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ABSTRACT OF THE THESIS
BAYSIAN ESTIMATION OF SMALL PROPORTIONS USING BINOMIAL
GROUP TEST
by
Shihua Luo
Florida International University, 2012
Miami, Florida
Professor Jie Mi, Co-Major Professor
Professor Kai Huang, Co-Major Professor
Group testing has long been considered as a safe and sensible relative to one-
at-a-time testing in applications where the prevalence rate p is small. In this thesis,
we applied Bayes approach to estimate p using Beta-type prior distribution. First,
we showed two Bayes estimators of p from prior on p derived from two different loss
functions. Second, we presented two more Bayes estimators of p from prior on 7
according to two loss functions. We also displayed credible and HPD interval for p.
In addition, we did intensive numerical studies. All results showed that the Bayes
estimator was preferred over the usual maximum likelihood estimator (MLE) for small
p. We also presented the optimal § for different p,m, and k.

Keywords: Group Test, Bayes Estimator, Beta Distribution, MLE, MSE.
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1 Introduction

Almost daily, the news media report the results of some poll. Pollsters often
give some data, for example, the percentage of people in favor of the current presi-
dent, the rate of people who smoke cigarettes, the death rate of a certain disease, the
percent of people who have hepatitis C virus or a rare disease, the rate of contami-
nated fish in a river, the proportion of defective products, et cetra. All of these issues
have a common property—the ratio of a part to a whole. How can we estimate this
proportion p? In estimating the proportion of subjects that have a certain charac-
teristic in a population in which each individual can be classified into two categories,
say with or without certain characteristic, one logical method of estimating p for the
population is to use the proportion of ’successes’ meaning with that characteristic in
the sample. For example, how would we estimate the true fraction of all U.S. citizens
who trust the president? We can estimate the p by calculating p=xz/n: where x is the
number of people in the sample who trust the president and n is the number of people
sampled. Experimenters used this method which is called the maximum likelihood
estimator (MLE) for many years. But this method has some disadvantages when p
is very small. For instance, if researchers want to estimate the prevalence of human
immunodeficiency virus (HIV), the ratio p is extremely small and so the estimation
is not stable in using the MLE method. Then we need to test every sample unit to
get the estimate of ratio p. In addition, the examination of the individual members
of a large sample is an expensive and tedious work. To overcome these shortcomings,

Dorfman (1943) first proposed the method of group testing and applied it to testing



blood samples for the syphilis antigen.

The idea of group testing is as follows. Assuming that a random sample of size
n is drawn from a target population in which some units have certain characteristic
that we are interested in, then we divide this sample into m groups with k£ units in
each group. It is assumed that if at least one unit in a group has that characteristic
(positive), then this group will be positive; on the other hand, if none of the units in
a group is positive, then this group will be negative. The key assumption is valid for
many situations in biological, environmental and medical studies. Let p denote the
probability of a unit being positive in a certain population, then the probability of a
group being positive, denoted as 7, can be expressed in terms of p, 7 = 1 — (1 — p)*.
Instead of directly estimating p from examining each unit in a sample, group testing
will estimate 7 and then p.

Instead of conducting N chemical analyses are required to check out all mem-
bers of a population of size N, Dorfman (1943) applied group testing for checking the
syphilis antigen. Suppose that after the blood serum is drawn for each individual,
all the blood samples are pooled in groups of five, and the group rather than the
individual serum are subjected to chemical analysis. If none of the five sera contains
syphilis antigen, the result of this group will be negative. If the result of a group
shows positive, it means that this group includes at least one individual of syphilis
antigen. Then the individuals making up the pool must be retested to decide which
of the members are infected. He also discussed related costs for selected prevalence

rates and optimum group sizes. He suggested that the prevalence rate be sufficiently



small to make worthwhile economics possible. Afterwards, many scientists used group
testing in their study fields. Gibbs and Gower (1960) applied this method to estimate
the frequency of success of attempts to transmit a virus disease from one plant to
another. Chiang and Reeves (1962) used this approach to estimate the infection rates
of mosquitoes. Bhattacharyya et al.(1979) employed group testing to give point esti-
mates and confidence intervals for infection rates. Worlund and Taylor (1983) applied
the procedure to evaluate the disease incidence in a large population of fish. Swallow
(1985) used this method to estimate infection rates and probabilities of pathogen
transmission by a single vector. To evaluate human immunodeficiency virus (HIV)
seroprevalence in population surveys, pooled sera was used by Kline et al. (1989).
Rodoni et al. (1994) applied a sequential batch testing procedure combined with
Enzyme-Linked Immunosorbent Assay (ELISA) to estimate levels of virus incidence
in Victoria cut-flower sim carnation. Hepworth (1996) constructed confidence inter-
vals for proportion of infected unites in a population involving unequaled sized group.
Gastwirth (2000) proposed that mutations in individual patients could be tested more
fruitful by being checked in pools. Xie et al. (2001) used group testing to develops
models and estimation procedures in order to obtain quantitative information from
data in the process to discovery and development of a new drug. Katholi and Un-
nasch (2006) discussed the suitable sampling protocol about important experimental
parameters for deciding infection rates. Because of its wide applications, group test-
ing is also known as pooled testing, or composite sampling, in different fields. In

recent years, more and more scholars recognized the advantage of the group testing



experimental design. It is well known that this method is economical, time saving,
and efficient particularly when it is applied to estimating small proportion of a disease
or some other rare attributes.

The traditional way to estimate 7 or p is using the method of maximum
likelihood (MLE). The definition of MLE is as follows. If 21, xs, ..., x,, are independent
and identically distributed observation from a population with pdf or pmf f(x;0),
where x = (x1, 29, ..., x,,) is the fixed sample point, and € is the unknown parameter
of interest, the likelihood function is defined as the product of all the pdfs or pmfs
f(z;;0). For the sample point x, let §(x) be a parameter value at which likelihood
function attains its maximum as a function of ¢, with x held fixed. Then 6(x) is the
MLE of 6.

An alternative way to estimate m or p is applying the Bayes method. The
Bayesian approach is totally different from the approach used in MLE analyse. In
classical methods the parameter to be estimated is thought to be an unknown, but
fixed quantity. The Bayesian approach treats the unknown parameter as a random
variable. In many problems the investigator has some prior information about the
unknown parameter. For instance, in sampling inspection, the quality engineer has
some idea about the true defective rate, the unknown parameter, of a production pro-
cess from past experience. The Bayesian approach assumes that this prior knowledge
can be summarized in the form of a probability distribution on unknown parameter,
called the prior distribution. This is a subjective distribution, based on the experi-

menter’s belief, and is formulated before the data are seen. A sample is then taken



from a population indexed by the unknown parameter € and the prior distribution
is updated with this sample information. The updated prior distribution is named
the posterior distribution. The posterior distribution is now used to make inference
about 6. To use the Bayes method, we also need a loss function. The most common
loss function is the square loss function. If we use this square loss function, a natural
estimator for 0 is the mean of the posterior distribution. If necessary, of course, we
can use alternative loss function, but the square loss function is the most popular
one.

Usually, the posterior distribution will become very complex with each added
measurement. Whereas, if we choose a conjugate prior, then the posterior distribution
will be easier to obtain. A conjugate prior is defined as a prior distribution belonging
to some parametric family, for which the resulted posterior distribution also belongs
to the same family. This is an important property. Such prior distributions have been
identified for some standard distributions f(z]f). When we want Bayes estimator for
proportion # = p, we assume the prior distribution on parameter ¢ is Beta («, $). The
posterior distribution is also a Beta distribution function which makes the estimation
of parameter p much more convenient.

