
Florida International University
FIU Digital Commons

FIU Electronic Theses and Dissertations University Graduate School

7-24-2012

Improving Caches in Consolidated Environments
Ricardo Koller
Florida International University, rkoll001@fiu.edu

DOI: 10.25148/etd.FI12080801
Follow this and additional works at: https://digitalcommons.fiu.edu/etd

This work is brought to you for free and open access by the University Graduate School at FIU Digital Commons. It has been accepted for inclusion in
FIU Electronic Theses and Dissertations by an authorized administrator of FIU Digital Commons. For more information, please contact dcc@fiu.edu.

Recommended Citation
Koller, Ricardo, "Improving Caches in Consolidated Environments" (2012). FIU Electronic Theses and Dissertations. 708.
https://digitalcommons.fiu.edu/etd/708

https://digitalcommons.fiu.edu/?utm_source=digitalcommons.fiu.edu%2Fetd%2F708&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.fiu.edu/etd?utm_source=digitalcommons.fiu.edu%2Fetd%2F708&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.fiu.edu/ugs?utm_source=digitalcommons.fiu.edu%2Fetd%2F708&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.fiu.edu/etd?utm_source=digitalcommons.fiu.edu%2Fetd%2F708&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.fiu.edu/etd/708?utm_source=digitalcommons.fiu.edu%2Fetd%2F708&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:dcc@fiu.edu

FLORIDA INTERNATIONAL UNIVERSITY

Miami, Florida

IMPROVING CACHES IN CONSOLIDATED ENVIRONMENTS

A dissertation submitted in partial fulfillment of the

requirements for the degree of

DOCTOR OF PHILOSOPHY

in

COMPUTER SCIENCE

by

Ricardo Koller

2012

To: Dean Amir Mirmiran
College of Engineering and Computing

This dissertation, written by Ricardo Koller, and entitled Improving Caches in Con-
solidated Environments, having been approved in respect to style and intellectual
content, is referred to you for judgment.

We have read this dissertation and recommend that it be approved.

Giri Narasimhan

Ming Zhao

Chen Liu

Murali Vilayannur

Raju Rangaswami, Major Professor

Date of Defense: July 24, 2012

The dissertation of Ricardo Koller is approved.

Dean Amir Mirmiran

College of Engineering and Computing

Dean Lakshmi N. Reddi

University Graduate School

Florida International University, 2012

ii

c© Copyright 2012 by Ricardo Koller

All rights reserved.

iii

ACKNOWLEDGMENTS

Muchas gracias a mis padres: Silvia, James, Norma y Ludvik.

Many thanks to my collaborators: Raju Rangaswami, Akshat Verma, Ali

Mashtizadeh and Murali Vilayannur. Akshat contributed to formulating the ERSS

tree model. Ali and Murali helped in designing and coding the SSD cache for

virtual machines. And Prof. Raju who, besides being my advisor and a great

friend, contributed to imagining, designing, and evaluating all the systems

presented in this thesis.

iv

DEDICATION

Para la princesa y mi gorda.

v

ABSTRACT OF THE DISSERTATION

IMPROVING CACHES IN CONSOLIDATED ENVIRONMENTS

by

Ricardo Koller

Florida International University, 2012

Miami, Florida

Professor Raju Rangaswami, Major Professor

Memory (cache, DRAM, and disk) is in charge of providing data and instructions

to a computer’s processor. In order to maximize performance, the speeds of the

memory and the processor should be equal. However, using memory that always

match the speed of the processor is prohibitively expensive. Computer hardware

designers have managed to drastically lower the cost of the system with the use of

memory caches by sacrificing some performance. A cache is a small piece of fast

memory that stores popular data so it can be accessed faster. Modern computers

have evolved into a hierarchy of caches, where a memory level is the cache for

a larger and slower memory level immediately below it. Thus, by using caches,

manufacturers are able to store terabytes of data at the cost of cheapest memory

while achieving speeds close to the speed of the fastest one.

The most important decision about managing a cache is what data to store in

it. Failing to make good decisions can lead to performance overheads and over-

provisioning. Surprisingly, caches choose data to store based on policies that have

not changed in principle for decades. However, computing paradigms have changed

radically leading to two noticeably different trends. First, caches are now consol-

idated across hundreds to even thousands of processes. And second, caching is

being employed at new levels of the storage hierarchy due to the availability of

high-performance flash-based persistent media. This brings four problems. First,

vi

as the workloads sharing a cache increase, it is more likely that they contain dupli-

cated data. Second, consolidation creates contention for caches, and if not managed

carefully, it translates to wasted space and sub-optimal performance. Third, as

contented caches are shared by more workloads, administrators need to carefully

estimate specific per-workload requirements across the entire memory hierarchy in

order to meet per-workload performance goals. And finally, current cache write poli-

cies are unable to simultaneously provide performance and consistency guarantees

for the new levels of the storage hierarchy.

We addressed these problems by modeling their impact and by proposing solu-

tions for each of them. First, we measured and modeled the amount of duplication

at the buffer cache level and contention in real production systems. Second, we

created a unified model of workload cache usage under contention to be used by

administrators for provisioning, or by process schedulers to decide what processes

to run together. Third, we proposed methods for removing cache duplication and

to eliminate wasted space because of contention for space. And finally, we pro-

posed a technique to improve the consistency guarantees of write-back caches while

preserving their performance benefits.

vii

TABLE OF CONTENTS

CHAPTER PAGE

1. INTRODUCTION . 1

2. THESIS OVERVIEW . 5
2.1 Thesis Statement . 5
2.2 Thesis Contributions . 5
2.3 Thesis Significance . 7
2.3.1 Using data de-duplication to improve caching efficiency 7
2.3.2 Modeling cache usage . 7
2.3.3 Reducing cache contention . 8
2.3.4 Guaranteeing consistency in write-back policies 9

3. CONTENT ADDRESSED CACHING . 10
3.1 Motivation . 12
3.2 Design . 16
3.2.1 Architectural Overview . 16
3.2.2 Content addressed caching . 19
3.2.3 Persistence of metadata . 21
3.3 Experimental Evaluation . 22
3.3.1 Evaluating performance . 23
3.3.2 Evaluating Overhead . 25
3.4 Related work . 27
3.5 Summary . 29

4. MODELING CACHE REQUIREMENTS AND CONTENTION 30
4.1 Gaps in Existing Models and Characterization 33
4.2 The Generalized ERSS Tree Model . 34
4.2.1 Capacity Related Parameters . 35
4.2.2 Generalized ERSS Tree . 38
4.2.3 Wastage . 39
4.2.4 Using the Generalized ERSS Tree Model for Provisioning 42
4.3 Building the Generalized ERSS Tree Model 45
4.3.1 Methodology Overview . 45
4.3.2 Refinement Level Identification . 47
4.3.3 Resource Limited Execution . 47
4.3.4 Atomic Refinement . 49
4.4 Experimental Validation of the Model 52
4.4.1 Experimental Setup . 52
4.4.2 The need for the Generalized ERSS Tree Model 54
4.5 Related work . 56
4.5.1 Mechanisms to build memory usage models 58

viii

4.6 Summary . 59

5. PARTITIONING FOR EXTERNAL MEMORY CACHES 60
5.1 Background on cache partitioning . 61
5.2 Solution overview . 65
5.3 The Partitioning Algorithm . 66
5.3.1 Partitioning for latency minimization 66
5.3.2 Partitioning for all other performance goals 69
5.4 Implementation . 69
5.4.1 Cache management . 70
5.4.2 Data consistency . 70
5.5 Experimental validation . 71
5.5.1 Experimental Setup . 71
5.5.2 Partitioned SSD cache . 72
5.5.3 Overheads . 73
5.5.4 Adaptation to specific storage characteristics 74
5.6 Related work . 75
5.7 Summary . 78

6. CONSISTENCY IN WRITE-BACK CACHES 80
6.1 Background . 81
6.1.1 Consistency and staleness . 81
6.1.2 Write-through and write-back policies 82
6.2 Motivation . 84
6.3 Consistency-preserving Write-back Caching 85
6.3.1 Ordered write-back . 86
6.3.2 Journalined write-back . 89
6.4 Consistency analysis . 91
6.5 Performance evaluation . 94
6.5.1 Experimental Setup . 94
6.5.2 Performance evaluation . 95
6.6 Related work . 97
6.7 Summary . 99

7. CONCLUSIONS . 101

BIBLIOGRAPHY . 104

VITA . 115

ix

LIST OF FIGURES

FIGURE PAGE

3.1 Page cache hits for the web-vm (top), mail (middle), and homes (bot-
tom) workloads. A single day trace was used with an infinite cache
assumption. 14

3.2 Contrasting content and sector reuse distances for the web-vm (top),
mail (middle), and homes (bottom) workloads. 15

3.3 System Architecture. 17

3.4 Data structure for the content-addressed cache. The cache is address-
able by both sector and content-hash. vc entries are unique per
sector. Solid lines between vc entries indicate that they may have
the same content (they may not in case of hash function collisions.)
Dotted lines form a link between a sector (vc entry) and a given
page (vc page.) Note that some vc entries do not point to any page
– there is no cached content for these entries. However, this indicates
that the linked vc entries have the same data on disk. This happens
when some of the pages are evicted from the cache. Additionally,
pages form an LRU list. 18

3.5 Per-day page cache hit ratio for content- and sector- addressed caches for
read operations. The total number of pages read are 0.18, 2.3, and
0.23 million respectively for the web-vm, mail and homes workloads.
The numbers in the legend next to each type of addressing represent
the cache size. 23

3.6 Comparison of ARC and LRU content-addressed caches for pages read
only (top) and pages read/write operations (bottom). A single day
trace (0.18 million page reads and 2.09 million page read/writes) of
the web workload was used as the workload. 24

3.7 Overhead of content and sector lookup operations with increasing size
of the content-addressed cache. 25

3.8 Overhead of sector and content lookup operations with increasing hash-
table bucket entries. 26

4.1 An illustration of the model concepts. 37

4.2 MRCs for the NAS benchmark applications. 38

4.3 A sample Generalized ERSS Tree. 39

4.4 Working set sizes and wastage on multi-workload MRC. Curves a and b
are the MRCs of the individual workloads and combined is the MRC
of both a and b running together. The reuse set sizes (RSS) of a,
b and combined are 155, 251 and 431 respectively. Notice how the
RSS of combined is larger than the sum of a and b’s RSS. 40

x

4.5 Wastage with multiple workloads. Figure on top shows wastage in MB
and figure at the bottom shows wastage as a percentage of the total
amount of cache: 100*W/RSSc, where W is wastage and RSSc is the
reuse set size of the combined workload. Notice how wastage as a
percentage increases linearly with the number of workloads 42

4.6 Phase Identification State Diagram. 50

4.7 (a) IS, RS, ERSS for one phase. (b) ERSS of various phases for NAS
applications. 54

5.1 Example of cache partitioning. A cache of size 2 is partitioned across
two VMs. Both VMs MRCs are shown with the optimal assignment
of cache shown in grey: one cache unit to each VM. 62

5.2 Example of MRC and its convex minorant. 62

5.3 MRCs for large requests sizes. (a) shows the MRC of a workload ac-
cessing a file of one million blocks with request size of one block and
(b) shows the MRC for the same workload and a slightly different
one where the request size was increased to 64 blocks. Note how the
MRC gets concave with a large request size. 64

5.4 Solution architecture. 65

5.5 28 Virtual Linux desktops booting simultaneously using an 6 GB SSD
cache. This figure shows the boot time using a global LFU cache
and a partitioned LFU cache. 72

5.6 System performance compared to vanilla disk and a simplified cache.
4kb aligned random reads/writes on 1GB using 100MB of cache. . . 73

5.7 Latency and IOPS−1 curves. 75

6.1 Representation of a write access for write-back and write-through write
policies. 83

6.2 Transaction response times for TPC-C using 1GB of RAM, 10 ware-
houses and 10 clients. 85

6.3 Dependency graph. Each node represents a write. 86

6.4 Technique used to reduce the amount of memory used for maintaining
dependencies. 88

6.5 Eviction of node 1 requires the parallel eviction of nodes in set 1, then
set 2, and finally set 3. 89

6.6 Use of a journal for eviction of a list of blocks. 90

xi

6.7 Number of transactions per second at different cache sizes for all four
write policies. 95

6.8 Hit ratio of Postmark reads as we increase the size of the cache for all
four write policies. 96

6.9 Postmark performance with 2.1GB of SSD cache for varying staleness
set as the maximum number of dirty pages. 97

xii

CHAPTER 1

INTRODUCTION

Memory (CPU caches, DRAM, and disk) has become one of the most important

design issues of most microprocessors and operating systems, and according to some

authors the only important issue [JNW08, Sit96, McK04]. This is due to the ever

increasing gap between processor and memory speeds. If the memory system does

not provide timely data access to the processor, then processors are kept waiting,

doing nothing. Most research has been done on improving processors speeds and to

better tolerate slow memory systems. However, for most systems, memory is still a

bottleneck and regardless of the processor speed, if the memory is slower, then the

processor optimizations are both futile and expensive (both in terms of monetary

and energy cost) [Jac09].

Ideally, computers would have a processor reading all of its data and instructions

from a flat memory device that matches the processor speed. One such memory de-

vice is Static Random Access Memory (SRAM). Building a computer where all data

and instructions are stored on SRAM and fetched directly from it to the processor

would solve the performance bottleneck and would be a very simple and elegant

solution. However, a computer built this way could cost approximately from hun-

dred thousand to 10 million dollars1. Consequently, hardware manufacturers have

sacrificed performance to achieve a lower price at a very good trade-off: minimal

performance impact for huge price reductions.

There are many types of memory, all of them store information using some special

physical property: disks use magnetism and semiconductor memories use electric-

ity. These memories offer specific trade-offs between cost, capacity, and speed of

access. For example, disks are cheap, large, and slow; and semiconductor memories

1100 GB at roughly 1 to 100 $ per MB [JNW08]

1

like SRAM are expensive, small, and fast. Computers have evolved into using a

combination of many memory types and are now able to store terabytes of data at

the cost of the cheapest memory type while achieving speeds close to the speed of

the fastest memory type.

Computer manufacturers are capable of achieving high speed at low price due

to one crucial engineering concept: caches. A cache is a small piece of fast memory

that stores popular data so it can be accessed faster. Caches are designed to take

advantage of a general phenomenon seen in applications’ data and instructions:

temporal locality. This phenomenon states that if data is accessed, it is very likely

that it will be accessed again in the near future. Therefore, if a cache stores the

data recently and frequently used in the past, it is very likely that cached data will

be used again. By doing this, memory systems are able to efficiently use small, fast,

and expensive caches for large terabytes of cheap memory storage.

Modern computers use the idea of caching in a hierarchy: there are several

levels of memory and a memory level is a cache for a larger and slower memory level

immediately below it. We now examine the most commonly used memory hierarchy.

The first level is the processor which is supplied data and instructions from memory

levels in the following order: CPU caches, main memory, and disk.

The access time of a level compared to the one immediately below is 10 to 1000

times smaller. That means that if the cache is unable to store data that is going to be

used next, then the processor has to wait 10 to 1000 times more until it is retrieved

from the level below. Sometimes, data can even be across a wide-area-network and

accessing it can take several seconds, or data cached could be the result of a very

lengthy computation. Therefore the cost of re-fetching the data or perform the slow

computation again is too high: there is limited space and the cost of a cache miss is

too high. Therefore, special care needs to be taken in choosing which blocks to store

2

in caches at any time. Surprisingly, caches at all levels choose data to store based

on policies that have not changed much in principle for decades. For instance, CPU

and buffer caches are still managed using the Least Recently Used (LRU) policy

introduced thirty years ago [Car81].

Since the introduction of policies like LRU, computing has changed radically,

with the biggest change being that nowadays caches are shared across hundreds or

thousands of simultaneous workloads. This change has introduced three problems:

• Duplicated content in caches. Having more workloads increase the chances of

having blocks of data with the exact same content at the same cache level.

This can waste precious cache space at all levels.

• Unknown cache requirements. In order to meet the performance goals of ap-

plications, users need to provision cache space for each workload sharing the

cache with other workloads. For this, a precise estimation of usage across all

levels of the memory hierarchy becomes necessary. Existing techniques for

cache estimation have severe drawbacks when used for consolidated caches.

• Contention for shared caches. We observed experimentally that caches man-

aged with traditional unified cache replacement policies can lead to wasted

space, and that this wastage increases linearly with the number of workloads.

The second big change in computing paradigms is that nowadays caching is

being employed at new levels of the storage hierarchy due to the availability of

high-performance flash-based persistent media. Write-policies are not capable of

providing both performance and consistency guarantees.

We believe that these are significant problems and that solving them have the

potential of further bridging the gap between processor and memory system speeds.

3

Additionally, by modeling a workload’s behavior and requirements in terms of cache

space we can make systems more predictable and workloads truly isolated.

This thesis makes the following contributions.

1. A technique to eliminate duplicated content from caches and use this new

space for other data, therefore improving performance.

2. A generalized and unified model for applications’ cache requirements across

the memory hierarchy. Additionally, we model the effect of sharing a cache

for several applications.

3. A technique to reduce wastage in shared caches. Previous research on parti-

tioning only applies to CPU and buffer caches [SRD04, GJMT03]. We propose

a generalized partitioning method applicable to any cache in the memory hi-

erarchy. And finally.

4. A technique to improve the consistency guarantees of write-back caches while

preserving their performance benefits.

The remaining chapters of this thesis are organized as follows. In chapter 2, we

state the thesis contributions and significance. Chapter 3 is a description of the tech-

nique to eliminate duplication from caches. In chapter 4, we present the generalized

and unified model for cache requirements. Chapter 5 describes the partitioning tech-

nique to reduce contention. In chapter 6, we show the design and implementation

of the write policies capable of achieving performance and consistency guarantees.

And finally, in chapters 7 and 8 we present related and future work.

4

CHAPTER 2

THESIS OVERVIEW

In this chapter we state the contributions and significance of this thesis.

2.1 Thesis Statement

We propose improving the state-of-the-art in caching by:

1. reducing duplication in data content to improve caching efficiency,

2. modeling applications’ cache usage across the memory hierarchy and the effect

of contention when they are shared,

3. solving the cache contention problem through cache partitioning and isolation

of workloads, and

4. achieving consistency guarantees for file systems, while achieving performance

comparable to write-back caches, at the cost of controlled staleness.

2.2 Thesis Contributions

Recent trends in computing have increased the number of workloads sharing caches.

One such trends is the use of virtualization by which several virtual machines them-

selves often running hundreds of processes are consolidated into the same physical

machines, and therefore sharing all the CPU caches and the main memory used as

cache for disk. In this thesis we model the effects of such consolidation and pro-

pose solutions to improve hit ratios of caches, improve performance, and ultimately

reduce cost. We propose three specific contributions.

The first contribution is to study the amount of duplicated content present in

consolidated buffer caches (RAM caches for disk) and find ways of using it for

improving cache hit-rates. We studied duplication of data in the I/O path at the

5

RAM buffer caches for disk data through the use of production traces. We found

that there is a substantial amount of duplicated data being cached, and that same

content data is accessed more frequently than the same data location. These two

observations then motivated the construction of a content addressed cache which

provides higher hit-rates than traditional location addressed caches. We present the

design and evaluation of this system in Section 3.

The second contribution is the creation of application cache usage models across

the entire memory hierarchy and being able to predict the resulting effect on per-

formance when a set of applications contend for caches. We introduce the concept

of Effective Reuse Set Size (ERSS) Tree as the basis for the modeling in Section

4. We then study methods for measuring and modeling it across all levels of the

memory hierarchy. We specifically develop methods for measuring ERSS for CPU,

RAM, and external memory caches. The main focus of study is related to the ad-

verse effect that consolidation has on caches at any level of the memory hierarchy.

We analytically prove certain properties of cache replacement policies such as cache

wastage being greater or equal than zero regardless of the replacement policy used.

The third contribution addresses the reduction of cache space wastage because

of cache sharing. Several researchers have proposed partitioning caches in order to

reduce wastage. However, the partitioning methods proposed in the literature make

assumptions only applicable to the first levels of the memory hierarchy: CPU and

RAM caches. We found that most of these assumptions and related methods have

large errors when applied to external memory caches. In chapter 5 we propose a

partitioning method for Solid State Drives (SSD) caches (a type of external memory

cache). Additionally, in chapter 6 we present two write-policies capable of providing

consistency guarantees while still performing similarly to write-back, this at the cost

of controlled staleness.

6

2.3 Thesis Significance

2.3.1 Using data de-duplication to improve caching efficiency

We observed that the amount of duplicated data in shared buffer caches is such that

removing it can boost applications’ performance by 10% to 4x when compared to

conventional location-addressed caches. This is because by removing duplicates and

having the cache addressed by content we can make space for other cached data

which would otherwise miss the cache.

The impact of this for applications and users is that they can get an increase

in performance without augmenting the size of the cache. A nice property of using

a content-addressed cache is that miss rates will always be lower or equal than

location-addressed caches: the same content can be in more than one location, but

not vice versa. And because running many workloads on the same machine is more

the norm than an exception, it is very likely that for most systems, same content

resides in more than one location. Therefore, we expect performance gains for the

majority of systems.

2.3.2 Modeling cache usage

An application requires resources at various memory levels in order to meet its

performance objective. Administrators are constantly provisioning resources for

applications and need accurate information about their requirements to do this

well. One such resource is memory, which translates to memory requirements at

all levels of the hierarchy. Not meeting cache requirements can lead to substantial

performance degradation. For example, Verma et al. have observed a performance

impact of up to a factor of 4 due to CPU-cache-unaware allocations for many HPC

applications [VAN08b].

7

Further, memory provisioning needs to deal with the problem of multiple appli-

cations contending for shared levels of the memory hierarchy. We observed that this

contention can result in a large amount of wasted cache space. We propose includ-

ing this in the memory models by accurately characterizing the amount of cache

resources required by each application including the over-provisioning required to

address contention and ensure performance isolation between the applications.

