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ABSTRACT OF THE THESIS 

SOIL CARBON DIOXIDE AND METHANE EFFLUX FROM EVERGLADES TREE 

ISLAND AND RIDGE LANDSCAPE 

by 

Robert Scott Schroeder 

Florida International University, 2012 

Miami, Florida 

Professor Leonard J. Scinto 

 The influence water levels have on CO2 and CH4 efflux were investigated at the 

Loxahatchee Impoundment Landscape Assessment (LILA) research facility, located in 

Boynton Beach, FL, USA.  Measurements of CO2 efflux were taken for 24 h periods four 

times for one year from study plots.  Laboratory incubations of intact soil cores were 

sampled for CO2, CH4, and redox potential. Additionally, soil cores from wet and dry 

condition were incubated for determination of enzyme activity and macronutrient 

limitation on decomposition of organic matter from study soils.  Water levels had a 

significant negative influence on CO2 efflux and redox, but did not significantly influence 

CH4 efflux.  Study plots were significantly different in CH4 efflux and redox potential.  

Labile carbon was more limiting to potential CO2 and CH4 production than phosphorus, 

with the effect significantly greater from dry conditions soils.  Enzyme activity results 

were variable with greater macronutrient responses from dry condition soils. 
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I.  INTRODUCTION 

A century of anthropogenic hydrologic alteration of the Everglades, to alleviate 

the economic and human losses due to flooding, has resulted in the construction of 2500 

km of canals and levees (Light and Dineen, 1994; Sklar et al., 2001; Childers et al., 

2003).  Before anthropogenic alteration, the Everglades had developed a patterned 

landscape of ridges, sloughs, and tree islands where landscape features were oriented 

parallel to the direction of flow (Wu et al., 2006; Bernhardt and Willard, 2009).  These 

patterns are characteristic of long-term environmental stability (Larsen et al., 2011) and 

formed under very wet conditions (Ogden, 2005).  Alteration of water levels and timing 

of seasonal water delivery to the Everglades has caused the degradation of the distinct 

heterogeneous peat-based sawgrass ridge, slough and tree island landscape (Wu et al., 

2006; Larsen et al., 2011).  In 2000, nearly US$12 billion was designated for the 

Comprehensive Everglades Restoration Plan (CERP), which has a goal of “getting the 

water right” in quantity, quality, timing and distribution (Towery and Regalado, 2009).   

Since hydrologic alteration of the Everglades, tree island total area has declined 

by ~67% and the ridge and slough landscape has degraded (Ogden, 2005; van der Valk et 

al., 2007; Wetzel et al., 2009; Larsen et al., 2011).  Tree islands form a unique habitat 

within the Everglades and provide a refuge for flora and fauna that could not normally 

survive in the Everglades ridge and slough landscape.  Because of the many uncertainties 

associated with tree island formation, and their abiotic and biotic processes, tree islands 

have not been included as a performance measure in Everglades’ restoration (Wetzel et 

al., 2009).  Hydrologic alteration of the Everglades carbon-rich peat soils into urban and 

agricultural lands has caused large changes in mineralization of the soil carbon (C) 
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(DeBusk and Reddy, 2003).  Soil aeration increases rates of microbial decomposition and 

subsequently changes the dynamics of nutrient cycling (Melling et al., 2005).   

The Everglades Depth Estimation Network (EDEN) is a network of stage (water 

level) gauging equipment to monitor water levels in real time (Telis et al., 2006).  The 

network can be used to adequately manage water for ecosystem stability, including that 

of tree islands.  Water levels have been shown by many to greatly influence C efflux 

from wetland soils (e.g., DeBusk and Reddy, 2003; Hirano et al., 2009).  Development of 

a relative water depth (RWD) driven soil C-efflux model would provide great insight into 

the water levels needed to maintain, or expand, tree island soils.  Without the inclusion of 

tree island restoration in CERP, complete restoration of functionality in the Everglades 

may not occur (Wetzel et al., 2009).   

Water leaving the Everglades Agricultural Area (EAA) before entering the 

Everglades contains elevated levels of nutrients from fertilizers (Childers et al., 2003; 

DeBusk and Reddy, 2003; Larsen et al., 2011).  Historically, the Everglades was 

oligotrophic (nutrient poor) (Wright and Reddy, 2001; Childers et al., 2003; DeBusk and 

Reddy, 2003; Larsen et al., 2011), because phosphorus was limiting.  The native plants 

and animals evolved strategies to overcome the environmental stress (Childers et al., 

2003; Larsen et al., 2011), however, with the increased loading of phosphorus from 

agriculture, total phosphorus concentrations of the soil have risen, especially proximal to 

canal discharges (Reddy et al., 1993; Childers et al., 2003).  These increases in 

phosphorus can facilitate changes in microbial community activity that control C cycling 

(DeBusk and Reddy, 1998).   
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 The spatial coverage of the Everglades declined by 55% and that which remains 

has degraded as a result of flood mitigation and land-use change (Larsen et al., 2011).  

Efforts need to restore the Everglades under CERP are likely to be compounded by 

climate change (Schedlbauer et al., 2010).  Peatlands and wetlands are also of critical 

concern for predicting global climate change because gaps in our knowledge about the 

rates of emission and sequestration of greenhouse gases (GHG) from these ecosystems.  

Carbon emissions from peatlands and wetlands are dominated by carbon dioxide (CO2) 

and methane (CH4) under aerobic and anaerobic conditions, respectively (Limpens et al., 

2008).  Peatlands cover about 3% of the Earth’s surface, but store between 270-370 Tg C 

(15-25% of terrestrial C; 1 Tg=1012 g C) (Turunen et al., 2002; Limpens et al., 2008), and 

accounting for 34-36% of the 796 Tg C stored in the atmosphere as CO2 (IPCC, 2007).  

Tropical and sub-tropical peatlands are estimated to store 52 Tg C of the total for 

peatlands (Hooijer et al., 2006), and account for 20% of the total peatland area (Limpens 

et al., 2002). Anthropogenic alterations of the water table and flooding and drainage 

patterns are some of the drivers of recent net C loss from wetlands and peatlands 

worldwide resulting from oxygen exposure increasing respiration rates (Furukawa et al., 

2005).    

 Wetland and peatland inclusion into global climate models is hampered by the 

insufficient quantification of hydrologically-driven fluctuations in C release, which is a 

localized factor and would require a global universal correction factor (Limpens et al., 

2002).  Climate-carbon feedback models from peatlands and wetlands are inconsistent, as 

a result of the lack of reliable information linking carbon exchange of peatlands to 

climate, hydrology, ecosystem structure and function (Limpens et al., 2002), but are 
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consistent with respect to the positive feedback that peatlands and wetlands will have to 

climate (Sitch et al., 2008).  Measurement of C efflux correlated to hydrology (e.g., 

DeBusk and Reddy, 2003; Hirano et al., 2009) can aid ecosystem management and 

restoration (Bridgham et al., 2006), and create a current environmental baseline for C 

efflux comparisons as climate change alters the processes and drivers of C efflux.   

 Soil CO2 and CH4 efflux is one large piece of the broader global carbon (C) cycle 

(Melling et al., 2005).  Soil respiration consists of plant and microbial decomposition of 

carbon containing materials with CO2 and CH4 as gaseous end products (Raich and 

Schlesinger, 1992; Ryan and Law, 2005).  Several biotic and abiotic factors influence 

rates of soil C (CO2 + CH4) efflux.  Quality of organic matter inputs (Jauhiainen et al., 

2005), types of microbes involved in decomposition (Bowling et al., 2002) and soil 

macroorganism presence (Bowling et al., 2002) are all examples of biotic controls of 

respiration, while water table level (Davidson et al., 2000; Furukawa, 2005), temperature 

(Davidson et al., 2000; Bahn et al., 2008), and nutrient availability (DeBusk and Reddy, 

1998) are abiotic controls.   Soil C efflux measurements quantify the rate of gas exchange 

between the soil surface and atmosphere per area per time.  Further research is needed on 

the current carbon fluxes of US wetlands at the landscape level to determine soil C 

source/sink status, which can aid ecosystem restoration and management decisions 

(Bridgham et al., 2006). From the Everglades ecosystem, soil vial and intact core 

incubations for CO2 and CH4 efflux (e.g., Amador and Jones, 1993; Amador and Jones, 

1995; DeBusk and Reddy, 2003), and ecosystem level CO2 exchange (e.g., Schedlbauer 

et al., 2010; 2012) have been reported.  Clark et al. (2009) have begun in situ CO2 efflux 

measurements from Everglades ridges and sloughs.  Quantification of in situ CO2 and 
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CH4 fluxes allow estimation of total annual C efflux rates (Jauhiainen et al., 2005).  

Similarly applied to the Everglades’ tree island and ridge landscape, soil C efflux can be 

incorporated into an integrated C budget estimation to help achieve CERP’s “getting the 

water right” goal.      

II.  BACKGROUND 

2.1 Methods of Efflux Measurement 

 Considerable experimentation has been conducted around the world.  This 

provides a rich database of information for comparison to results of this study.  

Numerous methods and techniques have been used to assess gaseous efflux from soil.  

Soil CO2 efflux has been measured by trapping CO2 efflux in an alkaline solution.  The 

soil is commonly incubated in a closed chamber and the CO2 is trapped in potassium 

hydroxide (KOH) or sodium hydroxide (NaOH) resulting in carbonate salts (e.g., 

Na2CO3).  The solution is then titrated with hydrochloric acid (HCl) and the amount of 

CO2 absorbed can be calculated from the difference between sealed and exposed beakers 

of alkaline solutions (King and Harrison, 2002).   

 A second method involves manual chambers where the chamber is moved to each 

location and the head-space gases are sampled over the course of an incubation interval.  

Gaseous efflux (e.g., CO2 and/or CH4) from these chambers is determined by measuring 

the head-space concentration change over time (multiple gas samples).  Incubation times 

depend on chamber volume and soil porosity generating head-space gas concentration 

differences great enough to observe a measureable change in concentration.  However, if 

incubation times are too great, the microclimate and efflux rates may be altered due to 

increased temperatures inside the chamber, high gas concentrations within the chamber 
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limiting diffusion out of soil, and changes in pressure within the chamber affecting 

diffusion rates.     

 To overcome limitations with manual chambers, automated systems have been 

developed where chambers are fitted to an analyzer unites, typically an infrared gas 

analyzer or IRGA (Savage and Davidson, 2003).  Because of technological limitations of 

CH4 measurement, these systems are currently used only for CO2 efflux measurement.   

Associated with the analyzer unit are one to several vented chambers, each with a 

different collar inserted into the soil, with a power supply capable of long-term 

deployment (Savage and Davidson, 2003).  Deployment of an automated system reduces 

the human error associated with syringe sampling and can reduce incubation times 

because of greater temporal resolution.  Non-steady-state chamber systems pump air from 

the chamber into the analyzer and back to the chamber (Fang and Moncrieff, 1996; 

Savage and Davisdon, 2003).  Automated non-steady-state systems are now incorporating 

dynamic chambers that close for measurements and open afterwards so as to reduce 

alteration of the microclimate within the chamber during long-term deployments (Savage 

and Davidson, 2003).   

 Automated non-steady-state systems allow much greater temporal frequency of 

measurements over manual systems, but they are spatially limited and expensive 

(Goulden and Crill, 1997; King and Harrison, 2002; Savage and Davidson, 2003).  

