409** 0.317** 0.374** CBO

1 0.081** -0.316** -0.352** -0.147** NOC
1 0.280** -0.029 0.558** WMC

1 0.873** 0.330** RFC
1 0.143** DIT

1 LCOM
CBO NOC WMC RFC DIT LCOM Cosmos
1 -0.097** 0.451** 0.454** 0.273** 0.272** CBO

1 0.007 0.022 -0.285** -0.112** NOC
1 0.808** 0.203** 0.504** WMC

1 0.524** 0.434** RFC
1 0.196** DIT

1 LCOM
CBO NOC WMC RFC DIT LCOM Derby
1 0.062* 0.549** 0.555** 0.262** 0.383** CBO

1 0.129** 0.071 -0.173** 0.080 NOC
1 0.707** 0.186** 0.616** WMC

1 0.676** 0.395** RFC
1 0.065 DIT

1 LCOM
Legend: **correlation is significant at the 0.01 level (2-tailed);

*correlation is significant at the 0.05 level (2-tailed);
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A2 Collinearity Analysis using Bivariate Spearman Interrelationships between CK

Metrics for Eclipse, JEdit, OpenOffice, and Scarab

Table A2: Bivariate Spearman Interrelationships between CK Metrics for Eclipse, JEdit,
OpenOffice, and Scarab

CBO NOC WMC RFC DIT LCOM Eclipse
1 -0.141** 0.622** 0.519** 0.217** 0.414** CBO

1 0.017 -0.034* -0.168** -0.070** NOC
1 0.622** 0.042* 0.643** WMC

1 0.609** 0.344** RFC
1 0.045** DIT

1 LCOM
CBO NOC WMC RFC DIT LCOM JEdit
1 -0.173** 0.381** 0.363** 0.247** 0.324** CBO

1 0.109 0.053 -0.179** 0.044 NOC
1 0.901** 0.252** 0.745** WMC

1 0.433** 0.684** RFC
1 0.225** DIT

1 LCOM
CBO NOC WMC RFC DIT LCOM OpenOffice
1 -0.057 0.382** 0.399** 0.251** 0.326** CBO

1 -0.028 -0.010 -0.177** -0.057 NOC
1 0.737** 0.141 0.631** WMC

1 0.579** 0.454** RFC
1 0.135 DIT

1 LCOM
CBO NOC WMC RFC DIT LCOM Scarab
1 0.007 0.570** 0.538** 0.206** 0.324** CBO**

1 0.170** 0.184** -0.066 0.149** NOC
1 0.679** -0.129** 0.679** WMC

1 0.411** 0.388** RFC
1 -0.246** DIT

1 LCOM
Legend: **correlation is significant at the 0.01 level (2-tailed);

*correlation is significant at the 0.05 level (2-tailed);
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A3 Binary Logistic Regression Results on Metrics versus Faults for Cocoon, Columba,

Cosmos, and Derby

Table A3: Logistic Regression for Cocoon, Columba, Cosmos, and Derby

Cocoon CBO NOC WMC RFC DIT LCOM
Coeff. 0.193 - 0.075 0.035 0.120 0.016

Const. -0.603 - -0.530 -0.467 -0.294 -0.653
p-value 0.000 0.472 0.000 0.000 0.034 0.000

HL 12.683 - 15.218 17.291 10.737 19.016
DF 5 - 8 8 5 6

p-value 0.027 - 0.055 0.027 0.057 0.004
Columba CBO NOC WMC RFC DIT LCOM

Coeff. 0.096 - 0.058 - 0.131 0.014
Const. -1.208 - -0.384 - -0.322 -0.507

p-value 0.000 0.735 0.000 0.099 0.015 0.000
HL 14.477 - 3.315 - 25.148 1.391
DF 8 - 6 - 4 4

p-value 0.070 - 0.768 - 0.000 0.846
Cosmos CBO NOC WMC RFC DIT LCOM

Coeff. 0.139 - 0.129 0.093 0.704 0.010
Const. -0.495 - -0.825 -0.996 -1.135 -0.402

p-value 0.000 1.000 0.000 0.000 0.000 0.000
HL 7.545 - 27.697 34.394 13.907 25.130
DF 5 - 8 7 3 5

p-value 0.183 - 0.001 0.000 0.003 0.000
Derby CBO NOC WMC RFC DIT LCOM
Coeff. 0.092 - 0.064 0.008 - 0.015