Some researchers prefer to use classical Bayesian approaches because the Bayesian
method gave a better point estimator of p, especially when p is very small. Gastwirth
et al. (1991) suggested classical Bayesian approaches in group testing. Chaubey and
Li (1995) researched the difference between M LE and Bayes method for estimation of

binomial probability with group testing. They observed that the Bayes methodology



gave an alternative choices to the experimenter with possible reduction in cost as well
as error. Chick (1996) has used this method to do his studies.

In the current study, we want to do further study on estimating p by using
Bayes methods. We will confine our inference about p to the range (0, 0.1). We
will try two Bayesian estimators corresponding to two different loss functions with
assumption that p has Beta prior distribution. In addition, we will try to obtain a
credible and HPD interval for p. Assuming Beta prior on the probability 7 of a group
being positive, we will investigate two Bayes estimators corresponding to two loss
functions. The criterion for comparing the accurate of estimators is its M SE (mean
squared error). The performance of the proposed estimators will be studied based on
heavy Monte Carlo simulation. The proposed Bayes estimators will also be compared

with other estimator existed in the literature.



2 Bayes Inferences from Prior on p
In this section, we will consider Bayes inferences about p. It is assumed that

p has Beta prior distribution Beta(c«, ) with density function

fam=1%;B¢WH1—m&% 0<p<l, a>0, §>0.

2.1 Bayes Point Estimators of p Suppose that a random sample of size n = mk is

obtained from a population of screened subjects, where m, k are positive integers. We
assume that p is the probability that a randomly selected individual’s test is positive.
In this research our concern is the inference about small p, say 0 < p < 0.1. The n
subjects are classified into m groups each of which includes k£ subjects. Throughout
this research it is assumed that any one of the m groups is tested as positive if and
only if it includes at least one positive subject.

Let Y be the number of positive groups. It is known that Y ~ B(m, m) where
T=1-(1-p" ie, P(Y =y) = (})m(1 —m)"v.

Clearly, the joint distribution of (Y, p) is

fKP(yap) = B(Ola 5)pa_1(1 — p)ﬁ_l (7;) 7Ty(1 _ ﬂ_)m—y
- B(oi,)g)pal(l —p)’ (1= (1—p)*)’ (1 —p)tmy) (2.1)

Thus the marginal distribution of Y is given as

hwzlfmwm@



- B((g,)ﬁ) /Olpal<1 =) (1 = (1= p)*)dp
B Bg,)ﬁ) /Olpa_l(l - p)k(m_y)+ﬁ_1g (g) (=1 (1 = p)Ndp
B (ZL) (Bla0))™ jio(_l)j (?)B(% k(m+j —y) +5) (2.2)

Therefore, the posterior distribution of p is

frp(y:p)
Chly)

() (Blas ) 5 (1= pMr 7 (1 - (1 - p)t)’

(M) (B(e, )" Y (=13 (%) B k(m + j — y) + B)

Jj=0

_ AR (- (- p)t) (23

SV () Bl klm 5 —)+ )

fry(ply) =

The Bayes estimator of p for the case of square loss function L;(p,a) = (p—a)?

is derived by Chaubey and Li ( 1995) as

S () (=1)B(a+1,km + kj — ky + )

3=0

Ei:()( 1) B(a, km + kj — ky + B)

J

Pp1 = (2.4)

Specifically, if y = 0, then

«

.

Now consider loss function Ly(p,a) = p~!(p — a)? and will derive the corre-

sponding Bayes estimator ppg..



Note that if loss function has the form L(p,a) = w(p)(p — a)?, then the corre-

sponding Bayes estimator is given by

5 folw(P)Pwa(p\?J)dp _ Epy (w(p)ply)
o o o )y Brr @(@)l) (25)

According to Equation (2.5) we have to evaluate folw(p)pfp|y(p|y)dp and

Jo w(p) fry (ply)dp.

For w(p) = p~! in loss function Ly(p, a) we have

R A
0 0

and

P (1 = )=+ (1 — (1 = p)F)”

S (=17 (%) Bla k(m + j — y) + B)

=0

oA = p) Rt (1 — (1 p)*)Vdp 26

i)(_l)j (%) B(a, k(m + j — ) + B)

[ wwsontoliin= [ v )

The value of the integral of the numerator in (2.6) is

/OlpH(l — p)FmI (1 — (1= p)¥) dp (2.7)

1
:/ (1 — )@ 2R +B-1(1 — %)y, (y > 0)
0

k-1

1
_ Z/ uk(mfy)+i+ﬁfl(1 _ uk)yfl(l _ u)afldu
0

1=0



e

.

—1 1 y—1 1
/ uFm—y)+i+p-1 < <?J - ) kj) (1- u)a—ldu
0 =0

J

1
( ) / uk(m—y)+i+,3—1+kj<1 _ u)a—ldu
0

(;w<”‘53@m+kpm+ﬂ ky, o)

HO
<

-1

N

Dllﬂ
Pﬂ

T
-~ o
»—to

y—

=0 7=0 J

Therefore, if y > 0 we have

i( 1)7 (%) Bla, km + kj + 8 — ky)
Prr = (2.8)
; z:j( I (") B(km + kj+i+ 8 — ky,a)

In the case y = 0, we let @ > 1 and notice that equation (2.7) becomes

1
/ p* (1= p)f" P ldp = Bla — 1L,km+8),  (a>1).
0

Summarizing the above, we obtain

Theorem 2.1. Let p have prior distribution B(c, B). For the loss function Ls(p,a) =

p~Y(p — a)?® the Bayes estimator of p, denoted as ppa, is given as

= (—1)7 (Y) B(akm+kj+B—ky)

ify >0

[ < |
OML gM@

k—1
2
i=0
B(O¢7km+ﬁ)
B(a—1,km+p)

Pp2 = (1) (ygl)B(km+kj+,6’+ifky,a)

ify=0 and a > 1.
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2.2 Approximation to Bayes Estimators of p

It is easy to show that for sufficiently large /N it holds that

) ~ Neb (2.9)

As it was mentioned in the previous section the group test is applied for the
case of large sample size n = mk. Thus we could simplify the expression of pg; and
P2

First we examine the expression (2.4) for pp;. We have

D(a)T(km +kj —ky + ) _ . B
T(km+kj —ky+ B +a) ~ Dla)(km + kj — ky + )

B(a,km +kj —ky+ ) =

since y is usually a small number and n = km is large. Similarly we have

Bla+1,km+kj — ky + 8) = T(a+ 1) (km +kj — ky + )7

Hence we obtain

S (=1 Bla+1,km + kj — ky + )
~ 7=0

PB1 =7
> (D=1 B, km + kj — ky + B)

J

Dla+1) 30 ()(=1)/(km + kj — ky + )"




Q
e

<
Il
o

(=17 (§) (km + kj — ky + B)~~

= = ppn (2.10)
(—1)7 (?)(km +kj—ky+ p)~

NS

0

<.
Il

where ppsq is an approximation to the Bayes estimator pp;.