Manual chambers require the physical presence of a person for measuring and 

transporting the analyzer to additional collars.  Manual chambers may miss diurnal and 

other short-term respiration responses to climatic variations, but they do provide much 

greater spatial coverage over automated systems.  Savage and Davidson (2003) found 
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that automated systems measured greater flux rates, ranging from 2-30% with a mean of 

13% higher than manual chambers.  Over a 58-day study period with weekly manual 

measurements, interpolated and summed efflux was 0.26 kg C m-2 for 58 days with the 

manual chamber while the automated system summed was 0.27 kg C m-2 for the same 

time (approximately 4% relative difference).  Automated dynamic systems provide a 

more reliable estimate of flux, prevent microclimate modification, and overcome large 

portions of the variability associated with other systems of flux measurement (King and 

Harrison, 2002).  Moreover, automated systems capture more of the temporal variability 

than manual measurements.   

2.2 Soil Carbon Efflux  

 The major factors controlling carbon-release in peatlands and wetlands are 

organic-matter quality and hydrological conditions (Jauhiainen et al., 2005) that greatly 

influence nutrient availability (DeBusk and Reddy, 1998), oxidation-reduction potential 

(Thomas et al., 2009), and microbial community composition and activity (Bowling et 

al., 2002).  In situ CO2 efflux measurements are often the combination of heterotrophic 

and autotrophic respiration, which varies with plant species and other phenological 

factors (Tang et al., 2003).  Understanding the main drivers of CO2 and CH4 efflux from 

Everglades tree islands and ridges will aid ecosystem management.  Tropical peat carbon 

flux measurements, until now, are rare (Jauhiainen et al., 2005), although there are 

currently active programs through Indonesia, South East Asia and South America to 

quantify the CO2 and CH4 fluxes.  On the basis of the analysis of isotopic ratios of 

gaseous CO2 efflux, Bowling et al. (2002) found 75% of annual ecosystem respiration is 
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attributed to root and microbial respiration in soil, and about 20% occurs from foliage 

respiration in a temperate rain forest.    

2.3 Environmental Controls 

 2.3.1 Organic Matter Quality 

 Organic matter (OM) contains a high percentage of C, and is used to provide 

energy to various microorganisms through respiration.  Quality of litter falling onto the 

soil surface can play a major role in respiration rates (DeBusk and Reddy, 1998; Qualls 

and Richardson, 2000; Wright and Reddy, 2001).  High detrital inputs can increase soil 

organic matter content or total carbon.  Increased annual soil respiration has been found 

to coincide with higher soil carbon content (Bahn et al., 2008).  Amador and Jones (1995) 

found that acetate, glucose and cellulose additions to Everglades’ soil enhanced carbon 

respiration (both CO2 and CH4) relative to sawgrass additions, which indicated that the 

low quality of organic matter constituting Everglades’ ridges might inhibit respiration.  

Nutrient availability of the litter can limit decomposition rates due to the limited 

microbial growth rates (DeBusk and Reddy, 2003).   

 2.3.2 Nutrient Availability 

 Macronutrients C, N, and P are required in a 106:16:1 molar ratio, respectfully, 

according to the Redfield ratio and can influence rates of CO2 and CH4 efflux (Mitsch 

and Gosselink, 2007).  DeBusk and Reddy (1998) found that CO2 production from litter 

was positively correlated with initial litter total phosphorus (TP) concentrations.  Runoff 

from agricultural and urban areas contains P from excess fertilizer, which is increasing 

the availability of P in the Everglades (Davis, 1991; Quals and Richardson, 2000; 

Childers et al., 2003).  Nutrient enrichment is causing a shift in the Everglades plant 



9 
 

species communities (Davis, 1991; Childers et al., 2003; DeBusk and Reddy, 2003) and 

microbial biomass (DeBusk and Reddy, 1998).  Increased phosphorous concentrations 

have been shown to increase microbial respiration in southern Everglades’ soil while 

nitrogen enrichment did not stimulate decomposition in low phosphorus soils (Amador 

and Jones, 1993).  Phosphorus enrichment was also shown to significantly amplify the 

effects of water level.  Methanogenic respiration in vial incubation experiments has been 

shown in low TP (C:P ratio of 2,052:1) and high TP (C:P ratio of 236:1) soils to lag four 

and two days respectively behind incubation initiation (Amador and Jones, 1995).   The 

longer lag times of low TP soils indicated that conversion of organic C to CH4 by 

microorganisms is limited by P.  Additionally after substrate (various C compounds) and 

P amendments, P is considered a co-limiter of respiration with labile C (Amador and 

Jones, 1995).   

 However, P addition did not always increase CO2 production in all of the 

incubation studies, presumably because of the variety of soil types in the Everglades, 

marl to organic peat (Amador and Jones, 1993; Amador and Jones, 1995; Drake et al., 

1996).  Tree island TP concentrations reach 1,500 to 3,000 µg g-1 while pristine marsh 

concentrations range ≤200 to 500 µg g-1 (Wetzel et al., 2009) where apatite P dominates 

tree island (Irick, 2012) and organic P dominates marsh P pools (Wetzel et al., 2009).  

Both of these forms are considered unavailable forms of P, and the P will only be 

released upon weathering and oxidation, indicating that P may still be a limiting nutrient 

on tree islands similar to marshes.  Centers of tree islands are exposed to oxygen longer 

than any other ecotone in the Everglades allowing for litter and apatite P to become 

available as a result of the little or no flooding on a yearly basis.   



10 
 

 2.3.3 Hydrology 

 Hydrology is a critical abiotic factor driving the carbon balance of both tropical 

and temperate peatlands (Blodau and Moore, 2003; Hirano et al., 2009).  High water 

levels (peat flooding) bring anoxic conditions which reduce rates of respiration.  Humid 

tropical rain forests and peatlands are among the most efficient at carbon sequestration 

(Sitch et al., 2003; Hirano et al., 2009) as a result oftheir year-round high soil water 

content.  In tropical peatlands, soil moisture has a greater impact on soil respiration than 

soil temperature (Melling et al., 2005).  Furukawa et al. (2005) showed on Sumatra 

Island, Indonesia that when the water table is lowered 10 cm below soil surface, CO2 

emission is 50% greater than when the water table was at soil surface.  Kim and Verma 

(1992) found in Minnesota peatlands that 81% of soil CO2 efflux was attributed to water 

table depth in hummocks and hollows.  It has been proposed that Everglades tree islands 

and ridges are maintained by water levels influencing the relative rates of decomposition 

and production (Fig 1; Larsen et al., 2011).   

 The hydroperiod, or the periodicity and duration of drying and wetting, in 

peatlands and wetlands can have a major role in gas production and release (Ueda et al., 

2000, Inubushi et al., 2003).  Yearly, the Everglades experiences wet and dry periods 

based on seasonal precipitation inputs (Perry, 2004).  Under prolonged flooding 

conditions, CO2 production diminishes and CH4 production increases as a result of 

changes in oxic status (Jauhiainen et al., 2005).  Amazonian and Everglades soils have 

shown inhibited efflux rates under near saturated and saturated soil water content 

(Davidson et al., 2000; DeBusk and Reddy, 2003, respectively),.  However, Xu et al. 

(2004) found during and after a rain event, CO2 concentrations near the soil surface 



11 
 

increased while those of deep soil decreased due to water filling pore space in a drier 

oak/grass savanna ecosystem.  Dry soil conditions can also inhibit respiration in response 

to low microbial activity and reduced root respiration (Norman et al., 1992; Liu et al., 

2002, Bahn et al., 2008).  Low pore water levels limit microbial movement and cause 

community dormancy.  Bahn et al. (2008) noticed a time lag after rain storms before CO2 

efflux increased and noted efflux rates dropped after soil moisture fell below 10%.  Liu et 

al. (2002) showed in soil core incubations that increasing amounts of added water 

(simulating precipitation) had increasing effects on CO2 efflux.  Xu et al. (2004) found 

that the amount of carbon lost due to respiration after a rain event was proportional to the 

amount of rain that fell in an oak/grass savanna of California.  The authors also found 

that sites with a greater soil carbon content and primary productivity lost more carbon 

after rainfall events, which was attributed to greater labile C pools.    

 Hirano et al. (2009) used a system of manual (syringe sampling) and automated 

chambers (IRGA sampling) to measure CO2+CH4 and CO2 efflux, respectively.  Samples 

were taken from several different land use/impact stages of an Indonesian tropical peat 

swamp forest in two elevational ecotones.  In the forests studied, when water levels rose 

to -0.2 m below the soil surface, CO2 efflux rates began to decrease.  Overall, CO2 flux 

was strongly influenced by groundwater level.  Methane production from these soils was 

also found to be small (~1.5% of CO2 equivalent emissions).  Efflux (CO2) ranged 3-8 

µmol m-2 s-1 from high elevations and 2-6 µmol m-2 s-1from low elevations when water 

levels were at or below soil surface.  Annual CO2 efflux from these soils ranged 640 to 

764 g C m-2 y-1 from low elevation plots, 975 to to 1036 g C m-2 y-1 from combined high 

and low elevations, and had a mean of 1309 g C m-2 y-1 from high elevations, while total 
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CH4 efflux ranged 1.06 to 1.30 g C m-2 y-1 from low elevations (not measured at high 

elevations).   

 Because roots can contribute substantially to in situ-measured CO2 efflux, few 

studies have successfully estimated the separate contributions of autotrophic and 

heterotrophic respiration in situ (Tang et al., 2003).  Root maintenance respiration has 

been hypothesized to decline with soil moisture stress (Burton et al., 1998).  Tree island 

and ridge vegetation is determined by flood tolerance, and the root contribution to soil 

CO2 efflux may vary similarly.  Many factors influence in situ soil CO2 and CH4 efflux 

measurements.  Controlling environmental factors (e.g., removal of root respiration) in a 

laboratory setting may provide better insight into the role a single factor (e.g., RWD) has 

on efflux.  Intact soil cores can provide a means to understanding the microbial 

respiration contribution of CO2 and CH4 efflux to total soil C efflux (Fang and Moncrieff, 

2001).  Equalization times are required before efflux measurements to minimize the 

influence of coring disturbance (Fang and Moncrieff, 2001; DeBusk and Reddy, 2003).    

 DeBusk and Reddy (2003) conducted an Everglades’ intact soil core incubation 

and found CO2 respiration to vary significantly with water levels.  Methane efflux from 

the same cores was also found to be lower at soil saturated conditions (0 cm water level) 

than for flooded (+ water levels) and drained conditions (- water levels).  Methane flux 

had no consistent trend with water depth, and there was no significant difference between 

flooded and drained CH4 flux rates.  Overall, CO2 flux from these soils accounted for 90 

to 99% of total C efflux from Everglades’ soils due to CH4 efflux being one-to-two 

orders of magnitude smaller than CO2 efflux.  Maximum rates of total C efflux were 

found at the lowest water levels (-15 cm).  Frequent drying and wetting cycles have been 
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proposed to limit methanogenic conditions necessary for methane production in wetlands 

(Knorr and Blodau, 2009).  Investigations into how hydrology influences oxidation-

reduction with CO2 and CH4 can ultimately provide understanding in C storage (Thomas 

et al., 2009).    

 2.3.4 Oxidation-Reduction 

 Oxidation-reduction (redox) potential of wetland and peatland soils is important 

as an indicator of functions and processes occurring on multiple scales (Thomas et al., 

2009).  Saturation, or flooding, of soils limits the availability of oxygen (DeBusk and 

Reddy, 2003) because oxygen diffuses slower through water than through air, estimated 

at 10,000 times slower (Mitsch and Gosselink, 2007).  Understanding redox potential aids 

understanding of C storage (Thomas et al., 2009).  Soils with freely dissolved oxygen 

have redox potentials between +400 and +700 millivolts (mV) and are considered 

aerobic.  After oxygen is consumed, redox ranges between +400 and -400 mV (Mitsch 

and Gosselink, 2007) and the soils are considered reduced or anaerobic.  Methanogenesis, 

or the production of CH4, only occurs at redox potentials below -200 mV (Mitsch and 

Gosselink, 2007).  Redox potentials increase either linearly or exponentially with 

exposure to oxygen depending on marsh type and nutrient availability (Thomas et al., 

2009).   