2.3.3 Reducing cache contention

Server consolidation (e.g. via virtualization) is gaining acceptance as the solution

to overcome server sprawl by replacing many low utilization servers with a few

highly utilized servers. However, contention for the memory system can be a source

of unexpected impact to an application’s performance due to consolidation. We

noticed that the source of this performance impact is some wasted space allocated

in the caches that is not usable by any workload. We additionally observed that this

wasted space increases linearly with the number of workloads, and that it exists for

any cache replacement policy.

This problem was not serious thirty years ago, but in current over-consolidated

scenarios where thousands of applications are sharing the same caches, this wasted

space can be as big as the cache required by one of the applications contending

for cache space. By managing caches more efficiently, we would have space to host

one or more additional applications per host thereby reducing costs. Our proposed

approach to cache partitioning eliminates wasted space in caches entirely.

8

2.3.4 Guaranteeing consistency in write-back policies

There are two types of write-policies for caches: write-back and write-through.

Write-back is a policy optimized for write accesses, which does not provide any

guarantee of consistency. Write-through, on the other hand, does not optimize

writes, and therefore performs worse than write-back for some workloads. It does,

at least, provide full guarantees of data consistency.

Modern computers use write-back caches for most of the memory hierarchy:

CPU caches and RAM [Int09, LSB08]. In contrast, SSD caches typically use write-

through caches because they are placed below file systems which already guarantee

some form of consistency. The problem with using write-through caches is that

we observed that for some transactional workloads, write-back caches allow the

applications to achieve 8 times more transactions per second. Our proposed solution

achieves performance comparable to write-back with some consistency guarantees

by controlling a third dimension of cache behavior: staleness.

9

CHAPTER 3

CONTENT ADDRESSED CACHING

In this chapter, we present a storage optimization that utilizes content similarity for

improving performance by eliminating duplicated content in caches. This technique

is motivated by our observations with I/O workload traces obtained from actively-

used production storage systems, all of which revealed surprisingly high levels of

content similarity for both stored and accessed data.

Duplication of data in primary storage systems is quite common due to the tech-

nological trends that have been driving storage capacity consolidation. The elimi-

nation of duplicate content at both the file and block levels for improving storage

space utilization is an active area of research [CAVL09, JDT05, KDLT04, LEB+09,

QD02, RCP08, ZLP08]. Indeed, eliminating most duplicate content is inevitable

in capacity-sensitive applications such as archival storage for cost-effectiveness. On

the other hand, there exist systems with moderate degree of content similarity in

their primary storage such as email servers, virtualized servers, and NAS devices

running file and version control servers. In case of email servers, mailing lists, cir-

culated attachments and SPAM can lead to duplication. Virtual machines may run

similar software and thus create co-located duplicate content across their virtual

disks. Finally, file and version control systems servers of collaborative groups often

store copies of the same documents, sources and executables. In such systems, if

the degree of content similarity is not overwhelming, eliminating duplicate data may

not be a primary concern.

Gray and Shenoy have pointed out that given the technology trends for price-

capacity and price-performance of memory/disk sizes and disk accesses respectively,

disk data must “cool” at the rate of 10X per decade [GS00]. They suggest data

replication as a means to this end. An instantiation of this suggestion is intrinsic

10

replication of data created due to consolidation as seen now in many storage systems,

including the ones illustrated earlier. Here, we refer to intrinsic (or application/user

generated) data replication as opposed to forced (system generated) redundancy

such as in a RAID-1 storage system. In such systems, capacity constraints are

invariably secondary to I/O performance.

We analyzed on-disk duplication of content and I/O traces obtained from three

varied production systems at FIU that included a virtualized host running two

department web-servers, the department email server, and a file server for our re-

search group. We made three observations from the analysis of these traces. First,

our analysis revealed significant levels of duplicate content in the storage medium

and in the portion of the medium that is accessed by the I/O workload. We define

these similarity measures formally in § 3.1. Second, we discovered a consistent and

marked discrepancy between reuse distances [MGST70a] for sector and content in

the I/O accesses on these systems indicating that content is reused more frequently

than sectors. Third, there is significant overlap in content accessed over successive

intervals of longer time-frames such as days or weeks.

Based on these observations, we explore the premise that intrinsic content simi-

larity in storage systems and access to replicated content within I/O workloads can

both be utilized to improve I/O performance. In doing so, we design and evaluate

a storage optimization that utilizes content similarity to eliminate I/O operations

altogether. The main mechanism is content-addressed caching, which uses the pop-

ularity of “data content” rather than “data location” of I/O accesses in making

caching decisions.

We evaluated a Linux implementation of a content-addressed cache for workloads

from the three systems described earlier. Performance improvements measured as

the reduction in total disk busy time in the range 28-47% were observed across these

11

workloads. Content-addressed caching increased memory caching effectiveness by at

least 10% and by as much as 4X in cache hit rate for read operations.

We also measured the memory and CPU overheads and found these to be nom-

inal.

In Section 3.1, we make the case for I/O deduplication. We elaborate on a

specific design and implementation of its techniques in Section 3.2. We perform a

detailed evaluation of improvements and overhead for three different workloads in

Section 3.3. We discuss related research in Section 3.4, and finally conclude with

directions for future work.

3.1 Motivation

In this section, we investigate the nature of content similarity and access to duplicate

content using workloads from three production systems that are in active, daily use

at the FIU Computer Science department. We collected I/O traces downstream

of an active page cache from each system for a duration of three weeks. These

systems have different I/O workloads that consist of a virtual machine running two

web-servers (web-vm workload), an email server (mail workload), and a file server

(homes workload). The web-vm workload is collected from a virtualized system

that hosts two CS department web-servers, one hosting the department’s online

course management system and the other hosting the department’s web-based email

access portal; the local virtual disks which were traced only hosted root partitions

containing the OS distribution, while the http data for these web-servers reside on

a network-attached storage. The mail workload serves user INBOXes for the entire

Computer Science department at FIU. Finally, the homes workload is that of a NFS

server that serves the home directories of our small-sized research group; activities

represent those of a typical researcher consisting of software development, testing,

12

and experimentation, the use of graph-plotting software, and technical document

preparation.

Workload File Sys. Unique reads [GB] Unique writes [GB] File System

type size [GB] Total Sectors Content Total Sectors Content accessed

web-vm 70 3.40 1.27 1.09 11.46 0.86 4.85 2.8%

mail 500 62.00 29.24 28.82 482.10 4.18 34.02 6.27%

homes 470 5.79 2.40 1.99 148.86 4.33 33.68 1.44%

Table 3.1: Summary statistics of one week I/O workload traces obtained from three
different systems.

Key statistics related to these workloads are summarized in Table 3.1. The mail

server is a heavily used system and generates a highly-intensive I/O workload in

comparison to the other two. However, some uniform trends can be observed across

these workloads. A fairly small percentage of the total file system data is accessed

during the entire week (1.44-6.27% across the workloads), representing small working

sets. Further, these are write-intensive workloads. While it is therefore important

to optimize write I/O operations, we also note that most writes are committed to

persistent storage in the background and do not affect user-perceived performance

directly. Optimizing read operations, on the other hand, has a direct impact on

user-perceived performance and system throughput because this reduces the waiting

time for blocked foreground I/O operations. For read I/O’s, we observe that in each

workload, the unique content accessed is lesser than the unique locations that are

accessed on the storage device. Notice that these are the unique number of content

and sectors reads, not the total number of accesses. This is why the same content is

accessed more than once and therefore unique sector reads are equal or higher than

unique content reads. These observation directly motivates the three techniques of

our approach as we elaborate next.

The systems of interest in our work are those in which there are patterns of

work shared across more than one mechanism within a single system. A mechanism

13

 1000

 10000

 100000

 1e+06

 1e+07

Read Write Read+Write

Sector
Content

 1e+06

 1e+07

 1e+08

Read Write Read+Write
N

u
m

b
e

r
o

f
c
a

c
h

e
 h

it
s

Sector
Content

 10000

 100000

 1e+06

 1e+07

Read Write Read+Write

Sector
Content

Figure 3.1: Page cache hits for the web-vm (top), mail (middle), and homes (bottom)
workloads. A single day trace was used with an infinite cache assumption.

represents any active entity, such as a single thread or process or an entire virtual

machine. Such duplicated mechanisms also lead to intrinsic duplication in con-

tent accessed within the respective mechanisms’ I/O operations. Duplicate content,

however, may be independently managed by each mechanism and stored in distinct

locations on a persistent store. In such systems, traditional storage-location (sector)

addressed caching can lead to content duplication in the cache, thus reducing the

effectiveness of the cache.

Figure 3.1 shows that cache hit ratio (for read requests) can be improved substan-

tially by using a content-addressed cache instead of a sector-addressed one. Notice

that this is a count of accesses to the same content or same sector, and not the total

number of accesses. While write I/Os leading to content hits could be eliminated

for improved performance, we do not explore them in this thesis. A greater num-

ber of sector hits with write I/Os are due to journaling writes by the file system,

14

 1000

 10000

 100000

 1e+06

Read Write Read+Write

Sector
Content

 100000

 1e+06

 1e+07

Read Write Read+Write
A

v
e

ra
g

e
 r

e
u

s
e

 d
is

ta
n

c
e

Sector
Content

 100000

 1e+06

 1e+07

Read Write Read+Write

Sector
Content

Figure 3.2: Contrasting content and sector reuse distances for the web-vm (top),
mail (middle), and homes (bottom) workloads.

repeatedly overwriting locations within a circular journal space.

For further analysis, we define the average sector reuse distance for a workload as

the average number of requests between successive requests to the same sector. The

average content reuse distance is defined similarly over accesses to the same content.

Figure 3.2 shows that the average reuse distance for content is smaller than for sector

for each of the three workloads that we studied for both read and write requests.

For such workloads, data addressed by content can be cache-resident for lesser time

yet be more effective for servicing read requests than if the same cached data is

addressed by location. Write requests on the other hand do not depend on cache

hits since data is flushed to rather than requested from the storage system. These

observations and those from Figure 3.1 motivate content-addressed caching.

15

3.2 Design

In this section, we start with an overview of the system architecture and then present

the various design choices and rationale behind constructing the content-address

cache.

3.2.1 Architectural Overview

An optimization based on content similarity can be built at various layers of the

storage stack, with varying degrees of access and control over storage devices and

the I/O workload. Prior research has argued for building storage optimizations

in the block layer of the storage stack [GUB+08]. We choose the block layer for

several reasons. First, the block interface is a generic abstraction that is available

in a variety of environments including operating system block device implementa-

tions, software RAID drivers, hardware RAID controllers, SAN (e.g., iSCSI) stor-

age devices, and the increasingly popular storage virtualization solutions (e.g., IBM

SVC [IBM], EMC Invista [EMC], NetApp V-Series [Net]). Consequently, optimiza-

tions based on the block abstraction can potentially be ported and deployed across

these varied platforms. In the rest of the chapter, we develop an operating system

block device oriented design and implementation.. Second, the simple semantics of

block layer interface allows easy I/O interception, manipulation, and redirection.

Third, by operating at the block layer, the optimization becomes independent of

the file system implementation, and can support multiple instances and types of

file systems. Fourth, this layer enables simplified control over system devices at the

block device abstraction, allowing an elegantly simple implementation of selective

duplication that we describe later. Finally, additional I/Os generated can leverage

16

Applications

VFS

Page Cache

File System:

EXT3, JFS, · · ·

Content-

addressed

caching

I/O Scheduler

Device Driver

Selective duplicator

Selective Duplicator Content based cache

Dynamic replica retriever

: New components : Existing Components : Control Flow

Figure 3.3: System Architecture.

I/O scheduling services, thereby automatically addressing the complexities of block

request merging and reordering.

Figure 3.3 presents the architecture of content-addressed caching for a block

device in relation to the storage stack within an operating system. We augment

the storage stack’s block layer with additional functionality, which we term the

I/O dedup layer, to implement the three major mechanisms: the content-addressed

cache, the dynamic replica retriever, and the selective duplicator. The content-

addressed cache is the first mechanism encountered by the I/O workload, which

filters the I/O stream based on hits in a content-addressed cache. The dynamic

replica retriever subsequently optionally redirects the unfiltered read I/O requests

to alternate locations on the disk to avail the best access latencies to requests.

The selective duplicator is composed of a kernel sub-component that tracks content

accesses to create a candidate list of content for replication, and a user-space process

that runs during periods of low disk activity and populates replica content in scratch

space distributed across the entire disk. Thus, while the kernel components run

17

S
ec
to
r-
to
-H

as
h
F
u
n
ct
io
n

S
ec
to
r

Digest-to-Hash Function

MD5 Digest

e

e

e

e

p

e

e

e

e

e

e

e

p

Legend

p Page (vc page) e Entry (vc entry)

Figure 3.4: Data structure for the content-addressed cache. The cache is address-
able by both sector and content-hash. vc entries are unique per sector. Solid lines
between vc entries indicate that they may have the same content (they may not in
case of hash function collisions.) Dotted lines form a link between a sector (vc entry)
and a given page (vc page.) Note that some vc entries do not point to any page –
there is no cached content for these entries. However, this indicates that the linked
vc entries have the same data on disk. This happens when some of the pages are
evicted from the cache. Additionally, pages form an LRU list.

continuously, the user-space component runs sporadically. Separating out the actual

replication process into a user-level thread allows greater user/administrator control

over the timing and resource consumption of the replication process, an I/O resource-

intensive operation. Next, we elaborate on the design of the content addressed

caching mechanism.

18

3.2.2 Content addressed caching

Building a content-addressed cache at the block layer creates an additional buffer

cache separate from the virtual file system (VFS) cache. Requests to the VFS

cache are sector-based while those to the content-addressed cache cache are both

sector- and content-addressed. The content-addressed cache layer only sees the read

requests for sector misses in the VFS cache. We discuss exclusivity across these

caches shortly. In the content-addressed cache layer, read requests identified by

sector locations are queried against a dual sector- and content-addressed cache for

hits before entering the I/O scheduler queue or being merged with an existing request

by the I/O scheduler. Population of the content-addressed cache occurs along both

the read and write paths. In case of a cache miss during a read operation, the I/O

completion handler for the read request is intercepted and modified to additionally

insert the data read into the content-addressed cache after I/O completion only if

it is not already present in the cache and is important enough in the LRU list to be

cached. A write request to a sector which had contained duplicate data is simply

removed from the corresponding duplicate sector list to ensure data consistency for

future accesses. The new data contained within write requests is optionally inserted

into the content-addressed cache (if it is sufficiently important) in the onward path

before entering the request into the I/O scheduler queue to keep the content cache

up-to-date with important data.

The in-memory data structure implementing the content-addressed cache sup-

ports look-up based on both sector and content-hash to address read and write

requests respectively. Entries indexed by content-hash values contain a sector list

(list of sectors in which the content is replicated) and the corresponding data if it

was entered into the cache and not replaced. Cache replacement only replaces the

19

content field and retains the sector-list in the in-memory content-cache data struc-

ture. For read requests, a sector-based lookup is first performed to determine if

there is a cache hit. For write requests, a content-hash based look-up is performed

to determine a hit and the sector information from the write request is added to

the sector-list. Figure 3.4 describes the data structure used to manage the content-

addressed cache. A write to a sector that is present in a sector-list indexed by

content-hash is simply removed from the sector list and inserted into a new list

based on the sector’s new content hash. It is important to also point out that our

design uses a write-through cache to preserve the semantics of the block layer. Ide-

ally, writes hits should dirty the page to be later flushed out to disk by a background

process (i.e. pdflush for Linux). However, this current design uses a write-through

cache. The main reason is that by having this type of cache, the semantics of writes

below the block layer do not change: writes are not postponed. Additionally, the

content addressed-cache can be dynamically removed at any time without any delay

or inconsistency. Next, we discuss some practical considerations for our design.

Since the content cache is a second-level cache placed below the file system

page cache or, in case of a virtualized environment, within the virtualization mech-

anism, typically observed recency patterns in first level caches are lost at this

caching layer. An appropriate replacement algorithm for this cache level is there-

fore one that captures frequency as well. We propose using Adaptive Replacement

Cache (ARC) [MM04] or CLOCK-Pro [JCZ05] as good candidates for a second-level

content-addressed cache and evaluate our system with ARC and LRU for contrast.

Another concern is that there can be a substantial amount of duplicated content

across the cache levels. There are two ways to address this. Ideally, the content-

addressed cache should be integrated into a higher level cache (e.g., VFS page cache)

implementation, if possible. However, this might not be feasible in virtualized en-

20

vironments where page caches are managed independently within individual virtual

machines. In such cases, techniques that help make in-memory cache content across

cache levels exclusive such as cache hints [LAS+05], demotions [WW02a], and pro-

motions [Gil08] may be used. An alternate approach is to employ memory dedu-

plication techniques such as those proposed in the VMware ESX server [Wal02a],

Difference Engine [GLV+08], and Satori [MMHF09]. In these solutions, duplicate

pages within and across virtual machines are made to point to the same machine

frame with use of an extra level of indirection, such as the shadow page tables. In

memory, duplicate content across multiple levels of caches is indeed an orthogonal

problem, and any of the referenced techniques could be used as a solution directly

within content-addressed caching.

3.2.3 Persistence of metadata

A final issue is the persistence of the in-memory data structure so that the system

can retain intelligence about content similarity across system restart operations.

Persistence is important for retaining the locations of on-disk intrinsic and artifi-

cially created duplicate content so that this information can be restored and used

immediately upon a system restart event. We note that while persistence is useful to

retain intelligence that is acquired over a period of time, “continuous persistence” of

metadata in a content-addressed cache is not necessary to guarantee the reliability

of the system, unlike other systems such as the eager writing disk array [ZYKW02]

or doubly distorted mirroring [OS93]. In this sense, selective duplication is similar

to the opportunistic replication as performed by FS2 [HHS05] because it tracks up-

dates to replicated data in memory and only guarantees that the primary copy of

data blocks are up-to-date at any time. While persistence of the in-memory data

is not implemented in our prototype yet, guaranteeing such persistence is relatively

21

straightforward. Before the content-addressed cache kernel module is unloaded (oc-

curring at the same time the managed file system is unmounted), all in-memory data

structure entries can be written to a reserved location of the managed scratch-space.

These can then be read back to populate the in-memory metadata upon a system

restart operation when the kernel module is loaded into the operating system.

3.3 Experimental Evaluation

In this section, we evaluate the performance impact of using a content-addressed

cache. We also evaluate the CPU and memory overhead incurred by an content-

addressed cache. We used the block level traces for the three systems that were

described in detail in § 3.1 for our evaluation. The traces were replayed as block

traces in a similar way as done by blktrace [Axb07]. Blktrace could not be used as-is

since it does not record content information; we used a custom Linux kernel module

to record content-hashes for each block read/written in addition to other attributes

of each I/O request. Additionally, the blktrace tool btreplay was modified to include

traces in our format and replay them using provided content. Replay was performed

at a maximum acceleration of 100x, with care being taken in each case to ensure that

block access patterns were not modified as a result of the speedup. Measurements for

actual disk I/O times were obtained with per-request block-level I/O tracing using

blktrace and the results reported by it. Finally, all trace playback experiments were

performed on a single Intel(R) Pentium(R) 4 CPU 2.00GHz machine with 1 GB of

memory and a Western Digital disk WD5000AAKB-00YSA0 running Ubuntu Linux

8.04 with kernel 2.6.20.

22

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

web-vm mail homes

H
it
 r

a
ti
o

Sector 4MB
Content 4MB

Sector 200MB
Content 200MB

Figure 3.5: Per-day page cache hit ratio for content- and sector- addressed caches
for read operations. The total number of pages read are 0.18, 2.3, and 0.23 million
respectively for the web-vm, mail and homes workloads. The numbers in the legend
next to each type of addressing represent the cache size.

3.3.1 Evaluating performance

In our first experiment, we evaluated the effectiveness of a content-addressed cache

against a sector-addressed one. The primary difference in implementation between

the two is that for the sector-addressed cache, the same content for two distinct

sectors will be stored twice. We fixed the cache size in both variants to one of two

different sizes, 1000 pages (4MB) and 50000 pages (200MB). We replayed two weeks

of the traces for each of the three workloads; the first week warmed up the cache

and measurements were taken during the second week. Figure 3.5 shows the average

per-day cache hit counts for read I/O operations during the second week when using

an adaptive replacement cache (ARC) in two modes, content and sector addressed.

This experiment shows that there is a large increase in per-day cache hit counts

for the web and the home workloads when a content-addressed cache is used (rela-

tive to a sector-addressed cache). The first observation is that improvement trends

are consistent across the two cache sizes. Both cache implementations benefit sub-

stantially from a larger cache size except for the mail workload, indicating that

mail is not a cache-friendly workload validated by its substantially larger working

set and workload I/O intensity (as observed in Section 3.1). The web-vm workload

23

 0.0001

 0.001

 0.01

 0.1

 1

 1 10 100 1000 10000

H
it
 r

a
ti
o

Cache size (MBytes)

ARC - Read
LRU - Read

 0.0001

 0.001

 0.01

 0.1

 1

 1 10 100 1000 10000

H
it
 r

a
ti
o

Cache size (MBytes)

ARC - Read/Write
LRU - Read/Write

Figure 3.6: Comparison of ARC and LRU content-addressed caches for pages read
only (top) and pages read/write operations (bottom). A single day trace (0.18
million page reads and 2.09 million page read/writes) of the web workload was used
as the workload.

shows the biggest increase with an almost 10X increase in cache hits with a cache

of 200MB compared to the home workload which has an increase of 4X. The mail

workload has the least improvement of approximately 10%.