As for ppo notice that if y > 1, then

F(a)l(km+kj+i+ 5 — ky)

Blkm+kj+i+ 8 —ky,a) =
(km 4 kj 1+ 8 = ky. 0) =5 T T By T )

~I(o)(km+kj+i+ 5 —ky)™

Therefore, if y > 1 it holds from Theorem 2.1 that

Y )
ZO(—l)J ()T (a)(km + kj — ky + 8)~
N j=
P2 M A
(=17 (", (@) (km + kj + i+ 8 — ky) =
=0 j=0
y , ‘
Z:O(—l)ﬂ (4) (km +kj — ky + 8)~°
:Hy: = ppo (2.11)
(—1) (y;l) (km+kj+i+ 5 —ky)—@
i=0 j=0
On the other hand if y = 0 and o > 1, then we have
. Bla,km+p) T(@)I(km+B)T(km+a+ 5 —1)
PE2 =B _1,km+B)  T(khm+adtf) D(a— O(km+ 5)
(a—=1DI'(km+a+p5-1) a—1 B a—1 Fos1
N L(km+ o+ ) Ckm+a+B-1 n+a+p-1 a-n
(2.12)

From (2.11) and (2.12) we see that the Bayes estimator ppgo can be aproximated

12



(_1)f(g)(km+kj_ky+ﬁ)-a

;b y>1
(=17 (Y1) (kmetkjtitB—ky) = (2.13)

< |,
Titge

k—1
Ppr2 = >
=0

\g|

0

J

mz—léfl’ if y=0 and a> 1.
2.3 Comparison in the special case of Y=0

Note the fact that the event (Y = 0) is the same as event (X = 0) where
X is the number of positive subjects when subjects are tested individually. So it is
interesting to compare the Bayes estimators based on X = 0 and Y = 0. Clearly
X ~ B(n,p) = B(mk,p). Assuming that the proportion p has Beta(a, ) as its
prior distribution, it is well known that the posterior distribution of p given X = z
is Beta(x + a,n —x + ).

Suppose that square loss function L;(p,a) = (p — a)? is used, then the Bayes

estimator pp; based on X =0 is

«

hk p— E pr— 0 T e———
Pp1 P\X(p|95 ) n+a+p

In the mean time the Bayes estimator pg; based on Y = 0 is exactly the same
as Py, .(bottom of p8)
Now consider the loss function Ly(p,a) = p~'(p — a)?. For this loss function

the Bayes estimator pj, based on X can be obtained as follows. We have

/O w(p)p forx (pl)dp — /0 Forx (ple)dp = 1

and

13



1 1
/0 w(P)fP|X(p|$)dp :/0 p—l (B(l’+ a,n— l’_{_ﬁ))*lpxﬂ-a—l(l _p)n_x+6_1dp

1
=(B(z +a,n—x+ B))fl / prreT2 (1 — )ty
0

Consider two cases. If £ > 1 which is equivalent to y > 1. In this case

[owsmomn= ()
_<F(az+a)f‘(n—a:—|—5) T(n+a+p8—1) >1
= L(n+a+pB) I(z+a—-1DT(n—x+pB)

[ rHa-—-1 -1
()
Thus

r+a—1
n+a+pf—1

Ak

Ppas =

However, if = 0, then it must be assumed that a > 1 and so

/0 w(P)fP|X(P|0)dpz(B(a,n+@))1/0 P21 — p) Ly

_Bla—1,n+p)
B(a,n+ pB)
:F(O‘ —DI'(n+68) T(n+a+pP)
D(n+a+5—1) T(a)l(n+ )
_ntotf-1
a—1

Consequently, it follows that

14



. a—1 :
szzm, if =0 and o > 1.

Therefore

z4+a—1 : .
oA T if x>1;

a—1 : _
TFars 1 if =0 and a>1.

o
Ppas =

From this and equation (2.13), i.e.,

a—1

— if y=0 d a>1.
ntatp—1 =Y and a

Ppr2 =
we see that in this case ppo and pj, are exactly the same when there is no
positive subject in the entire sample.
2.4 Credible and HPD Interval for p
Suppose that p has prior distribution Beta(a, $). From equation (2.3) it is

known that the posterior distribution of p given Y =y is

P (1 = p)km=w B (1 — (1 — p)F)”

S () (=1)7B(a, k(m + j — y) + B)

=0
Then for any set A C (0,1), the credibal probability of A is

feiy (ply) =

P(pe A) = /AfP|Y(p|y>dp

and A is a credible set for p. By numerical computation it is not difficult to

obtain a 1 — 7 credible interval for p.

15



In a special case when a = 1, i.e., p has Beta(1, ) as its prior distribution,

by equation (2.2) the marginal distribution of Y has density

:%(y)B<m—y+§,y+l) (2.14)

and consequently the posterior distribution of p given Y = y has density

B(5) (1= p)Hm=v =11 — (1 = p)F)*
Bk (™MB (m—y+ 2, y+1)

Y
k(1 — k(m—y)+8-1 1—(1—p)k Y
_kd=p) g (1 —p)") (2.15)
B(m—y+5y+1)

fry (ply) =

We further let § > 1. The assumption is reasonable because we are dealing
with small p and the majority of the probability distribution Beta(1, /) is close to
zero if [ is relatively large. With the assumption it holds that m —y+ (5 —1)/k > 0.

It can be shown easily that the posterior fpyy (p|y) is unimodal. Therefore, the HPD

interval for p can be obtained by

{p: fry(ply) > a} where / fer(ply)dp =1—~

{p:fpy (ply)>a}
for any given v € (0,1).
For the case 0 < < 1, the posterior density fpjy(p|y) strictly decreases in

p € (0,1), so the HPD interval for p can be obtained as
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b fow(ply) > a} where / Fo (ply)dp = 1 7.

3 Bayes Estimators of p from Prior on 7

In the present section we will assume 7 = 1 — (1 — p)* has a Beta(a, 3)
prior distribution. On the basis of the observation Y = y we first calculate the
Bayes estimator 75, then derive the Bayes estimator of p. Following Chaubey and Li
(1995) this procedure is called the indirect Bayes procedure, the produced estimators
is called the indirect Bayes estimators and denoted as pyp; or prgs depending on the
loss function Li(p,a) = (p — a)? and Ly(p,a) = p~'(p — a)*

Obviously the posterior distribution of 7 given Y = y is Beta(y+a, m—y+ ),

ie.,

fWIY(7T|y) = (B(y +a,m—y+ 5))_177?4%*1(1 _ W)mnyrﬂfl

From 7 =1 — (1 — p)* = 7(p) we see that p = p(7) =1 — (1 — 7)V/*,
Consider loss function L(p,a) = w(p)(p — a)®. It is easy to see that the

corresponding indirect Bayes estimator p;p is given as

E(pw(p)|Y =y)
E(w(p)lY =vy)

