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ABSTRACT OF THE THESIS 

COLD SEASON PHYSIOLOGY OF ARCTIC PLANTS 

by 

Jonathan George Moser 

Florida International University, 2012 

Miami, Florida 

Professor Steven F. Oberbauer, Major Professor 

 The cold season in the Arctic extends over eight to nine months during which 

ecosystem gas exchange and water balance of arctic plants have been largely unexplored.  

The overall objective of this thesis was to examine two critical gaps in our knowledge 

about tundra cold season processes – ecosystem respiration at very low temperatures and 

water uptake during the winter-spring transition.  I determined the temperature response 

of ecosystem respiration of tundra monoliths down to temperatures as low as can be 

expected under snow-covered conditions (-15 °C).  Temperature responses fit the 

Arrhenius function well with Q10 values over the range of -15 to 15 °C varying from 6.1 

to 4.8.  I used deuterium-enriched water (2H2O) as a tracer to evaluate water uptake of 

evergreen plants at snowmelt when soils are largely frozen.  The results revealed that 

evergreen plants take up water under snow cover, possibly via roots but undoubtedly by 

foliar uptake. 
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CHAPTER I. INTRODUCTION 
 

Arctic tundra ecosystems have the potential to release enormous stores of carbon 

into the global biogeochemical environment that could affect numerous processes and 

feedbacks.  Post et al. (1982) estimated that over 13 % of the global soil carbon pool 

resides in arctic tundra, though they lacked detailed data concerning permafrost (soils 

remaining below 0 °C for 2 consecutive years).  Present-day permafrost research now 

places 50 % of the total global soil carbon stock in belowground organic matter of the 

Arctic (Tarnocai et al. 2009).  Arctic tundra ecosystems have historically been a carbon 

sink (Billings 1987), though the recent onset of warming in high latitude regions during 

the last few decades (Lachenbruch and Marshall 1986; Jones and Wigley 1990) has led to 

an increase in permafrost degradation in arctic regions (Jorgenson et al. 2006).  Arctic 

tundra ecosystems have begun to reduce their capacity as carbon sinks as a result of 

increases in microbial and plant respiration (Oechel et al. 1993).  The subsequent 

increase in ecosystem carbon uptake via plant growth resulting from warming would not 

come close to offsetting the release of previously stabile carbon (0.8 - 1.1 Pg C yr-1) in 

tundra soils and permafrost (Schuur et al. 2009). 

Total carbon sequestration and release depends both on photosynthesis during the 

growing season as well as summer and winter respiratory losses.  Which of these 

processes will become more significant in the future is uncertain, although most high 

latitude warming is occurring during the winter (Intergovernmental Panel on Climate 

Change 2007).  Unfortunately, very little is known about tundra ecosystem processes 

during winter compared to those in the growing season.  The Intergovernmental Panel on 

Climate Change (2007) predicts that arctic regions will have earlier and stronger impacts 
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resulting from global climate change than in other regions of the globe, which highlights 

the susceptibility of large carbon stores currently residing in arctic soils (McGuire et al. 

2006; Grosse et al. 2011). 

The cold season in the Arctic extends over eight to nine months during which air 

temperatures often reach as low as -40 °C.  However, these extreme temperatures are 

rarely reached at the level of the soil surface and plants, as a result of the insulating layer 

created by snow cover.  Under the snow, temperatures seldom fall below -15 °C (Toolik 

Environmental Data Center Team 2009-2011).  Arctic ecosystem respiration (ER) 

continues during the winter at low rates, but over the extended winter ER can be a 

substantial fraction of the annual carbon budget.  Photosynthesis by arctic evergreens also 

occurs under the snow in springtime (Starr and Oberbauer 2003; Starr et al., 

unpublished).  Recent research shows that one evergreen is photosynthetically competent 

over the entire winter (Lundell et al. 2010).  Cold season photosynthesis by evergreens 

may help offset winter respiratory carbon losses.  How these evergreens maintain their 

water balance under the snow while the soils are still frozen is uncertain.  Physiological 

processes of tundra at very low temperatures during the arctic winter are largely unknown 

and unstudied.  Vegetation clipping experiments suggest a large fraction of winter 

respiration is from aboveground plant biomass (Grogan et al. 2001). 

Deciduous shrubs are now expanding throughout the Arctic (Sturm et al. 2001; 

Hollister et al. 2005; Sturm et al. 2005b; Wahren et al. 2005; Tape et al. 2006).  The 

expansion of shrubs is apparently a summer phenomenon; the International Tundra 

Experiment (ITEX) has found evidence that summer time temperatures could be 

responsible for driving changes in vegetation (Elmendorf et al. 2012).  Sturm et al. 
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(2005b) proposes that these changes are driven by changes in soil temperature resulting 

from snow deposition or increased winter temperature, allowing faster nutrient turnover.  

Simulated increases in soil temperature have also been found to increase aboveground 

biomass as well as root tissues in shrub growth forms, further increasing winter plant 

respiration (Brooker and Van der Wal 2003; Hudson et al. 2011).  Projected changes in 

the timing of snowmelt and growing season will favor abundant, taller plants, which 

increases overall vegetative biomass, while at the same time decreasing the occurrence of 

uncommon species (Walker et al. 2006; Rixen and Mulder 2009; Rammig et al. 2010).  

Increases in abundance of larger shrub species will adversely affect snow albedo, having 

global implications (Sturm et al. 2005a; Loranty et al. 2011).  Deciduous shrubs are 

expanding, possibly at the expense of nonvascular plants and evergreen shrubs, which 

will very likely affect the ecosystem carbon balance by increasing ecosystem carbon 

losses during winter and reducing carbon uptake through photosynthesis under the snow.  

The arctic winter season is long, so even small changes in winter rates may translate into 

large effects on the overall carbon balance.  Reliable temperature response information is 

critical to understanding carbon balance and making accurate predictions about arctic 

tundra ecosystem respiration in the face of future climate change. 

BACKGROUND 

Characteristics of Tundra Ecosystems  

Tundra vegetation is characterized by the absence of trees and is made up of 

communities of low stature vegetation including shrubs, grasses, forbs, mosses and 

lichens (Callaghan 2001).  Viereck et al. (1992) provides a detailed classification system 

of Alaskan vegetation.  Tussock-forming tundra, dominated by the graminoid, 
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Eriophorum vaginatum, is very common throughout Alaskan, Canadian, and Russian 

arctic landscapes (Bliss and Matveyeva 1992; Walker et al. 1994).  Arctic tundra plants 

face many challenges including freezing temperatures during winter and growing 

seasons, low soil temperatures and shallow soil thaw depths, short growing seasons, 

drought and inundation of water, strong winds, and infertile soils (Pielou 1994).  Tundra 

soils become frozen several months into the winter season and remain frozen until the 

onset of spring, severely constraining physiological access to water. 

Low Temperature Ecosystem-Level Respiration 

Although the cold season is three times longer than the growing season, little 

research on arctic plants and tundra has been conducted during the cold season (winter-

spring), when the largest changes are expected to occur with climate warming (Chapman 

and Walsh 2007; Christensen et al. 2007).  The primary emphasis of cold season research 

has been on rates of winter ecosystem respiration to develop estimates of annual carbon 

balance.  The majority of all CO2 flux measurements during the winter or at winter 

temperatures indicate that some amount of respiration is occurring, and while low, may 

contribute substantially to the annual carbon balance because of the length of the cold 

season.  In arctic locations, accumulation of respiration during the cold season has the 

potential to shift the carbon balance to a source (Zimov et al. 1996).   

Methodologies of CO2 measurement during/in the harsh winter environment range 

from infrared gas analyzers with static chambers, steel probes for determination of 

subnivean CO2 concentrations for application in diffusion models, alkali CO2 absorption, 

syringe extractions with gas chromatographs, and subnivean CO2 sensors.  Most of these 

methods have serious limitations.  As a result, estimates of winter ecosystem respiration 
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rates are highly variable.  One issue is that ecosystem CO2 production may be temporally 

disconnected to CO2 release to the atmosphere by resistance created by snow cover 

(Jones et al. 1999) or impermeable barriers produced by soil surface ice layers (Björkman 

et al. 2010b).  Another important issue is the performance of electronics at very low 

temperatures for measurement of very low rates.  Several cold-temperature CO2 methods 

have employed syringe extraction techniques (Zimov et al. 1993; Zimov et al. 1996; 

Panikov and Dedysh 2000), thereby eliminating the need to expose electronics to the 

severe cold.  Of existing wintertime CO2 studies, few are directly comparable.  Studies 

differ in site location, vegetation community, snow depth, treatment, and soil temperature 

(Table 1).  In the few in situ ecosystem studies of winter CO2 efflux measurements that 

report both soil temperatures and the depths at which they were measured, minimum soil 

temperatures vary from -2 to -25 °C and associated soil depths range from 0 to 10 cm 

(Table 2).  Björkman et al. (2010b) summarized research on winter CO2 rates, 

methodologies, habitats, and locations and felt that variation in CO2 efflux rates resulted 

primarily from different techniques.  However, several of the studies lacked CO2 efflux 

rates at subfreezing temperatures, did not report the depth at which the associated soil 

temperatures were recorded, or presented data that had low replication or even data 

recorded on a single sensor.  Few presented responses with temperatures that would be 

amenable to application in ecosystem models. 

Low Temperature Soil Respiration 

The assumption that soil microbial activity discontinues when soils freeze has 

been refuted by low temperature research on soil respiration rates (Clein and Schimel 

1995).  At the onset of winter, the active, unfrozen layer of arctic soils has reached its 
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greatest thaw, however, soils resist below-freezing temperatures over several months 

(Schimel and Mikan 2005).  During the height of the winter season, soils can fall to 

temperatures below -25 °C (Schimel et al. 2004).  Respiration rates from soil cores 0-25 

cm have been measured by Mikan et al. (2002) at temperatures of -10 °C, and Elberling 

and Brandt (2003) were able to observe CO2 increases in soil at -18 °C.  Tundra soils 

incubated for over a year at below-freezing temperatures had positive and measurable 

CO2 efflux rates at temperatures as low as -39 °C (Panikov et al. 2006). 

Low Temperature Photosynthesis 

Only a few studies have looked at photosynthetic and respiration of bryophytes 

and vascular plants at cold temperatures, and some key studies have been conducted in 

the Antarctic.  Both the Arctic and Antarctic experience similar harsh, cold temperatures 

during the winter season.  Antarctica plant life consists of mosses, lichens, and only two 

vascular plant species, Colobanthus quitensis (Antarctic pearlwort) and Deschampsia 

antarctica (Antarctic hairgrass, (Lewis Smith 2003).  Two of the lowest temperatures at 

which photosynthesis and respiration measurements were conducted on Antarctic mosses 

were -5 and -6 °C by Pannewitz et al. (2005) and Kappen et al. (1989), respectively.  One 

of the lowest temperature studies on Antarctic vascular plants was by Xiong et al. (1999), 

who performed photosynthesis and respiration field studies on both C. quitensis and D. 

antarctica at temperatures as low as -1.5 °C. 

Arctic tundra vegetation has been shown to be photosynthetically ready during the 

winter-spring transition (Oberbauer et al. 1996), and evidence published a decade ago 

provided evidence of photosynthetic activity under the snow (Oberbauer and Starr 2002).  