We performed additional experiments to compare an LRU implementation with

the ARC cache implementation (used in the previous experiments) using a single

day trace of the web-vm workload. Figure 3.6 provides a performance comparison of

both replacement algorithms when used for a content-addressed cache. For small and

large cache sizes, we observe that ARC is either as good or more effective than LRU

with ARC’s improvement over LRU increasing substantially for write operations at

small to moderate cache sizes. More generally, this experiment suggests that the

performance improvements for a content-addressed cache are sensitive to the cache

replacement mechanism, which should be chosen with care.

24

 100

 1000

 10000

 100000

 1e+06

 1e+07

 1e+08

 0 50000 100000

L
o
o
k
u
p
 C

P
U

 C
y
c
le

s

Number of unique pages

sector 2
5

sector 2
25

content 2
5

content 2
25

Figure 3.7: Overhead of content and sector lookup operations with increasing size
of the content-addressed cache.

3.3.2 Evaluating Overhead

While the gains due to addressing a cache by content are promising, it incurs resource

overhead. Specifically, the implementation uses content- and sector- addressed hash-

tables to simplify lookup and insert operations into the content-addressed cache.

We evaluate the CPU overhead for insert/lookup operations and memory overhead

required for managing hash-table metadata.

CPU Overhead

To evaluate the overhead, we measured the average number of CPU cycles re-

quired for lookup/insert operations as we vary the number of unique pages (i.e.,

size) in the content-addressed cache (i.e., cache size) for a day of the web workload.

Figure 3.8 depicts these overheads for two cache configurations, one configured with

225 buckets in the hash tables and the other with 25 buckets. Read operations

perform a sector lookup and additionally content lookup in case of a miss for in-

sertion. Write operations always perform a sector and content lookup due to our

write-through cache design. Content lookups need to first compute the hash for the

page contents which takes around 100K CPU cycles for MD5. With few buckets

(25) lookup times approach O(N) where N is the size of the hash-table. However,

25

 100

 1000

 10000

 100000

 1e+06

 1e+07

2
5

2
10

2
15

2
20

2
25

2
30

L
o
o
k
u
p
 C

P
U

 C
y
c
le

s

Hash-table Buckets

sector content

Figure 3.8: Overhead of sector and content lookup operations with increasing hash-
table bucket entries.

given enough hash-table buckets (225), lookup times are O(1).

Next, we examined the sensitivity to the hash-table bucket entries. As the

number of buckets are increased, the lookup times decrease as expected due to

reduction in collisions, but beyond 220 buckets, there is an increase. We attribute

this to L2 cache and TLB misses due to memory fragmentation, under-scoring that

hash-table bucket sizes should be configured with care. In the sweet spot of bucket

entries, the lookup overhead for both sector and content reduces to 1K CPU cycles

or less than 1µs for our 2GHz machine. Note that the content lookup operation

includes a hash computation, which inflates its cycles requirement by at least 100K.

Memory Overhead

The management of a content-addressed cache introduces memory overhead for

managing metadata for the content-addressed cache. Specifically, the memory over-

head is dictated by the size of the cache measured in pages (P), the degree of

workload static similarity (WSS), and the configured number of buckets in the hash

tables (HTB), which also determine the lookup time, as we saw earlier. WSS is

defined as the average number of copies per block accessed by the I/O workload. In

our current unoptimized implementation, the memory overhead in bytes (assuming

4 byte pointers and 4096 byte pages) :

26

mem(P,WSS,HTB) = 13 ∗ P + 36 ∗ P ∗WSS + 8 ∗HTB

These overheads include 13 bytes per-page to store the metadata for a a specific

page content (vc page), 36 bytes per page per duplicated entry (vc entry), and 8

bytes per hash-table entry for the corresponding linked list. For a 1GB content

cache (256K pages), a static similarity of 4, and a hash-table of size 1 million entries,

the metadata overhead is ∼48MB or approximately 4.6%.

3.4 Related work

Content similarity in both memory and archival storage have been investigated in

the literature. Memory deduplication has been explored before in the VMware ESX

server [Wal02a], Difference Engine [GLV+08], and Satori [MMHF09], each aiming to

eliminate duplicate in-memory content both within and across virtual machines shar-

ing a physical host. Of these, Satori has apparent similarities to our work because

it identifies candidates for in-memory deduplication as data is read from storage.

Satori runs in two modes: content-based sharing and copy-on-write disk sharing. For

content-based sharing, Satori uses content-hashes to track page contents in memory

read from disk. Since its goal is not I/O performance optimization, it does not

track duplicate sectors on disk and therefore does not eliminate duplicated I/Os

that would read the same content from multiple locations. In copy-on-write disk

sharing, the disk is already configured to be copy-on-write enabling the sharing of

multiple VM disk images on storage. In this mode, duplicated I/Os due to multiple

VMs retrieving the same sectors on the shared physical disk would be eliminated in

the same way as a regular sector-addressed cache would do. In contrast, our work

eliminates duplicated I/Os by retrieving their content irrespective of where they

27

reside on storage. Additionally, our work improves I/O performance by reducing

head movement. Thus, the contributions of Satori are complementary to our work

and can be used simultaneously.

Data deduplication in archival storage has also gained importance in both the

research and industry communities. Current research on data deduplication uses

several techniques to optimize the I/O overheads incurred due to data duplication.

Venti [QD02] proposed by Quinlan and Dorward was the first to propose the use of a

content-addressed storage for performing data deduplication in an archival system.

The authors suggested the use of an in-memory content-addressed index of data

to speed up lookups for duplicate content. Similar content-addressed caches were

used in data backup solutions such as Peabody [MIG03] and Foundation [RCP08].

Content-addressed caching is inspired by these works. Recent work by Zhu and

his colleagues [ZLP08] suggests new approaches to alleviate the disk bottleneck via

the use of Bloom filters [Blo70] and by further accounting for locality in the con-

tent stream. The Foundation work suggests additional optimizations using batched

retrieval and flushing of index entries and a log-based approach to writing data

and index entries to utilize temporal locality [RCP08]. The work on sparse index-

ing [LEB+09] suggests improvements to Zhu et al.’s general approach by exploit-

ing locality in the chunk index lookup operations to further mitigate the disk I/O

bottleneck. Content-addressed caching addresses an orthogonal problem, that of

improving I/O performance for foreground I/O workload based on the use of dupli-

cates, rather than their elimination. Nevertheless, the above approaches do suggest

interesting techniques to optimize the management of a content-addressed index and

cache in main-memory that is complementary to and can be used directly within

content-addressed caching.

28

3.5 Summary

System and storage consolidation trends are driving increased duplication of data

within storage systems. Past efforts have been primarily directed towards the

elimination of such duplication for improving storage capacity utilization. With

content-addressed caching, we take a contrary view that intrinsic duplication in a

class of systems which are not capacity-bound can be effectively utilized to improve

I/O performance – the traditional Achilles’ heel for storage systems. The content-

addressed caching mechanism increased memory caching effectiveness by increasing

cache hit rates by 10% to 4x for read operations when compared to traditional

sector-addressed caching.

The work presented in this chapter was reported in ACM Transactions in Storage

2010 [KR10].

As said before, consolidation brings two big problems: data duplication and

cache contention. In this chapter we observed that the first problem, can be used

as an opportunity to improve performance. In the next chapter, we examine and

address the problem of cache contention due to consolidation which introduces a

large performance overhead which we could only model and minimize.

29

CHAPTER 4

MODELING CACHE REQUIREMENTS AND CONTENTION

In order to meet the performance goals of applications, we need to provision cache

space across the memory hierarchy. Existing techniques for cache estimation have

severe drawbacks when used for consolidated environments. In this chapter, we

present a unifying Generalized ERSS Tree Model that characterizes the resource

usage at all levels of the memory hierarchy and accurately models the impact of

sharing a cache with many workloads.

The ever-increasing gap between processing speed and disk bandwidth ensures

that the allocation of resources at all levels of the memory hierarchy (henceforth

also referred to simply as memory levels) significantly influence the performance

of applications. The memory levels used by an application include on-chip caches

(L1 and L2), off-chip caches (e.g., L3), DRAM, and other external memory caches

(e.g., a flash-based disk cache [krm08]). Characterizing the resource utilization of

an application at various memory levels has been an active research area over the

years. While the consolidation of multiple applications on a shared hardware is

not new, the rise of virtualization has made such systems more the norm than the

exception. In virtualized systems, multiple applications run on the same physical

server and compete for resources at all memory levels. For instance, it has been

shown that contention in a shared cache can lead to performance degradation — as

much as 47% [LLD+08] and 75% [VAN08b] depending on the workload. Contrast

this problem with duplication (previous chapter’s focus). Duplication can be used

to boost I/O performance; contention on the other hand is more a problem than an

opportunity.

An accurate characterization of the implications of this problem is a prerequisite

to ensuring that all applications meet their performance goals [LLD+08, VAN08b,

30

KRDZ10, VAN08a]. Specifically, there is a need for an accurate characterization of

the resource requirement of resident applications within each virtual machine (VM),

while carefully taking into account the impact of resource contention due to other

applications.

Research in memory characterization can be broadly classified into models of

memory usage and techniques that instantiate these models. The modeling work

can be summarized using three related but disparate concepts. One of the most pop-

ular ways to characterize the main memory usage of an application is the classical

working set model [Den80]. The core of this model is the concept of a resident set

that defines the set of memory-resident pages of an application at any given point in

time. An alternative modeling approach uses the Miss Rate Curve (MRC) [RSG93]

of an application to model the influence of the allocated memory cache size on

the performance-influencing cache miss rate of the application. MRCs offer an ad-

vantage over the working set of being able to model the performance impact of

arbitrarily sized caches. Finally, the concepts of phases and phase transitions have

been proposed to model the memory resource usage behavior of an application as

it changes over time [BM76]. A phase denotes stability of the active data set used

by the application and phase transitions indicate a change in application behavior

resulting in a change in the set of active data used. and several techniques have

been proposed to identify phase transitions [BDB00, DS02, BABD00].

In this work, motivated by the multi-tenancy of applications within virtualized

enterprise data centers and clouds, we investigate the problem of characterizing

the resource requirement of an application at all levels of the memory hierarchy for

accurately provisioning resources in a shared environment. We identify the following

properties for a memory model to be relevant in such shared environments.

31

1. Address all memory levels: The degree of sharing in a consolidated en-

vironment determines the amount of resources available to an application at

each memory level. As opposed to a dedicated system, the resources available

to an application at various memory levels in a shared environment do not

have clearly demarcated values (e.g, 4KB L1, 2MB L2, 16MB L3 cache). A

holistic view of resource consumption across all memory levels during an ap-

plication’s entire lifetime is thus necessary to provision memory resources for

the application.

2. Identify dominant phases: The phases that are long-running have the

greatest impact on application performance. On the other hand, reserving

memory resources for short-lived phases, even though they may constitute

larger working sets, may not be required. Therefore, model should adequately

inform about the lifetime of the phases.

3. Address impact of contention: In spite of the copious work on partitioning

caches at the hardware or the OS kernel level, solutions for cache partitioning

are available only in high-end systems and that too only for certain memory

levels. Today’s commodity systems do not support flexible cache partition-

ing at any level. Hence, the model should address the impact of resource

contention in a shared environment as a first class concern.

4. A commodity solution: Typical virtualized data centers run on commod-

ity systems wherein administrators have little or no control on the internal

operations of the guest VMs. Hence, a practically viable model should be

built primarily from high level system parameters that do not require intru-

sive changes to the systems under consideration.

32

4.1 Gaps in Existing Models and Characterization

Existing memory models are insufficient to adequately model memory usage in a

shared environment. First, existing techniques do not adequately capture the dis-

tinct phases of memory resource usage during an application’s lifetime; working sets

typically model the resource requirement for a fixed phase in the application while

MRCs unify multiple phases into one, losing important distinctions between their

individual resource consumption characteristics. Second, existing models focus on a

specific level of memory; working sets are used for main memory [Den80] and MRCs

for caches [DS02]. With the increasingly diverse levels of memory resources (L1, L2,

L3, main memory, flash, and disks), a unified view of all memory resources is criti-

cally important for memory provisioning. For instance, if the working-set of a phase

cannot be accommodated in L2, it may be possible to provision for it in L3, and pro-

visioning a greater amount of L3 cache can reduce memory bandwidth requirement.

Third, these models were not designed to model the impact of contention between

applications which is important for ensuring performance isolation. An application’s

actual memory requirement may be very small, i.e., capacity misses may be close

to 0, but it may have a large number of compulsory misses (e.g., streaming data

access) which would effectively pollute the cache and thus impact other co-located

applications significantly. Finally, most existing techniques for identifying phases or

to infer the working set or the MRC are fairly intrusive, requiring direct access to

the operating system page tables or fragment cache [BDB00] that are only available

within the kernel. Typical data centers use commodity software and administrators

do not have kernel level access to individual virtual machine instances.

We present the Generalized ERSS Tree Model, a new model for memory usage

which both refines and unifies existing models. The Generalized ERSS Tree Model

33

is based on a novel characterization that we term Effective Reuse Set Size (ERSS),

which refines the working set by accounting for the reuse of data and architectural

advances like prefetching. We define ERSS relative to the miss rate allowing it to

model MRC concepts. The ERSS tree additionally captures hierarchical phases and

their transitions. Additionally, we introduce two new parameters that intuitively

model resource contention. The Reuse Rate captures the average rate at which an

application reuses its Effective Reuse Set and the Flood Rate captures the rate at

which an application floods a resource with non reusable data. We show that the

former captures the vulnerability of an application’s performance to competition

from other applications, whereas the latter captures the adverse impact of an ap-

plication on the performance of co-located applications. We overcome significant

technical challenges to design a practical methodology for instantiating the model

on commodity hardware without access to the target application or operating sys-

tem. Our methodology uses (i) existing as well as new memory resource partitioning

techniques to get the hit/miss rates for applications and (ii) a new phase detection

technique that can be built solely from hit and miss rates for all levels of the mem-

ory hierarchy. Finally, we demonstrate the use of the model to characterize the

amount of memory required to ensure performance isolation for applications in a

consolidated environment.

4.2 The Generalized ERSS Tree Model

We now present the Generalized ERSS Tree Model that unifies and refines the

classical concepts of working set, miss rate curves, and phases. In line with previous

work [BM76], we define a phase as a maximal interval during which a given set

of memory lines, each referenced at least once, remain on top of an LRU stack.

The model is based on a characterization of the core parameters that determine the

34

memory capacity requirement of an application within a single phase of its execution.

We extend this core concept to a tree-based structural model that characterizes the

memory requirements of an application across all of its phases. We finally enrich

this model with parameters based on access rates at various memory levels to model

resource contention in shared environments. For the rest of the chapter, we use the

term memory line to denote the basic unit of access, thus denoting both cache lines

and memory pages based on the context.

4.2.1 Capacity Related Parameters

A key characteristic of an application’s memory usage is the number of memory lines

the application requires to avoid capacity misses within a single phase of its execu-

tion. This metric assumes that there is no contention from any other application

for the resource.

Parameter Phase i Duration InUse Reuse Set Effective Miss/Hit Reuse Flood

Resident Set Reuse Ratio Rate Rate

Set Size

Notation Pi θ IS RS ERSS ∆M ρR ρF

Table 4.1: Phase centric parameters of the model.

Definition 1 In Use Resident Set (IS): The In Use Resident Set for a

phase is the set of all distinct virtual memory lines that are accessed dur-

ing the phase. This notion is the same as the classical working set [Den80],

but restricted to a single phase of execution.

While the In Use Resident Set describes the virtual memory lines in use by an

application during a phase, we are interested in the physical memory lines that need

to be provisioned. A virtual memory line that is not reused may not need a physical

memory line to be provisioned for the entire phase which can then be used to host

35

other lines. Hence, the In Use Resident Set does not adequately capture the amount

of physical memory needed by the application.

Definition 2 Reuse Set (RS): The Reuse Set is the subset of In Use Res-

ident Set that is accessed more than once during a phase.

While the Reuse Set is a better approximation for the memory requirement of an

application, it lacks certain key properties. First, the Reuse Set does not capture any

capacity that is required to prevent the non-reusable data from evicting the reusable

data. The actual memory requirement of the application during a phase may thus

be larger than the Reuse Set. Second, the Reuse Set may contain some virtual

memory lines that are reused very infrequently. The performance degradation of the

application by not provisioning physical memory for these lines may be negligible

and thus these lines do not contribute in a significant way to the effective memory

requirement of the application during the phase. Finally, prefetching may hide

latencies for accesses that are part of a stream of accesses if the rate of data access

is low. This may further reduce the effective number of memory lines required by an

application below the Reuse Set size. Thus, we define a metric that more accurately

captures the amount of memory required by an application within a phase.

Definition 3 Effective Reuse Set Size (ERSS): The Effective Reuse Set

Size is the minimum number of physical memory lines that need to be

assigned to the program during a phase for it to not exhibit thrashing

behavior [Den68a]. The ERSS is defined with respect to a miss/hit ratio

∆M and is denoted by ERSS(∆M).

Definition 4 Miss/Hit Ratio (∆M): This parameter defines the ratio be-

tween the number of misses and the number of hits during a phase for a

given memory resource allocation.

36

for (idx = 0; idx <A.length ; idx++) {
sum = sum + A[idx];
}

Figure 4.1: An illustration of the model concepts.

The new phase centric metrics introduced above are summarized in Table. 4.1.

We illustrate the above concepts with an example in Figure 4.1. Consider a phase

where a program computes the sum of all the elements in an array in the variable

sum (Figure 4.1(a)). The Inuse Resident Set (IS) of the program in this phase is

the array A and the variables idx and sum. Since all accesses to A are compulsory

misses and only the two variables idx and sum get reused, the size of the reuse set is

2. The minimum Miss/Hit Ratio (∆M) is 1/2 which can be achieved by provisioning

physical memory for 3 integers — 2 integers to hold the reuse set and 1 more as a

buffer for the current array element. Hence, the ERSS(1/2) is 3 and different from

the size of both IS or RS.

Phase transitions in typical programs are abrupt, i.e, the miss/hit ratio is con-

stant for a large range of memory size allocations and increases/decreases signifi-

cantly with small change in memory resource at a few memory resource allocation

sizes [RSG93]. We validate this observation for applications in the NAS benchmark

suite [NAS] in Figure 4.2 which reveals sharp knees at a few ERSS values. Since the

ERSS for different values of ∆M around the phase transition (or knee) are similar,

one can represent the ERSS for each phase by a single ERSS value corresponding

to a default ∆M ; in this work, we used the minimum ERSS at which the derivative

of ∆M w.r.t. memory resource size is less than 0.1 as the default value for that

phase.

37

7e4

1e5

 0 1e+06

bt.W

8e4

1e6

 0 1e+06

dc.W

2e6

5e6

 0 1e+06

ft.W

3e5

6e5

 0 1e+06

is.W

9e5

1e6

 0

lu.W

5e5

6e5

 0 1e+06

mg.W

3e6

 0 1e+06

sp.W

1.2e6

2.2e6

 0 2e+06 4e+06

ua.W

Figure 4.2: MRCs for the NAS benchmark applications.

4.2.2 Generalized ERSS Tree

So far, we have introduced the parameters that describe the memory requirement

of an application in a single phase. We now present the Generalized ERSS Tree

Model that characterizes all the phases of an application. The Generalized ERSS

Tree of an application is a tree structure, where each phase is represented as a node

specified by its duration (θ) and ERSS(∆M) function. The phase duration is defined

in terms of number of virtual memory accesses and is thus platform-independent. If

the ERSS(∆M) function has a sharp knee, we replace the function with a default

ERSS value. Smaller phases contained within a larger phase are captured by a

parent-child relationship in the tree. Further, if a small phase occurs multiple times

within a larger phase, the edge weight between the two nodes represent the number

of small phases. Finally, since a single phase may contain multiple phases with

38

(32768 , 6e+08)

(16384 , 3.43e+08) (16384 , 2.57e+08)

(4096 , 2e+07)

11

(1024 , 8e+06) (1024 , 15e+06)

(256 , 8e+06) (256 , 7e+06)

(4096 , 17e+07) (4096 , 8e+06)

32768

16384

4096

1024

256

Figure 4.3: A sample Generalized ERSS Tree.

different characteristics, a node may have multiple children.

An example ERSS tree is shown in Figure 4.3 that describes the resource usage

of the bt application in the NAS benchmark suite. Each node represents a phase

with two parameters (ERSS,θ). The tree contains 5 levels of phases with the largest

phase having a length of 6×108 memory accesses and containing two smaller phases,

each with an ERSS of 16MB. The first phase has a length of 3.43 × 108 memory

accesses and the second phase has a length of 2.57 × 108. The second phase has

three embedded phases of 4MB each, where the first child phase repeats 11 times.

Given such a tree, one can easily identify the phases that would be resident in any

level of memory. A typical example of resident locations of the phases at various

levels of the memory hierarchy is shown using dotted lines in the figure.

4.2.3 Wastage

Sharing introduces another dimension of complexity to the resource usage behavior

of applications. Since commodity systems do not support strict isolation of various

cache resources across applications, the effective cache size (at any level of the cache

39

hierarchy) available to an application is directly influenced by the resident sizes and

rates of accesses of co-located applications.

A common method to estimate reuse set sizes (RSS) is using the miss rate curve

(MRC) which characterizes the cache miss rate that the workload would experience

at various cache sizes (see Figure 4.4). If we take one of the MRCs on the figure

and follow the curve from left to right, the RSS is the size at which the curve

becomes completely horizontal: any increase in cache size is futile when attempting

to decrease misses. Given the MRC, the cache can be provisioned to match the

reuse set size. This works well when a single workload uses the cache exclusively.

However, when multiple workloads share a storage cache, this approach does not

usually work.

