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ABSTRACT OF DISSERTATION 

CROSS-LAYER DESIGN FOR ENERGY EFFICIENCY ON DATA CENTER 

NETWORK 

by 

Tosmate Cheocherngngarn 

Florida International University, 2012 

Miami, Florida 

Professor Deng Pan, Co-Major Professor 

Professor Jean Andrian, Co-Major Professor 

Energy efficient infrastructures or green IT (Information Technology) has 

recently become a hot button issue for most corporations as they strive to eliminate every 

inefficiency from their enterprise IT systems and save capital and operational costs. 

Vendors of IT equipment now compete on the power efficiency of their devices, and as a 

result, many of the new equipment models are indeed more energy efficient. Various 

studies have estimated the annual electricity consumed by networking devices in the U.S. 

in the range of 6 - 20 Terra Watt hours. 

Our research has the potential to make promising solutions solve those overuses 

of electricity. An energy-efficient data center network architecture which can lower the 

energy consumption is highly desirable. First of all, we propose a fair bandwidth 

allocation algorithm which adopts the max-min fairness principle to decrease power 

consumption on packet switch fabric interconnects. Specifically, we include power aware 

computing factor as high power dissipation in switches which is fast turning into a key 

problem, owing to increasing line speeds and decreasing chip sizes. This efficient 
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algorithm could not only reduce the convergence iterations but also lower processing 

power utilization on switch fabric interconnects. Secondly, we study the deployment 

strategy of multicast switches in hybrid mode in energy-aware data center network: a 

case of famous Fat-tree topology. The objective is to find the best location to deploy 

multicast switch not only to achieve optimal bandwidth utilization but also minimize 

power consumption. We show that it is possible to easily achieve nearly 50% of energy 

consumption after applying our proposed algorithm. Finally, although there exists a 

number of energy optimization solutions for DCNs, they consider only either the hosts or 

network, but not both. We propose a joint optimization scheme that simultaneously 

optimizes virtual machine (VM) placement and network flow routing to maximize energy 

savings. The simulation results fully demonstrate that our design outperforms existing 

host- or network-only optimization solutions, and well approximates the ideal but NP-

complete linear program. To sum up, this study could be crucial for guiding future eco-

friendly data center network that deploy our algorithm on four major layers (with 

reference to OSI seven layers) which are physical, data link, network and application 

layer to benefit power consumption in green data center. 
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CHAPTER I 

INTRODUCTION 

Current data center networks exhibit poor power efficiency, because network 

devices are run at full capacity all the time regardless of the traffic demand and 

distribution over the network. Total energy consumption of network devices in data 

centers of the US in 2006 was starting at 3 billion kWh. It has been shown that network 

devices consume 20% ~ 30% energy in the whole data center [Heller et al., 2010] and the 

ratio will grow with the rapid development of power-efficient hardware and energy-

aware scheduling algorithm on the server side [Nedevschi et al., 2009].  

 

1.1 Objective 

The ultimate goal of this research is to make network power proportional to actual 

amount of traffic using as few network devices as possible to provide the routing service, 

with little or no sacrifice on the network performance. As servers themselves become 

more energy proportional with respect to the computation that they are performing, the 

network becomes a significant fraction of cluster power. Meanwhile, the idle network 

devices can be shut down or put into sleep mode for energy saving. Data center networks 

show that energy-aware routing can effectively save power consumed by network 

devices. In this research we propose several ways to optimize a green network topology 

whose power consumption is more proportional to the amount of traffic it is transmitting. 

Making these information and product exchanges possible are thousands of data 

centers, which house about 10 million computer servers in the United States and 20 

million worldwide. Operating these devices—running 24 hours a day, 7 days a week—
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requires significant amounts of electricity [Morgan, 2006]. For some utilities, data centers 

have become a major portion of load requirements. For example, Austin Energy, which 

serves a high-tech region in Texas, estimates that about 8.5 percent (200 MW) of its 

power is sold to data centers. Large server users such as Yahoo and Google are 

increasingly mindful of electric costs and are building new server “farms” in places like 

the Pacific Northwest to take advantage of the region’s low electricity rates [Loper and 

Parr, 2007]. 

 

1.2 Contributions 

As those motivating examples not only demonstrate the significance of this study, 

but also pinpoint a major problem that needs to be tackled before a feasible solution is 

realized. Today’s data center network suffers from the non-linear relationship between 

cost and performance. Therefore, our research has the potential to make promising 

solutions solve such problems. With the customization on four major layers to reinforce 

our proposed algorithm, an energy-efficient data center network architecture which can 

lower the energy consumption is highly desirable. 

 

1.3 Background and Related Works  

With the development of information technology, applications require more 

resources to be integrated together to achieve both performance and efficiency as energy 

efficiency becomes a major challenge in the resource integration problem. Consequently, 

Data Center Networking has attracted great interests from academia and industry.   
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However, there is a difficulty in shutting off the unused links or idle line cards. 

Because this strategy is combined with component-level and link-level solutions to 

achieve higher network energy efficiency, the implementation complexity increases. 

Network-level solutions require network-wide coordination of routers. The challenges are 

two-fold, namely how to manipulate the routing paths to make as many idle links as 

possible to maximize the power conservation, and how to achieve power conservation 

without significantly affecting network performance and reliability. Since power-aware 

traffic engineering uses fewer numbers of links at any moment, it is important to make 

sure that links are not overloaded and packets do not experience extra-long delay. 

Due to the current practice of tree topology, recently there have been many 

proposals on new topologies for data centers. These topologies can be divided into two 

categories. One is switch-center topology, i.e., putting interconnection and routing 

intelligence on switches, such as Fat-Tree [Al-Fares et al., 2008] and VL2 [Greenberg et 

al., 2009]. In contrast, the other category is server-centric, namely, servers, with multiple 

NIC ports, also participate in interconnection and routing. BCube [Guo et al., 2009] and 

FiConn [Li et al., 2009], all fall into the latter category. Abts et al. [Abts et al., 2010] 

identified FBFLY – Flattened Butterfly topology. They showed that FBFLY can provide 

nearly 60% power savings compared to full utilization. 

In a recent work, Heller et al. [Nedevschi et al., 2009] proposed a network-wide 

power manager named ElasticTree to extend the idea of power proportionality into the 

network domain, as first described by Barroso [Barroso and Hlzle, 2007]. ElasticTree 

optimizes the energy consumption of Data Center Networks by turning off unnecessary 

links and switches during off-peak hours. It also models the problem based on the Multi-
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Commodity Flow - MCF model, but is focused on Fat-Tree or similar tree-based 

topologies. ElasticTree takes link utilization and redundancy into consideration when 

calculating the minimum-power network subset. 

Nedevschi et al. [Nedevschi et al., 2008] proposed a buffer-and-burst approach 

which shapes traffic into small bursts to create greater opportunities for network 

components to sleep. The same work also brings up the idea of rate-adaptation, which 

adjusts operating rates of links according to the traffic condition. This work is also 

focused on link level solutions. 

There were also more and more concerns with energy saving in data center 

network. New low-power hardware and smart cooling technologies were effective 

methods to save energy. Intel Research proposed and evaluated a proxy architecture 

which used a minimal set of servers to support different forms of idle-time behavior for 

saving energy. A similar idea was proposed in [Srikantaiah et al., 2008], which believed 

that consolidation of applications in cloud computing environments could present a 

significant opportunity for energy optimization. 

 

1.4 Scope of the Dissertation 

The goal of this study is to have an integrated design of the potential benefits to 

the power efficiency of green data center, based on our cross-layer approach. Energy 

awareness can be advised based on the results of our proposed assumption. The following 

brief descriptions of the three major chapters, explain the objectives, algorithms and 

methodologies used in developing this study.  
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Chapter II, entitled “FAIR BANDWIDTH ALLOCATION ALGORITHM FOR 

ENERGY EFFICIENCY ON PACKET SWITCH FABRIC INTERCONNECTS”, 

dealing with bit energy (physical layer) and fabric switch architecture (data link layer) 

uses queue length proportional allocation criterion, which allocates bandwidth to a best 

effort flow proportional to its queue length, giving more bandwidth to congested flows. In 

addition, the algorithms adopt the max-min fairness principle, which maximizes 

bandwidth utilization and maintains fairness among flows. It specifies the amount of 

bandwidth that each flow can use, and is calculated based on the total requested and 

available bandwidth. It should be feasible in order to be applied in practice, and should be 

efficient to fully utilize transmission capacity. Moreover energy efficiency on networking 

devices becomes very critical. In this work, we propose a fair bandwidth allocation 

algorithm to decrease power consumption on packet switch fabric interconnects. 

Specifically, we include power aware computing factor as high power dissipation in 

switches which is fast turning into a key problem, owing to increasing line speeds and 

decreasing chip sizes. This efficient algorithm could lower processing power utilization 

on switch fabric interconnects.  

Chapter III, entitled “DEPLOYMENT OF A HYBRID MULTICAST SWITCH 

IN ENERGY-AWARE DATA CENTER NETWORK: A CASE OF FAT-TREE 

TOPOLOGY”, coping with one-to-many distribution on Ethernet multicast addressing 

(data link layer) and IP multicast (network layer) presents a deployment of a multicast 

switch in green data center as recently, energy efficiency or green IT has become a hot 

issue for many IT infrastructures as they attempt to utilize energy-efficient strategies in 

their enterprise IT systems in order to minimize operational costs. Networking devices 
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are shared resources connecting important IT infrastructures, especially in data center 

network they are always operated 24/7 which consume a huge amount of energy and it 

has been obviously shown that this energy consumption is largely independent of the 

traffic through the devices. As a result, power consumption in networking devices is 

becoming more and more a critical problem, which is of interest for both research 

community and general public. Multicast benefits group communications in saving link 

bandwidth and improving application throughput, both of which are important for green 

data center. In this work, we study the deployment strategy of multicast switches in 

hybrid mode in energy-aware data center network: a case of famous Fat-tree topology. 

The objective is to find the best location to deploy multicast switch not only to achieve 

optimal bandwidth utilization but also minimize power consumption. We show that it is 

possible to easily achieve nearly 50% of energy consumption after applying our proposed 

algorithm. 

Chapter IV, entitled “JOINT HOST-NETWORK OPTIMIZATION FOR 

ENERGY-EFFICIENT DATA CENTER NETWORKING”, involving flow routing 

(network layer) and VM migration (application layer) develops a joint host-network 

optimization. Data centers consume significant amounts of energy. As severs become 

more energy efficient with various energy saving techniques, the data center network 

(DCN) has been accounting for 20% to 50% of the energy consumed by the entire data 

center. While DCNs are typically provisioned with full bisection bandwidth, DCN traffic 

demonstrates fluctuating patterns. The objective of this work is to improve the energy 

efficiency of DCNs during off-peak traffic time by powering off idle devices. Although 

there exist a number of energy optimization solutions for DCNs, they consider only either 
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the hosts or network, but not both. In this work, we propose a joint optimization scheme 

that simultaneously optimizes virtual machine (VM) placement and network flow routing 

to maximize energy savings. We formulate the joint optimization problem as an integer 

linear program, which is NP complete, and then propose a practical solution. First, to 

effectively combine host and network based optimization, we present a unified 

representation method that converts the VM placement problem to a routing problem. In 

addition, to accelerate processing the large number of servers and an even larger number 

of VMs, we describe a parallelizing approach that divides the DCN into clusters based on 

subnet IP addresses, and processes the clusters in parallel for fast completion. Further, to 

quickly find efficient paths for flows, we propose a fast topology oriented multipath 

routing algorithm that uses depth-first search to quickly traverse between hierarchical 

switch layers and uses the best-fit criterion to maximize flow consolidation. Finally, we 

have conducted extensive simulations to compare our design with existing ones. The 

simulation results fully demonstrate that our design outperforms existing host- or 

network-only optimization solutions, and well approximates the ideal but NP-complete 

linear program. 
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CHAPTER II 

FAIR BANDWIDTH ALLOCATION ALGORITHM FOR ENERGY 

EFFICIENCY ON PACKET SWITCH FABRIC INTERCONNECTS 

Queue length proportional allocation criterion, which allocates bandwidth to a 

best effort flow proportional to its queue length, gives more bandwidth to congested 

flows. In addition, the algorithms adopt the max-min fairness principle, which maximizes 

bandwidth utilization and maintains fairness among flows. It specifies the amount of 

bandwidth that each flow can use, and is calculated based on the total requested and 

available bandwidth. It should be feasible in order to be applied in practice, and should be 

efficient to fully utilize transmission capacity. In this chapter, we propose a fair 

bandwidth allocation algorithm to decrease power consumption on packet switch fabric 

interconnects. We first formulate the problem based on the allocation criterion and 

fairness principle. Then, we present a sequential algorithm and prove that it achieves 

max-min fairness. To accelerate the allocation process, we propose a parallel version of 

the algorithm, which allows different input ports and output ports to conduct calculation 

in parallel, resulting in fast convergence. Specifically, we present simulation data to 

demonstrate that the parallel algorithm is effective in reducing the convergence iterations. 

Finally, we include power aware computing factor as high power dissipation in switches 

which is fast turning into a key problem, owing to increasing line speeds and decreasing 

chip sizes. This efficient algorithm managing physical layer and data link layer could 

lower processing power utilization on switch fabric interconnects. 
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2.1 Introduction 

Energy efficiency is becoming increasingly important in the operation of 

networking infrastructure, especially in enterprise and data center networks. Energy 

efficient infrastructures or green IT has recently become a hot button issue for most 

corporations as they strive to eliminate all inefficiency from their enterprise IT systems 

and save capital and operational costs. Vendors of IT equipment now compete on the 

power efficiency of their devices, and as a result, many of the new equipment models are 

indeed more energy efficient. However, compared to other IT devices such as servers and 

laptops, energy efficiency of networking equipment has only recently received attention 

since networks, being a shared resource, are expected to be always on. Plus, power 

consumed by the network is significantly growing. Various studies have estimated the 

annual electricity consumed by networking devices in the U.S. in the range of 6 - 20 

Terra Watt hours [Nordman, 2008]. According to figures, the total energy consumption 

of network devices in data centers of the US in 2006 was starting at 3 billion kWh. It has 

been shown that network devices consume 20% ~ 30% energy in the whole data center 

[Heller et al., 2010], and the ratio will grow with the rapid development of power-

efficient hardware and energy-aware scheduling algorithm on the server side [Nedevschi 

et al., 2009].  