Starr and Oberbauer (2003) measured positive photosynthetic rates of arctic Evergreens 
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(Eriophorum vaginatum, Ledum palustre, Vaccinium vitis-idaea, and Cassiope 

tetragona) under snow.  Subsequent research on V. vitis-idaea has found that in addition 

to being photosynthetically capable prior to snowmelt, this species is photosynthetically 

active throughout the winter (Lundell et al. 2008; Lundell et al. 2010).  It has yet to be 

determined how these evergreens manage their water balance over the winter and acquire 

the water required to sustain photosynthesis during snowmelt. 

Water Balance During the Winter-Spring Transition 

Arctic tundra plant water balance during winter-spring transition is a function of a 

number of interacting factors that are not well understood.  When plant stem water 

freezes, embolisms may form in the xylem vessels, blocking further water uptake in that 

vessel.  Water is more viscous when cold and uptake rates are lower both from greater 

stem resistance and loss of conductivity of roots (Brodribb and Hill 2000).  Tundra soils 

remain frozen during most of the winter and partially so after snow melts in the spring.  

Plants may be able to uptake unfrozen water bound to soil particles when most soil is 

frozen (Watanabe and Mizoguchi 2002).  As snow begins to melt in the spring, a process 

that may take a week or more, water percolates from the upper snow layers down to the 

snow-soil interface where it might be available to plant roots.  During cold season 

photosynthesis, such as that described by Starr and Oberbauer (2003) and Lundell et al. 

(2008, 2010), plants may be transpiring, implying that the water losses are replaced or the 

plants undergo water deficits. 

Addressing Winter Water Balance and Availability 

One approach to evaluating plant water sources is by use of stable isotopes as a 

tracer or label.  Elements typically have at least two stable isotopes in different 
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abundances that have allowed scientists to study biological, ecological, and 

environmental processes (Ehleringer and Rundel 1989).  Hydrogen has two stable 

isotopes, 1H and 2H (also referred to as deuterium, D) with terrestrial abundances of 

99.985 and 0.015 %, respectively (Dawson et al. 2002).  Variation in stable isotope 

contents arise from kinetic (chemical), equilibrium (physical), or diffusive fractionation 

processes relating to the properties of the isotope in question (Ehleringer and Cerling 

2002).  Water does not generally experience kinetic fractionation as it is taken up by 

terrestrial plants, allowing plant water to have the same isotopic signal as the water 

source (Wershaw et al. 1966; Dawson and Ehleringer 1993).  However, equilibrium 

fractionation occurs during leaf transpiration, which tends to enrich leaf water with 2H 

(Marshall 2007).  Terrestrial plants have naturally occurring δ2H values typically ranging 

from +35 to -350 ‰ depending on latitude, elevation, continental position, season, and 

frequency of precipitation (Dawson and Siegwolf 2007). 

Deuterium has been used to study many aspects of plant physiology, including but 

not limited to photosynthetic pathways (Ziegler et al. 1976; Sternberg 1986; Flanagan et 

al. 1991), evapotranspiration (Walker and Brunel 1990), ecosystem water vapor (Lai and 

Ehleringer 2011), nighttime transpiration (Dawson et al. 2007), ramet water movement 

(De Kroon et al. 1996; Matlaga and Sternberg 2009), and water uptake (Ehleringer and 

Dawson 1992; Corbin et al. 2005).  Multiple studies have been conducted looking into 

the source of water uptake in plants, whether comparing isotopic signals of precipitation 

with soil moisture (Lin et al. 1996; Sugimoto et al. 2002; Gat et al. 2007; West et al. 

2007; Xu et al. 2011) or within the vertical or horizontal profile of soils (Thorburn and 

Ehleringer 1995; Moreira et al. 2000; Sternberg et al. 2002; Schwinning et al. 2005; Ewe 
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et al. 2007).  Several deuterium studies on redwood species have found evidence that 

foliar uptake is one strategy plants use to obtain water (Dawson 1998; Burgess and 

Dawson 2004; Limm et al. 2009). 

THESIS OVERVIEW 

The overall objective of my thesis is to examine two critical gaps in knowledge 

about tundra cold season processes – low temperature respiration and water uptake during 

winter-spring transition.  My project addresses these needs by: 1) testing the limitations 

and rates of respiration of arctic tundra monoliths at low temperatures (Chapter 2); and 2) 

examining how arctic tundra plants manage water balance when snow covered and soils 

are frozen during the arctic winter-spring transition (Chapter 3).  I hypothesize that: 

1) Respiration rates of arctic tundra ecosystems continue at significant rates to soil 

temperatures as low as -15 °C, 

2) Tundra plants are able to take up water during the winter-spring transition 

while under snow and soils are frozen.  

Chapters 2 and 3 are written in manuscript format intended to be submitted for 

publication in peer-reviewed journals.  The research presented here fills important gaps in 

our understanding of arctic tundra vegetation during cold season conditions.  Chapter 2 

presents the temperature response of ecosystem respiration down to temperatures as low 

as can be expected under snow-covered conditions (-15 °C), providing both above- and 

below-freezing Q10 responses, as well as developing parameters for the Arrhenius 

function.  Chapter 3 demonstrates that plants are able to take up water under snow, 

possibly via roots but undoubtedly by foliar uptake.  By furthering our knowledge of the 

temperature responses of ecosystem respiration at low temperatures, researchers will be 
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able to obtain improved model estimates of rates of CO2 efflux during the cold season, 

thus improving annual carbon balance estimates.  Increased biomass, carbon sources, and 

changes in species composition are all components that may significantly change as 

winter temperatures increase.  By understanding the physiology of dominant species at 

low temperatures, researchers should be better able to predict how tundra communities 

may respond to changes in temperature and snow cover. 
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Table 1. Summary of in situ ecosystem winter CO2 efflux comparisons from literature. 
 

Paper CO2 Efflux Comparison(s) Location 

Björkman et al. 2010a 

date of measurement, site 
location, snow depth, soil 
temperature (5 and 10 cm, via 
graph comparison), vegetation 
type, winter average 

Svalbard and Sweden 

Björkman et al. 2010b 

CO2 measurement 
methodology, snow depth, 
date of measurement, winter 
average 

Svalbard and Sweden 

Elberling 2007 
soil temperature (5 cm depth), 
date of measurement, winter 
average 

Svalbard 

Fahnestock et al. 1998 
site location, snow depth, date 
of measurement, vegetation 
community, winter average 

Alaska 

Fahnestock et al. 1999 
snow depth, tundra community 
type, winter average 

Alaska 

Grogan and Chapin 1999 
site location, date of 
measurement, temperature (of 
what unclear), vegetation type 

Alaska 

Grogan and Jonasson 2005 

experimental treatment, soil 
temperature (3-5 cm), date of 
measurement, winter average, 
month average 

Sweden 

Grogan and Jonasson 2006 
site location, month of 
measurement, time since snow 
clearance, vegetation type 

Sweden 

Grogan et al. 2001 
experimental treatment, soil 
temperature (3 cm), time since 
snow removal, winter average 

Sweden 
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Larsen et al. 2007 
month average, temperature 
(of what unclear) 

Sweden 

Morgner et al. 2010 

date of measurement, 
experimental treatment, snow 
depth, soil temperature (2 cm, 
via graph comparison), surface 
soil temperature, time since 
ice layer break-through, 
vegetation type, winter 
average 

Svalbard 

Nobrega and Grogan 2007 
winter average, experimental 
treatment 

Canada 

 

Oechel et al. 1997 

date of measurement, 
experimental treatment, month 
average, season average, site 
location, soil surface 
temperature, time since initial 
measurement 

Alaska 

Oechel et al. 2000 
date of measurement, winter 
average 

Alaska 

Panikov and Dedysh 2000 
snow depth, winter sample 
incubation time 

Siberia 

Schimel et al. 2004 
date of measurement, snow 
cover 

Alaska 

Sjögersten et al. 2008 
experimental treatment, winter 
average 

Norway 

Sullivan et al. 2008 
date of measurement, soil 
temperature (10 cm) 

Alaska 

Sullivan et al. 2010 
date of measurement, soil 
temperature (10 cm) 

Alaska 

Walker et al. 1999 
experimental treatment, 
vegetation type, winter 
average 

Alaska 
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Welker et al. 2000 
vegetation type, winter 
average 

Alaska 

Welker et al. 2004 
experimental treatment, 
vegetation type, winter 
average 

Canada 

Zimov et al. 1993 
air temperature (via graph 
comparison), date of 
measurement 

Siberia 

Zimov et al. 1996 
air temperature (via graph 
comparison), date of 
measurement 

Russia 
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Table 2. Summary of minimum soil temperature, soil depth, and CO2 efflux of in situ 
ecosystem winter CO2 efflux measurements from literature.  All soil temperatures and 
CO2 effluxes were estimated from figures. 
 

Paper 
Minimum Soil 

Temperature (°C) 
Soil Depth 

(cm) 
CO2 efflux 

(μmol m-2 s-1) 

Björkman et al. 2010a -21 5 0.00568* 

Elberling 2007 -13 5 0.0750 

Grogan and Jonasson 2005 -9 3-5 0.121* 

Grogan et al. 2001 -8.6 3 0.0772* 

Larsen et al. 2007 -7 unclear 0.125 

Morgner et al. 2010 -23 2 0.0625 

Oechel et al. 1997 -25 surface 0.121* 

Sullivan et al. 2008 -15 10 0.0603* 

Sullivan et al. 2010 -2 10 0.125 

 
*Recalculated from original publication into units of μmol m-2 s-1  
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CHAPTER II. ECOSYSTEM RESPIRATION RATES OF ARCTIC TUNDRA AT 
LOW TEMPERATURES 

 
INTRODUCTION 

Although the cold season in the Arctic is three times longer than the growing 

season, little research on arctic plants and tundra has been conducted during the cold 

season (winter-spring), when the largest changes are expected to occur with climate 

warming (Chapman and Walsh 2007; Christensen et al. 2007).  The primary emphasis of 

cold season research has been on rates of winter ecosystem respiration (ER) and to 

develop estimates of annual carbon balance.  The majority of all winter CO2 flux 

measurements during the winter or at winter temperatures indicate that some amount of 

respiration is occurring, and while low, may contribute substantially to the annual carbon 

balance because of the length of the cold season.  In arctic locations, accumulation of 

respiration during the cold season has the potential to shift the carbon balance to a source 

(Zimov et al. 1996).  

The cold season in the Arctic extends over eight to nine months during which air 

temperatures often reach as low as -40 °C.  However, as a result of the insulating layer 

created by snow cover, these extreme temperatures are rarely reached at the soil surface 

and plant level.  Under the snow, temperatures seldom fall below -15 °C (Toolik 

Environmental Data Center Team 2009-2011).  Physiological processes of tundra plants 

under the snow during the arctic winter remain largely unknown.  Vegetation clipping 

experiments suggest a large fraction of winter respiration is from aboveground plant 

biomass (Grogan et al. 2001). 