 0.4

 0.6

 0.8

 1

 0 155 251 406

M
is

s
 r

a
te

Cache size in MB

a
b

 0.4

 0.6

 0.8

 1

 0 431

M
is

s
 r

a
te

+ =

combined

 406 431

wastage

Figure 4.4: Working set sizes and wastage on multi-workload MRC. Curves a and b
are the MRCs of the individual workloads and combined is the MRC of both a and
b running together. The reuse set sizes (RSS) of a, b and combined are 155, 251
and 431 respectively. Notice how the RSS of combined is larger than the sum of a
and b’s RSS.

Figure 4.4 illustrates how using individual workload MRCs is not adequate for

computing the combined cache requirement of two workloads. We ran two web server

traces from a university CS department for a day on a aging-LFU cache simulator.

We ran the two workloads first individually to obtain their reuse set sizes (RSS); we

40

did the same next but with the two workloads running at the same time to obtain

the RSS of the combined workload. We would expect the combined workload to

have a RSS equal to the sum of both individual RSS. However, the real RSS is

25MB more than the expected 406MB. We term this additional cache requirement

on reuse set sizes as wastage.

Several researchers have observed this problem for Least Recently Used (LRU)

caches [TSW92a, QP06a, STW92, KVR10] when two or more applications are shar-

ing a cache. The common observation they made was that a cache is not guaranteed

to entirely host the reuse sets of two applications even when the sum of the indi-

vidual reuse sets sizes are less than the cache size. This observation also triggered

the division of Level 1 CPU caches into instructions and data for most architec-

tures [STW92, Int09].

To quantify the extent of wastage with many workloads, we replayed combi-

nations of I/O workloads from a set of eight actively used systems including 2

production web servers, 5 student desktops and a production University CS depart-

ment email server. Workload durations were three hours and combination workloads

were created by merging based on timestamps, an approximation of how the I/O

scheduler would combine the I/O streams before dispatching to the backing store.

The combined workloads were replayed on simulators using both LRU (Least Re-

cently Used) and an aging-LFU (Least Frequently Used) replacement policies. We

used two migration policies for each replacement: on-demand migrations where a

block is moved to the cache just after a miss, and periodic migrations where blocks

are moved to the cache every 5 minutes. On-demand migrations are necessary for

CPU and buffer caches as blocks must ultimately be used from the cache. On the

other hand, SSD caches can be populated periodically, and most caching systems

or first level tiers [GPG+11] do so in order to not interfere with the foreground I/O

41

 0
 2
 4
 6
 8

 10
 12
 14
 16

 2 3 4 5 6 7 8
W

a
s
ta

g
e
 i
n
 %

Number of simultaneous workloads

y=1.4x+2.7
y=0.7x+0.5
y=0.4x+0.2

 0

 100

 200

 300

 400

 500

 600

W
a
s
ta

g
e
 i
n
 M

B

LRU on-demand
LRU periodic

LFU on-demand
LFU periodic

Figure 4.5: Wastage with multiple workloads. Figure on top shows wastage in
MB and figure at the bottom shows wastage as a percentage of the total amount
of cache: 100*W/RSSc, where W is wastage and RSSc is the reuse set size of the
combined workload. Notice how wastage as a percentage increases linearly with the
number of workloads

workload.

Figure 4.5 shows the average wastage induced per workload as we increase the

number of traces sharing the cache. For all cases, the percentage of per-workload

induced wastage increases linearly with the number of workloads. Cache block

size for all experiments was 4KB; we saw the same effect for blocks of 128KB. It

is important to notice that we are unaware of any previous research that noticed

cache wastage for cache policies other than LRU.

We now extend our model to account for resource competition. In other words,

we estimate application memory resource usage with multiple co-located applica-

tions, explicitly accounting for wastage.

4.2.4 Using the Generalized ERSS Tree Model for Provisioning

We wrap up this section with a discussion of how to utilize the model described so

far when provisioning resources for a set of consolidated applications. The cache

42

provisioning approaches in the literature today all suggest allocating an amount

equal to the sum of the working sets of each application. The proposed ERSS

metric leads to a more accurate estimate of the cache requirements of an application

but yet assumes that the application is running in isolation. To address this gap, we

modeled the impact of contention due to co-located applications with the additional

parameter of Wastage that enable us to perform cache provisioning more reliably.

If we assume an LRU-based eviction policy (typically employed in caches today),

then applications memory lines can get evicted by applications that are not reusing

their elements. If an application access a memory line, it will get to the top of the

LRU stack, as it is the most recent line. This happens even if the line is not reused

again. The problem is that this line can evict the line of a second application that

will actually be reused: a useful line is evicted by a useless line. This is more likely

to occur when an application accesses these useless lines faster than the second

application reuses its lines. We define the rate at which an application i reuses its

lines as Reuse Rate ρRI , and the rate at which an application j accesses lines that

will not be reused as Flood Rate ρF j.

Definition 5 Reuse Rate for an application i during a phase. We define

reuse rate as ρRi = Ri/n, where Ri is the number of reuses performed

by application i and n is the total number of accesses by all applications

during the phase.

Definition 6 Flood Rate for an application i during a phase. We define

flood rate as ρFi = Fi/n, where Fi is the number of accesses to lines that

are not going to be reused during the phase by an application i, and n is

the total number of accesses by all applications during the phase.

43

During a phase, we define the wastage that an application i flooding a cache

incurs on an application j reusing elements as Wi→j.

Definition 7 Wastage from application i to j during a phase. We define

wastage as:

Wi→j = ⌈ERSSj∗ρFi

ρFi+ρRj
⌉ (4.1)

when i! = j and 0 otherwise.

Wastage has an cumulative effect: an application flooding the cache affects all

other applications sharing it. We observed this effect in figure 4.5.

Definition 8 Wastage: A set of N applications sharing a cache incur

wastage on each other as:

W =
∑N

i=1

∑N
j=1 Wi→j (4.2)

Here we make a simplifying assumption that wastage can be characterized by the

sum of pairwise effects. In reality, arbitrary sets of applications can jointly impact

each other in terms of cache usage. We now define the isolation condition for a set

of applications sharing a cache.

Definition 9 Isolation Condition: A set of N applications Ai sharing a

cache of capacity C are said to satisfy the isolation condition iff the fol-

lowing condition holds:

∑N
i=1 ERSSi +W ≤ C (4.3)

Before consolidating, it is critical that the isolation condition holds at various

levels of the memory hierarchy to ensure performance isolation. To determine if this

is true, the ERSS tree for each application must first be created. All phases that

44

were resident in a specific level of the memory hierarchy when the application ran

stand-alone is determined. Consequently, the phase, termed Pbig, with the largest

ERSS for each application and whose duration is above a pre-determined threshold,

is identified. These are the phases for which we would need to ensure the isolation

condition (Equations 4.3) must be met. This process is then applied to each level of

the cache hierarchy for a given system to conclusively establish if the applications

can be consolidated on the given hardware. Finally, in applications with hierarchical

phases (smaller phases embedded within larger ones), the hit rate and ERSS for

larger phase includes access to memory lines of the smaller phase as well. However,

an accurate characterization of the larger phase should be made independent of

the accesses to any embedded smaller phases. Hence, the ERSS and Hit Rate is

calculated as the marginal (or additional) ERSS and Hit Rate respectively over the

smaller phase.

4.3 Building the Generalized ERSS Tree Model

We now present a methodology to construct a generalized ERSS tree (henceforth

referred to as ERSS tree), representing an instantiation of the Generalized ERSS

Tree Model for the application under consideration.

4.3.1 Methodology Overview

The Generalized ERSS Tree Model is a recursive model with a subtree composed

of smaller phases embedded within a larger phase. Our methodology to create the

ERSS tree is based on the observation that one can create a coarse tree (with few

levels) and increase the resolution of the tree by identifying phases for additional

resource sizes iteratively. We start with the root node of the tree which corresponds

45

to the largest unit in the memory hierarchy (typically disk-based storage) and use a

three-step node generation process to identify and incorporate phases of the longest

duration. We then recursively refine it to include phases at lower levels of the tree

by iteratively applying the node generation process for decreasing sizes of memory.

To deal with noise or data-dependent execution, the process is repeated for multiple

runs and only the phases that are identified in all runs are included in the model.

The node generation process consists of

1. Refinement Level Identification. In this step, we identify the next size of

memory resource, Availmem, (e.g, 2 MB) using which the tree should be refined

further.

2. Resource Limited Execution. In this step, we identify the memory resource

R that best matches Availmem and ensure that the application executes with only

Availmem amount of R available. The techniques to ensure this reservation depends

on the memory resource R and is detailed in Sec. 4.3.3. This step also creates an

execution trace including the hits and misses for application requests to the specific

resource, which serves as the input to Atomic Refinement step.

3. Atomic Refinement. This step uses the execution trace following the Resource

Limited Execution to refine the ERSS tree. Atomic refinement is described in detail

in Section 4.3.4.

It is straightforward to use the ERSS tree for an application generated using

the above node generation process iteratively in a consolidation scenario. Prior to

consolidation, we refine the tree to closely reflect the proposed allocation of various

memory resources for each application to determine actual ERSS sizes at various

levels of the memory hierarchy. We then use Equation 4.3 to determine if the

planned allocations are adequate or over-provisioned for the dominant phases at

each memory level. Next, we elaborate on the steps of the node generation process.

46

4.3.2 Refinement Level Identification

The node generation process must be applied for various levels (sizes) of memory

resources in order to create the ERSS tree. A significant advantage of the three

step process is the complete flexibility in refining the ERSS tree at the required

granularity. The refinement level identification step allows a model that focuses

on interesting parts of the tree to create higher resolution sub-trees. Selection of

the refinement level in this step would ideally be based on the level of provisioning

granularity required and candidate allocation sizes for each memory resource. Thus,

the methodology allows easy refinement of the tree for the range of the actual

memory assignments (e.g., at all candidate sizes for the L1, L2, and L3 caches

and main memory).

4.3.3 Resource Limited Execution

Resource limited execution facilitates application execution for a specific size of the

resource under consideration and records the memory hit and miss counters for the

application. For example, to identify the memory phases at ERSS = 2MB on a

machine with 64KB L1 and 4MB L2, a user would run the application with a resource

limited L2 cache size of 2MB and measure the L2 hit and miss rates. The hit and

miss rate information is available by default on most commodity platforms for all

levels of the memory hierarchy. We now present techniques for resource limited

execution of the application for a user-specified size limit for various memory levels.

External Memory. The external memory phases of an application form the

highest level of the ERSS tree. In legacy systems, the external memory data for an

application is different from the other levels of memory in the sense that there are no

resource miss events at this level. Consequently, phases and ERSS descriptions in

47

legacy systems are inconsequential for application performance. On the other hand,

these considerations are relevant for systems which employ an external memory

device as a cache. Examples of such systems abound in the literature including

performance-improving caches [AS95, BGU+09] and energy-saving caches [krm08,

UGB+08]. Such external memory devices are typically block devices (e.g., disk drives

or solid-state drives). Controlling the size of a block device cache for resource limited

execution is achieved easily with block device partitioning. Block I/O tracing tools

are available in most commodity operating systems (e.g., Linux blktrace [Axb07])

which work irrespective of the type of the underlying block device. These tools

support execution tracing at the partition granularity to ensure non-interference

with other block I/O operations in the system. By associating the cache partition

block accesses with hits and non-cache partition block accesses to misses, hit and

miss events can be recorded.

Main Memory. Techniques for limiting the main memory (henceforth RAM)

available to the entire operating system to a specific fraction of the physical RAM

exist in many systems. In AIX, we use the rmss command to ensure that the

operating system can use only the specified size (fraction) of the total physical

memory. Once we ensure memory reservation, we run the application and log the

page fault rate through the lifetime of the application.

The Atomic Refinement step of the node generation process optionally uses the

hit rate for higher accuracy. The hit rate for memory pages can be estimated using

a binary rewriting API like Dyninst [Ope]. The Dyninst API can attach itself to an

executing binary and dynamically instrument the application to get the complete

memory trace. An alternative approach to obtain RAM hit rates is to use a full

system simulator (e.g., Mambo, QEMU, etc.) and run the application with different

RAM configurations.

48

Processor Caches (L1 / L2 / L3). Various techniques have been proposed

to partition the L2 cache at both hardware and software levels. These techniques,

however, are not available in commodity systems and implementing these intrusive

changes on a production server is not always feasible. The lack of flexible user-

level partitioning schemes and fine-grained cache line monitoring counters creates

significant challenges in further refining the models for cache resident phases in a

non-intrusive fashion.

We developed and implemented two new techniques to partition the cache and

record the hit and miss events. Our techniques are accurate for L2 and L3 caches and

work with limited accuracy for L1 cache as well. The first technique uses ideas from

page-coloring typically employed by the operating system [LLD+08, STS08] to en-

sure that the application uses only a fixed amount of cache. However, this technique

requires application re-compilation. Our second technique, named CacheGrabber

runs a probe process on the server that continuously utilizes a fixed amount of cache

resources, reusing the utilized cache in a manner such that it becomes unavailable

to the application being characterized. In addition to these, we directly implement

two previously proposed techniques for inferring the miss rate curve (MRC) for

caches. The first technique uses a cache simulator to simulate caches of different

sizes which directly leads to the MRC. The second technique uses sampling of per-

formance monitoring unit (PMU) registers to create a memory trace and replays the

trace through a LRU stack simulator to infer the MRC [TASS09]. Further details

on these techniques are beyond the scope of this thesis.

4.3.4 Atomic Refinement

The atomic refinement step uses the hit and miss events in the execution trace to

refine the ERSS tree for that level of memory. If hit rate information is not available

49

for a memory level, only the miss rate information is used for the refinement. There

are two components to atomic refinement at a high level: (i) it detects phases and

phase transitions, size estimates, and the instruction time-line during which they

occur and (ii) it uses these phases for ERSS tree refinement. This ability to detect

phases with only the hit/miss information at various levels of the memory hierarchy

makes model instantiation feasible in real data center environments.

Phase Detection

IP

HIT NONE

HIT

MISS
T=0

OP

MISS
NONE

HIT

NONE

T++

MISS

T++

T> TL
IP|OP

Figure 4.6: Phase Identification State Diagram.

We model the phase transition behavior of an application at a specific memory

level using a state diagram, where transitions are triggered by the hit/miss events.

The states and the transitions identify various phases and their durations. We model

the following states:

1. InPhase (IP): The state denotes that the application is within a phase that

fits in the memory resource under consideration.

2. OutPhase (OP): The state denotes that the application is within a phase that

does not fit in the memory resource under consideration.

3. InPhase or OutPhase (IP|OP): The state denotes that it is unclear if the

application is either in an InPhase or an OutPhase.

The HIT, MISS, and NONE events are compound rather than individual events.

For instance, a HIT event requires the next window of events exceeds a pre-specified

50

threshold percentage of hits, rather than a single hit event; if hit events are un-

available, then the we conversely use the requirement that the percentage of misses

should be below a certain threshold. A MISS event is defined similarly. A NONE

event is one which is neither a HIT nor MISS.

The thresholds used in the above definitions can be computed from the miss rate

trace (typically available for all memory levels) for the application as follows. Using

the histogram of the miss rates in the trace, we define the lower threshold at the 10th

percentile and the upper threshold at the 90th percentile. Due to the steep nature

of ERSS(∆M) (Figure 4.2), such a thresholding is sufficient to identify if the phase

fits in the available memory resource or not.

The starting state is (IP |OP), indicating that the initial state is unknown. A

HIT event in (IP |OP) indicates the start of a phase that fits in the available memory

resource and we transition to (IP) state. The absence of a HIT indicates either a

phase transition or an OutPhase state. We distinguish between the two by using a

threshold TL to limit the maximum length of a phase transition. If the time T spent

in (IP |OP) exceeds TL, an OutPhase is detected marked by a transition to (OP)

state. A MISS event from (IP) indicates a phase transition (IP |OP) and a HIT

event in (OP) indicates the start of a phase that fits in memory and is captured by a

transition to (IP). The detailed state transition diagram is described in Figure 4.6.

Tree refinement. The Tree refinement step uses the node generation process

to add new levels in the ERSS tree and/or refine the existing nodes of the tree.

The choice of the level to refine is closely determined by the target architecture and

the sizes of the various hardware resources in the memory hierarchy. Let Mi be the

memory level currently being investigated and let ERSSP be the ERSS for a parent

phase P , s.t. ERSSP > Mi The goal is to determine sub-phases within P that may

potentially be impacted by the memory level Mi. If phase detection within P for

51

memory level Mi leads to more than one child phase (IP or OP), a child node for

each child phase is added to the parent node. Each InPhase (IP) fits in Mi memory

and is marked with an ERSS of Mi in the child node, whereas the ERSS of each

OutPhase (OP) node is set to the parent memory value Mi−1 (as it does not fit

in the memory level Mi). If the node generation process with memory level Mi

does not identify more than one phase, the parent phase is refined in the following

manner. If the number of misses in the parent phase is found to be equal to those

observed with Mi, we refine the ERSS value at the parent node as Mi. However,

if the number of misses are larger at the memory value Mi, we retain the earlier

ERSSP value for the parent node.

4.4 Experimental Validation of the Model

We now evaluate the need and accuracy of Generalized ERSS Tree Model. In

particular, we address the following questions.

1. What is the need for a unified ERSS tree model?

2. How do reuse rate and flood rate impact memory provisioning?

3. Is the model sufficiently accurate to ensure isolation for consolidated work-

loads?

4.4.1 Experimental Setup

We used three different experimental testbeds in our evaluation. Our first test-bed

was an IBM JS22 Bladecenter cluster with 4 3.2 GHz processors and 8 GB RAM

with 4MB L2 cache. The experiments conducted on this test-bed used the L2

hit/miss counters available on the system. Our second test-bed was the QEMU full

system emulator. QEMU runs memory accessing instructions natively on the host

52

via dynamic binary translation. We modified the software-MMU version of QEMU

and inserted tracing code at binary translation points. Specifically, each time a

translation block (i.e., binary blocks between jumps and jump return points) is sent

to the inline compiler, we insert code for recording every load and store instruction.

Since the addresses used by loads and stores may be unknown at translation block

compile time, the appropriate register values are recorded at run time. Timestamp

information is collected from the tsc register in x86 and IA64. We ran Linux on the

modified QEMU emulator configured with 1.8GB of physical memory with several

workloads. The emulator itself ran on a 2.93 GHz Intel Xeon X7350 processor. The

traces were then fed into a LRU stack simulator to build the MRCs. As our final

test-bed, we used Valgrind to perform fine-grained analysis on single application

instances and their resource usage behavior across the memory hierarchy, primarily

for generating data to support our approach leading to the Generalized ERSS Tree

Model.

Two sets of workloads were used in conducting the evaluation. The first set

were the daxpy and dcopy benchmarks from the Basic Linear Algebra Programs

(BLAS) library [BDD+02], which represent building blocks for basic matrix and

vector operations. We modified these benchmarks to control the size of memory

used, the number of iterations, and injected appropriate idle periods to program-

matically control memory access rates. These benchmarks mimic behavior common

in many high-performance, scientific computing workloads and the fine-grained con-

trol allowed us to experiment with a wide variety of memory reuse and flood rates.

Our second set of workloads are from the NAS Parallel Benchmark [NAS]. The

NAS benchmarks mimic a wide spectrum of representative application behaviors,

from CPU intensive to memory intensive. It also includes benchmarks that repre-

sent computational science applications (e.g., bt captures the basic calculation of

53

Computational Fluid Dynamics).

4.4.2 The need for the Generalized ERSS Tree Model

We start by motivating the need for a model such as the Generalized ERSS Tree

Model to completely describe the resource usage characteristics of applications, in-

cluding the need for the ERSS metric for characterizing phases and the hierarchical

ERSS tree model for characterizing the overall resource usage of an application.

RS[>1]
RS[>5]
RS[>10]
IS
ERSS

 0.00
 2.00
 4.00
 6.00
 8.00

 10.00
 12.00
 14.00
 16.00
 18.00
 20.00

is mg bt ft sp ua

S
iz

e
 (

M
B

)

 100

 1000

 10000

 100000

mg sp ua ft is lu bt ep

S
iz

e
(K

B
yt

e
s)

L1 only

L1 or L2

L2 only

L2 or L3

L3 only

ERSS

(a) (b)

Figure 4.7: (a) IS, RS, ERSS for one phase. (b) ERSS of various phases for NAS
applications.

Need for the ERSS metric: We first examine the need for the new ERSS

metric introduced in this work for describing working set sizes within a single phase.

Specifically, we study if the default ERSS for a phase can be inferred from known

measures such as the Inuse Set (IS) or the Reuse Set (RS). We refine the reuse

set to require at least a specified number (k) of reuses in a phase, allowing us to

define multiple notions of reuse denoted as RS[> k]. We used the Valgrind test-bed

and the NAS applications to characterize the resource usage behavior within phases

in real applications. Figure 4.7(a) depicts the IS, RS and ERSS for a randomly

chosen phase within NAS benchmark applications. It is evident that the ERSS

metric is distinct from all the alternative measures considered, including variants of

reuse set. Since the ERSS characterizes application resource usage more accurately

54

than either the IS or RS, it is evident that an accurate memory model should be

based on ERSS and new techniques should be designed to accurately characterize

it.

Need for an ERSS tree: Resources at various levels of the memory hierarchy on

stand-alone servers typically have disjoint ranges and provisioning can be handled

independently for each resource. First, we show that in production, virtualized data

center settings, depending on the type and number of co-located VMs, the amount of

resource at individual levels that would be available to a single VM may no longer

fall into pre-specified ranges. Further, we demonstrate that a single application

may have multiple phases and the ERSS values for these phases may span across

multiple levels of the memory hierarchy.

To accomplish the above, we used the Valgrind test-bed to compute the ERSS

values for all distinct phases of the NAS benchmarks. Further, to get an estimate

on the range of memory resources available to individual applications, we examined

the configuration data sheet of a production data center with virtualized servers

hosting one or more VMs. Based on the placement per the configuration data sheet,

we divided the L1 and L2 cache resources to each VM in proportion to the CPU

allocation. We take the maximum/minimum L1 (or L2) cache available to any VM

across all servers in the data center as an upper/lower limit on the cache that a VM

can use. Thus, we noted that as opposed to a fixed cache size on stand-alone servers,

the cache sizes on virtualized servers changes significantly based on the number of

hosted VMs.

