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ABSTRACT OF THE THESIS

STUDY ON BIVARIATE NORMAL DISTRIBUTION

by

Yipin Shi

Florida International University, 2012

Miami, Florida

Professor Jie Mi, Co-Major Professor

Professor Kai Huang, Co-Major Professor

Let (X, Y ) be bivariate normal random vectors which represent the responses as a

result of Treatment 1 and Treatment 2. The statistical inference about the bivariate

normal distribution parameters involving missing data with both treatment samples is

considered. Assuming the correlation coefficient ρ of the bivariate population is known,

the MLE of population means and variance (ξ, η, and σ2) are obtained. Inferences about

these parameters are presented. Procedures of constructing confidence interval for the

difference of population means ξ− η and testing hypothesis about ξ− η are established.

The performances of the new estimators and testing procedure are compared numerically

with the method proposed in Looney and Jones (2003) on the basis of extensive Monte

Carlo simulation. Simulation studies indicate that the testing power of the method

proposed in this thesis study is higher.

Keywords: Bivariate Normal Distribution, MLE, MSE, Bias, Testing Power
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1. Introduction

The bivariate normal distribution is one of the most popular distributions used in a va-

riety of fields. Since the bivariate normal PDF has several useful and elegant properties,

bivariate normal models are very common in statistics, econometrics, signal processing,

feedback control, and many other fields.

Let (X, Y ) be bivariate normal random vectors which represent the responses that

result from Treatment 1 and Treatment 2. Historically, most of the studies collect

paired data. That is, it is assumed that observations are paired and sample consists of n

pairs (x1, y1), (x2, y2), ..., (xn, yn). However, in the real world, the available sample data

may be incomplete in the sense that measures on one variable X or Y is not available

for all individuals in the sample. Such fragmentary data may arise because some of the

data are lost (e.g., in an archaeological field), or because certain data were purposely

not collected. The decision not to measure both variables X and Y simultaneously

may be reached because of the cost of measurement, because of limited time, because

the measurement of one variable may alter or destroy the individual measured (e.g.,

in mental testing), and so forth. Therefore, either by design, carelessness or accident,

the data in a study may consist of a combination of paired (correlated) and unpaired

(uncorrelated) data. Typically, such data will consist of subsamples of which one has n1

observations on responses because of Treatment 1 and the other has n2 observations on

responses because of treatment 2 are independent of each other, and another subsample

which consists of paired observations taken under both treatments. Statistical inference

derived from complete paired data and incomplete unpaired data is one of the important

applied problems because of its common occurrence in practice.
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Missing values have been discussed in the literature for modeling bivariate data. Much

of the work involved establishing and testing hypothesis about the difference of the

population means. Several authors have investigated the problem of estimation and

testing the difference of the means in the case of incomplete samples from bivariate

normal distributions. Mehta and Gurland (1969a) consider the problem of testing the

equality of the two means in the special case when the two variances are the same.

Morrison (1972, 1973), and Lin and Stivers (1975) have also considered this special case

and have provided different test statistics. The problem of estimating the difference

of two means has been further investigated by Mehta and Gurland (1969b), Morrison

(1971), Lin (1971), and Mehta and Swamy (1973). Bhoj (1991a, b) tested for the equality

of means for bivariate normal data.

To make use of all the data and takes into account the correlation between the paired

observations, Looney and Jones (2003) compared several methods and proposed the cor-

related z-test method for analyzing combined samples of correlated and uncorrelated

data. In their study, it is assumed that there is another random sample of n1 subjects

exposed to Treatment 1 that is independent of a random sample of n2 subjects exposed

to Treatment 2. Let u1, u2, ..., un1 and v1, v2, ..., vn2 denote the observed values for the in-

dependent subjects exposed to Treatment 1 and Treatment 2, respectively. Suppose also

that there are n ≥ 3 paired observations under treatments 1 and 2. Let (x1, y1), (x2, y2),

..., (xn, yn) denote the observed pairs. It is assumed that the x-and u-observations come

from a common normal parent population and that the y-and v-observations come from

another (possibly different) common normal parent population. The proposed method

is developed using asymptotic results and is evaluated using simulation. The simulation

2



results indicate that the proposed method can provide substantial improvement in test-

ing power when compared with the corrected z− method of recommended in Looney

and Jones (2003).

In this research, we want to study the bivariate normal model with incomplete data

information on both variates. We will derive the maximum likelihood estimators of

the distribution parameters, investigate properties such as unbiasedness, and study the

asymptotic distribution of these estimators as well. Showing that the asymptotic nor-

mality of the estimators, we then will be able to construct confidence intervals of the two

population means and their difference, and test hypothesis about these parameters. The

performance of our new estimators will be studied after using Monte Carlo simulations,

and will be compared with those estimators that existed in the literature.
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2. Maximum Likelihood Estimators of Parameters

Let (xi, yi), 1 ≤ i ≤ n be a paired sample from bivariate normal population

 X

Y

 ∼ N

 ξ

η

 , σ2

 1 ρ

ρ 1


where −1 < ρ < 1 is known, but ξ, η, and σ2 are unknown. In addition, suppose an

independent sample {u1, ..., un1} on the basis of observations on X, and another inde-

pendent sample {v1, ..., vn2} derived from observations on Y is also available.

In the present section we should derive the MLEs of ξ, η, and σ2 derived from data

{(xi, yi), 1 ≤ i ≤ n;uj, 1 ≤ j ≤ n1; vj, 1 ≤ j ≤ n2}.