25 

Methodologies of CO2 measurement during/in the harsh winter environment range 

from infrared gas analyzers with static chambers, determination of subnivean CO2 

concentrations for application in diffusion models, alkali CO2 absorption, syringe 

extractions with gas chromatographs, and subnivean CO2 sensors.  Most of these methods 

have serious limitations.  As a result, estimates of winter ecosystem respiration rates are 

highly variable.  One issue is that ecosystem CO2 production may be temporally 

disconnected to CO2 release to the atmosphere by resistance created by snow cover 

(Jones et al. 1999) or impermeable barriers produced by soil surface ice layers (Björkman 

et al. 2010).  Another important issue is the performance of electronics at very lower 

temperatures for measurements of very low rates.  Several cold-temperature CO2 methods 

have employed syringe extraction techniques (Zimov et al. 1993; Zimov et al. 1996; 

Panikov and Dedysh 2000) thereby eliminating the need to expose electronics to the 

severe cold.  Of existing wintertime CO2 studies, few are directly comparable.  Studies 

differ in site location, vegetation community, snow depth, experimental treatment, and 

soil temperature.  In the few in situ ecosystem studies of winter CO2 efflux measurements 

that report both soil temperatures and soil depths, minimum soil temperatures vary from -

2 to -25 °C and associated soil depths range from 0 to 10 cm.  Björkman et al. (2010) 

summarized research on winter CO2 rates, methodologies, habitats, and locations and felt 

that variation in CO2 efflux rates resulted primarily from different techniques.  Several of 

the studies lacked CO2 efflux rates at subfreezing temperatures, did not report the depth 

at which the associated soil temperatures were recorded, or present data that have low 

replication or even data obtained from a single sensor.  Few present responses with 

temperatures that would be amenable to application within ecosystem models. 
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The objective of my study was to determine the response of arctic tundra ER to a 

range of temperatures from moderate temperatures above-freezing (15 °C) to as low as 

can be expected under snow-covered conditions (-15 °C). 

By furthering our knowledge of the temperature responses of ecosystem 

respiration at low temperatures, researchers will able to obtain improved model estimates 

of rates of CO2 efflux during the cold season, thus improving annual carbon balance 

estimates.   

METHODS AND MATERIALS 

Sample Collection and Culture 

Tundra monoliths (blocks of intact soil and vegetation) used for this study were 

collected near Toolik Field Station from moist acidic tundra (Viereck et al. 1992; Walker 

et al. 1994; Hobbie et al. 2005).  The vegetation of the monoliths was cotton grass 

(Eriophorum vaginatum) tussock tundra with (Carex bigelowii), evergreen shrubs 

(mainly Andromeda polifolia, Cassiope tetragona, Ledum palustre, and Vaccinium vitis-

idaea with Empetrum nigrum and Pyrola grandiflora), deciduous shrubs (mainly Betula 

nana and Salix pulchra with Vaccinium uliginosum), forbs (Saxifraga cernua and 

Stellaria laeta), and mosses (primarily Sphagnum spp., Hylocomium splendens, 

Aulacomnium turgidum, and Dicranum spp.).  The climate at the site is continental arctic, 

with mean monthly temperatures ranging from -22.5 (January) to 11.2 ºC (July), (Toolik 

Environmental Data Center Team 1997-2000).  Three hour moss surface and 5 cm soil 

depth temperatures from the Arctic LTER (posted on the Toolik Field Station Weather 

Station Data Query website) during 2009 through 2011 was averaged every 24 hour time 

step and graphed (Figure 1, Toolik Environmental Data Center Team 2009-2011).  The 
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soils at the site of collection are Pergelic Cryaquepts (Genet et al. 2012).  The six tundra 

monoliths used in this study were collected in July of 2009, 2010, or 2011 during peak 

permafrost thaw.  Monoliths (average height and area of 12 cm and 915 cm2, 

respectively), were collected to approximately 15 cm depth below the top of the moss 

layer down to mineral soil.  Samples were either express shipped or brought directly back 

to Florida International University in luggage.  Monoliths were immediately placed in 

opaque rectangular tubs in growth chambers (Environmental Growth Chambers GC-2H 

Plant Chamber) set at 15 °C with 100 % lighting and 24 hr photoperiod.  Samples were 

watered twice weekly with deionized water so that a small amount of standing water was 

present at the bottom of the tubs (1-2 cm).  The day prior to CO2 measurements, plants 

were well-watered and soil moisture (0-5 cm depth) was monitored with an EC-5 sensor 

(Decagon Devices, Pullman WA).  At least 2 months before measurements were begun, 

growth chamber settings were changed to 15/10 °C day/night temperatures with 12 hr 

daylight at 50 % full lighting at 15 °C and darkness at 10 °C to cold harden the monoliths.  

Chambers were set to ramp between temperature set points.  Light levels in the chambers, 

which were measured with a quantum sensor LI-190SA and read with a LI-1400 

datalogger (LI-COR, Lincoln, NE), were 310 and 135 µmol m-2 s-1 PAR 

(photosynthetically active radiation) at the canopy surface for 100 and 50 % lighting, 

respectively. 

Carbon Dioxide Efflux 

Measurements of CO2 efflux were made using static chamber methods whereby 

the rate of change in the concentration of CO2 within a chamber enclosing a tundra 

monolith was used to determine the CO2 efflux rate.  Concentrations of CO2 were 
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measured from samples taken by syringe and injected into an infrared gas analyzer 

(IRGA, Ehleringer and Cook 1980).  By using syringe samples rather than a closed-loop 

transient or differential IRGA system, we avoided exposing the gas analyzer to very low 

temperatures or warming the air in the chamber by cycling through an IRGA. 

The measurement process consisted of monolith temperature incubation and 

stabilization, IRGA calibration, chamber gas extraction, and gas injection into the IRGA 

gas line.  Prior to the first measurement at a target temperature, the monolith was placed 

in the chamber (previously kept at the same target temperature).  When the internal 

monolith temperature had stabilized, the Luer-Lock extraction point was sealed and the 

chamber covered with a black cloth to ensure darkness during extractions.  The monolith 

temperature was again monitored until the temperature had stabilized again. 

Incubation Chamber 

A five-sided polycarbonate chamber (36 x 40 x 36 cm, total volume 66,240 cm3) 

was designed to enclose the monoliths and the plastic tub in which they were established.  

The chamber contained two fans in opposite corners to ensure internal chamber air 

mixing, a coil of Excelon Bev-A-Line® tubing (Thermoplastic Processes, Stirling, NJ) 

vented to the outside to equalize pressure resulting from syringe extractions, and an 

extraction point with Luer-Lok fitting inserted into the chamber for Luer-Lok cap seal 

and Luer-Lok syringe connectivity.  For measurements, the tub containing a monolith 

was placed on aluminum braces within a 51 x 43 x 5 cm polycarbonate tray filled to 1 cm 

depth with 100 % antifreeze.  The five-sided polycarbonate chamber was then placed 

over the monolith with a seal created by the antifreeze in the bottom of the polycarbonate 

tray.   



29 

Infrared Gas Analyzer Gas Line 

An infrared gas analyzer (LI-6262 CO2/H2O, LI-COR, Inc, Lincoln, NE) was set 

up in absolute mode for CO2 concentration measurement (Ehleringer and Cook 1980).  A 

6262-04 auxiliary pump installed with a Gelman Acro® 50 Filter and soda lime (CO2) 

and Drierite (H2O) scrub cycled zeroed gas through the IRGA reference line.  The gas 

flowing through the sample line was Ultra High Purity N2 that had passed through a soda 

lime and Drierite scrub and a Gelman Acro® 50 Filter.  Flow rates were measured with a 

rotameter (Dwyer Instruments, Michigan City, IN), and a three-way Luer-Lok stopcock 

was used as the injection site.  Excelon Bev-A-Line® was used for all tubing.  

Carbon Dioxide Measurements 

Measurements on tundra monoliths previously collected took place from May 

2012 through July 2012 and were conducted at seven target temperatures: 15 to -15 °C at 

5 °C intervals.  The IRGA was calibrated each day of measurements, prior to the first 

chamber CO2 measurement, with 450 ppm + 1 % CO2 calibration gas.  A Becton-

Dickinson 3 cc Luer-Lok Precisionglide sterile syringe with marked 0.1 cc increments 

was used for calibrations as well as extractions and injections of chamber air for 

concentration measurements.  Volumes from 0.5 to 3.0 ml at 0.5 ml intervals were 

extracted from the calibration gas at 0.5 l min-1 and injected into the IRGA gas line.  The 

IRGA gas line flow was maintained at 0.75 l min-1. 

The integrated areas under the peaks resulting from the different volumes of CO2 

were calculated using the peak integration function of the IRGA with a 0.5 ppm 

activation threshold.  The IRGA outputs were captured by computer using the RS-232 

port with data output set to 1 s, and data were collected via HyperTerminal (Hilgraeve 
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Inc., Monroe, MI).  Peak integration and volumes were used to calculate the calibration 

equation relating peak height to concentration of carbon dioxide. 

For measurement of change in chamber CO2 concentrations, five gas samples 

were collected over time for each of the seven target temperatures.  Periods between 

samplings ranged from 30 to 180 min, with longer periods used for lower temperatures 

(Table 1); see Figure 2 for an example of one monolith temperature series.  Multiple 

extractions of 1.5 ml were taken from the chamber at each sample interval and injected 

one at a time into the IRGA gas line after temperature stabilization of the tundra 

monolith.  Peak integration values for chamber extraction ranged 38.957 to 120.083 units.  

The IRGA sometimes logged two peak integration data points for the same injection 

instead of single peak, with the first data point lasting ~1 s and ranging from 0.5 to 6.0 

units and the other data point being several units less than the expected range for 

integrations.  In these cases, the two points were combined to give a total injection peak 

integrated area.  All peak values were filtered to exclude values exceeding one standard 

deviation to better elucidate linear trends in the data. 

Temperature Measurements 

Tundra monoliths were placed in an EGC-2H growth chamber for target 

temperatures 15, 10, and 5 °C, while target temperatures 0, -5, -10, and -15 °C were 

conducted in a chest freezer (Kenmore Model 1654) regulated by a temperature controller 

(Ranco Model ETC-111000) with a 3 °C temperature differential.  Monoliths were 

incubated at their target temperature until the monolith temperature, 3 cm beneath the 

tundra surface, was stable.  Monolith temperature was measured as the mean of three 

thermoplastic-insulated copper-constantan thermocouples placed throughout the monolith 
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at 3 cm depth.  A separate thermocouple measured chamber air temperature 

approximately 5 cm above the monolith surface.  All thermocouples were connected to a 

CR23X datalogger (Campbell Scientific, Inc, Logan, UT) scanning at 5 s intervals and 

logging temperatures as 1 min averages.  Measurements of ER were made from high to 

low temperatures.  Upon placement in a new, lower temperature regime (prior to 

incubation chamber placement and measurements), monolith soil temperature began to 

immediately decline for all target temperatures except for -5 °C, which took between 30 

to 50 hr before a decrease in soil temperature began (Figure 3).  For the growth chamber 

measurements, air temperatures varied only slightly (+ 0.25 to + 0.50 °C) around the set 

point.  However, for the freezer-based measurements with the 3 °C differential set by the 

controller, air temperatures varied slightly more (+ 0.63 to + 0.75 °C).  The soil 

temperature variation at 3 cm depth was about half that of air temperature, with variations 

of + 0.13 to + 0.19 °C and + 0.13 to + 0.44 °C for growth chamber and freezer-based 

measurements, respectively. 

