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ABSTRACT OF THE DISSERTATION 

FUNCTIONALIZED CARBON MICRO/NANOSTRUCTURES FOR BIMOLECULAR 

DETECTION  

by 

Varun Penmatsa 

Florida International University, 2012 

Miami, Florida 

 Professor Chunlei Wang, Major Professor 

Advancements in the micro-and nano-scale fabrication techniques have opened up 

new avenues for the development of portable, scalable and easier-to-use biosensors. Over 

the last few years, electrodes made of carbon have been widely used as sensing units in 

biosensors due to their attractive physiochemical properties. The aim of this research is to 

investigate different strategies to develop functionalized high surface carbon micro/nano-

structures for electrochemical and biosensing devices.  

High aspect ratio three-dimensional carbon microarrays were fabricated via 

carbon microelectromechanical systems (C-MEMS) technique, which is based on 

pyrolyzing pre-patterned organic photoresist polymers. To further increase the surface 

area of the carbon microstructures, surface porosity was introduced by two strategies, i.e. 

(i) using F127 as porogen and (ii) oxygen reactive ion etch (RIE) treatment. 

Electrochemical characterization showed that porous carbon thin film electrodes prepared 

by using F127 as porogen had an effective surface area (Aeff 185%) compared to the 

conventional carbon electrode. 
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To achieve enhanced electrochemical sensitivity for C-MEMS based functional 

devices, graphene was conformally coated onto high aspect ratio three-dimensional (3D) 

carbon micropillar arrays using electrostatic spray deposition (ESD) technique. The 

amperometric response of graphene/carbon micropillar electrode arrays exhibited higher 

electrochemical activity, improved charge transfer and a linear response towards H2O2 

detection between 250μM to 5.5mM.  

 Furthermore, carbon structures with dimensions from 50 nano-to micrometer level 

have been fabricated by pyrolyzing photo-nanoimprint lithography patterned organic 

resist polymer. Microstructure, elemental composition and resistivity characterization of 

the carbon nanostructures produced by this process were very similar to conventional 

photoresist derived carbon. Surface functionalization of the carbon nanostructures was 

performed using direct amination technique. 

Considering the need for requisite functional groups to covalently attach 

bioreceptors on the carbon surface for biomolecule detection, different oxidation 

techniques were compared to study the types of carbon–oxygen groups formed on the 

surface and their percentages with respect to different oxidation pretreatment times.  

Finally, a label-free detection strategy using signaling aptamer/protein binding 

complex for platelet-derived growth factor oncoprotein detection on functionalized three-

dimensional carbon microarrays platform was demonstrated. The sensor showed near 

linear relationship between the relative fluorescence difference and protein concentration 

even in the sub-nanomolar range with an excellent detection limit of 5 pmol.  
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                                                CHAPTER 1 

INTRODUCTION 

1.1 Overview  

In the last few decades, miniature bio-detection systems have been extensively 

studied for their potential to replace costly time-consuming diagnostic tools [1]. The early 

detection and diagnosis of pathogenic and physiologically relevant molecules in the body 

can significantly reduce the cost of patient care associated with advanced stages of many 

health disorders [2]. The current laboratory diagnostic methods for identifying these 

molecules face several potential limitations such as costly detection processes, large 

sample volumes, need for trained personnel and slow response times [2].  

Current biosensors research is fast-moving towards addressing the critical need 

for developing scalable, low cost, highly sensitive and selective devices that can operate 

in real-time and diverse physical environments. However, for the successful development 

of such advanced biosensors, two important factors needs to be addressed from research 

point of view, i.e. (i) seek novel materials for sensing elements that have well defined and 

highly stable interfaces when interacting with biomolecules; (ii) develop new miniature 

designs and manufacturing strategies. The sensing element is considered an integral part 

of the biosensor design due to its close contact with biomolecules such as enzyme, 

organelles, whole cells, to detect specific analyte [3]. Miniaturization of detection system 

enables the integration of more sensing elements units on the allotted substrate area of a 

sensor system. This enables a far greater number of detection sites between the 

measurement system and the analyte, thus providing the possibility for realizing high 

throughput, parallel detection system.  In addition, as the electrode dimensions is 
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reduced, the radial diffusion becomes more dominant resulting in faster mass transport 

[4]. The high rate of mass transport at small electrodes enables measurements of kinetics 

by steady-state experiments rather than by transient techniques. 

1.2 Motivation and Goal 

Over the last few years, electrodes made of carbon has been widely investigated 

as sensing units in biosensors due to their attractive properties such as low cost, ability to 

be micro/nano-patterned with high fidelity, easy surface functionalization, wide potential 

window, and biocompatibility. Compared to other typically used materials such as 

silicon, glass and gold, carbon does not exhibit significant degradation of the interfaces 

after repeated use [5]. However, to integrate carbon into miniaturized MEMS based 

biosensing devices, the biggest challenge is the need to develop fabrication strategies that 

are compatible with microelectronics processing and at the same time provide the 

requisite sensitivity and stability when exposed to biological environments.   

Carbon microelectromechanical systems, or C-MEMS describes a manufacturing 

technique in which carbon microstructures are fabricated by heat treatment of  patterned 

organic polymers at high temperatures under inert environment [6-9]. By changing the 

processing conditions, complex three-dimensional (3D) carbon structure arrays can be 

fabricated with different shapes and electrical properties [10]. In addition, the 3D 

microstructure arrays are considered a very promising platform for integrating functional 

nanomaterials such as graphene [11], carbon nanotubes [12], and carbon nanospheres 

[13] to take advantage of potential merits such as very large surface areas and enhanced 

chemical functionality. In reality, the carbon microstructure arrays serve a dual purpose. 

First, they render a high surface area platform to increase the binding sites for 
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bioreceptors; second, the conductive carbon microstructures and the microfabricated 

carbon contact pads could be fabricated in the same process for electrochemical 

sensing[11]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

     

Figure 1.1 SEM images of assorted microstructures fabricated using C-MEMS process. Adapted 

from Ref [6-10]. 

The goal of this work is to fabricate, characterize, functionalize and incorporate 

carbon micro- and nano-structures prepared by C-MEMS/NEMS technique in 

electrochemical and biodetection devices. To increase the surface area and attain 
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enhanced electrochemical functionalities, the surface of the 3D carbon microstructures 

was engineered to introduce porosity and additionally nanoscale-material, graphene was 

conformally coated. Furthermore, different functionalization techniques were compared 

on the pyrolyzed carbon surface to optimize the binding sites covalent attachment of 

biomolecules. Finally, the functionalized 3D carbon microarrays platform was 

investigated in electrochemical and potential cancer biomarker detection. 

1.3 Scope of the Dissertation 

The objective of this research is to develop novel strategies to fabricate and test 

high surface area functionalized carbon micro/nano-structures as electrochemical and 

biomolecular detection platforms.   

Figure 1.2 presents the summary of research carried out in this work 

 

 

 

 

 

 

 

 

 

 

Figure 1.2 Flow chart of the research plan  
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This dissertation is divided into 8 chapters. 

Chapter 2 presents a thorough background on the allotropes of carbon, need for- 

and significance of carbon microelectrochemical systems (C-MEMS) technique, 

continues with brief discussion about nanoimprint lithography (NIL) technique and 

finally the current state-of-art for C-MEMS based biosensing devices is presented. The 

fabrication and characterization of 3D porous structures using F127 as porogen and 

oxygen RIE treatment is presented in chapter 3. Chapter 4 discusses a facile approach to 

integrate graphene nanosheets onto 3D carbon microstructures and testing the 

electrochemical performance of the sensing platform for hydrogen peroxide detection. 

Chapter 5 presents the wafer-level fabrication and surface functionalization of carbon 

nanostructures with controllable size, shape and position using photo-nanoimprint 

lithography and pyrolysis. The comparison of different oxidation techniques on C-MEMS 

derived carbon surface was studied to optimize the functional groups responsible for 

covalent attachment of target binding biomolecules is reported in chapter 6. High 

sensitive detection of platelet-derived growth factor oncoprotein on functionalized 3D 

carbon micropillars array platform using signaling aptamer/protein binding complex 

mechanism is presented in chapter 7.  Chapter 8 summarizes the contributions of this 

dissertation and discusses the future scope of work. 
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                                               CHAPTER 2 

BACKGROUND AND LITERATURE REVIEW 

2.1 Carbon  

2.1.1 Brief History of Carbon 

Carbon is the second most abundant element in the human body by mass (about 

18.5%) and the fourth most abundant element in the Universe. Etymologically, the 

English name for carbon was derived from the Latin name for burnt wood, carbo.  Dating 

back to Roman civilization, charcoal derivation was done as we know it today, i.e. by 

heating wood in a pyramid covered with clay to exclude air [1]. In 1722, Ren´e A. F. de 

R´eaumur demonstrated that iron could be transformed into steel by the absorption of a 

certain substance, now known to be carbon [2]. In 1772 the French scientist Antoine de 

Lavoisier proved that diamond is a crystalline allotrope of carbon by comparing the 

amount of carbon dioxide/gram released by burning carbon and diamond samples in air 

[3]. Carl Scheele in 1779, determined that graphite, considered at the time a form of lead, 

was indeed another carbon allotrope. Lavoisier later listed Carbon as a separate element 

in his 1789 textbook Trait´e ´El´ementaire de Chimie [4].  

2.1.2 Carbon and its Allotropes 

Carbon forms more compounds than any other element (almost ten million pure 

organic compounds have been described to date) due to the special nature of the C-C 

bond. Due to the presence of several allotropes of carbon, a large variety of molecular 

configurations for multi-atomic structures exists. Partial reason for this could be due to 

the fact that atomic carbon is a very short-lived species that requires to be promptly 

stabilized [5,6]. Popular allotropes of carbon include graphite, amorphous carbon, 
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diamond, glassy carbon, carbon nanotubes [7], buckminster fullerenes [8], lonsdaleite [9], 

carbyne [10], carbon nanofoams [11], diamond-like carbon [12], carbons derived from 

the pyrolysis of organic materials known as pyrolyzed carbon [13] and most recently 

graphene [14]. Some of the typical carbon allotropes are shown schematically in Figure 

2.1. 

 

 

 

 

 

 

 

 

   

 

 

 

 

Figure 2.1. Some carbon allotropes: a) Diamond, b) Graphite indicating individual graphene 

layers, c) Lonsdaleite, d) C60 (buckyball), e) C540, f) C70, g) Amorphous carbon and h) Single 

walled carbon nanotube. Adapted from Ref [15]. 

It is noteworthy that the physical, mechanical and electrical properties of carbon 

vary widely with the allotropic form and their synthesis method. For example, graphite is 
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opaque and black while diamond is highly transparent; graphite is soft enough to allow its 

use as solid lubricant while diamond is amongst the strongest known materials; graphite 

is a good electrical conductor while undoped diamond is an excellent electrical insulator; 

some forms of graphite are used in thermal insulation but diamond is the best known 

naturally occurring thermal conductor. A schematic representing different techniques to 

derive carbon is shown in Figure 2.2.   

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.2. Carbon products obtained from different processes. Adapted from Ref [16]. 

2.2 Microelectromechanical Systems (MEMS)  

Micromachining or microelectromechanical systems (MEMS) refer to the fabrication 

of devices with at least some of their dimensions in the micrometer range [17]. In the early 

years, this discipline was almost exclusively based on thin and thick film processes with 
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materials borrowed from Integrated Circuit (IC) fabrications labs. Emphasis was on UV 

lithography, single-crystal Si, and polycrystalline Si for mechanical applications such as 

pressure sensors, accelerometers, and gyros. In the 1990s, as the applications of 

micromachining broadened, emphasis shifted to a more all-inclusive view of 

micromanufacturing methods. Unlike IC devices which only involve electrical components 

(diodes transistors, etc.), MEMS devices cover a broad range of applications from 

mechanical to biological (BioMEMS). The materials and fabrication techniques used in 

MEMS are much more varied than those used in IC fabrication (typically uses silicon, oxides 

and metals patterned using photolithography).  In contrast to the IC industry where the 

devices are meticulously packaged and protected from the environment, MEMS devices, 

such as glucose or pressure sensors often have surfaces that are directly exposed to the coarse 

sensing environment.  Thus, it is of great interest to investigate a plethora of “exotic” 

materials that can be “adapted” to make new micro device applications possible. In the case 

of MEMS applied to medical and biological problems (i.e., BioMEMS), these materials need 

to have a stable interface when interacting with biological molecules such as aptamers, 

enzymes, proteins antigens and antibodies. 

2.3 Why Carbon as a MEMS Material?  

Currently, silicon (Si) is the dominant material used in the miniaturization of 

electrical and electromechanical systems [17]. The most important impetus for the 

pervasive use of Si in MEMS applications, no doubt, derives from the success of Si in the 

Integrated Circuit (IC) industry. The new demands for further miniaturization such as 

lower power consumption,  better heat dissipation, higher speeds, biocompatibility and 

more environmentally friendly manufacturing processes has fueled our search for 
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additional promising materials for MEMS, including SiC [18], GaAs [19], InP [20], Ge 

[21], quartz [22], polymeric materials [23] and carbon [24]. In particular, carbon has 

attracted great interest as a promising new MEMS/Nanoelectromechanical Systems 

(NEMS) material that can be envisioned as micro/nano-electrodes in MEMS based 

electrochemical sensors and miniaturized energy storage/energy conversion devices. 

 Pyrolyzed carbon, also known as glass-like carbon, is one of the more popular 

allotropes of carbon derived through thermal degradation, or carbonization, of organic 

polymers in inert atmospheres. Over the last couple of decades, pyrolyzed carbon has 

garnered importance as functional electrode material in electrochemical applications 

owing to its high isotropy in structural and physical properties [25]. Since organic 

polymers are used as carbon precursors, different lithography methods can be used to 

micropattern carbon for MEMS applications. The resistivity values of pyrolyzed carbon 

films is comparable to that of glassy carbon prepared at same temperature, but with an 

additional benefit of lower O/C ratio [26]. Electrochemical studies have corroborated that 

the kinetics of  redox couple on pyrolyzed carbon films prepared at 700 °C have glassy 

carbon-like behavior with good electrochemical reversibility. As the pyrolysis 

temperature was increased to 1000 °C, pyrolyzed carbon films showed even better 

electrocatalytic properties than glassy carbon [26]. In addition, pyrolyzed carbon has low 

capacitance value making it attractive for analytical applications. The electrochemical 

properties of glassy carbon and pyrolyzed carbon films derived from different precursors 

are summarized in Table 2.1. 
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Table 2.1. Comparison of electrochemical characteristics for glassy carbon and pyrolyzed carbon 

films derived from different precursors. Table adapted from Ref [2]. 

Fabrication Method 
Resistivity 

(mΩ cm) 

Capacitance(

µF cm2) 

aRate 

constant K0 

GC-20 Tokai, polished 4 33 0.06-0.15 

GC-20, forming gas, 1000ºC 4 22 0.044 

Poly(furfuryl alcohol) pyrolysis,1100ºC 10 -- -- 

Poly acrylonitrile pyrolysis,1020ºC 2 -- -- 

Methane pyrolysis, 1100ºC -- 20 0.004b 

Natural gas pyrolysis, 1000ºC -- >100 0.004-0.015 

Methane pyrolysis -- 32 0.009 

Organic film pyrolysis, 1000ºC 4 -- -- 

Sputtered carbon 35 7.5 0.024-0.042c 

PPF forming gas, 1100ºC 5.1 8.1 0.042d 

    a  Rate constant values K0 were measured against potassium ferricyanide (Fe(CN)6
3-/4- in 1M KCL unless     

       indicated otherwise 
   b  Calculated from volumetric data in Ref 12. 
   c  In 0.5M H2SO4 
   d  Corrected for film resistance 
 
 
2.4 Carbon Microelectromechanical Systems (C-MEMS) technique  

Carbon Microelectromechanical Systems, also referred to as Carbon-MEMS or  

C-MEMS, is a term used for set of fabrication methods used to convert pre-patterned 

photocurable polymers to glass-like carbon microstructures by pyrolysis [27-31]. 

Different fabrication techniques such as stamping, casting, machining and lithography, 

among others have been used in this technique [32]. The quality, complexity and final 

dimensions of the desired carbon structures dictate the technique used for patterning the 

organic polymer. Currently, the fabrication of Carbon-MEMS devices is principally 

based on the use of photolithography as the primary tool to pattern the polymeric 
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precursors. Illustration of the typical C-MEMS fabrication procedure is shown in            

Figure 2.3. 

 

 

 

 

 

 

Figure 2.3. Schematic showing the C-MEMS process using a negative tone resist (SU-8) as the 

precursor. 

The existence of standardized photolithography tools and commercial high-

quality precursors make the fabrication process and the dimensional control highly 

reproducible. The addition of Next-Generation Lithography (NGL) techniques, such as 

photo-nanoimprint lithography (NIL), electron beam lithography (EBL), and focused-ion 

beam (FIB), can further reduce the feature sizes and greatly increase the intricacy of the 

resulting carbon structures.  