Const. -0.921 - -0.871 -0.416 -0.530 -0.738
p-value 0.000 0.062 0.000 0.000 0.072 0.000

HL 21.620 - 23.179 51.881 - 28.031
DF 8 - 8 8 - 6

p-value 0.006 - 0.003 0.000 - 0.000
Legend: HL = Hosmer-Lemeshow chi-square;

DF = Hosmer-Lemeshow degrees of freedom;
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A4 Binary Logistic Regression Results on Metrics versus Faults for Eclipse, JEdit,

OpenOffice, and Scarab

Table A4: Logistic Regression for Eclipse, JEdit, OpenOffice, and Scarab

Eclipse CBO NOC WMC RFC DIT LCOM
Coeff. 0.081 - 0.055 0.006 0.272 0.015

Const. -0.687 - -0.585 -0.205 -0.575 -0.711
p-value 0.000 0.152 0.000 0.000 0.000 0.000

HL 28.119 - 33.356 115.393 22.702 17.698
DF 8 - 8 8 3 6

p-value 0.000 - 0.000 0.000 0.000 0.007
Jedit CBO NOC WMC RFC DIT LCOM

Coeff. 0.255 - 0.119 0.090 0.635 0.031
Const. -0.931 - -0.689 -0.789 -1.050 -1.084

p-value 0.000 0.699 0.000 0.000 0.001 0.000
HL 4.474 - 29.357 37.923 12.372 2.182
DF 6 - 6 7 2 4

p-value 0.613 - 0.000 0.000 0.002 0.702
OpenOffice CBO NOC WMC RFC DIT LCOM

Coeff. 0.134 -0.621 0.050 - - 0.014
Const. -0.683 0.133 -0.395 - - -0.531

p-value 0.000 0.019 0.030 0.320 0.799 0.001
HL 12.152 0.000 22.766 - - 9.272
DF 7 0 8 - - 5

p-value 0.096 - 0.004 - - 0.099
Scarab CBO NOC WMC RFC DIT LCOM
Coeff. 0.345 - 0.204 0.102 0.517 0.020

Const. -1.651 - -1.393 -1.460 -1.072 -0.677
p-value 0.000 0.213 0.000 0.000 0.004 0.000

HL 3.027 - 7.741 19.269 0.881 10.273
DF 6 - 7 8 2 4

p-value 0.805 - 0.356 0.013 0.644 0.036
Legend: HL = Hosmer-Lemeshow chi-square value;

DF = Hosmer-Lemeshow degrees of freedom;
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A5 Multiple Logistic Regression Results on Metrics versus Faults across All Projects

Table A5: Multiple Logistic Regression
Cocoon Const. CBO WMC LCOM Columba Const. CBO WMC LCOM

Coeff. -0.990 0.165 - 0.011 Coeff. -1.208 0.096 - -
p-value 0 0 0.056 0 p-value 0 0 0.473 0.301

Goodness of fit test Goodness of fit test
HL: 4.562 HL: 14.477

DF: 8 DF: 8
p-value: 0.803 p-value: 0.800

Cosmos Const. CBO WMC LCOM Derby Const. CBO WMC LCOM
Coeff. -1.021 0.101 0.104 - Coeff. -1.181 0.062 0.041 -

p-value 0 0 0 0.489 p-value 0 0 0 0.268
Goodness of fit test Goodness of fit test

HL: 36.399 HL: 28.713
DF: 8 DF: 8

p-value: 0 p-value: 0
Eclipse Const. CBO WMC LCOM Jedit Const. CBO WMC LCOM
Coeff. -1.008 0.066 - 0.009 Coeff. -1.537 0.187 - 0.025

p-value 0 0 0.119 0 p-value 0 0.003 0.547 0
Goodness of fit test Goodness of fit test

HL: 28.106 HL: 9.213
DF: 8 DF: 8

p-value: 0 p-value: 0.325
OpenOffice Const. CBO WMC LCOM Scarab Const. CBO WMC LCOM

