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ABSTRACT OF THE DISSERTATION

ANGULAR DISTRIBUTION OF PROMPT PHOTONS USING THE COMPACT
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√
S = 7 TEV
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The study of the angular distribution of photon plus jet events in pp collisions at
√
S =7 TeV with the Compact Muon Solenoid (CMS) detector is presented. The

photon is restricted to the central region of the detector (|η| <1.4442) while the jet

is allowed to be present in both central and forward regions of CMS (|η| < 2.4).

Dominant backgrounds due to jets fragmenting into neutral mesons are accounted

for through the use of a template method that discriminates between signal and

background. The angular distribution, |η∗|, is defined as the absolute value of the

difference in η between the leading photon and leading jet in an event divided by

two. The angular distribution ranging from 0-1.4 was examined and compared with

next-to-leading order QCD predictions and was found to be in good agreement.
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CHAPTER 1

THEORY

From the time of Ernest Rutherford and his famous scattering experiments in 1911,

measuring the angular distribution has been a vital technique in determining the

structure of matter. Prior to the Rutherford scattering experiments, the accepted

model of the atom was developed by J.J. Thompson. Thompson’s plum pudding

model stated that electrons (represented by the plums) were uniformly distributed

within a positively charged sphere (the pudding). Under Rutherfords guidance, Hans

Geiger and Ernest Marsden shot an α particle beam (helium nuclei), which is pos-

itively charged, onto gold foil [17]. Had the plum pudding model of atoms been

correct, Rutherford’s scattering experiment would have shown that the angle of de-

flection between the α particle and the gold foil was small. Instead, they observed

the α particles from the gold foil deflected at large scattering angles, proving that

the mass of positively charged atoms are focused at the center and not distributed

throughout the atom as predicted by the plum pudding model of the atom. The

large angle of deflection was later shown to be caused by the Coulombic force, the

force charged particles exert on each other as they approach. Rutherford’s exper-

iment showed how measuring the angular distribution gave insight into the atomic

structure.

Further understanding of the atomic structure continued in the 1950’s with the work

of Robert Hofstadter and his electron scattering experiments which studied the charge

and magnetic moment distributions within protons and neutrons. The electron-

scattering experiments determined significant information about nuclei including their

size and surface thickness parameters [5, 18, 19, 20].
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Figure 1.1: Experimental results from Robert Hofstadtler’s electron scattering experiments
where it was discovered that protons are composite structures, shown by the data points
deviating from line (c) [5].

In the late 1960’s a team of scientists at Stanford’s Linear Accelerator Center (SLAC)

found that protons, one of the particles that make up an atom’s nucleus, consisted

of even smaller particles. A deviation in the scattering angle showed the proton’s

sub-structure similarly to how Rutherford showed the substructure of a gold atom

back in 1911. This laid the foundation for what is known as ‘The Standard Model’ of

particle physics which encompasses the sub-atomic particles that make up all known

matter in the universe.

1.1. The Standard Model

The Standard Model is the theory of particle physics; it encompasses all fundamen-

tal particles that make up matter and its interactions. Of the four known forces,

three are included in the Standard Model (weak, electromagnetic and strong forces).
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The gravitational force plays an insignificant role in the fundamental interactions of

particles and thus is not included in the Standard Model[21].

The 12 fundamental particles in the Standard Model have spin = 1
2
, indicating they are

all fermions. These 12 particles are comprised of quarks and leptons; their properties

are shown in Table 1.1 [22, 1]. For each quark(lepton) their exist an anti-quark(anti-

lepton) with the same characteristics, except with opposite charges. For example,

the up quark (denoted as u) has an electric charge of q = 2
3

while the anti-up quark

(denoted as ū) has q = −2
3
. Quarks and leptons are grouped into three generations.

The first generation is comprised of particles that make up most ordinary matter

while the second and third generations consists of heavier fermions [23, 3].

Fermions that interact only via the electromagnetic or weak forces are known as

leptons. The first lepton to be discovered, and the most widely known is the electron

(e). Its neutrally charged partner, the electron neutrino (νe) is significantly lighter

and is more difficult to detect experimentally. The remaining leptons, the muon (µ)

and the tau (τ) also have their respective neutrino partners νµ and ντ . As with

charged leptons, neutrinos also have their own anti-particles ν̄e, ν̄µ and ν̄τ .

Fermions that interact via the strong force are quarks. Analogous to electric charge,

quarks also have a color charge, which contrary to its name does not reflect its visual

representation but rather an intrinsic property of the particle that couples it to the

force carriers exchanged between quarks. There are three such ‘color’ charges: red,

green and blue. Their anti-color equivalents are anti-red, anti-green and anti-blue. A

group of three quarks may combine to form a baryon. The most notable baryons are

the proton and neutron with a quark configuration of uud and ddu respectively. All

three quarks making up the baryon must combine such that the baryon is ‘colorless’,

which can be accomplished analogously to how white light is produced; each quark
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must have a color of red, blue or green. Quarks may also combine to form mesons,

another composite particle made up of a quark and an anti-quark. An example of a

meson is π+ (ud̄). An example of mesons achieving a colorless state by having one

red quark and one anti-red anti-quark [24].

Table 1.1: Table of partons and their properties [1].

Generation Particle (symbol) Lepton Number Charge (e) Mass (MeV)
First Generation up (u) 0 2/3 5

down (d) 0 -1/3 10
electron (e) Le=1 -1 .5110

electron neutrino (νe) Le=-1 0 < 7×10−6

Second Generation charm (c) 0 2/3 1500
strange (s) 0 -1/3 150
muon (µ) Lµ=1 -1 105.7

muon neutrino (νµ) Lµ=-1 0 < .27
Third Generation top (t) 0 2/3 175

bottom (b) 0 -1/3 5000
tau (τ) Lτ=1 -1 1777

tau neutrino (ντ ) Lτ=-1 0 < 33

Each force in the Standard Model plays a specific role and is responsible for the

behavior observed during particle interactions. Each force has a mediating particle

whose role is that of force exchange between interacting particles. The strong force

is responsible for quark interactions. Gluons are exchanged between quarks, keep-

ing them bound together inside baryons and mesons. The electromagnetic force is

responsible for keeping protons and electrons inside atoms through the exchange of

a photon. The weak force is responsible for decays of heavy quarks and leptons in

which one of the massive vector bosons, Z0 or W±, are exchanged.

It was first theorized, and later experimentally shown, that the electromagnetic and

weak forces are manifistations of the same force, known as the electroweak force [25].

The largest difference between the electromagnetic and weak forces is their mediating

particles. The electromagnetic mediator, the photon, is massless while the weak

4



Figure 1.2: The Standard Model of Particle Physics.

mediators, the W± and Z0, have mass (values shown on Table 1.2). The observed

difference in mass between these force carriers is explained through spontaneous

symmetry breaking (also known as the Higgs mechanism) [23], in which a Higgs

field is produced and interacts with the W± and Z0 resulting in these bosons acquiring

mass [26].

The Higgs boson is the quantum of the Higgs field and until recently was the missing

piece in the Standard Model of particle physics. Various accelerator experiments

have taken on the arduous task in attempting to find evidence for the existence of the
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Table 1.2: Table of forces and their mediating boson particles [2].

Force Mediators (symbol) Charge Mass (GeV)
Strong gluons (g) 0 0

Electroweak photons (γ) 0 0
Z0 0 91.1876 ± 0.0021
W± ± 1 80.398 ± 0.023

Higgs, however, it is the experiments at the Large Hadron Collider (LHC) at CERN

which have recently discovered a new boson which has the same characteristics that

the Higgs boson is theorized to have [27]. The distributions in Fig. 1.3 show the

invariant mass for two decay modes of the Higgs boson, H → γγ and H → ZZ → llll

in which both distributions show an excess in the mass range ∼125 GeV, which

lies within the mass window region obtained most recently by the Compact Muon

Solenoid experiment [28].

Figure 1.3: The invariant mass distributions for two decay modes for the Higgs boson,
where the Higgs decays to two photons (H → γγ) on the left and where the Higgs decays
to two Z0 bosons, which then decay into four leptons (H → ZZ → llll) on the right. Both
distributions show an excess of events at m∼125 GeV. Data collected during the 2011 and
2012 runs are used for both distributions.
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1.2. The Parton Model and QCD

Quantum Chromodynamics (QCD) is the study of interactions between quarks and

gluons, which are collectively known as partons. The discovery that hadrons were

made up of smaller constituents occurred in 1969, during a series of deep inelastic

lepton-hadron scattering (DIS) experiments in which leptons collided with stationary

hadrons.

Quantum Electrodynamics (QED) is a gauge theory that describes electromagnetic

interactions and was the model used for the development of QCD. The strength of

an electromagnetic interaction is determined by its coupling constant, α(Q2), which

after renormalization takes the form:

α(Q2) =
α(µ)

1− α(µ2)
3π

log(Q
2

µ2
)

(1.1)

where µ is the renormalization term and Q2 represents the momentum transfer be-

tween an incoming parton and an outgoing parton. The expression shown in Eq. 1.1

describes how the coupling constant α(Q2) increases with increasing Q2, which repre-

sents the amount of momentum transferred between particles during an interaction,

momentum transfer.

Similar to QED, the strength of QCD interactions are governed by its own coupling

constant, αs(Q
2), given by:

αs(Q
2) =

1

b ln( Q2

Λ2
QCD

)
(1.2)

where b = 13−2f
12π

and f is the number of quark flavors [9]. The variable ΛQCD (∼200

MeV) is the parameter indicating the order of magnitude where αs(Q
2) is large.
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Unlike the QED coupling constant α(Q2), which increases with increasing Q2, the

QCD coupling constant decreases with increasing momentum transfer. High values

of Q2 occur at short distances from the interaction point (< 1 fm). At short ranges

the strength of αs(Q
2) is small enough that the partons confined within the hadron

may be treated as individual ‘free’ particles, an effect known as asymptotic freedom.

The distribution shown in Fig. 1.4 describes the behavior of αs as a function of the

energy scale [6]. It is the nature of αs, in which the strength at high Q2 and short

distances weakens, that allows for hadronic collisions at high energies to be treated

as elastic collisions at the parton level.

As outgoing partons gain distance from the interaction point the strength of αs(Q
2)

increases. Outgoing partons begin producing quark-antiquark pairs and later combine

with other partons to form hadrons, a process known as fragmentation or hadroniza-

tion [29]. These hadrons are formed within close proximity to each other, creating a

collimated set of hadrons known as jets. Jets are defined as a group of hadrons within

a cone in η − φ phase space.

The distribution shown in Fig. 1.5 is a depiction of two partons colliding with each

other. Notice that the remaining partons belonging to the hadrons do not collide with

each other and thus are not part of the interaction. These remaining particles make

up the underlying event (UE), which is the name given for objects that accompany

the hard scattering event but have no active role in the collision. [30]. Minimum

Bias, or Min-Bias, are inelastic collisions passing physics triggers that accompany the

interaction. The Min-Bias cross section is ∼100 mb and is an irreducible background

to all physics analyses at the Large Hadron Collider.

The probability that parton a is found within proton A with a momentum fraction

between x and x+ dx is determined by parton distribution functions (PDF). These
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Figure 1.4: Measured values of αs as a function of the energy scale Q [6].

functions describe how a particle probing the proton would ‘view’ its structure. All

partons within the proton have a PDF associated with it. Parton Distribution Func-

tions are independent of the type of collisions in which the partons are involved and are

universal parameters in QCD which are experimentally determined [22]. The distri-

bution in Fig. 1.6 shows the PDFs for quarks and gluons using the NNLO MSTW2008

Parameterization [2].

We may write an expression for the cross section of the hadronic collision shown in

Fig. 1.5 in terms of the PDFs and the partonic cross section:

E
dσ

dp3
=

dσ

dybdp∗2dcosθ
=

1

ŝ

∑ G(x1)G(x2)

x1x2

dσ̂

dcosθ∗
(1.3)
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Figure 1.5: Schematic view of pp collision. Parton a from proton A interacts with parton b
from proton B to form the hard scatter. One of the outgoing partons fragments and forms
a jet.

where G(xi) represents the PDF for the ith parton involved in the collision, yb is the

boost in rapidity that may be used to transform between the lab and the center-of-

mass frame and p∗ is the momentum of the outgoing particle in the center-of-mass

(CM) frame. The CM energy, ŝ, is simply the square sum of the momentum 4-vector

of A and B which represent the incoming hadrons. The fractional momentum of

the incoming partons from protons A and B are represented by x1 and x1, respec-

tively.

The expression shown in Eq. 1.3 must be calculable and give a finite result, otherwise

experimental results can not be compared with theory. Quantum Chromodynamics

makes use of renormalization techniques in which additional terms are included to

handle the following divergences encountered in the theory: ultraviolet (UV), infrared

(IR) and collinear divergences. These divergences can cause incalculable results (i.e.,

infinities for cross section measurements), which fares poorly when trying to validate

theories experimentally. If the cross section →∞ it is the result of a UV divergence,

if a partons energy → 0 it is known as an IR divergence and if the angle between the

outgoing partons → 0 it is known as a collinear divergence. These divergences are
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Figure 1.6: Parton distribution functions of quarks and gluons as a function of their frac-
tional momentum, x, when the scale is µ2=10 GeV2 (left) and when the scale is µ2=10,000
GeV2 (right) [2].

handled with the introduction of scale factors. The renormalization scale, µR, is tra-

ditionally taken to be of the same value as the analyzed outgoing particle’s transverse

momentum, pT , and reflects the energy scale of the interaction. The factorization

scale, µF , assists in handling collinear divergences. The fragmentation scale, µf , is

analogous to µR and is used in fragmentation functions, which give the probability

that a parton will produce a final state particle during the fragmentation process [31].

While there are many renormalization schemes, the most widely used in QCD theory

is the modified minimal subtraction scheme (MS) [29].

The partonic cross section is expressed in terms of the angular distribution, cos θ∗,

and may also be expressed in terms of the mandelstam variables t̂ and ŝ:

dσ̂

dcosθ∗
=

1

ŝ

dσ̂

dt̂
(1.4)
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θ∗ represents the angle outgoing partons make with respect to the beam axis in the

CM frame as shown in Fig. 1.7 visually.

a
p

b
p

c
p

d
p

*θ
*θ

a
p

b
p

c
p

d
p

Figure 1.7: Collision in the CM frame (left) and in the boosted frame (right).

ŝ = (pa + pb)
2 = 4p2

t̂ = (pa − pc)2 = −2p2(1− cosθ∗)

û = (pa − pd)2 = −2p2(1 + cosθ∗)

(1.5)

The expressions in Eq. 1.5 show the direct relationship between the mandelstram

variables and cos θ∗. The momenta in bold refers to the classical 3-vector momenta

(x, y, z ) while the momenta italicized refers to the 4-vector momenta (E,x,y,z ). The

momentum of the partons is written as:

pa =
xa
√
s

2
and pb =

xb
√
s

2
(1.6)

where xa and xb is the fractional momentum.

The dσ̂/dcosθ∗ term is part of the prompt photon cross section shown in Eq. 1.3,

which can be measured as a standard test of next-to-leading order (NLO) QCD. Such

measurements that set out to test NLO QCD, such as the prompt photon cross sec-

tion measurement[32, 33, 34, 35, 36, 37] include comparing experimental results to

Eq. 1.3 theoretical solution. The advantage of measuring the angular distribution

of prompt photons is that the term involving cos θ∗, shown in Eq. 1.4, is indepen-
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dent of parton distribution functions, which contribute large uncertainties in such a

measurement.