Normalizing Monoliths for Comparisons 

Monolith effluxes are presented on a per unit surface area basis.  To test if 

variation in CO2 fluxes among the monoliths was related to differences in soil depth or 

vegetation, curves were derived from monolith volume, normalized difference vegetation 

index (NDVI), and sum percent plant cover.  Normalized difference vegetation index, a 

reflectance metric for live green vegetation, was measured on all monoliths using a 

Unispec-SC spectroradiometer (PP Systems, Haverhill MA).  Sum percent plant cover 

was determined for each monolith using a 5 cm x 5 cm cell quadrat (25 cm × 30 cm; 

0.075 m2) to estimate percent plant cover of vascular species and growth forms 
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(graminoids, evergreen shrubs, deciduous shrubs, forbs, and moss) as modified from 

Laidler et al. 2008.  

Data Analysis 

A unique calibration equation calculated for each individual target temperature 

measurement was determined using a linear trendline in Microsoft Excel (Part of 

Microsoft Office Professional Edition), Release Version 14.0 (© Microsoft, Inc., 2011, 

Redmond, WA).  The calibration equation was then used to estimate the CO2 

concentration at each of the five samplings for each temperature.  The average change in 

CO2 concentration was used to estimate the monolith ecosystem respiration efflux rate by 

Equation (1).   







 




dt
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273.15)RS(T

10VP
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0

0        (1) 

where ER is the soil CO2 efflux rate (μmol m-2 min-1), V is volume (cm3), P0 is the initial 

pressure (kPa), R is the gas constant (8.314 Pa m3 K-1 mol-1), S is soil surface area (cm2), 

T0 is initial air temperature (°C), and dC'/dt is the initial rate of change in CO2 mole 

fraction (μmol mol-1 min-1) (LI-COR Biosciences 2010). 

A temperature response curve was graphed for ER as calculated from Equation 1.  

Additional curves were fit based on ecosystem respiration CO2 efflux and monolith 

volume, NDVI, and sum percent plant cover.  Linear regressions using PASW Statistics 

18, Release Version 18.0.0 (© SPSS, Inc., 2009, Chicago, IL) were used to compare all 

raw CO2 rates with monolith volume, NDVI, and sum percent plant cover for each target 

temperature.  The vegetation of one of the monoliths died after the -15 °C measurement 

but prior to NDVI measurement, and was excluded from NDVI comparisons. 
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Carbon dioxide efflux at temperatures 15 to -15 °C at 5 °C intervals were fit to the 

Arrhenius equation (Equation 2) in Microsoft Excel, Release Version 14.0 using the 

linear relationship between the natural logarithm of CO2 efflux and the inverse 

temperature to estimate activation energy and the pre-exponential factor.  The Arrhenius 

equation is derived as: 

RT

Ea

AeER


          (2) 

where A is the pre-exponential factor, Ea is the activation energy, R is the universal gas 

constant (8.314 x 10-3 J mol-1K-1), and T is the temperature (K) (Fang and Moncrieff 

2001).   

 Ecosystem respiration effluxes derived from the Arrhenius equation at 

temperatures 15 to -15 °C at 5 °C intervals were used to calculate Q10 values between 

every 10 °C change in temperature for the range of temperatures measured in this study 

(15 to -15 °C at 5 °C intervals).  The Q10 equation is calculated as: 

t

10t
10 K

K
Q           (3) 

where Q10 is the increase in reaction rate per 10 ° increase in temperature, Kt is the rate of 

reaction at temperature t, and Kt+10 is the rate of reaction at temperature 10 ° greater than 

temperature t (Winkler et al. 1996). 

RESULTS 

Carbon dioxide efflux rates were collected from six tundra monoliths at soil 

equilibrium temperatures from +15 to -15 °C at 5 °C intervals.  Calibrations for all tests 

were linear, and r2 values averaged >0.99 (SE = 3.21∙10-4).  Raw rates of CO2 increase in 
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the chamber ranged from 0.038 to 4.037 ppm min-1 with standard errors of 0.010 to 

0.224, respectively (Table 2).  The average r2 for the increase in CO2 concentration with 

time for the equilibrium temperatures ranged from 0.98 (+ SE 0.004) at +15 °C to 0.47 (+ 

SE 0.089) at -15 °C (Table 2).  Low r2 values at low temperatures are the result of very 

low slopes rather than variability of linear fits (Figure 2). 

Carbon dioxide efflux calculated on an area basis using monolith area and 

chamber volume (Equation 1) showed an exponential response and closely fit a second 

order polynomial, r2 = 0.97 (Figure 4).  The linear relationship between the natural 

logarithm of corrected CO2 efflux and inverse temperature as defined by the Arrhenius 

equation (Figure 5) was used to estimate the pre-exponential factor and activation energy 

constants, 1.44737∙1019 and 103.2 kJ, respectively.  A plot of the natural logarithm of 

respiration efflux vs. inverse temperature shows a break in the relationship above-

freezing (Figure 6). 

The Q10 values of tundra monoliths at 10 °C intervals over the range of soil 

equilibrium temperatures ranged from 4.77 to 6.10 (Table 3).  The Q10 values decreased 

with increasing temperature, with the lowest 10 °C interval having the highest value.   

Temperature response curves derived from monolith volume, NDVI, and sum 

percent plant cover can be viewed in Figures 7, 8, and 9.  The fit to the response 

expressed on a volume basis (polynomial fit r2 = 0.97) was slightly less than for area.  

The fit for NDVI-derived fluxes (polynomial fit r2 = 0.95) was marginally lower than 

those expressed on an area and volume basis.  The fit of the response to sum percent plant 

cover (polynomial fit r2 = 0.98) barely exceeded that of area. 
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Linear regressions comparing all the raw rate of change of CO2 concentration 

with monolith volume, NDVI, and sum percent plant cover for each target temperature 

Tables 4, 5, and 6, respectively, were only significant at 15 °C for sum percent plant 

cover (Figure 10). 

A summary of percent plant cover for vascular species and growth forms of each 

monolith is provided in Table 7.  Graminoids and mosses comprised approximately 36 

and 35 %, respectively, of the cover for the six monoliths used in this study, followed by 

evergreen shrubs (24 %), with few deciduous shrubs (3 %) and forbs (2 %).   

DISCUSSION 

The temperature response of area-derived ER of tundra monoliths (Figure 4) 

showed a clear exponential increase as temperature increased, with a very high second 

order polynomial r2 (0.97).  The response also fit the Arrhenius function very well 

(Figure 5). 

 Values of Q10 estimated from the Arrhenius fit of the data (Table 3) were 

considerably higher (4.77 to 6.1) than the standard value of 2 usually associated with 

biological reactions.  Raich and Schlesinger (1992) reviewed Q10 values for soil 

respiration, a major component of ER, and found that most fell within the range of 1.3-

3.3, which is the same range that many plant processes fall in as well (Ryan 1991).  

Previous research on arctic tundra soils have calculated Q10 values between 1.8 and 3.6 

for temperatures above 0 °C (Elberling 2003; Elberling and Brandt 2003; Elberling 2007; 

Morgner et al. 2010), corroborating Raich and Schlesinger’s (1992) range.  However, 

Mikan et al. (2002) reported significantly higher Q10 values of 4.6 to 9.4.  Values of Q10 

reported for below-freezing temperatures are highly variable, with values as low as 3 
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(Morgner et al. 2010), increasing to 7.1 (Elberling 2007), 8.5 (Panikov et al. 2006), 18.2 

(Sullivan et al. 2008), 50.8 (Elberling and Brandt 2003), and as high as 237 (Mikan et al. 

2002).  The high Q10 values of soil respiration at low temperatures indicate that small 

increases in temperature during the cold season will have greater proportional effects than 

increases during the growing season (Schleser 1982 cited in Raich and Schlesinger 1992).  

The Q10 of 6.0 in my research translates to a ~20 % increase in ER for a 1 °C increase in 

temperature.  Temperatures in the North Slope of Alaska have already increased 2.9 °C 

since 1976 (Wendler et al. 2010).  A Q10 of 6.0, assuming no acclimation of respiration 

rates to temperature, implies that respiration rates currently are 70 % higher than 35 years 

ago.  However, because most of the temperature increase in the last 35 years has been for 

winter months, when respiration rates are very low, the absolute increase in respiration is 

likely relatively small, so far. 

Most studies providing Q10 values for tundra soil respiration have used some form 

or derivation of the Arrhenius equation.  The use of the Q10 and Arrhenius functions in 

this paper follows the accepted application characteristic of ecosystem and soil 

respiration research.  Lloyd and Taylor (1994) and Fang and Moncrieff (2001) point out 

estimation bias and underestimate limitations of the current Arrhenius equations applied 

to soil respiration, but consistent and widely used alternatives are still lacking.  

Menzinger and Woldgang (1969) cautioned that the Arrhenius equation overestimates the 

activation energy constant; however, alternatives are overcomplicated and inconsistent.  

There are both short- and long-term temporal concerns for the use of Q10 values to 

describe temperature responses of respiration, including the short-term deviation of the 

respiration rate from a simple exponential function and possible long-term temperature 
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response shifts resulting from temperature acclimation (Tjoelker et al. 2001; Atkin and 

Tjoelker 2003).  The equilibrium of air and soil temperatures and the relatively short 

sampling times (ranging 2 to 12 hours) in my research help to minimize short- and long-

term concerns that could arise from temperature response data. 

The high Q10 values from other low temperature studies and this project suggest 

the presence of a threshold for ecosystem and soil respiration at the freezing point.  

Mikan et al. (2002) found that the exponential parameter and activation energy constants 

for his data were significantly different at above- vs. below-freezing temperatures and 

calculated different constants for temperatures 0.5 to 14.0 °C and -0.5 to -10 °C.  While 

the data reported here closely fit the linearized Arrhenius function (Figure 5), a plot of the 

natural logarithm of respiration vs. inverse temperature show a break in the relationship 

above-freezing (Figure 6), similar to that found in Mikan et al. (2002).  Consistent with 

this difference, the Q10 values here were also higher at temperatures below-freezing than 

above-freezing (Table 3). 

Multiple hypotheses have been suggested to explain low respiration rates and high 

Q10 values for soils at and below-freezing temperatures.  Elberling and Brandt (2003) 

suggested that the onset of ice reduced CO2 release by trapping CO2 in frozen soil.  

Mikan et al. (2002) argued the diffusion processes of substrates, nutrients, and waste 

products were all adversely indirectly affected by temperature via the unfrozen water 

content of soils.  The more widely accepted explanation for decreased respiration from 

soils at temperatures below 0 °C is the effect of soil water availability and moisture 

limitations on microbial activity (Lloyd and Taylor 1994, Mikan et al. 2002; Davidson et 

al. 2006; Panikov et al. 2006).  Freezing is known to affect numerous soil microbial 
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properties including community composition (Lloyd and Taylor 1994), growth of 

microbial populations and root tissues (Davidson et al. 2006), kinetic energy of reactants 

(Panikov et al. 2006), enzymatic respiratory activity (Davidson et al. 2006), diffusion of 

O2 and soluble carbon substrates across cellular membranes (Davidson et al. 2006), 

extracellular barriers to diffusion (Mikan et al. 2002), and intracellular desiccation 

(Mikan et al. 2002). 