The C-MEMS technique received a lot of attention since late 1990s when 

Schueller and co-workers at Harvard University derived glassy carbon microstructures 

from carbonizing phenol-formaldehyde resins and furfuryl alcohol-modified phenolic 

resins. In their process, soft lithography defined polydimethylsiloxane (PDMS) molds 

were used to pattern the polymers [33, 32]. This fabrication scheme gave them the 

flexibility to fabricate different high aspect ratio structures (including free standing lateral 

comb drives, diffraction gratings and grids) on either curved or flat surfaces [34]. During 
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the same decade, initial work emerged regarding the derivation of carbon from 

photoresists driven by the considerable usage of pyrolyzed photoresists in batteries, 

electrochemical sensors, biosensors, capacitors and MEMS applications. In 1998, 

electrochemical studies of carbon films derived from positive photoresists were 

conducted by Kim et. al. [35,37] and later by Ranganathan and his co-workers [26]. The 

results showed that the pyrolyzed photoresist films (PPF) have a near-atomic flatness 

with an electrochemical behavior similar to glassy carbon prepared at same temperature.   

By 2000, Kinoshita and his team were successful in patterning these carbon films as 

microelectrodes and studied the influence of the geometry in their electrochemical 

response [36]. In 2002, Madou’s group reported for the first time the use of negative-tone 

photoresist, SU-8, and polyimide as precursors for preparing carbon micropatterns. It was 

interesting to note that carbon obtained by using these precursors showed higher 

resistivity and vertical shrinkage compared to the one synthesized from positive resists. 

Nevertheless, resistivity from SU-8 carbon was slightly lower than polyimides [38].  

The works till this time reporting the preparation of pyrolyzed carbon from 

organic polymers were only limited to two-dimensional constructs. In 2005, Wang and 

her co-workers from Madou group were able to demonstrate microstructures with aspect 

ratios greater than 10. They used a two-step heating process during pyrolysis which 

allowed the release of residual oxygen contained in the polymer structures. Previously, 

one step pyrolysis process caused the precursor to burn rather than pyrolyze, even in an 

oxygen-free atmosphere due to the insufficient time to degass. Since then, a wide variety 

of complex high-aspect ratio carbon-MEMS structures, such as pillars, suspended carbon 

bridges, wires, self-organized bunched posts, plates and networks, have been fabricated. 
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A thorough characterization of the structure shrinkage along with electrical 

properties and shrinkage behavior of both positive and negative resists was conducted by 

Madou group [39]. They observed that hundreds-of-microns thick features usually shrink 

approximately 50% while structures with thickness below 10 μm shrink almost by 90%. 

In addition, they reported a decrease in the resistivity of pyrolyzed carbons as the 

pyrolysis temperature was increased [40]. In 2006, Malladi et.al. successfully fabricated 

suspended carbon microstructures by using electron-beam lithography (EBL) [29]. 

Recently, Wang group at FIU reported the surface engineering of 3D microstructure 

arrays by integrating functional nanomaterials such as carbon nanotubes [41], graphene 

[42] and polypyrolle [43]. The addition of nanofeatures to carbon 

microelectromechanical system (C-MEMS) structures has shown to greatly increase the 

surface area and enhanced electrochemical functionalities. In addition, Sharma et. al. 

succeeded in fabricating suspended carbon nanowires (CNW) on micro-fabricated posts 

by electrospinning of SU-8 photoresist followed by pyrolysis [44]. These CNW self-

assembled to connect the posts obviating the need for positioning and integration of 

carbon nanowires with the underlying microstructures.  

Carbon microstructures fabricated by C-MEMS technique have found a variety of 

applications including on-chip super capacitors, lithium-ion batteries, electrochemical 

biosensors, DNA detection, bio-fuel cells, cell culturing substrates, and di-electrophoretic 

electrode arrays for the micromanipulation of micro-and nanoparticles.  Some key carbon 

MEMS/NEMS functions and manufacturing processing still need to be developed to 

bridge the manufacturing gap between nano and macro features. There is great hope that 



16 
 

integration of biological components with C-MEMS /NEMS will allow new functional 

hybrid carbon-biological materials and multilevel devices. 

2.5 Next-Generation Lithography  

Next Generation Lithographies (NGL) are a new breed of lithography techniques 

postulated as potential replacements to conventional photolithography in the everlasting 

quest to reduce feature dimensions. Popular NGL techniques include: imprint lithography 

(which includes thermal-nanoimprint lithography (T-NIL) and photo-nanomprint 

lithography (P-NIL), extreme ultraviolet lithography (EUVL), charged particle beam 

lithography based on electrons and ions (such as electron and ion projection techniques) 

and x-ray lithography.  In principle, all these techniques can be used for the manufacture 

of carbon-MEMS devices. We place an emphasis on imprint lithographies because they 

represent a more affordable and readily available way to obtain nanostructures for carbon 

NEMS or nanofluidics applications. EUVL and X-ray lithography may also be used but 

they are more expensive and are not readily available due to their required infrastructure. 

2.5.1 Nanoimprint lithography  

Imprinting processes are economical due to the simplicity of the equipment 

involved and the potential for high-throughput. Since the initial development of 

nanoimprint lithography (NIL), two major approaches have been used in NIL process. 

The first approach involves imprinting a mold/stamp/template into a thermoplastic or 

thermoset polymer (Thermal-nanoimprint lithography) and the other into an ultraviolet 

(UV) light-curable material (Photo-nanoimprint lithography).  After imprinting the resist, 

a dry anisotropic etch is used to remove the residual resist layer in the compressed area to 

expose the substrate underneath. For nanoimprinting, once a solid stamp with nano-relief 
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features is prepared, it can be used for the replication of many identical surface patterns 

on the substrate. 

Thermal-nanoimprint lithography (T-NIL) was invented in 1994 by Stephen Chou 

at Princeton University [44]. The resolution of the T-NIL process is directly related to the 

resolution of the original template/stamp fabrication process. One of the challenges in        

T-NIL is when imprinting with varying pattern density, results have shown incomplete 

displacement of the thermoplastic even at elevated temperature and high pressure which 

could lead to partial pattern transfer. In addition, the use of high temperatures and high 

pressures limits the ability to achieve the layer-to-layer alignment required for 

microelectronic device fabrication.  

Compared to the T-NIL, photo-nanoimprint lithography (P-NIL) has additional 

advantages, such as polymerization, which proceeds at room temperature, no pattern shift 

due to the absence of mismatch of the coefficients of thermal expansion of mold and 

substrate, high curing speed that reduces the cycle time and the potential for precise layer 

to layer alignment. The University of Texas (UT)-Austin developed its version of P-NIL 

also known as step-and-flash imprint lithography (SFIL) in 1998 [45]. The SFIL method 

operates in a step-and-repeat fashion, rather than serial processing as in the case of                

T-NIL.  

The present day applications of P-NIL process include manufacturing of several 

emerging technologies, such as micro/nano-optical components, photonic crystals, and 

nanopatterned magnetic media for future hard disk drives, whereas  T-NIL using 

thermoplastic polymer films is focused on applications such as bio-chips, life sciences, 

storage media and optical devices. The P- NIL systems which are able to work with 
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photocurable polymers are a potential option to fabricate carbon nano-scale structures 

with controllable dimensions and properties using Carbon-MEMS technique. 

2.6 C-MEMS based Biosensing  

The attractive properties of carbon such as low non-specific adsorption of 

biomolecules, easy surface modification by various physical/chemical treatments, wide 

electrochemical window, low cost and excellent biocompatibility has made it a very 

popular material for biological sensors [46].  

Conventionally, screen-printed electrodes are widely used in commercial sensors, 

but a major bottle neck with screen-printed electrodes is the miniaturization of the sensor. 

In this regard, C-MEMS technology offers several advantages in MEMS based biological 

and electrochemical sensor applications such as: (i) the high surface area of the 3D            

C-MEMS microstructures enables the design of biosensors with improved sensitivity; (ii) 

since lithography techniques are used, a wide variety of shapes are possible; (iii) the 

sensing electrodes and contact pads can all be made of carbon in a single process, with 

linear dimensions ranging from sub-microns to millimeters; (iv) high reproducibility of 

the material properties within the same temperature range; (v) compared to Au and Pt 

electrodes, carbon has a wider electrochemical stability window; (vi) nanomaterials (such 

as nanotubes, nanopowders, nanofibers and graphene) can be easily integrated onto 3D 

microstructure arrays to obtain enhanced mechanical, chemical and electrical properties. 

In the last decade, several research groups have reported the use of micro/nano-

structures prepared by C-MEMS technique as functional units in biosensing applications. 

Lee group at KAIST, Korea fabricated an electrochemical impedance biosensor using 

pyrolyzed carbon film as the sensing electrode for aptamer-based thrombin detection 
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[47].  In this work, thrombin aptamer was covalently grafted onto the pyrolyzed carbon 

surface using carbodiimide-mediated chemistry. The sensor was able to detect thrombin 

concentrations between 0.5nM and 500nM by electrochemical measurement. Another 

report from the same research group reported the use of carbon nanostructures pyrolyzed 

at 700 °C as conducting channel in electrical biosensors [48]. They observed that the 

conductances of the carbon nanowire channels were increased after target analyte 

streptavidin interacts with the probe grafted onto the carbon conducting channel. Madou 

group at UCI which has pioneered the fabrication of 3D carbon microstructures using 

SU-8 photoresist, constructed amperometric glucose sensors based on high aspect ratio 

carbon post-microarrays [49]. In this work sensing performance of the glucose sensors 

with different post-heights and various post-densities was tested and compared. The 

sensor showed a linear response towards glucose between 0.5mM to 20mM range with a 

response time of about 20sec. The sensitivity per unit footprint substrate area achieved 

with the 140 µm high (aspect ratio around 5:1) carbon post-samples was 2.02 mA/(mM 

cm2), which is twice the sensitivity per unit footprint substrate area of the flat carbon 

films. The same research group investigated the viability of C-MEMS microfabrication 

technique as a promising approach to create novel platforms for the study of cell 

physiology [50]. Two cell lines, murine dermal fibroblasts and neuroblastoma spinal cord 

hybrid cells (NSC-34) were plated onto the substrates, and both cell lines showed 

preferential adhesion to the selectively plasma-treated regions in carbon films. It was 

observed that cells were aligned on the carbon electrodes without relying on direct 

patterning of surface molecules. In 2009, Wakui et. al. an injection type 

electrohydrodynamic pump (EHD) using pyrolyzed polymer 3D carbon mesh electrodes, 
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integrated on one chip [51]. Since multiple 3D carbon mesh electrodes can be prepared 

using the fabrication process, multiple flow control systems can be produced. Using 

Fluorinert as sample liquid, the EHD pump could achieve a maximum pressure of about 

23Pa and maximum flow rate of 400nL/min. Construction of a capillary electrophoresis 

(CE)-based microfluidic device with integrated carbon sensing electrode, obtained by 

pyrolyzing positive-tone photoresist, was reported by Yaseen et. al. in the same year [52].  

The microdevice showed good amperometric response towards morphine and codeine on 

carbon electrodes. The carbon electrode provided stable background current during the 

application of a high sensing potential, which is a pre-requisite for sensing molecules that 

can be only detected at high potentials  such as morphine and codine. The application of 

3D carbon microstructures was extended to DNA detection as reported by Yang et.al. 

They studied the surface functionalization of carbon surface using direct amination for 

covalent attachment of DNA probe followed by target DNA detection [53]. 

Thus C-MEMS based microarrays are a very promising platform for developing 

advanced biosensing devices along with other potential applications in miniaturized Li-

ion batteries, on-chip super capacitors and fuel cells.      
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                                              CHAPTER 3 

FABRICATION OF 3D POROUS CARBON MICROARRAYS 

3.1 Introduction  

Carbon and its allotropes have received a lot of research interest owing to their 

attractive physiochemical characteristics such as good electrical conductivity, chemical 

inertness, low background capacitance, biocompatibility and low cost [1]. In addition, 

carbon surface can be also tailored by various physical/chemical treatments making it an 

attractive material for diverse applications in biological, mechanical and energy storage 

devices [2–4]. At present, porous carbon materials with their commensurate increase in 

surface area are extensively used for various applications such as catalyst support for 

biomolecules, electrodes for biosensors, electrochemical double layer capacitors, fuel 

cells and gas separation [5,6]. Conventional synthesis techniques such as thermal 

decomposition of natural precursors [7], catalytic activation of carbon precursors using 

metal salts and pyrolysis of polymer blends are commonly used to produce porous carbon 

[8]. A challenging aspect of the above mentioned techniques is the synthesis of ordered 

porous structure since the resultant carbon has porosity distribution dependent on the 

precursor material. For synthesizing ordered porous carbon, several approaches using 

solid templates have been reported, where a porous template filled with a carbon 

precursor is first carbonized followed by the removal of the template [9,10]. As a result, 

the precursor is converted to carbon and the host template is transferred into pores. More 

recently, Gogotsi and his coworkers synthesized carbide-derived carbons by high-

temperature chlorination of carbides. In this approach, the metals and metalloids in the 

precursor material are removed as chlorides, leaving behind nanoporous carbon with 50–
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80% open pore volume [11]. Although mesoporous carbons synthesized by the above 

techniques have wide range pore distribution, they need to be casted as electrodes using a 

binder so patterning them at the microscale is arduous and challenging. 

In our previous research, we employed carbon-microelectromechanical systems 

(C-MEMS) technique to fabricate three-dimensional carbon microstructures. Considering 

the fact that photoresist can be precisely patterned using photolithography, the electrodes 

fabricated by this technique yield higher resolution and reproducible structures compared 

to the traditional screening printing. Increasing the surface area of the carbon 

microelectrodes by introducing porosity could deem helpful in the further improvement 

of sensitivity and device performance of C-MEMS based functional devices such as on-

chip supercapacitors, enzymatic biofuel cells and biosensors.  

In this chapter, two surface engineering strategies for producing porous carbon 

micropillars, i.e. by using modified C-MEMS process using a block copolymer as 

porogen and oxygen RIE treatment of traditional C-MEMS structures are reported.  

3.2 Materials and Methods 

Pluronic F127 (molecular weight 12,500 and PEO content of 70%), was obtained 

from Sigma Aldrich, USA. NANOTM SU-8 100, NANOTM SU-8 25 and NANOTM SU-8 

developer were purchased from Microchem, USA. 

3.2.1 Using F127 as Porogen 

3.2.1.1 Precursor Preparation  

Different photoresist precursors (2.5%, 5%, 7.5% and 10% F127 weight/weight 

with SU-8) were prepared by ultrasonicating suitable amount of F127 dissolved in 5 ml 

acetone for 10 min and then mixing with 10g of NANOTM SU-8 100 photoresist. This 
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photoresist precursor mixture was thoroughly mixed using a pipette for 15 min and left 

overnight to evaporate acetone. A similar procedure was followed to make NANOTM         

SU-8 25 + F127 precursor to fabricate two-dimensional porous carbon electrodes for 

electrochemical characterization. 

3.2.1.2 Modified C-MEMS Process  

Silicon oxide wafers (4 in. size, (100)-oriented, n-type) were spin cleaned by 

acetone and methanol and baked on a hotplate at 150 ºC for 5min to evaporate any 

moisture. For the SU-8 coating, a typical spin coating process was carried out using a 

photoresist spinner (Headway researchTM) at 500 rpm for 12 sec then 3000 rpm for         

30 sec. Following the spin coating process, the photoresist was soft baked at 65ºC for 10 

min and hard baked at 95 ºC for 30 min in a lindberg box oven, in order to evaporate any 

remaining solvents and harden the photoresist. Photoresist was then exposed by a 

broadband mercury lamp for 105 sec using an OAI Hybralign contact aligner (light 

intensity, 12mW/cm2) to crosslink polymer chains in the photoresist. Post expose bake 

was carried out at 65 ºC for 1 min and 95 ºC for 3 min to further harden the crosslinked 

photoresist. The samples were developed using NANOTM SU-8 developer (Microchem, 

USA) for 10 min to wash away the unexposed photoresist. These samples were then 

rested in Milli-Q water bath and annealed in a box oven at 80 ºC for 4 hr. The annealing 

temperature was chosen to exceed the gelation temperature of F127. Subsequent vacuum 

treatment was performed in a conventional vacuum dessicator for 4 hr. Carbonization of 

the polymer micropillars was conducted in a Lindberg alumina-tube furnace by a two-

step process. The samples were initially heated at 2 ºC/min rate from room temperature to 

400 ºC, then holding at 400 ºC for 40 min followed by ramping to 900 ºC at 5 ºC/min 
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rate. Next, the samples were kept at 900 ºC for 60min and then cooled down to room 

temperature. The whole carbonization process was conducted in forming gas (95% N2 + 

5% H2) atmosphere with constant gas flow rate at 500 sccm. A typical modified              

C-MEMS fabrication process is illustrated in Figure 3.1. 