Because of the independence of {(Xi, Yi), 1 ≤ i ≤ n}, {Uj, 1 ≤ j ≤ n1}, and {Vj, 1 ≤

j ≤ n2}, the likelihood equation is

L(ξ, η, σ) =

n1∏
j=1

(
1√
2πσ

e−
(uj−ξ)

2

2σ2

) n2∏
j=1

(
1√
2πσ

e−
(yi−η)

2

2σ2

)
·

·
n∏
i=1

1

2πσ2
√

1− ρ2
e
− 1

2(1−ρ2)

[
(xi−ξ)

2

σ2
−2ρ (xi−ξ)(yi−η)

σ2
+

(yi−η)
2

σ2

]

=
(2π)−

n1+n2
2
−n(1− ρ2)−n2

σn1+n2+2n
e−

∑n1
j=1

(uj−ξ)
2

2σ2
−

∑n2
j=1

(vj−η)
2

2σ2 ·

· e
− 1

2(1−ρ2)

[∑n
i=1(xi−ξ)

2

σ2
− 2ρ

∑n
i=1(xi−ξ)(yi−η)

σ2
+

∑n
i=1(yi−η)

2

σ2

]

Hence, the log-likelihood function is
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lnL(ξ, η, σ) =C − (n1 + n2 + n) lnσ −

n1∑
j=1

(uj − ξ)2

2σ2
−

n2∑
j=1

(vj − η)2

2σ2

− 1

2(1− ρ2)


n∑
i=1

(xi − ξ)2

σ2
−

2ρ
n∑
i=1

(xi − ξ)(yi − η)

σ2
+

n∑
i=1

(yi − η)2

σ2


(2.1)

where C = −n1+n2+2n
2

ln 2π − n
2

ln(1− ρ2)

From (2.1) we have

∂ lnL

∂ξ
= −

−2

n1∑
j=1

(uj − ξ)

2σ2
− 1

2(1− ρ2)


−2

n∑
i=1

(xi − ξ)

σ2
+

2ρ
n∑
i=1

(yi − η)

σ2



=

n1∑
j=1

(uj − ξ)

σ2
+

1

1− ρ2


n∑
i=1

(xi − ξ)

σ2
−
ρ

n∑
i=1

(yi − η)

σ2

 (2.2)

∂ lnL

∂η
=

n2∑
j=1

(vj − η)

σ2
+

1

1− ρ2


n∑
i=1

(yi − η)

σ2
−
ρ

n∑
i=1

(xi − ξ)

σ2

 (2.3)

Setting ∂ lnL/∂ξ = 0, we obtain from (2.2) that

(1− ρ2)
n1∑
j=1

(uj − ξ) +
n∑
i=1

(xi − ξ)− ρ
n∑
i=1

(yi − η) = 0 (2.4)

Similarly, by setting ∂ lnL/∂η = 0 from (2.3), we obtain

5



(1− ρ2)
n2∑
j=1

(vj − η) +
n∑
i=1

(yi − η)− ρ
n∑
i=1

(xi − ξ) = 0 (2.5)

Note that Equation (2.4) further gives

(1− ρ2)
n1∑
j=1

uj − n1(1− ρ2)ξ +
n∑
i=1

xi − nξ − ρ
n∑
i=1

(yi − η) = 0

[
n1(1− ρ2) + n

]
ξ = (1− ρ2)

n1∑
j=1

uj +
n∑
i=1

xi − ρ
n∑
i=1

(yi − η) (2.6)

In the same way, Equation (2.5) further gives

[
n2(1− ρ2) + n

]
η = (1− ρ2)

n2∑
j=1

vj +
n∑
i=1

yi − ρ
n∑
i=1

(xi − ξ)

η =

(1− ρ2)
n2∑
j=1

vj +
n∑
i=1

yi − ρ
n∑
i=1

(xi − ξ)

n2(1− ρ2) + n
. (2.7)

Substituting (2.7) into (2.6) yields

[
n1(1− ρ2) + n

]
ξ =(1− ρ2)

n1∑
j=1

uj +
n∑
i=1

xi − ρ
n∑
i=1

yi

+ nρ

(1− ρ2)
n2∑
j=1

vj +
n∑
i=1

yi − ρ
n∑
i=1

(xi − ξ)

n2(1− ρ2) + n
,

or

[
n1(1− ρ2) + n

] [
n2(1− ρ2) + n

]
ξ

6



=(1− ρ2)
[
n2(1− ρ2) + n

] n1∑
j=1

uj +
[
n2(1− ρ2) + n

] n∑
i=1

xi − ρ
[
n2(1− ρ2) + n

] n∑
i=1

yi

+ nρ

[
(1− ρ2)

n2∑
j=1

vj +
n∑
i=1

yi − ρ
n∑
i=1

(xi − ξ)

]

=(1− ρ2)
[
n2(1− ρ2) + n

] n1∑
j=1

uj +
[
n2(1− ρ2) + n

] n∑
i=1

xi − ρ
[
n2(1− ρ2) + n

] n∑
i=1

yi

+ nρ(1− ρ2)
n2∑
j=1

vj + nρ

n∑
i=1

yi − nρ2
n∑
i=1

xi + n2ρ2ξ,

{[
n1(1− ρ2) + n

] [
n2(1− ρ2) + n

]
− n2ρ2

}
ξ

=(1− ρ2)
[
n2(1− ρ2) + n

] n1∑
j=1

uj +
[
n2(1− ρ2) + n− nρ2

] n∑
i=1

xi

− ρ(1− ρ2)n2

n∑
i=1

yi + nρ(1− ρ2)
n2∑
j=1

vj

=(1− ρ2)

{[
n2(1− ρ2) + n

] n1∑
j=1

uj + (n2 + n)
n∑
i=1

xi

}

+ ρ(1− ρ2)

[
n

n2∑
j=1

vj − n2

n∑
i=1

yi

]
(2.8)

Note that

[
n1(1− ρ2) + n

] [
n2(1− ρ2) + n

]
− n2ρ2

=n1n2(1− ρ2)2 + n1n(1− ρ2) + n2n(1− ρ2) + n2 − n2ρ2

=(1− ρ2)
[
n1n2(1− ρ2) + n1n+ n2n+ n2

]
=(1− ρ2)