Coeff. -0.955 0.119 - 0.009 Coeff. -1.990 0.281 0.100 -
p-value 0.000 0.000 0.295 0.040 p-value 0.000 0.000 0.010 0.467

Goodness of fit test Goodness of fit test
HL: 11.079 HL: 2.605

DF: 8 DF: 8
p-value: 0.197 p-value: 0.967

Legend: HL = Hosmer-Lemeshow chi-square;
DF = Hosmer-Lemeshow degrees of freedom;
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A6 F-Scores for Cross-System Logistic Models Validations across Different Projects

Table A6: F-scores for All Models across All Projects

Model: CBO Testing Dataset
Training Dataset Cocoon Columba Cosmos Derby Eclipse JEdit OpenOffice Scarab
Cocoon 0.33* 0.27 0.58 0.51 0.58 0.50 0.66 0.78
Columba 0.15 0.37* 0.24 0.48 0.50 0.24 0.31 0.47
Cosmos 0.33 0.27 0.58* 0.51 0.58 0.50 0.66 0.78
Derby 0.22 0.34 0.34 0.51* 0.55 0.34 0.44 0.62
Eclipse 0.22 0.32 0.37 0.51 0.56* 0.39 0.47 0.65
JEdit 0.33 0.27 0.58 0.51 0.58 0.50* 0.66 0.78
OpenOffice 0.32 0.29 0.49 0.51 0.58 0.49 0.58* 0.73
Scarab 0.34 0.28 0.54 0.51 0.57 0.49 0.58 0.76*
Model: WMC Testing Dataset
Training Dataset Cocoon Columba Cosmos Derby Eclipse JEdit OpenOffice Scarab
Cocoon 0.37* 0.25 0.59 0.52 0.56 0.51 0.45 0.59
Columba 0.36 0.25* 0.64 0.51 0.57 0.55 0.51 0.62
Cosmos 0.36 0.25 0.64* 0.51 0.57 0.55 0.51 0.62
Derby 0.27 0.22 0.30 0.53* 0.45 0.34 0.26 0.43
Eclipse 0.33 0.24 0.42 0.53 0.50* 0.43 0.36 0.50
JEdit 0.36 0.24 0.67 0.49 0.58 0.56* 0.59 0.64
OpenOffice 0.37 0.24 0.59 0.52 0.56 0.51 0.45* 0.59
Scarab 0.36 0.25 0.64 0.51 0.57 0.55 0.51 0.62*
Model: LCOM Testing Dataset
Training Dataset Cocoon Columba Cosmos Derby Eclipse JEdit OpenOffice Scarab
Cocoon 0.32* 0.27 0.61 0.46 0.54 0.59 0.63 0.58
Columba 0.32 0.26* 0.61 0.45 0.54 0.60 0.63 0.59
Cosmos 0.32 0.27 0.61* 0.46 0.54 0.59 0.63 0.59
Derby 0.33 0.27 0.61 0.45* 0.54 0.59 0.63 0.58
Eclipse 0.33 0.27 0.61 0.46 0.54* 0.59 0.63 0.58
JEdit 0.32 0.26 0.62 0.45 0.54 0.61* 0.63 0.59
OpenOffice 0.33 0.26 0.61 0.45 0.54 0.60 0.63* 0.58
Scarab 0.32 0.25 0.62 0.45 0.54 0.61 0.63 0.59*
Model: Multiple variable Testing Dataset
Training Dataset Cocoon Columba Cosmos Derby Eclipse JEdit OpenOffice Scarab
Cocoon 0.34* 0.28 0.67 0.49 0.59 0.60 0.67 0.76
Columba 0.15 0.37* 0.24 0.48 0.50 0.24 0.31 0.47
Cosmos 0.36 0.28 0.65* 0.51 0.59 0.57 0.62 0.75
Derby 0.28 0.36 0.30 0.55* 0.54 0.35 0.38 0.52
Eclipse 0.36 0.32 0.47 0.52 0.58* 0.47 0.57 0.65
Jedit 0.33 0.28 0.65 0.48 0.57 0.62* 0.67 0.73
OpenOffice 0.35 0.29 0.58 0.51 0.59 0.58 0.61* 0.74
Scarab 0.36 0.29 0.57 0.52 0.59 0.52 0.59 0.73*
Legend: *threshold value, where training and testing dataset belong to the same project;
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A7 Descriptive Statistics for CBO, WMC, and LCOM across Different Projects