 

 

 

 

 

 

 

 

Figure 3.1. Schematic of the fabrication process: (a) spin coating the photoresist + F127 precursor 

to obtain a uniform film on the substrate, (b) patterning the photoresist precursor using UV light, 

(c) the resultant patterned array of three dimensional microstructures after developing using 

suitable developer, (d) soaking three-dimensional microstructures in water bath at 80 ºC to induce 

gelation of F127, (e) subsequent vacuum treatment to eliminate bubbles formed, and                        

(f) carbonizing the polymer microstructures under forming gas atmosphere at high temperature. 

3.2.1.3 Two-dimensional Carbon Electrodes for Electrochemical Characterization  

Thin film porous carbon electrodes prepared on silicon dioxide substrates were 

used as working electrodes for electrochemical measurements. Fabrication process of the 

porous carbon film electrodes is very similar to the above described fabrication procedure 

for micropillars. In this case SU-8 25 mixed with different concentrations of F127 was 
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spincoated onto the silicon oxide substrates at 500 rpm for 12 sec then at 3000 rpm for 

30sec. The resist layer was then soft baked at 65 ºC for 3 min and 95 ºC for 7 min on a 

hot plate before exposing with a dose of 720mWcm2. A post expose bake, on a hot plate, 

was performed for 1 min at 65 ºC and 3min at 95 ºC. These polymer structures were 

carbonized using the same heating cycle described above. To complete the working 

electrode fabrication, an electrical contact was established by using a silver wire and 

copper tape. The undesired active electrode surface was masked with epoxy. 

3.2.1.4 Characterization 

Thermal behavior of SU-8 and F127 mixed SU-8 was investigated by DSC-2910 

differential scanning calorimetry and TGA-2950 thermogravimetric analysis (both from 

Thermal Analysis Instruments) under argon atmosphere. The heating cycle employed for 

both DSC and TGA test is same as the carbonization cycle. JEOL JSM-6335 Scanning 

Electron Microscopy (SEM) was utilized to investigate the surface morphology of the 

porous carbon micropillars. To avoid charging of SU-8, a thin gold film was evaporated 

onto photoresist micropillar samples before carbonization. The pore size distribution was 

also characterized by Veeco Nanoscope AFM.  

In order to quantify the effective surface area of different electrodes, 

electrochemical measurements were performed with a potentiostat (CH Instruments, 

Model 263A) in a three electrode setup at room temperature using 10 mM potassium 

ferricyanide and 3 M potassium chloride solution as the electrolyte. Platinum wire was 

used as the counter electrode and all potentials were measured against an Ag/AgCl 

reference electrode. 
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3.2.1 Using Oxygen RIE treatment 

MARCH CS-1217 RIE system was used to treat the pyrolyzed carbon surface 

with oxygen plasma. This system has a parallel plate reactor equipped with 13.65MHz 

RF source. The gas line for oxygen was completely evacuated before the process to 

remove any moisture. Table 3.1 lists the conditions of the oxygen plasma treatment of the 

3D carbon posts. 

Table 3.1. Processing conditions of oxygen plasma treatment on carbon micropillars 
 

Pressure (mTorr) Power (Watts) Gas flow (sccm) Time (sec)

400 100 100 20,40,60,80 

400 150 10 60 

100 100 8 60 

100 150 8 60 

100 150 10 60,140 

 

3.3 Results and Discussion 

3.3.1 Using F127 as Porogen  

3.3.1.1 Thermal Characterization 

For fabrication of the porous structure, a block copolymer F127 consisting of poly 

ethylene oxide (PEO) and poly propylene oxide (PPO) monomers was used as porogen 

due to its surfactant nature [14]. PPO is hydrophilic below 15 ºC, but it turns hydrophobic 

at elevated temperatures due to its diminishing hydrogen bonding with water. In contrast, 

PEO is predominantly hydrophilic within the temperature range 0–100 ºC [14]. To 

compare the thermal behavior of F127 mixed SU-8 mixture with pure SU-8, DSC and 

TGA studies were conducted under the same carbonization cycle. DSC curves indicated 
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in Figure 3.2 show a solvent loss cycle (endothermal process) at low temperatures. 

During this cycle, residual acetone in the F127 and SU-8 mixture was also evaporated. 

The exothermal reaction starting at about 160ºC in the SU-8 curve could be attributed to 

the decomposition of the photoactive compound. The subsequent exothermal reaction 

starting at 190 ºC is due to thermal crosslinking observed in epoxy-based polymers like 

SU-8 [15]. As evidenced from the sharp endothermic peak, F127 starts to form a gel from 

60ºC. But for the mixed photoresist precursor (F127 + SU-8), due to the presence of 

F127, the decomposition temperature of the photoinitiator in the F127 and SU-8 mixture 

is believed to be shifted. In this case, the broad endothermal process with peak around 

140 ºC and its onset around 60 ºC could be the combination of the decomposition of the 

photoactive compound and the gelation of F127. This broad peak ranging from 60 ºC to 

200 ºC is caused by the increased dehydration of the EO chains with the increase of 

temperature. The increase in the hydrophobicity could be the driving force for micelle–

micelle aggregation. It is reported that the thermal gelation of F127 occurred essentially 

from the packing of spherical micelles [16]. The other exothermal peaks above 200 ºC in 

the DSC curves show the onset of different reactions suggesting the gas evolution as the 

carbonization of the polymer occurs [17]. It is important to note that the exact reactions 

are hard to confirm since the exact chemical composition of the SU-8 photoresist is not 

given in the datasheet. 
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Figure 3.2. Thermal behavior of pure SU-8, F127 mixed with SU-8 and pure F127 investigated 

from 30 °C to 500 °C by DSC 

Additionally, thermal stability of the SU-8 samples with and without F127 was 

examined by TGA as shown in Figure 3.3. It can be observed that there is a 25% weight 

loss starting at 100 ºC in both TGA curves due to moisture and solvent evaporation. The 

decomposition occurred gradually up to 350 ºC followed by a sharp weight loss at around 

350– 450ºC. Eventually the polymer is completely carbonized from 600 ºC to 900 ºC. 

F127 is also completely decomposed by 400 ºC suggesting that there is no presence of 

F127 after pyrolysis at 900 ºC. Therefore, the as-prepared porous carbon micropillars are 

completely free of F127.  

 

 

 



34 
 

 

 

 

 

 

 

 

 

 

 
 

Figure 3.3. Thermal behavior of pure SU-8, F127 mixed with SU-8 and pure F127 investigated 

from 30 °C to 900 °C by TGA 

3.3.1.1 Morphology Characterization 

The SEM images of photoresist micropillar arrays after annealing in water and 

vacuum treatment are shown in Figure 3.4 (a) and (b). During the fabrication process, 

annealing the polymer micropillars in water serves two purposes. By choosing the 

annealing temperature higher than the gelation temperature of F127, the formation of a 

thin porous film on the surface was accommodated. In addition, the hydrophobic 

functional groups in F127 tend to repel the water molecules. As the distance between the 

water molecules increases, there will be a consequent decrease in the surface tension 

causing bubble formation. The bubbles on the surface are later transformed into pores by 

vacuum treatment. Unlike the case of pure SU-8 micropillars where the surface is usually 

smooth [12], the surface of the micropillar made from F127 mixed SU-8 has a thin 
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porous film indicating the gelation of F127. Higher magnification SEM images of the 

surface shown in Figure 3.4(b) indicate an average pore diameter of few tens of 

nanometers. Also, towards the bottom portion of the micropillars some residues can be 

found on the substrate which could be the flux of F127 gel during the annealing step. 

 

 

 

 

 

 

 

Figure 3.4. SEM images of three-dimensional micropillars derived from F127 mixed SU-8 (tilted 

at 60º) precursor after water annealing and vacuum treatment: (a) micropillar arrays with a single 

micropillar in the inset and (b) high magnification SEM image of the surface showing porous 

morphology. 

Figure 3.5 shows the corresponding SEM pictures after carbonizing the 

photoresist micropillars. From these images it can be observed that there is a significant 

volume change of the micropillars before and after carbonization. It should be noted that 

photoresist undergoes significant out-gassing during the carbonization process. The 

removal of non-carbon species during carbonization induces densification of the polymer 

micropillars and thus accounts for the volume shrinkage [18]. The bottom portion of the 

carbon microstructures has less shrinkage compared to the top part mainly due to 

adhesive force at the photoresist and substrate interfaces [19]. The capping effect at the 
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top portion of the carbon micropillars is mainly because of a slightly overexposure which 

was well discussed in our previous work [12]. High magnification SEM images of the 

carbon surface shown in Figure 3.5(b) illustrate a very jagged surface with mainly 

mesoporous features. As expected, the mean diameter of the pores coming from out-

gassing of the volatile components in photoresist decreased after carbonization due to the 

shrinkage and densification during polymer to carbon transformation. 

 

  

 

 

 

 

 

Figure 3.5.  SEM images of three-dimensional microstructure derived fromF127 mixed SU-8 

after carbonization: (a) porous carbon micropillar arrays and (b) high magnification SEM images 

of the porous carbon film. 

3.3.1.3 Electrochemical Characterization 

A quantitative surface area measurement technique called ‘‘electrochemical 

BET’’ [20] based on cyclic voltammetry was used to quantify the total surface area of the 

porous carbon electrodes. Since fabricating carbon micropillars from SU-8 with different 

concentration of F127 is very challenging to achieve exactly the same total surface areas, 

for quantitative analysis purpose, two-dimensional porous carbon thin film electrodes 

were selected instead of micropillar electrodes in order to maintain the same projected 
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footprint surface areas exposed to the electrolyte. Figure 3.6 shows the cyclic 

voltammetry curves of porous carbon thin film electrodes derived from photoresist 

mixtures with five different concentrations of porogen. The working electrode setup used 

in the analysis is shown in Figure 3.6 inset. Modified Randles–Sevchik equation for quasi 

reversible reactions was used to calculate the increase in effective surface area (Aeff) [21].  

                          ip=-3.01·105n3/2α1/2D0
1/2Aeffc0|v|1/2                                               (1) 

Where ip is the peak current, n is the number of electrons appearing in half-

reaction for the redox couple, a is the transfer coefficient, D0 is the diffusion coefficient 

of the analyte (cm2/s), Aeff is the electrode area (cm2), c0 is the analyte concentration and 

m is the rate of the potential sweep (V/s). 

 

 

 

 

 

 

 

 

 

 
 

Figure 3.6. Cyclic voltammograms of carbon electrodes derived from SU-8 mixed with (a) no 

F127, 2.5% F127, 5% F127, 7.5% F127 and 10% F127 in a 10mM K3Fe(CN)6 + 3M KCl 

solution.  
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The fraction of the effective surface areas (Aeff) for the electrode with different 

porogen concentrations measured from the Randles slopes is shown in Figure 3.7. From 

the plot it can be noticed that the effective surface area (Aeff) increased correspondingly 

with F127 concentration in the polymer precursor. The porous carbon thin film electrode 

with 10% F127 concentration had Aeff 1.85 times larger than that of the carbon film 

obtained from pure SU-8 with the same projected areas. Therefore, the increase in the 

surface area is expected to be larger when three-dimensional carbon micropillar arrays 

are fabricated. It is worth mentioning that, by using electrochemical BET, the calculated 

surface area is mainly from the surface which contributes to the redox reaction through 

charge-transfer. So, in anisotropic materials (such as graphene) where the charge-transfer 

efficiency is different on the basal plane and the edge plane, the calculated surface area of 

the carbon and the total surface area of the carbon might not always be equal. However, it 

has been previously reported that pyrolytic photoresist carbon which displays 

electrochemical behavior similar to glassy carbon [22] is more structurally isotropic [23]. 

Therefore, the surface area results obtained from the electrochemical BET in this work 

could provide useful information on characterizing surface areas of the carbon 

microstructures. To explore the maximum possible concentration of F127 in the mixture 

solution, concentrations more 10% w/w F127 in SU-8 photoresist were investigated. But, 

it was difficult to obtain reproducible results since an occasional photoresist film peel off 

from the substrate was experienced when placed in the water bath. Also, it was observed 

that as the concentration of F127 increased above 15%, it formed a thicker white film on 

the surface of the precursor making it impossible to obtain a uniform layer by spin 

coating procedure. 
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Figure 3.7. Schematic showing the ratio of increase in the surface area according to the different 

F127 (% w/w) concentrations. 

3.3.1.3 Surface Characterization 

The surface morphology of the porous carbon films was further investigated using 

an AFM in tapping mode as shown in Figure 3.8. AFM images along with roughness 

profiles for the 10% F127 + SU-8 samples before and after carbonization are shown in 

Figure 3.8(a) and (b). The images indicate a uniform mesoporous texture along with 

pronounced increase in the roughness at the sample surface can be found after 

carbonization. In contrast, the AFM images (not shown here) for carbon film derived 

from photoresist precursor with small F127 concentration shows that the surface has no 

distinguishable porosity except for big roughness, which can be ascribed to the 

insufficient F127 available to form a thin coating on the whole surface. It is important to 
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note that due to the technical limitations of the AFM, it might not be able to reach the real 

depth of the small pore. 

 

 

 

 

 

 

 

 
 

Figure 3.8. AFM image of thin film derived from 10% F127 mixed photoresist (a) before and (b) 

after carbonization. 

3.3.2 Using Oxygen RIE Treatment  

3.3.2.1 Surface Morphology Characterization  

SEM imaging was employed to investigate the surface of the 3D carbon 

micropillars treated by oxygen RIE.  Results (Figure 3.9-3.12) indicated rough, jagged 

carbon surface after the RIE treatment which can be explained by the fact that the free 

radical oxygen plasma ions start to etch carbon surface. Eventually microporosity is 

formed due to increased etching at the place of defects on the surface.  

The change in the morphology of the carbon surface with RIE time was studied 

and it was observed that as the etching time increased there was a corresponding increase 

in the surface roughness shown in Figure 3.9 and 3.10.  
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Figure 3.9. Typical SEM images of carbon micropillars etched at pressure 400mTorr, power 100 

W, gas flow 100sccm for (a)20sec, (b) 40sec, (c) 60sec, and (d) 80 sec. 

  

Investigation of higher magnification SEM images (Figure 3.10 a and b) shows 

that as the etching time was increased, hierarchical porosity started to form along with an 

increase in the surface roughness inside the already formed micropores. We already know 

that pyrolyzed carbon is an isotropic material with both graphitic and amorphous phases.  

During the RIE treatment, significant etching takes place at the graphic planes compared 

to the amorphous phase due to the higher etching rate of graphitic phase. The preferential 

etching at the site of already existing pores can be explained by schematic shown in 

Figure 3.10c. 
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Figure 3.10. High magnification SEM images of carbon surface treated for (a) 60sec, (b) 140sec 

@100 mTorr pressure, 150W power, 10sccm gas flow 

        Furthermore, by changing the processing parameters such as chamber pressure, 

power and gas flow in the RIE process, changes in the surface morphology of the carbon 

micropillars were indistinguishable although surface microporosity was confirmed as in 

the other cases (Figures 3.11). 

(a) 

(b) 

(c) 
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Figure 3.11. Typical SEM images of carbon micropillars etched at (a) pressure-400mTorr, power-

150W, gas flow 10sccm, (b) pressure 100mTorr, power 100W, gas flow 8 sccm, (c) pressure-

100mTorr, power-150W, gas flow 8sccm for 60sec. 

3.4 Conclusions  

Two strategies for preparing porous carbon micropillars using F127 as porogen 

and oxygen RIE treatment have been demonstrated. Surface investigation of the carbon 

micropillars prepared using F127 as a porogen showed a mesoporous surface texture. It 

was demonstrated that by increasing the porogen concentration in the photoresist 

precursor there was a corresponding increase in the surface area of the electrodes. 

Alternatively, in the case of oxygen RIE treatment, surface roughness and porosity on the 

carbon surface increased correspondingly with RIE treatment time. Hierarchical porosity 

was observed at higher etching times due to the preference of the oxygen free radicals to 

etch at the place of defects. Changing the other processing conditions other than RIE time 

did not show significant change in the surface morphology of the carbon micropillars.  