The switch fabric circuit is the fundamental building block inside a network 

router, it distributes all network traffic from ingress ports to egress ports shown in Figure 

2.1 [Langen et al., 2000]. The performance of switch fabrics is very critical in network 

applications. While most attention is focused on speed and capacity issues of switch 

fabrics, power consumption is becoming more serious problem [Mahadevan, 2010]. 
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Figure 2.1 Example of switch fabric architecture. 

 

There are many different switch fabric architectures used in network routers. They 

have different characteristics in terms of bandwidth, throughput and delay [Chao, 2001]. 

In our research, we will focus on the power consumption analysis of the packet switch 

architecture, and estimate how the power consumption scales with the fair bandwidth 

allocation algorithm based on the approach of D.Pan and Y.Yang. 

Regardless of the switch types and fair scheduling algorithms, it is necessary to 

calculate a feasible and efficient bandwidth allocation scheme as the basis for packet 

scheduling [Hosaagrahara and Sethu, 2008]. The bandwidth allocation scheme specifies 

the amount of bandwidth that a flow can use to transmit packets. On the one hand, the 

scheme must be feasible in order to be applied in practice. In other words, the total 

bandwidth allocated to all the flows at any input port or output port cannot exceed its 
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available bandwidth. On the other hand, the scheme should be efficient, which means to 

fully utilize any potential transmission capacity and allocate bandwidth in a fair manner. 

A bandwidth allocation scheme must be carefully calculated in order to be 

feasible and efficient. On the one hand, if the bandwidth is optimum utilized, the energy 

used to transmit the packets in each flow is also minimally utilized. On the other hand, if 

the bandwidth is underutilized, the energy used to transmit those same packets in each 

flow is wasted seriously. It is very necessary to optimum scale the claimed bandwidth of 

each flow to waste the power sufficiently.  

 

2.2 Background and Related Works 

We provide a brief overview of switch structures and corresponding scheduling 

algorithms based on pre-defined bandwidth allocation.  

Switches buffer packets at three possible locations: output ports, input ports, and 

cross points, and can be consequently divided into several categories. Output queued 

(OQ) switches have buffers only at output ports. Since there is no buffer at the input side, 

if multiple input ports have packets arriving at the same time that are destined to the same 

output port, all the packets must be transmitted simultaneously. Thus, OQ switches need 

large speedup to achieve optimal performance, and are not practical [Pan and Yang , 

2009]. On the other hand, since all the packets are already in output buffers, OQ switches 

can run various fair queueing algorithms, such as WFQ [Parekh and Gallager, 1993] and 

DRR [Shreedhar and Varghese, 1996], to provide different levels of performance 

guarantees. The fair queueing algorithm schedules packets to ensure the allocated 

bandwidth of each flow as in the ideal GPS [Parekh and Gallager, 1993] fluid model.  
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Input queued (IQ) switches have buffers at input ports, and eliminate speedup 

requirements. Input buffers are usually organized as multiple virtual output queues 

(VOQ) [McKeown et al., 1999], with a logical separate queue for flows to a different 

destination, to avoid the Head of Line (HOL) blocking. Scheduling algorithms based on 

allocated bandwidth for IQ switches try to emulate the corresponding fair queueing 

algorithms for OQ switches with iterative matching. For example, iFS [Ni and Bhuyan, 

2003] and iDRR [Zhang and Bhuyan, 2003] emulate WFQ [Parekh and Gallager, 1993] 

and DRR [Shreedhar and Varghese, 1996], respectively. In addition, WPIM [Stiliadis and 

Varma, 1995] improves PIM [Anderson et al., 1993] with bandwidth enforcement and 

provides probabilistic bandwidth guarantees. However, those algorithms cannot duplicate 

the exact packet departure time to achieve perfect emulation. 

Combined input-crosspoint queued (CICQ) switches and combined input-output 

queued (CIOQ) switches are special IQ switches with additional buffers at output ports 

and crosspoints, respectively. Such switches are shown to be able to perfectly emulate 

certain OQ switches with small speedup. Thus, various scheduling algorithms [Magill et 

al., 2003], [Mhamdi and Hamdi, 2003], [Pan and Yang, 2008], [Turner, 2009] have been 

proposed to duplicate the packet departure time of existing fair queueing algorithms for 

OQ switches, and provide desired performance guarantees.  
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Figure 2.2 Switch structure 

 

2.3 Power Modeling with Bit Energy 

A packet switch fabric circuit is an on-chip interconnect network [Langen et al., 

2000]. The power consumption on switch fabrics comes from three major sources: 1) the 

internal node switches; 2) the internal buffer queues; and 3) the interconnect wires. Inside 

the switch fabrics, different packets travel on different data paths concurrently, and the 

traffic load on each data path may change dramatically from time to time. To estimate the 

dynamic power consumption in this multi-process interconnect network, we model our 

power consumption based on new approach: the Bit Energy proposed by T.Ye, L. Benini, 

and G. Micheli [Ye et al., 2002]. The bit energy is defined as the energy consumed for 

each bit when the bit is transported inside the switch fabrics from ingress ports to egress 

ports. The bit energy is the summation of the bit energy consumed on node switches, 

internal buffers and interconnects wires. Researches in [Moustafa et al., 1999] and 

[Oktug and Caglayan, 1997] show that buffer size of a few packets will actually achieve 

ideal throughput under most network traffic conditions. 
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Table 2.1 Buffer bit energy of internal buffer consumption in Switch fabric 

Input ports Total energy used (joule) 

2 128 

4 128 

8 140 

16 154 

32 222 

64 301 

128 413 

256 576 

 

We analyse the power consumption based on a new modeling approach: the Bit 

Energy by T.Ye et al in Table 2.1. The switch fabric architecture is constructed 

hierarchically. A network switch consists of four main parts:  1) the ingress packet 

process unit, 2) the egress packet process unit, 3) the arbiter (determines when and where 

a packet should be routed from the ingress ports to the egress ports) and 4) the switch 

fabrics is an interconnect network that connects the ingress ports to the egress ports.  

The bit energy Ebit, is defined as the energy consumed for each bit when the bit is 

transported inside the switch fabrics from ingress ports to egress ports. The bit energy Ebit 

is the summation of the bit energy consumed on node switches, ESbit, on internal buffers, 

EBbit , and on interconnect wires, EWbit . According to Ye et al, EBbit on internal buffers is 

a significant part of total energy consumption of switch fabrics due to buffer penalty, and 
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the buffer energy will increase very fast as the packet flow throughput increases. We will 

consider only this source of power consumption in our research. 

Internal buffers is used to temporarily store the packets in buffer when contention 

between packets occurs at ingress and egress ports shown in Figure 2.3. The less number 

of packets stored in buffers, the less power consumed. The energy consumption in buffers 

comes from two sources: 1) the data access energy, consumed by each READ or WRITE 

memory access operation, and 2) the refreshing energy, consumed by the memory 

refreshing operation (in the case of DRAM). The bit energy on the internal buffers can be 

expressed by the following equation EBbit = Eaccess + Eref where Eaccess is the energy 

consumed by each access operation and Eref is the energy consumed by each memory 

refreshing operation. The bigger memory spaced, the higher energy consumed. In reality, 

memory is accessed on word or byte basis instead of a single bit, the Eaccess is actually the 

average energy consumed for one bit.   

The energy consumed by memory access is determined by the contentions 

between the ingress packets. As discussed earlier, we are interested in comparing the 

power consumption on different packet scheduling under the same network traffic, 

therefore, we assume the destination contention has already been resolved by the arbiter 

before the ingress packets are delivered to the switch fabrics. We only compare the 

internal buffer energy consumption occurred from interconnect contention. on the 

intermediate nodes between ingress and egress ports as shown in Figure 2.3. They direct 

the packets from input ports to the next stage until reaching the destinations. The less 

number of packets stored, the less power used.   
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Figure 2.3 Three major power consumptions on a switch fabric. 

 

2.4 Queue-length Proportional and Max-min Fair Bandwidth Allocation 

We formulate the switch bandwidth allocation problem, present the solution 

algorithms, and prove that they achieve the design goals.  

 

2.4.1 Problem Formulation 

We consider an N×N switch as shown in Figure 2.2, without assuming any 

specific switching fabrics to make the analysis general. Use Ini (Outj ) to denote the ith 

input (jth output) port, and IBi (t) (OBj (t) ) to denote its leftover bandwidth at time t, after 

satisfying requests of guaranteed-performance flows. Our algorithms work in a cycle 

mode, i.e. allocating bandwidth at the beginning of each new cycle. Thus we consider 

only the statues of all the variables at the same time, and omit the time parameter t in the 
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variables for easy reading. We use the input queue length as the bandwidth allocation 

criterion, to allocate bandwidth to more congested flows. We do not consider output 

queues and crosspoint queues, because the former stores packets already transmitted to 

output ports, and the latter have limited and small capacities.  

Denote the best-effort flow from Ini to Outj as Fij , and use Qij to represent its 

input queue length at time t. Use Rij to denote the allocated bandwidth of Fij at time t. 

Define the ratio between Rij and Qij to be the bandwidth share Sij , i.e. 

ij

ij
ij

Q

R
S           (2.1) 

which represents the bandwidth allocated to each unit of the queue length. If Fij 

has no buffered packets at t, i.e. Qij = 0, set Rij and Sij to zero as well. Define the 

bandwidth share matrix S to be the N × N matrix formed by all Sij , which determines the 

bandwidth allocation scheme. 

We now define feasibility for bandwidth allocation. A bandwidth allocation 

scheme is feasible if there is no over-subscription at any input port or output port, i.e. 

jiji

j

ij OBRj ,IBRi
i

        (2.2) 

Note that feasibility only makes a bandwidth allocation scheme possible to be 

applied in practice. However, a feasible scheme may not be an efficient one. Thus, we 

adopt max-min fairness to make the best use of available bandwidth and allocate 

bandwidth in a fair manner. 

We next define fairness based on the max-min fairness principle. A bandwidth 

allocation scheme is max-min fair if it is feasible and there is no way to increase the 

allocated bandwidth of any flow without reducing the allocated bandwidth of another 
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flow with a lower bandwidth share value. Formally, a feasible bandwidth share matrix S 

is max-min fair, if for any feasible bandwidth share matrix S’ the following condition 

holds 

)S'  S  S  (S   S S' j'i'j'i'j'i'j'i' ij ij ij       (2.3) 

As can be seen, the objective of max-min fairness is twofold: increasing the 

bandwidth share of each flow as much as possible to fully utilize available bandwidth, 

and maximizing the minimum bandwidth share of all the flows to achieve fairness. 

Theorem 1: A max-min fair bandwidth allocation scheme is unique. 

Proof: By contradiction, assume that two bandwidth allocation matrices S and S’ 

are both max-min fair, and S ≠ S’ . Without loss of generality, assume that Sij is the 

smallest entry among all the ones in S that are different from their counterparts in S’, i.e. 

)S  S  S'  (S  ΛS' S ijj'i'j'i'j'i' ij ij j'i'        (2.4) 

We look at two possible cases regarding the relationship between Sij and S’
ij . 

Case 1: Sij < S’
ij. Because S is max-min fair and S’ is feasible, by the definition 

there exist i' and j’ such that Si'j’ ≤ Sij and Si’j’> S’
i'j’. Define x = i' and y = j’ , and we have 

Sij ≥ Sxy and Sxy >S’
xy. 

Case 2: Si’j’> S’
ij. Define x = i and y = j, and we have Sij ≥ Sxy and Sxy >S’

xy.  

Noting that in both cases Sxy >S’
xy, because S’ is max-min fair and S is feasible, 

there exist x’ and y’ such that S’
x’y’ ≤ S’

xy and S’
x’y’ > Sx’y’, and therefore S’

xy > Sx’y’ . 

Since Sx’y’ ≠ S
’
x’y’ and Sij is the smallest different entry in S, we have Sx’y’ ≥ Sij . Combined 

with the previous inequality S’
xy > Sx’y’, we obtain S’

xy >Sij , which is a contradiction with 

Sij >S’
xy obtained in the above two cases. 
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Next, we give the definition of bottleneck ports, which will be the base to 

calculate a max-min fair bandwidth allocation scheme. Given a bandwidth share matrix, a 

port is the bottleneck port of a flow if the flow has the highest bandwidth share among all 

the flows traversing the port, and the bandwidth of the port is fully allocated. Formally, 

Ini is a bottleneck port of flow Fij in satisfaction matrix S if  

i

x

ixix ij' ij IB  RS ΛS Sj'          (2.5) 

and Outj is a bottleneck port of Fij in S if 

j

x

xjxj ji' ij OB  RS ΛS Si'          (2.6) 

The following theorem shows how to calculate max-min fair bandwidth 

allocation. 

Theorem 2: A feasible satisfaction scheme is max-min fair if and only if each flow 

has a bottleneck port in it.  

Proof: Assume that S is a feasible bandwidth share matrix and each flow has a 

bottleneck port in S. Suppose S’ is also feasible and S’
ij >Sij . Then we know that Sij < S’

ij. 

Since each flow has a bottleneck port in S, we first assume that Ini is a bottleneck port of 

Fij in S. By the definition of bottleneck ports, we know that ∀j’ Sij ≥ Sij’ and ∑j SijRij = 

IBi.On the other hand, since S’ is feasible, we have ∑j S
’
ijRij ≤ IBi and thus ∑x S

’
ixRix ≤ ∑x 

SixRix. Because S’
ij > Sij , there must exist j’ such that Sij’ > S’

ij’ , otherwise we can obtain 

the contradiction that ∑x S
’
ixRix > ∑x SixRix. Noticing that Sij ≥ Sij; , we have found i' = i 

and j’ such that Si’j’≤ Sij and Si’j’> S’
i'j’ , and thus S is max-min fair. Similar reasoning can 

be applied to the case that Outj is a bottleneck port of Fij in S. 
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2.4.2 Sequential Bandwidth Allocation Algorithm 

We are now ready to present the bandwidth allocation algorithm. The main idea is 

to find the bottleneck ports for all the flows in an iteration manner, after which a max-min 

fair bandwidth share scheme is obtained by Theorem 2.  