 Redox potential in Everglades’ soils from WCA2A have been shown to stabilize 

at about -200 mV at soil depths of 2 to 10 cm when flooded (Thomas et al., 2009).  At 

unimpacted soil depths of 20 cm, redox potential was lower than -200 mV, indicating that 

Everglades’ soil reached the methanogenic redox range (Thomas et al., 2009).   

Moderately impacted soils from the Everglades have higher mean redox potentials (-134 
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mV) than highly impacted and reference soils (-185 mV) (Thomas et al., 2009).  Within 

the moderately impacted soils, root production was higher and decomposition slower, 

which may explain the higher redox potentials (Thomas et al., 2009).  Similarly, Qualls et 

al. (2001) found no significant difference between P impacted (cattail dominant) and P 

unimpacted (sawgrass dominant) redox potentials at 12.5 cm soil depth.  Redox potential 

is strongly influenced by microbial activity as determined by nutrient and substrate 

quality (de Mars and Wassen, 1999).   

 2.3.5 Microbial Activity 

 Soil temperature, gross primary productivity, soil moisture and hydroperiod  

(Penton and Newman, 2008; Vargas et al., 2010), litter quality and enzyme activities 

(Penton and Newman, 2008), and soil management (Knight and Dick, 2004) influence 

soil microbial activity.  Microbial contribution to total ecosystem CO2 efflux changes 

with vegetation type and different substrates used for energy by the microbial community 

(Law et al., 2001; Bowling et al., 2002).  Enzyme diversity in soil strongly influences the 

biological processes occurring in the soil, such as organic matter degradation and nutrient 

cycling (Marx et al., 2001).  Soil enzymes are good indicators for biological functional 

diversity and quality in response to disturbance (Marx et al., 2001) and have been 

proposed as a soil-quality indicator (Knight and Dick, 2004; Zhang et al., 2011).  The use 

of extracellular enzyme activity (EEA) assay analysis can provide insight into the 

microbial nutrient requirements (Corstanje et al., 2006).  Once enzymes are released by 

microbes, EEA is governed by environmental controls and may persist in predictable 

patterns at the community level (Sinsabaugh et al., 1997) such as ridge, slough, or tree 

island communities.  Feedback systems determine the metabolism and production of 
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extracellular enzymes (Sinsabaugh et al., 1997).  Nutrient-limited environments, such as 

the Everglades, are dependent upon microbial decomposition of organic matter to release 

nutrients back into the system (Rejmánková and Sirová, 2007).  The quality of 

decomposing organic matter determines release of nutrients by extracellular enzymes 

(Rejmánková and Sirová, 2007).   

 Abiontic enzymes are those enzymes of biological origin no longer associated 

with living cells (Skujins, 1976).  A significant fraction of soil enzyme activity originates 

from abiontic enzymes sorbed to clays or humic colloids (Knight and Dick, 2004).  

Substrate utilization by bacteria is governed by extracellular enzymes (Sinsabaugh et al., 

1997), and enzyme-catalyzed reactions in organic matter degradation are considered the 

rate-limiting step (Penton and Newman, 2008).  Penton and Newman (2008) proposed 

that higher EEA and subsequent OM respiration may contribute to elevation 

differentiation of the Everglades ridge and slough landscape.  They showed EEA from 

ridges (high C:N ratio) had lower activity than that in sloughs (low C:N ratio).  Ridges 

have shorter hydroperiods than sloughs, and ridge vegetation litter has been shown to 

limit respiration (Amador and Jones, 1995).  Similarly, tree islands are higher (drier) than 

ridges and may have lower enzyme activity associated with litter quality and nutrient 

availability.    
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III.  OBJECTIVES AND HYPOTHESES 

3.1 Objectives 

 Everglades tree island and ridge soil C efflux depends on the effects of water 

levels.  Organic matter deposition and decomposition are dynamically interlinked with 

water levels on Everglades’ tree islands and ridges (Fig 1; Larsen et al., 2011).  Soil CO2 

and CH4 efflux research from tree islands and ridges can provide targets for “getting the 

water right” by indicating critical water levels for maintaining, or enhancing, the current 

extent of tree islands in the Everglades.  This study evaluated whether water levels are a 

main driver of C efflux in the Everglades, and provide empirical evidence for rates of C 

efflux at varying water levels for use as a baseline in management decisions.  The 

specific goals of this research were to estimate annual C efflux from Everglades’ tree 

islands and ridges, determine the significance of Everglades’ soils as sources of CO2 and 

CH4, determine nutrient or OM quality limitation of respiration seasonally, and to 

determine extracellular enzyme activity differences between tree islands and ridges 

seasonally.   

 

Hypothesis I:   Soil CO2 respiration on tree islands and ridges varies with water level. 

Soil respiration is significantly influenced by hydrologic conditions, i.e., drying and 

wetting cycles (Blodau and Moore, 2003; Jauhiainen et al., 2005; Hirano et al., 2009).  

The anthropogenically altered subtropical peatland of the Florida Everglades has a 

temporal pattern of drying and wetting cycles (Stofella et al., 2010) which can greatly 

influence CO2 efflux due to the availability of oxygen for respiration.  Soil CO2 efflux is 

expected to be negatively correlated to water levels (stage).   
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Hypothesis II:  Soil OM decomposition by methanogenic pathways varies with water 

level. 

As freely dissolved/available oxygen disappears, decomposition of OM requires the use 

of other electron acceptors, such as oxidized forms of nitrogen (e.g., NO3
-, NO2

-) and iron 

(Fe3+), eventually reaching CO2 as the terminal electron acceptor and producing CH4 as 

the end product of the anaerobic OM decomposition pathway.  Everglades soils have 

been shown to reach methanogenic redox potentials (Thomas et al., 2009) with CH4 

production 1/10th to 1/100th of CO2 production (DeBusk and Reddy, 2003).  Tree island 

and ridge soil used in this study is expected to produce 1-10% of total C efflux as CH4, 

with higher rates of CH4 efflux under flooded and low redox conditions.   

 

Hypothesis III:  Soil CO2 and CH4 production from Everglades tree islands and ridges 

varies between wet and dry conditions depending on changes in the quality of organic 

matter and quantity of labile P.   

Flooded conditions slow OM decomposition, therefore allowing a build-up of labile C to 

occur.  Microbial respiration of OM can additionally be regulated by nutrient availability  

(Debusk and Reddy 2003).  High soil total P (DeBusk and Reddy, 2003), P amendments 

(Amador and Jones, 1995) and various labile C substrate amendments (Amador and 

Jones, 01993) all have been shown to increase CO2 and CH4 production from Everglades 

soil.  Similarly, CO2 and CH4 production is expected to increase with labile C, P, and 

labile C + P enrichments to the peat soils used in this study, and influences are expected 

to be higher from ridges than tree islands.  Furthermore, the response to labile C and 
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labile C + P enrichments is expected to be greater from dry condition soils because OM 

decomposition has been occurring in the presence of oxygen. 

 

Hypothesis IV:  Soil extracellular enzyme activity from Everglades’ tree islands and 

ridges varies with wet and dry conditions depending on changes in the quality of organic 

matter and labile P.   

Extracellular enzyme activity provides an indication, or the microbial demand, for 

nutrients (Marx et al., 2001).  Autochthonous (i.e., in place) accretion of peat is theorized 

to be the dominant control of vertical accretion in the Everglades (Larsen et al., 2011).  

The litter falling on Everglades tree islands and ridges have poorer quality (i.e., high C:N 

ratios and lignin contents) than slough litter, which reduces microbial activity (Larsen et 

al., 2011) and may contribute to faster slough decomposition and the elevation 

differences (Penton and Newman, 2008).  Relatively higher EEA (β-glucosidase, β-N-

glucosaminidase, acid phosphatase, and sulfatase) is expected from ridge soil compared 

to tree island soil.  Additionally, labile C, P, and labile C + P enrichment should increase 

EEA, other than acid phosphatase, by removing the P and labile C limitation.  

Conversely, any labile P enrichment will lower acid phosphatase activity from both tree 

island and ridge soils.  Due to oxygen exposure, EEA of dry condition soils is expected to 

be higher.   
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4.  METHODS 

4.1 Site Description 

This study was conducted at the Loxahatchee Impoundment Landscape 

Assessment (LILA) experimental landscape constructed at the Arthur R. Marshall 

Loxahatchee National Wildlife Refuge (LNWR), Boynton Beach, Florida. Prior to the 

construction of LILA in 2002/2003, the site was actively managed until the early 1980’s 

by practicing conventional agriculture and left fallow over the next two decades.  The 

LILA study site consists of four identical ‘macrocosms’, denoted as M1 (the 

northernmost), M2, M3 and M4 (the southernmost) (Fig. 2). Each macrocosm 

encompasses key features of the Everglades including ridges, sloughs, and tree islands.  

Macrocosms 1 and 2 were constructed from the same peat which is classified as 80% 

Okeelanta muck and 20% minor components (Sullivan et al., 2010).  Prior to 

construction, the Okeelanta muck had an mean depth of 0.57 m and the mean TP level in 

the surface (0-10cm) soil was 575 mg kg-1.  Except for TP in the upper 10 cm of soil, soil 

nutrients in the impoundment closely mimic the natural levels found in the Everglades.  

The hydrology within the macrocosms is managed by operating an electric pump (1.84 

m3 s-1) with a series of water control structures and recording stage gauges.  The pump 

allows for manipulation and management of the stage, hydroperiod, and flow rate (Fig. 3; 

Stofella et al., 2010).  One purpose of LILA is to study the responses of biological 

communities to the Everglades restoration strategies, including changes in hydrology and 

other critical processes associated with the CERP goal of “getting the water right” in the 

Everglades (Aich et al., 2011).   
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The landscape in each LILA macrocosm includes two 71 x 43 m islands, one 

limestone-based and the second peat-based. The limestone-based islands represent the 

‘fixed’ tree islands formed around bedrock outcrops throughout the central and southern 

Everglades, and the peat-based islands resemble the ‘battery’ islands common in LNWR 

(van der Valk et al., 2007). Each island has a flat central plateau that is 0.9 m above the 

surrounding slough surface (4.2 m National Geodetic Vectical Datum [NGVD] 29) 

similar to the elevation difference in the Everglades (van der Valk et al., 2007; Aich et 

al., 2011). The central plateau of the limestone islands consists of the limestone core 

placed in a 14 x 49 x 0.6 m trench, with 0.3 m of peat fill placed on top of the limestone. 

While the relict soil found within the tree island footprint was not excavated, the peat that 

caps the islands was excavated from the sloughs in the immediate surroundings and the 

limestone was mined from the underlying bedrock near the site. All the islands have side 

slopes of 16:1 along the short (north-south) axis, and 12:1 in the east-west direction (van 

der Valk et al., 2007; Aich et al., 2011).  Each tree island is divided into four quadrants 

for tree plantings with a spacing of 1, 1.66, 2.33 and 3 m between tree centers.  Located 

in the high density plantings (1 m) are soil elevation tables (SETs) on the center portion 

(head high, HH) and edge portion (head low, HL), of each tree island.  For this study, two 

western tree islands were studied with M1W being a peat based and M2W being a 

limestone based tree islands (Fig. 2).  Installed around HH and HL SETs on M1W and 

M2W are four soil CO2 efflux collars (A-D; Fig2 and 4).  In addition to tree island plots, 

one ridge plot (MR) was sampled from each macrocosm (M1 and M2) with four collars 

in each plot.   
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4.2 Soil characteristics 

Soils studied from tree islands are summarized in Table 1.  Thirteen soil cores 

were collected in June 2010 around the tree island study plots on M1 and M2.  Soils had 

a mean (n = 13) pH of 7.70, field bulk density of 0.64 g cm-3, ash free (%) of 79.58, total 

phosphorus (TP) of 176.92 µg g-1 dw, total nitrogen (TN) of 6.53 mg g-1 dw, and total 

carbon (TC) of 111.96 mg g-1 dw in 2010.  The mean (n = 13) TC:TP ratio was 675:1 

from 2010, indicating a high P limitation according to the required 106:1 Redfield ratio.   