[
(n1 + n)(n2 + n)− n1n2ρ

2
]

(2.9)

The MLE ξ̂ of ξ can be obtained from (2.8) and (2.9) as

7



ξ̂ =

[n2(1− ρ2) + n]

n1∑
j=1

uj + (n2 + n)
n∑
i=1

xi + ρ

[
n

n2∑
j=1

vj − n2

n∑
i=1

yi

]
(n1 + n)(n2 + n)− n1n2ρ2

(2.10)

Thus, the MLE η̂ of η can be obtained

η̂ =

[n1(1− ρ2) + n]

n2∑
j=1

vj + (n1 + n)
n∑
i=1

yi + ρ

[
n

n1∑
j=1

uj − n1

n∑
i=1

xi

]
(n1 + n)(n2 + n)− n1n2ρ2

(2.11)

To obtain the MLE of σ2 we differentiate lnL(ξ, η, σ) with respect to σ2 and have

∂ lnL

∂σ2
=− n1 + n2 + 2n

2σ2
+

n1∑
j=1

(uj − ξ)2

2σ4
+

n2∑
j=1

(vj − η)2

2σ4

+
1

2(1− ρ2)



n∑
i=1

(xi − ξ)2

σ4
−

2ρ
n∑
i=1

(xi − ξ)(yi − η)

σ4
+

n∑
i=1

(yi − η)2

σ4


Setting ∂ lnL/∂σ2 = 0, we obtain

(n1 + n2 + 2n)σ2

=

n1∑
j=1

(uj − ξ)2 +

n2∑
j=1

(vj − η)2 +

n∑
i=1

(xi − ξ)2 − 2ρ
n∑
i=1

(xi − ξ)(yi − η) +
n∑
i=1

(yi − η)2

1− ρ2

Therefore, the MLE σ̂2 of σ2 is

σ̂2 =

n1∑
j=1

(
uj − ξ̂

)2
+

n2∑
j=1

(vj − η̂)2

n1 + n2 + 2n
+

8



+

n∑
i=1

(
xi − ξ̂

)2
− 2ρ

n∑
i=1

(
xi − ξ̂

)
(yi − η̂) +

n∑
i=1

(yi − η̂)2

(1− ρ2)(n1 + n2 + 2n)
(2.12)

Summarizing the above, we have the following results.

Theorem 2.1 The MLEs of parameters ξ, η, σ2 are given by

ξ̂ =

[n2(1− ρ2) + n]

n1∑
j=1

uj + (n2 + n)
n∑
i=1

xi + ρ

[
n

n2∑
j=1

vj − n2

n∑
i=1

yi

]
(n1 + n)(n2 + n)− n1n2ρ2

η̂ =

[n1(1− ρ2) + n]

n2∑
j=1

vj + (n1 + n)
n∑
i=1

yi + ρ

[
n

n1∑
j=1

uj − n1

n∑
i=1

xi

]
(n1 + n)(n2 + n)− n1n2ρ2

σ̂2 =

n1∑
j=1

(
uj − ξ̂

)2
+

n2∑
j=1

(vj − η̂)2

n1 + n2 + 2n

+

n∑
i=1

(
xi − ξ̂

)2
− 2ρ

n∑
i=1

(
xi − ξ̂

)
(yi − η̂) +

n∑
i=1

(yi − η̂)2

(1− ρ2)(n1 + n2 + 2n)

9



3. Moments of the Maximum Likelihood Estimators

We have derived the MLEs of ξ, η, σ2 in the previous section. Now we will study the

properties of these estimators.

Theorem 3.1 Both ξ̂ and η̂ are unbiased estimators of ξ and η. The variances of ξ̂ and

η̂ are as follows.

V ar
(
ξ̂
)

= σ2 · n1 [n2(1− ρ2) + n]
2

+ n(n2 + n)2 − ρ2n2n(n2 + n)

[(n1 + n)(n2 + n)− n1n2ρ2]
2 ≡ λ21σ

2

V ar (η̂) = σ2 · n2 [n1(1− ρ2) + n]
2

+ n(n1 + n)2 − ρ2n1n(n1 + n)

[(n1 + n)(n2 + n)− n1n2ρ2]
2 ≡ λ22σ

2

Proof. We have

E
(
ξ̂
)

=
[n2(1− ρ2) + n]n1ξ + (n2 + n)nξ + ρ [nn2η − n2nη]

(n1 + n)(n2 + n)− n1n2ρ2

=
n1n2(1− ρ2)ξ + n1nξ + (n2 + n)nξ

(n1 + n)(n2 + n)− n1n2ρ2

=
(n1n2 + n1n+ n2n+ n2)− n1n2ρ

2

(n1 + n)(n2 + n)− n1n2ρ2
· ξ

= ξ

Similarly, we can show that E (η̂) = η. That is, both ξ̂ and η̂ are unbiased estimators of

ξ and η.

To compute V ar
(
ξ̂
)

, we observe that

[
(n1 + n)(n2 + n)− n1n2ρ

2
]2
V ar

(
ξ̂
)

=
[
n2(1− ρ2) + n

]2
n1σ

2 + (n2 + n)2nσ2 + ρ2
[
n2n2σ

2 + n2
2nσ

2
]

10



− 2(n2 + n)n2ρ · Cov

(
n∑
i=1

Xi,

n∑
i=1

Yi

)

=n1

[
n2(1− ρ2) + n

]2
σ2 + n(n2 + n)2σ2 + ρ2n2n(n+ n2)σ

2

− 2(n2 + n)n2ρ · nρσ2

=n1

[
n2(1− ρ2) + n

]2
σ2 + n(n2 + n)2σ2 − ρ2n2n(n2 + n)σ2

=σ2
{
n1

[
n2(1− ρ2) + n

]2
+ n(n2 + n)2 − ρ2n2n(n2 + n)

}
,

So V ar
(
ξ̂
)

is exactly the same as claimed in the theorem.