We define some notations before describing the algorithm. Initialize the 

bandwidth share of each flow to zero, i.e. Sij = 0. Define the remaining bandwidth of a 

port Ini (Outj) at the beginning of the nth iteration to be the available bandwidth that has 

not been allocated, and denote it as Bi∗ (n) (B∗j (n)), i.e. 

 
S

QS IB (n)B
0ix

ixixi *i 


        (2.7) 

 
S

QS OB (n)B
0xj

xjxjj j* 


        (2.8) 

Define the remaining queue length of a port Ini (Outj) at the beginning of the nth 

iteration to be the total queue length of the flows that have not been assigned bandwidth 

share values, and denote it as Qi∗ (n) (Q∗j (n)), i.e.  

 
S

Q  (n)Q
0ix

ix *i 


         (2.9) 

 
S

Q  (n)Q
0xj

xj j* 


         (2.10) 

Define the bandwidth share of a port Ini (Outj ) at the beginning of the nth iteration 

to be the ratio of the remaining bandwidth and remaining queue length, and denote it as 

Si∗ (n) (S∗j (n)), i.e. 

(n) Q

(n) B
 (n) S

*i

*i
*i          (2.11) 
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(n) Q

(n) B
 (n) S

j*

j*
j*          (2.12) 

In each iteration, the algorithm first finds the port with the smallest bandwidth 

share, and assigns the bandwidth share of the port to its flows without bandwidth share 

values. As will be formally shown later, the port is the bottleneck port of all such flows. 

Processing the ports one by one guarantees that eventually each flow will have a 

bottleneck port. 

In detail, each iteration consists of the following three steps. 

1) Calculation: Calculate the bandwidth share of each remaining port. 

2) Comparison and Assignment: Select the port with the smallest bandwidth 

share, and assign the value as the bandwidth share of all the remaining flows of the port. 

3) Update: Remove the above selected port and the flows assigned bandwidth 

share values. Update the remaining bandwidth and queue length for each of the rest ports.  

In the following, we show that the proposed algorithm achieves max-min fairness. 

Lemma 1: The bandwidth share of a port does not decrease between iterations. 

Proof: Without loss of generality, assuming that the port is an input port Ini, we 

show that Si∗(n) ≥ Si∗(n+1). The proof for an output port is similar. 

First, assume that a different input port Ini’ instead of Ini is selected in the nth 

iteration with the smallest bandwidth share. Because Ini’ and Ini have no common flows, 

the remaining bandwidth and queue length of Ini do not change, and thus 

 (n) S
(n) Q

(n) B

1)(n Q

1)(n B
 1)(n S *i

*i

*i

*i

*i
*i 


      (2.13) 
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Next, assume that an output port Outj is selected in the nth iteration with the 

smallest bandwidth share. Note that S∗j(n) ≤ Si∗(n) and that Fij will be assigned the 

bandwidth share value of S∗j(n) , and we have 

1)(n Q

1)(n B
 1)(n S

*i

*i
*i


        

               =  
Q - (n) Q

(n)S * Q - (n) B

ij*i

j*ij*i
 

                
Q - (n) Q

(n)S * Q - (n) B

ij*i

*iij*i  

               =  
(n) Q

(n) B

*i

*i
 

               (n) S *i         (2.14) 

Theorem 3: The bandwidth allocation algorithm achieve max-min fairness. 

Proof: The key is to see that if a port assigns bandwidth share for a flow, then it is 

the bottleneck port of the flow. 

Without loss of generality, assume that Fij is assigned bandwidth share by Ini in 

the nth iteration. Consider another flow Fij’ of Ini. If Fij is assigned bandwidth share by 

Outj in an earlier iteration m, based on Lemma 1 we have Sij’ = S∗j(m) ≤ Si*(m) ≤ Si*(n) = 

Sij . Otherwise, if Fij’ is assigned bandwidth share by Ini in the same iteration we know Sij’ 

= Si∗(n) = Sij . Therefore, Fij has the largest bandwidth share among all flows of Ini. In 

addition, since Ini is selected in the nth iteration, all its remaining bandwidth is fully 

allocated, i.e. Bi∗(n) = Si∗(n)Qi∗(n). Based on Theorem 2, we know that S is max-min fair. 
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           (a) Ports correlated                (b) Ports divided into independent sets 

Figure 2.4 Parallel processing for independent port sets. 

 

The time complexity of the algorithm is O(NlogN), because the algorithm runs 

O(N) iterations and the sorting operation in each iteration takes O(logN), As can be seen, 

the algorithm finds bottleneck ports sequentially, and requires O(N) iterations in both the 

best and worst cases. Large-size switches thus need long convergence time, which creates 

obstacles for high speed processing.  

 

2.4.3 Parallel Bandwidth Allocation 

To accelerate the bandwidth allocation process, we propose a parallel version of 

the algorithm. The design is based on the observation that an input (output) port only 

needs to be compared with the output (input) ports which it has a flow heading to 

(coming from). After some iterations, an input (output) output has flows only to (from) a 

small number of output (input) ports. It is thus possible to find multiple bottleneck ports 

in a single iteration by parallel comparison. For example, in Figure 2.4(a), the ports are 

correlated with each other. However, in Figure 2.4(b), it is easy to see that two port sets 
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{In1, In2, Out1} and {In3, Out3, Out4} are independent, and that bandwidth allocation can 

be conducted in parallel in the two sets. 

Similarly, each entry of the bandwidth share matrix S is initialized to zero. The 

parallel algorithm also works in iterations. One iteration of the algorithm consists of the 

following three steps, each of which can be conducted by different input and output ports 

in parallel.  

1) Calculation and Distribution: An input (output) port Ini (Outj) calculates its 

bandwidth share, and sends the result to every output (input) port that it has a flow 

heading to (coming from). 

2) Comparison and Assignment: An input (output) port Ini (Outj) compares its 

own bandwidth share with that of every output (input) port received in the first step. If its 

bandwidth share is the smallest, the value is assigned as the bandwidth share for all its 

remaining flows.  

3) Notification and Update: An input (output) port Ini (Outj) notifies every output 

(input) port its bandwidth share, if it has the smallest bandwidth share in the second step. 

The output (input) port will then know that the flow Fij has been assigned a bandwidth 

share, and updates its remaining bandwidth and queue length. Flows already assigned 

with bandwidth share are removed. 

We show that the parallel algorithm also achieves max-min fairness. 

Theorem 4: The parallel bandwidth allocation algorithm achieves max-min 

fairness. 

Proof: It is easy to see that Lemma 1 still applies to the parallel algorithm. Thus, 

with the same reasoning as in the proof of Theorem 3, we know that if a port assigns its 
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bandwidth share to a flow, then it is the bottleneck port of the flow. Since each flow has a 

bottleneck port, by Theorem 2 the bandwidth allocation scheme is max-min fair. 

 

2.5 Results and Discussions 

We now present simulation results to demonstrate the effectiveness of the parallel 

bandwidth allocation algorithm. In the simulations, we consider switch sizes of 2n with n 

from 1 to 10. We assign random values between 0 and 10000 as the queue lengths for the 

flows. For a specific switch size, we conduct 20 simulation runs for the sequential 

algorithm and parallel algorithm each, and calculate the average number of convergence 

iterations. Figure 2.5 shows the simulation results. As can be seen, although the 

convergence iteration numbers of both algorithms grow approximately linearly with the 

switch size, the result of the parallel algorithm increases much slower than that of the 

sequential algorithm. In detail, the average convergence iteration number of the 

sequential algorithm is about twice of the switch size, which is consistent with the 

analysis. The reason is that a switch of size N has N input ports and N output ports, and 

each iteration of the sequential algorithms finds one bottleneck port. On the other hand, 

due to parallel processing at each port, the average convergence iteration number of the 

parallel algorithms is about half of the switch size. We can thus make the conclusion that 

the parallel algorithm is effective in reducing the running time 
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Figure 2.5 Convergence iteration numbers of sequential and parallel algorithms. 

 

Then we run another simulation to implement energy efficiency with queue length 

proportional allocation and without. The requested bandwidth at each port is generated 

randomly with the scale of 6. The simulation results show that the average power 

consumption based on the parallel algorithm with max-min fairness principle to 

maximize bandwidth utilization outperforms the random bandwidth allocation. A figure 

below reflects the energy efficiency on switch fabric. Considering only major 

consumption is caused by Internal Buffer consumption. More number of packets stored in 

buffer, more energy wasted.  
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Figure 2.6 Internal buffer power consumption of switch interconnects. 

 

A final figure is the summary of energy efficiency on N x N crossbars. As can be 

seen, the switch running parallel bandwidth allocation scheme could save energy up to 

10-14% comparing to the random allocation. The bigger the size, the better energy 

saving. Explicitly, it can be seen that our parallel algorithm is effective in reducing the 

power consumption. 
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Figure 2.7 Energy efficiency on NxN crossbars switch. 

 

2.6 Conclusions 

In this work, we have studied bandwidth allocation for best effort flows in a 

switch. We propose the queue-length proportional allocation criterion, the max-min 

fairness principle, and bandwidth allocation algorithms that are independent of switch 

structures and scheduling algorithms. First, we formulate the problem, and define 

feasibility and fairness for bandwidth allocation. Then, we present the first version of the 

algorithm, which calculates the allocation bandwidth in a sequential manner. 

Furthermore, to accelerate the algorithm convergence, we propose a parallel version of 

the algorithm, by allowing different input ports and output ports to conduct calculation in 

parallel. We prove that both the sequential and parallel algorithms achieve the initial 
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design objectives. Particularly, we present simulation data to demonstrate that the parallel 

algorithm is effective in reducing the convergence iterations. Lastly, we have shown that 

fair bandwidth allocation for switches could not only allocate the feasible bandwidth for 

each flow at both input and output ports, but also utilize the bandwidth of each flow 

efficiently. As a result, power consumption on packet switch is lower 10-14% depending 

on the size of crossbar switch. Overall, this feasible algorithm running on layer1 and 

layer2 can make networking devices energy efficiency. 
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CHAPTER III 

DEPLOYMENT OF A HYBRID MULTICAST SWITCH IN ENERGY-AWARE 

DATA CENTER NETWORK: A CASE OF FAT-TREE TOPOLOGY  

Recently, energy efficiency or green IT has become a hot issue for many IT 

infrastructures as they attempt to utilize energy-efficient strategies in their enterprise IT 

systems in order to minimize operational costs. Networking devices are shared resources 

connecting important IT infrastructures, especially in data center network they are always 

operated 24/7 which consume a huge amount of energy and it has been obviously shown 

that this energy consumption is largely independent of the traffic through the devices. As 

a result, power consumption in networking devices is becoming more and more a critical 

problem, which is of interest for both research community and general public. Multicast 

benefits group communications in saving link bandwidth and improving application 

throughput, both of which are important for green data center. In this work, we study the 

deployment strategy of multicast switches in hybrid mode which handle data link layer 

and network layer in energy-aware data center network: a case of famous Fat-tree 

topology. The objective is to find the best location to deploy multicast switch not only to 

achieve optimal bandwidth utilization but also minimize power consumption. We show 

that it is possible to easily achieve nearly 50% of energy consumption after applying our 

proposed algorithm. 

 

3.1 Introduction 

Data centers aim to provide reliable and scalable computing infrastructure for 

massive information and services. Accordingly, they consume huge amounts of energy 
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and exponentially increase operational costs. According to recent literature, the annual 

electricity consumed by data centers in the United States is 61 billion kilowatt-hours 

(kWh) in 2006 (1.5 percent of total U.S. electricity consumption) for a total electricity 

cost of about $4.5 billion. The energy use of the nation’s servers and data centers in 2006 

is estimated to be more than double the electricity that was consumed for this purpose in 

2000 according to U.S. Environmental Protection Agency [2007] 

 

Figure 3.1 Carbon dioxide emissions from the DCN comparing to other usages. 

 

Energy efficiency has become nontrivial for all industries, including the IT 

industry, since there is a big motivation to reduce capital and energy costs. According to 

Figure 3.1 [Mankoff et al., 2008], the global information and communications technology 

(ICT) industry accounts for approximately 2 percent of global carbon dioxide (CO2) 

emissions; a figure is equivalent to aviation in 2007. Most likely, ICT use grows faster 
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than airline traffic in the past few years [Orgerie, 2011]. In addition, with energy 

management schemes, we turn to a part of the data center that consumes 10-20% of its 

total power: the network [Greenberg et al., 2009]. Thereby presenting a strong case for 

reducing the energy consumed by networking devices such as switches and routers, our 

goal is to outstandingly lower this growing recurring energy.    

 

                              (a) Traditional data center network 

 

 

 

 

 

 

 

                                   (b) Fat-tree (with k=4 pods) 

Figure 3.2 Network topologies with a source and 15 destination receivers. 
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As a data center is to service over ten thousand servers, inflexible and insufficient 

bisection bandwidth have prompted researchers to explore alternatives to the traditional 

2N tree topology (shown in Figure 3.2(a)) [Al-Fares, 2008] with designs such as VL2 

[Greenberg et al., 2009], PortLand [Guo et al., 2009], and BCube [Mysore et al., 2009]. 

The resulting networks look more like a mesh than a tree. One such example, the famous 

fat tree [Al-Fares, 2008], seen in Figure 3.2(b), is built from a large number of richly 

connected switches/routers, and can support any communication pattern (i.e. full 

bisection bandwidth). Traffic from clusters of servers is routed through hierarchical 

design of Top-of-the-rack (ToR), Aggregation and Core switches respectively. The 

lowest layer is ToR or Edge switches spreading traffic across the aggregation and core, 

using multipath routing, unequal load balancing, or a number of other techniques in order 

to deliver package to the destination server [Heller, 2010]. 