The flexibility to tailor the total surface area of the carbon microstructures makes it a 

promising process for future C-MEMS applications. 
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                                              CHAPTER 4 

3D GRAPHENE COATED CARBON MICROPILLAR ARRAYS FOR 

ENHANCED ELECTROCHEMICAL SENSING 

4.1 Introduction  

The high surface area and good electrical conductivity of the 3D carbon 

micropillar arrays makes them an ideal platform to integrate variety of nanomaterials to 

further enhance the performance of C-MEMS based functional devices. Previous studies 

in our group have shown a 19 fold increase in the specific capacitance for 3D 

microstructures arrays integrated with carbon nanotubes.  In this study, graphene was 

chosen for integration onto 3D carbon microarrays due to its high surface area and 

distinctive electrochemical properties 

Graphene is a monolayer of sp2 bonded carbon atoms packed into a honeycomb 

lattice with distinctive band structure and fascinating physical properties [1, 2]. The 

unique physiochemical properties of graphene such as exceptionally low intrinsic 

electrical resistivity, high surface area, and good mechanical properties make it an 

attractive material for electrochemical applications such as energy storage [3-5], 

nanoelectronics [6], mechanical actuators [7], biosensors [8] and filler for 

nanocomposites [9]. Recent progress in the development of colloidal suspensions of 

reduced graphene oxide has drawn high interest as an effective precursor for high-volume 

production of scalable graphene. Essentially graphene films used in electrochemical 

applications have been prepared by self-assembly [14-16], langmuir-blodgett (LB) 

assembly [17], vacuum filtration at a liquid-air interface [18], spray coating [19], 

dipcoating [13], electrophoretic deposition [20] and spincoating [21]. While the 
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aforementioned methods can be used to prepare graphene films on large area substrates, it 

is a challenge to integrate graphene onto patterned three-dimensional (3D) structures. 

Thus, it is of interest to develop new facile approaches to integrate graphene onto the 3D 

structures to take advantage of potential merits such as very large surface areas and 

enhanced chemical functionality. For example, three-dimensional battery architectures 

have shown a 350% larger energy capacity compared to traditional two-dimensional 

designs in the same areal footprint [22].  

The electrostatic spray deposition (ESD) method is a versatile technique that has 

been successfully applied for the deposition of carbon nanotubes, carbon nanospheres and 

different metal oxide materials for electrochemical applications [23-27]. Compared to 

other techniques which are capable of coating 3D microstructures such as atomic layer 

deposition (ALD) [28], electrodeposition [29,30], and modified spincoating [31], ESD is 

appealing due to its high deposition rate, good uniformity and ability to deposit wide 

variety of functional materials. In the ESD technique, the precursor solution is atomized 

into an aerosol and precisely directed onto a heated substrate by high electric potential 

applied between the spray nozzle and the substrate. Droplets produced by electrospraying 

are highly charged, that prevents their coagulation and promotes self-dispersion [32].  

The morphology of the sprayed films can be controlled by adjusting deposition 

parameters such as flow rate, applied potential, nozzle geometry, substrate temperature, 

and precursor solution composition [33]. Recently, our group reported the uniform 

integration of carbon nanotubes (CNTs) on the surface of high aspect ratio 3D carbon 

microstructures by depositing catalyst particles using the ESD [24]. In addition, by 

tailoring the viscosity of the precursor solution, polymeric and carbon nanowires with 
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predefined lengths have been deposited onto 3D carbon micropillar arrays with great 

reproducibility [34-36]. However, the conformal coating of graphene on 3D complex 

microstructures has not been reported.  

In this chapter, a novel approach to fabricate 3D graphene nanosheets encrusted 

carbon micropillars using combined top-down [photo-lithography] and bottom-up 

processes [electrostatic spray deposition] is presented. The effect of critical ESD 

parameters such as deposition time, substrate temperature and substrate to nozzle distance 

on the substrate morphology was investigated. By comparing the electrochemical 

performance of 3D graphene/carbon micropillar electrode array to bare 3D carbon 

micropillar electrode array, an apparent increase in the effective surface area and faster 

charge transfer was noticed along with a linear response for wide range of hydrogen 

peroxide detection. This methodology can be extended to conformally coat different 

functional nanomaterials onto high aspect ratio microstructures for wafer-level 

processing. 

4.2 Materials and Methods 

Reduced graphene nanosheets used in this work were obtained from Cheaptubes 

Inc, USA. 1,2 propanediol was purchased from Sigma Aldrich, USA. NANO™ SU-8 and 

NANO™ developer was purchased from Microchem, USA.  

4.2.1 Fabrication Process 

Briefly, a 200 µm thick NANO™ SU-8 100 photoresist film is spincoated onto 

silicon oxide (4”, (100)-oriented, n-type) wafer at 500 rpm for 12 sec then 3000 rpm for 

30 sec. The photoresist film was soft baked at 65 °C for 10 min followed by hard bake for 

30 min at 95 °C in a box oven. The photoresist is patterned by a broadband mercury lamp 
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exposure for 105 sec using an OAI contact aligner (light intensity, 12 mW/cm2). Post 

expose bake was carried out at 65 °C for 1 min and 95 °C for 3 min. The UV exposed 

samples were developed using NANO™ SU-8 developer for 10 min followed by IPA 

rinse and N2 drying. The whole carbonization process was conducted in a Lindberg 

alumina-tube furnace with a constant flow of 500 sccm forming gas (95% N2 + 5% H2). 

Previous research has shown that the annealing temperature and the gas used during the 

pyrolysis process play a critical role in the microstructure of the final product [42]. In this 

work, 3D carbon micropillars were obtained by heating polymer micropillars from room 

temperature to 350 °C at 5 °C/min with 40 min hold time and then ramping to 1000 °C at 

5 °C/min  for 60 min before being cooled down to room temperature.  

4.2.2 Electrostatic Spray Deposition (ESD) Process 

The details of the ESD process used in this work have been reported previously 

[25,26]. A photograph of the ESD setup used in our lab is shown in Figure 4.1. The 

precursor solution was prepared by homogenizing 0.3 mg graphene nanosheets in 0.3 ml 

1,2 propanediol using a high power ultrasonic dispenser (Sonics VC750) for 30 min. The 

resultant solution was pumped through a needle at a flow rate of 1 ml/h onto 3D carbon 

micropillars. Samples were deposited at three different substrate temperatures of 250 °C, 

300 °C, and 400 °C and at 10 min, 30 min, and 60 min deposition time. The three 

different distances between the nozzle and the substrate were set at 3 cm, 5 cm, and 8 cm 

with a voltage of ~ 5–6 kV. The whole deposition process was carried out inside a fume 

hood.  
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Figure 4.1. Photograph of the actual ESD setup in our lab. 

4.2.2 Characterization 

The morphology of the graphene/carbon microstructures was investigated using 

JOEL 6335 FE- SEM scanning electron microscopy. Transmission electron microscopy 

(TEM) analysis of graphene was performed using a TECNAI-F20 FEG TEM facility. 

Raman spectroscopy measurements were carried out with an argon ion laser system 

(Spectra Physics, model 177G02) of λ = 514.5 nm at a laser power of ca. 7 mW. The 

chemical composition of graphene before and after deposition was investigated by an 

Ulvac Φ 3300 x-ray photoelectron spectroscopy (XPS) with an anode source providing 

Al Kα radiation. The electron takeoff angle was 45±3° relative to the substrate surface. 

For the hydrogen peroxide detection, electrochemical measurements were performed 

using a CHI 660C workstation with a N2 flowed typical three-electrode cell at room 

temperature. The graphene/carbon micropillars sample was used as working electrode, a 

platinum wire was used as the counter electrode and all potentials were measured against 
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an Ag/AgCl reference electrode. To make the working electrode, an electrical contact 

was established by using a copper wire and copper tape. The undesired active electrode 

surface was masked using epoxy. 

4.3 Results and Discussion 

4.3.1 Fabrication and Characterization 

The simple methodology for preparing graphene encrusted 3D micropillars is 

schematically shown in Figure 4.2: The fabrication process begins by patterning a thick 

negative-tone photoresist, SU-8, into 3D micropillars by traditional photolithography. 

Next, the polymer micropillar arrays are pyrolyzed to outgass the volatile components in 

the organic photoresist leaving behind solid carbon. By just changing the processing 

conditions during photolithography, carbon microstructures with different shapes and 

aspect ratios can be fabricated. The large surface area of the 3D carbon micropillars 

makes them a favorable platform for both electrochemical sensing and to integrate 

graphene. Finally, the conformal coating of graphene onto the carbon microstructures is 

carried out by the ESD technique.  

 

 

 

 

 

 

 

 



52 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.2. Schematic showing a-d) the fabrication of 3D carbon micropillars, and e) 

deposition of graphene on carbon micropillars using ESD technique. 

The morphology of the graphene nanosheets after deposition was characterized by 

electron microscopy. Figure 4.3a shows the SEM image of pristine graphene nanosheets 

deposited on the substrate. The image suggests that nanosheets are small stacks of 

graphene layers with size varying between 2-5 µm. As expected, the graphene nanosheets 

maintained their fidelity even after deposition. The high resolution transmission electron 

microscopy image of the graphene nanosheets (Figure 4.3b) clearly indicates that it is 

made up of domains with an interplanar spacing of ~0.33 nm and size ~5 nm. Further, 
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Raman spectra was investigated (Figure 4.3c) to distinguish the ordered and disordered 

crystal structures of carbon. A prominent G band at ~1580 cm-1 that corresponds to the 

breathing mode of κ-point phonons of A1g symmetry and a broad D band at ~ 1350 cm-1 

due to first-order scattering of the E2g phonons were observed [43]. The quality of 

graphene was evaluated by calculating the ID/IG ratio from the Raman spectra. Relatively 

low value of ~0.26 suggests a low defect density in the crystal structure of graphene 

nanosheets. By using the empirical Tuinstra-Koenig relation [44] that relates the ID/IG 

ratio to the crystallite size of graphitic samples, it can be concluded that the graphene is 

comprised of ordered sp2 domains with an average size of ~ 4 nm. The domain size is in 

good agreement with the size determined by the ID/IG ratio. 

 

 

 

 

 

 

 

 

 

 

Figure 4.3. a) Typical SEM image of pristine graphene deposited on silicon oxide, b) HRTEM 

image of graphene nanosheets, and c) Raman spectra (G and D peaks) of as-deposited graphene 

nanosheets. 
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4.3.2 Effect of ESD Processing Conditions 

In order to investigate the relationship between the graphene film morphology and 

the ESD deposition parameters, we varied the substrate temperature, deposition time and 

nozzle to substrate distance during graphene deposition. As seen in Figure 4.4, there is a 

distinct variation in the graphene film morphology on the substrate by changing the 

deposition conditions. Initially, the deposition time was fixed at 30min and the 

temperature was varied between 200-400 °C. At 200 °C deposition temperature, non 

uniform distribution of graphene islands was observed on the substrate (Figure 4.4a). But 

as the substrate temperature was increased to 300 °C, the SEM (Figure 4.4b) image 

clearly shows porous reticular structured film with a feature size of ~10-20 µm. Further 

when the temperature was increased to 400 °C, no apparent coating of graphene was 

observed on the substrate (Figure 4.4c) which could be a result of the oxygen present in 

the air reacting with the carbon in graphene and eventually outgas as carbon dioxide at 

high temperature.  Secondly, the deposition time was varied between 10 min, 30 min and 

60 min keeping the deposition temperature constant at 200 °C and 3 nozzle to substrate 

distance (NSD). As expected the graphene film grew denser with an increase in the 

deposition time (data not shown). 10min deposition of the precursor was not sufficient for 

the graphene film to completely cover the substrate and it was apparent that as the 

deposition increased to 30 min and 60 min, the coverage of the film on the substrate was 

more pronounced. Analysis showed that 200 °C and 60 min deposition time produces 

porous structured film with graphene “rings” of diameter ~5-10µm (Figure 4.4d).  Lastly, 

the effect of NSD was investigated by fixing the NSD at 3, 5 and 8 cm. Results observed 

from different SEM images showed that 3 cm distance yielded the best film morphology 
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(Figure 4.4d). Upon increasing the distance, the spray is more influenced by a viscous 

drag force. Also, the trajectory and the flight time of the spray is largely influenced by the 

columbic charge of the droplets, space-charge forces due to the repulsive  interaction  

between  charged  droplets  and thermophoresis force. As a result, it was observed that in 

the case of both 5cm and 8cm NSD, the diameter of the graphene “rings” formed by 

precipitation and evaporation of solvent, increased with NSD (Figure 4.4 e,f). In the case 

of 8cm NSD, the graphene film coverage was non uniform with the presence of random 

graphene islands due to the large distance between the nozzle and the substrate.   

 

 

 

 

 

 

 

 

 

Figure  4.4. Typical SEM images of graphene film deposited on carbon  at a) 200 °C, b) 300 °C, 

c) 400 °C for 30 min, 3 cm NSD; d) 3 cm, e) 5 cm, f) 8 cm NSD for 60  min, 200 °C. Scale bar is 

20µM. 

One of the main advantages of using the ESD technique is the ability to configure 

the system for seamlessly coating graphene onto both 2D and high aspect ratio 3D 

structures. Figure 4.5 shows the typical SEM images of graphene/ carbon micropillars at 
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two different deposition conditions showing interesting film morphologies. Figure 4.5a 

and 4.5b shows the SEM image of carbon micropillars coated with graphene at 200 °C 

for 60 min and 300 °C for 30 min deposition time. By carefully observing the image a 

conformal coating of graphene nanosheets on the surface of the carbon micropillars and 

the substrate can be noticed (Figure 4.5b inset). Due to the fact that the spray was 

directed at the top of micropillars, the coating of graphene at the top is a little denser 

relative to the bottom. The porous structure of the film on the substrate could be 

attributed to the constant precipitation and evaporation of graphene precursor solution. 

This kind of porous structure is advantageous in electrochemistry since it provides more 

surface area accessible to the electrolyte. The proposed theory behind the formation of 

porous morphology is schematically shown in Figure 4.5c.  Since the morphology of the 

film deposited is largely influenced by the processing conditions employed during 

deposition such as droplet size, decomposition temperature and spreading behavior of the 

precursor solution on the substrate, it is presumed that when the precursor droplets come 

in contact with the surface, it tries to discharge by transferring its charge to the grounded 

substrate. The spreading of this droplet is strongly influenced by spreading coefficients 

and the wetting angle of the droplet with the substrate, shown in equation 1 [32]. 

ࣂܛܗ܋                                           ൌ ࢍషࢽ	ష࢙ࢽିࢍష࢙ࢽ 			                                                     (1) 

where γs-g denotes the substrate-ambient gas interfacial tension,   γs-l  between substrate 

and droplet liquid, and γl-g  between droplet liquid and ambient gas. 
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Figure 4.5. Typical SEM images of graphene deposited carbon micropillars at conditions             

a) 200 °C for 60 min; b) 300 °C for 30 min; Inset: graphene coated carbon micropillar                       

c) Schematic showing the proposed methodology explaining the formation of porous film 

structure. 

If the droplet has wetting angle θ < 90° it starts to spread on the heated substrate 

and simultaneously evaporate due to the heat transfer between the substrate and droplet. 

However, due to slightly higher local temperature at the edge compared to the middle of 

the droplet, the evaporation at the edges precedes the middle. With the inhomogeneous 

concentration profile and the temperature gradient, edges, form the favorable sites for 

nucleation and precipitation of the solute. Further the solution in the middle tends to flow 

towards the edges and this coupled with evaporation of solvent at edges leads to the 

formation of solute “rings” on the substrate. Finally, after the solvent has completely 

evaporated, an interconnected porous structure is formed. 
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Recently, a lot of research efforts have been focused on studying the thermal 

reduction of graphene oxide to graphene at different temperatures [45,46]. For graphene 

oxide, the first major mass transition due to the evaporation of interstitial H2O occurs at 

110 °C and the second major exothermic mass loss takes place at 220 °C [45]. In our 

case, during the deposition of graphene precursor solution using ESD, the substrate 

temperature is maintained at 200 °C or higher to evaporate the residual solvents. In order 

to evaluate the thermal transition of graphene nanosheets before and after deposition on 

the silicon oxide substrate, XPS investigation was conducted. The broadscan XPS 

elemental analysis of the graphene film deposited on SiO2 shows only the presence of 

carbon and oxygen (Figure 4.6). It is clearly visible that after graphene deposition there is 

an apparent increase in the carbon peak intensity and a slight decrease in the oxygen peak 

could be attributed the minor deoxygenation of graphene.  The high resolution C1s and O 

1s XPS scans of graphene thin film before and after deposition at 250 °C is shown in 

(inset Figure 4.6). By using the spectral manifold intensities, the carbon to oxygen ratio 

(C/O) of raw graphene nanosheets powder was calculated to be 3.75 ± 0.2. The C1s 

region was deconvoluted into C-C at 284.6 eV, C-O (presumably as C-OH (vide infra)) at 

286.7 eV, C=O at 288.0 eV, and COOH at 289.1 eV [47].  Alternatively, for the ESD 

deposited graphene nanosheets film a slightly higher C/O ratio of 4.23 ± 0.2 was 

observed which could be attributed to thermal reduction at the deposition temperature. 
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Figure 4.6. Broadscan XPS spectra of graphene before and after deposition; Inset: Deconvoluted 

high resolution carbon XPS spectrum. 