Measuring cos θ∗ requires boosting into the CM frame, which will limit the statistics

available for this analysis. As an alternative, the angle η∗ is measured as an effective

test of NLO QCD which is closely related to cos θ∗:

η∗ = ηγ−ηjet
2

cosθ∗ = tanhη∗
(1.7)

It is important to note that a test of NLO QCD of this kind has not been done in

over a decade, since the early years of the Tevatron experiments at Fermi National

Accelerator Laboratory (FNAL) as part of the DØ [7] and CDF [8] Collaborations,

both measurements are shown in Figs. 1.8 and 1.9, respectively.

Figure 1.8: The |cosθ∗| distributions from the DØ collaboration [7]. The solid black line
is the NLO prediction. The dotted line represents Rutherford scattering. The Data and
theory agree.
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Figure 1.9: The |cosθ∗| distribution from the CDF collaboration [8]. The open circles
represent the angluar distribution in γ+Jet events, which show good agreement with its
NLO prediciton represented by the solid line. A factor of 1

N is missing in the y-axis labeling.

Prompt photons refer to any photons produced as a result of the hard scattering in pp

collisions. Prompt photons provide stringent testing of perturbative QCD (pQCD)

and are a direct probe of the quarks and gluons within the colliding protons, giving

further insight into the proton structure. Photons do not hadronize into other parti-

cles and therefore can be detected using electromagnetic calorimeters which tend to

have a higher energy resolution than hadronic calorimeters.

1.2.1. Leading Order Calculation

The two dominant modes of prompt photon production are quark-anti-quark annihi-

lation (qq̄ → gγ) and the QCD equivalent of Compton scattering (qg → qγ), in which
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a gluon strikes a quark resulting in a photon and a scattered quark; Fig. 1.10 shows

the leading order (LO) Feynman diagrams.

In addition to giving a pictorial representation of a process, Feynman diagrams pro-

vide a recipe to calculate a processes amplitude, |M|2, and thus its cross section. One

of the Feynman rules states that each vertex where a quark and/or gluon is present

contributes a factor of ααs to the amplitude [23]. Fragmentation photons (gg → gg)

are included at LO since its vertex evolves as α
αs

, thus when |M|2 is calculated it is

of the order ααs.

Table 1.3: Partonic differential cross sections for prompt photon production at leading
order [3]. The dependencies on π, αs, α and ŝ have been removed for simplicity.

Process |M|2

q + q̄ → γ + g 8
9
[ û
t̂

+ t̂
û
]

g + q → γ + q -1
3
[ û
ŝ

+ ŝ
û
]

g + g → g + g 9
2
[3− t̂û

ŝ2
− ŝû

t̂2
− ŝt̂

û2
]

1.2.2. Next to Leading Order Calculation

Feynman diagrams for next-to-leading order (NLO) prompt photon production, which

include final states with three outgoing particles shown in Figs. 1.11 and 1.12 for the

qg → gγ and q→̄gγ processes, respectively. These higher order terms are a result of an

incoming or an outgoing parton radiating a gluon during the process. The Feynman

rules indicate the diagrams shown in Figs. 1.11 and 1.12 are of the order αα2
s, which

contribute to NLO calculations. ‘One-loop’ diagrams as shown in Fig. 1.13 are also

included at NLO since the virtual gluon present in these diagrams contributes a factor

of αα2
s to the cross section.

Singularities introduced by NLO diagrams are dealt with by introducing cut-off pa-

rameters that limit the phase space region to where the singularities are present. Soft

singularities arise in the 3-body final state diagrams when the ratio between the radi-
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Figure 1.10: Leading order feynman diagrams for prompt photon production. Top di-
agrams show the q→̄gγ feynman diagrams at leading order. Middle diagrams shows the
qg → gγ process for the t-channel(left) and the s-channel (right) at leading order. The
feynman diagram for fragmentation photon production at leading order is shown at the
bottom. The vertex in which the fragmented photon is present contributes a factor of α

αs
,

making the process of the order ααs.

ated gluons energy, Eg, and the CM energy approaches zero. The cut-off parameter

δs separates the region of phase space where soft gluons arise, which is defined to

be where Eg in the rest frame of the interaction is less than δs
√
s

2
in value. Collinear

singularities are handled by the cut-off parameter δc, which separates the region of

phase space when Lorentz scalars sij and tij, defined as:

sij = (pi + pj)
2

tij = (pi − pj)2
(1.8)
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are less than δcs12 in value. Both δs and δc are selected such that they are sufficiently

small enough to return finite results for both sets of NLO diagrams. Any singularities

introduced have been removed and what is left are two sets of contributions to the

NLO calculation that depend on their cut-off parameters, δs and δc. These dependen-

cies cancel when both contributions are combined, showing that the NLO calculation

is independent of any scaling factors introduced during the regularization process.

The distributions in Fig. 1.14 show the single jet cross section as a function of each

cut-off parameter separately for each NLO contribution and then combined [10]. The

steadiness in the cross section with increasing cut-off parameter values indicate that

the NLO calculation is independent of any parameters that are introduced in order

to obtain a finite result. It is this independence of the scale at NLO that increases

the precision of the calculation compared to LO calculations.
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Figure 1.11: NLO Feynman diagrams for QCD Compton scattering. Adpated from [9].
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Figure 1.12: NLO Feynman diagrams for quark annihilation. Adapted from [9].
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Figure 1.13: One-loop Feynman diagrams for prompt photon production. Adapted from [9]

20



Figure 1.14: Single jet invariant cross section as a function of the cut-off parameter δs while
keeping δc constant. The one-loop contribution is shown on the left, the 3-body final state
contribution is shown on the middle and the combined result is shown on the right [10].
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CHAPTER 2

THE COMPACT MUON SOLENOID DETECTOR

2.1. The Large Hadron Collider

The Large Hadron Collider (LHC) is a proton-proton (pp) accelerator located at

the European Organization for Nuclear Research (CERN) just outside of Geneva,

Switzerland. The accelerator ring measures 26.7 km (17 mi) in circumference and is

100 m (roughly 300 ft) underground between the countries of Switzerland and France.

The LHC collided protons at a center-of-mass (CM) energy of
√
S = 7 TeV for the

2011 run year. In 2012, the LHC is currently colliding protons at a CM energy of
√
S

= 8 TeV.

The goal of the LHC experiments is to gain further knowledge of partonic sub-

structure and investigate the existence of new physics phenomena. To reaffirm that

future discoveries are in fact new physics, the LHC experiments will measure various

known parameters included in the Standard Model. The anticipated discoveries not

only require highly energetic collisions but also highly intense beams which require

more interactions. Using the expression for the rate of interactions:

dN

dt
= Lσ (2.1)

where L is the instantaneous luminosity and σ is the cross section, shows that in

order to acheive the intense beams needed to investigate new physics a high value of

L is needed. The expression for L is:

L =
γfkBN

2
p

4πσxσy
(2.2)
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where γ is the Lorentz factor (7461), f is the revolution frequency, kB is the number

of proton bunches, and Np is the number of protons per bunch. The beam width

in the x and y directions, noted as σx and σy respectively, were measured using

Van Der Meer scans [38]. Van Der Meer scans measure the interaction area by

calculating the interaction rate within each beam, which is done by using Fast Beam

Current Transformers (FBCTs) that measure the beams current [39]. This luminosity

measuring technique initially gave an uncertainty on the luminosity measurement of

11%, but was later refined in order to give an uncertainty of 4%. Relative uncertainty

is measured using the Hadronic Forward Calorimeter and hits in the pixel tracker

(discussed in the next section) which allows integration to obtain total luminosity per

lumi-section.

The LHC is designed to have a peak luminosity of 1034 cm−2 s−1, with each proton

beam having 2808 bunches (kB) separated by 25 ns, with 1.15×1011 protons per bunch

(Np). The peak luminosity reached for the 2011 run year was 1033 cm−2 s−1.

A bottle of hydrogen gas is the source of the proton beams. Hydrogen atoms are

stripped of its electron in order to produce a proton. These protons are then shot

through the linear accelerator, Linac2, with an energy of 50 MeV into the Proton

Synchrotron Booster (PSB) ring (radius 25 m) where they are accelerated until they

have reached an energy of 1.4 GeV. From the PSB they are then injected into the

Proton Synchrotron (PS) ring where protons are further accelerated to 26 GeV and

are formed into bunches of protons, spaced out 50 ns apart (25 ns more than the

original design). From the PS ring the protons are then injected into the Super Proton

Synchrotron (SPS) ring where proton bunches are accelerated to 450 GeV. Once the

proton bunches have reached 450 GeV they are injected into the LHC ring where they

will collide once they have each reached an energy 3.5 TeV. The picture in Fig. 2.1

shows the rings locations relative to the LHC ring. The protons are directed along
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Figure 2.1: Pictorial representation of CERN’s accelerator complex, the LHC ring and
the experimental detectors [11].

the LHC ring circumference by a series of dipole magnets (1232 in total). The dipole

magnets generate a 8.33 Tesla magnetic field. The dipoles were constructed using

coils of niobium-titanium superconducting cables and are cooled to a temperature of

1.9 K using liquid helium [40].

Though the LHC was initially designed to run at a
√
S = 14 TeV, it has only reached a

little over half that value. First collisions at the LHC ring were observed on September

9, 2008. Ten days later a faulty electrical connection between the dipole magnets
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resulted in a large helium leak in Sector 3-4 within the LHC ring. The leak occurred

when the accelerator department was testing the LHC machine to see how it would

react to running at 5 TeV. Extreme measures were taken by the CERN staff to ensure

an incident like this would not occur again during runtime, and two years later the

LHC was back in commission and running first at
√
S =7 TeV and now at 8 TeV,

still making it the highest energetic hadronic accelerator in the world.

2.2. The Compact Muon Solenoid Detector

The Compact Muon Solenoid (CMS) detector is one of two general purpose detectors

built to study physics at the Large Hadron Collider. It is located about 100 m

underground near the French town of Cessy, located between Lake Geneva and the

Jura mountains. The detectors location in Fig. 2.1 shows its location is across the ring

from the competing experiment, ATLAS. The detector is 21.6 m long with a diameter

of 14.6 m and weights 12,500 tons. Installation of the detector was completed in 2008

and saw the first successful collisions in March 2010. The experiment name gives a

general description of the detector:

• Compact: Its size is small when compared to the second general purpose detec-

tor at the LHC, A Toridal LHC ApparatuS (ATLAS)

• Muon: The detector has been optimized to detect muons from pp collisions

• Solenoid: Refers to the type of magnet used to generate a magnetic field

The detector uses a right-handed coordinate system. The origin is centered at the

interaction point (IP) within the detector, with the y-axis pointing vertically upward

and the x-axis pointing radially inward towards the center of the LHC ring. The

z-axis points along the beam direction towards the Jura mountains. The azimuthal

angle φ is the angle measured from the x-axis in the x-y plane. The polar angle θ is
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Figure 2.2: The Compact Muon Solenoid Detector [4].

measured from the z-axis. The pseudorapidity is defined as:

η = − ln tan
θ

2
(2.3)

The pseudorapidity is the same as the rapidity, Y , for massless particles1.

The momentum and energy measured transverse to the beam direction are computed

from the x and y components and are denoted as pT and ET , respectively.

The CMS detector is comprised of four main sub-detectors, each of which aids in

meeting the goals of the LHC physics program:

• The Tracking System: High in resolution of charged particle momentum. The

pixel detectors near the IP allow for high efficiency of triggering as well as

1Y = 1
2 ln(E+pz

E−pz
)
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offline tagging of τ and b-jets which assists in analysis searching for beyond the

Standard Model physics analyses.

• The Electromagnetic Calorimeter (ECAL): The lead tungstate scintillating crys-

tals make this calorimeter compact with high granularity ideal for the discovery

of a light Higgs boson that decays to two photons [41].

• The Hadronic Calorimeter (HCAL): Encapsulates ECAL and is made of brass

alloy absorber plates with scintillator tiles between each plate. Hadronic par-

ticles traverse HCAL and interact with the absorber plates, causing a cascade

of particle showers. It lies within the confines of the superconducting solenoid

magnet.

• The Muon System: Located on the outer most part of the detector, it identi-

fies muons and measures their momentum with the help of the magnetic field

produced by the superconducting solenoid magnet.

With the exception of the muon system, the rest of the sub-detectors are encapsulated

within the 13 m long, 5.9 m in diameter superconducting solenoid magnet.

2.2.1. Magnet

One of the goals CMS set out to accomplish was to design and build a muon system

that could detect muons better than any other collider experiment, which required

a system with a momentum resolution of 10% for a muon with p = 1 TeV [4]. The

CMS magnet is a large (12.9 m in length) superconducting solenoid with a 3.8 T

magnetic field, which will give particles larger bending power as they traverse the

detector. The combination of a large magnet and high magnetic field ensures a high

momentum resolution, especially in the forward region of the detector. Table 2.1

shows specifications of the magnet.
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Table 2.1: Parameters of the CMS Solenoid Magnet
Field 3.8T

Inner Bore 5.9 m
Length 12.9 m

Number of Turns 2168
Current 19.5 kA

Stored Energy 2.7 GJ

2.2.2. The Tracking System

The tracking system is an integral part in the identification and study of charged

particles. It is also the closest of all sub-detectors to the interaction point. Charged

particles bend when traversing the tracking system due to the magnetic field applied

by the superconducting solenoid magnet. The picture in Fig. 2.3 shows a quarter

view of the tracker. The tracking system is made up of silicon hybrid pixel detectors

and microstrip sensors and has a total coverage up to |η| < 2.4 which includes the

central and forward regions of the detector. The outer radius of the CMS tracker is

nearly 110 cm and is 540 cm in length.

The silicon is prepared for detecting charged particles that traverse the tracking sys-

tem by first introducing impurities into the silicon detector (a process known as

doping) to change its conductivity. An impurity atom such as phosphorus, which

has five outer electrons, is introduced and all but one of the electrons form bonds

with its neighboring atoms. Silicon has four outer electrons, all of which bond to its

neighboring atom in the lattice structure. The doping process leaves a (nearly) free

electron and is known as n− type doping since there is an access of negative charge.

Once the n-type doping is done, impurity atoms with three outer electrons, such as

boron, are applied to the surface of the silicon in a process known as p− type which

indicates an excess of positive charge. When this impurity atom is introduced into the

lattice structure, it ‘steals’ an electron from somewhere else in the silicon structure
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in order to bond to its neighboring atoms. Joining the n-type and p-type creates a

diode in which current is allowed run through the silicon. When n and p-types are

combined it forms a p−n junction in which there is the p-type area, the n-type area

and a depletion area in between. No current runs through the material since the extra

electrons that were left behind by the phosphorus fills in the holes left by the boron.

The depletion area expands when a voltage is applied to the diode allowing maxi-

mum detection of a charged particle traversing the silicon. Once the charged particle

traverses the silicon detector, it creates a current that is read out [42, 43].