There are a number of multicast services in data center network. Servers in the 

data center use IP Multicast to propagate information and communicate with clients or 

other application servers. For example, the Financial Services industry, particularly the 

market data infrastructure depends comprehensively on IP multicast to deliver stock 

quotes [Cisco Systems Inc, 2009]. Increased reliance on multicast in next generation data 

center addresses the performance requirements for IP multicasting in the data center. 

Group communication widely exists in data centers hosting cloud computing [Vigfusson 

et al., 2010], [Li et al., 2011]. Multicast benefits group communications by both saving 

network traffic and improving application throughput. Even though multicast deployment 

in the Internet bears many hindrances during the past two decades for many issues such 

as compatibility, pricing model, and security concern, recently there is a perceptible 
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rebirth of it, e.g., the successful application of streaming videos [Mahimkar et al., 2009], 

satellite radio, etc. The managed environment of data centers also provides a good 

opportunity for multicast deployment because of a single authority which is considered 

trustworthy. 

Hybrid multicast approach is attractive to IT infrastructure for the following 

reasons. First, the improved bandwidth efficiency provides the incentives for network 

administrator to adopt the new technique as they can consolidate traffic from multiple 

switches onto a single switch. Secondly, in particular, wireless bandwidth is precious and 

mobile devices are power constrained. It makes mobile users happy for wireless hosts to 

move multicast packet duplication from end hosts to switches. Next, the hybrid approach 

allows incremental deployment of multicast switches. The hybrid approach only utilizes 

the packet duplication capability of multicast switches when available, but does not 

require all switches to be multicast capable. Therefore, the network administrator can 

start deployment at selected areas with heavy multicast traffic as the first step. Lastly, 

multicast switches in the hybrid approach are transparent to end hosts. The switches can 

be implemented to automatically recognize and participate in P2P multicast networks, 

and thus no change is necessary at the end hosts. Nevertheless, it is still feasible for 

applications to actively detect the existence of multicast switches, and utilize them as 

much as possible. 

In this chapter, we study the deployment strategy of multicast switches in a 

network to enable switch an IP multicast function. As discussed above, incremental 

deployment is possible and we assume that the IT infrastructure plans to deploy a fixed 

number of multicast switches in data center network. In addition, we assume that all 
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servers in this data center are running many multicast traffic, such as multicast groups, 

broadcasting protocols to members in each individual group. Plus traffic intensity may be 

obtained by either measurement or estimation. The objective is therefore to find 

deployment locations and corresponding routing paths so as to achieve optimal 

bandwidth utilization and minimize power consumption. 

We first formulate the selective deployment and path searching problems as linear 

programs. Although the linear programs obtain optimal solutions, integer linear 

programming is NP-complete, and is not practical for large scale networks. Therefore, we 

propose fast polynomial algorithms to obtain quick solutions. Finally, we conduct 

simulations based on open-source simulator: Primessf [Liu], and the results fully 

demonstrate the effectiveness of our designs.   

 

3.2 Background and Related Works 

3.2.1 Data Center Multicast  

Group communication is common in modern data centers running many traffic-

intensity applications. Multicast is the technology to support this kind of one-to-many 

communication pattern, for both saving network bandwidth and decreasing sender’s load. 

For Web search services, the incoming user query is directed to a set of indexing servers 

to look up the matching documents [Hoff, 2008]. Multicast can help accelerate the 

directing process and reduce the response time. Moreover, distributed file system is 

widely used in data centers, such as GFS [Ghemawat et al., 2003] in Google, and 

COSMOS in Microsoft. Files are divided into many fixed size chunks, either 64 or 

100MB. Each chunk is replicated to several copies and stored in servers located in 
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different racks to improve the reliability. Chunk replication is usually bandwidth-hungry, 

and multicast-based replication can save the interrack bandwidth. Multicast can also 

speed up the binary delivery and reduce the finishing time of any process. 

Although multicast protocol is supported by most vendors’ routers/switches and 

end-hosts, it is not widely deployed in the Internet due to many technological causes, 

such as compatibility, pricing model, and security concern. However, we disagree that in 

the managed environment of data centers, multicast is a comprehensive option to support 

one-to-many communication in data center network. For instance, the natural pricing 

problem is not an issue in data centers as they are usually managed by a single authority 

which is considered very trusty. 

Li et al.[Li et al., 2011] is using their ESM (Efficient and Scalable Data Center 

Multicast Routing) technique to accommodate that challenge above. ESM, a novel 

multicast routing scheme in data center networks, leverage the managed environment of 

data centers, the topological characteristics of modern data center networks, as well as the 

multicast group size distribution pattern. This kind of centralized controller is widely 

adopted in modern data center design. For instance, in Fat-Tree [Al-Fares, 2008], a fabric 

manager is responsible for managing the network fabric. In VL2 [Greenberg et al., 2009], 

a number of directory servers are used to map the AA-LA relationship. The emerging 

OpenFlow [Stanford University, 2008] framework also uses a controller for routing rule 

decision and distribution. 

We assume that ESM technique can be practically implemented in our green data 

center as it addresses the challenges above by exploiting the features of modern data 

center networks in most recent literature. It is not only flexible and scalable multicast 
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protocol but able to deploy in those state-of-the-art data centers networks as proved in 

their breakthrough result. 

 

3.2.2 Energy-aware Data Center Network 

Gupta et al. [Gupta and Singh, 2003] were amongst the earliest researchers to 

advocate conserving energy in networks. Other researchers have proposed techniques 

such as putting idle sub-components (line cards, etc.) to sleep [Gupta and Singh, 

2003] ,[Nedevschi  et al., 2008], [Gupta and Singh, 2007], as well as adapting the rate at 

which switches forward packets depending on the traffic. Nedevschi et al. [Nedevschi et 

al, 2009] discuss the benefits and deployment models of a network proxy that would 

allow end-hosts to sleep while the proxy keeps the network connection alive. He also 

proposes shaping the traffic into small bursts at edge routers to facilitate sleeping and rate 

adaptation. Further their work addresses edge routers in the Internet [Nedevschi  et al., 

2008]. [Mahadevan et al., 2009] shows one of their power saving algorithms focuses on 

job allocation, they perform this operation from the point of view of saving power at 

network devices and show considerable energy savings can be achieved. Chiefly, their 

algorithms are for data centers and enterprise networks.   

Our finding confirms that the deployment of multicast switch in energy-aware data 

center network including recently notable techniques: shutdown the unused links and 

sleep power-hungry switches/routers can dramatically lower the total power consumption 

of data center. The graph of energy consumption shows 50% decrease comparing to that 

without power awareness.  
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3.2.3 Data Center Traffic Patterns 

Figure 3.3 displays the plot of 7-day network traffic from the SuperJANET4 

access router of service provider at Manchester recorded with MRTG [Jonesa  et al., 

2003]. The normal traffic levels for the Net North West MAN vary between 70 and 300 

Mbps into the MAN (solid graph) and between 200 and 400 Mbps out of the MAN (line 

graph). There is a burst as visible as the sharp spikes, which occur once in a while. We 

can clearly see a wave pattern, with the highest instant traffic volume at about 750 Mbps, 

and the lowest at about 50 Mbps. It is obviously seen that at night time, traffic has 

dropped lower than 50% of the peak regardless of incoming or outgoing direction. The 

key for our energy-aware DCNs to achieve power conservation during off-peak hours is 

to power off idle devices and shutdown unused links when possible.  

 

Figure 3.3 Weekly DCN traffic fluctuation. 

 

Another example is in Figure 3.4. It might not have been included in Facebook’s 

music launch, but internet radio service Pandora has been adding more and more daily 

active users on Facebook [Eldon, 2011]. At the end of last year, it was near 1.4 million at 

the peak of the traffic wave you see above, plummeting over 30% every weekend. This 
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famous radio streaming application is heavily based on broadcasting communication 

which is clearly seen that our algorithm can save vast energy on this growing application. 

 

Figure 3.4 Fluctuating traffic pattern of Pandora satellite radio. 

 
3.2.4 Data Center Topology 

Recently, there is a growing interest in the community to design new data center 

network architectures with high bisection bandwidth to replace those old-fashion trees 

[Al-Fares et al., 2008]. Fat-Tree is the representative one among these current three-tier 

architectures. Figure 2(a) illustrates the topology of Fat-Tree, which organizes the 

switches in three levels. More specifically, if k is the number of ports on each single 

switch, then there are k pods, with each pod consists of k/2 edge switches and k/2 

aggregation switches. Each k-port switch at the edge level uses k/2 ports to connect the 

k/2 servers, and uses the remaining k/2 ports to connect the k/2 aggregation-level 

switches in the same pod. At the core level, there are (k/2)2 switches, and each k-port 

switch has one port connecting to each pod. Thus in total, there are 5k2/4 switches that 
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interconnect k3/4 servers. Figure 3.2(a) shows one such network for k=4 Fat-Tree 

topology. 

To the best of our knowledge, we think that ESM technique can be practically 

implemented in our green data center as it can arrange those challenges above by taking 

the advantage of those most recent data center topologies. More importantly, combining 

with our hybrid multicast, ESM is proved to be operated effectively on hierarchical 

topology i.e. fat-tree, VL2, BCube etc. which extensively matches our proposed 

framework.  

 

3.3  Power Modeling 

Projections Energy consumption can be generally defined as:  

Energy = AvgPower x Time                                                              (3.1) 

where Energy and AvgPower are measured in Joule and Watt, respectively, and 1 

Joule =1Watt x 1 Second. Energy efficiency is equivalent to the ratio of performance; 

measured as the rate of work done, to the power used [Tsirogiannis et al., 2010] and the 

performance can be represented by response time or throughput of the computing system. 

Energy Efficiency= ቀWorkdone

Energy
ቁ= ቀPerformance

Power
ቁ	      (3.2) 

To the best of our knowledge, no in-depth measurement study exists that 

quantifies the actual energy consumed by a wide range of switches under widely varying 

traffic conditions. However, [Mahadevan et al., 2009] analyzed power measurements 

obtained from a variety of switches from well-known vendors such as Cisco, ProCurve, 

and Brocade. They identify various control knobs as a function of switch configurations 
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and traffic flowing through the switch. Based on their analysis, they developed a power 

model to estimate the power consumed by any switch. Linear power model is to estimate 

the power consumed by any switch defined as:   

Powerswitch=	Powerchassis+numlinecard* Powerlinecard+  numportsconfigsI

configs

i=0

* 	
																																					PowerconfigsI*utilizationFactor    (3.3) 

 

Table 3.1 Power consumption summary for network devices in 3 hierarchical layers. 

Type Plate Power 

(W) 

# of ports / 

linecard 

Idle Power 

(W) 

BW 

(Mbps) 

Core Switch 3000 24 555 48000 

Aggregation Switch 875 24 133.5 48000 

Edge Switch 300 48 76.4 48000 

 

Table 3.1 [Mahadevan et al., 2009] lists the device categories. All power 

measurements including PoE already are reported in Watts (except the last column is in 

Mbps). 9-slot core switch is typically used as a root switch in data centers. It consumed 

maximum 3000 Watts when fully operated during peak hours but 555 Watts when idle. 

Aggregation switch is available as a modular chassis with 6-slots, with each slot capable 

of supporting a 24-port linecard. Alternatively, 24-port 1 Gbps linecard for an aggregate 

24 Gbps capacity is able to be replaced by a 4-port 10 Gbps linecard for an aggregate of 

40 Gbps capacity operated during peak hours. Each linecard consumes 35-40 Watts. For 

an edge switch having a line card with 48 full-duplex 1 Gbps ports, one way to fully load 
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the switch is to attach servers to each port and ensure 1 Gbps of traffic going in and 

coming out of each port. Note that, as the number of active ports is increased, the impact 

of port utilization (whether no load or fully loaded) on power consumption is under 5%.  

We follow their finding as the result is very well-explained and they proved that 

their estimated power consumption matches the real power measured by the power meter 

with an error margin of below 2%. Moreover, IP options set in the packet might not affect 

power consumption at switches performing MAC forwarding, processing packets that 

have IP options might impact the power consumption of a gateway router which 

comprehensively relate to our proposed IP multicast forwarding in those multicast 

switches. Moving onto the effects of traffic, packet size does not impact power 

consumption at all. 

Also, we compute the node power saving as:          

Nodesaving(t)= ൬∑ pi
i (t)total 	- ∑ pi

i (t)on∑ pi
i (t)total ൰       (3.4)  

We consider a sinusoidal function reported on the node power saving as stated in 

[Chiaraviglio et al., 2009] where the numerator is difference of full power and minimized 

power consumed by nodes for the energy-aware network and the denominator is the 

power consumed by nodes for a non-green network. Note that Nodeୱୟ୴୧୬(t) is measured 

during night, since the connectivity is the tightest constraint, being the offered traffic 

much smaller than during peak hour. On the other hand, during the day the node power 

saving decreases because the traffic is very critically intense which some unused switches 

are needed to be on due to path redundancy. As traffic significantly increases in peak 

hours, more network and link capacity are required in order to guarantee the maximum 
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link utilization constraint. However under that scenario it would be possible to always 

turn off few nodes, so that a small power saving is still possible.   

We run each experiment for 120 seconds triple and report the average power over 

the entire duration. A similar reasoning can be applied to Linkୱୟ୴୧୬(t), which we 

certainly plan to do it for a future work.                           

 

3.4 Deployment of a Multicast Switch 

3.4.1 Problem Formulation 

A network is a directed graph G = (H ∪ X, E), where H is the set of end hosts and 

X is the set of switches, and E is the set of links between hosts and/or switches. Each link 

(u, v) ∈ E has a non-negative weight W (u, v) ≥ 0, which may be the length or average 

latency. A multicast group consists of a source host s ∈ H, and a set of destination hosts 

D = {d1,...,dn}, ∀i, di ∈ H. For simplicity, we assume that a host has no switching 

function. In the case of switching host, it can be easily represented as a non-switching 

host plus a switch. 