4.3.3 Hydrogen Peroxide Detection 

In order to demonstrate the feasibility of 3D graphene/carbon micropillar 

electrode arrays for electrochemical sensing, a hydrogen peroxide detection system was 

conducted. Rapid and accurate detection of hydrogen peroxide is of great importance in 

clinical analyses and in particular for biosensors development [48]. At first, the 

electrocatalytic activity of graphene/carbon micropillar and bare carbon micropillar 

electrode arrays were compared by examining the amperometric response of the 

electrodes towards hydrogen peroxide.  Figure 4.7 shows the typical cyclic voltammetry 

curves in a 1mM phosphate-buffered saline (pH=7.2) solution containing 20mM H2O2 

between a -0.2 to 0.5V potential window. As expected, the graphene/carbon micropillar 

electrode array displays an excellent catalytic activity and facilitates faster electron 
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transfer. Comparing the area under the CV curves (Figure 4.7), it is evident that the total 

charge transfer of the graphene/ carbon micropillar electrode array is also considerably 

greater.  The signal enhancement could be attributed to the increase in electrode catalytic 

surface and in particular to the high conductivity and better charge transfer of graphene. 

Note that previous reports have demonstrated that the number of layers in graphene 

nanosheets has no effect on the electrochemical response towards the electrolyte [49].  

 

 

 

 

 

 

 

 

 

 
Figure 4.7. Typical cyclic voltammetry curves comparing the amperometric response of bare and 

graphene-coated carbon micropillar electrode arrays. 

Next attention was turned to the response of the graphene modified 3D carbon 

micropillar electrode array for different concentrations of H2O2. Figure 4.8 shows the 

amperometric response of the electrode to the successive additions of 250 µM hydrogen 

peroxide into stirring PBS (pH=7.2) at a 0.4 V working potential. The catalytic reduction 

of H2O2 at the surface of graphene/carbon micropillar electrode array is very fast in 
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reaching a dynamic equilibrium upon each addition of H2O2, generating a steady-state 

current signal within 5 sec. The modified electrode exhibits a rapid and sensitive response 

to the change of hydrogen peroxide concentration and an obvious increase in current 

upon successive addition of H2O2. The response of the graphene/ carbon micropillar 

electrode array to H2O2 is nearly linear up to 5.5mM with a sensitivity of 0.07µA/µMcm2 

and with high saturation. The corresponding calibration plot shown in inset Figure 4.8 

indicates the linear increase in response current upon the increase in H2O2 concentration 

with a linear range from 250 µM to 5.5 mM. Based on the electrochemical results, the 

graphene/carbon micropillar electrode arrays was demonstrated as a promising platform 

for constructing sensitive electrochemical sensors.  

 

 

 

 

 

 

 

 

 

Figure 4.8. Amperometric response of graphene/carbon micropillar electrode array for successive 

additions of 250µM hydrogen peroxide into (pH 7.2) phosphate buffer; Inset:  Calibration curve 

of graphene/ carbon micropillar electrode array with different concentrations of H2O2. Operating 

potential: +0.4 V. 
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4.4 Conclusions 

In summary, a facile methodology to prepare graphene coated 3D substrates 

using ESD technique was demonstrated. The effect of ESD processing conditions on the 

morphology of the deposited graphene film was studied. The C/O ratio of the deposited 

ratio was higher compared to raw graphene nanosheets due to thermal reduction at high 

deposition temperature. The graphene/ carbon micropillar electrode arrays showed faster 

charge transfer and higher electrochemical activity towards H2O2 compared to bare 

carbon micropillar electrode array. Our methodology promises a simple approach to coat 

nanomaterials onto functional microelectrodes with controllable morphology and employ 

them for electrochemical sensing.  
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                                              CHAPTER 5 

WAFER-LEVEL FABRICATION OF FUNCTIONALIZED CARBON 

NANOSTRUCTURES WITH CONTROLLABLE SIZE, SHAPE AND POSITION 

5.1 Introduction 

In the previous two chapters, surface engineered 3D carbon microstructure 

architectures were developed to increase the surface area of the electrodes in a given 

substrate footprint. Alternatively, one dimensional carbon nanostructures offer high 

surface to volume ratio, decreased charging currents and faster electrochemical reactions 

[1-3]. Till now, carbon nanotubes (CNTs) have attracted majority of the research efforts 

due to their unique physiochemical and electrical properties, but the success rate for CNT 

based- functional devices is only approximately 5%. So in order to incorporate 

nanostructures in practical functional devices, two major issues still remain, i.e., (i) how 

to synthesize substantial quantities of nanostructures with controllable sizes and shapes at 

preferred locations; (ii) how to integrate nanostructures in devices that are feasible for 

mass production.  

The ability to fabricate well–defined carbon microstructures with atomically 

smooth surfaces is made possible by pyrolyzing organic polymer precursors [4-8]. In this 

approach, also known as C-MEMS technique, polymers patterned by conventional 

photolithography or soft lithography are carbonized at high temperatures under inert 

ambience, causing the chain scission of organic compounds to form solid carbon. Since 

lithography techniques are used for patterning purpose, the electrodes obtained by this 

manner have better resolution and reproducibility when compared to the traditional 

casted carbon ink electrodes [9]. Such carbon structures have been used in applications 
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such as on-chip supercapacitors [10], microbatteries [11], DNA detection [12], glucose 

sensors [13], and di-electrophoretic electrode arrays for the micromanipulation of micro-

and nanoparticles [14]. In addition, different research groups have adapted this method to 

produce carbon architectures such as suspended nanowires, nanobridges and three 

dimensional (3D) carbon micropillars [15]. Recently, controlled carbon nanostructures 

have been fabricated by employing tools such as scanning electron beam lithography 

(EBL) [16] and ion-beam lithography [17] combined with pyrolysis. Although these 

procedures are capable of patterning sub-100nm features, they are not economically 

feasible for mass production due to their low inherent throughput, need for ultra-high 

vacuum systems, and high operating costs.   

The emergence of photo nanoimprint lithography (P-NIL) has garnered attention 

as a potential low cost, high throughput technique for the fabrication of nano-scale 

features beyond the resolution of the traditional photolithography. In a typical P-NIL 

process, the patterned UV transparent mold is stamped onto a photo sensitive polymer 

and cured by ultra violet light to create a thickness contrast [18]. Anisotropic reactive ion 

etching (RIE) process is performed to remove the residual resist in the compressed areas 

and transfer the thickness contrast pattern onto the underlying resist and substrate.  The 

versatility of the NIL process allows direct patterning of functional materials with desired 

physical properties at the wafer level [19]. In comparison, other nanopatterning 

techniques such as holographic lithography, extreme ultraviolet interference lithography 

(EUV-IL) and EBL comes with critical drawbacks. The holographic lithography and 

EUV-IL allow only for the fabrication of periodic features without alignment and the 

long writing times make EBL only suited for small-area patterning.  Furthermore, in                  
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P-NIL, a transparent mold enables optical alignment with high accuracy.  Also typically, 

carbon nanostructures must be coupled with microfabricated contact pads for electrical 

and electrochemical measurements which are made through a second lithographic step to 

deposit metal pads. In contrast, by combining P-NIL and pyrolysis process, structures 

with dimensions from nanometers to millimeters can be seamlessly integrated. Due to 

these characteristic advantages, nanoimprint lithography has been extensively used in 

photonics [20-24], organic electronics [25], magnetic devices [26-30], and biological 

applications [31-34]. However, to the best of our knowledge no research effort has been 

published to utilize nanoimprinting technique for fabricating carbon nanostructures.  

In this chapter, the fabrication of carbon nanostructure arrays based on P-NIL and 

pyrolysis is reported. In this strategy, P-NIL patterning of photoresist over a nanoimprint 

resist, followed by an etch transfer step, provides patterned nanostructures that are then 

carbonized under inert atmosphere. The resulting carbon nanostructures have 

composition and electrical properties comparable to carbon derived from pyrolysis of 

SU-8 precursor widely used in carbon-based MEMS fabrication. Finally, the carbon 

nanostructures were functionalized using direct amination technique for potential use in 

bioanalytical devices. This versatile approach can address the need for high-throughput 

fabrication of functionalized carbon nanostructures with controllable properties at desired 

locations. 

5.2 Materials and Methods 

Reduced graphene nanosheets used in this work were obtained from Cheaptubes Inc, 

USA. 1,2 propanediol was purchased from Sigma Aldrich, USA. NANO™ SU-8 and  

NANO™ developer were purchased from Microchem, USA.  
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5.2.1 Fabrication Process 

4inch size silicon oxide wafers were spin-cleaned by acetone and methanol 

followed by a dehydration bake at 150 ºC for 5 min. At the beginning, a 200 nm thin 

coating of AR-UL-01 (nanoimprint resist) was carried out using Headway researchTM 

(Garland, TX) photoresist spinner at 4000 rpm for 45 sec and baked at 180 ºC for 90 sec. 

For patterning the nanoimprint resist, a thin layer of AR-UV-01 (photoresist) is spin-

coated on the top of AR-UL-01 layer at 5000 rpm for 7 sec. The P-NIL process was 

conducted using an OAI Model 800 (San Jose, CA) mask aligner equipped with OAI 

Nano Imprint Module. The compressed photoresist was exposed by a 365 nm mercury 

lamp for 60 sec with light intensity at 900mJ/cm2 to crosslink the polymer chains. In our 

work, the nanoimprinting was done using a 5 in x 5 in mask with the nanoimprinted area 

being 2 inch diameter circle. The actual pattern area containing arrays of assorted 

nanostructures in the nanoimprinted area was 1 in x 1 in square. Following the patterning 

process, initially a 10:1 CF4 and O2 mixture at 150 mTorr and 75 W etch was perfomed 

for 30sec to remove the residual photoresist followed by an oxygen plasma treatment at 

50 W and 150 mTorr for 100 sec to etch the residual nanoimprint resist. The remaining 

photoresist layer on the top was then removed by a 10:1 CF4 and O2 RIE for 60 sec at  

150 mTorr and 75 W.  The samples were carbonized in an alumina-tube furnace 

(Lindberg) by a two-step pyrolysis process. The samples were initially heated at 5 ºC/min 

rate from room temperature to 350 ºC, and held at that temperature for 40 min followed 

by ramping to 1000 ºC and 60 min holding time. The samples were eventually cooled 

down slowly to the room temperature under constant gas flow. During the pyrolysis 

process, forming gas (95% N2 + 5% H2) was continuously flowed at 500 sccm.   
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5.2.2 Surface Functionalization 

Before the direct amination process, the samples were first thoroughly rinsed with 

DI water and then blow dried. The amination process was performed at room temperature 

in an ammonia gas (99.9%) environment and using UV lamp (wavelength=253.7nm). 

Prior to UV irradiation, the reaction chamber was purged with nitrogen gas for 5 min to 

remove oxygen and other gases. The reaction chamber was then irradiated with UV light 

for 4 hr under a continuous flow of ammonia gas at 100sccm. Finally, nitrogen gas is 

purged for 5min to remove any ammonia in the reaction chamber before removing the 

sample. The experimental setup is shown schematically in Figure 5.1. 

 

 

 

 

 
 
 

 

 

 

 

 

Figure 5.1. Schematic representation of the direct-amination functionalization process  
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5.2.3 Characterization 

Thermal behavior of AR-UL-01 was investigated by DSC-2910 and TGA-2950 

(both from thermal Analysis Instruments, New Castle, DE) under an argon atmosphere. 

The heating cycle used for both DSC and TGA test is same as the pyrolysis cycle. The 

morphology of the carbon nanostructures was characterized by JEOL JSM-5335 scanning 

electron microscopy (SEM). In the case of non-conducting nanostructures, a thin gold 

film was evaporated on the top to avoid charging. The Raman spectra were measured at 

room temperature using a Dilor Raman Spectrometer equipped with a CCD camera and 

an optical microscope that provided a laser beam focus diameter of about 1 µm. Argon-

ion laser (514.5 nm) was used as the source during measurement. The chemical 

composition of AR-UL-01 surface before and after carbonization was investigated by an 

Ulvac Φ 3300 XPS (Ulvac-Phi) with an anode source providing Al Kα radiation. The 

electron takeoff angle was 45 ± 3° relative to the substrate surface and the C1s peak was 

chosen as the reference binding energy (285 eV). The sheet resistance measurements 

were measured using an Agilent 4156C precision semiconductor parameter analyzer 

(Santa Clara, CA) connected with a 4-point probe station. It should be pointed out that 

unpatterned pyrolyzed resist films (PPFs) from AR-UL-01 and SU-8 using same 

pyrolysis conditions were used for characterization measurements.    
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5.3 Results and Discussion 
 
5.3.1 Morphology  

A schematic illustration of the experimental process is shown in Figure 5.2. A 

hard mold with surface-relief features is stamped onto a bi-layer resist film of silicon 

containing UV –curable photoresist and poly (methyl methacrylate) (PMMA) - based 

nanoimprint resist. The primary reason to use bi-layer resist technique is, if both the 

pattern definition layer (photoresist) and the pattern transfer layer (nanoimprint resist) are 

the same, removing residual resist by dry etch may cause damage to the resist profile. To 

overcome this problem, in our work a bilayer resist film was used. In addition, the 

PMMA based nanoimprint layer in the bi-layer resist film provides good adhesion 

between the UV-curable photoresist and the underlying substrate. The critical difference 

between both the resists used in this work is the high contrast in etch selectivities and it is 

also important to note that the underlying nanoimprint resist is not sensitive to UV light 

and therefore cannot be patterned without the presence of photoresist. After the mold is 

stamped, the bi-layer resist film is irradiated with UV light in order to pattern the 

photoresist top layer. Subsequently, the pattern is transferred to nanoimprint resist via a 

two-step reactive ion etching. Initially a CF4+O2 RIE etch is performed to remove the 

residual photoresist followed by O2 RIE to etch the residual imprint resist present 

between the photoresist pattern. Since the silicon containing UV-curable photoresist top 

layer is resistant to O2 RIE, there is negligible etching of the photoresist. Finally to 

completely remove the photoresist top layer before pyrolysis of imprint resist, a CF4+O2 

etch is performed. It is critical to completely remove the photoresist top layer because the 

silicon present in the photoresist could form silicon carbide during pyrolysis which 
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significantly affects the electrical conductivity of the carbon nanostructures. In the final 

step, the nanoimprint resist pattern is carbonized by heating the sample at high 

temperature under inert atmosphere along with a pre-carbonization bake. The structures 

were subject to pre-carbonization bake to ensure extensive crosslinking and to improve 

the adhesion between polymer and the substrate. This helps the nanoimprint resist 

structures to maintain their shape during carbonization. 

 

 

 

 

 

 

 

 

Figure 5.2. Schematic showing the fabrication process. a) Spin coat thin layers of nanoimprint 

resist and the photoresist on the substrate, b) Imprint a pre-designed glass mold to transfer the 

pattern onto the polymers and cure it with UV exposure, c) Retreat the glass mold to notice the 

pattern, d) Oxygen plasma treatment to etch residual nanoimprint resist, e) Etch the residual 

photoresist top layer by CF4+oxygen reactive ion etch, and f) Carbonizing the polymer 

microstructures under forming gas atmosphere at high temperature. 

 Examples of carbon structures with different critical dimensions ranging from     

50 nm to few microns fabricated using this methodology are shown in Figure 5.3a.  
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Figure 5.3.  SEM images of carbon nanostructures. a) Carbon nanostructures with different 

designs patterns and feature sizes, b) 50-nm linear nanogratings, c) Comb design with 500nm 

pattern critical dimensions, d) Mesh pattern having 180nm critical dimension features e) 

Chequered pattern with smallest feature size of 70nm maintaining its lateral fidelity after 

pyrolysis. 

The 50 nm nanogratings with spacing of 150 nm (Figure 5.3b) between them appear to be 

straight without visible defects. These linear nanogratings with nanometer dimensions 

can be fabricated with few millimeters length. Figure 5.3c illustrates the higher 

magnification SEM images of comb pattern with feature width of 500 nm. The distance 

between each feature in this pattern is 660 nm.  The carbon pattern shown in Figure 5.3d 

resembles a mesh structure with line widths of 200 nm horizontally and 300 nm 

70nm 500nm 
60nm 

180nm 

a 

b c 

d 

e 

 



76 
 

vertically. The minute taperings at the edges could be attributed to the scattering of UV 

light during photocuring. High magnification SEM image of chequered pattern with the 

smallest feature size of 70 nm (Figure 5.3e) demonstrates that even structures with curved 

patterns maintain its lateral fidelity through the pyrolysis cycle. It is important to note 

that critical dimensions of the features shown here were limited by the mold available. As 

evident from these SEM images, the experimental approach greatly reduces the 

production time when compared to serial processing tools such as e-beam lithography 

EBL, ion-beam lithography due to the batch processing capability of P-NIL [35] and the 

nanostructures maintain good conformity through the pyrolysis cycle. 