While this research provides precise ecosystem CO2 efflux rates at equilibrium for 

temperatures as low as -15 °C, laboratory experiments have limitations compared to in 

situ measurements.  Unlike natural temperature conditions for arctic tundra, both air and 

soil temperatures in these experiments were in equilibrium across the full temperature 

range.  Under natural conditions, especially in the absence of snow cover, soil and 

canopy temperatures are often not the same, with soil temperatures often colder than 

surface temperatures in the fall before the development of snow cover and warmer in the 

spring than surface temperatures after snowmelt.  The data from the current experiment 

are representative of the field conditions at low temperatures during winter with deep 

snow cover when canopy and soil temperatures are most similar.  These conditions were 

the highest priority of this study, as at winter temperatures field measurements are often 

problematic as a result of low temperature operation limitations of the analytical devices 

used to measure CO2.  Furthermore, these results were not complicated by possible CO2 

storage below snow, ice, or frozen soils layers. 

 During the onset of winter, the liquid to solid phase change releases energy in the 

form of latent heat that results in a warming of soil (Luo et al. 2002; Zhang and Sun 

2011).  The postponement to decrease temperature during the -5 °C equilibrium for all 
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monoliths  (ranging 30 to 50 hr, Figure 3), clearly displays this same release of latent heat 

as a resistance to temperature change at subzero temperatures.  For Toolik tundra, this 

period may last or exceed a month (see September of 2009, 2010, and 2011 in Figure 1).  

Under these conditions, the relationship between air and soil temperature is temporarily 

disrupted, which may strongly affect the contribution of above- and below-ground 

components to ecosystem respiration. 

While the response of the monoliths presented very similar responses to 

temperature, some variation in ER of the monoliths was present, possibly as a result of 

differences in the amount of soil volume or green plant biomass.  When rates were 

normalized to monolith volume (Figure 7) to account for soil depth, the correlation was 

only slightly below area-based normalization (Figure 4), indicating that depth of tundra 

soil may contribute to ecosystem respiration.  Rates normalized to NDVI (Figure 8) were 

marginally below volume correlations, and sum percent plant cover rates (Figure 9) 

faintly exceeded area, suggesting above-ground vegetation components may also affect 

tundra ecosystem respiration.  Area, volume, NDVI, and sum percent plant cover 

relationships indicate that both above- and below-ground factors are important drivers of 

variation in ER across the full temperature range.  These findings somewhat support 

Grogan et al. (2001) above-ground vegetation removal experiments that indicated a large 

fraction of winter respiration is from aboveground plant biomass.  My results suggest that 

above- and below-ground components are equally significant concerning cold season 

ecosystem respiration. 
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CONCLUSION 

The research of tundra ecosystem CO2 efflux in this study provides some of the 

first precise temperature response data for Arctic tundra at low temperatures.  The 

temperature response was exponential and best fit by a second order polynomial.  The 

Q10 values were generally higher than typically found in soil and plant respiration, and 

were inversely related to temperature.  These results translate into a ~20 % increase in ER 

for a 1 °C increase in temperature.  Temperatures in the North Slope of Alaska have 

already increased 2.9 °C since 1976 (Wendler et al. 2010), which implies that ecosystem 

respiration rates could be 70 % higher now than before temperature warming.  Carbon 

dioxide efflux was best explained by monolith surface area and sum percent plant cover; 

however, monolith volume and NDVI were only marginally different than area and sum 

percent plant cover.  The equal significance of both above- and below-ground 

components suggests that further research is required to determine which components 

will contribute most to cold season ecosystem respiration.  
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Table 1. Time intervals between the five extractions at target temperatures. 
 

Target Temperature (°C) Extraction  Interval  (min) 

15 30 

10 30 

5 30 

0 60 

-5 120 

-10 120 

-15 180 

 
  



46 

Table 2. Mean slope and slope r2 of raw rate of CO2 increase vs. time for each 
temperature. 
 

Target Temperature (°C) n Mean Slope SE Mean r2 SE 

15 6 4.037 0.224 0.98 0.004 

10 6 2.729 0.181 0.96 0.017 

5 6 1.695 0.092 0.92 0.020 

0 6 0.921 0.093 0.90 0.024 

-5 6 0.235 0.045 0.71 0.141 

-10 6 0.131 0.012 0.51 0.145 

-15 6 0.038 0.010 0.47 0.089 

 
  



47 

Table 3. The Q10 values as calculated from data fit to the Arrhenius equation. 
 

Q10 Temperature  (°C) Q10 

15, 5 4.77 

10, 0 5.04 

5, (-5) 5.35 

0, (-10) 5.70 

(-5), (-15) 6.10 
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Table 4. Linear regressions for raw rate of CO2 increase vs. monolith volume for each 
target temperature. 
 

Treatment n r2 Slope p t df 

15 6 0.45 4∙10-6 0.145 1.80 4 

10 6 0.33 3∙10-6 0.232 1.41 4 

5 6 0.33 1·10-6 0.234 1.40 4 

0 6 0.13 8·10-7 0.484 0.77 4 

-5 6 0.21 5·10-7 0.358 1.04 4 

-10 6 0.18 -1·10-7 0.402 -0.94 4 

-15 6 0.0035 2·10-8 0.912 0.12 4 
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Table 5. Linear regressions for raw rate of CO2 increase vs. monolith NDVI for each 
target temperature. 
 

Treatment n r2 Slope p t df 

15 5 0.23 0.0534 0.414 0.95 3 

10 5 0.18 -0.0553 0.473 -0.82 3 

5 5 0.036 -0.0122 0.760 -0.34 3 

0 5 0.46 -0.0365 0.210 -1.59 3 

-5 5 0.48 0.0195 0.195 1.66 3 

-10 5 0.47 0.00442 0.199 1.64 3 

-15 5 0.59 0.00504 0.129 2.08 3 
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Table 6. Linear regressions for raw rate of CO2 increase vs. monolith sum percent plant 
cover for each target temperature. 
 

Treatment n r2 Slope p t df 

15 6 0.69 9·10-4 0.0416 2.96 4 

10 6 0.075 2·10-4 0.599 0.57 4 

5 6 0.13 1·10-4 0.474 0.79 4 

0 6 7.5·10-5 -3·10-6 0.987 -0.02 4 

-5 6 0.49 1·10-4 0.124 1.94 4 

-10 6 0.16 1·10-5 0.425 0.89 4 

-15 6 0.0066 2·10-4 0.637 0.48 4 
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Table 7. Summary of percent plant cover for vascular species and growth forms of each 
monolith. 
 

Growth Form Species 
Monolith 

1 2 3 4 5 6 
Percent Plant Cover 

Graminoid  56 56 48 71 40 32 
 Carex bigelowii 0 0 0 14 12 27 
 Eriophorum vaginatum 56 56 48 57 28 6 

Evergreen Shrub  20 44 40 27 33 45 
 Andromeda polifolia 0 4 10 5 11 21 
 Cassiope tetragona 0 11 14 13 14 19 
 Empetrum nigrum 0 12 0 0 0 0 
 Ledum palustre 13 3 3 3 1 0 
 Pyrola grandiflora 0 0 0 0 1 1 
 Vaccinium vitis-idaea 6 15 13 6 7 4 

Deciduous Shrub  0 0 1 4 3 17 
 Betula nana 0 0 1 4 0 5 
 Salix pulchra 0 0 0 0 3 12 
 Vaccinium uliginosum 0 0 0 0 0.3 0 

Forb  0 0 6 1 9 0 
 Saxifraga cernua 0 0 0 1 0 0 
 Stellaria laeta 0 0 6 0 9 0 

Moss  58 34 61 37 62 51 
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Figure 4. Poolynomial fit of CCO2 efflux per uunit surface area

55 

a.  Error bars ± 1 SE.   

 



 
Figure 5. Linnearized Arrhennius plot using aall data (natural 

56 

logarithm of COO2 efflux data peer unit area vs. inverse tempera

 

ature).



 
Figure 6. Ploots of natural logarithm of CO2 efflux and inve

57 

erse temperaturee for above- andd below-freezingg temperatures.
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h volume.  Errorr bar 1 ± SE. 
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CHAPTER III. WATER UPTAKE OF ARCTIC TUNDRA EVERGREENS 
DURING THE ALASKAN WINTER-SPRING TRANSITION 

 
INTRODUCTION 

One advantage of the evergreen habit is that photosynthesis can continue over a 

greater proportion of the year than in deciduous species.  An extreme example occurs in 

arctic evergreens that photosynthesize under the snow in the spring (Oberbauer and Starr 

2002; Starr and Oberbauer 2003; Starr et al., unpublished).  Starr and Oberbauer (2003) 

measured positive photosynthetic rates of four common arctic evergreen species 

(Eriophorum vaginatum, Ledum palustre, Vaccinium vitis-idaea, and Cassiope 

tetragona) under snow.  Subsequent research on V. vitis-idaea has found that in addition 

to being photosynthetically capable prior to snowmelt, this species is photosynthetically 

active throughout the winter (Lundell et al. 2008; Lundell et al. 2010).  Cold season 

photosynthesis by evergreens may help offset winter respiratory carbon losses.  However, 

photosynthetic CO2 uptake means that stomata are open, which in turn implies that plants 

are transpiring.  How these evergreens replace water losses under the snow and during 

the winter-spring transition while the soils are still frozen is unknown.  Indeed, relatively 

little is known about the physiological processes of tundra plants during the cold season. 

The water balance of arctic tundra plants during the winter-spring transition is a 

function of a number of interacting factors, some of which are not well understood.  

When plant stem water freezes, embolisms may form in the xylem vessels, blocking 

further water uptake in that vessel.  However, in small plants, such as tundra plants, root 

pressure may refill embolized vessels if liquid water is available (Hacke and Sauter 1996; 

Cochard et al. 2001).  Water is more viscous when cold, and uptake rates are lower in 
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cold weather compared to the growing season because of increased stem resistance and 

reduced conductivity of roots (Brodribb and Hill 2000).  Tundra soils remain frozen 

during most of the winter and partially so after snow melts in the spring.  However, some 

water bound to soil particles remains unfrozen even in very cold soils, and plants may be 

able to access that water (Seyfried and Murdock 1997).  As snow begins to melt in the 

spring, a process that may take a week to several weeks, water percolates from the upper 

snow layers down to the snow-soil interface, where it might be available to plant roots.  

The environment under snow is warmer than above-snow air temperature, it is also likely 

considerably more humid, especially with percolating meltwater.  Under these conditions, 

plants may not lose any water and may even take up water.  Foliar uptake has been shown 

to be an important source of water in some evergreens, such as redwoods (Burgess and 

Dawson 2004).   

One approach to evaluating plant water uptake and its sources is by use of stable 

isotopes as a tracer or label.  Elements typically have at least two stable isotopes, with 

one being in greater abundance than the other(s); these stable isotopes have allowed 

scientists to study biological, ecological, and environmental processes (Ehleringer and 

Rundel 1989).  Hydrogen has two stable isotopes, 1H and 2H (also referred to as 

deuterium, D) with terrestrial abundances of 99.985 and 0.015 %, respectively (Dawson 

et al. 2002).  Variation in stable isotope contents arise from kinetic (chemical), 

equilibrium (physical), or diffusive fractionation processes relating to the properties of 

the isotope in question (Ehleringer and Cerling 2002).  Water does not generally 

experience kinetic fractionation as it is taken up by plants, allowing plant water to have 

the same isotopic signal as the water source (Wershaw et al. 1966; Dawson and 
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Ehleringer 1993).  However, equilibrium fractionation occurs during leaf transpiration, 

tending to enrich leaf water with deuterium (Marshall 2007).  Terrestrial plants tend to 

have naturally occurring δ2H values ranging from +35 to -350 ‰, depending on latitude, 

elevation, continental position, season, and frequency of precipitation (Dawson and 

Siegwolf 2007). 