4.3 Stage 

Water level (stage) at LILA is adjusted according to an operational hydrograph 

that mimics the seasonal flooding (high water levels) and dry down (low water levels) of 

water in Everglades (Stofella et al., 2010; Fig. 3).  M1 had an meand stage of 4.68 m with 

a maximum of 4.94 m occurring 7-8 October, 2010 and a minimum of 4.22 m occurring 

22 April, 2011 over the in situ study period (23 April, 2010 to 22 April, 2011).  

Precipitation patterns in the Everglades drive the annual wet and dry cycle.  Greater 

amounts of precipitation are received during the summer and fall months (June through 

September) and this period is considered the wet season (Duever et al., 1994).  Peak 

water levels lag behind the precipitation and occur in October or November (Fig. 3; 

Stofella et al., 2010).  According to the operational hydrograph for LILA, water levels 

remain highest from September through January, and lowest from April through June.  

For the purposes of this study investigating the influence of water levels on CO2 and CH4 

production, soils tested were from wet and dry conditions when water levels were high 

and low, respectively.   
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4.4 Soil Surface Elevations 

A soil surface elevation map was generated as an ARC-GIS interpolation file 

from surveyed soil elevations made at the time of tree planting (Stofella et al., 2010).  

Soil elevations (Fig. 5) were the same for all collars from M1 and M2 -HH plots but 

varied within the HL and MR plots (Fig. 5).  Relative water depth (RWD) was 

determined for each CO2 efflux measurement from each collar by subtracting the collar 

soil elevation from the respective 15 minute macrocosm raw stage.  Positive RWD values 

indicated water levels above soil surface and negative RWD values indicate water below 

soil surface.     

4.5 In situ CO2 Efflux 

In situ soil CO2 efflux measurement from LILA tree island and ridge soils were 

conducted in May 2010 (low water level), August 2010 (rising water level), October 

2010 (high water level) and March 2011 (falling water level).  Soil CO2 efflux was 

measured with an LI-8100 infrared gas analyzer (IRGA) and LI-8150 multiplexer with 

automated 104 long term chambers (LICOR, Lincoln, NB) sampling installed soil collars 

on M1W and M2W (Fig. 2).  Collars (four collars per plot, three plots per macrocosm, 

and two macrocosms, 32 total collars) were measured once per sampling session for 

approximately 24 h.  Over the 24 h period, samples were collected once every 3 h to 

conserve battery life (two 75 amp hour batteries in series).  Each sample was taken over a 

150 s period, with a dead band of 30 s.  Before removal of bad values, individual collars 

had a minimum of 7-8 samples taken per season.  Longer periods of deployment over 

weekends occurred for plots.  Plots studied were M1 head high (M1HH), M1 head low 

(M1HL), M1 middle ridge (M1MR), M2 head high (M2HH), M2 head low (M2HL), and 
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M2 middle ridge (M2MR).  When deployed on the tree islands, the LI-8100 allowed 

sampling on two HH and two HL collars per 24 h period.  Therefore, samples from all 

four plot (i.e., HH) collars occurred over a 48 h period.   

The hardware and software associated with the LI-8100 allowed for recording of 

additional parameters other than CO2 efflux.  These parameters include initial value, 

mean, and range of CO2 concentration, along with relative humidity, voltage, date, time 

and flow rate of each sample.  Should the machine stop recording, these parameters can 

help diagnose potential faults.  Additionally, plotting initial CO2 concentration and CO2 

efflux over time can show diurnal patterns associated with flora photosynthetic 

production and respiration.   

On M2 East and West tree islands, trees were selected for a fertilization 

experiment with Control (C), Nitrogen (N), and Phosphorus (P) soil enrichments.  An 

amount three times an individual tree incorporates annually was applied (72 g N or P) to 

the soil under the trees.  The initial annual fertilization occurred June 2009-2010, and 

fertilization began again in June 2011.  Before the first application in June 2011, soil CO2 

efflux collars were installed under three trees per soil enrichment per island, for a total of 

18 collars, six per enrichment.  Soil CO2 efflux was measured by LI-8100 IRGA with 103 

survey chamber (LICOR, Lincoln, NB), walked to the collars, and moved between each 

sample.  Samples were collected for 150 seconds, with a 30 second dead band, with 

parameters recorded as discussed above. Measurements were made 3 d before, and 4, 11, 

18, and 26 d after the fertilization.   
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4.6 Annual estimation of CO2 efflux 

 All in situ CO2 efflux and daily mean CO2 efflux values were plotted against 

RWD for each plot and a linear regression calculated (Table 2 and 3, respectively).  Daily 

mean stage values were used for the entire in situ study period (April 23, 2010 to April 

22, 2011) to calculate daily mean RWD.  Each plot’s linear regression equation was 

applied to the daily mean RWD to calculate CO2 efflux in µmol m-2 s-1.  Daily CO2 efflux 

values were converted into µmol m-2 d-1, summed for the study period, and converted into 

g C m-2 y-1. 

4.7 Soil core incubation 

Intact soil core incubations were conducted in the laboratory with the LI-8100 and 

LI-8150 utilizing a multiplexed flask system.  Triplicate intact cores of LILA soils were 

collected from study plots to a depth of 20 cm using 50 cm long clear acrylic tubing with 

a 5.7 cm inside diameter.  Water levels in cores were raised to 15 cm above the soil 

surface in the cores by adding LILA surface water before transport to laboratory.  Upon 

arrival at the laboratory, core tubes were fitted with rubber caps affixed with two quick 

connect fittings for connection to the LI-8150 and ambient air was flushed through a 

diffuser, into the water column and headspace, and exited out of the outflow.  Intact cores 

were flushed for 24 d before any gas sampling occurred.  Measurements of CO2 efflux 

from soil cores occurred over 15 min duration with the LI-8100.  Sampling for CH4 

measurements occurred simultaneously by collecting 10 mL column air samples with air-

tight syringes, injecting sample into 20 mL vials with 10 mL N2 gas headspace to 

maintain atmospheric equalization.  Samples for CH4 efflux were taken every 5 min 
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during the 15 min CO2 efflux measurement and analyzed by gas chromatography and 

methane (see below).   

Oxidation-reduction (redox) probes were made by welding platinum (Pt; ~1.3 cm 

length) to an insulated copper wire and sealing with heat-shrink tubing (Thomas et al., 

2009).  Copper wire was cut to lengths of 55 cm to keep wire ends above the water in the 

core tubes.  A total of 12 probes were made, and two were inserted to 10 cm soil depth in 

one of three replicate intact cores from each plot.  Redox potential of intact soil cores was 

taken after each CH4 incubation.    Redox was measured by a multimeter with an 

Accumet 13-620-61 calomel reference electrode to complete the circuit.   A +250 mV 

correction was applied to all readings (Thomas et al., 2009).   

4.8 Field soil collection 

Soil samples for physiochemical analysis were taken from around each of the soil 

collars in January (wet condition) and April 2012 (dry condition).  Intact cores were 

taken by inserting a 2.3 cm i.d. cellulose-acetate-butyrate (CAB) tube to a depth of 10 cm 

below the soil surface.  To minimize compaction, the core cutting edge was fitted with 

flexible razor blades to cut fine roots.  Depth of the void and soil plug were verified by 

inserting a small ruler into the hole.  Cores were extruded intact into a sample bag labeled 

with macrocosm, island, collar, date and collector and returned to the laboratory (at 

ambient temperature) for analysis within 72 hours.   

4.9 Gas chromatography 

Measurement of CO2 and CH4 production, and CH4 efflux was performed with a 

Hewlett Packard 5890 Series II Gas Chromatograph (GC) fitted with an automated 

headspace sampler (HP-7694).  Carbon-dioxide was converted to CH4 via a methonizer 
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(Ni catalyst and H2 gas stream, Shimadzu MTN-1) at 450°C (Amador and Jones 1992, 

Amador and Jones, 1995) and analyzed by flame ionization detection (FID) following 

retention on a HEYASEP-R column (Alltech, Inc.).  Peak area was interpolated by ELAB 

software version 4.02R.  Peak areas were converted into moles (vial enrichment) or ppm 

(CH4 efflux) based on a standard curve of known gas concentrations.  

4.10 Vial enrichment 

Subsamples of soils collected during January (wet condition) and April (dry 

condition) 2012 were analyzed for CO2 and CH4 on GC.  Nominal 4.5 g subsamples of 

1:1 g freshweight soil g-1 distilled deionized water (DDIH2O) were incubated in 20 mL 

headspace vials fitted with rubber septum and aluminum cap.  Replicate vials were 

amended with a water control (Con; 0.125 mL DDIH2O), glucose (G; 0.125 mL 0.2M 

Glucose), phosphorus (P; 0.125 mL 0.2M K2HPO4), or glucose and phosphorus (GP; 

0.125 mL of 0.2M Glucose and 0.2M K2HPO4) flushed with CO2- free air for 1 min and 

evacuated five times.  Samples were analyzed once a day for 5 d.  After each analysis, 

samples were flushed and purged.   

Tree island soils studied had a mean (n = 13) TP of 176.92 µg g-1 dw and TC of 

111.96 mg g-1 dw (Table 1).  The enrichments of vials by 0.125 mL of G and P in 0.2M 

concentrations equates to additions of +0.3 mg C g-1 and +775 µg P g-1, respectively.   

The mean TC:TP ratio before any enrichment was 676:1, with G enrichment was 678:1, 

with P enrichment was 117:1, and with GP enrichment was 117:1 (Table 1).   

4.11 Extracellular Enzyme Activity 

The measurement of EEA was performed using a Cytoflour 4000 96-well plate 

reader.  A 1 mL sub-sample was taken from all vials (above) after the five days of 
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incubation and serially diluted to 10-3 DDIH2O.  Four methylumbelliferyl-based (MUF) 

substrates were added to the diluted and plated samples: MUF-phosphate (MUF-P), 

MUF-β-D-glucosidase (MUF-C), MUF-sulfate (MUF-S), and MUF-N-acetyl-β-D-

glucosaminide (MUF-N).  The plates amended with MUF-C, -S and –N were incubated 

for 24 hours and MUF-P for 2 hours in the dark at room temperature (Sinsabaugh et al., 

1997).  The MUF-C substrate tests for β-glucosidase enzyme activity, MUF-S tests for 

sulfatase enzyme activity, MUF-N tests for β-N-glucosaminidase enzyme activity, and 

MUF-P tests for phosphatase enzyme activity.  Plates were read with excitation of 360 

and emission of 460 nm, respectively.  Values were converted to µmol MUF liberated per 

gram dry weight of soil per hour (µmol gdw-1 h-1).    

4.12 Statistical Analysis 

All statistical analyses were conducted with SPSS (18.0, Chicago, Illinois, USA).  

Results were considered statistically significant with p < 0.05.  The effect RWD had on 

soil CO2 efflux was compared by linear regression (r2).  Collinearity of other independent 

variables with RWD was tested.   

Differences in CO2 production, CH4 production, and all EEA were tested with 

ANOVA and considered significant if p < 0.05.  Multiple comparisons for enrichment 

(Con, G, P, and GP) were evaluated with Tukey HSD for CO2 production, CH4 

production, and all EEA.  Before ANOVA’s were run, all data were tested for normality 

with Shapiro-Wilk’s tests.  Data that were not normal were log10 or square root 

transformed to approximate normality and outliers were removed before ANOVA 

analysis.  For CH4 production, the Kruskal-Wallis multiple nonparametric comparison 

tests of means was done because this data was not normally distributed after 
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transformation.  After the Kruskal-Wallis test, ANOVA was conducted and had the same 

results, and Tukey HSD was used to determine enrichment comparisons. 