Carbonization of the nanostructures during the pyrolysis process usually involves 

a significant loss of material. Several reports have indicated the aromatization of polymer 

accompanied by the elimination of hydrogen and other heteroatoms during pyrolysis 

resulting in structure shrinkage. The removal of non-carbon species during carbonization 

induces densification of the polymer nanostructures and thus accounts for the volume 

shrinkage [36]. We investigated the vertical shrinkage of the nanoimprint resist by 

imaging linear structures of different widths before and after carbonization using atomic 

force microscopy (AFM).  Figure 5.4 shows the AFM images that reveals a significant 

vertical shrinkage from 200 nm to 45 nm. The 77.5% shrinkage that was observe here is 

similar to those recorded for carbon nanostructures derived from SU-8 2000.1 using EBL 

and pyrolysis [16]. Additionally, the lateral shrinkage calculated from SEM images (data 

not shown) exhibits a decrease of 5% or less. The reason for the minor shrinkage could 

be due to the strong adhesion between the nanoimprint resist and the Si substrate which 

forms a SiC interfacial layer during the pyrolysis process [16]. From the results, it can be 
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pointed out that the lateral shrinkage of the carbon nanostructures is similar to that of the 

nanofeatures derived from SU-8 2000.1.   

 

Figure 5.4. AFM images of the P-NIL patterned AR-UL-01 nanostructures a) Before and                    

b) After pyrolysis. 

5.3.2 Thermal Analysis  

The thermophysical analysis of the nanoimprint resist was investigated using 

differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA) to 

understand the thermal behavior under pyrolysis cycle. The results were compared with 

negative SU-8 25 photoresist which is typically used as a precursor for pyrolyzed 

photoresist films in C-MEMS as shown in Figure 5.5. The nanoimprint resist used in this 

work is a PMMA (polymethyl methacrylate) based polymeric material whereas SU-8 25 

photoresist is based on epoxy/phenolic resin. Region 1 in DSC curve shown in Figure 

5.5a indicates a solvent loss cycle at temperatures below 250 ºC. During this process, the 

solvents in the resists evaporate along with the crosslinking reaction to harden the 

polymer film. The exothermal reaction peaks above ~250 ºC (region 2) show the onset of 

different reactions which indicates the outgassing of byproducts. It is noteworthy that the 

exact reactions are difficult to confirm since the chemical composition of nanoimprint 
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resist is not available in the datasheets. After ~450 ºC, there are no obvious peaks 

indicating the completion of major outgassing and at this temperature solid carbon starts 

to form (region 3) [37]. In the case of  SU-8, a sharp exothermic peak at ~160 ºC (peak I) 

can be observed which is attributed to the beginning of the decomposition process of 

photoactive compound while the endothermic peak II at ~190 ºC indicates the thermal 

crosslinking of the resist [38]. The broad endothermic peak with its onset at ~360 ºC 

represents the evasion of C3 product gases. Additionally, it should be noted that during 

the pyrolysis process most of the degassing for both the resists occurs below ~600 ºC. In 

Figure 5.5b, TGA curves show similar weight loss for both the resists. Analysis of the 

data shows a 20% weight loss starting at ~50 ºC which represents the evaporation of 

moisture and solvents in the resists. The weight change continued till the temperature 

reaches ~300-350 ºC, where a sharp loss of 30-40% is observed. In this region most of 

the reactions occur concurrently outgassing byproducts. From ~450 ºC onwards the 

curves look fairly stable where the formation of solid carbon to expected to start. These 

results are in good agreement with the previously discussed DSC results.   
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Figure 5.5. Thermal behavior of AR-UL-01 and SU-8 investigated from 50°C to 900°C by           

a) DSC and b) TGA graphs under inert atmosphere. In the curves, (1) Indicates the region where 

there is significant loss of solvents, (2) Decomposition of C3 and other byproducts occur (3) 

Temperature region where solid carbon forms; The peaks at (I) Indicate the decomposition of 

photoactive compound and (II) The exothermic peak due to the thermal crosslinking of the 

polymer. 

5.3.3 Raman Spectroscopy  

To elucidate the material microstructure and graphitization of the carbon 

nanostructures, the Raman spectra of carbonized nanoimprint resist and SU-8 films was 

investigated between 1000-1750 cm-1, shown in Fig 5.6. In this spectral range, both the 

graphitic band (G-band), and the disorder-induced band (D-band) can be detected [39]. 

The first peak at 1350 cm-1 is the disorder band of the microcrystallite graphite due to the 

enhanced double resonance Raman scattering. The second peak at 1590 cm-1 is close to 

the single Raman line found at 1575 cm-1 on single graphitic crystals that is ascribed to 
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1350 (D-peak) 1590 (G-peak)

ID/IG=1.01

ID/IG=1.02

the bond stretching motion pairs of sp2 C atoms present in the olefinic chains or the 

aromatic rings. The slight frequency shift (~15 cm-1) observed in the spectrum could 

represent extremely small crystallite size [40]. Comparison of Raman spectra shows 

identical peak intensity ratios (ID/IG) around 1.02 indicating similar microstructure for 

carbon samples produced from both nanoimprint resist and SU-8.  

 

 

 

 

 

 

 

 

 

Figure 5.6. Raman spectra showing the comparison of thin carbon films prepared from AR-UL-

01 and SU-8. 

5.3.4 X-Ray Photoelectron Spectroscopy  

The elemental compositions in the XPS spectra are compared to evaluate the 

change in the chemical composition of AR-UL-01 with pyrolysis. For comparison 

purpose, both the as prepared and pyrolyzed nanoimprint resist samples were analyzed 

simultaneously.  Three distinct peaks representing carbon (284.6 eV), oxygen (531.8 eV) 

and nitrogen (398.4 eV) are evident in the spectra of AR-UL-01 before carbonization 

(Figure 5.7a). The shape and position of the high-resolution XPS spectra of carbon 
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(Figure 5.7b), nitrogen (Figure 5.7c) and oxygen (Figure 5.7d) observed are consistent 

with previous publications [16]. However, the spectrum of the sample after carbonization 

exhibit only two peaks, i.e. carbon and oxygen peaks which can be explained by the fact 

that pyrolysis process accompanies extensive out-gassing of non-carboneous materials. 

For this reason, it can be observed that intensity of the carbon peak increased but at the 

same time the intensity of the oxygen peak has been significantly reduced. Also, no 

nitrogen peak was observed after pyrolysis.  The main peak at 284.6 eV indicates the 

carbon present in the precursor while the small shoulder at binding energy ~286.1 eV 

implies a contribution from the different bonding configurations of carbon and oxygen. 

After carbonization, it was observed that a significant decrease in the intensity of the 

oxygen peak and the peak at ~286.1 eV indicating that a significant out-gassing of 

oxygen supplements the pyrolysis process in inert atmosphere. The O/C ratio calculated 

for uncarbonized AR-UL-01 showed 22.8 ± 0.4, but as expected the value reduced to 

0.52 ± 0.5 after carbonization. However, the O/C ratio of carbon is dependent on the 

precursor material used, synthesis technique and the post synthesis modification. For 

example, polished glassy carbon has a 7-20% O/C ratio [41], while vacuum heat-treated 

glassy carbon shows low O/C ratios of 1-6% [42]. 
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Figure 5.7. XPS spectra of AR-UL-01 before and after pyrolysis. a) Broad scan spectra, b) 

Carbon, c) Nitrogen d) Oxygen narrow peaks respectively. 

5.3.5 Resistivity  

The sheet resistivity was measured using a bridge structure by typical 4-point 

probe measurements [43]. The bar structure shown in Figure 5.8 has parameters of width 

(W = 50 microns) and length (L = 2.5 mm). Using this test structure, the sheet resistance 

was measured by flowing a current between pad C and D (ICD) and measuring the voltage 

difference, (VAB) at pad A and B. Note, in our experiment it is assumed that bar structure 

is homogeneous and any sidewall effects are negligible. The sheet resistance determined 

by using the equation (1) for carbonized AR-UL-01 yielded a value of 113.28 Ω/□. 

࢈࢙ࡾ	                                               ൌ 			ࡰࡵࢂ ࡸࢃ	 																			                                         (1) 

The resistivity (ρ) calculated by sheet resistance times the film thickness for a 45 

nm thick carbon film (which was measured by AFM) gives a value of 5.1 x 10-4 Ω.cm, 

which is comparable to the resistivity ~ 5 x 10-5 Ω.m for glassy carbon prepared at           

1000 ºC [4,44]. It is important to note that the resistivity of these nanostructures enables 
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their use as nanoelectrodes in sensing, electrochemistry, and in other nanoscale 

applications.  

 

 

 

 

 

Figure 5.8.  Schematic showing the test bridge structure used for measuring the sheet resistance.  

5.3.6 Surface Functionalization 

For potential use of carbon nanostructures in biosensors, termination on the 

carbon surface should be conducive to the interaction and immobilization of 

biomolecules [39]. Direct amination technique was used to graft amine-termination on 

the carbon which can covalently bind with carboxyl terminated biomolecules. In one of 

our previous publications, we examined this functionalization process on carbon derived 

from a negative-tone photoresist, SU-8 and used the platform for DNA detection [12]. In 

this work, the possibility of amine termination on the AR-UL-01 derived carbon by direct 

amination technique was evaluated. Figure 5.9 shows the broadscan XPS spectra of 

carbon surface treated at different amination times. Careful analysis of the XPS spectra 

for carbon film without amination shows only two major peaks at 284.6eV and 531.8eV 

which corresponds to carbon and oxygen respectively. But after amination, three distinct 

peaks representing carbon (284.6eV), oxygen (531.8Ev) and nitrogen (398.4 eV) are 

evident. As the amination treatment time increased, the intensity of the nitrogen peak also 

increased correspondingly until it reaches saturation at 4hrs. Previous studies have shown 
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that the nitrogen peak visible after amination is a result of ammonia gas forming C–NH2 

on the carbon substrate [12].  

 

 

 

 

 

 

 

 

 

 

 

Figure 5.9. Summary of broadscan XPS spectra of carbon surface functionalized by direct 

amination technique at different treatment times. 

High resolution XPS spectra of carbon surface before and after amination is 

shown in Figure 5.10. A significant nitrogen peak can be observed at 398.4 eV after 6hrs 

amination. Alternatively, for untreated sample no peak was visible indicating the absence 

of any physically absorbed nitrogen. This confirms that nitrogen peak visible after 

amination is covalent binding of nitrogen with carbon which can used for subsequent 

immobilization of carboxyl-terminated biomolecules.  
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Figure 5.10. Comparison of high resolution XPS spectra of carbon surface before and after 6hrs 

direct amination treatment. 

5.4 Conclusions 

For the first time, a fabrication technique for patterning carbon nanostructures 

using P-NIL and pyrolysis was demonstrated. The carbonized nanostructures exhibit 

microstructure comparative to the glassy carbon materials produced by pyrolyzing 

organic materials. As expected the elemental composition in the nanoimprint resist 

changed with pyrolysis due to the ejection of non-carboneous species. Additionally, the 

electrical properties exhibited by carbon nanostructures are comparable to bulk glassy 

carbon. The carbon nanostructures were functionalized using direct amination technique. 

It was observed that the intensity of the nitrogen peak representing C-NH2 bonds 

increased proportionally with time until it reaches saturation at 4hrs. Controllable carbon 

features with nano/micro scale dimensions conceived by this cost-effective high 

throughput manufacturing technique will allow us to explore their use in functional 

nanodevices.  
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                                              CHAPTER 6 

COMPARISON OF DIFFERENT OXIDATION TREATMENTS ON C-MEMS 

DERIVED CARBON 

6.1 Introduction 

One of the pivotal factors to improve the stability and detection performance of 

biosensors is to find a suitable substrate for conjugating target specific bioreceptors and 

their attachment chemistry [1]. An ideal substrate is chemically robust, easily 

functionalized, and compatible with a wide variety of analytical modalities (fluorescence, 

surface plasmon resonance, microscopy, electrochemistry, etc). So parallel with the 

development of micro/nano-electrode architectures using nanotechnology and MEMS 

techniques, considerable attention is also being concentrated on studying various 

nano/bio interfaces for improved bioassays.  

Glass, silicon and gold substrates are commonly used due to their well-defined 

functionalization methods: the silanization of glass, silicon and the formation of self-

assembled monolayers (SAMs) on gold. Alternatively, carbon-based materials are 

considered attractive, since they offer good electrical conductivity, better resistance 

towards biofouling and superior stability over conventional substrates when exposed to 

prolonged incubations in aqueous solutions at elevated temperatures and/or serial 

hybridizations.  The more important aspect of using carbon-based materials is that their 

surfaces can be easily modified using physical, chemical or electrochemical techniques.  

Recently, microfabrication of carbonaceous material has received a lot of 

attention due to many applications that can be envisioned such as microelectrodes in 

biosensing devices, electrochemical sensors and miniaturized energy storage/energy 
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conversion devices. Microfabrication technology based on carbonaceous materials can 

greatly extend the practical application of MEMS in biosensing.  However, to take 

advantage of the benefits of pyrolyzed carbon in biosensors, the surface of carbon needs 

to be properly functionalized with chemical groups to attach a biologically derived 

material such as recombinant antibodies, engineered proteins, aptamers etc. to detect a 

wide variety of physiological substances. 

Many different oxidation techniques are known and have been used for 

functionalizing  pyrolyzed carbon, such as wet chemical techniques [2], oxygen-plasma 

or atom-beam treatments [3,4], hot-filament techniques [5], thermal oxidation in oxygen 

atmosphere [6,7], photochemical procedures [8], ozone exposure [9] or electrochemical 

oxidation [6,10,11]. However, it is often quite difficult to compare the different oxidation 

methods due to the different analysis techniques, setups and evaluation procedures used 

in the various studies. An interesting question is whether different oxygen-containing 

groups are produced by different oxidation techniques or exposures [12]. Furthermore, 

the result of the oxidation process (with respect to both the amount of oxygen as well as 

type of carbon–oxygen groups) may also depend on the nature of the carbon surface.  

6.2 Materials and Methods 
 
6.2.1 Vacuum Ultraviolet (VUV) Surface Treatment 
 

Figure 6.1 shows the schematic illustration of the VUV surface treatment system 

(UER 20–172 from Ushio, Inc.) and the actual instrument used in this work. The VUV 

system uses a xenon excimer (Xe ) lamp to generate a ultraviolet (VUV) light with a 

central wavelength of 172 nm. The working principle of the VUV surface treatment is 

extensively discussed in Ref [13].  
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Figure 6.1. (a) Schematic showing the VUV surface treatment system, (b) Actual UER 20-172 

VUV system. Figure adapted from Ref [13]. 

After the sample was inserted, the chamber was evacuated and oxygen gas (O2) 

was introduced, waiting till it reaches the required pressure of 3.0 × 104 Pa. In this work, 

VUV treatment was done at 20 W lamp power and light intensity 12 mW/cm2 time for 

times varying from 15-120 min. the whole treatment process was done at room 

temperature. The excimer light is transmitted through the glass window of the lamp 

housing and chemical reaction chains are triggered in the irradiation chamber.  

The reactions at the atomic and molecular level responsible for excimer and 

excited oxygen generation are 

                                    Xe*2  → Xe + Xe + hv                                               (1) 
followed by  

                                                        O2 + hv → 2O                                                          (2) 

                                                        O2 + O → O3                                                                                         (3) 

                                       2O3 + hv → 3O2                                                                                      (4) 
 

 
 



93 
 

6.2.2 Electrochemical Activation 
 
Electrochemical activation of carbon is considered an attractive pretreatment 

technique, since it produces reproducible surface and shows improved electron transfer. 

The electrode can be electrochemically activated in either basic or acidic (or neutral) 

solution. Previous reports have shown that anodic oxidation of graphitic materials in 

aqueous solutions creates surface oxides primarily consisting of carboxylic and phenolic 

groups [14]. The composition of these oxides can be controlled to some extent by proper 

choice of current and potential profiles and also by the electrolyte solution. However, 

larger background current and higher fraction of oxygen contents have been observed for 

the electrode pretreated in acidic (or neutral) solutions. 

To perform electrochemical activation the C-MEMS electrodes was connected 

with a piece of copper wire. Then the contact pad and the silver wire were fully covered 

by epoxy resin to prevent their exposure to the electrolyte. Subsequently, the sample was 

configured as the working electrode in a three-electrode system. The reference and the 

counter electrodes used were Ag/AgCl and a Pt wire, respectively. Figure 6.2 shows the 

photograph of actual setup used for electrochemical activation. The activation process 

was performed in 0.5 M H2SO4 solution deaerated by nitrogen bubbling for time intervals 

between 5-30mins. A voltage of 1.9V was applied to the electrodes for the durations 

ranging from 10- 30 min using a multichannel potentiostat/galvanostat (VMP3, Princeton 

Applied Research). The electrodes were then negatively polarized at -0.3 V for 10 min. 