The momentum of charged particles is measured using their position recorded by the

tracking system and the strength of the magnetic field. Charged particles follow a

curved trajectory as they traverse a magnetic field; the radius of curvature, r, of

that trajectory along with the magnetic field strength (B) is used to calculate their

momentum [2]:

p = 0.3 ∗B ∗ r (2.4)

The two types of silicon detectors that comprise the tracking system; the microstrip

and hybrid pixel detectors are discussed.

Microstrip Tracker

The microstrips in the barrel (central) region of the tracking system is broken up into

two regions: the Tracker Inner Barrel (TIB) and the Tracker Outer Barel (TOB).

The TIB consist of four layers and extends to |z| < 65 cm. The strip sensors are

320 µm in thickness and have a pitch that varies from 80-120 µm. The first two

layers of the TIB consists of ‘stereo’ modules angled at 100 mrad in order to provide

measurements in both r−φ and r−z coordinates, resulting in single-point resolution
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Figure 2.3: Quarter view of the CMS tracking system [4]. The tracking system consists
of a combination of microstrip silicon detectors and pixel silicon detectors in the barrel
(horizontal lines) and the endcap regions (vertical lines).

between 23-34 µm in r−φ and 230 µm along the z-axis. The TOB consists of 6 layers

and extends further in z than the TIB, up to |z| <100 cm. The extended length of

TOB is to avoid excessively shallow track crossing angles. The strip sensors in the

TOB are also thicker (500µm) and can have higher pitches (120-180 µm) than those

present in the TIB. The first two layers of the TOB also consist of stereo modules

angled at 100 mrad intended for measurements in both r − φ and r − z coordinates.

The single-point resolution in this region varies from 35-52 µm in r − φ and 530 µm

along the z-axis.

The strip tracker endcaps are also divided into two regions: the Tracker Endcap

(TEC) and the Tracker Inner Disks (TID). The TEC consists of nine disks and are

located 120 < |z| < 280 cm. The strip sensors located in the three innermost layers of

the TEC have a thickness of 320µm, while the rest of the strips are 500 µm. The TID

consists of three disks, with all its strips 320 µm thick and fills the gap between the

TIB in the barrel and the TEC in the endcap. These disks are shown in Fig. 2.3 as

the three vertical lines to the right of the Tracker Inner Barrel. Arranged in rings and

centered on the beam line, the TEC and TID have strips pointing towards the beam
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line. The first two rings of the TID have stereo modules while the two innermost

rings and the fifth ring of the TEC has the stereo modules. The strip detector in

its entirety has 15,400 modules mounted on carbon fiber structures and is housed

inside a temperature controlled outer support tube. The strip tracker operates at a

temperature of -20oC.

The readout system for the strip tracker consists of a APV25 readout chip, analog

optical links and a Front-End Driver (FED) processing board. The role of the readout

chip is to sample, amplify, buffer, and process signals recorded from 128 channels of

a strip sensor. The strip is then read out by an amplifier that is sensitive to charge.

The output voltage from the amplifier is then sampled and stored to be read out

by the triggering system at CMS. A more detailed description of the strip tracker

readout system can be found in [44].

Pixel Tracker

The pixel barrel is made up of three layers of hybrid pixel detectors, with each layer

divided into two half-cylinders each of which are 53 cm in length. One layer of pixel

detectors are located at radii 4.4, 7.3 and 10.2 cm. The pixels nearly square-shaped

design (100×150 µm2) in (r, φ) and z was implemented in order to achieve optimal

vertex position resolution. The pixel barrel in total has 768 pixels arranged in half-

ladders of four identical modules each.

The pixel endcap is made up of two disks located on each side at |z| = 34.5 cm and

46.5 cm and has a turbine-like geometry with seven modules acting as a blade. In

total the endcap is composed of 672 pixels.

In the barrel, a pixel module is read out by 16 Read-Out Chips (ROCs). Read-Out

Chips are also used in the endcap, but each ROC can read information of 2-10 pixel

modules. The signals of each pixel and its location are stored in a data buffer while
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the triggering system decides whether the event goes on to the next stage of data

processing.

2.2.3. The Calorimeters at CMS

The scintillators making up ECAL and HCAL absorb a particle’s energy deposit

and converts it to light. Photodetectors are used to convert the light deposition

into either a voltage or current which is then transformed into a digitized format for

analysis.

The Electromagnetic Calorimeter

The Electromagnetic Calorimeter sits between the tracking system and the hadronic

calorimeter. The ECAL detects all electromagnetic particles traversing the CMS

detector. The ECAL is integral to photon studies as it is the only sub-detector that

can be used to identify them.

The ECAL is able to measure the energy of electrons and photons due to their interac-

tion with the crystals that comprise the calorimeter. At relativistic energies, electrons

radiate photons when they are either accelerated or decelerated, in a process known

as bremstrahlung [2]. The radiated photon may interact with the material resulting

in converting into an electron-positron pair. As more particles are generated, the en-

ergy they have decreases. The summed energy of the particle shower resulting from

bremstrahlung or pair production reflects the initial energy of the electron or photon

and is collected by ECAL to assign the energy of the initial particle.

The radiation length (X0) is the distance a particle travels before it loses 1/e of its

energy. Within ECAL it is the electron whose radiation length is of most interest.

The longitudinal length of the material must be at least 20X0 in length in order to

fully absorb the shower.
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The lateral component of an electromagnetic shower begins fairly narrow, with the

amount of less energetic particles that surround it increasing with increasing shower

depth. About 90% of the lateral component of the shower is enclosed within a cylinder

of radius equal to one Moliére radius, RM [45].

The ECAL barrel (EB) covers up to |η| <1.479 and is comprised of 61,200 lead

tungstate (PbWO4) crystals. The crystals measure in 0.0174×0.0174 in η−φ (22×22

mm2) at the front of the crystal, and 26×26 mm2 in the crystal rear. The crystals

are 230 mm in length, corresponding to a radiation length of 25.8X0. The crystals

are mounted onto a thin-walled fiberglass cavity and makeup one submodule. A

submodule is made up of ten crystals. Groups of submodules group together to form

modules, and four modules makeup one supermodule. Each supermodule extends 20o

in φ, resulting in ten supermodules per half-barrel for a total of 36 modules in EB.

The artist rendering in Fig. 2.4 shows how the supermodules are configured within

the Electromagnetic Calorimeter.

Each supermodule is placed within EB such that the central axis of the crystals

are tangential to a circle of radius 66.7 mm. This results in a 3o tilt in η − φ to

accommadate the 6 mm crack between each supermodule. This off-pointing effect

ensures that CMS detects the maximum amount of electromagnetic particles and

minimizes particle loss because of cracks in the detector. A visualization of this

off-pointing is shown in Fig. 2.5.

The barrel region of ECAL uses Hamamatsu type S8148 reverse structure avalanche

photodiodes (APDs) that were especially developed for CMS. Each ADP has an

active area of 5×5 mm2. Two APDs are mounted behind each crystal in the barrel

region.
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Figure 2.4: Artist rendering of ECAL. The EB modules are horizontal in the central region
of ECAL. Each endcap is comprised of 2 ’Dees’, which get their name from the D-like shape
it resembles [12].

Figure 2.5: Off-pointing geometry for the EB supermodules. The circle has a radius of
66.7 mm [12].
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The ECAL endcap (EE) covers a pseudorapidity range of 1.479 < |η| < 3.0 and is

comprised of 7324 crystals in each endcap. Each endcap is 3.144 m away from the IP,

this location is the result of the endcaps movement towards the IP when the 3.8 Tesla

magnetic field of the solenoid is active. The crystals are arranged in units of 5×5

crystal arrays in x-y within a carbon fiber cavity. Each endcap is comprised of two

halves, known as ‘Dees’ because of their D-like shape. Each Dee is made up of 138

supercrystals (a 5×5 crystal array in x-y) and 18 special partial crystals on the inner

and outer circumferences. The supercrystals are arranged in an x− y grid.

The endcap region in ECAL uses vacuum phototriodes (VPTs), a type of photomul-

tipler tube (type PMT188) from the National Research Institute of Electrons in St.

Petersburg, Russia. These VPTs were especially designed for CMS, they have an

anode of very fine copper mesh (with a 10 µm pitch) which allows them to properly

function within the 3.8 T magnetic field. Each VPT is 25 mm in diameter, with one

mounted behind each crystal in EE. The response of the VPTs is slightly reduced and

varies with the angle of the VPT with respect to the field over the range of angles

relevant to EE (6o-26o). The mean response of the VPTs in a 4 T magnetic field at

an axis angle of 15o is 94.5% of that with no magnetic field present.

The ECAL resolution was measured during test beams. The energy resolution, mea-

sured by fitting a Gaussian function to the reconstructed energy distributions, is

parameterized as a function of energy:

σ

E
=

S√
E
⊕ N

E
⊕ C (2.5)

where the ⊕ represents a sum in quadrature. The constants, S=2.8, N=.125 and

C=.30 are the stochastic, noise and constant terms, respectively. The ECAL resolu-

tion shown in Fig. 2.6 was measured to be less than 0.50% for a 50 GeV particle.
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Figure 2.6: Measured ECAL resolution from a test beam [4].

The Hadronic Calorimeter

The Hadronic Calorimeter sits between ECAL and the superconducting solenoid mag-

net. The main objective of HCAL is to identify hadronic jets and missing transverse

energy (Emiss
T ).

Similar to electromagnetic objects, hadrons can interact with the material they tra-

verse and form particle showers. Hadronic showers form at CMS as a result of the

hadronic object interacting with absorber plates placed in between scintillating tiles.

Unlike electromagnetic showers, hadronic shower formation varies greatly and can

take a much longer radiation length to fully record all its energy. The HCAL at CMS

is a sampling calorimeter, consisting of alternating brass alloy plates and scintillating
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tile. When a hadron interacts with one of the alloy plates it produces a hadronic

shower which is then recorded by the preceding scintillating tile. Immediately fol-

lowing the scintillating tile is another absorber plate in which the already produced

hadronic shower produces additional showers which are recorded by the adjacent

scintillating tile. The scheme in Fig. 2.7 shows the 17 layers that make up the barrel

component of the Hadronic Calorimeter.

The HCAL barrel (HB) covers a range of |η| <1.4 and surrounds the barrel region

of the Electromagnetic Calorimeter. The HB consists of two half barrels, each of

which is composed of 18 identical wedges 20o wide in φ. Each wedge is made up of

alternate layers of flat brass alloy absorber plates and active plastic scintillator tiles,

with the inner and outer most layers of the wedge made up of stainless steel. The first

scintillator layer in HB is roughly double the thickness in order to sample low energy

showering particles due to the support between the hadronic and electromagnetic

calorimeters. The layer thickness of the scintillator tile and brass alloy vary by layer

number. Table 2.2 shows the thickness of each HB wedge layer. Each scintillator

tiles are 0.08×0.087 in η− φ. Each tile is furnished with a single wavelength shifting

fiber which is intertwined with clear fibers that run down the length of the HB half

barrel and connect to pixelated hybrid photodiodes (HPDs) mounted at the end of

the barrel region of the Hadronic Calorimeter.

Table 2.2: Scintillator tile and brass alloy thickness for each layer in an HB wedge [4].

Layer(s) Scintillator Thickness (mm) Brass Alloy Thickness (mm)
0 9 61

1-8 3.7 50.5
9-14 3.7 56.5
15-16 3.7 mm 75

The HCAL endcap (HE) interlocks with HB, overlapping with tower 16 as shown

in Fig. 2.7 and covers 1.3 < |η| < 3.0. The wedges that makeup HE are similar
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in geometry to the ones present in HB, except that HE wedges are composed of 19

layers, alternating brass alloy and scintillator tiles. The brass alloy plate is 78 mm

thick while the scintillator tile is 3.7 mm. For 1.3 < |η| <1.74 the tiles are the same

size as in HB and for |η| > 1.74 sizing in η − φ varies with respect to tower number.

For more information on the tile sizes for each HE tower refer to [4].

Figure 2.7: Schematic of HB and HE towers. HB and HE overlap at tower 16 [4].

The HCAL Forward (HF) calorimeters are located 11.2 m from the IP and is com-

posed of steel absorbers embedded with long and short quartz fibers, providing a

fast collection of Cherenkov light. Each HF module is made up of 18 wedges with

the quartz fibers running parallel to the beam axis (z) and in alternating in size at a

separation of 5 mm. The fibers are collected at the end of the module and are readout

with phototubes.

2.2.4. The Trigger System

Recording and saving every collision occurring at the LHC is an impossible feat with

the current technology available. The two-tiered trigger system at CMS is designed

to quickly process events from pp collisions and keep only the most interesting events

for analyzing offline.
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The Level-1 Trigger

The LHC expects ≈ 109 interactions/sec, however, only 102 events/sec are selected for

further processing due to limited storage capacity. The Level-1 (L1) Trigger system

is the first step in selecting the most interesting events for further analysis. It uses

local information from the muon system as well as the calorimeters.

The time it takes for signal in the CMS detector to journey through the electronics

to the L1 housing unit is quite small, totaling 3.7µs. Data are held in buffers while

the L1 trigger analyzes the current data in its possession to make a decision as to

whether that event will move on to the next level (roughly 1 out of 1000 events are

kept).

The L1 trigger takes about 1µs to decide if the event is held for further processing.

These trigger objects are formed by reduced granularity and resolution data seen in

trigger towers dispersed throughout the calorimeters and the muon system. The L1

system has an estimated rate of 16 kHz for all the triggers developed for various

analyses.

A variety of L1 triggers are available at CMS that fire when such objects as hadronic

objects, muons and electromagnetic objects are detected. Since the focus of this anal-

ysis are photons, only triggers associated with electromagnetic objects are discussed.

An ECAL trigger tower is formed by 5×5 crystal arrays divided into five strips along

the φ direction. The energy deposits in the trigger tower are summed, giving the

transverse energy (ET ) of the tower. In addition, the HCAL energy deposit directly

behind the ECAL trigger tower is required to be < 5%. Both requirements create

what is called the trigger primitive, which is then used by the L1 trigger to identify

electromagnetic objects in ECAL [46]. The four highest energetic candidates from

ECAL are sent for a final decision as to whether the event has a candidate passing
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the L1 trigger. A candidate must have ET > 15 GeV in order to be accepted by the

L1 trigger for further processing.

High Level Trigger

Once it passes the L1 trigger, the High Level Trigger (HLT) confirms that the event

has the necessary requirements to move on to the next step. Similar to the L1 trigger,

there are a number of HLT paths used for different physics objects, but only the HLT

path used for this analysis is discussed. The HLT used for this analysis requires an

electromagnetic object with an ET threshold higher than required in the L1 trigger.

The trigger used is a single photon trigger, meaning that at least one photon in

the event must meet the ET threshold. Once the candidates pass the L1 and HLT,

reconstruction of particles for analysis can begin. Chapter 4 has further discussion

on the triggers used for this analysis.

2.3. The CMS Computing Infrastructure

As a consequence of the size of the CMS collaboration and its members spanning all

over the globe, there is a need for a computing infrastructure that will allow CMS to

store data in a permanent location, transfer it throughout various parts of the globe

and process it for further analysis. The computing hierarchy is broken into ‘Tiers’,

named Tier-0, Tier-1, Tier-2, and Tier-3 centers which are computing facilities used

to store and process data, generate Monte Carlo samples and provide computing

resources for analyzers.