In the P2P mode, the switches do not perform packet duplication, and the hosts 

transmit the packet by unicast paths. In detail, after a destination host receives a specific 

packet, it forwards a copy to the next destination, as shown in Figure 3.5(a). Since the 

switches do not conduct packet duplication, the same packet may be transmitted over a 

link multiple times. For a link (u, v) ∈ E, define n(u, v) to be the number of transmissions 

of the packet from u to v. Note that n(u, v) may not be equal to n(v,u). Define the cost of 

the transmission path of a packet to be the sum of the product of the weight of each link 

and the number of transmissions over the link, i.e.	∑ ,ݑ)݊ ,ݑ)ܹ(ݒ ா∋(௨,௩)(ݒ . Although 
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different packets may take different paths, we are interested in finding the optimal path 

with the minimum cost, which can be formulated as the following linear program.   

 
Minimize ∑ n(u, v)W(u, v)(u,v)∈E  (3.5) 

 
subject to the following constraints: 

Source departure: There is at least one copy of the packet departing from the 

source, i.e.  

 ∑ n(s, v) ≥1u ∈(H ∪X)         (3.6) 

Destination arrival: At least one copy of the packet arrives at each destination, i.e. ∀i, ∑ n(u, di) ≥1u ∈(H ∪X)        (3.7) 

Source-destination connectivity: Each destination must be connected with the 

source to avoid sub-tours [Hahsler and Hornik, 2007], i.e. ∀T,	di ∈T ⊆H∪U \	ሼsሽ,	 ∑ n(u, v) >0u ∈൫H ∪U-T൯,   v∈T     (3.8) 

Switch conservation: A switch only transmits packets, without creating or 

destroying any, i.e.    

 ∀u ∈X,  ∑ n(v, u)= v ∈(H ∪X) ∑ n(u, v) v ∈(H ∪X)     (3.9) 

In the hybrid mode, a fixed number M of switches can be upgraded with multicast 

support. The multicast switches can participate in the P2P multicast group and assist 

packet duplication when possible, as shown in Figure 3.5(b). If u ∈ X is upgraded as a 

multicast switch, define m(u)=1; otherwise, m(u)=0. For u ∈ X, use Size(u) to represent 

the size of u, i.e. the number of output ports. Note that Size(u) is not a variable but a 

constant for a given switch u. Our objective is still to minimize the overall cost of the 
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transmission path of a packet by strategically deploying the multicast switches. The 

problem can be formulated as a linear program with the same objective function but 

replacing the switch conservation constraint by the following two.  

Multicast support: For a multicast switch, the difference between the number of 

its outgoing packet copies and that of incoming copies is less than or equal to its size 

minus one. In other words, after the switch receives the packet from one input, it can send 

a copy to each output, i.e.  ∀u∈X ,∑ n(v, u)v∈H ∪X - ∑ n(u, v) ≤m(u)(Size(u)-1)v ∈H ∪ X   (3.10) 

Fixed number of multicast switches: The total number of multicast switches in the 

network is at most M, i.e.  ∑ m(u) ≤Mu ∈X          (3.11) 

Although the above linear programs give the optimal solutions, they are NP-

complete, and therefore are not practical to solve the problems for large scale networks. 

In the following, we provide polynomial algorithms that can obtain quick solutions. 

          (a) P2P multicast                               (b) Hybrid multicast deployment 

Figure 3.5 Examples of P2P and hybrid multicast deployment 
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3.4.2 P2P Path Searching 

As the basis to calculate the multicast switch deployment, we first present the 

algorithm to find the P2P transmission paths. The basic idea is to separate the source and 

destinations into two sets. Nodes in the first set have all received a copy of the packet, 

and nodes in the second set have not. The algorithm then finds the minimum cost path 

from the first set to the second set, by which the packet reaches one more destination. The 

algorithm works in iterations, and adds a destination host to the first set in each iteration. 

Use S to represent the first set and initialize it as S = {s}, and use T to represent the 

second set and initialize it as T = D. The minimum cost path from S to T can be easily 

found, because whenever a new host is added to S, its minimum cost path to each of the 

remaining hosts in T is calculated using the Dijkstra’s algorithm.  

In summary, each iteration of the algorithm includes the following steps: 

1) Find the minimum cost path from a host u ∈ S to a host v ∈ T. If there are 

multiple paths with the same minimum cost, select the one with the smallest index source 

(assuming each host having an ID for comparison). The reason is to consolidate traffic in 

certain switches so that upgrading those switches will maximize bandwidth efficiency 

and power off unused switches.  

2) Remove v from T and add it to S, i.e. T = T \{v} and S = S ∪{v}. Calculate the 

minimum cost path from v to each remaining host in T.  

It can be shown that the above algorithm obtains the optimal solution. Due to 

space limitations, the detailed proof is omitted. Since the algorithm needs |D| iterations, 

and the time complexity to calculate the shortest distance paths for the newly added host 

in each iteration is O(|H ∪ X|2), the time complexity of the algorithm is O(|S||H ∪ X|2).  
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3.4.3 Deployment of Multicast Switches with Single Multicast Group 

Next we consider the multicast switch deployment problem and start with the 

simpler case with a single multicast group. 

The main idea is to calculate the cost reduction to upgrade each switch in the P2P 

paths obtained above, and select the one with the maximum cost reduction. Repeat the 

process multiple times until we have found the deployment locations of all the M 

multicast switches.  

It can be noticed that not all switches will result in cost reduction if upgraded. We 

define a relaying switch to be one with an in-degree greater than one in the current 

transmission paths. Specifically, u ∈ X is a relaying switch if ∑ n(v, u) 	> 1୴	∈(ୌ	∪ଡ଼) . 

Upgrading a relaying switch will obtain cost reduction, because packet duplication at the 

switch will avoid the additional incoming transmissions. In Figure 3.5(a), X2 and X4 are 

relaying switches, each with an in-degree of 2; X1 and X3 are also relaying switches each 

has an in-degree of 3. 

After identifying the relaying switches, we need to calculate the cost reduction to 

upgrade such a switch, which is the total weight of the edges for the switch to receive 

relaying copies of the packet. In case the relaying switch has both incoming edges from 

multiple neighbors, we need to determine which are the relaying edges. This can be done 

by a breath first search with the current path from the multicast Source s, and the edge 

from a farther node to a closer node is the relaying edge. For example, in Figure 3.5(a), 

both (X3,X2) and (H1,X2) are incoming edges of X2, and only the latter is a relaying 

edge. Both (X3,X4) and (H4,X4) are incoming edges of X4, and only the latter is a 
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relaying edge. On the other hand, if a relaying switch has n > 1 incoming edges from the 

same neighbor, n − 1 of them are relaying edges. In Figure 3.5(a), (Source,X1) is a 

relaying edge for X1. In case that the other node of a relaying edge is also a switch, it 

must be a relaying switch as well, and we need to trace back recursively until reach a 

host. In Figure 3.5(a), not only (Source,X1) and (X1,X3) form the relaying path for X3, 

but also (H3,X3) is a relaying edge of X3. Calculate the total weight of all the relaying 

edges to obtain the cost reduction for a relaying switch, and then select the one with the 

maximum reduction. 

To sum up, each iteration of the algorithm includes the following steps: 

1) Identify relaying switches, and calculate the cost reduction for each of them. 

2) Select the switch with the maximum cost reduction. Remove all the relaying 

paths and perform packet duplication at the switch instead. Stop if there are already M 

multicast switches. 

3) Update the cost reduction of the remaining switches after upgrade the switch 

selected in the above step. 

In Figure 3.5(a), if assume that each link has the same weight of one and M =1, 

X3 has the maximum cost reduction of 3, we upgrade it to a multicast switch and the 

resulting hybrid transmission network is shown in Figure 3.5(b). Neither X1 nor X2 nor 

X4 is picked as each of them has cost reduction of 2, 1 and 1 respectively. . 

The algorithm needs M iterations. Since there are at most |D|−1 relaying paths, 

each with length less than |H∪X|, the time complexity in each iteration is O(|D||H∪X|). 

Therefore, the time complexity of the algorithm is O(M|D||H ∪ X|).  
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We run each experiment for 120 seconds in order to find out the average delay 

three times in each scenario. A similar algorithm can be applied to multiple multicast 

groups.  

 

3.5 Results and Discussion  

In this section, we show the simulation results to demonstrate the effectiveness of 

our design. 

 

3.5.1 Network Delay  

We set up a UDP application package with one host being the multicast source 

and all the remaining hosts being destinations. During the day, the traffic is very intense. 

Source host generates traffic at the rate of 100 to 500 packets per second, and the packet 

size is fixed at maximum 1200 Bytes. When there is no multicast switch in the network, 

the packet is transmitted in the pure P2P mode and all links have identical bandwidth of 

1Gbps. However, when there is a multicast switch (M is set to 1), it will duplicate that 

packet and broadcast to remaining receivers when possible. Each simulation lasts 120 

seconds.  

Figure 3.6 shows the simulation results with the fat-tree topology which is widely 

adopted by modern data center network based on open-source simulator - Primessf [Liu]. 

We set up a single multicast group with the Source host being the source and the 

remaining hosts being the destinations as shown in Figure 3.2(b). We plot the average 

multicast delay, calculated as the average interval of all packets from the departure at the 

Source host to the arrival at each destination, under two scenarios: without multicast 
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switches, and with calculated deployment. The calculated deployment curve shows the 

data when the left-most core switch exposed in Figure 3.2(b) is upgraded, which is 

obtained by our algorithm described in section IV. Although those two curves grow as 

the packet generation rate increases, the average multicast delay with the calculated 

multicast switch deployment is only about one fourth of that of without multicast 

switches. We can see that our algorithm consistently obtains shorter average multicast 

delay than the P2P approach. The results fully demonstrate that our algorithm is effective 

in calculating good deployment locations for multicast switches to reduce the traffic 

amount and latency.  

 

Figure 3.6 Average delay in green data center network. 
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3.5.2 Energy Consumption and Power Saving  

We set up a UDP application package with one host being the multicast source 

and all the remaining hosts being destinations. Assume that all switches are able to be 

configured IP multicast mode. Based on our algorithm in section 3.4, a left-most core 

switch in Figure 3.2(b) is upgraded to be a multicast switch. It will duplicate that packet 

and broadcast to remaining receivers when possible regardless of traffic rate. During the 

day, the traffic is very intense. Source host generates traffic at the rate of 100 to 500 

packets per second, and the packet size is fixed at maximum 1200 Bytes. All links have 

identical bandwidth of 1Gbps. However, as said in section 3.3, the traffic during night is 

only nearly 50% of the peak-hour demand. We reduce the traffic generation of Source 

host at the rate of 100 to 250 packets per second according to common traffic pattern in 

Figure 3.3 and 3.4 having all links identical bandwidth of 1Gbps. Each simulation is run 

for 120 seconds 

Regarding power consumption summary in Table 3.1 and equation 3.1, after 

applying our proposed algorithm to enable IP multicast function in a core switch, we 

calculate the power consumption as exhibited in Figure 3.7. Energy used is reduced by 

half during off-peak hours. Plus, according to the data center traffic pattern in Figure 3.3 

and 3.4, we can extensively deploy this scheme on weekends so that roughly 50% of the 

fully-operated power consumption is saved. We can clearly say that the optimal energy-

aware policy is also able to run during peak hours but because of redundancy and 

guaranteed link utilization we need to keep few unused switches on. Thus, energy saving 

is one-fourth of the maximum correspondingly. Network administrator in an enterprise or 

data center networks should be able to consolidate traffic from multiple switches onto a 
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single switch so as to turn off the unused switches. As can be seen, all three curves grow 

as time goes by. However, energy consumption without energy-aware scheme grows 

much faster than the other two which demonstrates that our proposed hybrid multicast 

mode is effectiveness decreasing energy consumption. 

 

Figure 3.7 Energy consumption variance. 

 

Figure 3.8 reports the breakdown of the percentage of power saving after sleeping 

unused nodes detailing core and aggregation during both off-peak and peak hours. 

According to equation 3.4, where the numerator is the power consumed by nodes for the 

energy-aware network and the denominator is the power consumed by nodes for a non-

green network. Values have been averaged over the three different runs. The plot shows 

that during off-peak hours it is possible to save power approximately 50% of nodes that 

are not source/destination of traffic, being the core and aggregation nodes the largest 
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fraction of them. This reflects the fact that the network has been designed to recover from 

possible faults, which requires additional resources. These additional resources are not 

exploited to carry traffic during off-peak time, and then they can be powered down to 

save energy. During peak hours, on the contrary, the saving is much lower, as only about 

25% of power is not uselessly wasted, being the majority of core nodes. Note that, during 

the day, aggregation nodes are always operatively on. These additional nodes may be 

required to recover from occasional faults and unexpected incidents. This obviously 

demonstrates that our proposed algorithm yields significant network energy saving.  