PiB =

For the case Li(p,a) = (p — a)? the indirect Bayes estimator prp; is given in

Chaubey and Li (1995) as

17



F'm+a+8)T(m—y+ 4+ 1/k)

g1 = 1 — 3.1
Prs1 T(m—y+ B)C(m+a+B+1/k) (3:1)
which can be further approximated as
/k
A m+B-y\'
n=1—(— 3.2
prsn (m +a+ ﬁ) (32)
Now let us consider loss function Ly(p,a) = p~(p — a)?. Clearly
1 1
E(puwp)lY =y) = / o~ frpy (wly)dm = / frpy (mly)dm =1
0 0
and
1
B@)lY =v) = [ o fulrly)in
0
1
:/ p ! (B(y +a,m-—y-+ ﬁ))_lﬂy““_l(l — 7r)m_y+f3_ld7r
0
fol (1—-(1- W)l/k)_lwa’O‘_l(l — )yt
= (3.3)
Bly +a,m—y+f)
To evaluate the integral on the right side of (3.3) we let u = (1 — 7)"/* and

have

1
/ (1 _ (1 _ ,N)l/k)*l,]ry-&-oz—l(l _ W)m—y-&-ﬂ—ldﬂ_
0
1
:/ (1-— u)_l(l — uk)y“‘_luk(m_“ﬁ_l)k:uk_ldu
0
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k—1 1
L Z/ Wk m =B Him1 (1 _ k=2 gy,

k—
_ Z/ (m— y+5)+i—k(1 . uk)y+a—2kuk—1du
=0

k—1
_ / m— y+ﬁ+i/k71(1 - v)y+a72dv
0

k—1 .
1
= B<m—y+6+zw+a—1>,
=0

here it is required that o > 1 if y = 0.

Therefore, the indirect Bayes estimator p;ps based on observation Y =y is

Bly+a,m—y+p)
SEaB(m—y+B+1iy+a—1)

PiB2 =

where av > 1 if y = 0.

We can rewrite p;po as

L(y+a)l(m —y+ B8)/T(m+ a+ f)

PiB2 =

kilf(m—y%—ﬁ—l—%)F(y+a—1)/1”(m+oz+ﬂ+%—1)
1=0
~(y+a—1)— L(m —y+p)/T(m+a+p)
F(m—y+B8+%)/T(m+a+B+i-1)
=0
k—1 i
o ) Pm—y+f8) T(m+atB+i-1)

I'(m—y+B+1) I'(m+a+p)

I\
=)

i

From (3.5) we see that prps can be approximated by

Pipr2 = yta-1
Zf:_ol (m —y + B)/k(m+ o+ B)~W/k+1

19
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yta-—1 1
T mt ot Bkt (meyrs )"
> ico (W)

here a > 1 if y = 0.
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4 Numerical Studies

A MATLAB simulation is performed in order to analyze the behaviors of
different estimators under several combinations. I chose m = 5,10, 15,20,25 and
k = 5,10,15. Fifteen cases of p between 0.005 and 0.1 are considered. First, I
simulate a sample that is from an independent, identically Bernoulli distribution and
divided the observations into m groups with & units in each group. I use this ‘new’
grouped sample to calculate the value of M LE. Second, I use the same sample
to calculate the values of Bayes estimator and approximate Bayes estimator under
different (s. The process is repeated 10000 times. Then I will obtain the M SFE of
these estimators.

Using the M SFE as a criterion. Table 1-3 display the optimal Ss which yield
the smallest M SE of Bayes estimator associated with the square loss function. From
these table, we can see that the optimal § decreases with the increase of p; the optimal
[ increases with the increase of m and k. Figures 1-5 also indicate these trends.

Tables 4-7 show how I got the optimal #s. Tables 8-19 compare the MSE of
Bayes estimator under the optimal s with the approximate Bayes estimator as well
as M LE. From these tables, we can draw a conclusion that the Bayes estimator is the
best one as far as M SFE is concerned. M LFE is not a good estimator when p is small.

Moreover, the approximate Bayes estimator is also much better than the M LE.
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Table 1: k=5, a =1, N =10000

k=5
m
p

5 10 15 20 25
0.005 222 237 252 269 274
0.006 187 205 218 229 239
0.007 163 180 192 201 209
0.008 144 163 168 181 187
0.009 130 146 157 166 171
0.01 121 132 143 152 155
0.02 66 76 79 83 85
0.03 47 54 57 58 59
0.04 37 42 44 45 47
0.05 31 34 36 37 38
0.06 26 29 31 32 32
0.07 23 26 27 27 29
0.08 21 23 24 25 25
0.09 19 21 22 22 22
0.1 18 19 20 21 21

This is the optimal § based on the smallest M SE of Bayes estimator by using k =5

with combinations of different m and p.
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Table 2: £k =10, a =1, N = 10000

k=10
m
p

5 10 15 20 25
0.005 237 266 292 303 314
0.006 207 233 247 264 269
0.007 183 199 216 229 236
0.008 163 183 193 202 213
0.009 147 166 176 189 192
0.01 135 151 163 167 176
0.02 7 86 91 94 97
0.03 95 62 64 66 67
0.04 43 48 o1 54 57
0.05 37 40 41 44 47
0.06 32 35 37 37 37
0.07 27 32 33 34 36
0.08 25 28 30 30 32
0.09 22 25 27 27 28
0.1 20 24 25 26 27

This is the optimal 8 based on the smallest M SE of Bayes estimator by using £ = 10

with combinations of different m and p.
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Table 3: k =15, a =1, N = 10000

k=15
m
p

5 10 15 20 25
0.005 259 290 313 321 327
0.006 221 255 268 273 286
0.007 194 221 233 241 251
0.008 175 198 208 218 223
0.009 162 179 191 199 203
0.01 147 163 173 181 186
0.02 84 93 99 103 107
0.03 61 67 71 72 74
0.04 48 54 o6 o8 63
0.05 40 45 48 49 o4
0.06 35 40 42 44 48
0.07 31 35 37 39 39
0.08 27 32 34 36 37
0.09 24 29 32 33 33
0.1 21 26 29 31 33

This is the optimal 3 based on the smallest M SE of Bayes estimator by using £ = 15

with combinations of different m and p.
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Table 4: k=5, m =5, p=10.005, « =1, N = 10000

B

215

216

217

218

219

MSE(pp1)
MSE(ppn)

2.2647E-06
2.2895E-06

2.2594E-06
2.2830E-06

2.2549E-06
2.2773E-06

2.2513E-06
2.2725E-06

2.2485E-06
2.2686E-06

B

220

221

222

223

224

MSE(pp1)
MSE(ppn)

2.2465E-06
2.2655E-06

2.2453E-06
2.2632E-06

2.2448E-06
2.2617E-06

2.2451E-06
2.2610E-06

2.2461E-06
2.2610E-06

B

225

226

227

228

229

MSE(pp1)
MSE(ppn)

2.2479E-06
2.2617E-06

2.2503E-06
2.2632E-06

2.2534E-06
2.2654E-06

2.2572E-06
2.2682E-06

2.2616E-06
2.2717E-06

Table 5: k=5 m =5, p=0.01, a =1, N = 10000

B

114

115

116

117

118

MSE(pp)
MSE(psn)

1.3915E-05
1.4185E-05

1.3859E-05
1.4111E-05

1.3813E-05
1.4048E-05

1.3776E-05
1.3996E-05

1.3749E-05
1.3954E-05

p

119

120

121

122

123

MSE(pp1)
MSE(pp)

1.3732E-05
1.3921E-05

1.3723E-05
1.3898E-05

1.3722E-05
1.3883E-05

1.3730E-05
1.3878E-05

1.3745E-05
1.3880E-05

p

124

125

126

127

128

MSE(pp)
MSE(ppn)