The first stop for data is the Tier-0 (T0), located at CERN. The tasks of the T0 are

as follows:

• Accepts RAW data passing the CMS Data Acquisition and Trigger System

(TriDAS)
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• Organizes the data into primary datasets based on trigger information

• Saves data collected to a permanent storage system (tape)

• Performs reconstruction on data and reduces data into Analysis Object Data

(AOD)

• Performs calibration on data to obtain any constants needed to run the recon-

struction

The T0 site does not offer any computing resources for analysis as its sole purpose is

to collect and organize data from the detector. The data are then transferred to at

least two Tier-1 (T1) sites where a copy of the dataset is stored securely in the case

the dataset at the T0 is removed or lost. In addition to working as a backup for the T0

site, the T1 sites allow for re-reconstruction of data when improvements are needed

as well as skimming datasets down to a reasonable size for analyzing. It houses data

in AOD format, which takes up considerably less disk space compared to RAW and

RECO format data (0.05 MB/event compared to 0.25 MB/event for RECO and 1-1.5

MB/event for RAW). The T1 sites are located in national laboratories throughout

the globe: the United States, Germany, Italy, France, Spain, Taiwan and the United

Kingdom.

Tier-2 (T2) sites offer considerable computing resources for researchers. It allows

members of the collaboration to analyze data and store files. The T2’s are generally

located at universities and offer whatever computing resources relevant to the group

of users of that T2 site. Monte Carlo production may take place at T2 sites, but

must then be transferred to a T1 in order to keep the amount of disk space used to

a minimum [47].

Tier-3 (T3) sites are comparable in size compared to T2 and offer much of the same

computing resources as a T2 without the lapse time often encountered by connecting
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Figure 2.8: CMS Tier organization.
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to a T2. The T3’s are usually for the use of members of an institution and can be

used for data storage and analysis. Florida International University has a T3 which

has been put to extensive use by the particle physics group, and in particular its

graduate students.

Members of the CMS collaboration have access to the grid computing infrastruc-

ture associated with the experiment through grid interfaces. The grid infrastructure

enables members of the collaboration with access to datasets for analysis that are

located at various sites throughout the globe. The grid computing infrastructure

that stores data and enables analysis on LHC experiments is maintained by members

of the collaboration located at institutions and laboratories across the globe. The

federation of resources is known as the Worldwide LHC Computing Grid (WLCG)

and includes the Open Science Grid (OSG) who supports grid middleware and the

grid operations centers in the US [48]. The majority of the resources used by ex-

perimenters is maintained by the collaboration in partnership with many computing

centers across the globe.

Since it is impossible to contain all the data recorded by the CMS detector in one

location it is necessary that researchers still have access to the data regardless of their

physical geographical location. The grid enables users to access a dataset located in

one part of the globe, run the jobs needed for their analysis and return the output

in yet another part of the globe of their choice. The CMS software package used

to interface with the WLCG is called the CMS Remote Analysis Builder, or CRAB.

CRAB executes jobs in a ‘batch-like’ fashion and once the jobs are finished the output

can either be copied to a storage system of the users choice (they must have an account

set up) or returned to the tier site in which the job was executed. These CRAB jobs

can be executed from one computing location, run at a different location and copied

to another location [49]. The advantage of grid computing is that Other than the
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creation, submission and output collecting done by the user all other tasks performed

by the grid are transparent.
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CHAPTER 3

OFFLINE COMPUTING

The CMS collaboration has developed its own software to process events and analyze

data. The CMS software, CMSSW, was influenced by preceding high energy physics

experiments and is written in the C++ programming language which relies heavily

on an object oriented framework. The software is utilized for the design, evalua-

tion, construction, and calibration of the detector as well as reconstruction of physics

objects (such as electrons, photons and jets) and data analysis. The reconstruction

process for photon and jets are the focus of this section.

3.1. Photon Reconstruction

As photons traverse ECAL, they will deposit ∼94% of their energy within a 3×3

crystal array and ∼97% of their energy within a 5×5 crystal array [12]. Photons

may also convert into e−e+ pairs due to the material present between the IP and the

electromagnetic calorimeter. The magnetic field causes the electron-positron pairs to

spread further in the φ direction.

The energy deposits within neighboring crystals are grouped together to form a

cluster. A group of clusters are then grouped to form superclusters. Since the

crystal arrays differ between EB and EE different clustering algorithms for each re-

gion are used: clusters in EB use the hybrid algorithm while clusters in EE use the

multi 5×5 algorithm.

The hybrid algorithm skips the smaller clustering and instead makes superclusters.

The algorithm looks for the highest ET crystal above 1 GeV that does not already

belong to a supercluster and designates it as the seed crystal. It then looks at the

energy deposits of the neighboring crystals in η and forms a 1×3 crystal domino in

φ−η phase space. It extends further in η to create a 1×5 crystal domino φ−η provided
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the crystals energy exceeds 350 MeV. If this condition is not met, then the 1×3 crystal

domino remains for further clustering. The hybrid algorithm then continues to look

for seed crystals in the φ direction (17 steps to each side of the domino) and groups the

crystals that meet the energy threshold to form a supercluster. Once a supercluster

is formed, the algorithm begins to search again for another seed crystal to form more

superclusters until there are no more crystals with E ¿ 1 GeV.

The multi 5×5 algorithm begins similar to the hybrid algorithm in that it looks for the

highest ET crystal above 180 MeV that is not yet grouped to a cluster and designates it

as the seed crystal for the cluster. Different from the hybrid algorithm, the multi 5×5

then creates an array of 5×5 crystals around the seed crystal. Neighboring crystals of

the 5×5 array may only join if it is a lone highly energetic crystal, meaning that it has

no chance of being grouped with another crystal array. The steps are repeated until

all seed crystals form clusters. Superclusters are formed where overlapping clusters

are grouped together.

The supercluster’s position, x, is calculated by taking a weighted mean of each crystal

within the supercluster, Wi, obtained using the logarithm of the crystal energy:

x =
∑
xiWi∑
Wi

Wi = W0 + log( Ei
ESC

)
(3.1)

where xi is the position of the ith crystal within the supercluster, W0 is a constant,

Ei is the energy of the ith crystal within the supercluster and ESC is the energy of

the supercluster.

If the energy in HCAL directly behind the supercluster is less than 15% of the cluster’s

energy, the supercluster enters the photon collection.
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3.2. Jet Reconstruction

Jets are a collimated shower of hadrons produced during the fragmentation process.

This behavior is a direct result of confinement, which states that colored partons

can not be observed as isolated particles. The reconstruction of charged and neutral

hadrons using the Particle-Flow algorithm is discussed followed by the algorithm used

to group these objects to form jets [16].

3.2.1. The Particle Flow Algorithm

The main sub-detectors used to reconstruct hadrons are the tracking system (for

charged hadrons), ECAL and HCAL (for both charged and neutral hadrons). The

PF algorithm begins in the tracking system with measuring a physics object’s mo-

mentum and direction. The momentum can be measured with great precision in the

tracking system due to its high resolution in comparison with the Hadronic Calorime-

ter. Since the tracking system is closer to the production vertex of the physics object,

it can measure its direction well before any deviation due to the magnetic field occurs.

An iterative-tracking technique is used in order to achieve a high tracking efficiency

while maintaining a low fake-rate. This technique first selects tracks using a strin-

gent track seeding criteria, which are then removed from consideration before the

next iteration of track selection occurs. The first three iterations of track selection

progressively loosens the track seeding criteria; after each iteration the selected tracks

are removed from consideration before the next iteration begins. The forth and fifth

iterations relax the constraints on the origin vertex, allowing to reconstruct tracks

due to secondary particles from such processes as photon conversions and nuclear

interactions with the tracking material.

The next step for both charged and neutral hadrons is calorimeter clustering. The

clustering algorithm is performed independently in each of the following sub-detectors:
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ECAL Barrel, ECAL Endcap, HCAL Barrel, HCAL Endcap, Preshower first layer and

Preshower second layer (the preshower precedes the ECAL Endcap and is discussed

in more detail elsewhere [4]). The algorithm runs as follows: First identify cluster

seeds, which are formed by calorimetric cells that meet or exceed an energy threshold,

then use the cluster seed to form topological clusters, in which cells neighboring the

cluster are combined to it if it exceeds an energy threshold (this threshold varies

by sub-detector but has a value of two standard deviations of the electronic noise).

The position and energy of the cluster is then determined by measuring the distance

between the seed and the remaining cells that make up the cluster and summing the

energy of the cells within the cluster, respectively.

The physics objects reconstructed in the tracking system and the calorimeters must

now be combined in order to form a single particle flow object, which is done through

the use of a link algorithm which combines information from the tracking system

objects and the calorimeter objects (discussed in Chapter 2). The last measured

position of a track is extrapolated to both layers of the preshower, followed by ECAL

(up to a depth consistent with the longitudinal length of an electron shower profile)

and finally HCAL (up to a depth of one interaction length, consistent with a typical

hadronic shower). If the extrapolation of the track position is within any of the cluster

boundaries in the preshower, ECAL or HCAL, that track is then linked to that cluster.

Clusters from ECAL and HCAL may also be linked together if the cluster boundary of

the finer granulated calorimeter overlaps the less granulated calorimeter. For example,

if the preshower cluster overlaps an ECAL cluster then they are linked; similarly, if

the ECAL cluster overlaps an HCAL cluster then they are also linked. Links between

the tracking system and the tracker in the muon system are also done (see Ref. [16]),

but since muons are not studied in this analysis it is not discussed.
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3.2.2. The Anti-kT Algorithm

Similar to the kT [50] and the Cambridge/Aachen [51] jet finding algorithms, the

separation distance in the anti-kT algorithm is defined as:

dij = min(k2p
ti , k

2p
tj )

∆2
i,j

R
(3.2)

where ∆2
ij =

√
(y2
i − y2

j ) + (φ2
i − φ2

j) and kti, yi and φi are defined as the transverse

momentum, rapidity and azimuthal angle for the ith particle, respectively. Consider

an event in which there are several hard particles clearly spaced out and many soft

particles throughout. The distance d1i between hard particle 1 and soft particle i is

determined by ∆2
i,j as well as kt1. Soft particles equidistantly spaced will have a larger

dij, causing soft particles to prefer clustering to hard particles before they cluster with

each other. A hard particle with no other hard particle neighbors within a radius of

2R will result in that hard particle obtaining all the soft particles surrounding it

within a radius of R and create a perfectly conical jet.

If there is a hard particle 2 neighbor within R < ∆ij < 2R of the initial hard

particle 1 then there will be two jets. If kt1 >> kt2 then hard particle 1 will be

conical while hard particle 2 is partly conical, with the area of overlap between 1

and 2 contributing towards jet 1. If kt1 = kt2 neither of the hard particles will be

conical and the overlapping area is equally split between the hard particles [13]. The

distributions in Fig. 3.1 show a visualization of these situations.

3.2.3. Jet Energy Scale

The jet energy deposited in the CMS detector is usually different from the true jet

energy obtained by the particles due mainly to non-linear and non-uniform response

of the detector. In addition, electronic noise and pile-up can further distort the true
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Figure 3.1: Monte Carlo generated particles with soft particles surrounding hard particles
using 4 jet finding algorithms [13].

jet energy. A series of corrections are made in order to obtain the true jet energy: An

offset correction, Eoffset, diminishes any excess energy deposits due to electronic noise

and pile-up; a relative correction CRel, accounts for any variation in the jet response

as a function of η and an absolute correction; and CAbs, accounts for any variation in

the jet response as a function of pT . The expression including these corrections for

the jet energy is:

Ecorrected = (Euncorrected − Eoffset)× CRel(η, p′′T )× CAbs(p′T ) (3.3)

where p′′T is the jet’s corrected pT due to the offset, and p′T = p′′T×CRel(η, pT ) [14].

50



Figure 3.2: Jet Energy Correction Factor, Ecorrected, as a function of Jet η for CALO jets,
Jet-Plus-Track Jets (JPT) and Particle Flow Jets (used in this analysis) [14].
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CHAPTER 4

EVENT SELECTION

4.1. Monte Carlo Samples

Monte Carlo (MC) refers to events generated through the use of computational al-

gorithms. Looking at the generated events however is not enough, since what is

important is how the particles behave within the CMS detector. Generated events

are passed through a simulator mimicking the conditions within the CMS detector.

Simulation of the detector is done using GEANT4 [52]. Once events have passed the

detector simulation the detector’s response to the particles passing through it must

be reproduced, in a process known as digitization.

Event generated samples are used to find the best set of cuts to select the most signal

candidates in data while keeping the amount of background selected to a minimum.

Cut values of these kinematic variables are selected by comparing their distributions

between signal and background and selecting a cut value that effectively separates

them.

This analysis uses the PYTHIA [53] event generator which contains theoretical models

for hard and soft interactions as well as partonic showers (both in the initial and final

state), fragmentation and decays. The fragmentation is simulated using the Lund

string model, in which strings represent the distance between outgoing partons of an

interaction. As the partons gain further distance between them the string breaks,

representing the production of a new parton-antiparton pair. The process of pair

production continues until the hadron’s mass is on-shell, meaning that the system

obeys the classical laws of motion. The 2011 Summer production of PYTHIA MC for

the collaboration is used to compare with data [54]. Signal events are modeled by

generated γ+Jet events while the background is modeled through QCD Jet events.
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A list showing the MC samples used to model signal and background are shown in

Tables 4.1 and 4.2, respectively.

Table 4.1: p̂T ranges and cross sections of the official MC generated events for the CMS
collaboration used to model photons for the analysis.

p̂T range (GeV) Cross Section (pb)
30-50 1.669×104

50-80 2.722×103

80-120 4.472×102

120-170 84.17
170-300 22.64
300-470 1.493
470-800 1.323×10−1

800-1400 3.481×10−3

Table 4.2: p̂T ranges and cross sections of the official MC generated events for the CMS
collaboration used to model background for the analysis.

p̂T range (GeV) Cross Section (pb)
30-50 5.312×107

50-80 6.359×106

80-120 7.843×105

120-170 1.151×105

170-300 2.426×104

300-470 1.168×103

470-600 70.22
600-800 15.55
800-1000 1.844
1000-1400 3.321×10−1

1400-1800 1.087×10−2

The early 2009-2010 data brought to to light the need to tune PYTHIA so that MC

properly modeled data [30] by changing the PDF set used and varying how the UE

and initial state radiation are modeled. The ‘Tune Z2’ has been optimized to properly

reflect the behavior of the UE observed at the experiment.

4.1.1. Pile-up Effects

Pile-up refers to the remaining physics objects present during a collision that origi-

nated from the previous collision. These effects need to be accounted for in the MC
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samples used in the analysis in order to properly model the effect present in data.

The pile-up is accounted for by looking at the number of primary vertices for each

event in both data and MC. One such distribution is shown on the left-hand side in

Fig. 4.1. The data distribution is divided by the MC distribution and a constant is

obtained, which is used to scale any distribution in MC with respect to the number

of primary vertices in that event in order to properly reflect how that distribution

appears with the pile-up effects accounted for. As an example, the number of primary

vertices in MC is corrected using these constants and shown on the right-hand side

in Fig. 4.1 to properly reflect that same distribution in data. The constants used to

weight events due to pile-up are shown in Table 4.3.
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Figure 4.1: Number of primary vertices in data and signal MC (left). The Number of
primary vertices in signal MC after corrected for pileup (right).