The variance of η̂ can be derived in the same manner.

Corollary 1 Both ξ̂ and η̂ follow normal distributions, i.e., ξ̂ ∼ N(ξ, λ21σ
2) and η̂ ∼

N(η, λ22σ
2).

Corollary 2
(
ξ̂, η̂
)

follows bivariate normal distribution with mean vector (ξ, η) and

covariance matrix

Σ =

 λ21σ
2 σ12

σ12 λ22σ
2


where σ12 = ρnσ2

(n1+n)(n2+n)−n1n2ρ2

Proof. We need only to derive the covariance between ξ̂ and η̂. According to Theorem

2.1, we have

[
(n1 + n)(n2 + n)− n1n2ρ

2
]2

(ξ̂ − ξ)(η̂ − η)

=

{[
n2(1− ρ2) + n

] n1∑
j=1

(Uj − ξ) + (n2 + n)
n∑
i=1

(Xi − ξ) + ρ

[
n

n2∑
j=1

(Vj − η)

11



−n2

n∑
i=1

(Yi − η)

]}
·

{[
n1(1− ρ2) + n

] n2∑
j=1

(Vj − η) + (n1 + n)
n∑
i=1

(Yi − η)

+ρ

[
n

n1∑
j=1

(Uj − ξ)− n1

n∑
i=1

(Xi − ξ)

]}
(3.1)

Because of the assumed independences it follows that

[
(n1 + n)(n2 + n)− n1n2ρ

2
]2
Cov

(
ξ̂, η̂
)

=E

{[
n2(1− ρ2) + n

] n1∑
j=1

(Uj − ξ) · ρn
n1∑
j=1

(Uj − ξ)

}

+ E

{
(n2 + n)

n∑
i=1

(Xi − ξ) · (n1 + n)
n∑
i=1

(Yi − η)

}

+ E

{
(n2 + n)

n∑
i=1

(Xi − ξ) · (−ρn1)
n∑
i=1

(Xi − ξ)

}

+ E

{
ρn

n2∑
j=1

(Vj − η) ·
[
n1(1− ρ2) + n

] n2∑
j=1

(Vj − η)

}

+ E

{
(−ρn2

n∑
i=1

(Yi − η) · (n1 + n)
n∑
i=1

(Yi − η)

}

+ E

{
−ρn2

n∑
i=1

(Yi − η) · (−ρn1)
n∑
i=1

(Xi − ξ)

}

≡E1 + E2 + E3 + E4 + E5 + E6. (3.2)

In the following we will derive each Ei, 1 ≤ i ≤ 6. We have

E1 = ρn
[
n2(1− ρ2) + n

]
· E

{
n1∑
j=1

(Uj − ξ) ·
n1∑
j=1

(Uj − ξ)

}

= ρn
[
n2(1− ρ2) + n

]
· V ar

(
n1∑
j=1

(Uj − ξ)

)

= ρn
[
n2(1− ρ2) + n

]
· n1σ

2

= ρn1n
[
n2(1− ρ2) + n

]
σ2; (3.3)

12



E2 = (n1 + n)(n2 + n) · E

{
n∑
i=1

(Xi − ξ) ·
n∑
i=1

(Yi − η)

}

= (n1 + n)(n2 + n) · nCov(X1, Y1)

= (n1 + n)(n2 + n) · nρσ2

= ρn(n1 + n)(n2 + n)σ2; (3.4)

E3 = −ρn1(n2 + n) · E

{
n∑
i=1

(Xi − ξ) ·
n∑
i=1

(Xi − ξ)

}

= −ρn1(n2 + n) · V ar

(
n∑
i=1

(Xi − ξ)

)

= −ρn1(n2 + n) · nσ2

= −ρn1n(n2 + n)σ2; (3.5)

E4 = ρn
[
n1(1− ρ2) + n

]
· E

{
n2∑
j=1

(Vj − η) ·
n2∑
j=1

(Vj − η)

}

= ρn
[
n1(1− ρ2) + n

]
· V ar

(
n2∑
j=1

(Vj − η)

)

= ρn
[
n1(1− ρ2) + n

]
· n2σ

2

= ρn2n
[
n1(1− ρ2) + n

]
σ2; (3.6)

E5 = −ρn2(n1 + n) · E

{
n∑
i=1

(Yi − η) ·
n∑
i=1

(Yi − η)

}

= −ρn2(n1 + n) · V ar

(
n∑
i=1

(Yi − η)

)

13



= −ρn2(n1 + n) · nσ2

= −ρn2n(n1 + n)σ2; (3.7)

E6 = ρ2n1n2 · E

{
n∑
i=1

(Xi − ξ) ·
n∑
i=1

(Yi − η)

}

= ρ2n1n2 · E

{
n∑
i=1

(Xi − ξ)(Yi − η) +
∑
i 6=j

(Xi − ξ)(Yj − η)

}

= ρ2n1n2 ·

{
E

(
n∑
i=1

(Xi − ξ)(Yi − η)

)
+ E

(∑
i 6=j

(Xi − ξ)(Yj − η)

)}

= ρ2n1n2 · {nE [(X1 − ξ)(Y1 − η)]}

= ρ2n1n2 · {nCov(X1, Y1)}

= ρ2n1n2 · nρσ2

= ρ3n1n2nσ
2. (3.8)

Therefore, from (3.2) - (3.8) it follows that

[
(n1 + n)(n2 + n)− ρ2n1n2

]2
Cov

(
ξ̂, η̂
)

=ρn1n
[
n2(1− ρ2) + n

]
σ2 + ρn(n1 + n)(n2 + n)σ2

− ρn1n(n2 + n)σ2 + ρn2n
[
n1(1− ρ2) + n

]
σ2

− ρn2n(n1 + n)σ2 + ρ3n1n2nσ
2

=ρnσ2
[
(n1 + n)(n2 + n)− n1n2ρ

2
]

and thus

14



Cov
(
ξ̂, η̂
)