 

Figure 3.8 Node power saving comparison between peak-hour and off-peak. 
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3.6 Conclusions 

Energy efficiency has become a top priority in most IT enterprise. Networking 

devices in data center network consist an important part of the IT infrastructure and 

consume massive amounts of energy. Relatively small attention has been paid to gear up 

the energy efficiency of data center networks thus far. In this work, we make several 

contributions as follows. Firstly, we proposed the deployment of a multicast switch in a 

hybrid multicast network, which combines the efficiency of IP multicast and the 

flexibility of P2P multicast. We first formulate the problem as integer linear programming 

which is NP-complete and not practical for large scale networks. We further propose fast 

polynomial algorithms that obtain quick solutions. Accordingly, we conduct extensive 

simulations to evaluate the transmission cost reduction and packet delay improvement, 

and the simulation results fully demonstrate the effectiveness of our design which the 

average delay of our calculated multicast switch deployment is only one fourth of that of 

without multicast switches. Next, we calculate power consumption after deploying a 

multicast switch in famous Fat-tree topology. Energy used is reduced by half during off-

peak hours. Besides, we can extensively deploy this scheme on weekends so that roughly 

50% of the fully-operated power consumption is saved. During peak hours, although we 

need to keep few unused switches on, energy saving is one fourth of the maximum 

correspondingly. Finally, Nodeୱୟ୴୧୬(t) is measured during day and night. Since the 

connectivity is the tightest constraint at night, being the offered traffic much smaller than 

during peak hour. Saving well approximate 50% of power is achievable. In contrast, 

during the day, it would be possible to turn off few nodes, so that a minimum 25% of 

power saving is promising which demonstrates that our proposed hybrid multicast mode 
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that runs on layer2 and layer3 with reference to OSI 7-layer is successful 

comprehensively decreasing energy consumption.    
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CHAPTER IV 

JOINT HOST-NETWORK OPTIMIZATION FOR ENERGY-EFFICIENT DATA 

CENTER NETWORKING  

Data centers consume significant amounts of energy. As severs become more 

energy efficient with various energy saving techniques, the data center network has been 

accounting for 20% to 50% of the energy consumed by the entire data center. While 

DCNs are typically provisioned with full bisection bandwidth, DCN traffic demonstrates 

fluctuating patterns. The objective of this work is to improve the energy efficiency of 

DCNs during off-peak traffic time by powering off idle devices. Although there exist a 

number of energy optimization solutions for DCNs, they consider only either the hosts or 

network, but not both. In this work, we propose a joint optimization scheme that 

simultaneously optimizes virtual machine (VM) placement and network flow routing to 

maximize energy savings. We formulate the joint optimization problem as an integer 

linear program, which is NP complete, and then propose a practical solution which 

manages network layer and application layer. First, to effectively combine host and 

network based optimization, we present a unified representation method that converts the 

VM placement problem to a routing problem. In addition, to accelerate processing the 

large number of servers and an even larger number of VMs, we describe a parallelizing 

approach that divides the DCN into clusters based on subnet IP addresses, and processes 

the clusters in parallel for fast completion. Further, to quickly find efficient paths for 

flows, we propose a fast topology oriented multipath routing algorithm that uses depth-

first search to quickly traverse between hierarchical switch layers and uses the best-fit 

criterion to maximize flow consolidation. Finally, we have conducted extensive 
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simulations to compare our design with existing ones. The simulation results fully 

demonstrate that our design outperforms existing host- or network-only optimization 

solutions, and well approximates the ideal but NP-complete linear program. 

 

4.1 Introduction 

Data centers have become popular computing infrastructure, because they achieve 

economies of scale with hundreds of thousands of servers [Mudigonda and Yalagandula, 

2010], e.g. about 300,000 servers in Microsoft’s Chicago data center from [Who has the 

most web servers?]. At the same time, the huge number of servers in data centers 

consume significant amounts of energy. It is estimated by U.S. environmental protection 

agencies [U.S. environmental protection agencies] that national energy consumption by 

data centers in 2011 will be more than 100 billion kWh, representing a $7.4 billion 

annual electricity cost. As a result, energy efficiency of data centers has attracted wide 

attention in recent years, mostly focusing on servers [Grunwald et al., 2000] and cooling 

systems [Patel et al., 2003].  

With the improvement of server energy efficiency, the other important component 

of a data center, has been accounting for 20% [Shang et al., 2010] to 50% [Abts et al., 

2010] of the energy consumed by the entire data center. With the huge number of servers 

in a data center, the DCN needs proportionally large bandwidth to interconnect the 

servers. In addition, a DCN is typically provisioned with full bisection bandwidth 

[Mysore et al., 2009] to support burst all-to-all communication. However, since DCN 

traffic demonstrates fluctuating patterns, the fully provisioned bandwidth cannot be 

always well utilized, resulting in resource underutilization and energy waste. For 
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example, Figure 4.1 shows a 7-day traffic sample of a core router interface in June 2011 

from Terremark’s NAP of the Americas [Nap of the americas, terremark’s flagship 

facility], a data center service provider based in Miami. We can clearly see a wave 

pattern, with the highest instant traffic volume at about 13Gbps, and the lowest at about 

2Gbps. Different colors in the figure represent different transport layer protocols, with 

TCP being the majority.  

 

Figure 4.1 Fluctuating DCN traffic pattern 

 

The key for DCNs to achieve energy conservation during off-peak traffic hours is 

to power off idle devices when possible. There exist a number of DCN energy saving 

solutions in the literature, which can be divided into two broad categories: optimizing 

network flow routing [Heller et al., 2010] and optimizing virtual machine (VM) 

placement [Meng et al., 2010]. The former consolidates flows to a smaller number of 

links, and thus leaves more idle links and consequently switches to be powered off. The 

latter consolidates VMs to physical servers in such a way that VM pairs with more traffic 

are placed closer, to avoid heavy flows traversing long paths. 

To the best of our knowledge, existing DCN energy saving solutions consider 

only either the hosts or the network, but not both. In this work, we study the joint host-

network optimization problem to improve the energy efficiency of DCNs. The basic idea 
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is to simultaneously consider VM placement and network flow routing, so as to create 

more energy saving opportunities. The simplest way to combine host and network based 

optimization is just to naively first determine the VM placement and then the flow 

routing. Unfortunately, the existing VM placement algorithm [Meng et al., 2010] is not 

practical, since it does not consider the bandwidth capacity constraints of links, assumes 

fixed VM memory sizes, and has high time complexity of O(|V|4), where V is the set of 

VMs.  

For effective joint host-network optimization, the first challenge is how to 

simultaneously consider the two types of optimization problems. To address the 

challenge, we present a unified representation method that converts the VM placement 

problem as a routing problem, so that a single optimization solution can apply to both 

types of problems. Further, the second challenge is how to accelerate the processing of 

the huge number of VMs in a data center. To this end, we propose a parallelizing 

approach that divides the DCN into clusters based on their subnet IP addresses, and 

processes the clusters in parallel for fast completion. Finally, the third challenge is how to 

quickly find efficient routing paths for the flows. To solve this problem, we propose a 

topology oriented fast multipath routing algorithm, which uses depth-first search to 

quickly traverse between the hierarchical layers in a DCN, and the best-fit criterion to 

maximize flow consolidation.  

In this chapter, we propose a joint host-network energy optimization scheme that 

combines VM placement and flow routing optimization. We first formulate the problem 

as an integer linear program. Since integer linear programming is NP-complete and not 

suitable for practical deployment, we then propose a series of techniques to quickly and 
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effectively solve the joint optimization problem. In addition, we have implemented the 

proposed scheme in a simulator and conducted extensive simulations to compare it with 

existing solutions. The simulation results fully demonstrate that our scheme outperforms 

existing host- or network-only optimization solutions, and well approximates the ideal 

but NP-complete linear program. 

 

4.2 Background and Related Works 

In this section, we briefly review existing energy saving solutions for DCNs and 

more broadly wide area networks. Those solutions can be divided into two broad 

categories: network-side optimization and host-side optimization. 

 

4.2.1 Data Center Topology 

 Current data centers follow to a great extend a common network architecture, 

known as the three-tier architecture. At the bottom level, known as the access tier, each 

server connects to one (or two, for redundancy purposes) access switch. Each access 

switch connects to one (or two) switches at the aggregation tier, and finally, each 

aggregation switch connects with multiple switches at the core tier. While the physical 

topology in such three-tier architecture is a multi-rooted forest topology, in reality 

packets are forwarded according to the logical layer-2 topology that is created with the 

use of VLANs and the spanning tree algorithm. This layer-2 topology is always a tree, 

usually rooted at one of the core switches.  

Scaling the three-tier architecture is achieved by scaling up each individual 

switch, i.e. by increasing its fan-out, rather than scaling out the topology itself. For 
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example, the core tier can accommodate 8 switches at most. Topology scaling limitations 

as well as other ones such as the need for flat address space, or the high server 

oversubscription, have prompted recently many parallel efforts in redefining the network 

architecture of the data centers. These topologies can be divided into two categories. One 

is switch-center topology, i.e., putting interconnection and routing intelligence on 

switches, such as Fat-Tree [Al-Fares et al., 2008] and VL2 [Greenberg et al., 2009]. In 

contrast, the other category is server-centric, namely, servers, with multiple NIC ports, 

also participate in interconnection and routing. BCube [Guo et al., 2009] and FiConn [Li 

et al., 2009], all fall into the latter category.  

Fat-Tree is the representative one among these current three-tier architectures. It 

can be routed deadlock free without additional resources, fault-tolerant through its path 

diversity, full bisection bandwidth for arbitrary permutations, and performance suffer 

slightly due to static routing. It is organized a k-ary fat-tree. There are k pods, each 

containing two layers of k/2 switches. Each k-port switch in the lower layer is directly 

connected to k/2 hosts. Each of the remaining k/2 ports is connected to k/2 of the k ports 

in the aggregation layer of the hierarchy. There are (k/2)2 k-port core switches. Each core 

switch has one port connected to each of k pods. The ith port of any core switch is 

connected to pod i such that consecutive ports in the aggregation layer of each pod switch 

are connected to core switches on (k/2) strides. In general, a fat-tree built with k-port 

switches supports k3/4 hosts. In this work, we focus on fat-tree with k=4 as shown in 

Figure 3.2(b). 
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4.2.2 Network-Side Optimization 

In the first category, ElasticTree [Heller et al., 2010] is a DCN power manager to 

find the set of switches and links that can accommodate the traffic and consume the 

minimum power. In addition, ElasticTree also addresses the robustness issue so that the 

optimized network has sufficient safety margins to prepare for traffic surges and network 

failures. GreenTE [Zhang et al, 2010] manipulates the routing paths of wide area 

networks, so that the least number of routers shall be used to satisfy the performance 

constraints such as traffic demands and packet delays. Energy conservation can be 

achieved by then shutting down the idle routers and links without traffic. [Fisher et al., 

2010] proposes an energy saving scheme for the idle cables in bundled links. By 

reorganizing network traffic and powering off individual cables as well as the associated 

line cards in the low-utilized bundles, the scheme achieves a theoretical 79% 

improvement on energy efficiency for backbone networks. [Abts et al., 2010] indicates 

that a flattened butterfly DCN topology is more energy efficient than the folded Clos 

topology. [Mahadevan et al., 2010] presents a large power profile study for the power 

manager Urja in an enterprise network, which save over 30% of the network energy. 

[Shang et al., 2010] establishes a model of energy-aware routing in DCNs, and designs a 

heuristic to achieve the goal.  

 

4.2.3 Host-Side Optimization  

In the host-side optimization category, one approach is to optimize VM placement 

using live migrations [Clark et al., 2005], which will help consolidate VMs into fewer 

physical servers and traffic flows into fewer links. [Meng et al., 2010] proposes a traffic-
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aware VM placement scheme that localizes large traffic chunks and thus reduces load of 

high layer switches. The scheme achieves energy conservation by shutting down idle 

servers and switches after the placement. [Wang et al., 2011] studies the VM 

consolidation problem in the context of dynamic bandwidth demands. The problem is 

formulated as a stochastic bin packing problem and proved as NP-hard. We then propose 

an approximation algorithm, which uses fewer servers while still satisfies all the 

performance constraints. The second host-side optimization approach is to improve the 

energy proportionality on the server itself. PowerNap [Meisner et al., 2009] is an energy 

saving scheme for servers to quickly switch between two states: a high-performance 

active state to transmit traffic, and an idle state with low power to save energy.  

 

4.3 Problem Formulation 

It is easy to see that the joint host-network energy optimization problem is a 

variant of the multi-commodity problem [Cormen et al., 2009], and can be formulated as 

a linear program. The optimization objective is to minimize the power consumption of all 

the servers, switches, and links in a DCN. Recent studies [Heller et al., 2010], 

[Mahadevan et al., 2010], [Pelley et al., 2009] indicate that power consumption of servers 

and switches in data centers can be roughly modeled as linear functions, which are 

suitable for linear programming. Even with non-linear power functions, various 

approximation techniques [Medhi and Ramasamy, 2007] can help convert them to piece-

wise linear ones.  

Model a DCN as a directed graph G = (S ∪ X, L), where a node s ∈ S is a 

physical server, a node x ∈ X is a switch, and an edge (ni, nj) ∈ L is a link connecting a 
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switch and a server or two switches. Assume that V is the set of VMs, and a VM v ∈ V 

must be hosted by a server s, denoted by host (s, v) = 1. When a server hosts a VM, the 

former provides the latter with various resources, such as memory space and CPU time, 

and we use memory space as a representative of such resources. Each server s has a 

memory capacity mc(s), and each VM v has a memory demand md(v). Due to constraints 

such as subnet IP addresses and hardware configurations, a VM v has a restricted set of 

migration destination servers, denoted as DS(v) ⊂ S. Use on(∗) to denote that a device ∗ 

is powered on, which may be a switch, link or sever, and use p(∗) to denote the power 

consumption of the device ∗.  

Table 4.1 Notations for problem formulation. 

Notation Meaning 

v, s, x, f virtual machine, server, switch, or flow 

(ni, nj) link connecting two nodes ni and nj , with one node being a switch, 

and the other being be a switch or server 

V, S, X, L, F set of virtual machines, servers, switches, links, or flows 

DS(v) potential migration destination servers of VM v 

md(v) memory demand of VM v 

mc(s) memory capacity of server s 

src(f), dst(f) source or destination VM of flow f 

bd(f) bandwidth demand of flow f 

bc(ni, nj) bandwidth capacity of link (ni, nj) 

p(*) linear power function of ∗, where ∗ may be a server, switch, or link 



65 

on(*) decision variable: 1 or 0 if ∗ is powered on or off, where ∗ may be a 

server, switch, or link 

host(s, v) decision variable: 1or0ifVM v is or not hosted on server s 

route(f, (ni, nj)) decision variable: 1or0ifflow f is or not routed through link (ni, nj) 

 

Assume that f ∈ F is a flow in the DCN. f is defined as a triple f = (src (f), dst (f), 

bd (f)), where src (f) is the source VM, dst (f) is the destination VM, and bd (f) is the 

bandwidth demand. Use route (f, (ni, nj)) to denote whether flow f is routed through link 

(ni, nj). fk(xi, xj) can only be either or to prohibit splitting a single flow among multiple 

paths. The reason is that, as seen in Figure 4.1, more than 99% of data center traffic flows 

are TCP ones [Alizadeh et al, 2010], which will suffer performance degradation with out-

of-order packet delivery. Note that a link (ni, nj) ∈ L has a bandwidth capacity bc (ni, nj). 

With the above notations (summarized in Table 4.1), we can thus formulate the 

joint optimization problem as the following linear program. Equation 4.1 is the objective 

function, simply to minimize the total power consumption of all the switches, links, and 

servers. 