The differences between wet and dry conditions in CO2 production, CH4 

production, and all EEA were tested by t-test after normalization.   
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V.  RESULTS 

5.1 In situ CO2 efflux 

In situ soil CO2 efflux from M1- and M2- HH and HL plots did not show the 

diurnal pattern common in other studies (e.g., Hirano et al., 2009).  From M1HL (Fig. 6), 

CO2 efflux was variable over the 48 h shown (Fig. 6 A), but remained more or less 

constant.  However, the concentration of CO2 in the chamber at the beginning of 

samplings did show the diurnal pattern (Fig. 6 B).   

Within each plot replicate collars (A-D) vary in measured CO2 efflux rates, with 

M1HL collar A frequently having CO2 efflux rates higher than collars B, C, and D (Fig. 6 

A).  Overall, in situ soil CO2 efflux ranged from 0.5 to 23.3 µmol m-2 s-1 from HH plots, 

0.1 to 21.8 µmol m-2 s-1 from HL plots, and from 0.4 to 32.9 µmol m-2 s-1 from MR plots 

(e.g., Fig. 8 and 9).  Values provided by LI-8100 can be both positive (CO2 leaving soil 

surface) or negative (CO2 entering soil) and were all rounded to the nearest 0.1 µmol m-2 

s-1.  Occasionally negative values were generated.  This indicates CO2 uptake by the soil 

or water surface (when flooded).  However, post-processing in the LICOR system 

showed these did not meet a signal-to-noise criteria (as determined by linearity of efflux 

with time in the LICOR system) and were, therefore, eliminated.     

5.2 Influence of water levels on CO2 efflux 

The HH plots from M1- and M2- experienced no flooding (RWD > 0) but did 

experience near-saturated conditions (RWD ≥ -0.2), while all other plots experienced at 

least 140 days of flooding (Fig. 5).  In situ CO2 efflux was significantly (p < 0.001) 
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negatively influenced by water levels, as represented by RWD, from all study plots 

(Table 2, Fig. 7 and 8).  Combining tree island (HH and HL) CO2 efflux into one linear 

regression shows that RWD significantly (p < 0.001) influences CO2 efflux (Table 2; Fig. 

7).  Similarly, combining M1- and M2- MR plots yields an equally significant influence 

of RWD on CO2 efflux (Table 2, Fig. 9).  Tree island substrate had a significant (p < 

0.001) influence on in situ CO2 efflux between the M1- and M2-HH plots during the 

April 2010 sampling when relative water depth (RWD) was <-0.4 m.  The RWD effect 

on CO2 efflux is significant (p < 0.001) when using mean daily CO2 efflux rates for each 

plot (Table 3, Figure 11).   

5.3 Estimating annual C efflux 

All in situ soil CO2 efflux and mean daily CO2 efflux linear regressions used for 

interpolation of annual C loss estimates (as g C m-2 y-1) are significantly influenced by 

RWD (p < 0.001, Table 2 and 3).  Estimates were greater from the daily mean CO2 efflux 

interpolation by 64 – 599 g C m-2 y-1.  The estimates were greatest from the two HH 

plots, but differed by more than 1,000 g C m-2 y-1 with M1 greater than M2 (Tables 1 and 

2).  The HL plots had smaller estimates of loss than HH plots due to their flooding.  

Additionally, HL plots had similar estimates even though their slopes (rates) were 

different (Tables 1 and 2).  Combining tree island plots into one linear regression 

produces highly significant and similar estimates of C loss.  The MR plots had different 

estimates due to in situ efflux variability from M2.  The mean daily CO2 efflux linear 

regression removes a substantial portion of this variability and yields an estimate from 
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M2 closer to that of M1 (Table 3) than was found with the use of all in situ CO2 efflux 

values (Table 2). 

5.4 Intact soil core 

Intact soil core CO2 efflux was significantly (p ≤ 0.008) influenced by RWD, and 

plot soil (elevation) but not significantly (p = 0.102) influenced by their interaction 

(Table 4).  Mean of CO2 efflux rates from the replicate intact cores and in situ studies by 

plot are presented in Table 6.  Intact core CO2 efflux rates represent between 16 and 54% 

of mean in situ mean CO2 efflux rates (Table 6).  Intact soil core CH4 efflux was not 

significantly influenced by RWD (p = 0.177) or the combination of RWD and elevation 

(p = 0.264).  However, CH4 efflux was significantly (p = 0.038) influenced by the 

elevation that soil was collected (Table 4).   The ratio of CH4 to CO2, as a percentage, 

ranged from below detection (BD) to over 3000% (Table 7).   

Redox potential was significantly (p < 0.001) influenced by RWD, elevation soil 

was collected, and their combination is shown in Table 3.  Redox potential decreased into 

anaerobic ranges (Eh = -200 to +400 mV) in all intact soil cores (Table 5).  Methanogenic 

redox range (Eh < -200) was reached by all soil cores.  However, redox potential did not 

have a significant influence on rates of CH4 efflux (data not presented).        

5.5 Vial enrichment incubation 

Soils collected from HH and HL during both wet (January) and dry (April) 

conditions showed a significant (p < 0.05) increase in potential CO2 production with the 

G and GP enrichment (Fig. 12).  Soils from MR were the most variable and showed no 
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significant effect from enrichment in the wet condition.  However, MR soils showed 

significant (p < 0.05) increases in potential CO2 production under the dry condition with 

G and GP enrichments (Fig. 12).  Between wet and dry condition soils, HH soils under 

Con and P enrichment had significantly (p < 0.05) more CO2 production under wet than 

dry condition soils (Fig. 12).  Conversely, HH soils under G enrichment had significantly 

(p < 0.05) greater CO2 production under dry than wet condition soils (Fig. 12).  From HL 

soils, dry condition CO2 production was significantly (p < 0.05) greater than wet 

condition soils greater under G and GP enrichments (Fig. 12).   

Dry condition soils showed a significant (p < 0.05) increase in potential CH4 

production in the G and GP enrichments from all plot soils (Fig. 14).  No significant 

increases in CH4 potential production from wet condition soils were found from any plot 

(Fig. 17 A).  Only the GP wet condition enrichment and G dry condition enrichment 

showed significant increases in potential CH4 production from HH to HL to MR (Fig. 17 

A and B).  Wet condition soils had greater CH4 potential production than dry season 

condition soils from C and P enrichments, while only the G enrichment from HH dry 

condition was greater than wet condition soil.  Wet condition soils showed a CH4/CO2 

ratio percentage [(CH4/CO2)*100] mean of 0.95% across all enrichments, while dry 

condition soils had a mean of 21.61%.     

5.6 Extracellular Enzyme Activity 

Glucosidase EEA was most variable from MR soils from both the wet and dry 

conditions (Fig. 15).  During the wet condition, enrichment had no significant effect on 

glucosidase EEA from any plots (Fig. 15).  During the dry condition, HL soils showed 
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significant (p < 0.05) enrichment effects from G and GP enrichments (Fig. 15).  The GP 

enrichment from HL dry condition soils encouraged significantly (p < 0.05) greater 

glucosidase EEA than wet condition soils (Fig. 15).   

Glucosaminidase EEA from wet and dry condition soils show no significant 

increases with Con, G, P, or GP enrichments (Fig. 16).  The P enrichment from HL and 

MR soils showed significantly (p < 0.05) higher activity from wet condition soil (Fig. 

16).    

Wet condition soils from HH and MR showed no significant phosphatase EEA 

enrichment effect (Fig. 17).    However, from HL wet condition soils, the G, P, and GP 

enrichments had significantly (p < 0.05) lower activity than Con.  Soils from dry 

condition under the G enrichment appear to have significantly enhanced phosphatase 

EEA from all plot soils, but none were significant due to variability (Fig. 17).  

Conversely, all plot soils from dry conditions had significant (p < 0.05) reductions of 

phosphatase EEA under the P and GP enrichments (Fig. 17).  The P and GP enrichments 

had significantly greater activity from all plot wet condition soils than dry condition soils 

(Fig. 17).  Additionally, HH and HL dry condition soils had a significantly (p < 0.05) 

greater activity with G enrichment over wet condition soils (Fig. 17).   

Sulfatase EEA was not significantly increased with G, P, or GP enrichment over 

Con from any plot wet condition soils (Fig. 18).  Dry condition GP enrichment from HH 

and HL soils had significantly (p < 0.05) increased activity over Con (Fig. 18).  Wet 

condition soils all had significantly greater sulfatase EEA than dry condition soils (Fig. 

18).    
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VI.  DISCUSSION 

6.1 Factors influencing in situ CO2 efflux 

Hydrology is one of the main drivers of soil CO2 and CH4 efflux from peatland 

and wetland soils worldwide (Davidson et al., 2000; Blodau and Moore, 2003; Furukawa 

et al., 2005; Jauhiainen et al., 2005; Hirano et al., 2009).  High soil moisture and flooded 

soil limit oxygen’s ability to diffuse into the soil (Mitsch and Gosselink, 2007).  Both in 

situ and laboratory studies have shown that high RWD, or water above the soil surface, 

reduces rates of CO2 efflux from peatland and wetland soils (DeBusk and Reddy, 2003; 

Furukawa et al., 2005; Melling et al., 2005; Hirano et al., 2009).  The in situ CO2 efflux 

data presented here were significantly influenced by RWD from all LILA tree island and 

ridge plots studied (Table 2; Fig. 8 and 9).   Combining CO2-C efflux and C tree 

production data into a C budget can be used to find where equilibrium with water levels 

slow or reverse tree island and ridge loss in the Everglades (Fig. 1; Larsen et al., 2011).    

These results indicate that water levels are a significant driver of CO2 efflux from the 

Everglades (Hypothesis I).  However, only 21-30% of M1W, 68-73% of M2W, and 40-

65% of MR CO2 efflux variability are explained by RWD.   

In situ CO2 efflux values from LILA tree island and ridge soils have high 

variability (Fig. 9), with peak rates of CO2 efflux two to four times higher than many 

other literature rates (e.g., Jauhiainen et al., 2005; Hirano et al., 2009).  Over the study 

period, rates of CO2 efflux ranged 0.5 to 23.3 µmol CO2 m
-2 s-1 from HH, 0.1 to 21.8 

µmol CO2 m
-2 s-1 from HL, and 0.4 to 32.9 µmol CO2 m

-2 s-1 from the MR soils studied.  

Rates of CO2 efflux presented here range more than literature values of 2.32 to 12.34 
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µmol m-2 s-1 found in a mixed peat swamp forest in Malaysia (Melling et al., 2005).  

Additionally, annual mean CO2 efflux values (Table 6) are higher than the mean rates 

found in wet tropical peatland forests of Indonesia which ranged 0.06 to 3.16 µmol m-2 s-1 

(Furukawa et al., 2005), 3.06 to 3.85 µmol m-2 s-1 (Jauhiainen et al., 2005), and 2.98 to 

4.02 µmol m-2 s-1 (Hirano et al., 2009).  Furthermore, from peat on a volcanic island, CO2 

efflux ranged 1.07 to 2.15 µmol m-2 s-1 (Chimner, 2004).  However, efflux rates ranged 0 

to 20 µmol CO2 m
-2 s-1 from papayrus wetlands in Africa (Jones and Humphries, 2002) 

and hitchcock wetlands in the Amazon (Morison et al., 2000).  These two ecosystems are 

characterized by high productivity and seasonal water fluctuations similar to the 

Everglades.  As has been mentioned previously, high rates of primary productivity and a 

build-up of OM with flooded conditions can produce high rates of CO2 efflux. 