Table A7: Descriptive Statistics for CBO, WMC, and LCOM across All Projects

CBO Cocoon Columba Cosmos Derby Eclipse Jedit OpenOffice Scarab
Max 78 76 57 126 210 56 48 68

3rd Quartile 4 14 5 12 11 5 6 7
Median 2 7 2 5 5 2 3 2

1st Quartile 0 3 0 2 1 1 1 0
Min 0 0 0 0 0 0 0 0

WMC Cocoon Columba Cosmos Derby Eclipse Jedit OpenOffice Scarab
Max 63 71 82 308 405 213 131 166

3rd Quartile 7 7 9 15 13 6 9 8
Median 4 4 5 7 7 3 5 3

1st Quartile 2 2 2 3 3 1 2 1
Min 0 0 0 0 0 0 0 0

LCOM Cocoon Columba Cosmos Derby Eclipse Jedit OpenOffice Scarab
Max 100 100 100 100 100 100 100 100

3rd Quartile 71 65 76 79 81 62 70 66
Median 33 0 33 50 50 0 28 0

1st Quartile 0 0 0 0 0 0 0 0
Min 0 0 0 0 0 0 0 0
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A8 Levene’s Test Results with its F Statistics and P-values for Metric Equality of

Variances across All Projects

Table A8: Levene’s Test Results for Equality of Variances

Metric: CBO Stat. Cocoon Columba Cosmos Derby Eclipse JEdit OpenOff. Scarab

Columba
F 2.642 0

p-value 0.104 1

Cosmos
F 16.318 9.307 0

p-value 0 0.002 1

Derby
F 46.388 42.981 5.569 0

p-value 0 0 0.018 1

Eclipse
F 101.567 53.204 16.511 1.414 0

p-value 0 0 0 0.234 1

JEdit
F 24.369 54.621 68.796 92.77 105.62 0

p-value 0 0 0 0 0 1

OpenOffice
F 0.008 14.288 10.971 35.872 34.053 12.856 0

p-value 0.930 0 0.001 0 0 0 1

Scarab
F 32.254 0.727 8.159 0.603 0.004 68.275 20.761 0

p-value 0 0.394 0.004 0.438 0.947 0 0 1
Metric: WMC Stat. Cocoon Columba Cosmos Derby Eclipse JEdit OpenOff. Scarab

Columba F 47.142 0
p-value 0 1

Cosmos F 1.807 47.457 0
p-value 0.179 0 1

Derby F 5.527 30.459 9.496 0
p-value 0.019 0 0.002 1

Eclipse F 16.899 82.123 14.389 0.836 0
p-value 0 0 0 0.361 1

JEdit F 0.346 24.357 3.267 16.791 22.947 0
p-value 0.557 0 0.071 0 0 1

OpenOffice F 4.348 2.043 4.939 18.181 20.122 3.364 0
p-value 0.037 0.153 0.026 0 0 0.067 1

Scarab F 27.374 87.966 13.232 0.068 0.628 24.587 26.524 0
p-value 0 0 0 0.795 0.428 0 0 1

Metric: LCOM Stat. Cocoon Columba Cosmos Derby Eclipse JEdit OpenOff. Scarab
Columba F 0.213 0

p-value 0.644 1
Cosmos F 66.516 28.541 0

p-value 0 0 1
Derby F 13.66 8.109 12.033 0

p-value 0 0.004 0.001 1
Eclipse F 35.21 34.462 7.031 0.265 0

p-value 0 0 0.008 0.607 1
JEdit F 5.057 1.126 40.182 19.265 45.127 0

p-value 0.025 0.289 0 0 0 1
OpenOffice F 3.434 1.572 15.863 2.343 9.254 5.078 0

p-value 0.064 0.21 0 0.126 0.002 0.024 1
Scarab F 0.633 0.18 15.729 5.005 10.839 0.153 1.216 0

p-value 0.426 0.672 0 0.025 0.001 0.696 0.27 1
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A9 Logistic Regression on Transformed Datasets