1.3768E-05

1.3891E-05

1.3798E-05
1.3909E-05

1.3834E-05
1.3934E-05

1.3877E-05
1.3966E-05

1.3927E-05
1.4005E-05

The comparison of M SE of Bayes estimator and approximation to the Bayes estima-

tor under different Ss.
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Table 6: k =5, m = 15, p = 0.005, o = 1, N = 10000

B

245

246

247

248

249

MSE(pp1)
MSE(ppn)

4.0451E-06
4.0718E-06

4.0426E-06
4.0684E-06

4.0404E-06
4.0655E-06

4.0388E-06
4.0630E-06

4.0375E-06
4.0610E-06

B

250

251

252

253

254

MSE(pp1)
MSE(ppn)

4.0366E-06
4.0594E-06

4.0362E-06
4.0582E-06

4.0361E-06
4.0574E-06

4.0365E-06
4.0570E-06

4.0372E-06
4.0570E-06

B

255

256

257

258

259

MSE(pp1)
MSE(ppn)

4.0383E-06
4.0575E-06

4.0398E-06
4.0583E-06

4.0416E-06
4.0594E-06

4.0438E-06
4.0610E-06

4.0463E-06
4.0629E-06

Table 7: k=5, m = 15, p=0.01, a = 1, N = 10000

B

136

137

138

139

140

MSE(pp)
MSE(psn)

1.9446E-05
1.9675E-05

1.9422E-05
1.9641E-05

1.9401E-05
1.9612E-05

1.9385E-05
1.9587E-05

1.9372E-05
1.9566E-05

p

141

142

143

144

145

MSE(pp1)
MSE(pp)

1.9364E-05
1.9548E-05

1.9359E-05
1.9535E-05

1.9357E-05
1.9525E-05

1.9359E-05
1.9519E-05

1.9364E-05
1.9517E-05

p

146

147

148

149

150

MSE(pp)
MSE(ppn)

1.9373E-05

1.9518E-05

1.9385E-05
1.9523E-05

1.9399E-05
1.9531E-05

1.9417E-05
1.9541E-05

1.9438E-05
1.9556E-05

The comparison of M SE of Bayes estimator and approximation to the Bayes estima-

tor under different Ss.
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Table 8: k = 5, p = 0.005,0.006,0.007,0.008, a = 1, N = 10000

p=0.005
m 5 10 15 20 25
MSE(pg) | 2.2448E-06 | 3.3817E-06 | 4.0361E-06 | 4.6045E-06 | 4.7323E-06
MSE(ppn) | 2.2617E-06 | 3.4029E-06 | 4.0574E-06 | 4.6270E-06 | 4.7537E-06
MSE(pyre) | 2.4104E-04 | 1.0604E-04 | 6.8361E-05 | 5.3956E-05 | 4.0660E-05
p = 0.006
m 5 10 15 20 25
MSE(pg1) | 3.6664E-06 | 5.3663E-06 | 6.2593E-06 | 6.8083E-06 | 6.9873E-06
MSE(pgn) | 3.6992E-06 | 5.4038E-06 | 6.2974E-06 | 6.8459E-06 | 7.0234E-06
MSE(pyrp) | 2.9072E-04 | 1.3120E-04 | 8.4518E-05 | 6.3058E-05 | 4.9948E-05
p=0.007
m 5 10 15 20 25
MSE(pg1) | 5.4201E-06 | 7.9326E-06 | 9.1134E-06 | 9.3897E-06 | 9.6176E-06
MSE(pg1) | 5.4817E-06 | 7.9946E-06 | 9.1770E-06 | 9.4481E-06 | 9.6735E-06
MSE(puyre) | 3.3223E-04 | 1.5615E-04 | 1.0109E-04 | 7.2744E-05 | 5.7832E-05
p = 0.008
m 5 10 15 20 25
MSE(pg) | 7.5515E-06 | 1.0067E-05 | 1.1873E-05 | 1.2491E-05 | 1.2826E-05
MSE(pgn) | 7.6302E-06 | 1.1058E-05 | 1.1961E-05 | 1.2576E-05 | 1.2907E-05
MSE(pyrp) | 3.6853E-04 | 1.8285E-04 | 1.0860E-04 | 8.4066E-05 | 6.6827E-05

Table-8 compares the MSE of Bayes estimator and approximation to the Bayes

estimator with the M SFE of the M LE by using k = 5 with different combinations of

p = 0.005, 0.006, 0.007,0.008 and m = 5, 10, 15, 20, 25.
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Table 9: k =5, p = 0.009, 0.01,0.02,0.03, @ = 1, N = 10000

p = 0.009
m ) 10 15 20 25
MSE(pp1) | 1.0420E-05 | 1.3972E-05 | 1.5494E-05 | 1.6192E-05 | 1.5946E-05
MSE(ppn) | 1.0544E-05 | 1.4098E-05 | 1.5617E-05 | 1.6313E-05 | 1.6062E-05
MSE(puyre) | 4.3057E-04 | 1.9751E-04 | 1.2918E-04 | 9.7241E-05 | 7.5947E-05
p=0.01
m 5 10 15 20 25
MSE(pp1) | 1.3722E-05 | 1.7754E-05 | 1.9357E-05 | 2.0338E-05 | 1.9712E-05
MSE(ppn) | 1.3883E-05 | 1.7927E-05 | 1.9525E-05 | 2.0507E-05 | 1.9866E-05
MSE(pyre) | 49391E-04 | 2.1441E-04 | 1.4237E-04 | 1.0983E-04 | 8.3501E-05
p=0.02
m 5 10 15 20 25
MSE(pp1) | 7.12838E-05 | 7.9758E-05 | 7.4927E-05 | 7.1622E-05 | 6.6506E-05
MSE(ppn) | 7.2702E-05 | 8.1032E-05 | 7.6108E-05 | 7.2738E-05 | 6.7577E-05
MSE(pyre) | 9.9164E-04 | 4.6150E-04 | 2.8147E-04 | 2.1224E-04 | 1.6707E-04
p=10.03
m 5) 10 15 20 25
MSE(pp1) | 1.7145E-04 | 1.6946E-04 | 1.5602E-04 | 1.3832E-04 | 1.2629E-04
MSE(ppn) | 1.7615E-04 | 1.7343E-04 | 1.5965E-04 | 1.4169E-04 | 1.2943E-04
MSE(puyre) | 1.5344E-03 | 6.9309E-04 | 4.4324E-04 | 3.1779E-04 | 2.5145E-04

Table-9 compares the MSE of Bayes estimator and approximation to the Bayes

estimator with the M SFE of the M LE by using k = 5 with different combinations of

p = 0.009,0.01,0.02,0.03 and m = 5, 10, 15, 20, 25.