From LILA soils, CO2 efflux did not show a diurnal signal (Fig. 6 A).  Many 

studies have shown a diurnal signal to CO2 efflux, where higher rates are associated with 

low- to no- light conditions due to tree respiration (e.g., Hirano et al., 2009).  Trees were 

planted at LILA <5 years before this study takes place.  Young stands have been shown 

to have higher rates of soil CO2 efflux than older stands (Saiz et al., 2006).  In contrast to 

no CO2 efflux diurnal signal, the atmospheric concentration of CO2 at measurement 

initiation shows the diurnal signal expected (Fig. 6 B).  Concentration of CO2 begins to 

rise around sunset (~1800 hrs), when trees can no longer photosynthesize and respire 

CO2, peaking in the early morning hours (0100-0500 hrs).  As light returns (~0600 hrs), 

concentrations of CO2 fall with initiation of photosynthesis and remain low until sunset.   
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Mean daily CO2 efflux from LILA tree islands also has a significantly (p < 0.001) 

negative influence from RWD (Table 3, Fig. 10).  With the substantial reduction in n 

from Table 2 to Table 3, there was no less significance in confirmation that RWD does 

significantly influence CO2 efflux (Hypothesis I), indicating that inclusion of all in situ 

efflux values may not influence results substantially.  Additionally, the amount of 

variability accounted for by RWD was only slightly different, with M1 having 

consistently the lowest accountability.   

Dinsmore et al. (2009) found that CH4 and N2O built up in the water and soil 

matrix of flooded mesocosms are released upon drawdown of water levels.  The peat core 

tree island (M1) consists of about 90 cm of peat piled up in the center (HH) that is 

potentially contributing to the trapping of CO2 from soil respiration during flooded 

conditions, while the limestone core tree island (M2) only has 30 cm of peat on top of 60 

cm of limestone core that could contribute to this phenomenon.  During the dry season 

when RWD declines below -0.4 m, M2 had significantly (p < 0.001) lower peak efflux 

rates than M1 (Fig. 8 and 9).  With M1HH having more soil, not rock, the potential to 

slowly release trapped CO2 from soil depth is greater than that of M2HH.  When water 

levels are lowered below the soil depth of M2HH (30 cm, or in RWD terms, -0.30 m), the 

water table lies in the limestone portion of the tree island.  Sullivan et al. (2010) showed 

that groundwater levels in the center of M2 during the dry season are drawn down more 

dramatically than M1 (mean of 6.33 cm and 1.21 cm, respectively).  When soils are not 

flooded, drops in soil moisture limit both root and microbial respiration (Liu et al., 2002, 

Bahn et al., 2008).    In situ CO2 efflux rates below -0.4 m RWD range between 4 and 8 
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µmol CO2 m
-2 s-1 from M2HH, while M1HH CO2 efflux rates continue to rise from the 4 

to 12 µmol CO2 m
-2 s-1 range to between 9 and 18 µmol CO2 m

-2 s-1 (Fig. 9).   With a 

6.33 cm water table draw down mean in the center of M2 (the HH plot), the -0.4 m RWD 

calculation is no longer accurate and lower soil moisture may be limiting soil respiration 

from this plot.   

Root and microbial respiration can contribute substantially to overall soil CO2 

efflux (an estimated 75% in a temperate rain forest; Bowling et al., 2002).  Krauss et al. 

(2012) found 79% of the variation in CO2 efflux from mesocosms and tidal freshwater 

cypress swamp in situ measurements was due to root biomass and root length, 

respectively, which aligns with several other studies reporting increased soil respiration 

with higher biomass (e.g., Chimner and Ewel, 2004).  Tree biomass work conducted at 

LILA shows M1 has greater aboveground biomass than M2 (Ross et al., unpublished), 

which coincides with M1 being planted one year earlier than M2 (Stofella et al., 2010).  

Biomass estimates above each LICOR tree island collar from an inverse distance 

weighted (IDW) ArcGIS calculation indicate biomass is significantly (p = 0.005) 

correlated with annual mean CO2 efflux from each collar (Fig. 19).  The IDW used may 

not properly calculate biomass, but for the purposes of correlating biomass to mean CO2 

efflux, the results are significant and show CO2 efflux is greater from higher biomass 

areas, as has been shown previously (Chimner and Ewel, 2004).   

Furthermore, higher amounts of C inputs, and thus more labile C, have been 

shown to increase soil respiration rates (Allen et al., 2000; Trumbore, 2000; Bahn et al., 

2008).  Scinto et al. (unpublished) have been collecting litter fall mass in litter traps from 
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LILA tree islands within one meter of respiration collars sampled during this study.  The 

sum total of litter fall (g C m-2 y-1) from traps adjacent to respiration collars is also 

significantly (p = 0.005) correlated with annual mean CO2 efflux (Fig. 20).  Biomass 

differences between M1 and M2 –HH can also be seen in Fig. 20 where M1HH has mean 

litter fall (359 g C m-2 y-1) more than double M2HH (159 g C m-2 y-1).  Higher biomass 

and litter fall help identify, through literature, potential causes for M1HH to have higher 

in situ CO2 efflux than M2HH.  Biomass and litter fall from M1HL, M2HH and M2HL 

are clustered closely to each other (Fig. 19 and 20), and these three plots have similar  

annual mean CO2 efflux rates of 4.4-4.6 µmol CO2 m
-2 s-1 (Table 6).  Tropical and 

subtropical systems receive a more constant supply of litter than temperate and boreal 

systems which allows tropical and subtropical systems to maintain more constant soil 

respiration rates (Lovelock, 2008).  Due to the annual wet and dry cycles the Everglades 

experiences, litter can build during flooded conditions on HL and MR plots, eventually to 

be released during dry conditions.  The plot M1HH received the most litter fall and 

experienced no flooding contributing to this plots highest annual mean CO2 efflux rate 

(Table 6). 

Carbonate dissolution from the calcareous Everglades soil was not something 

investigated in the present study.  Tamir et al. (2009) found that dissolution of 

Mediterranean soils following wetting can influence CO2 efflux rates.  Furthermore, 

acidic conditions of both the soil and surface and ground water from OM decomposition 

can cause dissolution of carbonate (Tamir et al., 2009).  Underlying the Everglades basin 

is limestone bedrock contributing to high carbonate concentrations in solution, 
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particularly in areas exposed to the underlying bedrock (Noe et al., 2001).  

Photosynthesis by periphyton in flooded plots drives changes in water column pH, thus 

contributing changes in CO2 partial pressure (Noe et al., 2001) and, potentially, efflux 

into the atmosphere.   

Due to the limited amount of variability of CO2 efflux values explained by RWD 

from M1 plots, further investigation is warranted into the role the peat substrate and tree 

biomass of these plots plays in the variability of CO2 efflux.  Additionally, long-term 

monitoring of CO2 efflux from LILA islands and ridges with develop will further define 

the role tree stand age and root respiration play in tree island CO2 efflux.  

6.2 Annual CO2 efflux estimates 

 The interpolated estimates of annual and daily mean C efflux (Table 2 and 3) vary 

by plot.  Linear regressions used to interpolate the annual estimates in Table 2 include all 

in situ measurements.  Hirano et al. (2009) used mean daily efflux to eliminate the 

diurnal variation for annual estimation. Presented in this study are both complete annual 

and daily mean CO2 efflux estimates to provide comparison.   The greatest C loss was 

from M1HH which had some of the highest rates of efflux and was never flooded (Fig. 

9), which is further indication that RWD limits CO2 efflux.  Because M2HH had lower 

efflux rates than M1HH when RWD < -0.4 m (discussed above; Fig. 8 and 9), the annual 

estimate of efflux was also lower from this plot and was about half of the M1HH estimate 

(Table 2 and 3).  Annual estimates of C loss from M1- and M2-HL were similar (Table 2 

and 3).  These estimates are similar even though M2HL mean elevation (4.70 m) is 

higher than M1HL (4.59 m) with 59 fewer days of flooding. Additionally, M1HL has a 
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more negative slope than M2HL (Table 2), influencing the interpolations due to the 

greater variability of efflux values (discussed above).   

For the MR plots, the annual estimate of C efflux based on the relationship 

between individual sample models differs strongly between M1 and M2 in Table 2, but 

does not differ as much based on the daily mean model (Table 3).  Soil elevation from 

M1MR was lower than M2MR (4.37 m versus 4.51 m; Fig. 5).  Variability of CO2 efflux 

was much higher from M2MR (Fig. 9 and 11) during dry conditions which strongly 

influenced the slope and C loss estimate of the linear regression (Table 2).  The linear 

regression of M2MR produced negative interpolated efflux values when RWD > 0.2 m, 

which occurred for 208 of the 292 days of flooding.  By combining M1- and M2- MR 

CO2 efflux rates into a single model produces an interpolated annual C loss estimate of 

991 g C m-2 y-1 (Table 2) which minimizes the influence variability.  This removed some 

of the interpolated negative efflux rates.  .      

Annual estimates of C efflux from LILA soils range 149 to 2250 g C m-2 y-1 

(Table 2) and 748 to 2403 g C m-2 y-1 (Table 3) for all annual and daily mean 

interpolations, respectively.  Estimates of increasing loss are associated with shorter 

hydroperiod length for both annual and daily mean CO2 efflux (Tables 2 and 3, 

respectively).   This provides further indication that long periods of flooding annually 

reduce CO2 emissions, and thus C loss, confirming predictions in Hypothesis I.  These C 

loss values are within the range of other reported values:  Melling et al. (2005) reported 

2100 g C m-2 y-1 from a Malaysian peat swamp forest, and Jauhiainen et al. (2005) 

reported 898 to 1061 g C m-2 y-1 and Hirano et al. (2009) reported 640 to 1309 g C m-2 y-1 
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from an Indonesian peat forest.  LILA trees during the study were 4-5 and 3-4 years old 

for M1 and M2, respectively, while the literature annual estimate values presented were 

from more mature forests (> 10 years).  Saiz et al. (2006) found greater stand ages tend to 

reduce annual estimates of C efflux in Sitka spruce first generation plantations.  The 

annual estimate of C loss from M1HH is higher than the highest reported value.  As 

LILA tree island stands age, the estimate of C loss may decrease and fall within the range 

of reported values.  Continued CO2 efflux measurements over many years from these 

plots are needed to track CO2 effluxes response to stand age.   

An attempt was made to provide an additional method to estimate annual efflux 

from tree island plots for comparison.  Seasonally, mean efflux   per plot was linearly 

regressed between each successive season, which yielded four equations to use for 

estimation based on day of the year (data not shown).  Estimates, in g C m-2 y-1, were 

3,586 from M1HH, 1,359 from M2HH, 1,634 from M2HL and 714 from M2HL (data not 

presented otherwise).  Estimates of C efflux from M1HH were much greater based on 

this method than the previously discussed method.  LILA was creased to mimic historical 

flows and to monitor the influence of water level and flow on biological processes in an 

Everglades ecosystem.  However, baseline water levels differ year to year, as a result the 

LILA control system cannot reproduce the exact same water regime each year.  Dry 

season 2011 (April – June 2011, Fig. 3) was the driest period ever recorded at LILA, and 

one of the driest in the Everglades’ recorded history.  During the final measurements of 

the study period, stage was falling rapidly (Fig. 3 and 5) and eventually fell to below 3.9 

m.  This seasonal interpolation method of estimation does not have the ability to 
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compensate for fluctuations in water levels.  Consequently, use of this approach was 

discontinued.       