=
ρnσ2

(n1 + n)(n2 + n)− n1n2ρ2
≡ λ12σ

2 (3.9)

Below we will derive the mean of σ̂2. To this end, we need to find the following expec-

tations:

E

(
n1∑
j=1

(
Uj − ξ̂

)2)
, E

(
n2∑
j=1

(Vj − η̂)2
)
,

E

(
n∑
i=1

(
Xi − ξ̂

)2)
, E

(
n∑
i=1

(Yi − η̂)2
)
, and

E

(
n∑
i=1

(
Xi − ξ̂

)
(Yi − η̂)

)

First, we will derive E

(
n1∑
j=1

(
Uj − ξ̂

)2)
. Note that

ξ̂ − ξ

=

[n2(1− ρ2) + n]

n1∑
j=1

Uj + (n2 + n)
n∑
i=1

Xi + ρ

[
n

n2∑
j=1

Vj − n2

n∑
i=1

Yi

]
(n1 + n)(n2 + n)− n1n2ρ2

− ξ

=

[n2(1− ρ2) + n]

n1∑
j=1

(Uj − ξ) + (n2 + n)
n∑
i=1

(Xi − ξ) + ρ

[
n

n2∑
j=1

Vj − n2

n∑
i=1

Yi

]
(n1 + n)(n2 + n)− n1n2ρ2

Hence, without loss of generality we can assume ξ = 0 in the following. We thus have

E

(
n1∑
j=1

(
Uj − ξ̂

)2)
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=E

(
n1∑
j=1

(
U2
j − 2ξ̂Uj +

(
ξ̂
)2))

=E

(
n1∑
j=1

U2
j

)
− 2E

(
ξ̂

n1∑
j=1

Uj

)
+ n1V ar

(
ξ̂
)

=n1σ
2 − 2E

(
ξ̂

n1∑
j=1

Uj

)
+ n1V ar

(
ξ̂
)

=n1σ
2 −

2 [n2(1− ρ2) + n]E

(
n1∑
j=1

Uj

)2

(n1 + n)(n2 + n)− n1n2ρ2
+ n1V ar

(
ξ̂
)

=n1σ
2 − 2n1 [n2(1− ρ2) + n]σ2

(n1 + n)(n2 + n)− n1n2ρ2
+ n1V ar

(
ξ̂
)

(3.10)

Similarly, it can be shown that

E

(
n2∑
j=1

(Vj − η̂)2
)

= n2σ
2 − 2n2 [n1(1− ρ2) + n]σ2

(n1 + n)(n2 + n)− n1n2ρ2
+ n2V ar (η̂) (3.11)

The mean of

(
n∑
i=1

(
Xi − ξ̂

)2)
can be obtained as follows:

E

(
n∑
i=1

(
Xi − ξ̂

)2)

=E

(
n∑
i=1

(
X2
i − 2ξ̂Xi + ξ̂2

))

=E

(
n∑
i=1

X2
i

)
− 2E

(
ξ̂

n∑
i=1

Xi

)
+ nE

(
ξ̂2
)

=nσ2 − 2 ·
(n2 + n) · E

(
n∑
i=1

Xi

)2

− n2ρ · E

(
n∑
i=1

Xi ·
n∑
i=1

Yi

)
(n1 + n)(n2 + n)− n1n2ρ2

+ nV ar
(
ξ̂
)

=nσ2 − 2 ·

n(n2 + n)σ2 − n2ρ

[
n∑
i=1

E(XiYi) +
∑
i 6=k

E(XiYk)

]
(n1 + n)(n2 + n)− n1n2ρ2

+ nV ar
(
ξ̂
)

=nσ2 − 2 · n(n2 + n)σ2 − n2ρ · nCov(X1, Y1)

(n1 + n)(n2 + n)− n1n2ρ2
+ nV ar

(
ξ̂
)
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=nσ2 − 2 · [n2n(1− ρ2) + n2]σ2

(n1 + n)(n2 + n)− n1n2ρ2
+ nV ar

(
ξ̂
)

=nσ2 − 2n [n2(1− ρ2) + n]σ2

(n1 + n)(n2 + n)− n1n2ρ2
+ nV ar

(
ξ̂
)

(3.12)

In the same manner we can obtain

E

(
n∑
i=1

(Yi − η̂)2
)

= nσ2 − 2n [n1(1− ρ2) + n]σ2

(n1 + n)(n2 + n)− n1n2ρ2
+ nV ar

(
ξ̂
)

(3.13)

Now, notice that once again we can assume ξ = η = 0 without loss of generality, and

n∑
i=1

(
Xi − ξ̂

)
(Yi − η̂) =

n∑
i=1

XiYi − ξ̂
n∑
i=1

Yi − η̂
n∑
i=1

Xi + nξ̂η̂ (3.14)

Note that

E

(
n∑
i=1

XiYi

)
= nE(X1Y1) = nCov(X1, Y1) = nρσ2 (3.15)

E

(
ξ̂

n∑
i=1

Yi

)
=

(n2 + n)E

(
n∑
i=1

Xi ·
n∑
i=1

Yi

)
− ρn2E

(
n∑
i=1

Yi

)2

(n1 + n)(n2 + n)− n1n2ρ2

=

(n2 + n)E

(
n∑
i=1

XiYi

)
− ρn2V ar

(
n∑
i=1

Yi

)
(n1 + n)(n2 + n)− n1n2ρ2

=
(n2 + n)nCov(X1, Y1)− ρn2 · nσ2

(n1 + n)(n2 + n)− n1n2ρ2

=
(n2 + n)nρσ2 − n2nρσ

2

(n1 + n)(n2 + n)− n1n2ρ2

=
n2ρσ2

(n1 + n)(n2 + n)− n1n2ρ2
, (3.16)