28




Table 10: k = 5, p = 0.04,0.05,0.06, 0.07, « = 1, N = 10000

p=0.04
m 5 10 15 20 25
MSE(pp1) | 3.1116E-04 | 2.8077E-04 | 2.4544F-04 | 2.1612E-04 | 1.9608E-04
MSE(ppn) | 3.2268E-04 | 2.9046E-04 | 2.5333E-04 | 2.2362E-04 | 2.0262E-04
MSE(pyre) | 2.4326E-03 | 9.4918E-04 | 5.8556E-04 | 4.3233E-04 | 3.4986E-04
p = 0.05
m 5 10 15 20 25
MSE(pp1) | 4.7085E-04 | 4.1457E-04 | 3.5361E-04 | 2.9887E-04 | 2.6260E-04
MSE(ppn) | 4.9176E-04 | 4.3175E-04 | 3.7010E-04 | 3.1185E-04 | 2.7459E-04
MSE(pyre) | 3.4564E-03 | 1.1715E-03 | 7.6870E-04 | 5.4140E-04 | 4.3144E-04
p = 0.06
m 5 10 15 20 25
MSE(pp1) | 6.6019E-04 | 5.4481E-04 | 4.6408E-04 | 3.9214E-04 | 3.4498E-04
MSE(ppn) | 6.9704E-04 | 5.7466E-04 | 4.8941E-04 | 4.1474E-04 | 3.6812E-04
MSE(puyre) | 4.4409E-03 | 1.4282E-03 | 9.3129E-04 | 6.8010E-04 | 5.4684E-04
p =0.07
m 5 10 15 20 25
MSE(pp1) | 8.6912E-04 | 6.9911E-04 | 5.8303E-04 | 4.8215E-04 | 4.1385E-04
MSE(ppn) | 9.2762E-04 | 7.4170E-04 | 6.2164E-04 | 5.1935E-04 | 4.4459E-04
MSE(pyre) | 6.2587E-03 | 1.7286E-03 | 1.1043E-03 | 7.9370E-04 | 6.3559E-04

Table-10 compares the MSE of Bayes estimator and approximation to the Bayes

estimator with the M SFE of the M LE by using k = 5 with different combinations of

p = 0.04,0.05,0.06,0.07 and m = 5, 10, 15, 20, 25.
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Table 11: k=5, p =0.08,0.09,0.1, « = 1, N = 10000

p = 0.08
m 5 10 15 20 25
MSE(pp1) | 1.07T16E-03 | 8.7340E-04 | 6.9105E-04 | 5.7976E-04 | 4.9486E-04
MSE(ppn) | 1.1431E-03 | 9.4426E-04 | 7.4734E-04 | 6.3048E-04 | 5.4688E-04
MSE(pyre) | 7.8350E-03 | 2.1054E-03 | 1.2674E-03 | 9.3950E-04 | 7.2941E-04
p = 0.09
m 5 10 15 20 25
MSE(pp1) | 1.3188E-03 | 1.0258E-03 | 8.1458E-04 | 7.0277E-04 | 5.7674E-04
MSE(ppn) | 1.4227E-03 | 1.1176E-03 | 8.9544F-04 | 7.8028E-04 | 6.4741E-04
MSE(puyre) | 1.1193E-02 | 2.3781E-03 | 1.4831E-03 | 1.1029E-03 | 8.3620E-04
p=0.1
m 5 10 15 20 25
MSE(pp1) | 1.6198E-03 | 1.2040E-03 | 9.5955E-04 | 8.0905E-04 | 6.7701E-04
MSE(ppn) | 1.7472E-03 | 1.3411E-03 | 1.0694E-03 | 9.0490E-04 | 7.7305E-04
MSE(pyre) | 1.6287E-02 | 2.9874E-03 | 1.6952E-03 | 1.2618E-03 | 9.5998E-04

Table-11 compares the MSE of Bayes estimator and approximation to the Bayes
estimator with the M SFE of the M LE by using k = 5 with different combinations of

p =0.08,0.09,0.1 and m = 5,10, 15, 20, 25.
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Table 12: k = 10, p = 0.005,0.006, 0.007, 0.008, & = 1, N = 10000

p=0.005
m 5 10 15 20 25
MSE(pg) | 3.3306E-06 | 4.4508E-06 | 4.9904E-06 | 4.9980E-06 | 4.9499E-06
MSE(pgn) | 3.3508E-06 | 4.4718E-06 | 5.0114E-06 | 5.0174E-06 | 4.9690E-06
MSE(pyre) | 1.1841E-04 | 5.4817E-05 | 3.7781E-05 | 2.6902E-05 | 2.1330E-05
p = 0.006
m 5 10 15 20 25
MSE(pg1) | 5.4620E-06 | 6.9512E-06 | 7.0983E-06 | 7.1791E-06 | 6.8084E-06
MSE(pgn) | 5.4980E-06 | 6.9887E-06 | 7.1327E-06 | 7.2117E-06 | 6.8490E-06
MSE(pyrr) | 1.5569E-04 | 7.0589E-05 | 4.3417E-05 | 3.3162E-05 | 2.5273E-05
p=0.007
m 5 10 15 20 25
MSE(pg1) | 7.9479E-06 | 9.2850E-06 | 9.6347E-06 | 9.6161E-06 | 9.2208E-06
MSE(pgn) | 8.0065E-06 | 9.3409E-06 | 9.6871E-06 | 9.6664E-06 | 9.2686E-06
MSE(pyre) | 1.8707E-04 | 7.5878E-05 | 5.0300E-05 | 3.8194E-05 | 2.9938E-05
p = 0.008
m 5 10 15 20 25
MSE(pg) | 1.0768E-05 | 1.2447E-05 | 1.2669E-05 | 1.2093E-05 | 1.1611E-05
MSE(pgn) | 1.0852E-05 | 1.2528E-05 | 1.2747E-05 | 1.2167E-05 | 1.1690E-05
MSE(pyrr) | 2.0046E-04 | 9.1635E-05 | 5.8055E-05 | 4.2742E-05 | 3.4843E-05

Table-12 compares the MSE of Bayes estimator and approximation to the Bayes
estimator with the M SE of the M LE by using k£ = 10 with different combinations

of p = 0.005, 0.006, 0.007,0.008 and m = 5, 10, 15, 20, 25.
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Table 13: k = 10, p = 0.009, 0.01,0.02,0.03, a = 1, N = 10000

p = 0.009
m ) 10 15 20 25
MSE(pp1) | 1.4095E-05 | 1.5807E-05 | 1.5575E-05 | 1.5423E-05 | 1.4294E-05
MSE(ppn) | 1.4221E-05 | 1.5920E-05 | 1.5681E-05 | 1.5524E-05 | 1.4404E-05
MSE(pyre) | 3.3372E-04 | 1.0322E-04 | 6.5449E-05 | 5.1053E-05 | 3.9094E-05
p=0.01
m 5 10 15 20 25
MSE(pp1) | 1.8210E-05 | 1.9936E-05 | 1.9093E-05 | 1.7952E-05 | 1.6800E-05
MSE(ppn) | 1.8379E-05 | 2.0097E-05 | 1.9231E-05 | 1.8085E-05 | 1.6930E-05
MSE((pyre) | 2.6769E-04 | 1.1665E-04 | 7.4129E-05 | 5.3540E-05 | 4.3466E-05
p=0.02
m 5 10 15 20 25
MSE(pp1) | 7.9248E-05 | 7.2587E-05 | 6.4383E-05 | 5.5948E-05 | 4.9063E-05
MSE(pgn) | 8.0445E-05 | 7.3586E-05 | 6.5370E-05 | 5.6769E-05 | 4.9932E-05
MSE(puyrE) | 7.7790E-04 | 2.4565E-04 | 1.6019E-04 | 1.1424E-04 | 8.9265E-05
p=10.03
m 5) 10 15 20 25
MSE(pp1) | 1.6815E-04 | 1.4399E-04 | 1.2083E-04 | 1.0304E-04 | 8.8492E-05
MSE(ppn) | 1.7165E-04 | 1.4721E-04 | 1.2349E-04 | 1.0547E-04 | 9.0659E-05
MSE(puyre) | 2.7501E-03 | 4.0664E-04 | 2.4659E-04 | 1.8104E-04 | 1.4063E-04