6.3 Intact soil cores 

Intact soil cores were used to isolate the microbial respiration portion of CO2 

efflux.  Water levels (RWD) significantly influenced core CO2 efflux (Table 4) similar to 

in situ CO2 efflux, and is further confirmation of Hypothesis I.  Cores collected from all 

plots contained live roots, which could not be removed without destruction of the intact 

core.  The cores were equalized for 24 days before efflux sampling.  Destruction of the 

core to remove the roots would have homogenized the soil profile and exposed all soil to 

oxygen which would have influenced CO2 and CH4 efflux measurements.  Rates of CO2 

efflux found in this study are comparable to rates presented by DeBusk and Reddy 

(2003).  Based on mean intact core CO2 efflux rates and mean annual in situ CO2 efflux 

(Table 6), the theoretical microbial contribution to in situ efflux ranges from 15-24% of 

HH, 23-35% of HL, and 30-54% of MR.  Therefore, between 46 and 85% of in situ 

efflux can be classified as “other” and could include root (Bowling et al., 2002; Krauss et 

al., 2012), macroorganism (Bowling et al., 2002) and dissolution of carbonate from 

limestone and calcareous soil (Tamir et al., 2011).  As the trees age, their contribution to 

total soil CO2 efflux may become smaller (discussed above).  Therefore, the microbial 

portion of total soil CO2 efflux may increase.  This warrants continued long-term 

investigation.   

Elevation from which the soil was collected also had a significant effect on intact 

core CO2 efflux (Table 4), with the highest mean rates from MR cores.  Soil for both the 
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tree islands and ridges originated from the same location, experienced the same 

management, and were piled up to create the tree island (see Site Description).  However, 

after construction, not only were the soils disturbed during construction, but the soils 

have been colonized by various flora species, depending on location and hydroperiod, 

which can have major influences on soil development, microorganisms, etc.  These 

differences may be a major driver of the significant influence soil location has on CO2 

efflux from the cores.   

Water levels (RWD) did not significantly influence the rates of CH4 efflux, (Table 

4), similar to DeBusk and Reddy (2003), and rejecting Hypothesis II.   The intact core 

study presented here relied on an oxidized water and air column above the soil surface 

creating the potential for CH4 to be oxidized before sample collection.  The range of CH4 

efflux rates were variable, ranging from 0.1 to 29.2 µmol CH4 m
-2 s-1 from intact 

Everglades’soil cores (DeBusk and Reddy, 2003) and 0.07 to 0.11 µmol CH4 kg-1 s-1 

from intact Floridian tidal freshwater peat cores (Chambers et al., 2011).  These are 

within range of the rates found in this study.  Rates of CH4 efflux were highest with 0 

RWD in this study, opposite the results presented by DeBusk and Reddy (2003).  This 

may be due to sampling procedure error, no oxygenated water column or methanotrophic 

bacteria to oxidize CH4, or a release of CH4 from the soil matrix (discussed 6.1 above).  

Elevation was a significant treatment for CH4 efflux (Table 4).  As mentioned above, the 

soil from tree islands and ridges originated from the same location and management.  The 

MR cores produced the highest CH4 efflux rates and have the longest hydroperiod 
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studied, which likely contributes to (larger) populations of methanogenic organisms 

responsible for the greater CH4 efflux.   

The annual cycle of flooding and draining tree islands and ridges of the 

Everglades can dictate the ratio of CO2 and CH4 gas emitted to the atmosphere based on 

oxidation-reduction (redox) potential (Thomas et al., 2009).  All soil cores reached redox 

potentials (Eh) necessary for methanogensis (Table 5).  However, intact core CH4 efflux 

was not influenced by redox potential (data not presented).  All soil cores stabilized 

around -200 mV at 10 cm soil depth.  Thomas et al. (2009) showed similar results from P 

impacted and unimpacted soils of WCA2 at depths of 2-10 cm, and reported Eh below -

200 mV at depths of 20 cm.  With redox potentials in the methanogenic range and no 

significant interaction with CH4 efflux, there is another force driving CH4 efflux from 

these soils requiring further investigation.  Unlike CH4, redox was significantly 

influenced by RWD, elevation and the combination (Table 4).  The significance of 

RWD’s effect on redox is expected due to oxygen availability.  Dry and wet cycles in the 

Everglades annually expose soil to oxygen (Eh > +400 mV), re-flooding and force soil 

into anaerobic conditions (Eh < +400 mV).  Redox potential can provide insight into C 

cycling dynamics (Thomas et al., 2009), but no such insight was found with this current 

study.      

6.4 Vial incubation 

LILA soils are known to have lower P concentrations than typically found in the 

Everglades soil (Stofella et al., 2010).  Before the soil was used to create LILA, the soil 

was used for agricultural purposes (Stofella et al., 2010) which may have altered the soil 
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from its historical properties.  In situ CO2 efflux measurements of soil amended with P in 

a fertilization study indicate that P enrichment had no significant influence on CO2 efflux 

over Con enrichment (Fig. 13).  Incubation experiments conducted on both wet and dry 

condition soils indicate that labile P generally is not limiting CO2 and CH4 potential 

production from any study plot (Fig. 12 and 14), thus rejecting the labile P portion of 

Hypothesis III.  The only soils to show a P limitation to potential CO2 and CH4 

production were found from HL wet condition (Fig. 12 and 14).  Other work has shown 

that P addition to Everglades’ soil does not always increase respiration (Amador and 

Jones, 1993; Amador and Jones, 1995; Drake et al., 1996).  Soils analyzed from 2010 

show that LILA has a P limitation with an mean TC:TP ratio of 676:1.  The Redfield ratio 

states that the ideal TC:TP ratio is 106:1.  After the addition of P to vials, the TC:TP ratio 

fell to a mean (n = 13) of 117:1, close to the ideal Redfield ratio.  Only the HL soils 

showed a response to this reduction in the TC:TP ratio, which may indicate that another 

macronutrient is limiting respiration.     

Everglades soil has also been shown to be labile carbon (C) limited (e.g., Amador 

and Jones, 1995; DeBusk and Reddy, 1998).  The G and GP enrichments did significantly 

enhance CO2 production potential from wet (only HH and HL plots) and dry (all plots) 

condition soils (Fig. 12), accepting the labile C portion of Hypothesis III.  Additionally, 

CH4 production from dry condition soils had significantly greater by G and GP 

enrichments than wet condition soils (Fig. 14) indicating that OM quality is limiting 

during dry conditions.  Quality of OM (C) may be limiting microbial respiration from 

LILA soils, as evidenced here, even with the small addition of C (0.3 mg C g-1) equating 
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to 0.3% of TC.  The response of dry condition G and GP enrichment was significantly 

greater than that of wet condition soils from HH and HL plots for CO2 production and all 

plots for CH4 production (Fig. 12 and 14, respectively).  Greater response from dry 

condition soils indicates that during these conditions, LILA tree islands and ridges have a 

C limitation to respiration.  In the wet condition soils, the GP enrichment soils also 

significantly had more CO2 potential production than just the G enrichment indicating 

that when C is not limiting, P is the next limit to respiration, as has been found by 

Amador and Jones (1995).  The potential CH4 and CO2 production rates increase with 

hydroperiod (Fig. 12 and 14), indicating that longer hydroperiod plots have the potential 

to release C to the atmosphere once exposed to oxygen.   

6.5 Extracellular enzyme activity 

Glucosidase EEA showed one significant matrix enrichment (GP) effect from dry 

condition HL soils (Fig. 15).  All other enrichments were not significantly different than 

Con due to variability.  The β-glucosidase enzyme is responsible for hydrolyzing glucose 

from chains for uptake by the microbial community; its activity is considered to be partly 

responsible for limiting respiration (Penton and Newman, 2008).   Glucosidase EEA is in 

range with Troxler et al. (2012) for Panamanian peat soils with TP concentrations similar 

to those found at LILA.  Rates from this study are also within range that Corstanje et al. 

(2006) found from decomposing sawgrass and cattail litter in mesocosms.  From LILA 

soil incubations, both wet and dry condition Con enrichment glucosidase EEA was highly 

(r2=0.60 and 0.75 respectively) and significantly (both: p < 0.001) positively correlated 

with Con enrichment potential CO2 production rates (Fig. 21).  Similarly, Rejmánková 
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and Sirová (2007) found glucosidase EEA to linearly correlate to litter decay rates across 

a salinity and nutrient enrichment gradient.  These trends indicate that higher glucosidase 

EEA will foster greater amounts of CO2 production.  With only HL dry condition soils 

showing a G and GP enrichment response, further investigation is recommended into 

glucosidases’ role in respiration of OM, and whether inputs of labile C from greater litter 

inputs as stands age will increase activity and CO2 and CH4 efflux.     

The phosphatase enzyme is responsible for hydrolyzing phosphate groups from 

organic molecules, and its activity is inversely related to P availability in the soil.  Wet 

condition phosphatase EEA is significantly inhibited by G, P and GP enrichments from 

HL soils (Fig. 17).  No significant enrichment effects were found for HH and MR soils 

from wet conditions (Fig. 17).   Conversely, dry condition phosphatase EEA appears to 

be enhanced under the G enrichment from all soils, but was not significantly different 

(Fig. 17).  While this result is not significant, G enrichment should enhance phosphatase 

EEA because P is the next limiting nutrient for respiration (discussed above).  

Additionally, from all dry condition soils, phosphatase EEA is inhibited under the P and 

GP enrichments (Fig. 17).  The reduction in phosphatase EEA with any addition of labile 

P occurs because orthophosphate (PO4) is readily taken up by the microbial community 

without a need for phosphatase enzymes to free organically bound phosphate groups (Fig. 

17).  Between wet and dry condition soils from all plots, dry condition G enrichment has 

significantly greater phosphatase EEA than that of wet condition, with no significant 

difference between Con enrichment (Fig. 17).  Conversely, wet condition P and GP 

enrichments have significantly greater phosphatase EEA than dry condition soils (Fig. 
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17).  Should conditions remain unchanged at LILA, phosphatase EEA will remain the 

same between wet and dry conditions (Con enrichment).  However, if a form of labile C 

becomes present, the potential to pull more P from soil is greater. 

Glucosaminidase EEA had no significant enrichment effects from any soil in both 

the wet and dry conditions (Fig 16).  This was unexpected because labile C additions 

should raise the C:N ratio, driving demand for N.  From the wet condition HL and MR 

soils, glucosaminidase EEA was higher than dry condition soils.  Wet condition 

phosphatase EEA was only significantly lower from HL soils with P additions (Fig. 17), 

and the glucosaminidase EEA results here may be indicating that N limitation may be the 

cause.   

Sulfatase EEA had no significant response to enrichment from all wet condition 

soils (Fig. 18).  Sulfur in the Everglades is not as limiting as P, which may be why results 

show little enrichment effect on sulfatase EEA.  Dry condition soils, however, show an 

enrichment response from HH and HL soils with GP enrichment (Fig. 18).  After labile C 

and P microbial demands are met, sulfur may be the next limiting nutrient under dry 

conditions.  Wet condition soils all had significantly greater sulfatase EEA than dry 

conditions soils.     

6.6 Implications 

 The ability to determine georectified relative elevation, knowing stage within 0.3 

cm of every collar, and macrocosms sampled for CO2 efflux benefits estimation of annual 

C emissions from LILA tree islands.  Models generated from LILA tree islands and 
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ridges can be field evaluated on Everglades’ tree islands and ridges with measures of 

RWD from any sampling location in the Everglades.  These CO2 efflux models 

estimating C loss based on accurate RWD at LILA can provide evidence for adaptive 

management of Everglades’ water levels to slow, or stop, degradation of the tree island 

and ridge landscapes.  Combining C loss estimates with change in biomass estimates (i.e., 

production) in relation to RWD can indicate what water levels are needed to maintain or 

build tree island and ridge peat material (Fig. 1; Larsen et al., 2011). 