After electrochemical pretreatment, the electrodes were washed with DI water.  
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Figure 6.2. Photograph of the actual setup used for electrochemical activation  

 
6.2.3 UV/Ozone (O3) treatment 

 
Ozone (O3) is a powerful oxidant due to its ready dissociation into O2 and O-

radicals. In the photosensitized oxidation incorporating UV/O3, the molecules are excited 

or dissociated by the absorption of short-wavelength UV radiation. The carbon atoms 

(preferably at the defect sites on carbon surface) react with the atomic oxygen from the 

continuous dissociations of oxygen molecules to generate ozone molecules for the 

carboxylation reaction to take place [15]. The major wavelengths of the ultraviolet rays 

radiated from a low-pressure mercury vapor lamp are 184.9 nm and 253.7 nm. When 

atmospheric oxygen O2 is irradiated with ultraviolet rays with a wavelength of 184.9 nm, 

the oxygen absorbs the ultraviolet rays to form O3 by the reactions (1) and (2) 

                                               O2 → O + O                                                      (1) 

                                               O+O2 → O3                                                       (2) 

Ozone O3 irradiated with UV iradiation (wavelength of 253.7 nm) absorbs the UV light 

to decompose O3. During the process of formation or decomposition of O3, atomic 
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oxygen O having a strong oxidizing ability is generated which oxidizes the carbon 

surface. 

The UV/ozone pretreatment was performed by using UV ozone cleaner UVy253 

(Nippon Laser and Electronics Laboratory). At first, the reaction chamber was purged 

with nitrogen gas for 5min to remove any active gases. Subsequently oxygen (O2) gas is 

introduced for 5mins. After turning of the oxygen gas supply, the UV light was turned on 

for times ranging from 10-180min. Finally, after turning of the UV source, nitrogen gas 

was introduced for 5min to purge the ozone in the reaction chamber before opening the 

chamber door. 

 

 

 

 

 

    

 

 

Figure 6.3. The actual UVy253 UV/O3 surface pretreatment system 

6.2.4 Oxygen RIE pretreatment 
 
Previously the use of reactive, non-equilibrium oxygen plasmas as a means of 

introducing oxygen-containing functional groups onto the isotropic pyrolytic graphite 

surfaces have been investigated with promising results [3,4]. This pretreatment has been 

shown to incorporate carboxyl groups along with other surface oxides in a rapid, 
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contaminant-free fashion. The other advantage of using this pretreatment on carbon 

surface is the ability to create surface porosity which potentially increases the effective 

surface area.  

MARCH CS-1217 RIE system (shown in Figure 6.42) was used to treat the 

pyrolyzed carbon surface with oxygen plasma. This system has parallel plate reactor 

equipped with 13.65MHz RF source. The gas line for oxygen was been completely 

evacuated before the process to remove any moisture. The oxygen RIE time was varied 

from 1-10mins 

 

 

 

 

 

 

 

Figure 6.4. Photograph of the MARCH CS-1217 RIE system 

6.2.4 XPS Analysis 

The XPS analysis was investigated by an Ulvac Φ 3300 XPS (Ulvac-Phi) with an 

anode source providing Al Kα radiation. The electron takeoff angle was 45 ± 3° relative 

to the substrate surface and the C1s peak was chosen as the reference binding energy 

(284.6 eV). Spectrum fitting routine was done with the following constraints: Shirley 

background was used. All peak contributions are mixed Gauss–Lorentz product functions 

with identical shapes and widths. 
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In this work, we present a comparison of four different oxidation techniques 

applied to C-MEMS derived carbon films. Samples were investigated by X-ray 

photoelectron spectroscopy (XPS). XPS allows to quantify the oxygen concentration on 

the surface and to deduce information on the various carbon–oxygen groups present on 

the surface by analysis of the chemical shift of the C1s core level. Specifically we will 

focus on the following questions: (i) Do the various oxidation techniques yield different 

amounts of adsorbed oxygen?; (ii) Which types of carbon–oxygen groups are found on 

the surface and do they differ between the various oxidation techniques?  

6.3 Results and Discussion 

Figure 6.5 depicts the summary of measured oxygen content as a function of 

oxidation time in the case of all the four oxidation techniques. The oxidation levels 

saturate after treatment for longer duration in the case of VUV and ozone pretreatment 

compared to when oxidized by electrochemical activation (EA) and oxygen RIE 

pretreatments. These results are consistent with the fact that VUV and UV/O3 are milder 

oxidation techniques which only show a minor increase in the surface roughness after 

treatment. Alternatively, in the case of both EA and oxygen RIE, as the pretreatment time 

was increased significant increase in the surface porosity and surface roughness was 

observed (results not shown). It is noteworthy that as the ECA and oxygen RIE 

pretreatment time increased over 30mins and 10mins respectively, the films started to 

peel/etch from the substrate and the results were not reproducible. Thus, the achieved 

level of oxidation cannot be increased further without completely destroying the carbon 

films. 
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Figure 6.5. Summary of oxygen concentration (at%) for different oxidation techniques. 
 

Analysis of the graph shows that the achievable oxidation levels on carbon 

surface was more than 20 at.% in the case of VUV pretreatment (≈ 24 at.%), EA 

pretreatment (≈ 22 at.%), and oxygen RIE pretreatment ( slightly above 20 at.%). But in 

the case of UV/ozone pretreatment, only ≈ 15 at.% oxygen content was achieved.  Thus 

we conclude that with respect to the achievable oxidation level, VUV-, EA- and oxygen 

RIE-techniques yield much higher oxygen concentrations compared to UV/ozone 

pretreatment. However, this does not necessarily indicate different oxidation behavior of 

the latter technique. It may also be due to a comparatively low UV-intensity, which could 

yield higher oxygen coverage’s but only for impracticably long exposure times. 

However, as previously mentioned, a significant difference in surface morphology can be 
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observed based on the oxidation technique chosen. This signifies the fact that the 

pretreatment technique should be chosen based on the final application. 

Finally, it should be noted that the specified levels of oxygen concentration 

obtained by XPS apply to a fictitious homogeneous mixture of the constituents (C and O) 

over the whole information depth of the photoelectrons. In order to obtain information on 

the chemical groups present on the surface, further investigation of the C1s core level 

chemical shifts was conducted. Due to the rather broad individual contributions (FWHM 

typically 1 eV) the C1s peak was decomposed into various components. The following 5 

peaks were deconvoluted:  C-C (sp2) at 284.6 eV,   C-C (sp3) at 285.3 eV, C+ I (C-O) at 

286.2 eV, C+ II (C=O) at 287.6 eV and C+ III (O-C=O) at 289.1 eV. The primary functional 

group we focus on in this study is O-C-OH which can be used to bind covalently with 

amine-terminated biomolecules via amide bonding. 

 

 

 

 

 

 

 

 

 

 

 

VUV technique Electrochemical activation 
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Figure 6.6.  Relative contributions of C-C (sp2 and sp2), C+ I, C+ II and C+ III components as 

derived from the peak fitting procedure for C-MEMS derived carbon surface oxidized by 

various techniques. 

Figure 6.6 shows the development of the C-C (sp2 & sp3) and the oxygen-related 

C1s components with increasing oxidation time on the carbon surface. One common 

trend that can be observed is that upon oxidation the sp2 contents decrease steadily while 

the oxygen-related components gain in intensity. For all exposures several oxygen-related 

species are observed with the C+ I component always being the dominating one. 

Commonly the C+ II component is attributed to carbonyl groups (C=O). However, in the 

simplest approximation, when final-state effects in XPS are neglected, the chemical shift 

is directly related to the oxidation state. Thus C+ II could as well be caused by chains of 

bridge-bonded oxygen atoms (i.e. multiple ether groups ―C―O―C―O―C―O―) 

[12]. Accordingly, rather than signifying a gradual conversion from bridge-bonded ether-

like oxygen to on-top “carbonyl” oxygen, the increase of C+ II may also be interpreted as 

formation of chains of ether-like groups, as they are favoured by theory [16,17]. It was 

Oxygen RIE technique UV/O
3
 technique 

C-C (sp2) C-C (sp3) C-C (C+I) C-C (C+II) C-C (C+III) 
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observed that in most cases the component C+III (representing the carboxyl group) 

increased with treatment time in all the oxidation techniques. The coverage of  the 

carboxyl group on the surface reached close to 15% in the case of VUV, ≈6% for UV/O3 

and ≈12.5% for both EA and oxygen RIE. These values are comparable or better than the 

coverage values obtained for other oxidation pretreatments on the pyrolyzed carbon 

surface.  

6.3 Conclusions 

Oxidation of C-MEMS derived carbon films were investigated by XPS.  All the 

oxidation techniques except UV/O3 pretreatment yielded similar oxidation levels. Only 

UV/O3 pretreatment yielded somewhat lower values, possibly due to a comparatively low 

intensity of the UV-source. Compared to EC and oxygen RIE, the VUV and UV/O3 

photochemical pretreatments took more time to reach saturation limit. In all the oxidation 

techniques, by analysis of the C1s core level several coexisting oxygen-containing groups 

were detected with the carboxyl group increasing with pretreatment time. Finally, this 

study helps us to choose the oxidation technique for the optimization of functional groups 

grafted on the surface conducive for covalent binding of bioreceptors.   
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                                               CHAPTER 7 

DETECTION OF PLATELET-DERIVED GROWTH-FACTOR (PDGF) USING 

SIGNALING APTAMER/ PROTEIN BINDING COMPLEX 

7.1 Introduction 

 With the increasing application of proteomic strategies for the detection of 

cancer related oncoproteins and discovery of biomarkers, it is of extreme interest to 

develop portable platforms for sensitive detection of proteins and their molecular 

variants. Aptamers are single stranded DNA or RNA molecules selected in vitro from 

DNA/ RNA random pools that are capable of binding with biological entities such as 

proteins, cells along with small molecules, drugs, peptides and hormones with high 

affinity and specificity [1-3]. Aptamers have been sought out as ideal alternative 

candidates to the traditional antibodies for use in analytical devices due to their easy 

synthesis, high binding affinity, long storage times, and excellent selectivity [4]. Recent 

studies have demonstrated the applicability of aptamers to target a disease state, such as 

cancer [5]. This opens up new avenues in the future for aptamers to potentially substitute 

more established components for therapeutics and/or diagnostics. 

Platelet-derived growth factor (PDGF) is a protein that regulates cell growth and 

division. Overexpression of PDGF has been associated with several human health 

disorders including atherosclerosis (hardening of the arteries) [6], balloon injury induced 

restenosis (narrowing of blood vessels) [7], pulmonary hypertension [8], organ fibrosis 

(formation of excess fibrous connective tissue in an organ or tissue) [9], tumorigenesis 

(formation of tumors) [10]. PDGF receptors are almost undetectable in normal vessels, 

but are highly expressed in the diseased vessels. A PDGF dimer composed of two 
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different types of monomer (A and B chains) occurs in three variants: PDGF-BB, PDGF-

AB and PDGF-AA. In particular, oncoprotein PDGF-BB is often overexpressed in 

human malignant tumors and known as a potential protein marker for cancer diagnosis 

[10]. 

In recent years, PDGF-BB protein detection using fluorescence [11-20], 

colorimetry [21] and electrochemistry techniques have been reported [22-24]. These 

methods involve either labeling the aptamer with a fluorophore, or the use of redox 

species.  In fluorescence based PDGF detection techniques, fluorophore-labeled aptamers 

are used to signal binding by monitoring the changes of fluorescence intensity [14] or 

anisotropy resulting from the changes of the microenvironment [13] or rotational motion 

through fluorescence energy transfer [15]. However, as the precise target binding sites 

and the conformational changes of the aptamers are generally unknown, it is not easy to 

design labeling strategies [19]. Besides, there is always a concern that the conjugation of 

a fluorophore to an aptamer will ultimately weaken the affinity of the aptamer to its 

ligand [19]. In the case of electrochemistry based detection techniques, due to the use of 

redox species, the electrodes are limited to conductive materials and also the different 

linkers used to attach the aptamer onto the electrode surface (such as gold) exhibits rapid 

degradation with time [25]. Most recently, diamond substrate has been used to detect 

PDGF by monitoring the fluorescence change from the release of an intercalating dye 

when the probe aptamer captures the target [26]. Although the sensor showed good 

sensitivity and selectivity, the use of diamond substrates is not cost effective. The 

controllability of defects and grain boundaries in polycrystalline diamond substrates 
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along with the high operating cost due to the need for high vacuum and high temperature 

systems are limiting factors for mass production.  

Traditionally for biological and electrochemical sensing, glassy carbon is one of 

the popularly used materials due to its low cost, better resistance towards biofouling, 

biocompatibility, good electrical conductivity, low background capacitance, and the 

flexibility to tailor the surface by various physical/chemical treatments. In particular, 

carbon synthesized by carbon-microelectromechanical systems (C-MEMS) technique is 

intriguing since it exhibits reaction kinetics comparable to glassy carbon, but with lower 

oxygen/carbon atomic (O/C) ratio [27-29]. Since photolithography technique is used for 

patterning purpose, the electrodes obtained by this manner have better resolution and 

reproducibility compared to screen printed carbon paste electrodes. C-MEMS technique 

is actively pursued to fabricate electrodes for energy storage/ conversion devices, 

electrochemical sensors and biodetection devices [30-34] due to the versatility in the 

experimental approach to produce high surface area 3D carbon microarrays. In addition, 

our group has already demonstrated the ability to tailor the carbon surface by introducing 

nanoporosity using a block copolymer as porogen [35] and integration of functional 

nanomaterials such as graphene [36] and carbon nanotubes [34] on the surface of 3D 

carbon microarrays. The high surface area of the 3D carbon microarrays makes it an ideal 

platform for increased biomolecule loading to improve the sensitivity and performance of 

the functional devices. 

In this chapter, a signaling aptamer/protein binding complex on 3D carbon 

micropillar arrays using TOTO intercalating dye to signal PDGF-BB–aptamer binding 

was reported. The carbon surface was functionalized by direct amination technique to 
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introduce amino groups for covalent immobilization of target binding aptamer. It was 

demonstrated that this simple detection technique offered high sensitivity with PDGF 

detection in the sub-nanomolar range and good selectivity against different proteins, 

which could be extended for the detection of other biomarker proteins. 

7.2 Materials and Methods  

The 5`-carboxyl-modified PDGF-B-binding aptamer (5`- CAG GCT ACG GCA 

CGT AGA GCA TCA CCA TGA TCC TG-3`), PDGF-BB, PDGF-AB, PDGF-AA, 

adenosine triphosphate (ATP), and calmodulin were purchased from Sigma Genosys, 

Japan. The intercalating dye 1,1-(4,4,8,8-tetramethyl- 4,8-diazaundecamethylene)-bis-4-

[3-methyl-2,3-dihydro(benzo-1,3-thiazole)-2-methylidene] quinolinium tetraiodide 

(TOTO) was purchased from Invitrogen Corporation, USA. N-hydroxysuccinimide 

(NHS) and 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide hydrochloride (EDC) were 

purchased from Sigma Aldrich, Japan. NANO™ SU-8 and NANO™ developer were 

obtained from Microchem, USA. 

7.2.1 Fabrication of 3D Carbon Micropillar Arrays  

The three-dimensional carbon microarrays were fabricated by a typical C-MEMS 

process. 4 in. silicon oxide wafers were spin cleaned and NANO™ SU-8 100 negative 

photoresist was spin coated at 500 rpm for 12 sec and then 1200 rpm for 30 sec. The final 

thickness of the film was approximately 200 µm photoresist film. The photoresist was 

baked at 65 °C for 10 min and at 95 °C for 30 min. The photoresist was patterned by 

exposure using OAI Hybralign contact aligner (light intensity, 17 mW/cm2) for 60 sec. 

Post expose bake was carried out at temperatures of 65 °C for 1 min and 95 °C for 3 min 

followed by developing using NANO™ SU-8 developer (Microchem, USA) for 15 min. 
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The pyrolysis of the photoresist microarrays was conducted in a tube furnace under (95% 

N2+ 5%H2) environment. The samples were heated from room temperature to 350 °C at 

2 °C/min rate with a hold time of 40 min, followed by ramping to 1000 °C at 5 °C/min 

rate and hold time of 60min> the samples were cooled down to room temperature in the 

inert atmosphere. 

7.2.2 Surface Functionalization  

Before the direct amination process, the samples were first thoroughly rinsed with 

DI water and blow dried. The amination process was performed at room temperature in 

an ammonia gas (99.9%) environment and using UV lamp (λ=253.7 nm).  Prior to UV 

irradiation, the reaction chamber was purged with nitrogen gas for 5 min to remove 

oxygen and other gases. The reaction chamber was then irradiated with UV light for 4hr 

under a continuous flow of ammonia gas at 100 sccm. Finally, nitrogen gas is purged for 

5min to remove any ammonia in the reaction chamber before removing the sample. A 

detailed schematic showing the direct amination process is shown in Chapter 5, Section 

5.2.2. 

7.2.3 PDGF Detection  

 The carboxyl modified aptamer was covalently immobilized on the amino- 

terminated carbon surface without the use of any linker molecules. The probe aptamer 

with 3×sodium saline citrate (SSC) buffer solution, 0.1 M N-hydroxysuccinimide (NHS) 

and 0.4 M 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide hydrochloride (EDC) were 

mixed in a 2:1:1 ratio. The final concentration of the probe aptamer solution was 20 μM. 