4.2. Data Samples

The data recorded by the CMS detector during the 2011 run correspond to about

5.56 fb−1, as shown in Fig 4.2. The L1 trigger required at least one electromagnetic

object with ET >15 GeV. As a result of an increase in instantaneous luminosity

and the limited trigger bandwidth, various pre-scale factors were introduced for HLT

paths with lower pT thresholds. Pre-scale factors are introduced to reduce the use
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Figure 4.2: The total integrated luminosity delivered (blue) and recorded (yellow) during
the 2011 run [15].

of bandwidth during event processing. It reduces the bandwidth usage by reducing

the amount of events allowed to pass the trigger(s), for example if the pre-scale is set

to 10, it will only process one event out of every 10 events that satisfy the trigger

requirements. The HLT path used in this analysis is HLT_Photon30_CaloIdVL,which

accepts events where at least one photon is present with a pT of 30 GeV as the

threshold.

The data were collected during two run periods, known as 2011A and 2011B where

the instantaneous luminosity was increased. Table 4.4 lists the primary datasets used

in the analysis along with their run ranges, total number of events originally present

in each sample and the effective luminosity corresponding to the HLT path used for

the analysis.
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4.3. Variables Used for Analysis

While the L1 and HLT triggers allow the best possible photon candidates into the

data sample, the occurrence of background entering is a common issue in any high

energy physics analysis. In order to reduce the amount of background and maximize

signal, additional cuts need to be applied to candidates.

The cross section of jet production, the background in this study, is about 103 times

larger than the cross section of prompt photon production. In order to reduce the

background, a set of isolation variables are used in data. Prompt photons are expected

to have very little activity within their vicinity as opposed to jets, which can have

energy showers about their central axis. A candidate’s isolation is measured as follows;

first an annulus cone is built in η− φ around the candidate, then the ET within that

cone is summed. If the ET within the cone is below a given maximum then the

candidate is considered to be isolated. The candidate is checked if it is isolated in

three regions of the CMS detector: the Tracking system, the ECAL and the HCAL.

Fig. 4.4 shows the isolation distributions for signal and background MC. The isolation

variables used in this analysis are described in more detail:

• Electromagnetic Isolation (IsoECAL): The ET sum of the electromagnetic recon-

structed hits (ecal rechits) deposited in a hollow cone of ∆R =
√

(∆η)2 + (∆φ)2

between 0.06 to 0.4 around the candidate’s seed crystal, where the inner region

is vetoed in order to allow energy deposits of the candidates. Only those ecal

rechits which have E > 80 MeV are considered for the sum. A ‘footprint’ of

the electromagnetic particles showering is vetoed along a specified strip 0.04 in

the η direction.

• Hadronic Isolation (IsoHCAL): The ET sum of the hadronic reconstructed towers

(hcal towers) in a hollow cone of ∆R between 0.15 to 0.4 around the candidate’s
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seed crystal. Each hcal rechit must pass an energy threshold of 0.9 GeV in

the barrel and 1.4 GeV in the endcap before it can be part of the hcal tower

collection.

• Hollow Cone Track Isolation (IsoTRK): The sum of the tracks pT in a hollow

cone with ∆R between 0.04 to 0.4 around the candidate’s seed crystal. Only

tracks with a pT > 200 MeV are included in the sum.

A correction factor is included in the above isolation variables to account for the pile-

up conditions observed in data. The following correction is applied to all isolation

variables:

Isonew = Isoorig − ρevent × Aeff (4.1)

where Isoorig is the original isolation value, ρevent is the energy density and Aeff

is the effective area obtained by plotting both the isolation variables and ρevent as

functions of the number of primary vertices in the event and taking the ratio of their

slopes [55]. The values for ρevent vary for each event while the values for Aeff are

shown in Table 4.5.

Other variables used to select photon candidates in data are:

• Hadronic Over Electromagnetic (Had/Em): The ratio of energy deposited be-

tween HCAL and ECAL in the area traversed by the candidate.

• Veto Pixel Seed Hit: Vetoes any photon candidates that register a hit in the

tracking systems pixels.

Since the aim of this analysis is to study the angular distributions in the CM frame,

we must also discuss such quantities which include the Lorentz boost in η:
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Sum ET

Figure 4.3: Visual depiction of an isolation cone.

ηboost = tanh−1pz
E

where pz =
∑

i=γ,jets

pzi and E =
∑

i=γ,jets

Ei (4.2)

With ηγ and ηboost, the η of the photon candidate in the CM frame, η∗, can be easily

solved:

η∗ = ηγ + ηboost (4.3)

Another equivalent form of expressing η∗ in terms of ηγ and ηjet is:

η∗ =
ηγ − ηjet

2
(4.4)

where ηjet is taken as the leading jet in the event.
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Figure 4.4: Distributions of the following photon candidate kinematic variables in which
cuts are made to select signal candidates: Ecal Isolation on the upper-left, Hcal Isolation
on the upper-right side, Hollow Cone Track Isolation on the bottom.

4.4. Event Quality Cuts

Once events pass the L1 trigger and HLT path, they are required to have a well defined

vertex in terms of the distance the primary vertex is from the IP on the z-axis, zIP ,

and the minimum amount of reconstructed vertices, Ndof , to ensure a hard collision

has occurred [56]:

• |zIP | < 24 cm

• Ndof > 4
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Events are required to have at least one photon candidate accompanied by at least

one jet per event with both particles meeting their respective pT threshold and η

requirement. The following set of cuts are placed on the leading photon and jet(the

highest pT candidate in the event within the allowed |η| region):

• pγT > 40 GeV

• |ηγ| < 1.4442

• Electromagnetic Isolation(0.06 < ∆R <0.4) < 4.2 + 0.006pγT

• Hadronic Isolation(0.15 < ∆R <0.4) < 2.2 + 0.0025pγT

• Hollow Track Isolation(0.04 < ∆R <0.4) < 2.0 + 0.001pγT

• Had/EM < 0.05

• Veto Pixel Seed Matching (in order to eliminate any electrons that were mis-

reconstructed as a photon)
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Figure 4.5: The pT distribution of photon candidates (left) and the ηγ distribution (right)
for photon candidates with 0.2 < |η∗| < 0.3.

• pjetT > 30 GeV

• |ηjet| < 2.4
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Events in which both the leading photon and jet satisfy the above requirements are

selected for analysis while events in which neither the leading photon or jet satisfy

the above conditions are excluded. The pT threshold is located at a value where the

jet reconstruction is known to be fully efficient. While HCAL extends up to |η| <

5.0, the tracking system only goes to |η| < 2.4 which gives the ability to properly

examine the hollow cone isolation variables between photon and jets. A complete set

of pγT , η
γ, pjetT and ηjet distributions are available (in Appendix A).
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Figure 4.6: The pT distribution of jets (left) and ηjet distribution (right) for jet candidates
with 0.2 < |η∗| < 0.3.

4.5. Efficiencies

The L1 trigger pT threshold is set considerably lower than the HLT paths in order

to be fully efficient at higher pT . The L1 pT threshold is set at 15 GeV while the

HLT path pT threshold is set at 30 GeV, allowing for events to occupy a region that

is 100% efficient at the L1 level [57]. Similarly, the pT threshold for this analysis is

set well above the threshold within the HLT path, at pT > 40 GeV where the trigger

is known to be fully efficient. The distribution in Fig. 4.8 shows that the HLT path

used in this analysis is highly efficient.
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Figure 4.7: Level 1 trigger efficiency as a function of ET [16].

The photon identification efficiency was calculated as a function of |η∗|. Fig 4.9 shows

the efficiency of each individual cut as well as the combined cuts. The denominator

is defined as the number of events in which at least one photon and one jet is present

with their pT thresholds met and within their allowed η region and where the leading

photon and jet have a minimum separation of ∆R > 0.5 to ensure that the photon

is not embedded within the jet. The photon is also required to be matched to a

generator-level photon by requiring that it originates from a stable vertex and that its

particle ID is 22, the value assigned to photons in event generators [2]. The numerator

is defined as those events which pass the denominator requirements and also pass the

photon identification cuts. The pass-fail nature of the efficiency calculation dictates

the use of binomial uncertainties to calculate the efficiency uncertainty:

σ =
√
np(1− p) (4.5)

where n corresponds to the number of trials and p is the probability [58]. For this

analysis, Eq. 4.5 takes the form:
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Figure 4.8: HLT efficiency as a function of pT .

∆ε =

√
ε(1− ε)
D

(4.6)

where ε is the efficiency calculated and D corresponds to the number of entries in the

denominator used to calculate the efficiency. Table 4.6 shows the efficiency values

and its corresponding uncertainties.
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Figure 4.9: Photon identification efficiencies for each individual cut as well as the combined
set of cuts.
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Table 4.3: The weights used to account for pileup according to the number of primary
vertices a MC event reports.

Num. of Primary Vertices Data
MC

1 28.53
2 0.1583
3 0.8281
4 1.499
5 2.031
6 2.274
7 2.263
8 2.138
9 1.980
10 1.866
11 1.803
12 1.794
13 1.812
14 1.834
15 1.855
16 1.900
17 1.933
18 1.973
19 2.057
20 2.262
21 2.477
22 2.709
23 3.092
24 3.507
25 3.861
26 4.413
27 3.841
28 3.693
29 5.129
30 5.813
31 4.423
32 5.000
33 4.286
34 2.571
35 3.000
36 0.000
37 4.000
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Table 4.4: 2011 Datasets used for this analysis. The effective luminosity reflects the amount
of data collected from the trigger used in the analysis.

Dataset Name Run Range Events Eff. Lumi. (pb−1)
/Photon/Run2011A-May10ReReco-v1/AOD 160329-163869 16,323,959 1.26
/Photon/Run2011A-PromptReco-v4/AOD 165071-168437 35,611,946 1.53
/Photon/Run2011A-05Aug2011-v1/AOD 170053-172619 11,949,265 0.188
/Photon/Run2011A-PromptReco-v6/AOD 172620-175770 12,766,763 0.747
/Photon/Run2011B-PromptReco-v1/AOD 175832-180296 29,743,111 1.18

Table 4.5: Additional correction factors for the isolation variables used in the analysis. The
value of ρevent is obtained on an event-by-event basis. These values only reflect candidates
in EB.

Isolation Aeff
Electromagnetic Isolation 0.183

Hadronic Isolation 0.062
Hollow Cone Track Isolation 0.0167

Table 4.6: Photon identification efficiencies and it’s corresponding uncertainty in bins of
|η∗|.

Bin (|η∗|) ε ∆ε
0.05 0.8781 4.907×10−4

0.15 0.8773 5.045×10−4

0.25 0.8763 5.317×10−4

0.35 0.8753 5.773×10−4

0.45 0.8747 6.406×10−4

0.55 0.8765 7.282×10−4

0.65 0.8728 8.662×10−4

0.75 0.8734 1.029×10−3

0.85 0.8733 1.243×10−3

0.95 0.8709 1.539×10−3

1.05 0.8721 1.906×10−3

1.15 0.8730 2.394×10−3

1.25 0.8733 3.026×10−3

1.35 0.8707 3.924×10−3
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CHAPTER 5

BACKGROUND ESTIMATION

5.1. Signal and Background Discrimination

The precise purity fraction is determined by using a variable which has discrimina-

tion power between signal and background. One such variable is σiηiη, defined as

the photon candidate’s energy-weighted shower spread in the η direction, expressed

as:

σiηiη =

∑5×5
i=1 wi(ηi − η5×5)2∑5×5

i=1 wi
; where wi = max(0.47 + ln

E

E5×5

) (5.1)

where E is the energy of the ith crystal, E5×5 is the energy deposited within a 5×5

crystal array, ηi is the η-position of the ith crystal and η5×5 is the η-position of the

seed crystal of the 5×5 crystal array. The distribution in Fig. 5.1 shows the σiηiη

distribution for signal and background overlaid with data. Photons deposit most

of their energy within a 5×5 crystal array, which roughly spans 0.087 in η within

ECAL whereas hadronic showers are less predictable and tend to spread further out.

Appendix C shows a complete set of σiηiη distributions for each |η∗| bin.

The signal template was obtained through the MC samples listed in Table 4.1 while

the background template was obtained using a data-driven technique in which one of

the isolation variables used to select photon candidates is inverted. The data-driven

technique, known as Side-Band-Subtraction (SBS), inverts the hollow cone track

isolation (IsoTRK) cut such that candidates in data with 2.0+0.006*pT < IsoTRK <

5 GeV are selected for the background shape. The motivation behind using the SBS

technique is the difference in behavior between photons and jets; a photon’s shower

shape is expected to be smaller than a jet’s (as shown in Fig. 5.1). For the tracking
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Figure 5.1: Signal (striped histogram) and background (white histogram) templates with
data overlaid (crosses) for σiηiη, the discriminant variable with 0.30 < |η∗| < 0.40. Bottom
shows the area under the curve of the top plot is calculated for every point in σiηiη for signal
MC (squares), background (triangles) and data (circles).

system, this corresponds to having less energy deposits within the annulus cone used

to measure IsoTRK for the photon candidate while having a larger energy deposit

around the jet.

In order to validate that this data-driven technique models the expected background,

the template shapes between QCD MC with photon identification cuts and SBS cuts

were compared to data selected with SBS cuts for each bin in |η∗|. Fig. 5.2 shows

the σiηiη distribution (left) along with the area under that curve (right) for each set

of cuts to data with SBS cuts. The σiηiη distributions between the three background

templates agree with each other. Moreover, the integral of these distributions are in

good agreement, which further solidifies that data selected in the side-band region are

comparable to using QCD MC as the background template for this study. Appendix D

has additional plots showing other bins.
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Figure 5.2: The σiηiη template distribution for QCD MC with photon Identification cuts
(striped histogram), QCD MC with SBS cuts (dotted line) and data with SBS cuts (circles)
on the right and the area under the σiηiη distribution for QCD MC with photon Identification
cuts (closed triangles), QCD MC with SBS cut (open triangles) and Data SBS (open circles)
on the right. Directly below the area plot is the ratio between QCD MC with photon
Identification cuts to Data with SBS cuts (closed triangles) and the ratio of QCD MC with
SBS cuts to data with SBS cuts (open triangles).

A 2-dimensional distribution of σiηiη and IsoTRK is shown in Fig. 5.3 to assist in giving

a better visualization of this technique. The 2-D plane is divided into four regions

containing A, B, C and D events. The horizontal line represents the boundary that

is used to separate photon candidates selected in data with IsoTRK <2.0+0.001*pT

and the candidates in data used for the background template with SBS (note that

candidates beyond IsoTRK >5 GeV are not selected for the background template).

The horizontal line represents the boundary in σiηiη that is used to separate photon

background candidates that were selected using the standard photon identification

cuts.
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Figure 5.3: The σiηiη Vs. IsoTRK 2-dimensional distribution for 2010 data. The plane is
divided into four regions labeled A, B, C and D.