E

(
η̂

n∑
i=1

Xi

)
=

n2ρσ2

(n1 + n)(n2 + n)− n1n2ρ2
, (3.17)

17



and, E
(
ξ̂η̂
)

= Cov
(
ξ̂, η̂
)

which is given by (3.9). Combining (3.14) - (3.17) and (3.9),

we obtain

E

(
n∑
i=1

(
Xi − ξ̂

)
(Yi − η̂)

)

=nρσ2 − 2n2ρσ2

(n1 + n)(n2 + n)− n1n2ρ2
+ n · ρnσ2

(n1 + n)(n2 + n)− n1n2ρ2

=nρσ2 − n2ρσ2

(n1 + n)(n2 + n)− n1n2ρ2
(3.18)

Finally, we have

(n1 + n2 + 2n)E
(
σ̂2
)

=E

{
n1∑
j=1

(Uj − ξ̂)2 +

n2∑
j=1

(Vj − η̂)2+

+

n∑
i=1

(Xi − ξ̂)2 − 2ρ
n∑
i=1

(Xi − ξ̂)(Yi − η̂) +
n∑
i=1

(Yi − η̂)2

(1− ρ2)


=

[
n1σ

2 − 2n1 [n2(1− ρ2) + n]σ2

(n1 + n)(n2 + n)− n1n2ρ2
+ n1V ar

(
ξ̂
)]

+

[
n2σ

2 − 2n2 [n1(1− ρ2) + n]σ2

(n1 + n)(n2 + n)− n1n2ρ2
+ n2V ar (η̂)

]
+ (1− ρ2)−1

{[
nσ2 − 2n [n2(1− ρ2) + n]σ2

(n1 + n)(n2 + n)− n1n2ρ2
+ nV ar

(
ξ̂
)]

+

[
nσ2 − 2n [n1(1− ρ2) + n]σ2

(n1 + n)(n2 + n)− n1n2ρ2
+ nV ar (η̂)

]
− 2ρ

[
nρσ2 − n2ρσ2

(n1 + n)(n2 + n)− n1n2ρ2

]}
=(n1 + n2)σ

2 − 2n1 [n2(1− ρ2) + n] + 2n2 [n1(1− ρ2) + n]

(n1 + n)(n2 + n)− n1n2ρ2
· σ2

+ (1− ρ2)−1
{

2n(1− ρ2)σ2 − 2n [n2(1− ρ2) + n] + 2n [n1(1− ρ2) + n]− 2n2ρ2

(n1 + n)(n2 + n)− n1n2ρ2
· σ2
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+n1V ar
(
ξ̂
)

+ n2V ar (η̂) + nV ar
(
ξ̂
)

+ nV ar (η̂)
}

=(n1 + n2 + 2n)σ2 − 2n1 [n2(1− ρ2) + n] + 2n2 [n1(1− ρ2) + n]

(n1 + n)(n2 + n)− n1n2ρ2
· σ2

− (1− ρ2)−12n [n2(1− ρ2) + n+ n1(1− ρ2) + n− nρ2]σ2

(n1 + n)(n2 + n)− n1n2ρ2

+ n1V ar
(
ξ̂
)

+ n2V ar (η̂) + (1− ρ2)−1n
[
V ar

(
ξ̂
)

+ V ar (η̂)
]

(3.19)

Summarizing the above, we obtain

Theorem 3.2 The mean of σ̂2 is

E
(
σ̂2
)

= σ2(n1 + n2 + 2n)−1(A1 + A2) (3.20)

where

A1 =(n1 + n2 + 2n)σ2 − 2n1 [n2(1− ρ2) + n] + 2n2 [n1(1− ρ2) + n]

(n1 + n)(n2 + n)− n1n2ρ2
· σ2

− (1− ρ2)−12n [n2(1− ρ2) + n1(1− ρ2) + 2n− nρ2]σ2

(n1 + n)(n2 + n)− n1n2ρ2

A2 =
{
n1V ar

(
ξ̂n

)
+ n2V ar (η̂n) + (1− ρ2)−1n

[
V ar

(
ξ̂n

)
+ V ar (η̂n)

]}
/σ2,

here we denote ξ̂ and η̂ as ξ̂n and η̂n to emphasize their dependence on n.

Corollary: Suppose that there exist constants 0 ≤ α, β <∞ such that limn→∞ n1/n =

α and limn→∞ n2/n = β, then the MLE σ̂2 is asymptotically unbiased.

Proof. From (3.20) we see that E (σ̂2) can be expressed as

E
(
σ̂2
)

= σ2 + o(1) +
[
V ar

(
ξ̂n

)
+ V ar (η̂n)

]
O(1)

According to Theorem 3.1 it holds thatV ar
(
ξ̂n

)
= o(1) and V ar (η̂n) = o(1). Hence
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E
(
σ̂2
)

= σ2 + o(1) + o(1)O(1) = σ2 + o(1)

and E (σ̂2)→ σ2 as n→∞.
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4. Limits of Estimators

In Section 2 the MLEs ξ̂, η̂ and σ̂2 are derived. In the present section we will consider

the limits of these estimators as sample size goes to infinity. To this end we assume

n1 = n1(n) and n2 = n2(n), i.e., both n1 and n2 are functions of the number of paired

observations. Under this assumption the following result holds. Here, in order to em-

phasize the dependence of ξ̂, η̂ and σ̂2 on sample size we will denote ξ̂n = ξ̂, η̂n = η̂, and

σ̂2
n = σ̂2.

Theorem 4.1 Suppose n1 = n1(n) and n2 = n2(n) and there exist constants α and β

such that n1/n→ α <∞ and n2/n→ β <∞ as n→∞. Then the following is true

(a) limn→∞ ξ̂n = ξ, with probability one

(b) limn→∞ η̂n = η, with probability one

(c) limn→∞ σ̂
2
n = σ2, with probability one.