Table-13 compares the MSE of Bayes estimator and approximation to the Bayes

estimator with the M SE of the M LE by using k£ = 10 with different combinations

of p =0.009,0.01,0.02,0.03 and m = 5, 10, 15, 20, 25.
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Table 14: k = 10, p = 0.04,0.05,0.06,0.07, o = 1, N = 10000

p=0.04
m 5 10 15 20 25
MSE(pp1) | 2.7947E-04 | 2.1812E-04 | 1.8658E-04 | 1.5466E-04 | 1.3503E-04
MSE(ppn) | 2.8766E-04 | 2.2464E-04 | 1.9258E-04 | 1.5984E-04 | 1.3835E-04
MSE(puyre) | 4.7970E-03 | 5.4403E-04 | 3.5728E-04 | 2.6227E-04 | 2.0367E-04
p = 0.05
m 5 10 15 20 25
MSE(pp1) | 4.2111E-04 | 3.2064E-04 | 2.5194E-04 | 2.0914E-04 | 1.8079E-04
MSE(ppn) | 4.3432E-04 | 3.3344E-04 | 2.6276E-04 | 2.1774E-04 | 1.8758E-04
MSE((pyre) | 1.2563E-02 | 8.4855E-04 | 4.5156E-04 | 3.3252E-04 | 2.6620E-04
p = 0.06
m 5 10 15 20 25
MSE(pp1) | 5.5055E-04 | 4.2260E-04 | 3.3451E-04 | 2.7243E-04 | 2.2721E-04
MSE(ppn) | 5.7192E-04 | 4.4230E-04 | 3.5185E-04 | 2.8719E-04 | 2.4088E-04
MSE(puyre) | 2.1022E-02 | 1.4193E-03 | 6.0974E-04 | 4.2062E-04 | 3.2314E-04
p =0.07
m 5 10 15 20 25
MSE(pp1) | 7.1297E-04 | 5.2898E-04 | 4.1495E-04 | 3.4058E-04 | 2.9036E-04
MSE(ppn) | 7.5187E-04 | 5.5571E-04 | 4.3954E-04 | 3.6249E-04 | 3.1361E-04
MSE(pyre) | 3.2272E-02 | 2.3502E-03 | 7.5571E-04 | 7.5571E-04 | 4.1002E-04

Table-14 compares the MSE of Bayes estimator and approximation to the Bayes

estimator with the M SE of the M LE by using k£ = 10 with different combinations

of p =0.04,0.05,0.06,0.07 and m = 5, 10, 15, 20, 25.
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Table 15: £ =10, p = 0.08,0.09,0.1, o« = 1, N = 10000

p = 0.08
m 5 10 15 20 25
MSE(pp1) | 8.8583E-04 | 6.5048E-04 | 5.0621E-04 | 4.0891E-04 | 3.5726E-04
MSE(ppn) | 9.3492E-04 | 6.8854E-04 | 5.4078E-04 | 4.4174E-04 | 3.8616E-04
MSE(pyre) | 5.4293E-02 | 3.8652E-03 | 1.0961E-03 | 6.4116E-04 | 5.2369E-04
p = 0.09
m 5 10 15 20 25
MSE(pp1) | 1.0383E-03 | 7.6432E-04 | 6.0528E-04 | 4.8103E-04 | 4.1071E-04
MSE(ppn) | 1.1162E-03 | 8.2394E-04 | 6.5740E-04 | 5.2627E-04 | 4.5140E-04
MSE(puyre) | 7.2972E-02 | 6.2664E-03 | 1.4612E-03 | 7.5971E-04 | 5.9529E-04
p=0.1
m 5 10 15 20 25
MSE(pp1) | 1.2246E-03 | 9.2362E-04 | 6.8347E-04 | 5.7343E-04 | 4.7303E-04
MSE(ppn) | 1.3279E-03 | 9.9429E-04 | 7.4465E-04 | 6.3427E-04 | 5.2576E-04
MSE(pyre) | 9.6444E-02 | 1.3330E-02 | 1.6181E-03 | 1.3371E-03 | 7.1557E-04

Table-15 compares the M SE of Bayes estimator and approximation to the Bayes

estimator with the MSE of the M LFE by using k = 10 with different combinations

of p = 0.08,0.09,0.1 and m = 5, 10, 15, 20, 25.
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Table 16: k = 15, p = 0.005,0.006, 0.007,0.008, & = 1, N = 10000

p=0.005
m 5 10 15 20 25
MSE(pg) | 4.1599E-06 | 4.8808E-06 | 5.0095E-06 | 4.8111E-06 | 4.5628E-06
MSE(ppn) | 4.1809E-06 | 4.9008E-06 | 5.0285E-06 | 4.8287E-06 | 4.5792E-06
MSE(pyrr) | 8.9782E-05 | 3.8597E-05 | 2.5179E-05 | 1.7880E-05 | 1.3810E-05
p = 0.006
m 5 10 15 20 25
MSE(pg1) | 6.3672E-06 | 7.2169E-06 | 6.9268E-06 | 6.6213E-06 | 6.2627E-06
MSE(pgn) | 6.4031E-06 | 7.2514E-06 | 6.9575E-06 | 6.6499E-06 | 6.2910E-06
MSE(pyrp) | 1.0678E-04 | 4.9047E-05 | 2.9716E-05 | 2.1206E-05 | 1.7196E-05
p=0.007
m 5 10 15 20 25
MSE(pg1) | 8.8637E-06 | 9.7900E-06 | 9.3750E-06 | 8.6453E-06 | 8.3146E-06
MSE(pgn) | 8.9197E-06 | 9.8425E-06 | 9.4233E-06 | 8.6896E-06 | 8.3581E-06
MSE(pure) | 1.2354E-04 | 5.5867E-05 | 3.4883E-05 | 2.5128E-05 | 2.0663E-05
p = 0.008
m 5 10 15 20 25
MSE(pg) | 1.2017E-05 | 1.2810E-05 | 1.1758E-05 | 1.0961E-05 | 1.0185E-05
MSE(pgn) | 1.2099E-05 | 1.2887E-05 | 1.1826E-05 | 1.1024E-05 | 1.0246E-05
MSE(pyrp) | 2.4358E-04 | 6.4797E-05 | 3.9662E-05 | 2.9437E-05 | 2.3370E-05