Minimize  
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Equations 4.2 to 4.4 define the VM and server related constraints. Specifically, 

equation 4.2 states the server-VM correlation constraint, i.e. only a powered on server 

can host VMs. Equation 4.3 states the server memory capacity constraint, i.e. the total 

memory demand of all the VMs hosted by a server cannot exceed its memory capacity. 

Equation 4.4 states the VM migration destination constraint, i.e. a VM can only be hosted 

by one of its destination servers. 
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Equations 4.5 to 4.10 define flow and link related constraints. Specifically, 

Equation 4.5 states the flow source/destination constraint, i.e. a flow cannot start/end at a 

server that is not hosting the source/destination VM. Equation 4.6 states the flow demand 

satisfaction constraint, which means that if the source and destination VMs of a flow are 

hosted by the same server, then the flow can be transmitted using the local bus of the 

sever, without traversing any switches; otherwise, the flow must start at the server hosting 

the source VM and end at the server hosting the destination VM. Equation 4.7 states the 
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switch flow conservation constraint, i.e. a switch can only transmit flows but not generate 

or destroy any. Equation 4.8 states the node-link correlation constraint, i.e. only a 

powered on switch can have active links. Equation 4.9 states the bidirectional link power 

constraint, i.e. both directions of a link should have the same on/off status [Heller et al., 

2010]. Equation 4.10 states the link bandwidth capacity constraint, i.e. the total 

bandwidth demand of all the flows through a link cannot exceed its bandwidth capacity.  
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Equations 4.11 to 4.13 are sample power functions for switches, links, and 

servers. Equation 4.11 defines that a powered on switch x consumes α (x) base power, 

and each active port consumes additional β (x) power [Heller et al., 2010]. Equation 4.12 

defines that an active link (ni, nj) consumes 2γ(ni, nj) power, or γ(ni, nj) for each direction. 

Equation 4.13 defines that a server s consumes δ (s) base power, and each hosted VM 

consumes additional € s power due to increased CPU usage [Pelley et al., 2009].  

Since integer linear programing is NP-complete, the above formulation is not 

suitable for practical deployment, but it can still be an ultimate bench mark to evaluate 

other approximation solutions. 

4.4 Design Guidelines 

In this section, we elaborate our design guidelines to quickly and efficiently solve 

the joint optimization problem. 
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4.4.1 Unified Representation of Both Types of Optimization 

For effective joint optimization, the first challenge is that there are two types of 

optimization, i.e. VM placement and flow routing, and it is not clear how to 

simultaneously consider them. We propose a unified representation method that converts 

the VM placement problem to a routing problem, so that a single solution can apply to 

both optimization problems. DCNs are typically organized in a multiple-layer 

hierarchical structure. For example, Figure 4.2(a) shows a fat tree based DCN with core, 

aggregation, and top-of-rack (ToR) three layers of switches, and an additional layer of 

servers.  

The key observation is that the VM-server relationship is similar to that of sever-

switch. A VM can select to reside on one of multiple allowed servers, and send its traffic 

through the physical network adapter of the hosting server. This is similar to the selection 

made by a server to pick one of multiple connected ToR switches to send its traffic. 

Inspired by the observation, we add an additional hierarchical layer of VMs. In detail, we 

create in the graph a new node for each VM, and use an edge to connect it with a server if 

it can migrate to the server. Figure 4.2(b) shows a simple example, where v1,v2, and v3 

can migrate to any server connected by the same aggregation switch, and v4 can migrate 

to any server connected by the same ToR switch. In the optimization process, we search 

routing paths for the flows between VM pairs. If a VM has a path to a server in the 

optimization result, then the VM will be hosted by the server. In this way, we provide a 

unified view to solve both optimization problems. 

The next challenge is then to determine the capacity of the newly added edges 

between VMs and servers. Theoretically, a server can sustain a very large amount of 
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traffic between two hosted VMs by the local bus, and therefore the bandwidth capacity 

constraints are not important for VM-server edges. However, the servers do have memory 

capacity constraints with the VMs. To reflect such constraints, we create a dummy node 

for each server, and use an edge to connect them whose capacity will be the memory 

capacity of the server. We now let the VMs connect to the dummy node instead of the 

server. Specifically, if a VM can migrate to a server, the VM has an edge with infinite 

capacity connecting to the dummy node of the server. When search a path for a flow 

between the dummy node and the server or vice versa, the demand of the flow will be the 

memory demand of the closer end VM instead of bandwidth demand. In this way, the 

VMs connected to a server is constrained by the server memory capacity. Figure 4.2(c) 

shows the results after adding the dummy nodes to Figure 4.2(b).  

Finally, there is a difference between a VM node and a physical server node. 

While a server can send different flows to different ToR switches, a VM has to send all 

its flows through the same physical server. In other words, a VM can select only one of 

the links connecting to different dummy nodes. If a VM has multiple traffic flows, all of 

them should share the same path between the VM and the hosting server. 
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Figure 4.2 Unified representation of VM placement and flow routing. 
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4.4.2 Cluster based Parallel Processing 

To accelerate processing the huge number of VMs in a data center, we propose a 

parallelizing approach that divides the DCN into clusters to reduce the problem size, and 

processes the clusters in parallel for fast completion. The design is based on the 

requirement that live VM migration needs to keep ongoing network connections and 

therefore the current IP address [Mysore et al., 2009]. Although with existing techniques 

such as mobile IP [Kurose and Ross, 2007], it is possible for an IP address to move into a 

different subnet (or a foreign network in the term of mobile IP) and keep the ongoing 

connections, there is an expensive overhead caused by triangle routing [Kurose and Ross, 

2007]. As a result, we assume that a VM will only migrate within its own subnet [Mysore 

et al., 2009], which consists of a fixed set of servers connecting to the same router 

interface by the predefined wiring. Note that a VM may not be able to migrate to every 

server in the subnet because of other constraints, such as different hardware 

configurations.  

The main idea is to organize the servers and VMs in the same subnet as a cluster, 

and conduct intra- and inter-cluster processing separately at reduced scales. For intra-

cluster processing, we find the paths for all traffic flows between the VMs in the cluster, 

and as a result determine the placement of such VMs. If a VM has only inter-cluster 

flows, i.e. to VMs in other clusters, we simply calculate its placement according to its 

memory and bandwidth demands. The reasoning is that the DCN topology is usually 

symmetric, and VM placement anywhere in the cluster is not likely to affect inter-cluster 

routing. 
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The advantages are two-fold. First, by dividing the problem into a few smaller 

scale ones, the parallelizing approach reduces the solution search space and allows fast 

completion. Second, since intra-cluster processing of different clusters are independent, it 

can be done in parallel to reduce the total processing time. 

 

4.5 Host-Network Joint Optimization Scheme  

With the above design guidelines, we now present a fast topology oriented 

multipath routing algorithm to quickly search paths for the intra- and inter-cluster flows. 

The design utilizes the hierarchical feature of DCN topologies to conduct fast routing. 

The basic idea is to use depth-first search to find a sequence of best-fit links for the flow. 

Since a path usually includes links connecting nodes at different layers, depth first search 

can quickly traverse the layers. If the search has exhausted all the links in a layer and 

cannot proceed further, it is necessary to backtrack to the previous layer [Cormen et al., 

2009] and try the next candidate. For easy description, we define the VMs to be the 

lowest layer, and the upstream direction to be from a lower layer node to a higher layer 

one.  

When there are multiple available links to the next hierarchical layer, the best-fit 

criterion selects the one with the best matching capacity, i.e. the smallest and sufficient 

capacity, so as to consolidate the flows to a few links and improve energy conservation. 

Compared with the first-fit criterion that also tends to consolidate flows but has O(N) time 

complexity to select from N links, best-fit achieves O(logN) time complexity by 

conducting binary search on a sorted list. Note also that N increases with the DCN size. 

Compared with worst-fit that distributes flows to available links in a load balancing way, 
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best-fit maximizes flow consolidation. A concern is then whether the flow consolidation 

by best-fit will exhaust bandwidth of a specific link, and block a future flow that has to 

use this link. Fortunately, a switch in a typical DCN has more than one link to switches in 

the neighboring layers for path redundancy, and therefore the probability for all the links 

to be unavailable is small. Further, exhaustive depth-first search with backtracking 

guarantees to explore every possible path, and we observe that all the three selection 

criteria have similar routing success ratios, close to 100% under reasonable traffic loads, 

as shown in section 4.6. 

As the initialization, the scheme uses the unified representation method in Section 

4.4.1 to show all the VMs, servers, and switches in a graph. The scheme first processes 

each cluster, which is the subgraph corresponding to the subnet, and then searches paths 

between the subgraphs for inter-cluster flows. 

 

4.5.1 Intra-cluster Processing  

Intra-cluster processing starts with sorting the VMs in the cluster by their memory 

demands in a decreasing order, for two reasons. First, VM migrations consume energy, 

which is proportional to the VM memory image size. By sorting the VM memory 

demands, we intend to keep the VMs with large memory images intact and move those 

with small ones. Second, the scheme will use best-fit decreasing for VM placement, since 

it has better performance than best-fit [Cormen et al., 2009]. This will result in a smaller 

number of hosting servers.  

Next, the scheme searches paths for intra-cluster flows using the depth-first best-

fit rule. The scheme picks among the VMs with intra-cluster flows the one with the 
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largest memory demand, and processes its intra-cluster flows one by one. Initially, neither 

the source nor the destination VM has found a hosting server, the path will include three 

possible sections: VM-to-server, server-to-switch-to-server, and server-to-VM. Note that 

if the two VMs migrate to the same server, the path does not need to traverse any switch. 

The first step of the path searching is to determine the necessary layer to connect 

the source and destination VMs. Hosts in DCNs usually have IP addresses corresponding 

to their topological locations. For example, in a fat tree based DCN, hosts in the same 

pod usually share the same subnet address [Mysore et al., 2009]. Thus, it is easy to 

determine by which layer the two edge switches can be connected. Since the network 

topology and IP address assignment are known in advance, it is appropriate to do the 

calculation for all IP addresses in advance and store the results, so that they can be 

quickly obtained during path searching. Determining the connecting layer avoids wasting 

bandwidth of switches at higher layers, which will be available for future flows.  

After determining the connecting layer, the scheme searches paths for intra-

cluster flows using the depth-first best-fit rule. Specifically, starting from the source VM, 

the scheme searches upstream by selecting the best-fit link to the next higher layer. After 

reaching the connecting layer, the searching direction turns downstream, similarly by 

selecting the best-fit link to the next lower layer. For certain topologies, such as the fat 

tree, the downstream path to a specific server is determined after reaching the connecting 

layer. Since the depth-first best-fit rule does not guarantee a path on the first try, 

backtracking with the next candidate or to a higher layer may be necessary. However, the 

depth-first search guarantees O (|N|+|E|) time complexity [Cormen et al., 2009], where N 
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and E are the node and edge set, respectively. For easy understanding, Table 4.2 gives the 

pseudo code description of the depth-first best-fit search.  

Table 4.2 Pseudo code description of depth-first best-fit search. 

DFS(s, d,G) // s: source, d: destination, G: network 

1   H = necessary-layer-to-connect(s, d,G); 

2   path = {}; 

3   u = s; 

4   next =1; // flag indicating search direction, 1: upstream, -1: downstream 

5   return SEARCH(u, path, next); 

 

SEARCH(u, path, next) { 

1 if(u = d) {path = path + u; return true;} 

2 if ( layer-of(u)= H) next = −1; // reverse search direction after reaching connecting layer

3 if( next = −1 && layer-of(u)=1) return false; 

4 neighbors = adjacent nodes of u in layer (layer-of(u)+ next); 

5 found = false; 

6 while (neighbors = ∅ && found = false) { 

7    v = best-fit(neighbors); neighbors = neighbors − v; 

8    found = SEARCH(v, path,next); 

9 }; 

10 return found; 
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Recall that for the VM-to-server section, the capacity between the dummy node 

represents the available memory capacity of the server and the flow demand is the 

memory demand of the source VM. If the source VM is connected to multiple servers and 

they have the same smallest but sufficient capacity, preference will be given to the 

current hosting server of the VM. If the servers in the cluster are homogeneous in terms 

of memory and bandwidth configurations, the first VM will stay on its current server, and 

thus we avoid migrating the VM with the largest memory demand among the ones with 

intra-cluster flows. Similarly, for the sever-VM section, the link capacity between the 

server and the dummy node is the server memory space, and the flow demand is the 

memory demand of the destination VM.  

Once the scheme finds the path for an intra-cluster flow, the placement of the 

source and destination VMs are determined as well based on the VM-to-server and 

server-to-VM paths. The scheme will thus move the VMs to the selected servers, so that 

additional flows of the VMs can start from the servers instead. 

After the scheme finishes processing a flow, it picks another among the remaining 

ones of the same VM or the VM with the next largest memory demand. The processing 

of the newly selected flow is similar. However, since the source and destination VMs of 

the flow may have been determined, the scheme searches a path between the servers 

instead of the VMs. The scheme continues the iterations until finishes processing the 

VMs with intra-cluster flows. For each of the remaining VMs with only inter-cluster 

flows, the scheme decides only its hosting server based on the memory and bandwidth 

demands by the best-fit criterion with priority given to the memory demand. 
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4.5.2 Inter-cluster Processing  

Inter-cluster processing searches paths for flows between different clusters, using 

the same depth-first best-fit rule. After intra-cluster processing is done, all the VMs have 

found their hosting servers and corresponding ToR switches. Similar as intra-cluster 

processing, inter-cluster processing first determines the necessary layer to connect the 

source and destination ToR switches, which is solely based on the network topology and 

can be calculated in advance. Then, starting from the source ToR switch, the scheme 

searches upstream by selecting the best-fit link. After reaching the connecting layer, the 

scheme turns downstream by also selecting the best-fit link. Again, backtracking may be 

necessary to successfully find a path. Figure 4.2(d) shows the example optimization 

results after applying the joint optimization scheme to the DCN in Figure 4.2(a), where a 

VM pair with the same color has a flow between them.    