5.2. Purity

The purity in this analysis is determined using the two-bin expression:

P =
Nγ

N
=
fdata − fbkg
fsig − fbkg

(5.2)

The fractions fdata, fsig and fbkg are defined as the fraction of candidates in the data,

signal and background samples that are below the bin boundary of the discriminant

distribution. The method divides the discriminating variable distribution at a point

where the difference between the signal and background distribution is largest. The

bin boundary location was obtained through plotting the area under the curve of the

σiηiη distribution at each point shown in Fig. 5.1, the location of the boundary was

determined to be σiηiη = 0.01; the location where the difference in integrals between

the signal and background distributions is largest. The distribution in Fig 5.4 shows
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the fraction of candidates in signal, background and data as a function of |η∗|. The

fraction errors were calculated using the binomial uncertainty expression:

∆f =

√
f(1− f)

Nentries

(5.3)

where f corresponds to either fdata, fsig or fbkg and Nentries is the number of entries

in the σiηiη for that particular |η∗| bin.
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Figure 5.4: Fraction of candidates in the signal, background and data samples with σiηiη
< 0.01 as a function of |η∗|.

The purity is calculated using Eq. 5.2 and shown in Fig. 5.5 and numerically in

Table 5.2. The purity uncertainty is calculated using the following expression:

(
∆P

P
) = (

dP

dfsig
∆fsig)⊕ (

dP

dfbkg
∆fbkg)⊕ (

dP

dfdat
∆fdat) (5.4)

where ∆fsig,∆fbkg and ∆fdat are the uncertainties reported in Table 5.1.
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Table 5.1: Fraction of candidates below σiηiη =0.01 for data, signal and background along
with their uncertainties.

Bin fdat ∆fdat fsig ∆fsig fbkg ∆fbkg
0.05 0.8569 8.295×10−3 0.9638 2.985×10−4 0.6009 2.269×10−2

0.15 0.8473 8.802×10−3 0.9637 3.071×10−4 0.6089 2.362×10−2

0.25 0.8411 9.018×10−3 0.9630 3.273×10−4 0.6345 2.182×10−2

0.35 0.8520 9.087×10−3 0.9628 3.546×10−4 0.5753 2.343×10−2

0.45 0.8485 9.702×10−3 0.9638 3.893×10−4 0.5724 2.335×10−2

0.55 0.8131 1.129×10−2 0.9626 4.515×10−4 0.5924 2.472×10−2

0.65 0.7964 1.245×10−2 0.9629 5.273×10−4 0.5797 2.426×10−2

0.75 0.8101 1.288×10−2 0.9625 6.348×10−4 0.5933 2.836×10−2

0.85 0.7708 1.552×10−2 0.9615 7.844×10−4 0.5636 2.907×10−2

0.95 0.7865 1.624×10−2 0.9620 9.641×10−4 0.5670 3.311×10−2

1.05 0.7735 1.874×10−2 0.9619 1.215×10−3 0.5200 3.331×10−2

1.15 0.7428 2.239×10−2 0.9655 1.477×10−3 0.6011 3.620×10−2

1.25 0.8081 2.191×10−2 0.9611 2.042×10−3 0.5255 4.266×10−2

1.35 0.7240 3.007×10−2 0.9664 2.488×10−3 0.6281 4.394×10−2

Appendix E discusses in detail how the purity technique used in this analysis is

equivalent to what is known as the ABCD method with was visually shown in the

Fig. 5.3 distribution.

The reliability of the purity calculations were determined using pull distributions.

Pseudo experiments were generated using the number of candidates in data, the

purity and MC templates for both signal and background for each |η∗| bin as follows:

The number of candidates in data, Ndata, was used as the seed to generate a random

number, N rand
data . The number of candidates along with the purity, P , determined in

each |η∗| bin was then used to obtain the number of candidates that contributed to

signal and background using the following expression:

N rand
signal = N rand

data ∗ P

N rand
bkg = N rand

data (1− P )
(5.5)
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Table 5.2: Purity and uncertainty for each |η∗|.
Bin Purity ∆P
0.05 0.7055 2.935×10−2

0.15 0.6719 3.305×10−2

0.25 0.6291 3.690×10−2

0.35 0.7140 2.914×10−2

0.45 0.7053 3.039×10−2

0.55 0.5961 4.072×10−2

0.65 0.5654 4.259×10−2

0.75 0.5872 4.716×10−2

0.85 0.5207 5.243×10−2

0.95 0.5557 5.547×10−2

1.05 0.5738 5.322×10−2

1.15 0.3888 8.639×10−2

1.25 0.6485 6.103×10−2

1.35 0.2834 0.1287

The number of signal and background candidates in each |η∗| bin were then used

to randomize the signal and background templates obtained in Monte Carlo. The

randomized distributions comprise the pseudo data distribution and the purity is

then calculated along with the uncertainty using Eqs. 5.2 and 5.4, respectively. The

purity, Ppseudo, and uncertainty, ∆Ppseudo, calculated is then used to measure the

pull:

pull =
Ppseudo − P

∆Ppseudo
(5.6)

In total, 1000 pseudo experiments were generated to measure the purity pulls. If

the uncertainty is reliable then the pull distribution will have µ=0 (mean) with a

σ=1 (width) in value. The pull distribution shown in Fig. 5.6 is for toy experiment

candidates with 0.4<|η∗| <0.5 and is fitted with a Gaussian function. The mean

reports a value of 0.02125 ± 0.02404, which is consistent with the expected mean.

The σ of the distribution however reports a value of 0.7423 ± 0.0180, which is less
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than the expected value for the width. The low value in the width indicates that

the purity uncertainty is overestimated. The purity uncertainty can be adjusted by

multiplying it by the reported width value reported for each |η∗| bin. Table 5.3 shows

the width reported as well as the corrected purity uncertainty, ∆Pcorr, for each bin

in |η∗|. Appendix F shows the pull distributions for each |η∗| bin.

Table 5.3: The purity uncertainty corrected, ∆Pcorr, using the correction factor, σ, reported
by the pull distributions shown in Appendix F.

Bin σ ∆Pcorr
0.05 0.75 2.201×10−2

0.15 0.71 2.347×10−2

0.25 0.71 2.620×10−2

0.35 0.74 2.156×10−2

0.45 0.74 2.249×10−2

0.55 0.69 2.810×10−2

0.65 0.67 2.854×10−2

0.75 0.70 3.301×10−2

0.85 0.67 3.513×10−2]

0.95 0.32 1.775×10−2

1.05 0.35 1.863×10−2

1.15 0.28 2.419×10−2

1.25 0.39 2.380×10−2

1.35 0.28 3.604×10−2
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Figure 5.5: Purity as a function of |η∗|. The uncertainties shown are calculated using
Eq. 5.4.
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CHAPTER 6

SYSTEMATIC UNCERTAINTIES

The main contributors to the systematic uncertainties are the background template

obtained using the data-driven technique and the η positioning resolution of the jet.

Each contribution is discussed in detail.

6.1. Background Shape
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Figure 6.1: The fraction of candidates below σiηiη = 0.01 for QCD MC with photon
identification cuts (solid triangles), QCD MC selected with SBS cuts (open triangles) and
data selected with SBS cuts (solid circles) on the left. The purity as a function of |η∗| for
QCD MC with photon identification cuts (solid triangles), QCD MC selected with SBS cuts
(open triangles) and Data selected with SBS cuts (solid circles) on the right. Both plots
give similar results for each background template.

It was shown in Chapter 5 that the data driven background template is comparable

with the QCD MC background template, but there are some differences in their final

purity result that will be taken into account as the systematic uncertainty on the

background shape. The left hand plot in Fig. 6.1 shows that the fraction of candidates

in the data driven background template with σiηiη < 0.01 agrees within uncertainty

with the QCD MC background templates (one selected using photon identification

cuts, the other selected in the side-band region) and the right had plot in the same

76



figure shows the resulting purity calculated using the different background templates.

It is these differences that will be used to calculate the systematic uncertainty of the

background shape.

The systematic uncertainty associated with the background shape is calculated as

follows: The |η∗| distribution is plotted using the QCD MC background template

obtained with the inverted IsoTRK , as was done to obtain the data-driven background

template. The difference between the two distributions is taken as the systematic

uncertainty due to the background shape:

∆bkgshape =
|QCDsbs −QCDpho|

QCDsbs

(6.1)

The uncertainties range between 0.4-10.7%, a list of the systematic uncertainties due

to the background shape are shown in Table 6.3. The background template beyond

|η∗|= 1.4 can not be validated due to a lack of statistics in the σiηiη distributions.

Table 6.1: Fraction of candidates with σiηiη < 0.01 for QCD MC candidates selected using
photon identification cuts, QCD MC candidates selected using sbs cuts and data selected
using sbs cuts along with their respective uncertainty.

Bin fbkgQCDpho ∆fbkgQCDpho fbkgQCDsbs ∆fbkgQCDsbs fbkgDatasbs ∆fbkgDatasbs
0.05 0.6122 3.331×10−2 0.6154 3.895×10−2 0.6009 2.269×10−2

0.15 0.6471 3.350×10−2 0.5745 4.164×10−2 0.6089 2.362×10−2

0.25 0.6757 3.344×10−2 0.5405 3.664×10−2 0.6345 2.182×10−2

0.35 0.5928 3.802×10−2 0.6101 3.868×10−2 0.5753 2.343×10−2

0.45 0.5860 3.612×10−2 0.6038 3.879×10−2 0.5724 2.335×10−2

0.55 0.5808 3.812×10−2 0.6386 3.728×10−2 0.5924 2.472×10−2

0.65 0.6338 4.043×10−2 0.5913 4.584×10−2 0.5797 2.426×10−2

0.75 0.6172 4.296×10−2 0.5054 5.184×10−2 0.5933 2.836×10−2

0.85 0.6292 5.120×10−2 0.5393 5.284×10−2 0.5638 2.907×10−2

0.95 0.5922 4.842×10−2 0.6024 5.372×10−2 0.5670 3.311×10−2

1.05 0.6092 5.231×10−2 0.5862 6.467×10−2 0.5200 3.331×10−2

1.15 0.6207 6.371×10−2 0.5400 7.048×10−2 0.6011 3.620×10−2

1.25 0.5870 7.260×10−2 0.5111 7.452×10−2 0.5255 4.266×10−2

1.35 0.6129 8.748×10−2 0.5152 8.700×10−2 0.6281 4.394×10−2
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Table 6.2: Purities calculated using three background templates obtained from QCD MC
candidates selected with photon identification cuts, QCD MC candidates selected with sbs
cuts and data selected with sbs cuts along with their respective uncertainty.

Bin PQCDpho ∆PQCDpho PQCDsbs ∆PQCDsbs PDatasbs ∆PDatasbs
0.05 0.6936 3.728×10−2 0.6908 4.183×10−2 0.7031 2.935×10−2

0.15 0.6301 4.921×10−2 0.6989 3.924×10−2 0.6697 3.304×10−2

0.25 0.5732 5.971×10−2 0.7093 3.294×10−2 0.6265 3.686×10−2

0.35 0.6978 3.944×10−2 0.6831 4.309×10−2 0.7114 2.913×10−2

0.45 0.6923 3.892×10−2 0.6772 4.384×10−2 0.7030 3.037×10−2

0.55 0.6056 4.902×10−2 0.5357 6.344×10−2 0.5933 4.065×10−2

0.65 0.4945 7.271×10−2 0.5504 6.463×10−2 0.5639 4.253×10−2

0.75 0.5560 6.633×10−2 0.6642 4.721×10−2 0.5846 4.708×10−2

0.85 0.4248 9.989×10−2 0.5470 6.742×10−2 0.5194 5.236×10−2

0.95 0.5231 7.602×10−2 0.5096 8.567×10−2 0.5534 5.537×10−2

1.05 0.4647 9.528×10−2 0.4974 9.962×10−2 0.5725 5.316×10−2

1.15 0.3534 0.1357 0.4758 0.1014 0.388074 8.628×10−2

1.25 0.5892 9.868×10−2 0.6583 7.454×10−2 0.6470 6.097×10−2

1.35 0.3142 0.1898 0.4627 0.123181 0.2834 0.1287

6.2. Jet η Position Resolution

The angular distribution depends on how accurate the η positions are for the photon

and jet candidates in data. However, as a result of limitations in resolution and

detector acceptance these quantities may be distorted. In order to obtain the original

(true) η distributions the use of unfolding techniques are applied. It was found (see

Appendix G) that unfolding |η∗| varies the distribution by ¡ 4% in the highest |η∗|

bin.

The systematic uncertainty contribution from the jet’s η resolution was calculated in

the following way: the ηjet was smeared using a Gaussian random number distribution

where σ was taken as:

σ = A+
B√
Ejet
T

(6.2)
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Table 6.3: Number of entries in |η∗| using the background templates obtained from QCD
MC along with the systematic uncertainty due to the background shape.

Bin Ncorr,QCDphoID Ncorr,QCDsbs ∆bkgshape

0.05 0.138252 0.144823 4.753
0.15 0.124604 0.124019 0.4692
0.25 0.125679 0.117194 6.751
0.35 0.116634 0.123452 5.846
0.45 0.104205 0.105447 1.191
0.55 0.073639 0.0813946 10.53
0.65 0.0656527 0.0625033 4.797
0.75 0.0661328 0.0629075 4.877
0.85 0.0418677 0.0395392 5.561
0.95 0.0423814 0.0393583 7.133
1.05 0.0300357 0.0319578 6.399
1.15 0.0193952 0.0176985 8.748
1.25 0.0235877 0.0210464 10.77
1.35 0.0102189 0.00934117 8.589

where A = 0.01 and B = 0.36. With ηjet smeared, |η∗| was re-plotted and the

ratio was taken between the original distribution and the smeared distribution. The

distribution shown in Fig. 6.3 are the raw distributions for |η∗| with the original ηjet

and the smeared ηjet values.

The ratio distribution directly beneath the |η∗| distributions shows that the difference

between the original and smeared distributions is < 4%. The systematic uncertainty

due to the jet η resolution is taken as the uncertainty of the weighted average of the

ratio points:

∆ηjetres =

√√√√∑
i (Ri − 1.0)2 1

∆Ri∑
i

1
∆Ri

(6.3)

where Ri is the ratio between the original and smeared |η∗| value for the ith bin and

∆Ri is the uncertainty of Ri. Eq. 6.3 reports an uncertainty of 2.258% due to the jet

η resolution. Table 6.4 lists the systematic uncertainties for this analysis.
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Table 6.4: Systematic uncertainties for this analysis.
Contribution Uncertainty (%)

Background shape 0.4-10.7%
Jet η position resolution 2.258%
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Figure 6.2: Plot showing |η∗| using two different background templates; Data selected with
SBS cuts and QCD MC selected with photon identification cuts on top. The bottom plot
is the ratio between the two results, taken as the systematic uncertainty of the background
shape. The largest deviation between data and both set of cuts used on QCD is seen in the
highest |η∗| bin.
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CHAPTER 7

THE ANGULAR DISTRIBUTION

The angular distribution is expressed as:

dσ

d|η∗|
=

N × P
ε
∫
Ldt|∆η∗|

(7.1)

where N is the number of events, P is the purity, ε is the efficiency, |∆η∗| is the bin

width and
∫
Ldt is the effective luminosity. Measuring the angular distribution is a

complimentary analysis to the inclusive photon cross section measurement, but with

the added benefit that the analysis is decoupled from parton distribution functions.

The prompt photon angular distribution measurement presented is the first time this

analysis is preformed at CMS as well as for the LHC experiments. It is also the first

time in over a decade that such a test of NLO QCD is performed, with the last tests

made at the Tevatron in the late 20th century.