That is, all the three estimators ξ̂, η̂ and σ̂2 are strongly consistent.

Proof. The MLE ξ̂n can be rewritten as

ξ̂n =

[
n2

n
(1− ρ2) + 1

]
· n1

n
· Un1 +

(
n2

n
+ 1
)
Xn + ρ

[
n2

n
V n2 − n2

n
Y n

](
n1

n
+ 1
) (

n2

n
+ 1
)
− n1

n
· n2

n
· ρ2

,

where Un1 =

n1∑
j=1

Uj/n1, V n2 =

n2∑
j=1

Vj/n2, etc. And so

lim
n→∞

ξ̂n =
[β(1− ρ2) + 1]αξ + (β + 1)ξ + ρ [βη − βη]

(α + 1)(β + 1)− αβρ2

=
[β(1− ρ2) + 1]αξ + (β + 1)ξ

(α + 1)(β + 1)− αβρ2
= ξ
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with probability one by the Law of Large Numbers.

The result (b) can be shown in the same way.

To prove result (c) we first note that

1

n

n∑
i=1

(Xi − ξ̂n)2 =
1

n

n∑
i=1

[
(Xi − ξ)− (ξ̂n − ξ)

]2
=

1

n

{
n∑
i=1

(Xi − ξ)2 − 2(ξ̂n − ξ)
n∑
i=1

(Xi − ξ) + n(ξ̂n − ξ)2
}

=

n∑
i=1

(Xi − ξ)2

n
− 2(ξ̂n − ξ)

n∑
i=1

(Xi − ξ)

n
+ (ξ̂n − ξ)2

and consequently

lim
n→∞

1

n

n∑
i=1

(Xi − ξ̂n)2 = σ2.

Similarly it can be shown that

lim
n1→∞

1

n1

n1∑
j=1

(Uj − ξ̂n)2 = σ2,

lim
n2→∞

1

n2

n2∑
j=1

(Vj − η̂n)2 = σ2,

lim
n→∞

1

n

n∑
i=1

(Yi − η̂n)2 = σ2.

As far as
n∑
i=1

(Xi − ξ̂n)(Yi − η̂n) we have
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1

n

n∑
i=1

(Xi − ξ̂n)(Yi − η̂n)

=
1

n

n∑
i=1

[
(Xi − ξ)− (ξ̂n − ξ)

]
· [(Yi − η)− (η̂n − η)]

=
1

n

{
n∑
i=1

(Xi − ξ)(Yi − η)− (η̂n − η)
n∑
i=1

(Xi − ξ)− (ξ̂n − ξ)
n∑
i=1

(Yi − η)

+n(ξ̂n − ξ)(η̂n − η)
}

and thus

lim
n→∞

1

n

n∑
i=1

(Xi − ξ̂n)(Yi − η̂n) = Cov(X, Y ) = ρσ2

with probability one, as n→∞.

Rewriting σ̂2
n as

σ̂2
n =

n1

n
·

(
1
n1

n1∑
j=1

(Uj − ξ̂n)2

)
+ n2

n
·

(
1
n2

n2∑
j=1

(Vj − η̂n)2

)
n1

n
+ n2

n
+ 2

+

(1− ρ2)−1
[

1
n

n∑
i=1

(Xi − ξ̂n)2 − 2ρ · 1

n

n∑
i=1

(Xi − ξ̂n)(Yi − η̂n) +
1

n

n∑
i=1

(Yi − η̂n)2

]
n1

n
+ n2

n
+ 2

and letting n→∞, we obtain

σ̂2
n →

ασ2 + βσ2 + (1− ρ2)−1 [σ2 − 2ρ · ρσ2 + σ2]

α + β + 2

=σ2 · α + β + (1− ρ2)−1 · 2(1− ρ2)
α + β + 2

= σ2
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with probability one, as n→∞. This ends the proof.
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5. Inferences about ξ, η and ξ − η

We will consider inferences about ξ and ξ − η. The discussion on η is similar and thus

is omitted.

Theorem 5.1 Suppose that there exist constants 0 ≤ α, β < ∞ such that n1/n → α

and n2/n→ β as n→∞, then a (1-γ)100% approximate confidence interval of ξ can be

obtained as ξ̂ ± zγ/2 · σ̂ξ̂, where σ̂ξ̂ =
√
λ21σ̂

2 = λ1σ̂ provided n1 + n2 + 2n is sufficiently

large.

Proof. From Corollary 1 to Theorem 3.1, it is easy to see that ξ̂ follows normal distri-

bution. Also, E
(
ξ̂
)

= ξ, V ar
(
ξ̂
)

= λ21σ
2, and ξ̂ ∼ N(ξ, λ21σ

2). Hence,

ξ̂ − ξ
λ1σ

∼ N(0, 1)

Now from

ξ̂ − ξ
λ1σ̂

=
σ

σ̂

ξ̂ − ξ
λ1σ

it follows that

ξ̂ − ξ
λ1σ̂

→ N(0, 1)

in distribution as n→∞ due to the Slutsky’s Theorem. Therefore, if n→∞ then

ξ̂ − ξ
λ1σ̂

∼ N(0, 1),

approximately, which yields the desired result immediately.
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In practice, one is more often interested in the difference ξ − η. In this regard, we have

the following result.

Theorem 5.2 Under the same assumption in Theorem 5.1, a 1− γ approximate confi-

dence interval is given by

(
ξ̂ − η̂

)
± zγ/2σ̂ξ̂−η̂

where σ̂ξ̂−η̂ is defined by (5.1) and (5.2) below.