 

4.6 Simulation Results 

We have implemented the proposed joint host-network energy optimization 

scheme in a simulator, and compared it with the network-only [Heller et al., 2010], host-

only [Meng et al., 2010], and the linear programing optimization solutions. The 

simulation results demonstrate that our design outperforms the network- and host-only 

optimization solutions, and well approximates the ideal linear program.  

 

4.6.1 Comparison with Linear Program  

First, we compare our joint optimization scheme with the ideal linear program, as 

well as the network-only optimization solution.We use the 32-bit IBM ILOG CPLEX 
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[Ibm ilog cplex optimizer] as the linear program solver. For network-only optimization, 

we pick the greedy-bin packing algorithm in [Heller et al., 2010], because the topology-

aware heuristic uses different assumptions by splitting a flow among multiple paths. We 

do not include host-only optimization in this subsection, because it assumes that all the 

VMs have the same memory demand.  

Since the linear program is NP-complete, the simulations can only be at small 

scales. We consider a fat tree with k, i.e. k3/4 = 16 servers, with each link having a 

bandwidth capacity of 1Gbps. Each server has a memory capacity of 8GB. The memory 

demand of a VM is a random number between 500MB to 1GB, and the number of VMs 

is determined by the memory load parameter. We restrict that a VM can only migrate to a 

server connected by the same aggregation layer switch, i.e. within the same pod [Mysore, 

2009]. Each VM has 2 flows in average with uniformly distributed destinations, and the 

the flow bandwidth demand is determined by the traffic load parameter. We use equations 

4.11 and 4.13 as the switch and server power functions, respectively, with α (x) = δ (s) 

and β (x) = € (x) =10, and assume that links are powered by the switches and consume no 

additional energy.  
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Figure 4.3 Comparison with linear program and network-only optimization. 

 

In Figure 4.3, we let the memory load equal to the traffic load, which changes 

from 0.1 to 0.9, and compare the power saving percentages of the three solutions. We can 

see that our scheme is consistently superior over network-only optimization, up to 40% 

better. On the other hand, our scheme well approximates the linear program, which is 

NP-complete. We tried to solve the linear program with a higher load or a larger network 

size, but CPLEX reported insufficient memory errors due to too many constraints. 

 

4.6.2 Comparison with Network-only Optimization  

Next, we compare the joint and network-only optimization solutions on a fat tree 

with k = 16. The simulation settings are similar to those in the previous subsection. 

In Figure 4.4(a), we adjust the memory and traffic load, and compare the power 

saving percentage of the two solutions. Joint optimization consistently outperforms 

network-only optimization. While the power consumption of network-only optimization 
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increases quickly with the load, joint optimization demonstrates energy proportionality. 

In Figure 4.4(b), we fix the memory and traffic load at 0.3 and adjust the percentage of 

intra-cluster traffic. Joint optimization still performs much better than network-only 

optimization. As the percentage of intra-cluster traffic increases, we can see that the 

performance of joint optimization improves, because there are more optimization 

opportunities for intra-cluster processing. In Figure 4.4(c), we fix the memory load at 0.5 

and adjust the traffic load. The power consumption of both solutions increases with the 

traffic load, but joint optimization still beats network-only optimization. In Figure 4.4(d), 

we fix the traffic load at 0.5 and adjust the memory load, and the conclusion is similar to 

that in Figure 4.4(c). In Figure 4.4(e), we use the following different power functions:  

)(1 200powerswitch ports  totalof #
powers active of #      (4.14) 

)(1 200powerserver memory available total
VMs hosted ofmemory       (4.15) 

 

 

 

 

 

     (a) Different memory and traffic loads.          (b) Different traffic patterns. 
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(c) Different traffic loads.                        (d) Different memory loads. 

 

 

 

 

 

(e) Different power functions.                     (f) Routing success ratios. 

Figure 4.4 Comparison with network-only optimization. 

 

Under the new power functions, joint optimization still performs better than 

network-only optimization. Finally, in Figure 4.4(f), we compare the routing success ratio 

of the two solutions. Although our scheme is not designed to work under heavy loads for 

a high routing success ratio, it achieves about 100% routing success under reasonably 

heavy loads, and so does network-only optimization. 

 

4.6.3 Comparison with Host-only Optimization  

Finally, we compare the joint and host-only optimization solutions on a fat tree 

with k . Since the host-only optimization solution considers VM placement but not flow 

routing, we use a OSPF like ECMP multipath routing algorithm for it in the simulations. 

Because host-only optimization assumes fixed VM memory demands, we use a value of 

0.8GB.  
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In Figure 4.5(a), we adjust the memory and traffic load, and compare the power 

saving percentage of the two solutions. Both solutions demonstrate similar and 

proportional power efficiencies, with joint optimization having a slight advantage. In 

Figure 4.5(b), we fix the memory and traffic load at 0.3 and adjust the percentage of intra-

cluster traffic. Joint optimization is still better than network-only optimization. Similarly, 

the performance of joint optimization improves with the increase of intra-cluster traffic, 

because there are more optimization opportunities. In Figure 4.5(c), we fix the memory 

load at 0.5 and adjust the traffic load. Joint optimization is initially better than host-only 

optimization, but becomes worse after the traffic load is greater than 0.6. This implies 

that host-only optimization does a better job in terms of VM placement. However, we 

should also notice that, host-only optimization has higher time complexity as the cost. On 

the other hand, the performance of host-only optimization is not sensitive to the change 

of traffic load, because it optimizes only VM placement. In Figure 4.5(d), we fix the 

traffic load at 0.5 and adjust the memory load. Joint optimization is initially worse than 

host-only optimization, but becomes better after the memory load is grater than 0.5. It is 

interesting to note that the performance of host-only optimization is almost linear to the 

memory load. Finally, in Figure 4.5(e), we use the second set of switch and server power 

functions, and joint optimization still outperforms host-only optimization. 
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         (a) Different memory and traffic loads.               (b) Different traffic patterns. 

 

 

 

 

 

 

     (c) Different traffic loads.                            (d) Different memory loads. 

 

 

 

 

 

 

(e) Different power functions. 

Figure 4.5 Comparison with host-only optimization. 
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4.7 Discussions  

In this section, we discuss the implementation of the proposed joint optimization 

scheme and other practical issues. 

 

4.7.1 Implementation  

The implementation of the joint optimization scheme requires a network 

controller such as one based on the Open-Flow [Mckeown et al., 2006] protocol, and a 

VM controller such as VMW are vMotion [Vmware vmotion for live migration of virtual 

machines]. OpenFlow enables the network controller to control the flow routing paths by 

manipulating the flow table in each switch. OpenFlow has been considered in many 

recent data center designs [Heller et al., 2010], [Mysore, 2009] for various purposes. 

Although OpenFlow uses a central logical controller, there exist many proposals [Curtis 

et al., 2011], [Yu et al., 2010] to enhance its scalability. vMotion continuously monitors 

VM performance, and is able to perform live VM migrations with zero downtime.  

The ToR switches and the VM controller periodically collect the flow and VM 

information, respectively, and send it to the network controller. Then, the network 

controller will run the joint optimization scheme to calculate the VM placement and flow 

routing. Finally, the controller sends the optimized results to all the switches and VM 

controller to enforce the flow routing and VM placement. 

 

4.7.2 Energy Consumed by VM Migration  

It should be noted that while we try to reduce energy consumption by migrating 

VMs, the operation of VM migration itself also consumes energy, but it is fortunately a 
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one-time overhead. Since VM migration is essentially to copy the VM memory image 

between servers, its energy consumption can be estimated by by the size of the VM 

memory image. While all the existing DCN energy optimization solutions target 

minimizing instant power, the VM migration overheads can be considered by deducting 

them from the the expected energy savings by a solution, if we know the duration of the 

current traffic matrix. 

 

4.7.3 Safety Margins  

While our design uses the best-fit criterion to maximize flow consolidation, it is 

necessary to leave certain safety margins for redundancy and traffic burst. This can be 

done by leaving a certain percentage of the link capacity untouched in the optimization 

process, and it will be our future work to determine a reasonable percentage value. 

 

4.8 Conclusions  

The data center network has become a major fraction of the energy consumption 

of a data center. In this work, we propose a joint host-network optimization scheme that 

directs layer 3 and layer 7 to improve the energy efficiency of DCNs. First, we present a 

unified representation method to convert the virtual machine placement problem to a 

routing problem, so that a single solution can apply to both types of optimization. Next, 

we describe a parallelizing approach that divides the DCN into clusters based on subnet 

IP addresses, and processes the clusters in parallel for fast completion. Further, we 

propose a fast topology oriented mutipath routing algorithm that can quickly find paths 

by using depth-first search to traverse between the hierarchical layers, and maximize 
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energy conservation by using the best-fit criterion to consolidate flows. Besides, network 

performance (in term of routing success ratio) has very little sacrifice. In other words, our 

algorithm has routing success ratio almost 100% even in heavy traffic condition. Finally, 

we have conducted extensive simulations to compare our design with existing ones. The 

simulation results demonstrate that our design is superior over existing host- or network-

only optimization solutions, and well approximates the ideal linear program 

  



87 

CHAPTER V 

CONCLUSIONS AND FUTURE WORKS 

5.1 Summary 

This dissertation aims to understand energy efficiency on data center network by 

implementation of our combined algorithm on four major layers (physical, data link, 

network and application layer) with reference to OSI seven layers. Each chapter included 

in this dissertation attempts to cover the hypotheses and objectives proposed in this study. 

As demonstrated in previous chapters, several statements regarding the assessment of 

power consumption practices can be addressed as the following: 

1. Fair bandwidth allocation algorithm for energy efficiency on packet switch 

fabric interconnects. We have shown that fair bandwidth allocation involving bit energy 

(physical layer) and fabric switch architecture (data link layer) for switches could not 

only allocate the feasible bandwidth for each flow at both input and output ports, but also 

utilize the bandwidth of each flow efficiently. As a result, power consumption on packet 

switch is lower 10-14% depending on the size of switch. Overall, this feasible algorithm 

can make networking devices energy efficiency.    

2. Deployment of a hybrid multicast switch in energy-aware data center network: 

a case of fat-tree topology. All the proposed energy efficiency practices dealing with 

one-to-many delivery on Ethernet multicast addressing (data link layer) and IP multicast 

(network layer) have shown remarkable contributions in reducing electricity demand. 

Firstly, we proposed the deployment of a multicast switch in a hybrid multicast network, 

which combines the efficiency of IP multicast and the flexibility of P2P multicast. We 

conduct extensive simulations to evaluate the transmission cost reduction and packet 
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delay improvement, and the simulation results fully demonstrate the effectiveness of our 

design which the average delay of our calculated multicast switch deployment is only one 

fourth of that of without multicast switches. Next, we calculate power consumption after 

deploying a multicast switch in famous Fat-tree topology. Energy used is reduced by half 

during off-peak hours. Besides, we can extensively deploy this scheme on weekends so 

that roughly 50% of the fully-operated power consumption is saved. During peak hours, 

although we need to keep few unused switches on, energy saving is one fourth of the 

maximum correspondingly. Finally, Nodeୱୟ୴୧୬(t) is measured during day and night. 

Since the connectivity is the tightest constraint at night, being the offered traffic much 

smaller than during peak hour. Saving well approximate 50% of power is achievable. In 

contrast, during the day, it would be possible to turn off few nodes, so that a minimum 

25% of power saving is promising which demonstrates that our proposed hybrid multicast 

mode is successful comprehensively decreasing energy consumption.   

3. Joint host-network optimization for energy-efficient data center networking. We 

propose a joint host-network optimization scheme coping with flow routing (network 

layer) and VM migration (application layer) to improve the energy efficiency of DCNs. 

First, we present a unified representation method to convert the virtual machine 

placement problem to a routing problem, so that a single solution can apply to both types 

of optimization. Next, we describe a parallelizing approach that divides the DCN into 

clusters based on subnet IP addresses, and processes the clusters in parallel for fast 

completion. Further, we propose a fast topology oriented mutipath routing algorithm that 

can quickly find paths by using depth-first search to traverse between the hierarchical 

layers, and maximize energy conservation by using the best-fit criterion to consolidate 
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flows. Besides, network performance (in term of routing success ratio) has very little 

sacrifice. In other words, our algorithm has routing success ratio almost 100% even in 

heavy traffic condition. Finally, we have conducted extensive simulations to compare our 

design with existing ones. The simulation results demonstrate that our design is superior 

over existing host- or network-only optimization solutions, and well approximates the 

ideal linear program.   

 

5.2 Future Study Recommendations 

5.2.1 Fair bandwidth allocation algorithm for energy efficiency on packet switch 

fabric interconnects 

While our work is deploying on non-deterministic time domain, we can set up a 

threshold for time deterministic on input requested flows. Since multicast traffic is also an 

important component of the Internet, our future work includes extending the parallel 

bandwidth allocation algorithm to switches with multicast flows. Counting interconnect 

wires power consumption and node switch power consumption into our power modeling 

is also recommended.   

 

5.2.2 Deployment of a hybrid multicast switch in energy-aware data center 

network: a case of fat-tree topology 

For future work, we would recommend to implement this algorithm on a bigger 

network model: 8-pod Fat-tree topology so as to prove the scalability of our proposed 

algorithm. Plus the analysis of Linkୱୟ୴୧୬(t) and Nodeୱୟ୴୧୬(t) on multiple multicast 
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groups is also recommended. Besides, we will address IBM ILOG CPLEX optimizer in 

order to mathematically analyze the efficiency of the integer linear programming.    

 

5.2.3 Joint host-network optimization for energy-efficient data center networking 

While our design uses the best-fit criterion to maximize flow consolidation, it is 

necessary to leave certain safety margins for redundancy and traffic burst. This can be 

done by leaving a certain percentage of the link capacity untouched in the optimization 

process, and it will be our future work to determine a reasonable percentage value. 

 

5.2.4 Future Work 

 Combining all proposed algorithms into a unified implementation would be left to 

be done in the future. There are issues of compatibility and consistency being considered. 

Not only energy savings but also a saving cost of less-demanded electricity can be added 

as a proof of economic effect.    
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