Table A9: Logistic Regression on Transformed Datasets

Project: Cocoon Project: Columba
Model from: OpenOffice JEdit Columba Model from: Scarab OpenOffice Scarab
Used metric: CBO WMC LCOM Used metric: CBO WMC LCOM

Coeff. 1.761 3.263 0.523 Coeff. 3.425 1.804 0.660
Const. -1.098 -2.597 -1.301 Const. -3.596 -1.646 -0.581

p-value 0.000 0.000 0.000 p-value 0.000 0.000 0.000
HL 14.491 18.385 5.253 HL 14.821 16.238 19.650

p-value 0.043 0.005 0.262 p-value 0.022 0.039 0.001
Project: Cosmos Project: Derby

Model from: Derby Cocoon Eclipse Model from: Scarab Scarab Eclipse
Used metric: CBO WMC LCOM Used metric: CBO WMC LCOM

Coeff. 2.346 1.827 0.575 Coeff. 3.425 3.457 0.575
Const. -2.038 -1.536 -0.707 Const. -3.168 -3.693 -0.707

p-value 0.000 0.000 0.000 p-value 0.000 0.000 0.000
HL 5.005 11.331 33.672 HL 14.821 5.460 33.672

p-value 0.757 0.184 0.000 p-value 0.022 0.604 0.000
Project: Eclipse Project: JEdit

Model from: Scarab Scarab Derby Model from: OpenOffice Cocoon Scarab
Used metric: CBO WMC LCOM Used metric: CBO WMC LCOM

Coeff. 3.425 3.457 2.346 Coeff. 1.761 1.827 0.660
Const. -3.168 -3.693 -2.038 Const. -1.098 -1.391 -0.581

p-value 0.000 0.000 0.000 p-value 0.000 0.000 0.000
HL 14.821 5.460 5.005 HL 14.491 11.331 19.650

p-value 0.022 0.604 0.757 p-value 0.043 0.184 0.001
Project: OpenOffice Project: Scarab

Model from: Coccoon Scarab Scarab Model from: Eclipse Derby JEdit
Used metric: CBO WMC LCOM Used metric: CBO WMC LCOM

Coeff. 1.978 3.457 0.660 Coeff. 1.941 2.584 1.197
Const. -1.185 -3.261 -1.547 Const. -1.536 -2.590 -1.184

p-value 0.000 0.000 0.000 p-value 0.000 0.000 0.000
HL 4.202 5.460 19.650 HL 12.037 9.296 2.609

p-value 0.521 0.604 0.001 p-value 0.150 0.318 0.625
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A10 The Recall, Precision, and F-Scores for all Transformed Data Prediction Models

across Different Projects

Table A10: Evaluation of Transformed Data Models across Different Projects

Project: Cocoon Project: Columba
Model from: OpenOffice JEdit Columba Model from: Scarab OpenOffice Scarab
Used metric: CBO WMC LCOM Used metric: CBO WMC LCOM

Recall 61% 59% - Recall 71% 44% 65%
Precision 25% 26% - Precision 24% 16% 16%

F-Score 0.35 0.36 - F-Score 0.36 0.24 0.25
Project: Cosmos Project: Derby

Model from: Derby Cocoon Eclipse Model from: Scarab Scarab Eclipse
Used metric: CBO WMC LCOM Used metric: CBO WMC LCOM

Recall 56% 61% 63% Recall 64% 62% 75%
Precision 73% 73% 60% Precision 42% 46% 31%

F-Score 0.63 0.67 0.62 F-Score 0.51 0.53 0.44
Project: Eclipse Project: JEdit

Model from: Scarab Scarab Derby Model from: OpenOffice Cocoon Scarab
Used metric: CBO WMC LCOM Used metric: CBO WMC LCOM

Recall 56% 48% 76% Recall 67% 74% 79%
Precision 58% 53% 43% Precision 41% 53% 50%

F-Score 0.57 0.50 0.55 F-Score 0.51 0.62 0.61
Project: OpenOffice Project: Scarab

Model from: Coccoon Scarab Scarab Model from: Eclipse Derby JEdit
Used metric: CBO WMC LCOM Used metric: CBO WMC LCOM

Recall 67% 38% - Recall 79% 65% 59%
Precision 64% 55% - Precision 79% 70% 59%

F-Score 0.66 0.45 - F-Score 0.79 0.67 0.59
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