Table-16 compares the MSE of Bayes estimator and approximation to the Bayes
estimator with the M SE of the M LE by using k£ = 15 with different combinations

of p = 0.005, 0.006, 0.007,0.008 and m = 5, 10, 15, 20, 25.
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Table 17: k = 15, p = 0.009, 0.01,0.02,0.03, a = 1, N = 10000

p = 0.009
m ) 10 15 20 25
MSE(pp1) | 1.5806E-05 | 1.5904E-05 | 1.4711E-05 | 1.3719E-05 | 1.2185E-05
MSE(ppn) | 1.5921E-05 | 1.6011E-05 | 1.4807E-05 | 1.3810E-05 | 1.2276E-05
MSE(puyrE) | 2.7447TE-04 | 7.2743E-05 | 4.6269E-05 | 3.4602E-05 | 2.6411E-05
p=0.01
m 5 10 15 20 25
MSE(pp1) | 1.9290E-05 | 1.9094E-05 | 1.7777E-05 | 1.5895E-05 | 1.4252E-05
MSE(ppn) | 1.9441E-05 | 1.9229E-05 | 1.7902E-05 | 1.6012E-05 | 1.4381E-05
MSE((pyre) | 1.9090E-04 | 7.9142E-05 | 5.1203E-05 | 3.7888E-05 | 2.9314E-05
p=0.02
m 5 10 15 20 25
MSE(pp1) | 7.7196E-05 | 6.3557E-05 | 5.3951E-05 | 4.5169E-05 | 4.0730E-05
MSE(pgn) | 7.8202E-05 | 6.4408E-05 | 5.4716E-05 | 4.5838E-05 | 4.1305E-05
MSE(puyrE) | 2.2374E-03 | 1.7653E-04 | 1.1397E-04 | 8.2246E-05 | 6.5161E-05
p=10.03
m 5) 10 15 20 25
MSE(pp1) | 1.5784E-04 | 1.2243E-04 | 9.6288E-05 | 8.0800E-05 | 7.0920E-05
MSE(ppn) | 1.6083E-04 | 1.2488E-04 | 9.8370E-05 | 8.2735E-05 | 7.2528E-05
MSE(puyre) | 7.8835E-03 | 2.9993E-04 | 1.8318E-04 | 1.3259E-04 | 1.0567E-04

Table-17 compares the MSE of Bayes estimator and approximation to the Bayes

estimator with the M SE of the M LE by using k£ = 15 with different combinations

of p =0.009,0.01,0.02,0.03 and m = 5, 10, 15, 20, 25.
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Table 18: k = 15, p = 0.04,0.05,0.06,0.07, o = 1, N = 10000

p=0.04
m 5 10 15 20 25
MSE(pp1) | 2.4810E-04 | 1.9384E-04 | 1.4871E-04 | 1.2263E-04 | 1.0360E-04
MSE(ppn) | 2.5412E-04 | 1.9927E-04 | 1.5293E-04 | 1.2636E-04 | 1.0591E-04
MSE(puyre) | 1.9655E-02 | 1.1963E-03 | 2.6913E-04 | 1.9428E-04 | 1.5192E-04
p = 0.05
m 5 10 15 20 25
MSE(pp1) | 3.6837E-04 | 2.6225E-04 | 2.0940E-04 | 1.7137E-04 | 1.4769E-04
MSE(ppn) | 3.7958E-04 | 2.7037E-04 | 2.1701E-04 | 1.7790E-04 | 1.5514E-04
MSE(pyre) | 4.2438E-02 | 1.8604E-03 | 5.6624E-04 | 2.7102E-04 | 2.1758E-04
p = 0.06
m 5 10 15 20 25
MSE(pp1) | 4.8791E-04 | 3.5900E-04 | 2.7970E-04 | 2.2146E-04 | 1.9689E-04
MSE(pgn) | 5.0210E-04 | 3.7193E-04 | 2.9144F-04 | 2.3149E-04 | 2.0192E-04
MSE(puyre) | 7.2819E-02 | 7.0501E-03 | 1.0527E-03 | 3.6908E-04 | 2.9080E-04
p =0.07
m 5 10 15 20 25
MSE(pp1) | 6.0603E-04 | 4.3622E-04 | 3.4544F-04 | 2.8133E-04 | 2.3842E-04
MSE(ppn) | 6.2674E-04 | 4.5475E-04 | 3.6176E-04 | 2.9559E-04 | 2.5317E-04
MSE(pyre) | 1.1716E-01 | 1.4181E-02 | 2.4547E-03 | 6.4547E-04 | 4.4632E-04

Table-18 compares the MSE of Bayes estimator and approximation to the Bayes

estimator with the M SE of the M LE by using k£ = 15 with different combinations

of p =0.04,0.05,0.06,0.07 and m = 5, 10, 15, 20, 25.
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Table 19: £ =15, p = 0.08,0.09,0.1, o« = 1, N = 10000

p = 0.08
m 5 10 15 20 25
MSE(pp1) | 7.3871E-04 | 5.4315E-04 | 4.1452E-04 | 3.5102E-04 | 2.9617E-04
MSE(ppn) | 7.7028E-04 | 5.6469E-04 | 4.3557E-04 | 3.6997E-04 | 3.1453E-04
MSE(pyre) | 1.5989E-01 | 2.7586E-02 | 5.0902E-03 | 1.6245E-03 | 1.0531E-03
p = 0.09
m 5 10 15 20 25
MSE(pp1) | 8.6129E-04 | 6.5064E-04 | 5.1550E-04 | 4.3114E-04 | 3.6849E-04
MSE(ppn) | 9.0280E-04 | 6.8725E-04 | 5.4165E-04 | 4.6025E-04 | 3.9929E-04
MSE(puyre) | 2.0509E-01 | 5.3086E-02 | 1.3889E-02 | 4.9522E-03 | 1.1073E-03
p=0.1
m 5 10 15 20 25
MSE((pp1) | 9.9767E-04 | 7.7144E-04 | 6.1556E-04 | 5.1293E-04 | 4.3627E-04
MSE(ppn) | 1.0679E-03 | 8.1737E-04 | 6.5614E-04 | 5.4559E-04 | 4.6183E-04
MSE(puyre) | 2.56111E-01 | 7.7235E-02 | 2.6940E-02 | 8.4818E-03 | 3.4771E-03

Table-19 compares the M SE of Bayes estimator and approximation to the Bayes

estimator with the MSE of the M LFE by using k = 15 with different combinations

of p = 0.08,0.09,0.1 and m = 5, 10, 15, 20, 25.
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5 Conclusion

According to the analytical and numerical results obtained above, We
know that the M SFE of Bayes estimators and approximation to Bayes estimators are
both smaller than that of M LE for small p. Indirect Bayes estimators performs very
well too. We could draw a conclusion that Bayes estimators are much better than

M LE when p is small.
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APPENDIX

I list the equations in this study here for the convenience of finding them.
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(D Bayes Inferences from Prior on p.

Loss function Ly(p,a) = (p — a)>.

y>1 Equation 2.4 page 8

Approximation to the Bayes estimator pp;.
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Approximation to the Bayes estimator pps.

. 11c71yj—:10 _ ) if Yy > 1; )

bpr=q X XV (V5 ") et kjtitB—ky) —e Equation 2.13 page 13
1=U 3=
n+31}5 , ify=0and a>1.
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@) Bayes Estimators of p from Prior on 7.

Loss function Ly(p,a) = (p — a)>.

F'm+a+ 8)T(m—y+p+1/k)
F'm—-y+B8)I'(m+a+p+1/k)

prp1=1-— Equation 3.1 page 18

Approximation to the Bayes estimator prp;.

_ /
pip1=1— (%) Equation 3.2 page 18
m+ «

Loss function Ly(p,a) =p~t(p — a)?.
Fm—y+ 8T (m+a+pf+1—1)

Equation 3.5 page 19
m—y—|—5+k) C(m+a+pB)

Bl
Drp2 = y+a—1z
=0

Approximation to the Bayes estimator prps.

y+a-—1 1

m + « + /6 Zk*l (m—y-}—ﬁ)fl/k
=0 \ m+a+p

Prp2 = Equation 3.6 page 20
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