To remove the influence of outlier configurations specific to the data center, we

discarded the top 10% VMs with the largest cache sizes. We then plotted the ERSS

for various phases of NAS applications to identify the memory resource that they

would fit into in Figure 4.7(b). We observed that most workloads encompass more

55

than one resource level owing to distinct ERSS values within phases of different

granularities. Further, the ERSS of some phases have sizes that overlap in the

range for two memory resources. Hence, during memory provisioning, if a phase

does not fit in a low level cache, it may be possible to provision a higher level cache

for the phase. This underscores the importance of a unified model that captures

resource usage across all levels for better cache and memory provisioning.

Application bt cg ep ft is lu mg sp ua

#phases 12 4 3 4 4 5 5 4 6

ERSSmax 4.1MB 7.25MB 2.2MB 8MB 4.5MB 7.25MB 7.8MB 4.1MB 3MB

ERSSmin 150KB 50 KB 50KB 20KB 100KB 100KB 100KB 100KB 1MB

large phases 2 2 2 2 2 2 4 4 2

Table 4.2: Distinct, dominant phases for NAS applications.

Need for phase duration: We use the phase duration (θ) parameter in our

model to characterize the relative importance of a phase. Table 4.2 presents the

total number of phases as well as the phases that are long-lived. We define a phase

as long-lived if running the phase located within and outside of its required memory

level leads to a difference of at least 10% in total number of misses at that memory

level (across all phases). We noted (not shown) that even for applications with a

large number of distinct sized phases, we can safely ignore a large number of the

phases (e.g., 10 out of 12 phases for bt are very small). It is adequate to provision

memory resources only for long-lived phases because doing so would lead to little or

no impact to application performance.

4.5 Related work

The most popular model for application main memory usage is the classical working

set model and its refinements [Den80, Den68b]. The working set model is based on

the concept of resident set, or the set of active memory pages within an execution

56

window. Once the resident set for an application is identified, the operating system

may allocate memory to the application accordingly. A second popular model

for resource usage in the memory hierarchy is the Miss Rate Curve (MRC) model,

typically used to allocate processor caches [RSG93, TASS09]. These models capture

the memory usage characteristics of an application during a window of execution,

termed as a phase. Phases are a third important memory resource usage characteris-

tic of applications. Batson and Madison [BM76] define a phase as a maximal interval

during which a given set of segments, each referenced at least once, remain on top

of the LRU stack. They observe that programs have marked execution phases and

there is little correlation between locality sets before and after a transition. Another

important observation made by Batson and Madison and corroborated by others is

that phases typically form a hierarchy [RSG93, KS00]. Hence, smaller phases with

locality subsets are nested inside larger ones. Rothberg et al. [RSG93] present such

a working set hierarchy for several parallel scientific applications. However, the

working set hierarchy does not capture the frequency of each phase and its impact

on performance.

In contrast to previous work, we show that the amount of memory resource

required by an application is more accurately reflected by a new metric that we

introduce, the Effective Reuse Set Size (ERSS). Further, memory provisioning re-

quires the identification of all the phases of an application and their durations to

ensure that dominant phases are resident in a sufficiently fast level of the mem-

ory hierarchy. An important aspect of memory usage not captured by any existing

model is the rate of memory usage by an application. The Reuse Rate and the

Flood Rate significantly determine the amount of memory resource required by an

application. When multiple applications share a common memory resource, these

rate parameters dictate the amount of memory available to each application. Hence,

57

memory provisioning in a consolidated virtualized environment requires significant

refinements to existing memory usage models for them to be applicable.

4.5.1 Mechanisms to build memory usage models

Several techniques have been proposed to identify the optimal working set during

program execution. Carr et al. [CH81] combine the local working set with a global

clock to design WSClock virtual memory management algorithm. Ferrari et al. re-

fine the classical working set to variable interval size, where the size of the interval

is controlled using three parameters – the minimum interval size M , the maximum

interval size L, and the maximum page fault Q [FY83]. The page-fault frequency

(PFF) algorithm [CO72, GF78] uses the PFF concept to determine the resident set

size, enlarging it if the PFF is high and shrinking it otherwise. There are two popular

approaches to infer the MRC for an application. The first approach creates the MRC

statically by running the application multiple times, typically in a simulator with

different memory resource allocations [RSG93, KS00, WOT+96]. A second approach

uses a memory trace and a LRU stack simulator [KHW91] to infer the MRC. MRCs

in filesystem caches have been estimated using ghost buffers [KCK+00, PGG+95].

Dynamically estimating cache MRCs is much more challenging and estimation meth-

ods exist only on specific platforms [TASS09, ZPS+04a]. Detecting phase transi-

tions for taking reconfiguration actions has been explored before. The Dynamo

system [BDB00] optimizes traces of the program to generate fragments, which are

stored in a fragment cache; an increase in rate of fragment formation is used to

detect phase transition. Balasubramonian et al. [BABD00] use the dynamic count

of conditional branches to measure working set changes. Dhodapkar et al. com-

pute a working set signature and detect a phase change when the signature changes

significantly [DS02].

58

4.6 Summary

We have presented the Generalized ERSS Tree Model that addresses two signifi-

cant gaps in our current understanding of application resource usage characteristics

for the multi-level memory hierarchy. First, the model characterizes the memory

resource usage of an application for its entire lifetime with a high degree of ac-

curacy. We have presented a methodology to build model instances for arbitrary

workloads on commodity hardware without making intrusive changes. Second, and

more significantly, this model can be utilized for highly accurate provisioning of

the memory hierarchy in a shared application environment. Our model compre-

hensively addresses the resource usage characteristics when competing workloads

introduce non-trivial isolation requirements. It does so by explicitly characterizing

the complex interaction between the resource reuse rates and flood rates of various

workloads at each memory level. We have demonstrated that the model can be

used to predict when isolation conditions are not satisfied as well as to determine

resource provisioning requirements to ensure application performance isolation in

shared environments. Finally, by experimenting with a wide mix of applications,

we have established the utility and accuracy of our model in practice. In the next

chapter, we pursue a complementary direction to reduce the contention introduced

by co-located workloads that applies to partitionable caches.

The work presented in this chapter was reported in PERFORMANCE 2010

[KVR10] and MASCOTS 2011 [KVR11].

59

CHAPTER 5

PARTITIONING FOR EXTERNAL MEMORY CACHES

In the previous chapter we observed that sharing caches can lead to wasted space

and increases linearly with the number of workloads. In this section, we propose

some solutions to reduce cache wastage for out of memory caches, specifically flash-

based solid state drive (SSD) caches for disk. It is important to notice that while

this chapter considers and valuates proposals for flash-based caches, the system

proposed would apply to other persistent caching devices with equivalent or better

performance characteristics relative to flash.

Previous researchers noticed the occurrence of wastage in CPU and RAM caches

and proposed simple cache partitioning techniques in order to minimize it. These

methods are based on assumptions made over the replacement algorithm used and

the type of accesses. However, these assumptions do not hold for external memory

caches, and can lead to large inaccuracies. For instance, external memory caches

do not require blocks to be moved to the cache after a miss (on-demand) and many

external memory caches move blocks to the caches periodically.

We propose addressing these inaccuracies by not making any assumption about

the frequency of the migrations, the replacement algorithm used, nor the shape of

the miss rate curve. We propose having an iterative partitioning algorithm using

probabilistic searches that is capable of achieving several performance goals like:

minimizing overall miss rate, or minimizing the sum of VMs’ average latencies.

We implemented a partitioned write-back host-side SSD cache for virtual disks

in the VMware ESX hypervisor. To maintain data consistency after crashes and

reboots, we keep the disk-to-SSD address mappings persistent and all cache allo-

cations and demotions journaled on the SSD. Cache partitions are managed by a

local LRU or LFU replacement policy with all SSD/disk block migrations being

60

performed periodically. The partitions are resized periodically to adapt to workload

and storage changes.

Experimental results show that partitioning an SSD cache can accelerate the

boot time of 28 virtual desktops from 39 using a unified LFU cache to 32 seconds on

the partitioned case; this improvement was attributed to a reduction in SSD cache

wastage. Microbenchmark-based experiments demonstrate that the system is able

to balance the average latencies of two mixed read/write workloads with less than

5 % of error. Finally, for a workload consisting of half random reads and writes, the

system maintains a crash consistent cache at the cost of adding 100 ms of latency

to less than 1 % of the accesses, but without adding any overhead to the average

latency.

5.1 Background on cache partitioning

The wastage problem can be addressed with cache partitioning. Most partitioning

approaches in the literature are based on miss rate curves (MRC), which define the

miss rate incurred by a workload for a given cache size. We illustrate the use of miss

rate curves to find the allocation that optimizes a specific goal – minimizing the

sum of average VM miss rates. Assume there are two VMs randomly reading from

files. VM 1 reads a file of 2 GB and VM 2 reads a file of 1 GB. The MRCs of both

VMs are showed at Figure 5.1. The miss rate is 1 for a cache size of 0 for both VMs

and miss rate is 0 for cache sizes greater than the files read (2 GB for VM 1 and 1

GB for VM 2). For an available 2 GB of cache space, we can try all combinations

and find that assigning 1 GB to each VM is the optimal choice. This partitioning

results in a total miss rate of 0.5 = 0.5 + 0 and is depicted as the shadowed regions

in Figure 5.1.

61

+

0 1 2 0 1 2

Cache space Cache space

VM 1 VM 2

Miss

rate

Miss

rate

cache

assigned

to VM 1

cache

assigned to

VM 2

0

1

0.5

0

1

0.5

Figure 5.1: Example of cache partitioning. A cache of size 2 is partitioned across
two VMs. Both VMs MRCs are shown with the optimal assignment of cache shown
in grey: one cache unit to each VM.

M
is

s
-r

a
te

Cache size

MRC
Convex minorant of the MRC

Figure 5.2: Example of MRC and its convex minorant.

While this seems straightforward, in practice, the number of possible partitions

grows exponentially with the number of workloads. Rajkumar et al. prove that

optimal cache partitioning is NP-hard [RLLS]. Therefore, approximation algorithms

have been proposed to solve the partitioning problem. Stone et al. first proposed

using convex hulls as an intermediate step for solving this problem [STW92]. This

approach and its variants have been used by several researchers for partitioning CPU

and main memory or storage buffer caches since then [GJMT03, QP06b, PGSK09,

PSPK09, SLG+09, SRD04, TSW92b, ZPS+04b].

The convex hull approach Current approximation algorithms for cache parti-

tioning largely follow the convex hull approach. The convex hull of a set of points

is the smallest convex polygon that contains all the points. The convex minorant is

the greatest convex curve lying entirely below this polygon. An example is shown

in Figure 5.2. The partitioning algorithm first computes a convex minorant for the

62

MRC of every VM, and then applies a greedy search algorithm on the minorants to

find a close-to-optimal partitioning of cache space as follows:

1. Calculate the convex minorant mk(sk) of the MRC for each VM.

2. Initialize partition sizes sk to zero.

3. Increase by one unit the partition size of the VM which would benefit the most

from the increase. The benefit for a VM k is mk(sk)−mk(sk+1). Notice that

the convex minorant is used to calculate this benefit.

4. Repeat the previous step until all cache space has been assigned.

Problems with the convex hull approach While the above approach works

well for CPU and main memory buffer cache partitioning. However, it fails when

used for host-side SSD caches and will fail for other out-of-core caches with similar

properties. The SSD cache itself is not in the I/O path for all data, unlike CPU

and main memory caches, requiring additional work to access items from the cache.

Consequently, I/O request sizes that are larger than the cache block size require

special consideration. For a multi-block request, some blocks could be resident in

the SSD cache while others are not. A request is a cache hit only when all the

blocks accessed are in the cache. The effect of this is that for a specific cache size,

the chances of missing it increase with the request size. For example, if the cache

size is 10 MB, requests of 1 MB are more likely to miss more than requests of 4 KB.

Figure 5.3(a) shows the MRC for a workload that randomly reads a file of one

million blocks with a request size of one block. As expected, the miss rate decreases

as a straight line from 1 when there is no cache to a miss rate of 0 when the cache

has the size of the file. Figure 5.3(b) shows the MRC for the same workload but

with request size of 64 blocks. The curve becomes concave because as the size of

63

 0
 0.2
 0.4
 0.6
 0.8

 1

 0 500000 1e+06 1.5e+06

M
is

s
 r

a
te

(b) Cache size in blocks

rs = 1
rs = 64

 0
 0.2
 0.4
 0.6
 0.8

 1

 0 500000 1e+06 1.5e+06

M
is

s
 r

a
te

(a) Cache size in blocks

rs = 1

Figure 5.3: MRCs for large requests sizes. (a) shows the MRC of a workload
accessing a file of one million blocks with request size of one block and (b) shows
the MRC for the same workload and a slightly different one where the request size
was increased to 64 blocks. Note how the MRC gets concave with a large request
size.

the request increases the chances of hitting the cache decrease. The problem with

the convex hull approach is that both these workloads (a) and (b) will have the

same convex minorant and therefore will be treated the same way by the allocation

algorithm. This can lead to a substantial approximation error. For example, if the

workload had requests of size 64 and the algorithm assigned it half a million blocks

of cache expecting a miss rate of 0.5, in reality it would incur a miss rate of 0.8, an

error of 60%.

In summary, previous research noticed wastage for LRU caches and that the

cache partitioning problem needs to be solved with an approximation algorithm.

One such approach is using convex hulls as an intermediate step. We showed that

wastage occurs irrespective of the cache replacement policy. Further, we demon-

strated that the convex hull approach may lead to large errors when applied to SSD

caching. In the next section, we outline a new approach that works well with SSD

caches.

64

File

systems

VM 1 VM 2
Guests

Filters
Virtual

disk 1

Virtual

disk 2

FS on

SSD

FS on

SAN

Data

mover

Global

scheduler

Figure 5.4: Solution architecture.

5.2 Solution overview

Host-side SSDs provide hypervisors a previously unavailable knob for storage per-

formance control. We propose that hypervisors manage this SSD directly as a cache

resource to be used within each VM’s storage access path. Hypervisors can thereby

control the storage performance of individual VMs directly by increasing or decreas-

ing the space made available in this additional cache layer.

Figure 5.4 depicts an architectural overview of the solution. Virtual disks man-

aged by individual VMs are distinct files stored within a file system managed by the

hypervisor. The VMs use these virtual disks to store their file systems and swap

spaces. In our solution approach, an administrator would assign some or all virtual

disks to SSDs for caching and specify goals related to performance maximization

and/or QoS on a per-VM basis.

The hypervisor then partitions the cache space across virtual machines in or-

der to meet these goals. Each partition is managed by its own local cache policy

(i.e. a cache per partition). Since the SSD is not in the data path for blocks that

miss in the SSD cache, unlike conventional demand-based caches, our solution only

periodically changes to the set of cached blocks using a data mover. Further, un-

like previous solutions for CPU caches that continuously partition [TSW92b], SSD

65

System goal type
Unified Partitioned

cache cache

I. Overall performance
√

(∗) √

II. Sum of VMs average performance N/A
√

(∗) incurs wastage because of cache sharing.

Table 5.1: Supported goal types.

cache partitions in our solution are only periodically resized by the global scheduler

in order to adapt to stable changes in the workloads and the storage system.

We anticipate our solution to be used by administrators towards meeting several

types of system goals. Table 5.1 shows the types of goals that an administrator

can configure a partitioned SSD cache in our current implementation as opposed to

managing the SSD as a unified cache for all VMs. The administrator can choose to

(i) maximize overall performance which translates to minimize overall cache miss

rate or average I/O latency across all VM I/Os or (ii) maximize the sum of per-VM

average performance which would translate to a fairness goal.

In contrast, a unified cache can support only the first of the two goals above and

will incur unwanted cache wastage when doing so.

5.3 The Partitioning Algorithm

Every epoch, the SSD cache partitions are resized in order to achieve some goal

defined by the administrator (see Table 5.1). In this section, we describe the process

for meeting goal types I and II.

5.3.1 Partitioning for latency minimization

We predict the sum of latencies for a set of potential partitionings and then use the

one with the smallest sum using the following steps:

1. Construct an Miss Rate Curve (MRC) for each VM.

66

2. Use the MRCs to predict latency for all VMs at all possible cache sizes and

refer to this as the latency curve for the VM.

3. Use a probabilistic search on the latency curves to find the partitioning can-

didate that produces the smallest sum of VM’s latencies.

Step 1: MRC construction for SSD caches. We construct the MRCs using

the I/O accesses of the previous partitioning epoch. Based on Denning’s locality

principle [Den06] it is very likely that the MRCs of two consecutive partitioning

epochs are similar. Our MRC construction is an adaptation of Mattson’s stack

algorithm [MGST70b] to account for the unique characteristics of out-of-core SSD

caches including periodic cache allocations (or migrations) and requests larger than

the cache block size. Periodic migrations tend to move the MRCs up and requests

larger than the cache size should give the MRC a concave shape (as seen in Figure

5.3). The problem is that Mattson’s algorithm does not account for these effects.

Mattson’s stack algorithm was originally designed to create MRCs for the LRU

cache policy; however, it can be used for other policies (e.g., LFU [BEP11]). For

every access, the algorithm emulates LRU aging and maintains a histogram of stack

distances. This histogram maintains the hit count at every possible stack distance,

which is then traversed to create the MRC. Our first modification to the Mattson’s

stack algorithm is at the histogram maintenance step to record a hit only if all the

blocks of a request are in the cache. If the request has more than one block, we

update the histogram only for the block that has the largest stack distance. The

second modification is done in order to account for periodic migrations. The basic

idea is to maintain the histogram of stack distances for an LRU stack whose blocks

are only updated periodically (and not after every access). More specifically, we use

2 LRU stacks where the first LRU stack maintains the histogram and the second

67

implements aging. We update the blocks of the first stack with the second every

period in order to mimic the effect of a periodic migration. Finally, the MRC is

calculated by traversing the histogram of stack distances.

Step 2: Latency curves construction. We construct a latency curves for VMs

using MRCs computed using our modified Mattson’s stack algorithm. Latency pre-

diction can be done similar to the approach of Soundararajan et al. [SLG+09]):

Lat = MR ∗ LatSSD + (1−MR) ∗ Latdisk (5.1)

where Lat is the predicted average latency, MR is the miss-rate as obtained from the

MRC, and LatSSD and Latdisk are the VMs recently measured latencies for SSD and

disk. However, using previously measured latencies can lead to large inaccuracies.

A simple scenario where this can happen is when the prediction leads to IOPS

saturation on the disk, while the measurements are from an unsaturated state. For

example, if the current state Latdisk is low, then a prediction of latency at higher

miss rates would fail because Latdisk would not be low anymore.

We handle the latency prediction inaccuracy by iteratively applying our algo-

rithm until we converge to an equilibrium state. The system (1) plans a partitioning,

(2) resizes the caches, (3) measurse the resulting latencies, and restarts the whole

process again. We stop this process when the deviation between the measured and

predicted latencies converge to a difference less than a small constant.

Step 3: Probabilistic search. Once the latency curves have been created, we

use a probabilistic search to evaluate potential allocations. These allocations are

evaluated by adding up the latencies for all VMs at the potential partition sizes.

We chose simulated annealing (SA) [KGV83] as the probabilistic search to look for

68

the best partitioning. While classic hill climbing only allows changing to a better

solution, SA probabilistically allows changes that may degrade the solution.

5.3.2 Partitioning for all other performance goals

The previous approach for minimizing sum of VM latencies can be easily adapted

to meet other goals such as maximizing overall IOPS performace. For overall IOPS

maximization, the only difference is that instead of using latency curves we use IOPS

curves. IOPS maximization and sum of VMs averages reduce to the same problem:

maximizing the sum of VMs IOPS obtained from the SSD cache. We minimize the

inverse of IOPS (IOPS−1) and predict IOPS using the following equation:

IOPS =
IOPSdisk

MR
(5.2)

where MR is miss rate and IOPSdisk are the recently measured IOPS of the disk

only. This equation uses the observation that each time the disk has an I/O, the

SSD has (1−MR)/MR I/Os. Therefore, the total I/Os in a second are IOPSdisk+

IOPSdisk ∗ (1−MR)/MR.

5.4 Implementation

An implementation of our proposed partitioned cache is integrated into VMware

ESX hypervisor. As in many virtualization architectures, all I/Os initiated by vir-

tual machines are handled by the hypervisor. As illustrated in Figure 5.4, the virtual

disk layer of the hypervisor translates a guest I/O into a file I/O to be stored in the

hypervisor file system on a SAN. Our system intercepts all I/Os at the virtual disk

layer using a filter. An instance of the filter is attached to a specific virtual disk and

redirects all I/Os to the SSD on a cache hit or to the SAN on a miss.

69

5.4.1 Cache management

Caches, like virtual disks, are saved as files on a file system on the SSD. We use one

cache file per VM and partitioning is implemented by limiting the physical size of

these files. To simplify our prototype, we restrict VMs to only one virtual disk and

thus a single cache file. These cache files are populated during each “mover epoch”

by a data mover process that moves blocks to and from the SSD periodically based

on a cache policy. We implemented both LRU and aging-LFU replacement policies

for each cache partition. Typical cache replacement policies are designed for CPU

and buffer caches and therefore they need to move blocks to the cache directly after

a miss. We observed that for all the traces used in the motivation, we can improve

overall throughput by making such data movement periodically rather than in the

IO path. The global scheduler which is in charge of partitioning the SSD space

among the various cache files implements the partitioning algorithms presented in

the previous sections. The global scheduler runs every “partitioning epoch”, which

is typically five minutes.