Deuterium has been used to study many aspects of plant physiology, including but 

not limited to photosynthetic pathways (Ziegler et al. 1976; Sternberg 1986; Flanagan et 

al. 1991), evapotranspiration (Walker and Brunel 1990), ecosystem water vapor (Lai and 

Ehleringer 2011), nighttime transpiration (Dawson et al. 2007), ramet water movement 

(De Kroon et al. 1996; Matlaga and Sternberg 2009), and water uptake (Ehleringer and 

Dawson 1992).  Multiple studies have been conducted looking into the source of water 

uptake in plants, whether comparing precipitation with soil moisture (Lin et al. 1996; 

Sugimoto et al. 2002; Gat et al. 2007; West et al. 2007; Xu et al. 2011) or within the 

vertical or horizontal soil profile (Thorburn and Ehleringer 1995; Moreira et al. 2000; 

Sternberg et al. 2002; Schwinning et al. 2005; Ewe et al. 2007).  Isotopes have been used 

to determine that foliar uptake is one strategy plants use to obtain water (Burgess and 

Dawson 2004; Corbin et al. 2005; Limm et al. 2009). 

 The objective of the present study was to use deuterium as a tracer to determine if 

evergreen tundra plants are actively taking up water during the winter-spring transition 

when soils are mostly frozen.  A δ2H isotopic solution was made available to 

experimental plants so that any water uptake would be confirmed with enriched δ2H 

values.  I hypothesized that tundra plants under snow in frozen soils are rehydrating 

either by root or foliar uptake of water. 
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 My research provides evidence that evergreen plants are indeed able to take up 

water under snow, possibly via roots but undoubtedly by foliar uptake.  By understanding 

the physiology of dominant species at low temperatures, researchers should be better able 

to predict how tundra communities may respond to changes in temperature and snow 

cover with climate change.   

METHODS AND MATERIALS 

Study Site 

This study was conducted near Toolik Field Station (68º 38’N, 149º34’W, 760 m 

above sea level) in the northern foothills of the Brooks Range, Alaska.  Samples were 

taken from moist acidic and dry heath tundra (Viereck et al. 1992; Walker et al. 1994; 

Hobbie et al. 2005).  The moist acidic vegetation was dominated by graminoids (Carex 

bigelowii), deciduous shrubs (Betula nana with Vaccinium uliginosum and Salix 

pulchra), evergreen shrubs (mainly Ledum palustre, Vaccinium vitis-idaea, Cassiope 

tetragona, Empetrum nigrum, and Andromeda polifolia), and mosses (primarily 

Sphagnum spp., Hylocomium splendens, Aulacomnium turgidum, and Dicranum spp.).  

The dry heath vegetation was dominated by Dryas octopetala, Kalmia procumbens, 

Diapensia lapponica, Empetrum nigrum, Ledum palustre, Vaccinium vitis-idaea, and 

Arctous alpina.  The climate at the site is continental arctic, with mean monthly 

temperatures ranging from -22.5 (January) to 11.2 ºC (July), (Toolik Environmental Data 

Center Team 1997-2000). 

Samples for the current study were collected in mid-May of 2010 and 2011 during 

the final stages of snowmelt.  Soil (5 cm depth) temperature during field experiments 

averaged 0.063 and -3.77 °C for 2010 and 2011, respectively (Toolik Environmental Data 
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Center Team 2010, 2011).  Air (3 m height) temperatures during field experiments 

averaged -0.38 and -2.26 °C for 2010 and 2011, respectively (Toolik Environmental Data 

Center Team 2010, 2011).  Three different deuterium isotopic labeling experiments (in 

situ community, in situ species, and ex situ foliar uptake) were conducted. 

In Situ Community Labeling Experiment 

In situ community labeling experiments were designed to investigate root water 

uptake by photosynthetically capable evergreen vascular plants during the winter-spring 

transition, while the ground was frozen.  Ten 100 x 100 cm snow-covered plots were set 

up in an area of moist acidic tundra in mid-May 2010.  Prior to isotopic treatment, 

baseline leaf and soil samples were collected for deuterium analysis from five nearby 

snow-covered 50 x 50 cm plot (Table 1).  Three snow samples were also collected as 

snow deuterium references from the snow surface among plots and, using methods 

described in the Deuterium Analysis section of Materials and Methods, averaged -173.1 

‰ δ2H (Table 1).  Two different treatments were used during initial application of the 

deuterium isotopic solution of 1:1000 99.8 % deuterium oxide and deionized water (δ2H 

of 6319.4 ‰), with five plots designated for each treatment.  A metal rod was used to 

make a grid of 50 vertical tunnels in the snow to the surface of the ground for the no-tap 

treatment.  For the tap treatment, the same grid of tunnels were made, however, the metal 

rod was tapped with a hammer for each tunnel to break the surface of the frozen soil.  

Each plot was treated twice with 500 ml of the chilled deuterium isotopic solution, 

equally distributed over the grid of 50 vertical tunnels of each plot using a 30 ml syringe 

and hollow rod, similar to Koeniger et al. (2010).  These two dosings were made at 22:00 

- 01:00, the night before the first sampling, and at 7:00 - 9:30, the morning of the first 
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sampling.  Thus, the solutions were applied during the colder part of the day to ensure the 

introduced solutions minimized changes to the natural thermal environment of the plots.  

Each of the ten plots were divided into four 50 x 50 cm subplots, with a different subplot 

sampled during each of the four consecutive sampling days.  A sampling event consisted 

of excavating snow from the subplot of interest, collecting all evergreen leaves and 

stems, and a single soil core of 3-5 cm in depth and one inch diameter.  To avoid 

contamination, hands were covered with latex gloves and all specimens were collected 

with tweezers and immediately placed in 15 ml BD Falcon™ polypropylene conical 

centrifuge tubes, sealed with parafilm, and placed in a freezer at -18 °C prior to express 

shipping frozen in an insulated box to Miami, FL. 

In Situ Species Labeling Experiment 

In situ species labeling experiments were conducted to examine root water uptake 

while the ground was frozen by photosynthetically capable evergreen species during the 

winter-spring transition.  Individual large, spreading plants of two evergreen shrubs, 

Empetrum nigrum and Ledum palustre, growing in dry heath tundra at Toolik Lake Field 

Station were flagged while snow-free in summer 2010.  Species were selected from dry 

heath because of the large spreading form and large numbers of individuals present in 

that vegetation type.  Specimen size was critical because subsamples from each 

individual plant were harvested on three separate occasions and leaves contain relatively 

low amounts of water.  Prior to isotopic treatment, six snow samples each were also 

collected within the study area from the snow surface and the bottom layer of the snow, 

and, using methods described in the Deuterium Analysis section of Materials and 

Methods, averaged -181.2 and -146.3 ‰ δ2H, respectively (Table 1).  For each species, 
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24 plants were divided into four groups of six individuals each, with two groups used as a 

control and the other two groups as experimental.  In mid-May 2011 the soil at the base 

of each experimental plant was dosed twice with 90 ml of a chilled deuterium isotopic 

solution of 1:1000 99.8 % deuterium oxide and deionized water (δ2H of 6316.8 ‰), 

equally distributed among three separate pre-selected points arranged around the 

individual plant to avoid contact with aboveground tissue of the plant.  These dosings 

were conducted at 16:00 - 16:45 and 20:25 - 21:00 the day before the first sampling.  As 

a result of lower snow cover and faster snowmelt than expected, some plants were freed 

from snow prior to the last day of sampling.  A different area of each individual plant was 

sampled on each of the three consecutive sampling days following dosings.  During 

sampling, snow was excavated from the area of interest and leaves were collected, after 

which snow was replaced.  All specimens were collected using latex gloves and tweezers 

and immediately placed in 15 ml BD Falcon™ polypropylene conical centrifuge tubes, 

sealed with parafilm, and placed in a freezer at -18 °C prior to express shipment frozen in 

an insulated box to Miami, FL. 

Ex Situ Foliar Uptake Labeling Experiments 

Ex situ foliar uptake labeling experiments were designed to explore whether 

evergreen shrubs are capable of direct foliar water uptake of simulated snow water during 

the winter-spring transition.  Branches from large individuals of the evergreen shrubs 

Cassiope tetragona, Empetrum nigrum, Ledum palustre, and Vaccinium vitas-idea were 

collected from plants in moist acidic tundra that had just been released from snow cover.   

Experiments were performed on C. tetragona and E. nigrum during mid-May 2010, with 

all four evergreen shrub species tested in mid-May 2011.  Each of the ten samples 
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collected for each species were placed outdoors in shade on paper for 1 hr to air dry the 

leaf surfaces and to lower water potential.  Five samples from each species were then 

submerged for 1 hr in a deuterium isotopic solution of 1:1000 99.8 % deuterium oxide 

and deionized water (δ2H of 6319.4 ‰ in 2010 and 6316.8 ‰ in 2011) without 

submerging cut stems or roots.  After 1 hour of submersion, the samples were shaken off, 

rinsed three times in two different fresh batches of deionized water, and allowed to air 

dry until leaves were dry.  The remaining five samples of each species were submerged in 

the same deuterium isotopic solution without submerging cut stems or roots, and then 

immediately shaken off and rinsed three times in two different fresh batches of deionized 

water, and allowed to air dry until leaf surfaces (and dead leaves in the case of Cassiope 

tetragona) were no longer wet.  These samples were used as a "control" to determine 

potential isotopic contamination of the leaf surfaces that might be interpreted as uptake.  

All specimens were collected using latex gloves and tweezers and immediately placed in 

50 ml (2010) or 15 ml (2011) BD Falcon™ polypropylene conical centrifuge tubes, 

sealed with parafilm, and placed in a freezer at -18 °C prior to express shipment frozen in 

an insulated box to Miami, FL. 

Deuterium Analysis 

 All leaf, stem, and soil specimens were processed at the Stable Isotope 

Laboratory, Department of Biology, University of Miami (Coral Gables, FL).  Glass 

tubes were custom-handmade, loaded with leaf and stem specimens and vacuum sealed 

before water was extracted from specimens through a distillation process described in 

Vendramini and Sternberg (2007).  Three water samples were lost (in situ community: 

stem day 1 no-tap treatment and in situ species: L. palustre day 3 control and L. palustre 
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day 2 labeled) during distillation as a result of complications during the vacuum sealing 

process.  Soil samples were compressed to express an adequate amount of water for 

analysis.  All water samples were analyzed in a multiflow system connected to an 

Isoprime mass spectrometer (GV, Manchester, UK).  Hydrogen gas was equilibrated with 

water vapor by using 5 mg of platinum black powder (Sigma-Aldrich, St. Louis, MO, 

USA) and waiting for 24 hr before hydrogen isotope ratio analysis as described in 

Vendramini and Sternberg (2007).  The deuterium hydrogen isotopic ratio expressed as 

δ2H and in per mil units (‰) was calculated as: 

10001)
R

R
((‰)Hδ

standard

sample2        (1) 

where Rsample is the ratio of deuterium to hydrogen in the sample and Rstandard is the ratio 

of deuterium to hydrogen in the international standard Vienna-Standard Mean Ocean 

Water. 