7.1. NLO Theoretical Prediction

The NLO QCD prediction for the angular distribution used is a program developed

by H. Baer, J. Ohnemus and J. Owens. The theoretical prediction uses 2→2 prompt

photon processes at leading order. At NLO, 2→3 and one loop contributions are pro-

duced [59]. The Feynman diagrams at LO and NLO were discussed in Sections 1.2.1

and 1.2.2 and shown in Figs. 1.10 through 1.13 as well.

7.1.1. Theoretical Uncertainty

The theoretical uncertainty was calculated by varying the factorization and renormal-

ization scales, µF and µR which are traditionally taken to be the same as the pT of the

photon candidate in the event. For consistency, µF and µR were varied by multiplies

of pT in two ways: The first variation is when µF = 2*pγT and µR = 0.5*pγT , the second
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variation is when µF = 0.5*pγT and µR = 2*pγT . The distributions in Fig. 7.1 are the

resulting raw angular distribution on top and the ratio between the scale variations

to the nominal scaling values on the bottom of the figure. The nominal scaling values

are traditionally taken as the pT of the photon candidate. The ratio shown in Fig. 7.1

is taken as the theoretical uncertainty. Table 7.1 shows the values of the theoretical

uncertainty for this analysis.

Table 7.1: Theoretical uncertainty due to varying the factorization scale, µF , and the
renormalization scale, µR.

Bin Uncertainty (+ -)
0.0-0.2 +0.07758 -0.09268
0.2-0.4 +0.08575 -0.09343
0.4-0.6 +0.09010 -0.1128
0.6-0.8 +0.1135 -0.1208
0.8-1.0 +0.1566 -0.1459
1.0-1.2 +0.1796 -0.1500
1.2-1.4 +0.2259 -0.1311

7.2. Results

The entire 5.56 fb−1 of data recorded at CMS during the 2011 run year was analyzed,

which roughly corresponds to about 106 million events. After selecting events based

on the various filters applied to the analysis as well as the photon HLT path about

4.905 pb−1 of data, about 20.7 million events, remained for the analysis. After photon

identification cuts are applied there are ∼14.3K events used to measure the angular

distribution.

The uncertainty contributions for efficiency and purity for each |η∗| bin were dis-

cussed and shown in Tables 4.6 and 5.2, respectively. The luminosity uncertainty is

4% [60]. The uncertainty on the number of candidates in each |η∗| bin are dictated

by Poission statistics (
√
N) [58]. The uncertainties due to the number of candidates,

purity and efficiency were added in quadrature in order to obtain the full uncorrelated

uncertainty:
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∆uncorr =
∆N

N
⊕ ∆P

P
⊕ ∆ε

ε
(7.2)

Table 7.2: Values for the number of candidates (N), and the relative statistical uncertainties
due to the number of candidates (∆N

N ), purity (∆P
P ) and efficiency (∆ε

ε ) for each bin in |η∗|.
Also included are the total uncorrelated (∆uncorr) and correlated (∆corr) uncertainties.

Bin N ∆N
N

∆P
P

∆ε
ε

Ncorr ∆uncorr(%) ∆corr (%)
0.05 2429 0.02029 0.03118 5.588×10−4 397.9 3.71234 6.610
0.15 2275 0.02097 0.03455 5.751×10−4 355.2 4.04183 4.617
0.25 2286 0.02092 0.04090 6.067×10−4 334.6 4.59392 8.166
0.35 2130 0.02167 0.03081 6.595×10−4 354.2 3.76679 7.434
0.45 1947 0.02266 0.03271 7.323×10−4 320.1 3.98013 4.745
0.55 1747 0.02393 0.04747 8.308×10−4 242.2 5.31626 11.49
0.65 1503 0.02579 0.05413 9.924×10−4 198.5 5.99653 6.642
0.75 1350 0.02722 0.05608 1.178×10−3 185.1 6.23441 6.699
0.85 1124 0.02983 0.08154 1.423×10−3 136.6 8.68391 7.213
0.95 911 0.033132 0.03370 1.767×10−3 119 4.72933 8.484
1.05 731 0.036986 0.03113 2.19×10−3 98.1 4.83901 7.877
1.15 583 0.041416 0.05712 2.74×10−3 52.9 7.06058 9.881
1.25 483 0.045502 0.03453 3.46×10−3 73.1 5.72235 11.71
1.35 335 0.054636 0.1111 4.51×10−3 22.2 12.3898 9.740

Table 7.2 shows the number of candidates, the uncertainties used to calculate ∆uncorr

as well as the number candidates corrected for purity, efficiency and luminosity, Ncorr

(obtained using Eq. 7.1) and the systematic (correlated) uncertainty. The correlated

uncertainty was calculated similarly to the uncorrelated uncertainty. The uncertain-

ties due to the background shape and the jet η position resolution were reported

in Chapter 6. These uncertainties along with the luminosity uncertainty were then

added in quadrature to obtain the total correlated uncertainty:

∆corr = ∆bkgshape ⊕∆ηjetres. ⊕
∆
∫
Ldt∫
Ldt

(7.3)

The distribution in Fig. 7.2 shows the angular distribution for 2011 data along with

the NLO theoretical prediction. All distributions are normalized with respect to their
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integrals. The error bars on the data points represent the combined correlated and

uncorrelated uncertainties. The NLO theoretical predication is shown in histogram

format along with its uncertainty due to number of entries and the assigned weight-

ing. The ratio at the bottom of Fig. 7.2 shows that there is little deviation between

the experimental angular distribution and its theoretical prediction at NLO with the

exception of the last point. It is shown that the theory error bars (due to statistics

and assigned weighting) borders the total uncertainties calculated for data, conclud-

ing that given enough statistics in the theoretical prediction there could be better

agreement between data and theory.

The uncorrelated uncertainty varies between 3.7-12.3% with the largest uncertainty

contributing to the 14th bin. The correlated uncertainty varies between 4.6-11.7%.

Beyond |η∗| > 1.4 it is difficult to validate the data-driven technique used to obtain

the background template for this study due to the fact that there are not enough

events to obtain a well-defined σiηiη distribution to compare between the data-driven

template and QCD MC.

7.3. Comparison with Other Next-to-Leading Order Calculations

It was brought to light during the angular distribution analysis of Z+jet events [61, 62]

in which only the exclusive one-jet process is examined that there is a disagreement

in theory between the PYTHIA [53], MADGRAPH [63] and SHERPA [64] event generators

as shown in Fig. 7.4 for the combined electron and muon channels. For comparison

with the Z+jet analysis, the NLO theoretical prediction used in this analysis (dis-

cussed in the previous section) was compared with the predictions given by MADGRAPH

and SHERPA at the generator level. The top distribution on Fig. 7.3 shows the |η∗|

distribution for data overlaid with the NLO prediction used for this analysis (labeled

as ‘Owens’), the SHERPA event generator and the MADGRAPH event generator. The
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MADGRAPH distribution shows a higher value at low compared to our reference NLO

QCD prediction while SHERPA reports a lower value in the same region. At a value of

|η∗| = 0.5, the roles are reversed and is shown to underestimate the distribution com-

pared with Owen’s NLO prediction while SHERPA overestimates the distribution.

The discrepancy observed in SHERPA is suspected to be the result of the value set

on the matching parameter, which associates matrix elements to parton showers, at

the time of event generation [65]. Events were generated such that a photon may be

associated with one or more (up to four) jets in the event. These jets may or may not

originate from the same parton shower, Fig. 7.5 shows a visual representation of the

situation. The matching parameter avoids such double parton counting to occur and

assigns each jet to the correct parton shower it originated from [66]. This parameter

differed between event generators, which leads to comparing different matrix elements

between the NLO predictions and thus causing an inconsistency between SHERPA,

MADGRAPH and Owens.

7.4. Conclusions

The angular distribution, |η∗|, is defined as the difference in η between the leading

photon and leading jet in an event. The angular distribution was measured for the

Compact Muon Solenoid experiment with 5.56 fb−1 of data recorded during the 2011

run year. This is the first measurement of ss kind in over a decade since the early

days of the Tevatron. It is a test of NLO QCD and is directly related to the matrix

element, |M|2 for any given cross section calculation.

The HLT_Photon30_CaloIdVL trigger recorded 4.905 pb−1 of data which was used

to measure the angular distribution. Photons in which its pT > 40 GeV and was

contained within |η| < 1.4 were selected for this analysis. The accompanying jet in

the event must have pT > 30 GeV and be confined within |η| < 2.4. A data-driven
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technique was used to obtain the background template to calculate the purity of the

sample and was validated (up to |η∗| = 1.4) by comparing the template distribution

with QCD MC. The data is in good agreement with NLO theoretical prediction

produced by Baer, Ohnemus and Owens, however discrepancies were discovered when

this prediction was compared with MADGRAPH and SHERPA NLO event generators when

looking at the exclusive case in which only one jet which satisfy the jet selection

criteria is allowed to accompany the photon in an event.

The prompt photon angular distribution measurement is complimentary to such anal-

yses involving the prompt photon cross section and the inclusive jet cross section

measurements, but with notable advantages. The prompt photon cross section mea-

surement is coupled to the parton distribution functions, as shown in Eq. 1.3, while

the angular distribution measurement is decoupled from PDFs, which result in less

sensitivity to the uncertainties associated with the measurement. In measuring the

inclusive jet cross section, the jet identification process is more demanding with vari-

ous algorithms that are currently used to form jets (recall the algorithm used in this

analysis was the Anti-kT algorithm, discussed in Section 3.2.2). The differences in

how each jet finding algorithm may need to be further studied in order to validate any

differences observed in the experimental results and could cause further complication.

Not only is the angular distribution measurement of prompt photons a test of NLO

QCD, but it is also a simple and direct measurement of the matrix element, |M|2,

the most vital component in any cross section calculation.
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Figure 7.2: The angular distribution, |η∗|, for 2011 data is represented by the black circles
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The right side depicts each parton shower forming an individual jet. The matching
parameter avoids double counting of parton showers in cases like the left side example
where more than one jet may be formed by the same parton shower.
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APPENDIX A

LEADING PHOTON AND LEADING JET KINEMATICS

The following distributions represent the kinematic distributions of the leading photon

and leading jet for each bin in |η∗| for the 2011 data collected using the HLT_Photon30_CaloIdVL

trigger (Due to sizing they begin on the following page).
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Figure A.1: The leading photon’s pT and η distributions (top) and the leading jet’s pT and
η distributions on bottom for candidates with 0.0< |η∗| <0.1.
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Figure A.2: The leading photon’s pT and η distributions (top) and the leading jet’s pT and
η distributions on bottom for candidates with 0.1< |η∗| <0.2.
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Figure A.3: The leading photon’s pT and η distributions (top) and the leading jet’s pT and
η distributions on bottom for candidates with 0.2< |η∗| <0.3.
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Figure A.4: The leading photon’s pT and η distributions (top) and the leading jet’s pT and
η distributions on bottom for candidates with 0.3< |η∗| <0.4.
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Figure A.5: The leading photon’s pT and η distributions (top) and the leading jet’s pT and
η distributions on bottom for candidates with 0.4< |η∗| <0.5.
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Figure A.6: The leading photon’s pT and η distributions (top) and the leading jet’s pT and
η distributions on bottom for candidates with 0.5< |η∗| <0.6.
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Figure A.7: The leading photon’s pT and η distributions (top) and the leading jet’s pT and
η distributions on bottom for candidates with 0.6< |η∗| <0.7.
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Figure A.8: The leading photon’s pT and η distributions (top) and the leading jet’s pT and
η distributions on bottom for candidates with 0.7< |η∗| <0.8.
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Figure A.9: The leading photon’s pT and η distributions (top) and the leading jet’s pT and
η distributions on bottom for candidates with 0.8< |η∗| <0.9.
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Figure A.10: The leading photon’s pT and η distributions (top) and the leading jet’s pT
and η distributions on bottom for candidates with 0.9< |η∗| <1.0.
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Figure A.11: The leading photon’s pT and η distributions (top) and the leading jet’s pT
and η distributions on bottom for candidates with 1.0< |η∗| <1.1.
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Figure A.12: The leading photon’s pT and η distributions (top) and the leading jet’s pT
and η distributions on bottom for candidates with 1.1< |η∗| <1.2.
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Figure A.13: The leading photon’s pT and η distributions (top) and the leading jet’s pT
and η distributions on bottom for candidates with 1.2< |η∗| <1.3.
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Figure A.14: The leading photon’s pT and η distributions (top) and the leading jet’s pT
and η distributions on bottom for candidates with 1.3< |η∗| <1.4.
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APPENDIX B

PURITY EXPRESSION DERIVATION

The purity is defined as the fraction of signal candidates in data:

P =
Nsig

N
(B.1)

In a template, the candidates in data, N , is a combination of the signal in which this

analysis is focused (photons) and background (QCD jets). This is expressed as:

N = Nsig +Nbkg (B.2)

A boundary is placed on the template such that it effectively separates the background

contribution from signal. The contribution of signal and background in data is now

represented by the following expression:

εdatN = εsigNsig + εbkgNbkg (B.3)

where εdat, εsig and εbkg represent the fraction of candidates below the boundary in

data, signal and background templates, respectively. Multiplying both sides of Eq. B.2

by −εbkg and summing Eqs. B.2 and B.3 shows that the last term cancels out, giving

the following:

−εbkgN = −εbkgNsig − εbkgNbkg

εdatN = εsigNsig + εbkgNbkg

N(εdat − εbkg) = Nsig(εsig−bkg)

(B.4)
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Dividing both sides by N gives the expression for purity given in Eq. B.1 gives the

two-bin purity expression. Solving for P gives the two-bin purity expression:

εdat − εbkg
εsig−bkg

= P (B.5)
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APPENDIX C

TEMPLATE SHAPES

The following distributions show the σiηiη distribution as well as the area under that

curve for signal, background and data for each bin in |η∗|.
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Figure C.1: The σiηiη distribution for photon candidates with 0.0 < |η∗| < 0.1 for signal,
background and data.
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Figure C.2: The σiηiη distribution for photon candidates with 0.1 < |η∗| < 0.2 for signal,
background and data.