5.4.2 Data consistency

We implement caches as write-back and special care needs to be taken to ensure

data consistency after system crashes and restarts. Write-back caches can contain

dirty data not present in the backing store. Therefore, VMs need to be restarted

by accessing the backing store in concert with all its cached data on SSD. We keep

the mapping information for cached data persistently in the SSD cache itself so that

it can be queried after VM crashes and restarts. To minimize the impact on I/O

performance, we journal the updates to these persistent mappings in memory and

then replay the journal before data mover migrations during each mover epoch.

70

5.5 Experimental validation

We now present an evaluation of the techniques proposed in this chapter using an

implementation in the VMware ESX hypervisor. We first list the questions that we

want to answer through experiments:

1. How does a partitioned cache perform compared to a traditional unified cache?

2. What are the performance overheads and where they are coming from?

3. How do these techniques adapt to specific storage characteristics such as slow-

writing SSDs?

5.5.1 Experimental Setup

We implemented our SSD caching system as a filter at the virtual disk layer of the

VMware ESX hypervisor. The cache block size is 128 KB, partitioning epoch is 5

minutes, and mover epoch is 1 minute long. We use the aging-LFU replacement

policy [RD]. The host was an AMAX with a SuperMicro H8DA8 motherboard

and two AMD Opteron 270 dual cores processors, each running at 2Ghz and 4GB

memory. An Intel X25-M was used as the host-side SSD attached to the host.

The backing store was an EMC Clariion CX4 Model 120. The data mover and the

hypervisor were configured to have an issue queue length of 32 pending IOs each.

Thus, the data mover migrates 32 blocks at a time.

We evaluated the system with a diverse set of workloads running on various

VM operating systems to verify robustness under a variety of conditions. We used

two kinds of VMs: a Linux Ubuntu VM with a 30 GB virtual disk, one virtual

CPU, and 1 GB of memory; and a Windows 7 VMwith 40 GB of virtual disk,

one VCPU, and 2 GB of memory. We evaluated using a mix of microbenchmarks

and macrobenchmarks. The microbenchmarks used IOmeter [iom] on Windows and

71

fio [fio] on Linux for workload generation. We configured them to use different IO

sizes, percentage of randomness and reads, and the number of concurrent IOs. The

IO engine used in fio was libaio. All experiments used 32 concurrent IOs unless

stated otherwise. The macrobenchmarks used were Filebench [McD] OLTP and

webserver workloads.

5.5.2 Partitioned SSD cache

In our first experiment, we evaluated the effectiveness when maximizing average

I/O throughput with the partitioned SSD cache when compared against a unified

cache. Both variants used the same implementation with the only difference that in

the unified case the partitions do not have local cache policies and are managed by

a unified cache policy. We fixed the total cache size in both variants to 6 GB. The

partitioned cache was configured to maximize overall IOPS.

 20

 25

 30

 35

 40

 45

 50

 0 5 10 15 20 25

B
o
o
t
ti
m

e
 i
n
 s

e
c
o
n
d
s

VM number (sorted by boot time)

Partitioned
Global

Figure 5.5: 28 Virtual Linux desktops booting simultaneously using an 6 GB SSD
cache. This figure shows the boot time using a global LFU cache and a partitioned
LFU cache.

We compared both caching options when booting 28 Ubuntu 10.04 desktop sys-

tems. The comparison metric is rebooting time as measured by Bootchart [boo].

Rebooting was needed to warm-up the caches. Figure 5.5 shows the booting time

of all 28 machines for global and partitioned caches. The x axis is sorted by re-boot

time. Average boot time was 32 seconds with our partitioned cache vs. 39 seconds

72

using a unified cache. We attribute this difference to wastage. By partitioning the

cache, wastage is eliminated, and hence the VMs incur less SSD cache misses on

SSD, get more IOPS, ultimately improving the boot time. The parititioned cache

also reduces the variance in boot time relative to the unified case wherein some

VMs boot up to two times faster than others owing to some VMs getting as much

as 3 times more cache space than others. On the other hand, the partitioned cache

maintained all partition sizes approximately the same. The reason for this difference

in variance is that in the unified case, the cache allocations of specific VMs change

more rapidly than in the partitioned case, and therefore small changes in its working

set leads to changes in cache allocated to a VM.

5.5.3 Overheads

This experiment measures overhead by comparing performance between 3 config-

urations: (1) our partitioned caching system, (2) when the workload accesses the

backing store (SAN) directly without any caching, and (3) a variant of our system

where we do not maintain persistent block mappings for the SSD cache.

0

500

1000

1500

full
sys.

van.
disk

modif.
sys.

IOPS

0

1

2

3

4

5

6

Avg latency in ms

10
0

10
1

10
2

10
3

10
4

Max latency in ms

full
sys.

van.
disk

modif.
sys.

full
sys.

van.
disk

modif.
sys.

Figure 5.6: System performance compared to vanilla disk and a simplified cache.
4kb aligned random reads/writes on 1GB using 100MB of cache.

We used a single IOmeter workload within a Windows VM for this experiment.

The workload is a 50% mix of reads and writes on 1GB with a cache of 100MB. Fig-

ure 5.6 shows warm cache IOPS, and average and maximum latency for each of the

73

three configurations. The first observation is that in the average case, both caching

systems perform better than the system without caching. The caching variants both

provide approximately the same average latency and IOPS indicating that average

case overhead is acceptable. However, the maximum latency of the full system is

almost one order of magnitude higher than the one without persistent mappings.

We noticed that these spikes in latency occur every mover epoch, and specifically,

every time the journal is replayed. The second interesting observation is that the

IOPS of the full system are slightly higher than the non-persistent cache variant;

it turned out this was because journal replaying was merging and sequentializing

writes much better.

5.5.4 Adaptation to specific storage characteristics

Some SSD specific performance oddities are slow writes and sequential read per-

formance being comparable to that of a SAN store. Conventional caches would

minimize the number of I/Os going to the backing store, even if it were performing

faster. We adapt to such scenarios automatically by eliminating cache space for

VMs which do not benefit from SSD performance.

The next experiment mixes one sequential read with a random read workload.

The sequential read was setup in a way such that it gets the same IOPS when placed

in SAN or in SSD, but gets 8 times more latency when placed on SAN. This table

shows the specific performance characteristics of this workload on SAN and SSD:

seq (OIO=8, bs=32k) Latency (usec) IOPS

SSD 648 1886
SAN 1548 1689

This sequential workload reads over a file of 5 GB and the random reader over

a file of 10 GB. The latency curves are showed on Figure 5.7(a). Based on these

74

curves, in order to minimize average latency the best allocation is giving half of the

cache to each VM.

0
1
2
3
4
5

0 1 2 3 4 5 6 7 8 9 10

L
a

te
n

c
y

in
m

s

Space in GB

(a) Latency curves

seq rand

0
0.002
0.004
0.006
0.008

0 1 2 3 4 5 6 7 8 9 10

1
/I

O
P

S

Space in GB

(a) 1/IOPS curves

seq
rand

Figure 5.7: Latency and IOPS−1 curves.

The best allocation for minimizing latency is half cache to each VM; however,

maximizing IOPS leads to entirely different allocations because the sequential work-

load gets the same IOPS from the SSD and from the RAID. Figure 5.7 (b) shows

the cost curves and how the best allocation to minimize 1/IOPS (i.e. maximize

IOPS) is to give all space to the random workload. Thus our solution produces the

expected behavior, i.e., not allocate SSD cache space to workloads that do not need

it.

5.6 Related work

We subdivide the related literature based on what type of caches are being parti-

tioned. We finalize this section with a description of the related research on storage

QOS.

CPU caches. Early work on partitioning shared cache resources was targeted for

CPU caches for instruction and data streams. Stone et al. [STW92] pointed out that

75

LRU caches suffer from slow convergence towards optimal allocations when multi-

ple workloads share the cache. They analytically show that for minimizing overall

miss rate and assuming convex MRC curves, optimal partitioning when minimizing

overall miss rate can be achieved by choosing allocation sizes for which derivatives

of miss rate is the same across all workloads. Thiebaut et al. [TSW92b] then de-

veloped a practical implementation of Stone’s algorithm by approximating MRC

derivatives rather than constructing full MRCs and then making them monotonic

to force convexness of the implied MRC. Unlike our approach of periodic partition-

ing, they continuously partition the cache using the robinhood approach (of taking

from the rich and giving to the poor) until the MRC derivatives equalize to achieve

Stone optimality.

Buffer caches. Arguing that pollution for LRU based main memory page replace-

ment cannot avoid cache pollution, Kim et al. [KCK+] demonstrated the benefits

of partitioning main memory. Their approach detects sequential accesses and then

assigns a single page to each sequential stream. MRCs have also been used to parti-

tion main memory. Zhou et al. [ZPS+04b] argue that most MRCs for main memory

workloads are convex and use a greedy MRC-based approach to partitioning main

memory for minimizing aggregate miss ratio. Soundararajan et al. [SLG+09] address

partitioning of multi-level caches including memory and storage caches. Assuming

that these caches can be made exclusive by implementing DEMOTE [WW02b], they

partition all the cache space (both levels) in order to minimize average latency us-

ing latency curves that are very similar to ours. Their search algorithm uses hill

climbing starting from a set of k random partitions to find an optimal one. Goyal

et al. [GJMT03] address the problem of dynamically partitioning storage memory

caches according to goals and changes in the workloads. They address both per-

76

formance maximization and QoS goals for latency only on a workload-class basis.

They use an MRC based approach similar to that used for CPU caches combined

with a greedy approach for benefit maximization. They also assume that MRCs are

convex.

SSD caches. Sehgal et. al. proposed a SSD cache that uses partitioning to

limit workloads’ average latencies [SVS12]. Their partitioning technique uses a

control loop of observing latency, and increase or decrease cache size in small steps.

Their feedback controller increases the partition size when the limit is not met and

decreases it when observed latency is better than expected. The problem with this

approach is that it is not capable to find minimum average latencies, and requires

the assumption of convex latency vs. cache sizes curves.

Our approach has the following distinguishing characteristics from all of the

related work. We generalize observations on wastage that have been demonstrated

exclusively for LRU caches to apply irrespective of the replacement policy. We

empirically demonstrate that the assumptions of convex MRCs or even translations

to convex minorants do not apply to out-of-core caches; and neither do current MRC

construction methods.

Storage QoS. Storage QoS has been addressed from several perspectives ranging

from partitioning memory to I/O throttling to storage migration. We can examine

QoS controls that are available to the hypervisor to compare how fast they react to

a change in the system. First, memory ballooning [Wal02b] can impact the guest

file system buffer cache quickly, but it is difficult to exactly control the size of the

buffer cache. Second, memory partitioning has been used in order to provide soft-

QoS controls for workloads [PSPK09, PGSK09]. Third, I/O throttling [GAW09]

allows for rapid control of the VM I/O performance in a cluster. Next, comes I/O

77

scheduling [GMV10]. Lastly, migrating virtual disks [MCGC11, GKAK10, GAW11]

is a heavy weight options that may take many hours to implement.

Host-side SSD caches provide a control knob for storage QoS that is complemen-

tary to all of the above solutions. It allows for greater scope for storage caching,

owing this to its relatively larger size than main memory ballooning. However, it is

less responsive than ballooning. In contrast to the I/O throttling, I/O scheduling

controls, and storage migration approaches that are ally ultimately limited by stor-

age performance. SSD caching provides a mechanism that allows greater separation

of VM I/O performance from storage performance.

5.7 Summary

Host-side SSDs open up a new spectrum of possibilities for improving and managing

storage performance in virtualized environments. In this chapter, we demonstrated

that host-side SSDs demand new techniques for performance management that are

not immediately obvious and proposed solutions that address both performance

maximization and storage QoS goals. Further, when employing cache partitioning,

we also demonstrated that conventional partitioning techniques, that have worked

well for CPU and main memory and storage buffer caches, do not work for SSD

caches; the out-of-band nature of the SSD cache and multi- cache-block request

considerations both contribute to invalidating assumptions that have been made

regarding cache partitioning. Based on these findings, we proposed a new cache

partitioning approach that employs online MRC construction coupled with periodic

partitioning and data movement to efficiently allocate cache space between the VMs.

Our evaluation of an implementation of our solutions in the VMware ESX hypervisor

demonstrated that our solution works well in practice and can be used for meeting

both performance maximization and storage QoS goals.

78

A significant requirement of the solutions proposed in this chapter is that cache

performance should be affected by sizing. If this requirement is not met, the algo-

rithms presented can not be used for controlling metrics like latency, as the only

knob available is resizing the cache partitions. Unfortunately, this requirement is vi-

olated when using write-through caches and the workloads are write-intensive. Since

the write-through caching policy treats all write accesses, misses or hits, in the same

way, making large caches equal in performance to small ones. For this reason, we

used a write-back caching policy for the work in this chapter which allows cache

write performance to be affected by sizing. However, write-back caching when used

for permanent storage introduces data consistency problems. In the next chapter,

we investigate the scope of these problems and introduce new write-back caching

policies that provide stronger consistency guarantees.

Limitations. It is important to address the limitations of the evaluation for our

partitioning technique. The first limitation is scalability; we tested a consolidation

ratio of 28 to 1, however, consolidation ratios of more than 200 to 1 has been

reported. The second limitation is related to the migration epochs (5 minutes).

We have not tried different epochs and we do not know if a dynamic epoch could

perform better.

79

CHAPTER 6

CONSISTENCY IN WRITE-BACK CACHES

An important design choice about caches is how writes are managed, specifically,

whether to maintain dirty copies of the blocks in the cache and how to evict them.

Caches that maintain dirty blocks are referred as write−back and caches that do not

as write− through. In the previous chapter we assumed write-back caches as they

are likely to perform better and because the cache resizing technique used to control

application latencies may be ineffective with write-through caches. One such case is

when the application performs a sequence of synchronous writes. If we were using a

write-through cache, the system would not be able to control it’s I/O latency in any

range. The reason for this is that whether writes are hits or not, the write-through

policy treats them in the same way, leading to the same latencies. Ideally, we would

use a write policy like write-back which can be affected by cache size, but that can

also provide some basic consistency guarantees.

Write-back and write-through are extremes in performance and consistency.

write-back aims to provide good write performance by minimizing accesses to slower

backend devices, but at the cost of possible inconsistencies. Write-through, on the

other hand, only improves read accesses performance, but guarantees consistency of

stored data. The basic trade-off is between better write performance against stale-

ness or potential inconsistencies. Staleness is a measure of how far behind in time

is the data: for example, yesterday’s files in a versioned file system are stale [RT03].

In this chapter, we demonstrate that write-through and write-back are point solu-

tions in a spectrum of solutions which offer trading off performance, consistency,

and staleness guarantees. Specifically, we propose new write caching policies that

present opportunities to trade off these requirements in a more file grained manner.

We design and evaluate these write policies in the context of the system presented

80

in previous chapter, i.e., host-side SSDs serving as a cache for SAN storage. We use

the term SAN storage for any storage that is accessed over a network and is slower

than the performance offered by the SSD cache.

6.1 Background

We now study the write-back and write-through policies in more detail. We start

by discussing data consistency and staleness. Then, we analyze write-back and

write-through in terms of performance, consistency and staleness.

6.1.1 Consistency and staleness

We now explain staleness and each type of consistency when applied to different

components. According to the architecture of the system 5.4, there are 3 components

that could crash: guest, hypervisor or storage server. These crashes could be the

result of memory corruption, software bugs, hardware errors, or power outages.

These component crashes can result in host crashes that may need a reboot or

render the SSD inaccessible even after reboot. We do not consider storage server

side errors as part of this thesis. We assume that these are fault-tolerant storage

servers with built-in redundancy and fail-over mechanisms to recover from internal

failures.

Consistency. Data consistency refers to the guarantee of reading correctly

what was written into a block. This ensures that all data read is not garbage and it

belongs to a specific file and not to another file. This data and the related file system

metadata are manipulated by file system calls. File systems ensure consistency by

making file system updates atomic. For example, a file deletion in UNIX consists of

removing the inode from the parent directory and deleting the respective blocks in

81

the bitmap of free blocks. These two operations need to be part of a single atomic

operation. If any of these operations is performed and the other is not, both data

structures are inconsistent between each other (i.e. the parent directory points to

deleted blocks).

In order to achieve file-system consistency at all times, file systems use jour-

naling [Hag87, Twe98], soft-updates [MG99] or copy-on-write [RO91]. These three

techniques achieve this by making file system calls atomic. Journaling does it by

writing updates to a journal, applying these updates and only then write a commit

block that specifies that the changes are ready. Soft-updates achieves this in an in-

direct way, it reorders updates so they result in a consistent view of the file-system.

Copy-on-write writes all new updates in a different location and atomically (a single

write) changes the old to the new view of the file system. The relevant observation

is that all of these techniques achieve consistency by carefully ordering the updates

to disk.

Staleness. Staleness is a measure of how old the newest available data is. This is

a different concept than the creation date of the data. This is an orthogonal concept

to consistency since data may be consistent but stale. This idea is used to versioning

and asynchronous remote mirroring. Some file systems allow to save point-in-time

versions of the files [RT03, Dra, New] called checkpoints. These checkpoints are

consistent but old versions of the files. With asynchronous remote mirroring, data

in the secondary site may be older than data in the primary site [JVW03].

6.1.2 Write-through and write-back policies

Figure 6.1 shows these policies graphically. The sub-figure in the right shows a

typical write-back access. Note how the write is returned right after the write to the

SSD, contrasted to the write-through case where there is a write access to the SAN

82

guest

hypervisor

SSD

SAN

Write-through access Write-back access

Eviction

write

write write read

write

Figure 6.1: Representation of a write access for write-back and write-through write
policies.

storage as well. Also, notice how in the write-back case, after some time, there is an

eviction of the dirtied block to the SAN storage. This figure shows the performance

implication of having one policy versus the other. In this case, the write-back access

requires half the time of the write-through case when conservatively assuming the

SSD access time to be similar to the SAN storage access time.

A second big difference between these two cache policies is consistency of data in

the storage system. File systems rely on ordering of the underlying storage system

for its consistency guarantees. The problem with write-back caches is that evictions

may occur out-of-order relative to the write sequence of blocks. In case of journaling

file systems, this would mean that the commit block may be written prior to the

journal entries, resulting in a metadata inconsistency. The write-through policy on

the other hand writes to the cache and to the back-end store as a single atomic

operation, so they maintain ordering and consistency.

Finally, the third difference is related to staleness of data in the SAN storage.

Write-through caches do not introduce staleness, as writes to the SSD are performed

immediately after or as a single atomic operation with the write to the SAN storage.

The write-back policy on the other hand introduces staleness: writes to the SAN

storage are only made by evictions from the cache, which are usually delayed.

83

seq seq random random
write read read write

OCZ 82 93 177 66
iSCSI 891 593 4813 5285

Table 6.1: Access times in microseconds/access using IOZONE over a OCZ PCI-
express SSD and a remote RAID over iSCSI.

6.2 Motivation

We ran benchmark workloads to contrast the performance difference between write-

through and write-back caches. These experiments show that there are huge per-

formance opportunities missed when using write-through caches. We ran TPC-C

[Tra], an OLTP (Online Transaction Processing) benchmark that simulates a com-

plete compute environment where artificial users perform transactions to a database.

According to TPC, this benchmark represents “any industry that must manage, sell,

or distribute a product or service”.

The illustrative experiment consists of a run of TPC-C with the users, engine,

and database in a single machine. We attached a OCZ PCI-express SSD to the

machine as host and used a remote storage server over iSCSI [isc04] as back-end

store. This remote store uses a RAID5 of 8 7200 RPM disks. Access times are

showed in table 6.2. Notice how SSD random writes are 80 times faster than iSCSI

accesses.

We then executed TPC-C on 10 warehouses with the two write policies, write-

back and write-through, and then measured response time for all transactions. Fig-

ure 6.2 shows the median and 90th percentile response time for all 4 types of trans-

actions. All four show the same trend, they have a response time of 2 seconds using

a write-through cache and 0.4 using a write-back cache. Having a write-back cache

reduces the response time by a factor of 5. This is far from the factor of 80 seconds

seen for random writes in Table 6.2, but it is due to the fact that write-back caches

84

new-order payment order-status stock-level0

1

2

3

4

5

Re
sp

on
se

 ti
m

e
(s

)

Average

write-through
write-back

new-order payment order-status stock-level0

1

2

3

4

5

Re
sp

on
se

 ti
m

e
(s

)

90th percentile

Figure 6.2: Transaction response times for TPC-C using 1GB of RAM, 10 ware-
houses and 10 clients.

also require evictions, and that transactions have other components that make the

overall execution time: reads, processing, and sequential accesses.

Although by having a write-back cache we can reduce response times, it cannot be

used in a production environment without fully addressing the data consistency issue

that it introduces. The main question we try to answer in the rest of this chapter is

whether it is possible to have a write policy capable of achieving better performance

(when compared to write-through) that can provide some form of consistency.

6.3 Consistency-preserving Write-back Caching

We now present two modified write-back policies that maintain file system consis-

tency after crashes. When using write-back caches, the only way of performing

updates to the SAN storage is through evictions. Therefore, if we evict blocks using

85

1

2

3

4

5

6

Figure 6.3: Dependency graph. Each node represents a write.

the same order as the original file system writes, we are maintaining the same order

for the writes to the SAN storage, thereby ensuring file system consistency. For

instance, a file system commit block will only be evicted and therefore written back

to the storage after the journal transaction entries have been written back.

The following policies vary in how they maintain the ordering, and how they

ensure it when evicting blocks from the cache.

6.3.1 Ordered write-back

To maintain the order of writes for evictions, we need to store the ordering and the

data written. The data is stored in the SSD, as new writes do not overwrite old data

until it is written back. The ordering is stored using an in-memory data structure

with information about where the copies are, and what should be the order to evict

them from the SSD.