Data Analysis 

 All statistical analyses were conducted with PASW Statistics 18, Release Version 

18.0.0 (© SPSS, Inc., 2009, Chicago, IL).  Treatment and sampling day of δ2H data from 

the in situ community labeling experiments were analyzed by a two-way analysis of 

variance.  Baseline leaf and soil data were compared with sampling day for both 

treatments using independent-samples t-tests.  Levene's test for equality of variances, 

which tests the null hypothesis that the error variance of the dependent variable is equal 

across groups, was used for all independent-samples t-tests and the appropriate t-tests 

results were reported.  Linear regressions were additionally conducted comparing all 

pairs of soil, leaf, and stem data within each treatment.  Sampling day and control δ2H 
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data from the in situ species labeling experiment were analyzed by a two-way analysis of 

variance.  Two δ2H values for L. palustre (one short and one long submersion) were the 

inverse of what would be expected on the basis of what the group data showed.  Upon 

review of tube labels and processing methodology, it is highly likely that these tubes 

were mislabeled.  If these interchanged values were removed from data analysis, the 

results were the same as if they were exchanged and included.  The δ2H of each species 

pair of short and long submersions in the ex situ foliar uptake labeling experiments were 

compared using independent-samples t-test.  Levene's test for equality of variances was 

used for all independent-samples t-tests and the appropriate t-tests results were reported. 

RESULTS 

In Situ Community Labeling 

Plots in which deuterium-labeled water was added to frozen soil where the surface 

had been broken became increasingly enriched for leaf δ2H over the four sample days 

(Figure 1a).  The mean leaf δ2H of the no-tap treatment plots declined slightly until day 4 

when δ2H increased (Figure 1a).  Mean stem δ2H of tap treatment plots were enriched on 

two of three days of sampling (Figure 1b).  In contrast, the no-tap treatment showed no 

enrichment (Figure 1b).  Variation in soil δ2H was largely the result of two samples with 

highly enriched δ2H values (380.7 and 467.0 ‰ on the first and second day for the no-tap 

and tap treatments, respectively) likely the result of sampling directly on a label delivery 

site (Figure 2).  Mean soil δ2H of tap treatment plots was also enriched on the fourth day 

of sampling (Figure 2).  Comparison of δ2H for effects of collection day, treatment (no-

tap or tap), and day*treatment interaction using an ANOVA were not significant for leaf 

or soil water, although stem water was significant for treatment (Tables 2-4).  
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Independent-samples t- tests comparing the baseline leaf and soil δ2H values with 

community labeling data showed no significance for either treatment for soil δ2H, except 

for leaf δ2H on the second collection day for both treatments (Tables 5-6). 

Linear regressions comparing all pairs of soil, leaf, and stem data within each 

treatment (Table 7) were significant only for soil and leaf δ2H of the no-tap treatment, 

and stem and leaf δ2H for the tap treatment (Figure 3).  Significance of the linear 

regression comparing soil and leaf δ2H of the no-tap treatment (Figure 3a) is the result of 

a single highly enriched soil value, likely resulting from soil sampling at a dosed location. 

In Situ Species Labeling  

Mean δ2H of control plants decreased slightly for E. nigrum and evenly over the 

three days of sampling for L. palustre (Figure 4).  Mean δ2H of labeled plants was 

enriched slightly on all three days of sampling for both species (Figure 4).  Comparison 

of δ2H for collection day, treatment (control or labeled), and day*treatment interaction 

using an ANOVA showed no significant effects for E. nigrum (Table 8).  Mean δ2H of 

Ledum palustre was significantly different between control and labeled treatments and 

among days in the control (Table 9). 

Ex Situ Foliar Uptake Labeling 

Mean δ2H of shoots of evergreen species submerged for 60 min in deuterium-

labeled water increased substantially compared to shoots submerged only briefly (Figure 

5).  Independent-samples t-tests for all species in both years were highly significant 

(Table 10), demonstrating significant foliar uptake potential for plants during the winter-

spring transition.   
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DISCUSSION 

I tested two possible mechanisms for water uptake by evergreen plants while the 

ground may be partially or completely frozen during the winter-spring transition, root 

uptake and foliar uptake.  I found evidence for both. 

My ex situ foliar uptake labeling results suggest that leaf water uptake from 

melting snow may be another mechanism by which arctic evergreen species obtain water 

while ground water remains frozen.  Ex situ foliar uptake labeling shoots from multiple 

evergreen shrubs submerged for 1 hour took up significantly more deuterium than 

controls (shoots briefly submerged only), indicating that their leaves and or stems are 

capable of direct water uptake.  The only species showing enriched δ2H values after being 

briefly submerged was Cassiope tetragona (Figure 5), which retains many years of dead 

leaves appressed on the stems that trap and hold water.  It is quite likely that these dead 

leaves either were not completely dry when samples were collected or that they 

effectively retained water that could be taken up by the stems and or green leaves while 

the samples were air drying.  Foliar uptake has been previously demonstrated as a source 

of water for redwoods (Dawson 1998; Burgess and Dawson 2004; Limm et al. 2009; 

Simonin et al. 2009), pines (Stone et al. 1956; Boucher et al. 1995), elms (Meidner 

1953), junipers (Breshears et al. 2008), tomatoes (Breazeale et al. 1950), lavender 

(Mumme-Bosch et al. 1999), rosemary (Mumme-Bosch et al. 1999), Crassulas (Martin 

and Willert 2000), chasmophytes (Gouvra and Grammatikopoulos 2003), and ferns 

(Limm and Dawson 2010).  Oliveira et al. (2005) found evidence in a desiccation-

tolerant monocot of direct water absorption of shoots.  To our knowledge, this is the first 
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demonstration that foliar uptake may be important for the water balance of snow-covered 

tundra plants. 

In situ δ2H labeling indicates arctic vascular evergreens may be taking up some 

water in frozen soil via roots.  Leaf δ2H from living vascular tissue collected from the in 

situ community experiments were more enriched, though not significantly so on every 

day, than the baseline δ2H values.  The differences between baseline and label treatment 

leaf δ2H were largest on day 4, and for the tap treatment that broke the soil surface, δ2H 

steadily increased with sample date.  Differences in baseline leaf water were only 

significant on day 2 for both treatments, because of the small variation in δ2H on that day 

for both treatments (Figure 1a).  This variation arose in part because the plots were of 

necessity selected while under cover of snow and variation in plant community 

composition and topography could not be controlled.  Nevertheless, the presence of 

highly enriched leaf tissue indicates at least some individuals took up the labeled water. 

I did not collect baseline samples for plant stems prior to the community labeling 

experiment.  However, the δ2H values found for stems for the no-tap treatment that 

showed no sign of enrichment were very close to the δ2H of the leaf baseline sample, 

suggesting that leaf and stem baselines were likely very similar to each other.  The δ2H of 

stems from the tap treatment showed strong increases in δ2H compared to the baseline 

leaf value.  Stem δ2H was significantly higher for the tap treatment than the no-tap 

treatment suggesting that penetrating the soil surface by tapping with the steel rod 

somehow enhanced water availability for root uptake.  That the elevated δ2H values of 

the tap treatment were a result of root uptake is supported by the significant positive 

correlation between δ2H of leaves and stems for the tap treatment (Figure 3b).  These 
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elevated values are likely a result of root uptake because water was delivered at the soil 

level below any leaves. 

The significant difference in leaf δ2H between control and labeled individuals of 

L. palustre in dry heath tundra indicate that the roots of this species were actively taking 

up δ2H-labeled water that had been added directly to the soil surface.  A similar 

difference between treatments was found for E. nigrum, although the difference was not 

statistically significant.  

During the onset of winter freezing, water from within the soil profile flows 

upwards and accumulates at the soil surface (Zhang and Sun 2011).  As liquid water 

phase changes into solid ice, significant amounts of latent heat are released (Zhang and 

Sun 2011).  Some amount of water remains unfrozen after the bulk of soil water has 

frozen (Seyfried and Murdock 1997).  The absorption force and curvature of particle 

surfaces results in a thin layer of unfrozen water among particles in porous soil, and the 

melting point depression of water determined by the concentration of solutes results in 

potentially available unfrozen water in soils (Watanabe and Mizoguchi 2002). 

During spring as snow meltwater percolates into the snowpack, it refreezes, 

releasing latent heat (Illangasekare et al. 1990; Williams et al. 1999).  A large percentage 

of water flows in unique preferential horizontal and vertical paths, referred to as flow 

fingers, which expedites the distribution of meltwater into the rest of the snowpack and 

onto the soil surface (Marsh 1988; Schneebeli 1995; Williams et al. 1999).   

The permeability of meltwater into the soil is determined by both soil temperature 

and soil pores being blocked by ice (Colbeck and Davidson 1973; Seyfried and Murdock 

1997; Carey and Pomeroy 2009).  Percolating meltwater seeps into the soil, releasing 
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heat as it freezes, allowing for more water to infiltrate into the soil (Alexeev et al. 1973).  

The degree of ice formation in pores depends on temperature, and will either allow 

infiltration to continue or cease altogether (Alexeev et al. 1973).  Stadler et al. (2000) 

lists the prevailing factors influencing infiltration of freezing soils as ice content, soil-

water moisture content, soil structure, the soil surface temperature, and the amount of 

freezing and thawing cycles.  The melt out of snow is one of the most important annual 

events for arctic soils because it is allows for renewal of moisture in soils (Gray et al. 

2001). 

Bliss et al. (1981) discussed root water uptake of tundra plants while the ground 

remains frozen at and below-freezing temperatures, noting that following the onset of 

permafrost thaw, plant roots begin to grow quickly, citing literature confirming root 

growth at low temperatures.  Two arctic tundra species, Kalmia and Diapensia, are able 

to absorb surface meltwater via adventitious roots while soils remain frozen (Courtin 

1968; Larcher 1963 as cited in Bliss 1981).  Several root water uptake strategies were 

suggested by Bliss et al. (1981) including root growth in freezing soils, cushion plants 

growing roots above the soil surface, and absorption of meltwater from soil via 

superficial adventitious roots. 

Adult conifers in boreal and alpine habitats have been shown to maintain adequate 

water balance to replace winter transpiration losses (Havas and Hyvärinen 1990; Boyce et 

al. 1991; Sowell et al. 1996).  Sevanto et al. (2006) found that subalpine and boreal 

evergreens use stored stem water during the winter.  Both Boyce and Lucero (1999) and 

Sevanto et al. (2006) indicate that plants were able to uptake soil water via roots at low 

winter surface soil temperatures (near freezing). 
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The low δ2H enrichments of labeled in situ leaves compared with ex situ leaves 

dipped in an isotopic solution imply that water uptake rates are relatively low during the 

winter-spring transition and/or that our delivery methods did not make the labeled water 

easily available.  Complications in the movement of added water could have arisen from 

evaporation or uneven dispersion of water over the plots or into the frozen soil under the 

snow.  The large δ2H variability of in situ soil samples likely resulted when the sampling 

location (a 3 cm diameter subsample taken from each 50 x 50 cm subplot) was either 

directly on a dosing location, or if the labeled mixture had pooled at the sampling 

location.  The movement of labeled water in snow covered, frozen soils is likely 

complicated by local topography, soil surface ice layers, and diurnal refreezing, all of 

which may act to limit or expedite the movement of snowmelt water within the local 

topography. 