 Furthermore, because the interpolations of annual C loss use stage, as RWD, to 

generate the estimate, it provides an opportunity to estimate annual C loss under various 

water level scenarios.  Use of this model with a rise in daily mean stage of 0.03 m (0.1 

ft), the annual loss of C estimates from tree island HH and HL plots are 74 to 160 g C m-2 

y-1 lower.  Conversely, a drop of the same amount in daily mean stage would increase HH 

and HL C loss by 74 to 160 g C m-2 y-1.  This indicates that water levels can be managed 

to reduce or increase C loss depending on management needs.  With further investigation 

into the various other components of the C budget of LILA tree islands and ridges, these 

estimates can be used to indicate whether tree islands and ridges are building or 

disappearing.  The knowledge gained in respect to the C budget based on water levels can 

subsequently be applied to Everglades management to slow or reverse tree island loss.  
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VII.  CONCLUSIONS 

 Soil CO2 efflux, as measured by both in situ and laboratory intact soil core 

incubations, was significantly influenced by water levels, or RWD.  Of the two tree 

islands studied in situ, M1 had 21-30% and M2 had 68-73% of variability in soil CO2 

efflux explained by RWD.  The MR soils also had a significant response to RWD, with 

40-65% of variability explained by RWD.  Rates of CO2 efflux were lowest when RWD 

≥ 0 and highest when RWD < 0.  Beyond RWD, variability of CO2 efflux presented in 

this study can potentially be explained by aboveground biomass, litterfall, 

evapotranspiration-driven water table draw down, and soils building up gas 

concentrations due to flooding.   

In situ CO2 efflux measures both root and microbial respiration.  The intact soil 

cores were used to isolate microbial respiration rates from total CO2 efflux.  The resulting 

mean CO2 core efflux ranged from 15-54% of in situ efflux which indicates that 46-85% 

of in situ efflux comes from non-microbial forms of respiration.  Methane efflux from 

intact cores was not significantly influenced by RWD, however soils were different by 

plot collected.  Redox potentials were sufficiently low to support methanogenesis, but 

CH4 efflux was not significantly related to redox.   

Annual estimates of C efflux range from 960 to 2,403 and 149 to 921 g C m-2 y-1 

from LILA tree islands and ridges, respectively.  These estimates fall within other 

reported values but as a result of the young age of the tree stands (three-to-five years old) 

CO2 efflux rates fall are expected to fall as the stand ages.   
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 Quality of organic matter (OM) may also be limiting soil respiration from LILA 

tree islands.  Vial enrichments of tree island soils show significant increases in CO2 and 

CH4 production with labile C, and labile C and P enrichments even though very small 

amounts of labile C were added.  Phosphorus-only enrichments did not significantly 

influence CO2 or CH4 production from wet and dry condition soils with a substantial 

reduction in the C:P ratio.  Potential rates of CO2 production increased positively with 

hydroperiod length, indicating that with exposure to oxygen, long hydroperiod sections of 

LILA could release C.   

  Due to the variability of EEA in this study, further investigation is recommended 

for LILA soils.  The positive correlation of glucosidase EEA with CO2 production was 

significant for both wet and dry condition soils.  Dry condition glucosidase EEA was 

significantly increased by labile C, and labile C and P enrichments, indicating the 

microbial community may be devoting a greater allocation of energy to less favorable C 

compound degradation.  Wet condition phosphatase EEA was inhibited from Con 

enrichment HL soils by all other enrichments, while HH and MR soils were not 

significantly inhibited.  Dry condition phosphatase EEA was significantly inhibited by 

any labile P enrichment, showing that once P limitation is removed, phosphatase EEA is 

no longer required.  Glucosaminidase EEA had no significant enrichment effects.  

However, glucosaminidase EEA was significantly higher from HL and MR wet condition 

P enrichment than from the dry condition, which may indicate an N limitation for OM 

degradation.  Sulfatase EEA was significantly greater in all wet condition soils than those 

of the dry condition.  No significant enrichment effects were found from wet condition 
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soils; however, dry condition HH and HL soils show increased sulfatase EEA with a 

labile C and P enrichment indicating that dry condition soils have a sulfur limitation. 

 Results from these experiments combine one-year of in situ measurements and 

laboratory incubations.  LILA tree islands and ridges are still in their developmental 

stages.  Further investigation into soil CO2 efflux, limitations to respiration, enzyme 

activity, and root and microbial contributions to CO2 and CH4 efflux should be 

considered.  Incorporation of these results, specifically the annual C efflux estimates, into 

a C budget can indicate whether tree islands and ridges are sequestering or emitting C 

and help identify water levels that maintain the equilibrium between C production and 

emission.    
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FIGURES 

 

Figure 1.  Digram showing organic matter production and decomposition relative to 
water level for tree islands (A) and ridges (B).  Figure modified from Larsen et al. (2011).  
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Figure 2.  The Loxahatchee Impoundment Landscape Assessment study area located at 
the Arthur R Marshall Loxahatchee National Wildlife Area.  Study tree islands are 
indicated (M1W and M2W) and a have similar Head High (HH) and Head Low (HL) 
collar lay out.  The macrocosm 1 west (M1W) study tree island is a peat core and 
macrocosm 2 west (M2W) is a limestone core.  The middle ridge (MR) plots sampled are 
located due south of each study tree island.   
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Figure 3.  The recorded stage (m) and rainfall (cm) from Loxahatchee Impoundment 
Landscape Assessment study area from macrocosm 1 (M1; black) and macrocosm 2 (M2; 
grey) over the study period April 2010 to May 2012.  Grey vertical bars represent periods 
of in situ measurements with the LICOR LI-8100 or soil collection.  The horizontal 
dashed lines show the mean elevation of study plots Head High (HH), Head Low (HL), 
and Middle Ridge (MR) in relation to stage.  
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Figure 4.  LICOR 20 cm PVC collar inserted into ground with a 104 long term chamber 
in open position.   
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Figure 5.  Detailed elevation of stage and plots from the in study period.   Vertical grey 
bars represent seasonal in situ field samplings of CO2 efflux with the LICOR LI-8100 
infra-red gas analyzer. Shaded regions around Head Low (HL) and Middle Ridge (MR) 
mean elevations represent the standard deviation of the elevation. 
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Figure 6.  Diurnal pattern of macrocosum 1 (M1) -Head Low (HL) replicate collar CO2 
efflux (A) and concentration of CO2 at measurement initiation (B) from measurements 
taken June 2010.  While CO2 efflux (A) is variable throughout the 48 hours measured, it 
does not show a diurnal pattern like CO2 concentration at measurement initiation (B).  
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Figure 7.  All seasonal measurements of in situ CO2 efflux from LILA tree island soils 
based on relative water depth (RWD).  The solid regression line includes M2HH 
limestone core efflux values, “all tree island” regression presented in Table 2, while the 
dashed line only contains efflux values from peat sections of tree islands (y = -9.24x + 
3.54, r2 = 0.34, n = 624, p < 0.001).   
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Figure 8.  All in situ efflux measurements from the study plots M1HH, M2HH, M1HL, 
M2HL, M1MR, and M2MR for the study period.  The line indicates the interpolated line 
used in annual CO2 efflux estimation (Table 2).  
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Figure 9.  Combined macrocosm 1 (M1) and 2 (M2) middle ridge (MR) CO2 efflux from 
entire study period.  The line indicates the interpolated line used in “all ridge” annual 
CO2 efflux estimation (Table 2), n = 270. 
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Figure 10.  Daily mean CO2 efflux from the M1HH, M2HH, M1HL, M2HL, M1MR, and 
M2MR study plots.  The line indicates the interpolated line used in annual CO2 efflux 
estimation (Table 3). 
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Figure 11.  Daily mean measurements of in situ CO2 efflux from LILA tree island soils 
based on daily mean relative water depth (RWD).  The solid regression line includes 
M2HH limestone core efflux values, “all tree island” regression presented in Table 3, 
while the dashed line only contains efflux values from peat sections of tree islands (y = -
10.03x + 3.54, r2 = 0.42, n = 127, p < 0.001).    
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Figure 12.  Potential CO2 production (µmol gdw-1 h-1) from Head High (HH), Head Low 
(HL), and Middle Ridge (MR) soils collected from wet and dry conditions.  n = 15; lower 
case = enrichment significantly different per seasonal condition; + = enrichment 
significantly higher between conditions; and * = enrichment significantly lower between 
conditions. 
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Figure 13.  In situ CO2 efflux taken from soils treated with Control (C), Nitrogen (N) and 
Phosphorus (P).  lower case letter = significant difference between treatment (p < 0.05).
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Figure 14.  Potential CH4 production (µmol gdw-1 h-1) from Head High (HH), Head Low 
(HL), and Middle Ridge (MR) soils collected from wet and dry conditions.  n = 15; lower 
case = enrichment significantly different per seasonal condition; + = enrichment 
significantly higher between conditions; and * = enrichment significantly lower between 
conditions.  
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Figure 15.  β-glucosidase extracellular enzyme activity (EEA; µmol gdw-1 h-1) from Head 
High (HH), Head Low (HL), and Middle Ridge (MR) soils collected from wet and dry 
conditions.  HH and HL n = 6, MR n = 4; lower case = enrichment significantly different 
per seasonal condition; + = enrichment significantly higher between conditions; and * = 
enrichment significantly lower between conditions. 
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Figure 16.  Glucosaminidase extracellular enzyme activity (EEA; µmol gdw-1 h-1) from 
Head High (HH), Head Low (HL), and Middle Ridge (MR) soils collected from wet and 
dry conditions.  HH and HL n = 6, MR n = 4; lower case = enrichment significantly 
different per seasonal condition; + = enrichment significantly higher between conditions 
and; * = enrichment significantly lower between conditions.    
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Figure 17.  Phosphatase extracellular enzyme activity (EEA; µmol gdw-1 h-1) from Head 
High (HH), Head Low (HL), and Middle Ridge (MR) soils collected from wet and dry 
conditions.  HH and HL n = 6, MR n = 4; lower case = enrichment significantly different 
per seasonal condition; + = enrichment significantly higher between conditions; and * = 
enrichment significantly lower between conditions. 
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Figure 18.  Sulfatase extracellular enzyme activity (EEA; µmol gdw-1 h-1) from Head 
High (HH), Head Low (HL), and Middle Ridge (MR) soils collected from wet and dry 
conditions.  HH and HL n = 6, MR n = 4; lower case = enrichment significantly different 
per seasonal condition; + = enrichment significantly higher between conditions; and * = 
enrichment significantly lower between conditions. 
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Figure 19.  Inverse distant weighted (IDW) of tree aboveground biomass at each LICOR 
collar from M1and M2 –Head High (HH) and –Head Low (HL) tree island plots.  Linear 
regression: y = 0.001x + 3.334, r2 = 0.448, n = 16, p = 0.005.   
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Figure 20.  Yearly mean of in situ efflux from tree island LICOR collars vs annual sum of 
Litter Traps located next to LICOR collars on M1 and M2 –Head High (HH) and –Head 
Low (HL) plots.  Linear regression: y=0.014x + 2.925, r2 = 0.56, n = 12, p = 0.005.   
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Figure 21.  β-glucosidase extracellular enzyme activity (EEA; µmol liberated gdw-1 h-1) is 
highly correlated to potential CO2 production (µmol CO2 produced gdw-1 h-1) in wet and 
dry season.  n = 16 for wet and dry conditions.  Linear regressions: Dry condition (Blue) 
y=0.57x + 0.03, R2 = 0.75, p < 0.001; Wet condition (Green) y=0.57x + 0.00, R2 = 0.60, 
p = 0.001.   
 
 

 


	Florida International University
	FIU Digital Commons
	11-2-2012

	Soil Carbon Dioxide and Methane Efflux From an Everglades Tree Island and Ridge Landscape
	Robert S. Schroeder
	Recommended Citation


	Soil Carbon Dioxide and Methane Efflux from Everglades Tree Island and Ridge Landscape