An intuitive approach to store the ordering is as a list of blocks sorted by com-

pletion time. However, with this alternative we would not be able to utilize the fact

that some writes can be sent in parallel. Writes can be sent in parallel if for instance

there are many applications writing at the same time: there is no dependency be-

tween these writes. And, as noted in the previous chapter, I/O parallelism can be a

source of good performance. A better alternative is to store the dependencies as a

graph, where a block may depend on the completion of many independent blocks.

The cache could then evict all the independent blocks in parallel.

86

The ordered write-back policy maintains ordering and indirectly stores paral-

lelism information using a graph, where every node represents a page write I/O

and contains information about the location of the page in the SSD cache as well

as its intended final (permanent) location in the SAN storage. An edge from node

dep to node n represents a completion-issue ordering dependency. This means that

the issuing of n occurs after (depends on) the completion of dep. As an exam-

ple, let us assume we have the following sequence of I/O issues and completions:

I1, I2, I3, C1, I4, C2, I5, C3. Figure 6.3.1 shows the related dependency graph. Ii rep-

resent an issue event for a write to SAN storage sector i and Ci is the event for

completion of the write to sector i.

Whenever we have to evict something from the cache, we first check if it is dirty,

in case it is, we have to issue a write (from SSD to SAN storage). But before we do,

we need to ensure that any dirty block that this eviction depends on are evicted to

SAN storage first.

We now describe how to maintain this graph. Nodes are inserted and modified

for I/O issue and completion events. The graph is initialized with an empty set c.

We now describe the issue operation.

1. Add a node.

2. Add a link for all nodes in the set c to the new node.

We now describe the completion operation.

1. Remove from the set c all the nodes that the completed node depends on.

2. Add the completed node to the set c.

Notice that we use the observed completions and issuing of the writes to construct

the dependency graph. This may be overestimating the dependencies, that is, we

87

11

12

13

14

15

16

17

21

22

23

24

25

26

27

11

12

13

14

15

16

17

21

22

23

24

25

26

27

Figure 6.4: Technique used to reduce the amount of memory used for maintaining
dependencies.

are maintaining some order that may not be required by the application. If for

example 1000 I/Os were meant to be issued independently and in parallel by the

application, we could evict all of them in parallel as well. However, if one of them

was completed before another one was issued, then we would have to maintain that

dependency even though it was not required: the application did not wait for the

completion of the first write.

Issue and completion operations require O(1) of computation each, however,

memory usage, specially the amount of links can grow up to n2

4
links for a cache

size of n pages. This undesirable property was the source of substantial inefficiency

in preliminary implementations of this approach. We found a simple and effective

optimization to drastically reduce this overhead. We insert dummy nodes after a

fixed number of nodes to absorb all the dependencies. Figure 6.4 shows the original

graph in the left and the one with the inserted dummy node in the right. Notice how

this reduced the number of edges from 49 to 14. Our solution does not explicitly

detect high dependency situations like that in Figure 6.4 but rather always inserts

a dummy node after every 100 I/O completions. Therefore, if we do not find any

88

21

3

1

1

1

2

3

4

1

2
3

Figure 6.5: Eviction of node 1 requires the parallel eviction of nodes in set 1, then
set 2, and finally set 3.

situation like the one in the figure we are wasting 1% of node space, but in the best

case we are reducing 1002 links to only 200. In practice, this heuristic resulted in

excellent memory savings for the workloads we evaluated our system with.

Every time some block is evicted from the cache, we need to first evict the

dependent blocks in the order prescribed by the dependency graph. We do this by

evicting in parallel all the independent nodes that the evicted node depends on either

directly or indirectly. This would be the set 1 in Figure 6.3.1. We then continue

evicting set 2 in parallel, then set 3 and finally we can evict the original node.

6.3.2 Journalined write-back

Ordered write-back had the drawback of requiring to store all copies of the same

block in the cache, thus wasting precious cache space. We now present a second

write policy for write-back caches where we try to improve the consistency provided

by write-back policies. This new technique has better cache utilization and therefore

better performance than ordered write-back.

89

Figure 6.6: Use of a journal for eviction of a list of blocks.

The basic idea is to use journaling in order to provide a safe version of the file

system/data. Figure 6.6 shows a list of block writes to cache that occurred before

evicting a block e. When using the write-back ordered policy we would have evicted

all blocks written before e in order to maintain file system consistency. With this

second technique we also maintain ordering but by writing all the previous blocks

since the last transaction as a single atomic operation. By doing this we can ensure

ordering, because the transaction is executed completely (i.e. there is ordering), or

not (i.e. there is also ordering as the previous version was consistent).

Host-side journal. We maintain a simplified journal, with a single transaction

in place. The entries for the transaction are a list of blocks to be evicted from

the cache. We do not include the data in the entries as the data is available in

the SSD. For example, the transaction for the example in Figure 6.6 would just be

the list [1, s1], [2, s2], [3, s3], [4, s4], where si is the position of block i in the SSD.

The transaction is stored in a journal space in the SSD which can be accessed and

replayed in case we crash while performing the transaction. We do not need more

than a transaction at a time, because the list of one of the transactions would always

be a sub-list of any other transaction.

Storage-side journal. With this approach, the host asks the storage server

to evict all the blocks dirtied before e as a single atomic transaction. The storage

90

server receives a list of block numbers and data to evict, and stores the list as a

transaction in a journal space. Commits are performed by applying the updates

in the transaction and deleting the transaction from the journal. The transaction

contains a list of block numbers to evict and the block data to write into the SAN

storage. In contrast to the host-side journal approach we do not have access to the

SSD data, therefore the eviction process has to start a transaction, write all the

data to the journal on disk and then finish the transaction.

Staleness control. We modified this policy (both versions) to control staleness.

The idea is to limit the size of the list of completed writes. By doing this we are

effectively limiting the number of dirty blocks at any time, and therefore the staleness

of the cache. By increasing this number we also increase performance as most writes

can occur in place and overwrite the old blocks. By decreasing the limit we decrease

performance and get closer to write-through: limit the list to size 0 is actually having

the write-through policy.

6.4 Consistency analysis

We now explain how the two new write policies presented and how regular write-

back and write-through handle consistency under certain conditions. We start by

describing the variants analyzed:

• WT-S (Write-through safe): write to disk, SSD write, and then notify guest.

• WT (Write-through): write to disk, unbuffered SSD write, and then notify

guest. This SSD write does not store the request in the internal SSD write

buffer.

• WB (Write-back): regular write-back with SSD-to-disk block mapping persis-

tent on SSD.

91

Application
inconsistency

Network
File-system
inconsistency

Staleness

Guest VM crash

WT-S WT-S WT-S
WT WT WT
WB WB WB
WB-O WB-O WB-O
WB-JH WB-JH WB-JH
WB-JS WB-JS WB-JS

Hypervisor crash

WT-S WT-S WT-S
WT 1 WT WT
WB WB 2 WB 4

WB-O WB-O WB-O 4

WB-JH WB-JH WB-JH 4

WB-JS WB-JS WB-JS 4

SSD failure

WT-S WT-S WT-S
WT WT WT
WB WB 2 WB 4

WB-O WB-O WB-O 4

WB-JH WB-JH 3 WB-JH 4

WB-JS WB-JS WB-JS 4

Host failure

WT-S WT-S WT-S
WT 1 WT WT
WB WB 2 WB 5

WB-O WB-O WB-O 5

WB-JH WB-JH WB-JH 5

WB-JS WB-JS WB-JS 5

Table 6.2: Grid of resilience to failure and staleness for different write policies at
different failure modes.

• WB-O (Ordered write-back): algorithm presented in section 6.3.1.

• WB-JH (Write-back with host-side journal): algorithm presented in section

6.3.2.

• WB-JS (Write-back with storage journal): algorithm presented in section

6.3.2.

We now analyze the consistency guarantees when reading the data from the SSD

cache and from the SAN storage. Table 6.2 shows a grid of inconsistent and stale

92

states that write policies can get to for 4 failure modes. Guest and hypervisor crashes

are recoverable after a reboot; we analyze whether there is inconsistencies after the

recovery. SSD and host failures, on the other hand, are not recoverable making

data in the SSD unavailable. We subdivide the possible inconsistencies in two.

Application inconsistencies are the ones present when reading by the application

and using the SSD cache. Network file system inconsistencies are the ones that

appear when reading directly from the SAN storage, necessary in case the host-side

SSD fails.

Each cell in table 6.2 lists the write-policies for which there is a possible inconsis-

tency or stale state. Notice how all the write-back policies introduce staleness. Also

notice how WB-O nor WB-JS do not lead to any possible inconsistency. We now

explain these and some other inconsistencies in more detail. The subscript after the

policy acronym is used as an index in the following list.

1. Hypervisor crashes and we wrote to the SAN storage but not to the SSD; write

to the SSD was erroneously reported as OK. The SSD queue is limited and

after is filled, there is queue build-up in RAM, which can be lost.

2. Evictions are not ordered, and anything can fail in the middle leading to

possible inconsistencies.

3. The transaction (all evictions atomic) can fail in the middle and without the

ability to restart the transaction we are inconsistent. Remember that writes

in the middle of the commit do not have to be ordered. We need access to the

SSD to restart the transaction.

4. Writes to the SAN storage are delayed, therefore reading from the SAN storage

can return stale data.

93

6.5 Performance evaluation

We now present an evaluation of the new write policy presented in this chapter

using an implementation in the Linux block layer. The questions we want to answer

with this implementation are how much performance benefit do we get from it, and

where does it come from. The ordered and journaled write-back at the host side

were implemented. Journaled write-back at the storage server side was not imple-

mented as it required complex modifications to the iSCSI protocol. Additionally, no

implementation nor experiments were performed related to recovery after crashes.

6.5.1 Experimental Setup

We implemented our cache layer as a module for the Linux kernel 3.0.0. The cache

block size is 4 KB and we use ARC as the replacement algorithm. The host was

running at 2Ghz and configured to run with 512MB or 4GB of memory. A OCZ

REVODRIVE PCI-express SSD was used as the host-side SSD attached to the host.

The backing store was a RAID 5 using 7.2 RPM disks over iSCSI. The measured

performance for these storage devices can be found in Table 6.2.

We evaluated the system with Postmark over EXT3 with a small amount of

memory in order to maximize the amount of synchronous writes. Large memories

were not tested, however, they may reduce the amount of synchronous writes and

therefore reduce the potential performance benefits of these policies. EXT3 was

configured to use ordered write-back journaling. Smaller memory sizes pressure

memory pages to be evicted synchronously to disk. The workload was run directly

over the host and without virtualization.

94

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 500

 5e+08 1e+09 1.5e+09 2e+09

T
ra

n
s
a
c
ti
o
n
s
 p

e
r

s
e
c
o
n
d

Cache size

WB
WB-journal

WB-ordered
WT

Figure 6.7: Number of transactions per second at different cache sizes for all four
write policies.

6.5.2 Performance evaluation

In our first experiment we ran Postmark at different cache sizes for all 4 write

policies: write-through-safe, write-back, write-back-ordered and journaled write-

back at the host side. The journaled write-back was set up to limit the maximum

dirty pages to 4096 at all times.

Figure 6.7 shows the number of transactions completed per second. As expected,

write-through gets the lower performance for all cache sizes (except for ordered

write-back which gets a slightly lower performance for small sizes), while write-back

gets the best performance. The ordered write-back policy gets a slightly better

performance, specially for large cache sizes. Journaled write-back on the other hand

gets significantly more transactions than write-through, one third of write-back’s

performance.

95

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 500000 1e+06 1.5e+06 2e+06 2.5e+06

R
e
a
d
 h

it
 r

a
ti
o

Cache size in KB

WB-journal
WT-safe

WB
WB-ordered

Figure 6.8: Hit ratio of Postmark reads as we increase the size of the cache for all
four write policies.

We now explain where is the performance improvement coming from for write-

back ordered when compared to the write-through policy. Ideally ordered write-back

should perform as good as write-back, as there are no accesses to slow SAN storage

in the original I/O path. However, by having to store copies of all writes to a block

it wastes cache space and therefore reduce the hit rate of the application. Figure 6.8

shows this decrease in hit rate for ordered write-back to be 0.2 in average. Another

reason for the poor performance of write-back ordered is that all writes require a

new copy and therefore requires to evict something from the cache. Remember

that an eviction of a dirty block means a read from SSD and then a write to disk.

Additionally, write-back order needs to perform all the writes that occurred before

the about-to-be evicted block. However, the average number of evicted dependencies

is 2 for cache sizes below 900MB and 1 above 900MB.

Journaled write-back does not need to store copies of old blocks, and therefore

96

-100

 0

 100

 200

 300

 400

 500

 600

 1 10 100 1000 10000 100000

T
ra

n
s
a
c
ti
o
n
s
 p

e
r

s
e
c
o
n
d

Max number of uncommitted pages (staleness)

WT-safe WB

Figure 6.9: Postmark performance with 2.1GB of SSD cache for varying staleness
set as the maximum number of dirty pages.

has minimal overhead relative to pure write-back. The reason why it performs

worse than write-back in Figure 6.7 is that it limits the amount of staleness to 4096

dirty pages, thereby incurring additional evictions during transaction commits. To

evaluate the sensitivity of ordered write-back performance to the allowable staleness

of storage, we conducted an experiment where we fix the cache size to 2.1GB and

use different maximum values for dirty pages, all for write-back journal. Figure

6.9 shows that we can tune journaled write-back to perform as write-through to

write-back by varying this limit. This is an ideal knob to achieve an arbitrary

application-defined performance/staleness trade-off.

6.6 Related work

Consistency for SSD caches has been addressed partially by Saxena et. al. in the

Flashtier system [SSZ12]. The proposed cache provides persistence for the mappings

97

from the SSD address space to the disk and vice-versa. According to the authors,

the persistence of this map is the only requirement for a consistent cache. They

argue that providing ordering guarantees is a property of consistent storage devices

and not of caches.

The Mercury SSD cache system [SBSMWS12] uses a write-through cache be-

cause, as indicated by the authors, consistency after crashes can only be achieved

by writing synchronously to persistent storage before writes are reported to the ap-

plications. Additionally, they argue against the use of write-back caches because

distributed hosts with local SSDs may have to implement complex and costly dis-

tributing agreement algorithms to synchronize between them. As part of their future

work proposal, the authors mention that in case customers are willing to accept the

loss of recently written data after a crash (staleness), then a way of providing crash

consistency would be to order evictions with the original write-order by the appli-

cation. In this thesis, we present a detailed design, implementation, and evaluation

of an ordered write-back policy. Additionally, we propose and evaluate write-back

policies that use host-side and storage side journaling to achieve further performance

benefits while guaranteeing the same level of consistency and staleness guarantees

as ordered write-back.

Other related ideas come from the field of asynchronous remote mirroring. For

instance, Ji et. al. proposes [JVW03] delaying the writes to the secondary (mirror)

site in order to improve performance, and sending the writes as single atomic updates

with no risk of data loss or inconsistencies. In this thesis we design, implement and

evaluate write-back caching policies that journal data writes which use an approach

similar to those proposed in this earlier work in the different context of host-side

SSD caching. In our work, we additionally address cache specific details such as page

replacement and the fact that there is limited space in the cache for metadata.

98

6.7 Summary

The choice of write-policy for a cache can have a significant impact on performance

and consistency. Current choices, write-through and write-back, are too limited in

the possibilities; write-through is slow and safe, and write-back is fast and unsafe.

We showed that the performance gains from write-back when compared to write-

through are up to 5x, therefore blindly choosing write-through can be a waste of SSD

performance. Based on this observation, we designed three write-policies, with the

goal of being faster than write-through but providing more consistency guarantees

than write-back. The consistency guarantees in write-back are achieved at the cost

of some performance loss. Further, these policies are designed to allow trading off

staleness for performance. The guarantees are provided by maintaining ordering

in the evictions, and because evictions are the only way of updating the backend

storage, this is enough to provide consistency.

Ordered write-back eliminates the chances of file system inconsistencies, but

experiments showed that for Postmark, it can increase performance by 10 % for cache

sizes close to the total working set size. Journaled write-back, on the other hand,

showed a large performance increase when compared to write-through. Host-side

journaling can introduce data inconsistency within the SAN storage if the host-side

SSD (storing the journal) becomes inaccessible. When the journal is implemented

in the server to support atomic committing of host-side journal transactions, there

are no chances of inconsistencies.

Limitations. Our proposed write-back policies are limited to provide file system

consistency through ordering. Another type of consistency is application consistency

which can only be achieved through specific synchronization requests by the applica-

tion. In order to support this type of consistency, the applications should be aware

99

of our cache layer and explicitly ask for synchronization between the cache and the

backend storage.

100

CHAPTER 7

CONCLUSIONS

Consolidation trends are increasing the amount of data duplicated, and are in-

troducing contention problems which lead to wasted cache space. We studied pro-

duction traces at the storage level and benchmark traces at the memory level, and

observed that cache duplication and contention are real and serious problems. We

observed that for a server hosting two similar guests, more than of 40% of the pages

in the buffer cache were duplicates. We also noticed that for 8 servers sharing the

same cache, contention can lead to wasted space similar to the size of the working

set of one of the workloads. Not only did we observe these problems on small consol-

idated scenarios (up to 8 shared workloads), but we also observed a linear increase

in wasted space because of duplication and contention as the number of workloads

increase.

We designed and implemented two systems to minimize duplication and con-

tention. The one that deals with duplication was implemented at the buffer cache

level and was able to boost applications’ performance by 10% to 4x when compared

to conventional location-addressed caches. To address cache contention, we imple-

mented a system at the SSD cache level that partitions it per workload and was

able to improve throughput by 17%. For caches that do not allow cache partition-

ing, such as CPU caches, we proposed a generalized model for Least Recently Used

(LRU) caches capable of predicting wasted space for two or more applications using

parameters like the rate at which blocks are reused. This work enables accurate

cache provisioning for non-partitionable caches by accounting for wastage explicitly.

Besides duplication and contention, consolidation also creates a more subtle need:

write-back policies with consistency guarantees. Consolidation has increased the

performance requirements of storage systems, making the new high performance

101

flash-based devices ideal for caching. The issue is that these caches are placed

below file systems which need ordering guarantees from the underlying storage.

Unfortunately, write-through caches, the only option recommended and evaluated

by researchers prior to our work, performs poorly for some workloads. We designed

and implemented two write-policies based on write-back caches which provide good

performance, controlled staleness and, more importantly, consistency guarantees.

Experiments with micro-benchmarks showed that one of the proposed policies is

capable of achieving performance similar to conventional write-back caches that do

not provide any consistency guarantees.

The impact of these cache optimizations for applications and users is that they

can get an increase in performance without augmenting the size of the caches. By

removing duplicates or minimizing the negative effects of contention we can make

space for other cached data which would otherwise miss the cache. A second nice

property is that with these optimizations, the performance will always be equal or

better than existing systems without these optimizations. Further, since running

many workloads on the same machine is more the norm than an exception, we expect

performance gains for the majority of systems using these cache optimizations.

Future work

We believe that an ideal solution to the problem of cache contention requires cooper-

ation from hardware and storage vendors. CPU caches should be partitionable and

the most straightforward way of doing it is through hardware. Storage appliances

also suffer from the same problem as CPU caches, but for a different set of reasons.

First, these appliances do not have sufficient knowledge to perform effective cache

partitioning. They need techniques to identify and isolate individual workloads or

machines. Second, they need efficient techniques to perform cache repartitioning

when workload behavior changes due to the out-of-band I/O requirements involved.

102

The first future direction involves exploring new interfaces and protocols needed

from hardware and storage, and the required operating systems changes to use

them. As a second direction, we would like to have a deeper understanding of cache

contention. For example, we would like to formally prove the existence of wastage

for any cache policy and memory level and understand why it occurs.

103

BIBLIOGRAPHY

[AS95] Sedat Akyurek and Kenneth Salem. Adaptive Block Rearrangement.
Computer Systems, 13(2):89–121, 1995.

[Axb07] Jens Axboe. blktrace user guide, February 2007.

[BABD00] R. Balasubramonian, D. Albonesi, A. Buyuktosunoglu, and
S. Dwarkadas. Memory hierarchy reconfiguration for energy and per-
formance in general purpose architectures. In IEEE MICRO, 2000.

[BDB00] V. Bala, E. Duesterwald, and S. Banerjia. Dynamo: A transparent
dynamic optimization system. In ACM SIGPLAN, 2000.

[BDD+02] L. S. Blackford, J. Demmel, J. Dongarra, I. Duff, S. Hammar-
ling, G. Henry, M. Heroux, L. Kaufman, A. Lumsdaine, A. Petitet,
R. Pozo, K. Remington, and R. C. Whaley. An updated set of
basic linear algebra subprograms (blas). ACM Trans. Math. Soft.,
28(2):135–151, 2002.

[BEP11] Gianfranco Bilardi, Kattamuri Ekanadham, and Pratap Pattnaik. Ef-
ficient stack distance computation for priority replacement policies.
In ACM International Conference on Computing Frontiers, 2011.

[BGU+09] Medha Bhadkamkar, Jorge Guerra, Luis Useche, Sam Burnett,
Jason Liptak, Raju Rangaswami, and Vagelis Hristidis. BORG:
Block-reorganization for self-optimizing storage systems. In Proc.
of USENIX FAST, February 2009.

[Blo70] Burton H. Bloom. Space/time trade-offs in hash coding with allow-
able errors. Communications of the ACM, 13(7):422–426, 1970.

[BM76] A. P. Batson and A. W. Madison. Measurements of major locality
phases in symbolic reference strings. In Proc. of ACM Sigmetrics,
1976.

[boo] Bootchart. http://www.bootchart.org.

[Car81] John L. Carr, Richard W. Hennessy. Wsclock-a simple and effec-
tive algorithm for virtual memory management. SIGOPS Oper. Syst.
Rev., 15:87–95, December 1981.