113



ηiηiσ
0 0.005 0.01 0.015 0.02 0.025 0.03

0

100

200

300

400

500

600

700

800

Signal MC

QCD BG

Data

*| < 0.30η0.20< |

ηiηiσ0 0.005 0.01 0.015 0.02 0.025 0.03

In
te

gr
al

0

0.2

0.4

0.6

0.8

1

1.2

1.4 Signal MC

QCD BG

Data

Figure C.3: The σiηiη distribution for photon candidates with 0.2 < |η∗| < 0.3 for signal,
background and data.
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Figure C.4: The σiηiη distribution for photon candidates with 0.3 < |η∗| < 0.4 for signal,
background and data.
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Figure C.5: The σiηiη distribution for photon candidates with 0.4 < |η∗| < 0.5 for signal,
background and data.
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Figure C.6: The σiηiη distribution for photon candidates with 0.5 < |η∗| < 0.6 for signal,
background and data.
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Figure C.7: The σiηiη distribution for photon candidates with 0.6 < |η∗| < 0.7 for signal,
background and data.
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Figure C.8: The σiηiη distribution for photon candidates with 0.7 < |η∗| < 0.8 for signal,
background and data.
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Figure C.9: The σiηiη distribution for photon candidates with 0.8 < |η∗| < 0.9 for signal,
background and data.
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Figure C.10: The σiηiη distribution for photon candidates with 0.9 < |η∗| < 1.0 for signal,
background and data.
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Figure C.11: The σiηiη distribution for photon candidates with 1.0 < |η∗| < 1.1 for signal,
background and data.
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Figure C.12: The σiηiη distribution for photon candidates with 1.1 < |η∗| < 1.2 for signal,
background and data.
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Figure C.13: The σiηiη distribution for photon candidates with 1.2 < |η∗| < 1.3 for signal,
background and data.
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Figure C.14: The σiηiη distribution for photon candidates with 1.3 < |η∗| < 1.4 for signal,
background and data.
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APPENDIX D

A DATA-DRIVEN TECHNIQUE IN BACKGROUND MODELING

The following plots show the σiηiη distribution and the integral under the σiηiη dis-

tribution in each bin in |η∗| for the three background templates compared in order

to validate the data-driven technique used to model the expected background in this

analysis: QCD MC selected using photon identification cuts, QCD MC selected in

the side-band region and data selected in the side-band region. The integral distribu-

tions for signal and data are also included in order to show that all three background

integrals fall below the data integral while the signal integrals are above both the

data and background integrals, as expected.
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Figure D.1: The σiηiη distribution for photon candidates with 0.0 < |η∗| < 0.1 for the
various background shapes used in this analysis.
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Figure D.2: The σiηiη distribution for photon candidates with 0.1 < |η∗| < 0.2 for the
various background shapes used in this analysis.
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Figure D.3: The σiηiη distribution for photon candidates with 0.2 < |η∗| < 0.3 for the
various background shapes used in this analysis.
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Figure D.4: The σiηiη distribution for photon candidates with 0.3 < |η∗| < 0.4 for the
various background shapes used in this analysis.
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Figure D.5: The σiηiη distribution for photon candidates with 0.4 < |η∗| < 0.5 for the
various background shapes used in this analysis.
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Figure D.6: The σiηiη distribution for photon candidates with 0.5 < |η∗| < 0.6 for the
various background shapes used in this analysis.
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Figure D.7: The σiηiη distribution for photon candidates with 0.6 < |η∗| < 0.7 for the
various background shapes used in this analysis.

123



ηiηiσ
0 0.005 0.01 0.015 0.02 0.025 0.03

0

20

40

60

80

100

120

140

160

QCD MC

Data-SBS

QCD-SBS

| < 0.80η∆0.70< |

ηiηiσ0 0.005 0.01 0.015 0.02 0.025 0.03

In
te

gr
al

0

0.2

0.4

0.6

0.8

1

1.2

QCD MC

Data-SBS

QCD-SBS

Signal MC

Data-Signal

| < 0.80η∆0.70< |

Figure D.8: The σiηiη distribution for photon candidates with 0.7 < |η∗| < 0.8 for the
various background shapes used in this analysis.
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Figure D.9: The σiηiη distribution for photon candidates with 0.8 < |η∗| < 0.9 for the
various background shapes used in this analysis.
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Figure D.10: The σiηiη distribution for photon candidates with 0.9 < |η∗| < 1.0 for the
various background shapes used in this analysis.
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Figure D.11: The σiηiη distribution for photon candidates with 1.0 < |η∗| < 1.1 for the
various background shapes used in this analysis.
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Figure D.12: The σiηiη distribution for photon candidates with 1.1 < |η∗| < 1.2 for the
various background shapes used in this analysis.
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Figure D.13: The σiηiη distribution for photon candidates with 1.2 < |η∗| < 1.3 for the
various background shapes used in this analysis.
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Figure D.14: The σiηiη distribution for photon candidates with 1.3 < |η∗| < 1.4 for the
various background shapes used in this analysis.
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APPENDIX E

COMPARISONS BETWEEN THE TWO-BIN METHOD AND ‘ABCD’

METHOD

The ‘ABCD’ method of background estimation considers the number of candidates

present in a 2-dimensional distribution of uncorrelated variables in regions labeled A,

B, C and D represented in the following expression:

NA

NC

=
NB

ND

(E.1)

Fig. E.1 shows such a 2D distribution with the y-axis labeled as σiηiη and the x-axis

labeled as IsoTRK . Photon identification dictates that photon candidates are selected

with IsoTRK < 2 GeV. Therefore, the remaining candidates in data with IsoTRK >2

GeV will not qualify as a good candidate. In addition, the discriminant variable σiηiη

depicts photon candidates to have a smaller shower shape than background, as was

shown in Fig. 5.1. Photon candidates in data will populate region A, since it has

candidates with σiηiη below the maximum allowed value as well as IsoTRK <2 GeV

as per photon identification, though there will also be background contributions in

this region such that A = N sig
A + N bkg

A , while the remaining regions B, C and D are

assumed to be filled with background (i.e. B = N bkg
B , C = N bkg

C and D = N bkg
D ).

Using Eq. E.1 the background contribution can be estimated in region A:

N bkg
A =

BC

D
(E.2)

The signal present is then:

S =
AD − BC

D

D
(E.3)
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Figure E.1: The 2-dimensional plane in which the variables used for estimating background
in data is defined. The plane is broken up into 4 sections; A, B, C, and D.

Recalling the expression given for the two-bin purity in Eq. 5.2, the following expres-

sions arise:

fdat = A
A+C

fsig = c

fbkg = B
B+D

(E.4)

where c = A
A+C

. Subsituting the above expressions into Eq 5.2 the expression be-

comes:

S =
AD −BD

Dc−B(1− c)
(E.5)

as c → 1(assuming no signal in region C) Eq. E.5 gives the same expression as

129



Eq. E.3, thus showing that the two-bin purity is an equivalent method to determine

the background estimation in data as the ‘ABDC’ method.
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APPENDIX F

PULL DISTRIBUTIONS

The following plots show the pull distributions for all |η∗| bins. The mean and σ from

the Gaussian fitting is reported on the upper right side of the plot. The mean for all

the pull distributions are at about 0 while the width of the distributions are less than

1, indicating that the purity uncertainty is overestimated. The uncertainties were

adjusted (values shown in Table 5.3) using the following expression:

∆Pcorr = σ ∗∆P (F.1)

where σ is the width reported by the Gaussian fit and ∆P is the original purity

uncertainty.
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Figure F.1: Purity pull distribution for candidates in pseudo data with 0.0 < |η∗| < 0.1.
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Figure F.2: Purity pull distribution for candidates in pseudo data with 0.1 < |η∗| < 0.2.
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Figure F.3: Purity pull distribution for candidates in pseudo data with 0.2 < |η∗| < 0.3.
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Figure F.4: Purity pull distribution for candidates in pseudo data with 0.3 < |η∗| < 0.4.
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Figure F.5: Purity pull distribution for candidates in pseudo data with 0.4 < |η∗| < 0.5.
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Figure F.6: Purity pull distribution for candidates in pseudo data with 0.5 < |η∗| < 0.6.
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Figure F.7: Purity pull distribution for candidates in pseudo data with 0.6 < |η∗| < 0.7.
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Figure F.8: Purity pull distribution for candidates in pseudo data with 0.7 < |η∗| < 0.8.
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Figure F.9: Purity pull distribution for candidates in pseudo data with 0.8 < |η∗| < 0.9.
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Figure F.10: Purity pull distribution for candidates in pseudo data with 0.9 < |η∗| < 1.0.
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Figure F.11: Purity pull distribution for candidates in pseudo data with 1.0 < |η∗| < 1.1.
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Figure F.12: Purity pull distribution for candidates in pseudo data with 1.1 < |η∗| < 1.2.
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Figure F.13: Purity pull distribution for candidates in pseudo data with 1.2 < |η∗| < 1.3.
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Figure F.14: Purity pull distribution for candidates in pseudo data with 1.3 < |η∗| < 1.4.
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APPENDIX G

UNFOLDING THE ANGULAR DISTRIBUTION

Measurements of physical observables can be distorted as particles traverse the de-

tector. These distortions are caused by finite resolution or limited acceptance of the

detector. An expression relating the distorted and the true distribution of physical

observables is written as:

R̂t = m (G.1)

where t is the true distribution, m is the measured distribution and R̂ is known

as the response matrix. The response matrix describes the distortions expected of

measured observables and is usually built through the use of simulated events of

particles traversing the detector [67]. Eq. G.1 can be re-organized in terms of

solving for the true distribution:

t = R̂−1m (G.2)

where the response matrix is now inverted and operates on the measured observable

m. Using Eq. G.2 we can now unfold what the true distribution is for measured

observables. There are a variety of techniques used to unfold distributions in data,

however we will only focus on the methods used for this analysis.

This analysis focused on unfolding the angular distribution in the CM frame of prompt

photon candidates. The response matrix was built using Monte Carlo generated

events with particles simulated going through the CMS detector. The generator level

|η∗| information fills the rows of the matrix while the reconstruction |η∗| fills the

columns. A 2-D representation of the response matrix is shown in Fig. G.1.

It is important to note the high occupancy of the diagonal terms in the matrix. Having

the diagonal terms with non-zero values ensures the matrix can be easily inverted for

the purpose of unfolding the measured angular distribution.
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Figure G.1: The 2-D representation of the response matrix.

The RooUnfold package was used to unfold the angular distribution in this analy-

sis [68, 69]. RooUnfold interfaces to the ROOT data analysis package program and

implements various unfolding techniques at the same time. The advantage of this

package is that it implements various unfolding techniques commonly used in high

energy physics to easily compare their results. The package also propagates the

systematic uncertainty associated with unfolding measured distributions with little

difficulty. The following unfolding techniques are implemented in RooUnfold and

were used in this study:

• Bin-by-bin

• D’Augostini

• Singular Value Decomposition

• Matrix Inversion
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Bin-by-bin

The bin-by-bin unfolding technique is simply a correction factor. It measures

the difference between the reconstructed and the generated distributions (from

MC) for the variable to be unfolded and assigns it as the correction factor for

the measured distribution.

Matrix Inversion

The entries in the 2-D response distribution shown in Fig. G.1 and the measured

distribution are entered into matrices and entered in Eq. G.2. Since the 2-D

distribution is not singluar (none of the diagonal terms are 0) it can easily be

inverted. The distribution resulting from multiplying the inverted matrix with

the measured matrix is the unfolded solution.

D’Agostini

D’Agostini unfolding as an iterative technique in which the reconstructed and

generated distributions from MC are used to create a smearing matrix which

gives the probability that the outcome of the measured distribution is caused

by a physics process [70]. In the case of unfolding the angular distribution, the

resolution effects of the electromagnetic calorimeter is the process which gives

the resulting measured distribution. This matrix is then used to generate one

distribution at a time, the idea being that each iteration agrees more with the

generated distribution. This analysis used four iterations, the result is shown

on the top left plot of Fig. G.2

Singular Value Decomposition

SVD unfolding may be used in the case when the inverted matrix of Eq. G.2

varies widely due to statistical fluctuations. These statistical fluctuations are
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smoothed out through regularization [67]. The regularization parameter in this

analysis is given the same value as the number of bins in the measured distri-

bution, as suggested by the literature.

Fig. G.2 shows the unfolded solutions using the techniques discussed. Not only

is there little difference between the techniques, but there is also little differ-

ence between the unfolded and measured distribution. Therefore, no unfolding

is made in the analysis and instead the difference between the unfolded and mea-

sured distribution is taken as a systematic uncertainty in the jet pT resolution.
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Figure G.2: Results for all four unfolding techniques, the upper left distribution was
unfolded using the D’Augositini unfolding technique, the upper right distribution
was unfolded using the Bin-by-Bin technique, the lower left distribution was unfolded
using the Singular Value Decomposition (SVD) technique, and the lower right distri-
bution was unfolded using the matrix inversion technique. All unfolded results vary
by less than 1% from their measured distributions, as shown by the ratio plots located
directly beneath each distribution.
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APPENDIX H

FRAGMENTATION PHOTONS

As a side study, the contribution of fragmentation photons was studied by

varying IsoECAL and IsoHCAL by ± 1 GeV each. The idea is that the looser

isolation criteria will allow more fragmentation photons while the tighter criteria

allows less. The presence of fragmenation photons would be evident at the

tail-end of the |η∗| distribution. An increase in more fragmentation photons

would result in a less-downward slopping |η∗| distribution while a decrease in

fragmentation photons would result in a more-downard slopping distribution.

Fig H.1 shows the |η∗| distribution using the nominal set of isolation cuts, loose

isolation cuts and tight isolation cuts. There appears to be no effect on the

amount of fragmentation photons allowed in the sample. To ensure that these

varied isolation distributions are correct, they are compared to NLO predictions,

as shown in Fig. H.2 which show they are in good agreement.
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Figure H.1: Angular distribution for the nominal (black), loose (green) and tight (blue)
isolation criteria overlaid with NLO theory predictions.
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Figure H.2: Angular distribution when isolation is tight (left) and when isolation is loose
(right). Both figures have their NLO theoretical prediction overlaid as well as the the-
ory/data ratio (below) showing good agreement.
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APPENDIX I

PILE-UP

When making distributions with MC, it is important (especially when calculat-

ing the identification cut efficiencies) to re-weight with respect to the observed

pile-up effect in data. As mentioned in the main body text, the pile-up was

calculated using the number of primary interactions in each event. The number

of primary interactions was plotted in the MC sample used in this analysis and

in data. The ratio between the those distributions in data and MC was used

to re-weight MC in order to properly reflect the pile-up conditions observed in

data. While variables such as the pT and isolations are affected by pile-up the

template used in this analysis to estimate the purity, σiηiη was not. This is

shown in Figs. I.1, I.2 and I.3 where the σiηiη distributions with different num-

ber of primary vertices, the mean value of those distributions as a function of

number of primary vertices and the RMS of those distributions as a function of

number of primary vertices are shown, respectively.
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Figure I.1: The template distribution σiηiη for different number of primary vertices. The
shape of the distribution shows no sign of change with different number of primary vertices.
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Figure I.2: The mean value of each σiηiη distribution as a function of number of primary
vertices. The mean is constant.
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Figure I.3: The RMS of each σiηiη distribution as a function of number of primary vertices.
The RMS is constant.
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APPENDIX J

CORRECTING fbkg - A SECOND APPROACH IN MEASURING

|η∗|

A second method used to calculate the purity involved correcting the term fbkg,

which corrected the fraction of candidates with σiηiη < 0.01 in the background

template such that:

f ′bkg = fbkg + (f
qcdphoId
bkg − f qcdsbsbkg ) (J.1)

where f
qcdphoId
bkg represents the fraction of candidates in the background template

with σiηiη < 0.01 obtained from QCD MC with photon identification cuts applied

and f qcdsbsbkg represents the same fraction obtained from QCD MC with the side

band subtraction cut applied. The purity term in the angular distribution

expression shown in Equ. 7.1 is affected by correcting fbkg, which in term causes

the angular distribution to vary. The motivation behind this method was to

find a way to reduce the correlated uncertainty associated with the background

shape. However, this method shows a larger fluctuation from the theoretical

NLO prediction. Correcting fbkg obtained from the data-driven background

template gives the distribution shown in Fig. J.1. This technique does not

appear to assist in gaining further knowledge about the angular distribution or

how to reduce the correlated uncertainties calculated for this analysis.
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Figure J.1: The angular distribution, with fbkg corrected which affects the purity term in
the angular distribution expression and hence the overall distribution.
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