5 μl of the probe aptamer solution was dropped onto the 3D carbon microarrays and 

incubated for 2 h at 38 °C in a humidified chamber. After immobilization, the sample was 
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washed in PBS+ Tween-20 (PBS: 1 mM NaCl: 2 mM NaH2PO4: 8 mM Na2HPO4; 0.1% 

Tween-20) solution for 5 min and three times with deionized (DI) water for 3 min each 

The probe aptamer was then reacted with 10µM intercalating dye (TOTO) diluted in TE 

buffer [10mM tris (hydroxymethyl)- aminomethane (Tris), 1mM 

ethylenediaminetetraacetic acid (EDTA), pH ~ 8] for 1 h at 25 °C. Following the 

intercalation of the dye, the sample was cleaned by TE buffer for 20 min and a DI water 

rinse. PDGF-BB protein diluted in 2×SSC was then bound to the immobilized aptamer at 

room temperature for 1 h at 25 °C. Unbound PDGF-BB were cleaned by DI water for                 

5 min. It is noteworthy that certain monovalent and divalent cations commonly 

encountered in biological specimens are known to affect DNA conformation. For this 

reason, the concentrations of the solution based on our previous study concerning the 

effect of protein binding based on Mg2+ cation and NaCl concentration in PBS buffer 

solution [28]. Finally, in order to regenerate the sensor by dissociating PDGF-BB and 

intercalator from the probe aptamer, the sample is washed in 10% sodium dodecyl sulfate 

(SDS) solution for 30 min.  

7.2.4 Characterization  

The morphology of 3D carbon microarrays was investigated using JOEL 6335 

FE- SEM scanning electron microscopy. Raman spectrum was collected with an argon 

ion laser system (Spectra Physics, model 177G02) of λ = 514.5 nm at a laser power of  

ca. 7 mW. The chemical composition of pyrolyzed photoresist carbon film before and 

after d1irect amination procedure was investigated by an Ulvac Φ 3300 x-ray 

photoelectron spectroscopy (XPS) with an anode source providing Al Kα radiation. The 
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electron takeoff angle was 45±3° relative to the substrate surface. Fluorescence 

observation was performed using an Olympus IX71 epifluorescence microscope.  

7.3 Results and Discussion 

7.3.1 Characterization 

A typical SEM image of high aspect ratio 3D carbon micropillar arrays is shown 

in Figure 8.1a. The average dimensions of the carbon micropillars after carbonizing 

patterned SU-8 photoresist structures are ~ 160 µm height and ~ 30 µm width. A careful 

examination of the SEM image shows that the upper half and especially the top part of 

the carbon micropillars is slightly wider compared to the lower half. This could be could 

due to the higher dose of UV light experienced by the top layer of the thick photoresist 

[27].Raman spectroscopy was used to investigate the crystallinity of the carbon 

micropillars. Figure 8.1b shows the Raman spectrum of pyrolyzed carbon with two 

significant broad peaks at ~1350 cm−1 (D-band) and ~1590 cm−1 (G-band). The first peak 

at 1350 cm-1 represents the disorder band of the microcrystallite graphite and the second 

peak at 1590 cm-1 is due to the single Raman line typically found on single crystalline 

graphite. The ID/IG ratio of 1.1 indicates that carbon obtained from pyrolysis of 

photoresist is identical to glassy carbon synthesized at same temperature [37]. 
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Figure 7.1 (a) Typical SEM image of 3D carbon microarrays, (b) Raman spectrum of pyrolyzed 

photoresist film showing the two prominent bands at 1350 and 1590 cm-1. 

7.3.2 Surface Functionalization 

It is well documented that the termination or functionalization of the surface is 

one of the key issues in the interaction and immobilization of biomolecules [39]. In this 

work, to covalently immobilize PDGF binding aptamer on the carbon surface, the sample 

was first treated by direct amination technique [30] where the sample was irradiated by 

ultraviolet (UV) light (λ = 253.7 nm) in an ammonia gas environment for 4 hrs. In 

contrast to oxidation techniques which introduce several oxygen-based functional groups 

such as ketone, hydroxyl, and carboxyl groups, only NH2 bonds are expected to form on 

the carbon surface by direct amination procedure due to their chemical structure. The 

elemental composition and surface binding of pyrolyzed photoresist film were evaluated 

by X-ray photoelectron spectroscopy spectra (XPS) as shown in Figure 8.2. Analysis of 

the widescan XPS spectra of the bare carbon film before amination (Fig 2 inset) shows 

two major peaks evident of carbon (284.6 eV) and oxygen (531.8 eV) but in the case of 

after amination, three distinct peaks representing carbon, oxygen and nitrogen (398.4 eV) 

(a) (b) 
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are evident. The nitrogen peak visible after amination is a result of ammonia gas forming 

C–NH2 on the carbon substrate [30]. The deconvoluted high resolution C1s spectrum (Fig 

2) shows major carbon peaks at 284.6 eV (sp2) and 285.2 eV (sp3), respectively. The 

other peaks at 285.4 eV, 286.3 eV, 287.6 eV and 289.1 eV corresponds to C–N, C–O, 

C=O and O-C=O bonds, respectively. The maximum surface coverage of amino groups 

achieved was ~8%, which is similar to the amino coverage previously reported [30]. 

 

 

 

 

 

 

 

 

 

 

Figure 7.2. Deconvoluted C1s spectra of pyrolyzed photoresist film after 4hr direct amination, 

here dash line shows the original data and solid lines show the fitting curves. Inset shows the 

widescan XPS spectra of carbon film before and after amination. 

7.3.3 Signaling Aptamer/ Protein Binding Complex Mechanism 

The detection of PDGF-BB using signaling aptamer/protein binding complex 

strategy is shown schematically in Figure 8.3. (I) The carboxyl-terminated PDGF-binding 

aptamer (probe aptamer) is first covalently attached to the amine–terminated carbon 
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surface via amide binding. (II) Subsequently the TOTO dye was intercalated with PDGF-

binding aptamer. The TOTO dye shows no fluorescence in aqueous solution but exhibits 

strong fluorescence when bound to the nonaqueous pocket of the duplex nucleic acid 

regions in the aptamer. It is important to note that the fluorescence signal from TOTO is 

dependent on its local environment and DNA/RNA conformation.  (III) When the target 

PDGF-BB protein bonds with the aptamer, the induced conformational change of the 

aptamer, as well as the blocking of intercalated TOTO dye results in a significant protein-

dependent fluorescence change. (IV) Finally for regenerating the sensor, the aptamer 

intercalating dye complex and PDGF-BB are dissociated by treatment with sodium 

dodecyl sulfate (SDS). 

 

 

 

 

 

Figure 7.3. Schematic illustration of the detection of PDGF-BB using signaling aptamer/protein 

binding complex on 3D carbon microarrays platform; (I) covalent immobilization of PDGF-

binding aptamer on partially aminated carbon surface, (II) intercalating the probe aptamer with 

TOTO fluorescent dye, (III) binding PDGF-BB to the aptamer-intercalating dye complex, (IV) 

regenerating the sensor by sodium dodecyl sulfate (SDS) treatment to remove PDGF and release 

the intercalating dye.  
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7.3.4 Sensitivity and Selectivity of the Sensor 

          The relationship of the change in the relative fluorescence difference with different  

concentrations of PDGF-BB in 2xSSC (saline-sodium citrate) solution was evaluated to 

study the sensitivity of the sensor, as shown in Figure 8.4. At first, the difference in the 

fluorescence intensities is computed from the fluorescence intensity values obtained after 

initial TOTO intercalation with the probe aptamer and then after PDGF-BB binding with 

the probe aptamer. Finally, the relative fluorescence difference is calculated by dividing 

the value obtained from difference in fluorescence intensities and initial fluorescence 

intensity. As expected, analysis of the data shows that the relative fluorescence difference 

increased as the concentration of PDGF-BB was increased from 0.005 –100 nmol. This 

can be explained by the fact that, as the PDGF-BB concentration is increased, more 

intercalator dye is released from the aptamer which results in a larger difference in the 

relative fluorescence. A near linear relationship between the relative fluorescence 

difference and the protein concentration was observed even in the sub-nanomolar range. 

A low detection limit of 0.005 nmol was achieved, and indicates that the sensor detection 

limit is much below the typical detection range of the PDGF in clinical samples. The 

detection limit by other reported aptamer-based analytical techniques, for example, is 1 

nmol in undiluted serum and 0.05 nmol in 50% serum was achieved with electrochemical 

detection [22], 0.1 nmol using solution based fluorescent signaling complex of aptamer 

and TOTO [14], and 2 nmol with fluorescence anisotropy based detection [13]. Typical 

PDGF concentrations of normal individuals and cancer patients have been found to be in 

the sub-nanomolar range: 0.4–0.7 nmol in human blood serum and 0.008–0.04 nmol in 
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human plasma [12]. Therefore, with the excellent sensitivity achieved, this PDGF sensor 

has the potential to be used in clinical setting. 

 

 

 

 

 

 

 

 

 

 

Figure 7.4: Relative fluorescence difference response of the sensor to different concentrations of 

PDGF from 0.005 nM to 100 nM. The concentrations of the aptamer and intercalating dye were 

20 µM and 10 µM, respectively. 

After the regeneration of the same sensor platform, in order to detect the PDGF 

using the aptamer based sensor, the probe should selectively respond to PDGF-BB, free 

or distinguishable from the interference by other biological components. Figure 8.5 

shows the selectivity test of PDGF binding aptamer towards the three variants of PDGF 

along with bovine serum albumin, calmodulin, and ATP, which are all typically present 

in the blood. The graph shows that the relative fluorescence difference for PDGF-BB 

binding with probe aptamer was about two times that of PDGF-AB and 10-times that of 

PDGF-AA binding with the same probe aptamer, respectively. Further, fluorescence 
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intensity difference for other biomolecules such as bovine serum album (BSA), ATP and 

calmodulin was approximately 70 fold smaller when compared to the value obtained for 

PDGF-BB binding. These results could be explained mainly by the fact that the PDGF-

binding aptamer used in this work binds to the three isoforms of PDGF (PDGF-BB, 

PDGF-AB, and PDGF-AA) with different affinities. Since the target binding aptamer has 

high specificity toward PDGF-BB, the corresponding reduction in the fluorescence 

intensity caused by PDGF-AA was clearly lower due to the absence of any binding sites 

on the aptamer towards PDGF-AA. On the other hand, PDGF-AB protein consists of 

both A and B chains meaning only one site that could bind to the aptamer. The amino 

acid sequences of PDGF-A is 60% similar to that of PDGF-B. Therefore, this sensor can 

detect isoforms with good selectivity.  In the other cases where different biomolecules 

such as BSA, ATP and calmodulin are introduced towards the target binding aptamer, no 

significant binding is expected due to the unavailability of the binding site and therefore 

no major relative fluorescence difference was detected. It is noteworthy that although 

BSA usually contains a high concentration of proteins, it does not affect the selectivity of 

the probe aptamer used.  The excellent selectivity of the sensing platform achieved in this 

work exhibits the promise of aptamers for cancer biomarker detection. The sensitivity 

and selectivity of our sensor platform could be even further improved when using high 

surface area 3D carbon microarrays integrating with functional nanomaterials such as 

graphene [36] and carbon nanotubes [34]. 
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Figure 7.5. Comparison of relative fluorescence difference of different proteins towards PDGF 

binding aptamer ; The concentration of the different molecules (PDGF-BB, PDGF-AB, PDGF-

AA, BSA, ATP and calmodulin) was 100 nM and concentrations of PDGF-binding aptamer and 

intercalating dye were 20 µM  and 10 µM, respectively.  

7.4 Conclusions 

In summary, high sensitive detection of PDGF using aptamer/protein binding 

complex on the 3D carbon microarray platform was achieved. For covalent 

immobilization of the probe aptamer, the carbon surface was bio-functionalized using 

direct amination technique. The sensor showed a near linear relationship towards protein 

concentration even in the sub-nanomolar range with excellent selectivity towards other 

biomolecules. The robust platform of signaling aptamer/protein binding complex on 3D 

carbon microarrays has the ability to detect wide variety of biomarkers and proteins for 

potential application in the preliminary diagnosis of cancer. 
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CHAPTER 8 

SUMMARY AND FUTURE WORK 

8.1 Summary 

This dissertation presents fabrication, characterization, functionalization and 

validation of novel carbon micro and nano-structures for electrochemical and biosensing. 

The C-MEMS technique was used to fabricate 3D carbon microelectrodes arrays. It was 

previously demonstrated that these carbon structures can be used as functional units for 

electrochemical and biosensing applications. To further improve the surface area of the 

carbon microstructures for electrochemical sensing, two surface engineering strategies, 

i.e. using F127 as porogen and oxygen RIE treatment were employed to introduce surface 

porosity. A uniform mesoporous surface porosity was observed when F127 was used as 

porogen. Electrochemical BET results showed a 185% increase in the surface area of 

porous carbon electrode. Alternatively, in the case of oxygen plasma RIE treatment, 

hierarchical microporous morphology was evident on the surface. The flexibility to tailor 

the total surface area of the carbon microstructures makes it a promising process for 

future C-MEMS applications. 

In an alternate approach, 3D C-MEMS arrays were explored as a high surface 

area platform for the integration of graphene. Graphene was conformally coated on the 

complex 3D structures using a spray deposition technique called electrostatic spray 

deposition (ESD). A thorough study of the effect of ESD processing conditions on the 

morphology of the deposited graphene film was investigated. Electrochemical analysis 

has shown that graphene/ carbon micropillar electrode array platform showed faster 

charge transfer and higher electrochemical activity towards H2O2 compared to bare 
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carbon micropillar electrode array platform. This methodology promises a simple 

approach to coat various functional nanomaterials onto 3D microelectrode arrays with 

controllable morphology and employ them for electrochemical sensing.  

 For the first time the applicability of C-NEMS process to fabricate controllable 

nanostructures by photo-nanoimprint lithography and pyrolysis was demonstrated. The 

carbonized nanostructures exhibited microstructure comparative to the glassy carbon 

materials produced by pyrolyzing organic materials. Additionally, the electrical 

properties exhibited by carbon nanostructures were comparable to bulk glassy carbon. 

Finally, the carbon nanostructures were functionalized using direct amination technique 

for potential use as functional units in biological sensors. Controllable carbon features 

with nano/micro scale dimensions conceived by this cost-effective high throughput 

manufacturing technique will potentially enable us to explore their use in functional 

nanodevices.  

To optimize the carboxyl functional group coverage on the carbon surface, 

oxidation of C-MEMS derived carbon films by four different oxidation techniques (VUV 

pretreatment, electrochemical activation, oxygen RIE pretreatment and UV/O3 

pretreatment) was investigated by XPS.  All the oxidation techniques except UV/O3 

pretreatment yielded similar oxidation levels. Only UV/O3 pretreatment yielded 

somewhat lower values which could be attributed to a comparatively low intensity of the 

UV-source. Compared to electrochemical activation and oxygen RIE pretreatments, the 

VUV and UV/O3 photochemical pretreatment techniques took longer time to reach a 

saturation limit. In all the oxidation techniques, by analysis of the C1s core level several 

coexisting oxygen-containing groups were detected with the carboxyl group increasing 
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with pretreatment time. Finally this study gives us the ability to choose an oxidation 

technique for the optimization of functional groups conducive to the covalent binding of 

bioreceptors.   

In the end, this work demonstrates the high sensitive detection of one of the 

cancer biomarkers called PDGF-BB using aptamer/protein binding complex on 

functionalized 3D carbon microarray platform. For covalent immobilization of the probe 

aptamer, the carbon surface was bio-functionalized by direct amination technique. The 

sensor showed a near linear relationship towards protein concentration even in the sub-

nanomolar range (5 pmol) with excellent selectivity against similar interferences. The 

robust platform of signaling aptamer/protein binding complex on 3D carbon microarrays 

has the ability to detect wide variety of biomarkers and proteins for potential application 

in the preliminary diagnosis of cancer. 

8.2 Future Scope of this Work 

This dissertation has introduced various ideas to fabricate high surface area 

carbon micro/nanostructures along with hybrid carbon materials integrating functional 

nanomaterials onto high surface area microstructure platforms. The proposed strategies 

suggest new possibilities for development of high sensitive electrochemical and 

biosensing devices.  

In the present dissertation, the application of C-MEMS structures as high surface 

area platform was demonstrated by conformally coating graphene onto 3D micropillar 

arrays. Going further, different functional nanomaterials can be integrated on the 3D 

carbon microarrays and these hybrid carbon structures have huge potential in chemical 

and biological sensors that needs to be explored. Because of the controllability of the 
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functionalized carbon nanostructures fabricated in this work, they can be seamlessly 

integrated into future miniaturized biosensors. One of the major achievements of this 

dissertation was the high sensitive detection of platelet-derived growth factor, a potential 

cancer biomarker using functionalized 3D carbon microarrays platform. This platform 

can further be explored for the detection of wide variety of biomarkers and proteins for 

potential application in the preliminary diagnosis of cancer. 
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