104

[CAVL09] Austin Clements, Irfan Ahmad, Murali Vilayannur, and Jinyuan Li.
Decentralized deduplication in san cluster file systems. In Proc. of
the USENIX Annual Technical Conference, June 2009.

[CH81] R. Carr and J. Hennessy. WSCLOCK – A simple and efficient al-
gorithm for virtual memory management. In Proc. of ACM SOSP,
1981.

[CO72] W. Chu and H. Opderbeck. The page fault frequency replacement
algorithm. In Proc. of AFIPS Conference, 1972.

[Den68a] P. J. Denning. Thrashing: Its causes and prevention. In Proc. of
AFIPS Fall Joint Computer Conference, 1968.

[Den68b] Peter J. Denning. The working set model for program behavior. Com-
munications of the ACM, 11(5):323–333, 1968.

[Den80] Peter J. Denning. Working sets past and present. In IEEE Tran. on
Software Engineerng, 1980.

[Den06] Peter Denning. The Locality Principle, Communication Networks
And Computer Systems (Communications and Signal Processing).
Imperial College Press, London, UK, UK, 2006.

[Dra] DragonFly BSD HammerFS. www.dragonflybsd.org/hammer/.

[DS02] A. S. Dhodapkar and J. E. Smith. Managing multi-configuration
hardware via dynamic working set analysis. In Proc. of ISCA, 2002.

[EMC] EMC Corporation. EMC Invista.
http://www.emc.com/products/software/invista/invista.jsp.

[fio] Fio. http://linux.die.net/man/1/fio.

[FY83] D. Ferrari and Y.-Y. Yih. VSWS: The variable-interval sampled work-
ing set policy. In IEEE Trans. on Software Engineering, 1983.

[GAW09] Ajay Gulati, Irfan Ahmad, and Carl A. Waldspurger. Parda: pro-
portional allocation of resources for distributed storage access. In
Proccedings of the 7th conference on File and storage technologies,
2009.

105

[GAW11] Ajay Gulati, Irfan Ahmad, and Carl A. Waldspurger. Pesto: On-
line storage performance management in virtualized datacenters. In
Proceedings of the 2nd ACM Symposium on Cloud Computing, New
York, NY, USA, 2011. ACM.

[GF78] R. K. Gupta and M. A. Franklin. Working set and page fault fre-
quency replacement algorithms: A performance comparison. In IEEE
Transactions on Computers, 1978.

[Gil08] Binny S. Gill. On multi-level exclusive caching: offline optimality and
why promotions are better than demotions. In Proc. of the USENIX
File and Storage Technologies, Feburary 2008.

[GJMT03] Pawan Goyal, Divyesh Jadav, Dharmendra S. Modha, and Renu
Tewari. Cachecow: Qos for storage system caches. In Proceedings
of the 11th international conference on Quality of service, IWQoS’03,
2003.

[GKAK10] Ajay Gulati, Chethan Kumar, Irfan Ahmad, and Karan Kumar.
Basil: Automated io load balancing across storage devices. In FAST,
pages 169–182, 2010.

[GLV+08] Diwaker Gupta, Sangmin Lee, Michael Vrable, Stefan Savage, Alex C.
Snoeren, George Varghese, Geoffrey Voelker, and Amin Vahdat. Dif-
ference Engine: Harnessing Memory Redundancy in Virtual Ma-
chines. Proc. of the USENIX OSDI, December 2008.

[GMV10] Ajay Gulati, Arif Merchant, and Peter J. Varman. mclock: handling
throughput variability for hypervisor io scheduling. OSDI’10, 2010.

[GPG+11] Jorge Guerra, Himabindu Pucha, Joseph Glider, Wendy Belluomini,
and Raju Rangaswami. Cost effective storage using extent based
dynamic tiering. In FAST, 2011.

[GS00] Jim Gray and Prashant Shenoy. Rules of Thumb in Data Engineering.
Proc. of the IEEE International Conference on Data Engineering,
February 2000.

[GUB+08] Jorge Guerra, Luis Useche, Medha Bhadkamkar, Ricardo Koller, and
Raju Rangaswami. The Case for Active Block Layer Extensions.
ACM Operating Systems Review, 42(6), October 2008.

106

[Hag87] R. Hagmann. Reimplementing the Cedar File System Using Log-
ging and Group Commit. Proc. 11th ACM Symposium on Operating
System Principles, November 1987.

[HHS05] Hai Huang, Wanda Hung, and Kang G. Shin. FS2: Dynamic Data
Replication In Free Disk Space For Improving Disk Performance And
Energy Consumption. In Proc. of the ACM SOSP, October 2005.

[IBM] IBM Corporation. IBM System Stor-
age SAN Volume Controller. http://www-
03.ibm.com/systems/storage/software/virtualization/svc/.

[Int09] Intel Corporation. Intel R© 64 and IA-32 Architectures Software De-
veloper’s Manual. 2009.

[iom] Iometer. http://www.iometer.org.

[isc04] Internet small computer systems interface (iscsi). RFC 3720, April
2004.

[Jac09] Bruce L. Jacob. The Memory System: You Can’t Avoid It, You
Can’t Ignore It, You Can’t Fake It. Synthesis Lectures on Computer
Architecture. Morgan & Claypool Publishers, 2009.

[JCZ05] Song Jiang, Feng Chen, and Xiaodong Zhang. Clock-pro: An effec-
tive improvement of the clock replacement. In Proc. of the USENIX
Annual Technical Conference, April 2005.

[JDT05] N. Jain, M. Dahlin, and R. Tewari. TAPER: Tiered Approach for
Eliminating Redundancy in Replica Synchronization. In Proc. of the
USENIX Conference on File And Storage Systems, 2005.

[JNW08] Bruce L. Jacob, Spencer W. Ng, and David T. Wang. Memory Sys-
tems: Cache, DRAM, Disk. Morgan Kaufmann, 2008.

[JVW03] Minwen Ji, Alistair Veitch, and John Wilkes. Seneca: Remote mir-
roring done write, 2003.

[KCK+] Jong Min Kim, Jongmoo Choi, Jesung Kim, Sam H. Noh, Sang Lyul
Min, Yookun Cho, and Chong Sang Kim. A low-overhead high-

107

performance unified buffer management scheme that exploits sequen-
tial and looping references. OSDI’00.

[KCK+00] J. Kim, J. Choi, J. Kim, S. Noh, S. Min, Y. Cho, and C. Kim.
A low-overhead high-performance unified buffer management scheme
that exploits sequential and looping references. In Proc. of USENIX
OSDI, 2000.

[KDLT04] P. Kulkarni, F. Douglis, J. D. LaVoie, and J. M. Tracey. Redundancy
Elimination Within Large Collections of Files. Proc. of the USENIX
Annual Technical Conference, 2004.

[KGV83] S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi. Optimization by
simulated annealing. Science, 1983.

[KHW91] Y. Kim, M. Hill, and D. Wood. Implementing stack simulation for
highlyassociative memories. In Proc. of ACM SIGMETRICS, 1991.

[KR10] Ricardo Koller and Raju Rangaswami. I/o deduplication: Utiliz-
ing content similarity to improve i/o performance. Trans. Storage,
6(3):13:1–13:26, September 2010.

[KRDZ10] Sajib Kundu, Raju Rangaswami, Kaushik Dutta, and Ming Zhao.
Application performance modeling in a virtualized environment. In
Proc. of the IEEE HPCA, January 2010.

[krm08] taeho kgil, david roberts, and trevor mudge. improving nand flash
based disk caches. In proc. of isca, 2008.

[KS00] M. Karlsson and P. Stenstrom. An analytical model of the working-set
sizes in decision-support systems. In Proc. of ACM SIGMETRICS,
2000.

[KVR10] Ricardo Koller, Akshat Verma, and Raju Rangaswami. Generalized
erss tree model: Revisiting working sets. Perform. Eval., 2010.

[KVR11] Ricardo Koller, Akshat Verma, and Raju Rangaswami. Estimating
application cache requirement for provisioning caches in virtualized
systems. Modeling, Analysis, and Simulation of Computer Systems,
International Symposium on, 0:55–62, 2011.

108

[LAS+05] Xuhui Li, Ashraf Aboulnaga, Kenneth Salem, Aamer Sachedina, and
Shaobo Gao. Second-tier cache management using write hints. In
Proc. of the USENIX File and Storage Technologies, 2005.

[LEB+09] Mark Lillibridge, Kave Eshghi, Deepavali Bhagwat, Vinay Deolalikar,
Greg Trezise, and Peter Camble. Sparse indexing: large scale, inline
deduplication using sampling and locality. In Proc. of the USENIX
File and Storage Technologies, February 2009.

[LLD+08] J. Lin, Q. Lu, X. Ding, Z. Zhang, X. Zhang, and P. Sadayappan.
Gaining insights into multicore cache partitioning: Bridging the gap
between simulation and real systems. In Proc. of IEEE HPCA, 2008.

[LSB08] The Linux Standard Base. http://www.linuxbase.org, 2008.

[McD] Richard McDougall. Filebench:application level file system bench-
mark.

[MCGC11] Ali Mashtizadeh, Emré Celebi, Tal Garfinkel, and Min Cai. The
design and evolution of live storage migration in vmware esx. In Pro-
ceedings of the 2011 USENIX conference on USENIX annual technical
conference, USENIXATC’11, pages 14–14, Berkeley, CA, USA, 2011.
USENIX Association.

[McK04] Sally A. McKee. Reflections on the memory wall. In Proceedings of
the 1st conference on Computing frontiers, CF ’04, pages 162–, New
York, NY, USA, 2004. ACM.

[MG99] Marshall Kirk McKusick and Gregory R. Ganger. Soft updates: a
technique for eliminating most synchronous writes in the fast filesys-
tem. In Proceedings of the annual conference on USENIX Annual
Technical Conference, ATEC ’99, pages 24–24, Berkeley, CA, USA,
1999. USENIX Association.

[MGST70a] R. L. Mattson, J. Gecsei, D. R. Slutz, and I. L. Traiger. Evaluation
techniques for storage hierarchies. IBM Systems Journal, 9(2):78–117,
1970.

[MGST70b] R. L. Mattson, J. Gecsei, D. R. Slutz, and I. L. Traiger. Evaluation
techniques for storage hierarchies. IBM Syst. J., 1970.

109

[MIG03] Charles B. Morrey III and Dirk Grunwald. Peabody: The Time
Travelling Disk. In Proc. of the IEEE/NASA MSST, 2003.

[MM04] Nimrod Megiddo and Dharmendra S. Modha. Outperforming lru with
an adaptive replacement cache algorithm. Computer, 2004.

[MMHF09] G. Milos, D. G. Murray, S. Hand, and M. Fetterman. Satori: En-
lightened Page Sharing. In Proc. of the Usenix Annual Technical
Conference, June 2009.

[NAS] NAS Parallel Benchmarks (NPB).
http://www.nas.nasa.gov/resources/software/npb.html.

[Net] Network Appliance, Inc. NetApp V-Series of Heterogeneous Storage
Environments. http://media.netapp.com/documents/v-series.pdf.

[New] New Implementation of a Log-structured File System (NILFS).
www.nilfs.org.

[Ope] Open Source. Dyninst: An Application Program Interface (API) for
Runtime Code Generation. Online, http://www.dyninst.org/.

[OS93] Cyril U. Orji and Jon A. Solworth. Doubly distorted mirrors. In
Proceedings of the ACM SIGMOD, 1993.

[PGG+95] R. Patterson, G. Gibson, E. Ginting, D. Stodolsky, and J. Zelenka.
Informed prefetching and caching. In Proc. of ACM SOSP, 1995.

[PGSK09] C.M. Patrick, R. Garg, S.W. Son, and M. Kandemir. Improving i/o
performance using soft-qos-based dynamic storage cache partitioning.
In CLUSTER ’09, 2009.

[PSPK09] Ramya Prabhakar, Shekhar Srikantaiah, Christina Patrick, and Mah-
mut Kandemir. Dynamic storage cache allocation in multi-server ar-
chitectures. In Proceedings of the Conference on High Performance
Computing Networking, Storage and Analysis, SC ’09, 2009.

[QD02] S. Quinlan and S. Dorward. Venti: A New Approach to Archival Stor-
age. Proc. of the USENIX File And Storage Technologies, January
2002.

110

[QP06a] Moinuddin K. Qureshi and Yale N. Patt. Utility-based cache par-
titioning: A low-overhead, high-performance, runtime mechanism to
partition shared caches. In Microarchitecture, 2006. MICRO-39. 39th
Annual IEEE/ACM International Symposium on, 2006.

[QP06b] Moinuddin K. Qureshi and Yale N. Patt. Utility-based cache par-
titioning: A low-overhead, high-performance, runtime mechanism to
partition shared caches. In MICRO2009, 2006.

[RCP08] Sean Rhea, Russ Cox, and Alex Pesterev. Fast, Inexpensive Content-
Addressed Storage in Foundation. Proc. of USENIX Annual Techni-
cal Conference, June 2008.

[RD] John T. Robinson and Murthy V. Devarakonda. Data cache manage-
ment using frequency-based replacement. SIGMETRICS ’90.

[RLLS] R. Rajkumar, Chen Lee, J.P. Lehoczky, and D.P. Siewiorek. Practical
solutions for qos-based resource allocation problems. In Real-Time
Systems Symposium, 1998.

[RO91] M. Rosenblum and J. Ousterhout. The Design And Implementation
of a Log-Structured File System. Proc. 13th Symposium on Operating
System Principles, October 1991.

[RSG93] E. Rothberg, J. P. Singh, and A. Gupta. Working sets, cache sizes
and node granularity issues for large-scale multiprocessors. In Proc.
of ISCA, 1993.

[RT03] Ohad Rodeh and Avi Teperman. zfs ” a scalable distributed file
system using object disks. In Proceedings of the 20 th IEEE/11 th
NASA Goddard Conference on Mass Storage Systems and Technolo-
gies (MSS’03), MSS ’03, pages 207–, Washington, DC, USA, 2003.
IEEE Computer Society.

[SBSMWS12] Luis Pabn Steve Byan, James Lentini, Christopher Small, and Inc.
Mark W. Storer, NetApp. Mercury: host-side flash caching for the
datacenter. 2012.

[Sit96] Richard L. Sites. It’s the memory, stupid! Microprocessor Report,
1996.

111

[SLG+09] Gokul Soundararajan, Daniel Lupei, Saeed Ghanbari, Adrian Daniel
Popescu, Jin Chen, and Cristiana Amza. Dynamic resource allocation
for database servers running on virtual storage. In Proccedings of the
7th conference on File and storage technologies, 2009.

[SRD04] G. E. Suh, L. Rudolph, and S. Devadas. Dynamic partitioning of
shared cache memory. The Journal of Supercomputing, 2004.

[SSZ12] Mohit Saxena, Michael M. Swift, and Yiying Zhang. Flashtier a
lightweight, consistent and durable storage cache. In EuroSys, pages
267–280, 2012.

[STS08] L. Soares, D. Tam, and M. Stumm. Reducing the harmful effects
of last-level cache polluters with an os-level, software-only pollute
buffer. In IEEE MICRO, 2008.

[STW92] Harold S. Stone, John Turek, and Joel L. Wolf. Optimal partitioning
of cache memory. IEEE Trans. Comput., 1992.

[SVS12] Priya Sehgal, Kaladhar Voruganti, and Rajesh Sundaram. SLO-aware
Hybrid Store. IEEE/NASA Goddard Conference on Mass Storage
Systems and Technologies, April 2012.

[TASS09] David Tam, Reza Azimi, Livio Soares, and Michael Stumm. rapidmrc:
approximating l2 miss rate curves on commodity systems for online
optimizations. In proc. of asplos, 2009.

[Tra] Transaction Processing Performance Council (TPC). TPC Bench-
marks. http://www.tpc.org/information/benchmarks.asp.

[TSW92a] D. Thiebaut, H.S. Stone, and J.L. Wolf. Improving disk cache hit-
ratios through cache partitioning. Computers, IEEE Transactions
on, 41(6):665 –676, jun 1992.

[TSW92b] Dominique Thiébaut, Harold S. Stone, and Joel L. Wolf. Improv-
ing disk cache hit-ratios through cache partitioning. IEEE Trans.
Comput., 1992.

[Twe98] S. C. Tweedie. Journaling the Linux ext2fs File System. The Fourth
Annual Linux Expo, May 1998.

112

[UGB+08] Luis Useche, Jorge Guerra, Medha Bhadkamkar, Mauricio Alarcon,
and Raju Rangaswami. EXCES: EXternal Caching in Energy Sav-
ing Storage Systems. Proc. IEEE International Symposium on High-
Performance Computer Architecture (HPCA), February 2008.

[VAN08a] A. Verma, P. Ahuja, and A. Neogi. pmapper: Power and migration
cost aware application placement in virtualized systems. In Proc. of
ACM Middleware, 2008.

[VAN08b] A. Verma, P. Ahuja, and A. Neogi. Power-aware dynamic placement
of hpc applications. In Proc. of ACM ICS, 2008.

[Wal02a] Carl A. Waldspurger. Memory Resource Management in VMware
ESX Server. Proc. of USENIX OSDI, 2002.

[Wal02b] Carl A. Waldspurger. Memory resource management in vmware esx
server. SIGOPS Oper. Syst. Rev., 36(SI):181–194, December 2002.

[WOT+96] S. Woo, M. Ohara, E. Torrie, J. P. Singh, and A. Gupta. Method-
ological considerations and characterization of the splash-2 parallel
application suite. In Proc. of ISCA, 1996.

[WW02a] Theodore M. Wong and John Wilkes. My Cache or Yours? Making
Storage More Exclusive. In Proc. of the USENIX Annual Technical
Conference, 2002.

[WW02b] Theodore M. Wong and John Wilkes. My cache or yours? making
storage more exclusive. In Proceedings of the General Track of the
annual conference on USENIX Annual Technical Conference, pages
161–175, Berkeley, CA, USA, 2002. USENIX Association.

[ZLP08] Benjamin Zhu, Kai Li, and Hugo Patterson. Avoiding the Disk Bot-
tleneck in the Data Domain Deduplication File System. Proc. of the
USENIX File And Storage Technologies, February 2008.

[ZPS+04a] P. Zhou, V. Pandey, J. Sundaresan, A. Raghuraman, Y. Zhou, and
S. Kumar. Dynamic tracking of page miss ratio curve for memory
management. In Proc. of ASPLOS, 2004.

[ZPS+04b] Pin Zhou, Vivek Pandey, Jagadeesan Sundaresan, Anand Raghura-
man, Yuanyuan Zhou, and Sanjeev Kumar. Dynamic tracking of page

113

miss ratio curve for memory management. SIGOPS Oper. Syst. Rev.,
2004.

[ZYKW02] C. Zhang, X. Yu, A. Krishnamurthy, and R. Y. Wang. Configuring
and Scheduling an Eager-Writing Disk Array for a Transaction Pro-
cessing Workload. In Proc. of USENIX File and Storage Technologies,
January 2002.

114

VITA

RICARDO KOLLER

November 6, 1982 Born, Cochabamba, Bolivia

2007–2012 Research Assistant
Florida International University
Miami, Florida

2005 B.S., Systems Engineering
Bolivian Catholic University
New York, New York

PUBLICATIONS AND PRESENTATIONS

Luis Useche, Ricardo Koller, Raju Rangaswami, Akshat Verma, (2011). Truly Non-
Blocking Writes. Proceedings of the USENIX Workshop on Hot Topics in Storage
and File Systems.

Ricardo Koller, Akshat Verma, and Raju Rangaswami, (2011). Estimating Applica-
tion Cache Requirement for Provisioning Caches in Virtualized Systems. Proceed-
ings of the IEEE International Symposium on Modeling, Analysis and Simulation
of Computer and Telecommunication Systems.

Akshat Verma, Gautam Kumar, Ricardo Koller, Aritra Sen, (2011). CosMig: Model-
ing the Impact of Reconfiguration in a Cloud. Proceedings of the IEEE International
Symposium on Modeling, Analysis and Simulation of Computer and Telecommuni-
cation Systems.

Ricardo Koller, Akshat Verma, and Raju Rangaswami, (2010). Generalized ERSS
Tree Model: Revisiting Working Sets. Proceedings of the IFIP International Sym-
posium on Computer Performance, Modeling, Measurements and Evaluation.

Ricardo Koller, Akshat Verma, Anindya Neogi, (2010). WattApp: An Application
Aware Power Meter for Shared Data Centers. Proceedings of the IEEE Interna-
tional Conference on Autonomic Computing.

115

Ricardo Koller and Raju Rangaswami, (2010). I/O Deduplication: Utilizing Content
Similarity to Improve I/O Performance. Proceedings of the USENIX Conference
on File and Storage Technologies.

Akshat Verma, Ricardo Koller, Luis Useche, and Raju Rangaswami, (2010). SR-
CMap: Energy Proportional Storage Using Dynamic Consolidation. Proceedings of
the USENIX Conference on File and Storage Technologies.

Ricardo Koller, Raju Rangaswami, Joseph Marrero, Igor Hernandez, Geoffrey Smith,
Mandy Barsilai, Silviu Necula, S. Masoud Sadjadi, Tao Li, and Krista Merrill,
(2008). Anatomy of a Real-time Intrusion Prevention System. Proceedings of the
IEEE International Conference on Autonomic Computing.

Jorge Guerra, Luis Useche, Medha Bhadkamkar, Ricardo Koller, and Raju Ran-
gaswami, (2008). The Case for Active Block Layer Extensions. Proceedings of
IEEE International Workshop on Storage and I/O Virtualization, Performance, En-
ergy, Evaluation and Dependability.

HONORS AND AWARDS

2011 Overall outstanding graduate student award
Florida International University
Miami, Florida

2010 International research fellowship
IBM/PIRE
Miami, Florida

116

	Florida International University
	FIU Digital Commons
	7-24-2012

	Improving Caches in Consolidated Environments
	Ricardo Koller
	Recommended Citation

	Improving Caches in Consolidated Environments