Additional evidence for water uptake during the winter-spring transition comes 

from the controls of the in situ species experiment.  Snow δ2H from the surface of the 

snowpack in dry heath tundra was significantly depleted compared to snow collected 

from the bottom of the snow profile, as observed by Moser and Stichler (1974), resulting 

from isotopic fractionation occurring in the melt-freeze mass exchange within the melting 

snow (Zhou et al. 2008b).  Variations in isotopic content of snow layers are the result of 

individual precipitation events (Gat 1996; Unnikrishna et al. 2002).  Snow surface layers 

are more enriched as a result of snow evaporation, condensation of air humidity into the 

snow cover, snow melt, sublimation, and crystallization metamorphism, with deeper 

layers of the snow profile being unaffected by these processes (Moser and Stichler 1974).  
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The mass-dependent isotope fractionation effect explains why meltwater is relatively 

more enriched than the snowpack (Gat 1996; Zhou et al. 2008a). 

Mean δ2H of surface snow from the dry heath site in 2011 were significantly 

depleted compared to E. nigrum and L. palustre leaf water, especially at the first day of 

sampling.  The leaf water δ2H of L. palustre and E. nigrum controls became naturally 

depleted over the short, 3-day sampling period, likely the result of plants taking up 

comparatively-depleted snow surface water that melted and drained down to the soil.  It 

should be noted that the stony mineral soils at the dry heath site thawed quickly in the 

spring, once snow cover melted, meaning that free water for plant uptake may be 

available relatively soon after snowmelt.  Furthermore, as mentioned in the Methods and 

Materials, the low snow cover in 2011 at the dry heath site led to early melt out around 

control plants, which may have led to uptake of meltwater during the 3-day sampling 

window.   

CONCLUSION 

Tundra evergreens face a unique situation during the winter-spring transition 

where water may be lost during subnivean photosynthesis.  How much water is lost is 

uncertain, but recent data (Oberbauer et al. unpublished) suggests that some evergreen 

plants are water stressed under the snow.  My research suggested plants may be replacing 

some of this water during the winter-spring transition, either through foliar or root water 

uptake during this time.  The capacity of liquid water to infiltrate into the frozen soil is 

directly related to the ability of roots to take up water.  The present study is to my 

knowledge the first study to have found evidence of foliar uptake of water in arctic 
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evergreens shrubs.  The approach used here increases our understanding of how arctic 

tundra evergreens cope with water loss during winter-spring transition conditions. 
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Table 1. Baseline sample data for in situ labeling experiments. 
 

Substrate In situ Labeling  n Mean δ2H (‰) SE 

Leaf Community 5 -165.6 2.4 

Soil Community 5 -155.6 2.5 

Snow Top Community 3 -173.1 6.3 

Snow Top Species 6 -181.2 7.5 

Snow Bottom Species 6 -146.3 10.6 
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Table 2. Two-way Analysis of Variance (ANOVA) for leaf in situ community labeling. 
 

Subject Effect n p F df 

Treatment 5 0.660 0.20 1,36 

Day 5 0.562 0.69 3,36 

Day*Treatment 5 0.847 0.27 3,36 

No-Tap Days 5 0.784 0.36 3,16 

Tap Days 5 0.702 0.48 3,16 
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Table 3. Two-way Analysis of Variance (ANOVA) for soil in situ community labeling. 
 

Subject Effect n p F df 

Treatment 5 0.897 0.02 1,36 

Day 5 0.317 1.22 3,36 

Day*Treatment 5 0.0887 2.35 3,36 

No-Tap Days 5 0.335 1.22 3,16 

Tap Days 5 0.140 2.11 3,16 
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Table 4. Two-way Analysis of Variance (ANOVA) for stem in situ community labeling. 
 

Subject Effect n p F df 

Treatment 5 0.00318 10.84 1,23 

Day 5 0.529 0.65 2,23 

Day*Treatment 5 0.252 1.46 2,23 

No-Tap Days 5 0.724 0.33 2,11 

Tap Days 5 0.245 1.58 2,12 
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Table 5. Independent-samples t-tests between baseline sampling and leaf in situ 
community labeling data. 
 

Day Treatment n p t df 

1 
No-Tap 5 0.232 1.29 8 

Tap 5 0.3201 1.11 4.55 

2 
No-Tap 5 0.02 2.92 8 

Tap 5 0.03 2.66 8 

3 
No-Tap 5 0.1751 1.57 5.26 

Tap 5 0.07341 2.31 4.60 

4 
No-Tap 5 0.131 1.68 8 

Tap 5 0.2251 1.43 4.11 

 
1Equal variances not assumed; based on Levene's Test for Equality of Variances 
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Table 6. Independent-samples t-tests between baseline sampling and soil in situ 
community labeling data. 
 

Day Treatment n p t df 

1 
No-Tap 5 0.2831 1.24 4.00 

Tap 5 0.1531 1.70 4.71 

2 
No-Tap 5 0.3381 1.08 4.19 

Tap 5 0.1761 1.64 4.01 

3 
No-Tap 5 0.233 1.29 8 

Tap 5 0.133 -1.67 8 

4 
No-Tap 5 0.2091 1.41 5.96 

Tap 5 0.2321 1.40 4.05 

 
1Equal variances not assumed; based on Levene's Test for Equality of Variances 
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Table 7. Linear regressions for in situ community labeling data. 
 

Substrate Treatment n r2 Slope p t df 

Soil*Stem 
No-tap 14 0.0015 -0.0194 0.895 -0.13 12 

Tap 15 0.073 0.0344 0.330 1.01 13 

Stem*Leaf 
No-tap 14 9.1·10-4 0.0432 0.919 0.10 12 

Tap 15 0.50 1.083 0.00299 3.64 13 

Soil*Leaf 
No-tap 20 0.35 0.0896 0.00584 3.13 18 

Tap 20 0.011 -0.0214 0.666 -0.44 18 
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Table 8. Two-way Analysis of Variance (ANOVA) for E. nigrum in situ species labeling. 
 

Subject Effect n p F df 

Treatment 12 0.089 2.98 1,66 

Day 12 0.770 0.26 2,66 

Day*Treatment 12 0.654 0.43 2,66 

Control Days 12 0.908 0.097 2,33 

Labeled Days 12 0.651 0.44 2,33 
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Table 9. Two-way Analysis of Variance (ANOVA) for L. palustre in situ species 
labeling. 
 

Subject Effect n p F df 

Treatment 12 <0.001 12.31 1,64 

Day 12 0.772 0.26 2,64 

Day*Treatment 12 0.0567 3.00 2,64 

Control Days 12 0.03 3.83 2,32 

Labeled Days 12 0.399 0.95 2,32 
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Table 10. Independent-samples t-tests for ex situ foliar uptake labeling. 
 

Species Year n p t df 

C. tetragona 2010 5 <0.001 -8.22 8 

E. nigrum 2010 5 <0.001 -6.90 8 

C. tetragona 2011 5 0.0011 -6.37 5.01 

E. nigrum 2011 5 0.0041 -5.90 4.02 

L. palustre 2011 5 <0.001 -6.25 8 

V. vitis-idaea 2011 5 0.01 -4.63 4.02 

 
1Equal variances not assumed; determined by Levene's Test for Equality of Variances 
 
 



 
Figure 1. In situ communityy labeling leaf (AA) and stem (B)
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) data.  Error barrs ± 1 SE. 

 



 
Figure 2. In situ communityy labeling soil daata.  Error bars ±
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± 1 SE. 



 
Figure 3. Linnear regressionss for in situ commmunity labeling
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g soil*leaf no-taap treatment (A)) and stem*leaf tap treatment (B

 

B). 



 
Figure 4. In situ species labeling for E. nigrrum (A) and L. p
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palustre (B).  Error bars ± 1 SEE. 

 



 
Figure 5. Exx situ foliar uptake labeling dataa box-and-whisk
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ker distribution ffor all test speciies over two yeaars. 
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CHAPTER IV. CONCLUSION 

Despite the fact that the cold season forms 75 % of the arctic annual cycle, and 

the largest effects of climate warming in the Arctic will be in winter, we know far more 

about the growing season physiology of arctic plants than we do about their winter 

physiology.  Granted, obtaining reliable measurements during winter is very difficult, 

both on equipment and investigators.  In the deep cold of winter, just obtaining 

measureable rates of ecosystem respiration is an enormous challenge.  As a result, 

estimates of CO2 balance for Arctic sites are frequently based on growing season values 

only or use guesstimates for what winter values might be.  

 In Chapter 2, I addressed the uncertainty about ecosystem respiration at low 

temperatures by determining the temperature response of ER of intact blocks (monoliths) 

of Alaskan tundra.  The resulting responses from six blocks were extremely consistent, 

showing Q10 values near 6 at temperatures below-freezing and near 5 at temperatures 

between 0 and 15 °C, validating some previous determinations of the responses of ER to 

low temperatures.  These results translate to a ~20 % increase in ER for a 1 °C increase in 

temperature.  Temperatures in the North Slope of Alaska have already increased 2.9 °C 

since 1976 (Wendler et al. 2010), implying that ecosystem respiration rates are ~70 % 

greater than they were in 1976.  Given that a major component of ER is organic matter 

decomposition, these increased ER rates will result not only in release of stored C as 

CO2, but also mobilization of trapped nutrients.  The current hypothesis for the increase 

in shrubs in the Arctic is associated with increased nutrient release as a result of warming 

soils (Sturm et al. 2005).  My results and similar temperature responses determined by 

others suggest that a large proportional increase in ER and nutrient release has already 
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happened in the Arctic.  However, much more remains to be learned, especially with 

regards to the proportion of ER contributed by plant respiration vs. that contributed by 

organic matter decomposition and whether the temperature responses of these different 

processes are the same.  

 In Chapter 3, I addressed winter water uptake, an important aspect of the water 

balance of tundra plants during the cold season.  Winter water balance is important for 

tundra ecosystem carbon balance because some evergreens have been shown to be 

photosynthetically active under the snow, a finding that implies that plants may be losing 

water.  Furthermore, in some years large numbers of shoots of both evergreens and 

deciduous species die over the winter, most likely from embolisms caused by freeze thaw 

action that are aggravated by plant water deficits.  At snowmelt, evergreen shoots are 

exposed to bright, low humidity conditions while soils may be still frozen.  How arctic 

evergreen plants rehydrate under these conditions is uncertain.  In two different field 

experiments, I found that deuterium added as a tracer beneath snow was taken up by 

evergreen plants, although, the amount of label taken up was fairly small.  However, in a 

lab experiment using cut shoots, I determined that evergreen plants have a high capacity 

to take up water through their leaves, suggesting that one way these plants rehydrate 

under the snow is via foliar uptake of snow meltwater.  To my knowledge this study is 

the first demonstration of foliar leaf water uptake by tundra plants. 
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