Proof. Obviously ξ̂ − η̂ is a normal random variable with mean ξ − η. The variance of

ξ̂ − η̂ is

σ2
ξ̂−η̂ ≡ V ar

(
ξ̂ − η̂

)
= V ar

(
ξ̂
)

+ V ar (η̂)− 2Cov
(
ξ̂, η̂
)

(5.1)

where V ar
(
ξ̂
)

and V ar (η̂) are derived in Theorem 3.1, and Cov
(
ξ̂, η̂
)

is given by (3.9).

The estimator of σ2
ξ̂−η̂ is obtained from replacing σ2 by σ̂2 in the expression of σ2

ξ̂−η̂, i.e.,

σ̂2
ξ̂−η̂ = σ2

ξ̂−η̂|σ2=σ̂2 (5.2)

The rest of the proof is then the same as Theorem 5.1.
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6. Numerical Analysis

A MATLAB simulation is carried out in order to analyze the performance of the estima-

tors with incomplete observations. With η=5, paired sample size n=30 and N=10000

replications, combinations of different levels of unpaired sample size n1=n2=5, 25 and 35,

ξ=5, 5.1, 5.3 and 5.5, σ=1 and 2, and ρ=-0.9,...,0.9 are used to estimate the Treatment

Mean, Variance, Covariance, Standard Deviation, 95% Confidence Interval, Coverage

Probability, Type I Error, and Testing Power. The calculated results with known ρ (re-

ferred to as Method 1 hereafter, legend red circle in Figures) and estimated ρ (refered to

as Method 2 hereafter, legend green cross in the Figures) are compared with the results

calculated with the method proposed by Looney and Jones (2003)(referred to as Method

3 hereafter, legend blue diamond in the Figures 1-12) .

From the tables and figures, we can see that the results by Method 1 and Method 2 are

quite close. Comparing the new Methods with Method 3, we have observations as:

(a) Treatment Mean ξ of Component X (Table 1, Figure 1 & 2): The MSEs of the

estimators by the new Methods are smaller than those by Method 3, and so the new

Methods estimate the treatment mean better. The MSEs of the estimators by the

new Methods are smaller than those by Method 3.. The MSEs of the estimators in-

crease when σ increase, decrease when unpaired sample size increase, do not change with

treatment means.

(b) Variance of ξ̂ and η̂ (Table 2, Figure 3 & 4): V ar(ξ̂) and V ar(η̂) increase when σ

increase, decrease when the number of unpaired observations increase, do not change

with treatment means. The V ARs of the estimators by the new Methods are smaller

than those by Method 3.
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(c) Covariance of (ξ̂, η̂) (Table 3, Figure 5 & 6): Cov (ξ̂, η̂) increase when σ and ρ increase;

the slopes become smaller when sample size of unpaired observations get larger. All three

methods have similar values.

(d) Standard Deviation of (ξ̂− η̂) (Table 4, Figure 7 & 8): StDev (ξ̂− η̂) increase when σ

increase, decrease when ρ and unpaired sample size increase. In most cases, estimators

from the new Methods are less variable than that from Method 3.

(e) 95% Confidence Interval of (ξ̂ − η̂) (Table 5, Figure 9 & 10): Width of 95% CI for

(ξ̂− η̂) increase when σ increase, decrease when ρ and unpaired sample size increase. In

most cases, Method 3 has higher variability than the new Methods. These observations

are consistent with those from (d), so these provide further evidence to indicate that

estimation from the new Methods has less variability than that from Method 3.

(f) Coverage Probability of 95% CI for (ξ − η) (Table 6): The Coverage Probability

of all three estimators are lower than the nominal 95%. The new Methods’ coverage

probability is slightly lower than that of Method 3. This is the consequence of the

observations from part (d) and (e).

(g) Type I Error (Figure 11): Type I Error of the three methods are comparable, while

the new Methods’ Type I Error is a little higher. Again, this is because of the observa-

tions from (d) and (e).

(h) Testing Power (Figure 12): The testing power increase when ρ, (ξ−η), and unpaired

sample size increase; the testing power decrease when σ increase. The new Methods

have higher testing power than Method 3 in all cases.
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Figure 1: MSE (ξ̂) (n1 = n2 = 25, ξ = 5.1, σ = 2)

Figure 2: MSE (ξ̂) (n1 = n2 = 35, ξ = 5.5, σ = 2)
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Figure 3: Var (ξ̂) (n1 = n2 = 25, ξ = 5.1, σ = 2)

Figure 4: Var (ξ̂) (n1 = n2 = 35, ξ = 5.5, σ = 2)
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Figure 5: Cov (ξ̂, η̂) (n1 = n2 = 5, ξ = 5.1, σ = 2)

Figure 6: Cov (ξ̂, η̂) (n1 = n2 = 35, ξ = 5.5, σ = 2)
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Figure 7: StDev (ξ̂ − η̂) (n1 = n2 = 5, ξ = 5.1, σ = 2)

Figure 8: StDev (ξ̂ − η̂) (n1 = n2 = 35, ξ = 5.5, σ = 2)
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Figure 9: Width of 95% CI for (ξ̂ − η̂) (n1 = n2 = 5, ξ = 5.1, σ = 2)

Figure 10: Width of 95% CI for (ξ̂ − η̂) (n1 = n2 = 35, ξ = 5.5, σ = 2)
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Figure 11: Type I Error (n1 = n2 = 35, ξ = 5, σ = 2)

Figure 12: Testing Power (n1 = n2 = 35, ξ = 5.3, σ = 1)
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7. Conclusions

On the basis of the analytical and numerical results obtained above, we can make a

conclusion that with more unpaired observations the bivariate model provide better es-

timation of the parameters, which indicate that the estimators with incomplete data are

more efficient. After comparing with the method proposed by Looney and Jones (2003),

the new Methods have higher testing power and better estimation of the distribution

parameters. Therefore, it is recommended that we keep the unpaired data in the analysis

procedure and use the model established above to obtain better estimation.
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